M. S. Silverstein, Special Issue of Polymer on porous polymers, Polymer, vol.55, issue.1, p.302
DOI : 10.1016/j.polymer.2013.11.008

F. Svec, T. B. Tennikova, and Z. , Monolithic materials: preparation, properties and applications, 2003.

A. Brändle and A. Khan, Thiol???epoxy ???click??? polymerization: efficient construction of reactive and functional polymers, Polymer Chemistry, vol.2, issue.12, pp.3224-3227, 2012.
DOI : 10.1039/c1py00046b

M. Guerrouache, M. Millot, and B. Carbonnier, Functionalization of Macroporous Organic Polymer Monolith Based on Succinimide Ester Reactivity for Chiral Capillary Chromatography: A Cyclodextrin Click Approach, Macromolecular Rapid Communications, vol.30, issue.2, p.109, 2009.
DOI : 10.1002/marc.200800584

R. Poupart, B. L. Droumaguet, M. Guerrouache, and B. Carbonnier, Copper nanoparticles supported on permeable monolith with carboxylic acid surface functionality: Stability and catalytic properties under reductive conditions, Materials Chemistry and Physics, vol.163, p.446, 2015.
DOI : 10.1016/j.matchemphys.2015.07.064

F. Svec and J. M. Frechet, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media, Analytical Chemistry, vol.64, issue.7, p.820, 1992.
DOI : 10.1021/ac00031a022

S. Hjertén, K. Nakazato, J. Mohammad, and D. Eaker, Reversed-phase chromatography of proteins and peptides on compressed continuous beds, Chromatographia, vol.64, issue.5-6, p.287, 1993.
DOI : 10.1093/chromsci/7.3.129

T. B. Tennikova, B. Belenkii, and F. Svec, High-Performance Membrane Chromatography. A Novel Method of Protein Separation, Journal of Liquid Chromatography, vol.13, issue.1, p.63, 1990.
DOI : 10.1016/S0021-9673(01)96426-X

H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography, Analytical Chemistry, vol.68, issue.19, pp.3498-3501, 1996.
DOI : 10.1021/ac960281m

S. Lapwanit, T. Trakulsujaritchok, and P. N. Nongkhai, Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution, Chemical Engineering Journal, vol.289, p.286, 2016.
DOI : 10.1016/j.cej.2015.12.073

T. Wang and C. Shannon, Electrochemical sensors based on molecularly imprinted polymers grafted onto gold electrodes using click chemistry, Analytica Chimica Acta, vol.708, issue.1-2, pp.37-43, 2011.
DOI : 10.1016/j.aca.2011.09.030

J. Lutz, 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science, Angewandte Chemie International Edition, vol.45, issue.7, pp.1018-1025, 2007.
DOI : 10.1002/anie.200604050

W. H. Binder and R. Sachsenhofer, ???Click??? Chemistry in Polymer and Materials Science, Macromolecular Rapid Communications, vol.11, issue.1, pp.15-54, 2007.
DOI : 10.1002/cbic.200300721

J. E. Moses and A. D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev., vol.45, issue.8, pp.1249-1262, 2007.
DOI : 10.1002/anie.200601677

B. S. Sumerlin and A. P. Vogt, Macromolecular Engineering through Click Chemistry and Other Efficient Transformations, Macromolecules, vol.43, issue.1, pp.1-13, 2010.
DOI : 10.1021/ma901447e

N. J. Agard, J. A. Prescher, and C. R. Bertozzi, A Strain-Promoted [3 + 2] Azide???Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems, Journal of the American Chemical Society, vol.126, issue.46, p.15046, 2004.
DOI : 10.1021/ja044996f

C. E. Hoyle and C. N. Bowman, Thiol-Ene Click Chemistry, Angewandte Chemie International Edition, vol.42, issue.2, p.1540, 2010.
DOI : 10.1021/ma9009627

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis, Chemical Society Reviews, vol.8, issue.24, p.1355, 2010.
DOI : 10.1021/ja809345d

T. Posner and . Ber, Beitr??ge zur Kenntniss der unges??ttigten Verbindungen. II. Ueber die Addition von Mercaptanen an unges??ttigte Kohlenwasserstoffe, Berichte der deutschen chemischen Gesellschaft, vol.53, issue.1, p.646, 1905.
DOI : 10.1002/cber.190503801106

K. Griesbaum, Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds, Angewandte Chemie International Edition in English, vol.13, issue.4, p.273, 1970.
DOI : 10.1002/recl.19620810908

B. D. Fairbanks, T. F. Scott, C. J. Kloxin, K. S. Anseth, and C. N. Bowman, Thiol???Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks, Macromolecules, vol.42, issue.1, p.211, 2009.
DOI : 10.1021/ma801903w

R. Hoogenboom, Thiol-Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials, Angewandte Chemie International Edition, vol.41, issue.20, p.3415, 2010.
DOI : 10.1002/anie.201000401

J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, Evaluation and control of thiol???ene/thiol???epoxy hybrid networks, Polymer, vol.48, issue.6, p.1526, 2007.
DOI : 10.1016/j.polymer.2007.01.044

O. Diels and K. Alder, Synthesen in der hydroaromatischen Reihe, Justus Liebig's Annalen der Chemie, vol.29, issue.1, p.98, 1928.
DOI : 10.1039/CT8844500410

X. L. Sun, C. L. Stabler, C. S. Cazalis, and E. L. Chaikof, Carbohydrate and Protein Immobilization onto Solid Surfaces by Sequential Diels???Alder and Azide???Alkyne Cycloadditions, Bioconjugate Chemistry, vol.17, issue.1, p.52, 2006.
DOI : 10.1021/bc0502311

G. W. Goodall and W. Hayes, Advances in cycloaddition polymerizations, Chem. Soc. Rev., vol.116, issue.487, p.280, 2006.
DOI : 10.1021/ja00085a011

Z. Liu, J. Ou, H. Lin, Z. Liu, H. Wang et al., Photoinduced thiol???ene polymerization reaction for fast preparation of macroporous hybrid monoliths and their application in capillary liquid chromatography, Chem. Commun., vol.18, issue.66, p.9288, 2014.
DOI : 10.1002/adma.200601026

C. Liu, Q. Deng, G. Fang, X. Huang, and S. Wang, Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins, Journal of Materials Chemistry B, vol.405, issue.32, pp.5229-5237, 2014.
DOI : 10.1007/s00216-013-6917-y

C. Viklund, E. Ponten, B. Glad, K. Irgum, P. Horstedt et al., -trimethylolpropane trimethacrylate) Materials with Fine Controlled Porous Properties:?? Preparation of Monoliths Using Photoinitiated Polymerization, Chemistry of Materials, vol.9, issue.2, p.463, 1997.
DOI : 10.1021/cm9603011

M. Wu, H. Zhang, Z. Wang, S. Shen, X. Le et al., ???One-pot??? fabrication of clickable monoliths for enzyme reactors, Chemical Communications, vol.23, issue.14, p.1407, 2013.
DOI : 10.1002/rcm.3921

K. Saunders, A. Ghanem, W. Hon, E. Hilder, and P. Haddad, Separation and sample pre-treatment in bioanalysis using monolithic phases: A review, Analytica Chimica Acta, vol.652, issue.1-2, p.22, 2009.
DOI : 10.1016/j.aca.2009.05.043

F. Svec and J. M. Fréchet, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media, Analytical Chemistry, vol.64, issue.7, p.820, 1992.
DOI : 10.1021/ac00031a022

F. Svec and J. M. Fréchet, New Designs of Macroporous Polymers and Supports: From Separation to Biocatalysis, Science, vol.273, issue.5272, p.205, 1996.
DOI : 10.1126/science.273.5272.205

F. Svec, Less common applications of monoliths: I.??Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports, ELECTROPHORESIS, vol.1009, issue.5-6, p.947, 2006.
DOI : 10.1016/0005-2744(78)90114-6

L. R. Treiber, Normal-phase high-performance liquid chromatography with relay gradient elution I. Description of the method, Journal of Chromatography A, vol.696, issue.2, p.193, 1995.
DOI : 10.1016/0021-9673(95)00070-4

M. A. Sephton and O. Botta, Extraterrestrial Organic Matter and the Detection of Life, Space Science Reviews, vol.307, issue.5740, pp.25-35, 2008.
DOI : 10.1111/j.1945-5100.1976.tb00324.x

P. Schmitt-kopplin, Z. Gabelica, R. D. Gougeon, A. Fekete, B. Kanawati et al., High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall, Proceedings of the National Academy of Sciences, vol.228, issue.5275, pp.2763-2768, 2010.
DOI : 10.1038/228923a0

H. Yabuta, L. B. Williams, G. D. Cody, C. M. Alexander, and S. Pizzarello, The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions, Meteoritics & Planetary Science, vol.61, issue.1, pp.37-48, 2007.
DOI : 10.1111/j.1945-5100.2007.tb00216.x

A. G. Tielens, Interstellar Polycyclic Aromatic Hydrocarbon Molecules, Annual Review of Astronomy and Astrophysics, vol.46, issue.1, pp.289-337, 2008.
DOI : 10.1146/annurev.astro.46.060407.145211

B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nature Chemistry, vol.14, issue.4, pp.301-307, 2015.
DOI : 10.1038/433581a

M. W. Powner, B. Gerland, and J. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, vol.21, issue.7244, pp.239-242, 2009.
DOI : 10.1038/nature08013

D. P. Glavin, M. P. Callahan, J. P. Dworkin, and J. Elsila, The effects of parent body processes on amino acids in carbonaceous chondrites, Meteoritics & Planetary Science, vol.29, issue.12, pp.1948-1972, 2010.
DOI : 10.1016/0016-7037(71)90006-8

M. H. Engel and S. A. Macko, Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite, Nature, vol.91, issue.6648, pp.265-268, 1997.
DOI : 10.1073/pnas.91.22.10475

M. Guerrouache, A. Pantazaki, M. C. Millot, and B. Carbonnier, Zwitterionic polymeric monoliths for HILIC/RP mixed mode for CEC separation applications, Journal of Separation Science, vol.9, issue.6-7, pp.787-792, 2010.
DOI : 10.1080/00032717508058200

S. E. Geldart and P. Brown, Separation of purine and pyrimidine bases by capillary zone electrophoresis with carbonate buffers, Journal of Chromatography A, vol.831, issue.1, pp.123-129, 1999.
DOI : 10.1016/S0021-9673(98)00934-0

P. Wang and . Ren, Separation of purine and pyrimidine bases by capillary electrophoresis using ??-cyclodextrin as an additive, Journal of Pharmaceutical and Biomedical Analysis, vol.34, issue.2, pp.277-283, 2004.
DOI : 10.1016/S0731-7085(03)00502-8

D. Wu, F. Xu, B. Sun, R. Fu, H. He et al., Design and Preparation of Porous Polymers, Chemical Reviews, vol.112, issue.7, pp.3959-4015, 2012.
DOI : 10.1021/cr200440z

M. S. Silverstein, Special Issue of Polymer on porous polymers, Polymer, vol.55, issue.1, pp.302-303, 2014.
DOI : 10.1016/j.polymer.2013.11.008

F. Svec, Less common applications of monoliths: Preconcentration and solid-phase extraction, Journal of Chromatography B, vol.841, issue.1-2, pp.52-64, 2006.
DOI : 10.1016/j.jchromb.2006.03.055

F. Svec, Preparation and HPLC applications of rigid macroporous organic polymer monoliths, Journal of Separation Science, vol.975, issue.36, pp.747-766, 2004.
DOI : 10.1080/15321799108021924

L. Geiser, S. Eeltink, F. Svec, and J. M. Fréchet, In-line system containing porous polymer monoliths for protein digestion with immobilized pepsin, peptide preconcentration and nano-liquid chromatography separation coupled to electrospray ionization mass spectroscopy, Journal of Chromatography A, vol.1188, issue.2, pp.88-96, 2008.
DOI : 10.1016/j.chroma.2008.02.075

M. R. Buchmeiser, Polymeric monolithic materials: Syntheses, properties, functionalization and applications, Polymer, vol.48, issue.8, pp.2187-2198, 2007.
DOI : 10.1016/j.polymer.2007.02.045

URL : https://doi.org/10.1016/j.polymer.2007.02.045

F. Gritti and G. Guiochon, Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes, Journal of Chromatography A, vol.1216, issue.23, pp.4752-4767, 2009.
DOI : 10.1016/j.chroma.2009.04.034

K. Faure, M. Albert, V. Dugas, G. Crétier, R. Ferrigno et al., Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation, ELECTROPHORESIS, vol.1175, issue.24, pp.4948-4955, 2008.
DOI : 10.1002/elps.200800235

F. Svec, Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation, Journal of Chromatography A, vol.1217, issue.6, pp.902-924, 2010.
DOI : 10.1016/j.chroma.2009.09.073

M. Vázquez and B. Paull, Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices, Analytica Chimica Acta, vol.668, issue.2, pp.100-113, 2010.
DOI : 10.1016/j.aca.2010.04.033

C. Viklund, E. Pontén, B. Glad, K. Irgum, P. Hörstedt et al., -trimethylolpropane trimethacrylate) Materials with Fine Controlled Porous Properties:?? Preparation of Monoliths Using Photoinitiated Polymerization, Chemistry of Materials, vol.9, issue.2, pp.463-471, 1997.
DOI : 10.1021/cm9603011

S. Xie, F. Svec, and J. M. Fréchet, Porous Polymer Monoliths:?? Preparation of Sorbent Materials with High-Surface Areas and Controlled Surface Chemistry for High-Throughput, Online, Solid-Phase Extraction of Polar Organic Compounds, Chemistry of Materials, vol.10, issue.12, pp.4072-4078, 1998.
DOI : 10.1021/cm9804867

J. Wang, W. Jia, X. Lin, X. Wu, and Z. Xie, Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography, ELECTROPHORESIS, vol.519, issue.24, pp.3293-3299, 2013.
DOI : 10.1016/0021-9673(90)85132-F

M. Guerrouache, A. Pantazaki, M. C. Millot, and B. Carbonnier, Zwitterionic polymeric monoliths for HILIC/RP mixed mode for CEC separation applications, Journal of Separation Science, vol.9, issue.6-7, pp.787-792, 2010.
DOI : 10.1080/00032717508058200

T. Mekhalif, S. I. Kebe, M. Guerrouache, N. Belattar, M. C. Millot et al., Novel Monolithic Stationary Phase with Surface-Grafted Triphenyl Selector for Reversed-Phase Capillary Electrochromatography, Chromatographia, vol.34, issue.11, pp.1333-1341, 2016.
DOI : 10.1002/elps.201200600

J. C. Masini, Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column, Analytical and Bioanalytical Chemistry, vol.120, issue.5, pp.1445-1452, 2016.
DOI : 10.1039/an9952001583

C. Bisjak, R. Bakry, C. W. Huck, and G. Bonn, Amino-Functionalized Monolithic Poly(glycidyl methacrylate-co-divinylbenzene) Ion-Exchange Stationary Phases for the Separation of Oligonucleotides, Chromatographia, vol.38, issue.S13, pp.31-36, 2005.
DOI : 10.1093/chromsci/20.5.203

B. Preinerstorfer, W. Bicker, W. Lindner, and M. Lämmerhofer, Development of reactive thiol-modified monolithic capillaries and in-column surface functionalization by radical addition of a chromatographic ligand for capillary electrochromatography, Journal of Chromatography A, vol.1044, issue.1-2, pp.187-199, 2004.
DOI : 10.1016/j.chroma.2004.04.078

D. Connolly, B. Twamley, and B. Paull, High-capacity gold nanoparticle functionalised polymer monoliths, Chemical Communications, vol.111, issue.12, pp.2109-2111, 2010.
DOI : 10.1016/j.chroma.2004.06.125

M. Guerrouache, S. Mahouche-chergui, M. M. Chehimi, and B. Carbonnier, Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol???yne click photopatterning approach, Chemical Communications, vol.33, issue.60, pp.7486-7488, 2012.
DOI : 10.1002/jssc.200900681

D. Connolly, S. Currivan, and B. Paull, Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review, PROTEOMICS, vol.1144, issue.19-20, pp.2904-2917, 2012.
DOI : 10.1016/j.chroma.2006.11.082

S. Mahouche-chergui, M. Guerrouache, B. Carbonnier, and M. M. Chehimi, Polymer-immobilized nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.439, pp.43-68, 2013.
DOI : 10.1016/j.colsurfa.2013.04.013

Y. Pan, X. Wang, H. Zhang, Y. Kang, T. Wu et al., Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection, Analytical Methods, vol.53, issue.4, pp.1349-1357, 2015.
DOI : 10.1016/j.vibspec.2010.01.002

Y. Xu, Q. Cao, F. Svec, and J. M. Frechet, Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides, Analytical Chemistry, vol.82, issue.8, pp.3352-3358, 2010.
DOI : 10.1021/ac1002646

Q. Cao, Y. Xu, F. Liu, F. Svec, and J. M. Frechet, Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities, Analytical Chemistry, vol.82, issue.17, pp.7416-7421, 2010.
DOI : 10.1021/ac1015613

Y. Liang, C. Wu, Q. Zhao, Q. Wu, B. Jiang et al., Gold nanoparticles immobilized hydrophilic monoliths with variable functional modification for highly selective enrichment and on-line deglycosylation of glycopeptides, Analytica Chimica Acta, vol.900, pp.83-89, 2015.
DOI : 10.1016/j.aca.2015.10.024

Y. Ye, M. Jin, and D. Wan, One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst, Journal of Materials Chemistry A, vol.21, issue.25, pp.13519-13525, 2015.
DOI : 10.1021/la052120w

M. Chehimi, Surface and Interface Analysis, 2016.

C. Fairman, J. Z. Ginges, S. B. Lowe, and J. J. Gooding, Protein Resistance of Surfaces Modified with Oligo(Ethylene Glycol) Aryl Diazonium Derivatives, ChemPhysChem, vol.12, issue.10, pp.2183-2189, 2013.
DOI : 10.1007/s10008-008-0577-4

G. Liu, T. Böcking, and J. J. Gooding, Diazonium salts: Stable monolayers on gold electrodes for sensing applications, Journal of Electroanalytical Chemistry, vol.600, issue.2, pp.335-344, 2007.
DOI : 10.1016/j.jelechem.2006.09.012

A. A. Mohamed, Z. Salmi, S. A. Dahoumane, A. Mekki, B. Carbonnier et al., Advances in colloid and interface science, pp.16-36, 2015.

J. J. Gooding, Advances in Interfacial Design for Electrochemical Biosensors and Sensors: Aryl Diazonium Salts for Modifying Carbon and Metal Electrodes, Electroanalysis, vol.19, issue.6, pp.573-582, 2008.
DOI : 10.1002/elan.200704124

S. Mahouche-chergui, S. Gam-derouich, C. Mangeney, and M. M. Chehimi, Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces, Chemical Society Reviews, vol.8, issue.7, pp.4143-4166, 2011.
DOI : 10.1007/s11051-005-9062-5

B. D. Assresahegn, T. Brousse, and D. Bélanger, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon, vol.92, pp.362-381, 2015.
DOI : 10.1016/j.carbon.2015.05.030

M. Guerrouache, B. Carbonnier, C. Vidal-madjar, and M. Millot, In situ functionalization of N-acryloxysuccinimide-based monolith for reversed-phase electrochromatography, Journal of Chromatography A, vol.1149, issue.2, pp.368-376, 2007.
DOI : 10.1016/j.chroma.2007.03.039

B. Carbonnier, M. Guerrouache, R. Denoyel, and M. C. Millot, CEC separation of aromatic compounds and proteins on hexylamine-functionalizedN-acryloxysuccinimide monoliths, Journal of Separation Science, vol.1035, issue.17, pp.3000-3010, 2007.
DOI : 10.1365/s10337-004-0295-8

C. P. Bisjak, S. H. Lubbad, L. Trojer, and G. K. Bonn, Novel monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography, Journal of Chromatography A, vol.1147, issue.1, pp.46-52, 2007.
DOI : 10.1016/j.chroma.2007.02.027

S. Karenga and Z. Rassi, Naphthyl methacrylate-phenylene diacrylate-based monolithic column for reversed-phase capillary electrochromatography via hydrophobic and ?? interactions, ELECTROPHORESIS, vol.90, issue.19, pp.3200-3206, 2010.
DOI : 10.1002/elps.201000363

T. X. Lav, D. Grande, C. Gaillet, M. Guerrouache, and B. Carbonnier, Porous Poly(styrene-co-divinylbenzene) Neutral Monolith: From Design and Characterization to Reversed-Phase Capillary Electrochromatography Applications, Macromolecular Chemistry and Physics, vol.70, issue.1, pp.64-71, 2012.
DOI : 10.1021/ac9713518

T. Lav, B. Carbonnier, M. Guerrouache, and D. Grande, Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography, Polymer, vol.51, issue.25, pp.5890-5894, 2010.
DOI : 10.1016/j.polymer.2010.10.032

S. Karenga and Z. Rassi, A novel, neutral hydroxylated octadecyl acrylate monolith with fast electroosmotic flow velocity and its application to the separation of various solutes including peptides and proteins in the absence of electrostatic interactions, ELECTROPHORESIS, vol.23, issue.19, pp.3192-3199, 2010.
DOI : 10.1002/elps.201000360

H. Zhong and Z. Rassi, -glycans, Journal of Separation Science, vol.19, issue.1, pp.10-20, 2009.
DOI : 10.1002/jssc.200800546

S. Karenga and Z. Rassi, Neutral octadecyl monolith for reversed phase capillary electrochromatography of a wide range of solutes, Journal of Separation Science, vol.128, issue.14, pp.2677-2685, 2008.
DOI : 10.1002/jssc.200800310

M. Szumski, Z. Ku?erova, P. Jandera, and B. Buszewski, -divinylbenzene) capillary columns, ELECTROPHORESIS, vol.209, issue.4, pp.583-588, 2009.
DOI : 10.1093/chromsci/18.10.525

M. Guerrouache, S. Mahouche?chergui, T. Mekhalif, T. T. Dao, M. M. Chehimi et al., Engineering the surface chemistry of porous polymers by click chemistry and evaluating the interface properties by Raman spectroscopy and electrochromatography, Surface and Interface Analysis, vol.30, issue.10-11, pp.1009-1013, 2014.
DOI : 10.1002/jssc.200700384

Ç. Gölgelio?lu and A. Tuncel, Butyl methacrylate based monoliths with different cross-linking agents using DMF-aqueous buffer as porogen, ELECTROPHORESIS, vol.887, issue.2, pp.331-342, 2013.
DOI : 10.1016/S0021-9673(00)00250-8

C. D. Iverson and C. A. Lucy, Aniline-modified porous graphitic carbon for hydrophilic interaction and attenuated reverse phase liquid chromatography, Journal of Chromatography A, vol.1373, pp.17-24, 2014.
DOI : 10.1016/j.chroma.2014.11.003

I. Canals, K. Valkó, E. Bosch, A. P. Hill, and M. Rosés, Retention of Ionizable Compounds on HPLC. 8. Influence of Mobile-Phase pH Change on the Chromatographic Retention of Acids and Bases during Gradient Elution, Analytical Chemistry, vol.73, issue.20, pp.4937-4945, 2001.
DOI : 10.1021/ac0101454

T. Cserháti, B. Bordás, and M. Szögyi, Determination of the lipophilicity of some aniline derivatives by reversed-phase thin-layer chromatography. The effect of salts, Chromatographia, vol.20, issue.6, pp.312-316, 1986.
DOI : 10.1007/BF02311601

X. Dong, J. Dong, J. Ou, Y. Zhu, and H. Zou, Capillary electrochromatography with zwitterionic stationary phase on the lysine-bonded poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary column, ELECTROPHORESIS, vol.26, issue.12, pp.2518-2525, 2006.
DOI : 10.1002/elps.200500865

J. Kao, K. Thorkelsson, P. Bai, B. J. Rancatore, and T. Xu, Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules, Chem. Soc. Rev., vol.104, issue.7, pp.2654-2678, 2013.
DOI : 10.1103/PhysRevLett.104.016402

G. Ramesh, S. Porel, and T. Radhakrishnan, Polymer thin films embedded with in situ grown metal nanoparticles, Chemical Society Reviews, vol.92, issue.9, pp.2646-2656, 2009.
DOI : 10.1039/b815242j

S. Meer, A. Kausar, and T. Iqbal, Attributes of Polymer and Silica Nanoparticle Composites: A Review, Polymer-Plastics Technology and Engineering, vol.38, issue.8, pp.826-861, 2016.
DOI : 10.1016/j.matchemphys.2013.08.040

S. Mahouche-chergui, M. Guerrouache, B. Carbonnier, and M. M. Chehimi, Polymer-immobilized nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.439, pp.43-68, 2013.
DOI : 10.1016/j.colsurfa.2013.04.013

Z. Zhang, Y. Wu, Z. Wang, X. Zou, and Y. Zhao, Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Materials Science and Engineering: C, vol.69, pp.462-469, 2016.
DOI : 10.1016/j.msec.2016.07.015

Y. Guo, S. He, K. Yang, Y. Xue, and X. Zuo, Enhancing the Mechanical Properties of Biodegradable Polymer Blends Using Tubular Nanoparticle Stitching of the Interfaces, ACS Applied Materials & Interfaces, vol.8, issue.27, pp.17565-17573, 2016.
DOI : 10.1021/acsami.6b05698

F. Talooki, E. Ghorbani, M. Ghoreyshi, and A. A. , Investigation of ??-iron oxide-coated polymeric nanocomposites capacity for efficient heavy metal removal from aqueous solution, Polymer Engineering & Science, vol.12, issue.3, pp.2735-2742, 2015.
DOI : 10.1016/S0032-9592(98)00112-5

Z. H. Farooqi, K. Naseem, R. Begum, and A. Ijaz, Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels, Journal of Inorganic and Organometallic Polymers and Materials, vol.114, issue.96, pp.1554-1568, 2015.
DOI : 10.1021/jp101125j

S. Wang, J. Zhang, P. Yuan, Q. Sun, Y. Jia et al., Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol, Journal of Materials Science, vol.257, issue.133, pp.1323-1332, 2015.
DOI : 10.1016/j.jpowsour.2014.01.114

J. Schmidt, J. Weber, J. D. Epping, M. Antonietti, and A. Thomas, Microporous Conjugated Poly(thienylene arylene) Networks, Advanced Materials, vol.13, issue.6, pp.702-705, 2009.
DOI : 10.1002/adma.200802692

P. Kaur, J. T. Hupp, and S. T. Nguyen, Porous Organic Polymers in Catalysis: Opportunities and Challenges, ACS Catalysis, vol.1, issue.7, pp.819-835, 2011.
DOI : 10.1021/cs200131g

P. Floris, B. Twamley, P. N. Nesterenko, B. Paull, and D. Connolly, Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate, Microchimica Acta, vol.25, issue.1-2, pp.249-256, 2014.
DOI : 10.1021/ja808935n

Y. Lv, F. M. Alejandro, J. M. Fréchet, and F. Svec, Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles, Journal of Chromatography A, vol.1261, pp.121-128, 2012.
DOI : 10.1016/j.chroma.2012.04.007

D. Connolly, B. Twamley, and B. Paull, High-capacity gold nanoparticle functionalised polymer monoliths, Chemical Communications, vol.111, issue.12, pp.2109-2111, 2010.
DOI : 10.1016/j.chroma.2004.06.125

M. Guerrouache, S. Mahouche-chergui, M. M. Chehimi, and B. Carbonnier, Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol???yne click photopatterning approach, Chemical Communications, vol.33, issue.60, pp.7486-7488, 2012.
DOI : 10.1002/jssc.200900681

Y. Xu, Q. Cao, and F. Svec, Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides, Analytical Chemistry, vol.82, issue.8, pp.3352-3358, 2010.
DOI : 10.1021/ac1002646

Q. Cao, Y. Xu, F. Liu, and F. Svec, Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities, Analytical Chemistry, vol.82, issue.17, pp.7416-7421, 2010.
DOI : 10.1021/ac1015613

J. Liu, I. White, and D. L. Devoe, Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering, Analytical Chemistry, vol.83, issue.6, pp.2119-2124, 2011.
DOI : 10.1021/ac102932d

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056888/pdf

S. Tang, Y. Guo, C. Xiong, S. Liu, X. Liu et al., Nanoparticle-based monoliths for chromatographic separations, The Analyst, vol.100, issue.17, pp.4103-4117, 2014.
DOI : 10.1016/j.talanta.2012.07.069

W. Hu, T. Hong, X. Gao, and Y. Ji, Applications of nanoparticle-modified stationary phases in capillary electrochromatography, TrAC Trends in Analytical Chemistry, vol.61, pp.29-39, 2014.
DOI : 10.1016/j.trac.2014.05.011

C. Wu, Y. Liang, Q. Zhao, Y. Qu, S. Zhang et al., Boronate Affinity Monolith with a Gold Nanoparticle-Modified Hydrophilic Polymer as a Matrix for the Highly Specific Capture of Glycoproteins, Chemistry - A European Journal, vol.1053, issue.28, pp.8737-8743, 2014.
DOI : 10.1016/S0021-9673(04)01433-5

Y. Lv, Z. Lin, T. Tan, and F. Svec, Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles, Biotechnology and Bioengineering, vol.23, issue.1, pp.50-58, 2014.
DOI : 10.1002/adma.201004054

L. Prati and X. Chen, Applied Catalysis A: General 2016, pp.145-157

Z. Hu, Y. Zhao, J. Liu, J. Wang, and B. Zhang, Ultrafine MnO 2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol, Journal of Colloid and Interface Science, vol.483, pp.26-33, 2016.
DOI : 10.1016/j.jcis.2016.08.010

A. Savara, I. Rossetti, C. E. Chan?thaw, L. Prati, and A. Villa, Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon-Supported Palladium Nanoparticles, ChemCatChem, vol.156, issue.141, pp.2482-2491, 2016.
DOI : 10.1002/9780470282038

C. Zhou, Z. Guo, Y. Dai, X. Jia, H. Yu et al., Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol, Applied Catalysis B: Environmental, vol.181, pp.118-126, 2016.
DOI : 10.1016/j.apcatb.2015.07.048

M. Miao, J. Feng, Q. Jin, and Y. He, Hybrid Ni???Al layered double hydroxide/graphene composite supported gold nanoparticles for aerobic selective oxidation of benzyl alcohol, RSC Advances, vol.42, issue.45, pp.36066-36074, 2015.
DOI : 10.1039/c3dt51855h

Y. Hong, X. Jing, J. Huang, D. Sun, T. Odoom-wubah et al., for Solvent-Free Oxidation of Benzyl Alcohol, ACS Sustainable Chemistry & Engineering, vol.2, issue.7, pp.1752-1759, 2014.
DOI : 10.1021/sc500181z

Z. Weng, J. Wang, S. Zhang, C. Yan, and X. Jian, Synthesis and characterization of a polymer-supported heteropolytungstate catalyst for oxidation of benzyl alcohol, Catalysis Communications, vol.10, issue.2, pp.125-128, 2008.
DOI : 10.1016/j.catcom.2008.03.013

A. Badran, F. Awdry, S. Kolaczkowski, and S. , Catalysis today, pp.229-239, 2013.

R. Narayanan, R. J. Lipert, and M. D. Porter, Cetyltrimethylammonium Bromide-Modified Spherical and Cube-Like Gold Nanoparticles as Extrinsic Raman Labels in Surface-Enhanced Raman Spectroscopy Based Heterogeneous Immunoassays, Analytical Chemistry, vol.80, issue.6, pp.2265-2271, 2008.
DOI : 10.1021/ac7026436

M. Pradhan, J. Chowdhury, S. Sarkar, A. K. Sinha, and T. Pal, Hierarchical Gold Flower with Sharp Tips from Controlled Galvanic Replacement Reaction for High Surface Enhanced Raman Scattering Activity, The Journal of Physical Chemistry C, vol.116, issue.45, pp.24301-24313, 2012.
DOI : 10.1021/jp306330p

W. Jia, J. Li, and L. Jiang, Synthesis of Highly Branched Gold Nanodendrites with a Narrow Size Distribution and Tunable NIR and SERS Using a Multiamine Surfactant, ACS Applied Materials & Interfaces, vol.5, issue.15, pp.6886-6892, 2013.
DOI : 10.1021/am401006b

X. Wang, H. Wang, Q. Zhang, and Y. Cheng, Facile fabrication of gold nanoflower from dendrimer-encapsulated gold nanoparticles for photothermal cancer therapy, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.2, p.505, 2016.
DOI : 10.1016/j.nano.2015.12.166

H. Ko, S. Son, S. Bae, J. Kim, G. Yi et al., Near-infrared light-triggered thermochemotherapy of cancer using a polymer???gold nanorod conjugate, Nanotechnology, vol.27, issue.17, p.175102, 2016.
DOI : 10.1088/0957-4484/27/17/175102

R. Kanchanapally, S. S. Sinha, Z. Fan, M. Dubey, E. Zakar et al., Graphene Oxide???Gold Nanocage Hybrid Platform for Trace Level Identification of Nitro Explosives Using a Raman Fingerprint, The Journal of Physical Chemistry C, vol.118, issue.13, pp.7070-7075, 2014.
DOI : 10.1021/jp5015548

K. Bera, T. Ghosh, and S. Basak, Synthesis of Chiral, Crystalline Au-Nanoflower Catalyst Assisting Conversion of Rhodamine-B to Rhodamine-110 and a Single-Step, One-Pot, Eco-Friendly Reduction of Nitroarenes, The Journal of Physical Chemistry C, vol.119, issue.4, pp.1800-1808, 2015.
DOI : 10.1021/jp5086125

K. Mao, Y. Chen, Z. Wu, X. Zhou, A. Shen et al., Catalytic Strategy for Efficient Degradation of Nitroaromatic Pesticides by Using Gold Nanoflower, Journal of Agricultural and Food Chemistry, vol.62, issue.44, pp.10638-10645, 2014.
DOI : 10.1021/jf5034015

C. Ma, Y. Du, J. Feng, X. Cao, J. Yang et al., Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene, Journal of Catalysis, vol.317, pp.263-271, 2014.
DOI : 10.1016/j.jcat.2014.06.018

Q. Meng, J. Bai, S. Guo, and C. Li, Highly porous amidoximed carbon nanofibers supported palladium(0) nanoparticle catalyzed Heck reaction, Chemical Research in Chinese Universities, vol.400, issue.3, pp.1072-1077, 2015.
DOI : 10.1016/j.molcata.2015.02.009

Y. Ukisu, Complete catalytic debromination of polybrominated diphenyl ethers over a silica-supported palladium nanoparticle catalyst, Environmental Chemistry Letters, vol.46, issue.2, pp.211-216, 2015.
DOI : 10.1021/es300516e

X. Sun and H. Li, A Review: Nanofabrication of Surface-Enhanced Raman Spectroscopy (SERS) Substrates, Current Nanoscience, vol.12, issue.2, pp.175-183, 2016.
DOI : 10.2174/1573413711666150523001519

G. Mcnay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications, Applied Spectroscopy, vol.65, issue.8, pp.825-837, 2011.
DOI : 10.1366/11-06365

J. Hao, M. Han, S. Han, X. Meng, T. Su et al., SERS detection of arsenic in water: A review, Journal of Environmental Sciences, vol.36, pp.152-162, 2015.
DOI : 10.1016/j.jes.2015.05.013

S. Luo, K. Sivashanmugan, J. Liao, C. Yao, and H. Peng, Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review, Biosensors and Bioelectronics, vol.61, pp.232-240, 2014.
DOI : 10.1016/j.bios.2014.05.013

L. Qiu, W. Wang, A. Zhang, N. Zhang, T. Lemma et al., Core???Shell Nanorod Columnar Array Combined with Gold Nanoplate???Nanosphere Assemblies Enable Powerful In Situ SERS Detection of Bacteria, ACS Applied Materials & Interfaces, vol.8, issue.37, pp.24394-24403, 2016.
DOI : 10.1021/acsami.6b06674

M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M. R. Singh et al., Tunable 3D Plasmonic Cavity Nanosensors for Surface-Enhanced Raman Spectroscopy with Sub-femtomolar Limit of Detection, ACS Photonics, vol.2, issue.6, pp.752-759, 2015.
DOI : 10.1021/acsphotonics.5b00104

J. Tao, D. He, B. Tang, L. Kong, Y. Luo et al., In situ synthesis of natural rubber latex-supported gold nanoparticles for flexible SERS substrates, RSC Advances, vol.4, issue.61, pp.49168-49174, 2015.
DOI : 10.1039/c2nr30736g

A. Raza and B. Saha, Forensic science international 2014, pp.42-46

G. V. Bianco, M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Direct Fabrication Route to Plastic-Supported Gold Nanoparticles for Flexible NIR-SERS, Plasmonics, vol.108, issue.1, pp.159-165, 2013.
DOI : 10.1021/jp049244m

J. Liu, I. White, and D. L. Devoe, Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering, Analytical Chemistry, vol.83, issue.6, pp.2119-2124, 2011.
DOI : 10.1021/ac102932d

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056888/pdf

Y. Cao, M. Lv, H. Xu, F. Svec, T. Tan et al., Planar monolithic porous polymer layers functionalized with gold nanoparticles as large-area substrates for sensitive surface-enhanced Raman scattering sensing of bacteria, Analytica Chimica Acta, vol.896, pp.111-119, 2015.
DOI : 10.1016/j.aca.2015.09.018

E. S. Sinitsyna, J. G. Walter, E. G. Vlakh, F. Stahl, C. Kasper et al., Macroporous methacrylate-based monoliths as platforms for DNA microarrays, Talanta, vol.93, pp.139-146, 2012.
DOI : 10.1016/j.talanta.2012.01.064