N. Lno-lithium and . Oxyde, chimie d'électrode positive (LiN iO 2 ) LTO Lithium Titanate Oxyde, chimie d'électrode négative

V. Smil, : Resources, Conversions, Costs, Uses, and Consequences, Annual Review of Energy and the Environment, vol.25, issue.1, pp.21-51, 2000.
DOI : 10.1146/annurev.energy.25.1.21

R. Rhodes, Energy transitions : a curious history, Center for International Security and Cooperation, 2007.

O. Afdb and U. , African Economic Outlook, p.2015

. Enerdata, Energy Efficiency Trends in Residential in the EU, p.2015

I. Uic, Railway Handbook, p.2015, 2015.

A. Reichert, C. Holz-rau, and J. Scheiner, GHG emissions in daily travel and long-distance travel in Germany ??? Social and spatial correlates, Transportation Research Part D: Transport and Environment, vol.49, pp.25-43, 2016.
DOI : 10.1016/j.trd.2016.08.029

G. Maggio and G. Cacciola, When will oil, natural gas, and coal peak?, Fuel, vol.98, pp.111-123, 2012.
DOI : 10.1016/j.fuel.2012.03.021

P. Bacher, Production d'énergie électrique par centrales nucléaires, Énergies - Réseaux électriques et applications, Techniques de l'Ingénieur, 2004.

. Cour-de-comptes, Le coût de production de l'électricité nucléaire. Actualisation, p.2014, 2014.

F. Institut, . Solar, . Systems, and . Ise, Levelized cost of electricity renewable energy technologies, p.2013

R. T. Doucette and M. D. Mcculloch, Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries, Energy Policy, vol.39, issue.2, pp.803-811, 2011.
DOI : 10.1016/j.enpol.2010.10.054

M. Meeker, Internet trends 2014?code conference

H. Ibrahim, A. Ilinca, and J. Perron, Energy storage systems???Characteristics and comparisons, Renewable and Sustainable Energy Reviews, vol.12, issue.5, pp.1221-1250, 2008.
DOI : 10.1016/j.rser.2007.01.023

F. Creutzig, A. Papson, L. Schipper, and D. M. Kammen, Economic and environmental evaluation of compressed-air cars, Environmental Research Letters, vol.4, issue.4, p.44011, 2009.
DOI : 10.1088/1748-9326/4/4/044011

S. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Conversion and Management, pp.1127-1138, 1998.
DOI : 10.1016/S0196-8904(98)00025-9

A. Sharma, V. Tyagi, C. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, vol.13, issue.2, pp.318-345, 2009.
DOI : 10.1016/j.rser.2007.10.005

P. Tatsidjodoung, N. L. Pierrès, and L. Luo, A review of potential materials for thermal energy storage in building applications, Renewable and Sustainable Energy Reviews, vol.18, pp.327-349, 2013.
DOI : 10.1016/j.rser.2012.10.025

D. Rastler, Electricity energy storage technology options : a white paper primer on applications, costs and benefits, Electric Power Research Institute, 2010.

B. Bolund, H. Bernhoff, and M. Leijon, Flywheel energy and power storage systems, Renewable and Sustainable Energy Reviews, vol.11, issue.2, pp.235-258, 2007.
DOI : 10.1016/j.rser.2005.01.004

R. Peña-alzola, R. Sebastián, J. Quesada, and A. Colmenar, Review of flywheel based energy storage systems, 2011 International Conference on Power Engineering, Energy and Electrical Drives, pp.1-6, 2011.
DOI : 10.1109/PowerEng.2011.6036455

X. Luo, J. Wang, M. Dooner, and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, vol.137, pp.511-536, 2015.
DOI : 10.1016/j.apenergy.2014.09.081

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li et al., Progress in electrical energy storage system: A critical review, Progress in Natural Science, vol.19, issue.3, pp.291-312, 2009.
DOI : 10.1016/j.pnsc.2008.07.014

E. Rodrigues, R. Godina, S. Santos, A. Bizuayehu, J. Contreras et al., Energy storage systems supporting increased penetration of renewables in islanded systems, Energy, vol.75, pp.265-280, 2014.
DOI : 10.1016/j.energy.2014.07.072

R. Sebastián and R. P. Alzola, Flywheel energy storage systems: Review and simulation for an isolated wind power system, Renewable and Sustainable Energy Reviews, vol.16, issue.9, pp.6803-6813, 2012.
DOI : 10.1016/j.rser.2012.08.008

I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, Overview of current and future energy storage technologies for electric power applications, Renewable and Sustainable Energy Reviews, vol.13, issue.6-7, pp.6-7, 2009.
DOI : 10.1016/j.rser.2008.09.028

P. Groupe, Hybrid Air : Une solution innovante full hybride essence pour la voiture de demain

H. Zhao and A. F. Burke, Optimization of fuel cell system operating conditions for fuel cell vehicles, Journal of Power Sources, vol.186, issue.2, pp.408-416, 2009.
DOI : 10.1016/j.jpowsour.2008.10.032

T. Sakai, I. Uehara, and H. Ishikawa, R&D on metal hydride materials and Ni???MH batteries in Japan, Journal of Alloys and Compounds, vol.293, issue.295, pp.293-295, 1999.
DOI : 10.1016/S0925-8388(99)00459-4

K. Chau, Y. Wong, and C. Chan, An overview of energy sources for electric vehicles, Energy Conversion and Management, pp.1021-1039, 1999.
DOI : 10.1016/S0196-8904(99)00021-7

T. Reddy, Linden's handbook of batteries, 2011.

R. German, Étude du vieillissement calendaire des supercondensateurs et impact des ondulations de courant haute frequence, Thèse de Doctorat

M. Pedram, N. Chang, Y. Kim, and Y. Wang, Hybrid electrical energy storage systems, Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design, ISLPED '10, pp.363-368, 2010.
DOI : 10.1145/1840845.1840924

URL : http://atrak.usc.edu/~massoud/Papers/HEES-islped10.pdf

R. Amirante, E. Cassone, E. Distaso, and P. Tamburrano, Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies, Energy Conversion and Management, vol.132, pp.372-387, 2017.
DOI : 10.1016/j.enconman.2016.11.046

T. Ohzuku and A. Ueda, Why transition metal (di) oxides are the most attractive materials for batteries, Solid State Ionics, vol.69, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0167-2738(94)90410-3

D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochimica Acta, vol.45, issue.1-2, pp.67-86, 1999.
DOI : 10.1016/S0013-4686(99)00194-2

K. Mizushima, P. Jones, P. Wiseman, and J. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin, vol.15, issue.6, pp.783-789, 1980.
DOI : 10.1016/0025-5408(80)90012-4

G. Ning, R. E. White, and B. N. Popov, A generalized cycle life model of rechargeable Li-ion batteries, Electrochimica Acta, vol.51, issue.10, pp.2012-2022, 2006.
DOI : 10.1016/j.electacta.2005.06.033

Y. Ji, Y. Zhang, and C. Wang, Li-Ion Cell Operation at Low Temperatures, Journal of the Electrochemical Society, vol.160, issue.4, pp.636-649, 2013.
DOI : 10.1149/2.047304jes

M. W. Verbrugge and B. J. Koch, Electrochemical Analysis of Lithiated Graphite Anodes, Journal of The Electrochemical Society, vol.30, issue.3, pp.374-384, 2003.
DOI : 10.1002/bbpc.19790830908

G. Amatucci, J. Tarascon, and L. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics, vol.83, issue.1-2, pp.167-173, 1996.
DOI : 10.1016/0167-2738(95)00231-6

R. Huggins, Advanced batteries materials science aspects, 2009.

M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, vol.10, issue.10, pp.725-763, 1998.
DOI : 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

G. Pistoia, Lithium-ion batteries : advances and applications, 2014.

M. Dubarry, C. Truchot, and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, vol.219, pp.204-216, 2012.
DOI : 10.1016/j.jpowsour.2012.07.016

M. Andre, K. Meiler, C. Steiner, T. Wimmer, D. Soczka-guth et al., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation, Journal of Power Sources, vol.196, issue.12, pp.5334-5341, 2011.
DOI : 10.1016/j.jpowsour.2010.12.102

J. Lario-garcía and R. Pallàs-areny, Constant-phase element identification in conductivity sensors using a single square wave, Sensors and Actuators A: Physical, vol.132, issue.1, pp.122-128, 2006.
DOI : 10.1016/j.sna.2006.04.014

W. Waag, S. Käbitz, and D. U. Sauer, Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application, Applied Energy, vol.102, pp.885-897, 2013.
DOI : 10.1016/j.apenergy.2012.09.030

M. Montaru and S. Pelissier, Frequency and Temporal Identification of a Li-ion Polymer Battery Model Using Fractional Impedance, Oil & Gas Science and Technology ??? Revue de l???Institut Fran??ais du P??trole, vol.65, issue.1
DOI : 10.2516/ogst/2009056

URL : https://hal.archives-ouvertes.fr/hal-00426939

M. Andre, K. Meiler, H. Steiner, T. Walz, D. Soczka-guth et al., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling, Journal of Power Sources, vol.196, issue.12, pp.5349-5356, 2011.
DOI : 10.1016/j.jpowsour.2010.07.071

H. Zarrin, S. Farhad, F. Hamdullahpur, V. Chabot, A. Yu et al., Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities, Electrochimica Acta, vol.125, pp.117-123, 2014.
DOI : 10.1016/j.electacta.2014.01.022

D. K. Karthikeyan, G. Sikha, and R. E. White, Thermodynamic model development for lithium intercalation electrodes, Journal of Power Sources, vol.185, issue.2, pp.1398-1407, 2008.
DOI : 10.1016/j.jpowsour.2008.07.077

G. Moumouzias, G. Ritzoulis, D. Siapkas, and D. Terzidis, Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate???diethyl carbonate solutions for Li/LiMn2O4 cells, Journal of Power Sources, vol.122, issue.1, pp.57-66, 2003.
DOI : 10.1016/S0378-7753(03)00348-3

B. Yu, W. Qiu, F. Li, and L. Cheng, Comparison of the electrochemical properties of LiBOB and LiPF6 in electrolytes for LiMn2O4/Li cells, Journal of Power Sources, vol.166, issue.2, pp.499-502, 2007.
DOI : 10.1016/j.jpowsour.2007.01.038

K. Hayashi, Y. Nemoto, S. Tobishima, and J. Ichi-yamaki, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochimica Acta, vol.44, issue.14, pp.2337-2344, 1999.
DOI : 10.1016/S0013-4686(98)00374-0

D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad et al., Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, vol.50, issue.2-3, pp.2-3, 2004.
DOI : 10.1016/j.electacta.2004.01.090

S. Zhang, T. Jow, K. Amine, and G. Henriksen, LiPF6???EC???EMC electrolyte for Li-ion battery, Journal of Power Sources, vol.107, issue.1, pp.18-23, 2002.
DOI : 10.1016/S0378-7753(01)00968-5

V. Agubra and J. Fergus, Lithium Ion Battery Anode Aging Mechanisms, Materials, vol.97, issue.4, pp.1310-1325, 2013.
DOI : 10.1016/S0378-7753(99)00217-7

URL : http://www.mdpi.com/1996-1944/6/4/1310/pdf

J. Vetter, P. Novák, M. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.1-2, pp.269-281, 2005.
DOI : 10.1016/j.jpowsour.2005.01.006

T. Ohzuku, Y. Iwakoshi, and K. Sawa, Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell, Journal of The Electrochemical Society, vol.140, issue.9, pp.2490-2498, 1993.
DOI : 10.1149/1.2220849

T. Zheng, J. N. Reimers, and J. R. Dahn, Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium, Physical Review B, vol.17, issue.2, pp.734-741, 1995.
DOI : 10.1088/0022-3719/17/24/006

M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering: R: Reports, vol.33, issue.4, pp.109-134, 2001.
DOI : 10.1016/S0927-796X(01)00030-4

I. Belharouak, G. M. Jr, and K. Amine, Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications, Journal of Power Sources, vol.196, issue.23, pp.10344-10350, 2011.
DOI : 10.1016/j.jpowsour.2011.08.079

N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda et al., High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications, Journal of Power Sources, vol.244, pp.469-475, 2013.
DOI : 10.1016/j.jpowsour.2012.11.055

T. Ohzuku, A. Ueda, and N. Yamamoto, Zero-Strain Insertion Material of Li[Li[sub 1???3]Ti[sub 5???3]]O[sub 4] for Rechargeable Lithium Cells, Journal of The Electrochemical Society, vol.142, issue.5, pp.1431-1435, 1995.
DOI : 10.1149/1.2048592

M. Majima, S. Ujiie, E. Yagasaki, K. Koyama, and S. Inazawa, Development of long life lithium ion battery for power storage, Journal of Power Sources, vol.101, issue.1, pp.53-59, 2001.
DOI : 10.1016/S0378-7753(01)00554-7

D. Choi, W. Wang, V. V. Viswanathan, and G. Z. Yang, Low Cost, Long Cycle Life, Li-ion Batteries for Stationary Applications, 2010.

A. Propre, Chiffres de vente & immatriculations de voitures électriques en France, p.2013

G. Bolloré, Les batteries LMP (lithium métal polymère) une batterie électrique haute performance, p.2013

M. S. Whittingham, Lithium Batteries and Cathode Materials, Lithium Batteries and Cathode Materials, pp.4271-4302, 2004.
DOI : 10.1021/cr020731c

T. Ohzuku and R. J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, Journal of Power Sources, vol.174, issue.2, pp.449-456, 2007.
DOI : 10.1016/j.jpowsour.2007.06.154

J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources, vol.195, issue.4, pp.939-954, 2010.
DOI : 10.1016/j.jpowsour.2009.08.089

H. Arai, S. Okada, Y. Sakurai, and J. Ichi-yamaki, Reversibility of LiNiO2 cathode, Solid State Ionics, vol.95, issue.3-4, pp.3-4, 1997.
DOI : 10.1016/S0167-2738(96)00598-X

A. Van-der-ven, C. Marianetti, D. Morgan, and G. Ceder, Phase transformations and volume changes in spinel LixMn2O4, Solid State Ionics, vol.135, issue.1-4, pp.4-21, 2000.
DOI : 10.1016/S0167-2738(00)00326-X

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, pp.1188-1194, 1997.
DOI : 10.1149/1.1837571

N. Omar, M. Daowd, P. Bossche, O. Hegazy, J. Smekens et al., Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles???Assessment of Electrical Characteristics, Energies, vol.6, issue.82, pp.2952-2988, 2012.
DOI : 10.1016/0013-4686(94)00223-N

M. A. Roscher, J. Vetter, and D. U. Sauer, Characterisation of charge and discharge behaviour of lithium ion batteries with olivine based cathode active material, Journal of Power Sources, vol.191, issue.2, pp.582-590, 2009.
DOI : 10.1016/j.jpowsour.2009.02.024

M. A. Roscher, O. Bohlen, and J. Vetter, OCV Hysteresis in Li-Ion Batteries including Two-Phase Transition Materials, International Journal of Electrochemistry, vol.10, issue.10, 2011.
DOI : 10.1149/1.3432559

S. Lux, I. Lucas, E. Pollak, S. Passerini, M. Winter et al., The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochemistry Communications, vol.14, issue.1, pp.47-50, 2012.
DOI : 10.1016/j.elecom.2011.10.026

T. Kawamura, S. Okada, and J. Ichi-yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, Journal of Power Sources, vol.156, issue.2, pp.547-554, 2006.
DOI : 10.1016/j.jpowsour.2005.05.084

E. Peled, D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, pp.208-210, 1997.
DOI : 10.1149/1.1837858

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.
DOI : 10.1016/j.electacta.2010.05.072

M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre et al., Main aging mechanisms in Li ion batteries, Journal of Power Sources, vol.146, issue.1-2, pp.90-96, 2005.
DOI : 10.1016/j.jpowsour.2005.03.172

S. Tippmann, D. Walper, L. Balboa, B. Spier, and W. G. Bessler, Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior, Journal of Power Sources, vol.252, issue.0, pp.305-316, 2014.
DOI : 10.1016/j.jpowsour.2013.12.022

N. Legrand, B. Knosp, P. Desprez, F. Lapicque, and S. , Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling, Journal of Power Sources, vol.245, pp.208-216, 2014.
DOI : 10.1016/j.jpowsour.2013.06.130

URL : https://hal.archives-ouvertes.fr/hal-01276644

D. Sfyris, Twinning mechanism and habit lines in monolayer-thick free-standing graphene: Theoretical predictions, International Journal of Engineering Science, vol.113, pp.1-19, 2017.
DOI : 10.1016/j.ijengsci.2016.12.005

R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, Journal of Power Sources, vol.113, issue.1, pp.81-100, 2003.
DOI : 10.1016/S0378-7753(02)00488-3

Q. Zhang and R. E. White, Calendar life study of Li-ion pouch cells, Journal of Power Sources, vol.173, issue.2, pp.990-997, 2007.
DOI : 10.1016/j.jpowsour.2007.08.044

D. Abraham, E. Reynolds, E. Sammann, A. Jansen, and D. Dees, Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes, Electrochimica Acta, vol.51, issue.3, pp.502-510, 2005.
DOI : 10.1016/j.electacta.2005.05.008

Y. He, B. Li, M. Liu, C. Zhang, W. Lv et al., Gassing in Li4Ti5O12-based batteries and its remedy, Scientific Reports, p.2012
DOI : 10.1016/j.jallcom.2011.10.109

K. Wu, J. Yang, Y. Zhang, C. Wang, and D. Wang, Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle, Journal of Applied Electrochemistry, vol.52, issue.12, pp.989-995, 2012.
DOI : 10.1016/j.electacta.2007.04.070

K. Wu, J. Yang, Y. Liu, Y. Zhang, C. Wang et al., Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature, Journal of Power Sources, vol.237, pp.285-290, 2013.
DOI : 10.1016/j.jpowsour.2013.03.057

K. Wu, J. Yang, X. Qiu, J. Xu, Q. Zhang et al., Study of spinel Li4Ti5O12 electrode reaction mechanism by electrochemical impedance spectroscopy, Electrochimica Acta, vol.108, pp.841-851, 2013.
DOI : 10.1016/j.electacta.2013.07.048

I. Bloom, S. A. Jones, V. S. Battaglia, G. L. Henriksen, J. P. Christophersen et al., Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells, Journal of Power Sources, vol.124, issue.2, pp.538-550, 2003.
DOI : 10.1016/S0378-7753(03)00806-1

S. Watanabe, M. Kinoshita, and K. Nakura, Capacity fade of LiNi (1???x???y) Co x Al y O 2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi (1???x???y) Co x Al y O 2 and LiCoO 2 cathodes in cylindrical lithium-ion cells during long term storage test, Journal of Power Sources, vol.247, pp.412-422, 2014.
DOI : 10.1016/j.jpowsour.2013.08.079

D. Abraham, R. Twesten, M. Balasubramanian, I. Petrov, J. Mcbreen et al., Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochemistry Communications, vol.4, issue.8, pp.620-625, 2002.
DOI : 10.1016/S1388-2481(02)00388-0

M. Wohlfahrt-mehrens, C. Vogler, and J. Garche, Aging mechanisms of lithium cathode materials, Journal of Power Sources, vol.127, issue.1-2, pp.58-64, 2004.
DOI : 10.1016/j.jpowsour.2003.09.034

Y. Gao and J. Dahn, Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2???xO4 materials, Solid State Ionics, vol.84, issue.1-2, pp.33-40, 1996.
DOI : 10.1016/S0167-2738(96)83003-7

M. Kassem, J. Bernard, R. Revel, S. Pelissier, F. Duclaud et al., Calendar aging of a graphite/LiFePO4 cell, Journal of Power Sources, vol.208, pp.296-305, 2012.
DOI : 10.1016/j.jpowsour.2012.02.068

URL : https://hal.archives-ouvertes.fr/hal-00876555

K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells, Electrochemistry Communications, vol.7, issue.7, pp.669-673, 2005.
DOI : 10.1016/j.elecom.2005.04.018

M. Koltypin, D. Aurbach, L. Nazar, and B. Ellis, More on the performance of LiFePO4 electrodes???The effect of synthesis route, solution composition, aging, and temperature, Journal of Power Sources, vol.174, issue.2, pp.1241-1250, 2007.
DOI : 10.1016/j.jpowsour.2007.06.045

Y. Kida, A. Kinoshita, K. Yanagida, A. Funahashi, T. Nohma et al., Study on capacity fade factors of lithium secondary batteries using LiNi0.7Co0.3O2 and graphite???coke hybrid carbon, Electrochimica Acta, vol.47, issue.26, pp.4157-4162, 2002.
DOI : 10.1016/S0013-4686(02)00371-7

M. Kassem and C. Delacourt, Postmortem analysis of calendar-aged graphite/LiFePO4 cells, Journal of Power Sources, vol.235, pp.159-171, 2013.
DOI : 10.1016/j.jpowsour.2013.01.147

W. Liu, C. Delacourt, C. Forgez, and S. Pelissier, Study of graphite/NCA Li-ion cell degradation during accelerated aging tests &#x2014; Data analysis of the SIMSTOCK project, 2011 IEEE Vehicle Power and Propulsion Conference, pp.1-6, 2011.
DOI : 10.1109/VPPC.2011.6043110

K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung et al., Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications, Journal of Power Sources, vol.129, issue.1, pp.14-19, 2004.
DOI : 10.1016/j.jpowsour.2003.11.007

M. Fu, K. Huang, S. Liu, J. Liu, and Y. Li, Lithium difluoro(oxalato)borate/ethylene carbonate+propylene carbonate+ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode, Journal of Power Sources, vol.195, issue.3, pp.862-866, 2010.
DOI : 10.1016/j.jpowsour.2009.08.042

H. Zhou, Z. Fang, and J. Li, LiPF6 and lithium difluoro(oxalato)borate/ethylene carbonate??+??dimethyl carbonate??+??ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode, Journal of Power Sources, vol.230, pp.148-154, 2013.
DOI : 10.1016/j.jpowsour.2012.11.060

S. Zhang, K. Xu, and T. Jow, Study of the charging process of a LiCoO2-based Li-ion battery, Journal of Power Sources, vol.160, issue.2, pp.1349-1354, 2006.
DOI : 10.1016/j.jpowsour.2006.02.087

K. Lee, K. Smith, G. Pesaran, and . Kim, Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries, Journal of Power Sources, vol.241, pp.20-32, 2013.
DOI : 10.1016/j.jpowsour.2013.03.007

L. Fu, H. Liu, C. Li, Y. Wu, E. Rahm et al., Surface modifications of electrode materials for lithium ion batteries, Solid State Sciences, vol.8, issue.2, pp.113-128, 2006.
DOI : 10.1016/j.solidstatesciences.2005.10.019

C. Li, H. Zhang, L. Fu, H. Liu, Y. Wu et al., Cathode materials modified by surface coating for lithium ion batteries, Electrochimica Acta, vol.51, issue.19, pp.3872-3883, 2006.
DOI : 10.1016/j.electacta.2005.11.015

Y. Cho, G. T. Fey, and H. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes, Journal of Power Sources, vol.189, issue.1, pp.256-262, 2009.
DOI : 10.1016/j.jpowsour.2008.09.053

N. Dupré, J. Martin, J. Degryse, V. Fernandez, P. Soudan et al., Aging of the LiFePO4 positive electrode interface in electrolyte, Journal of Power Sources, vol.195, issue.21, pp.7415-7425, 2010.
DOI : 10.1016/j.jpowsour.2010.05.042

T. Yi, L. Jiang, J. Shu, C. Yue, R. Zhu et al., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, Journal of Physics and Chemistry of Solids, vol.71, issue.9, pp.1236-1242, 2010.
DOI : 10.1016/j.jpcs.2010.05.001

M. Wakihara, H. Ikuta, and Y. Uchimoto, Structural stability in partially substituted lithium manganese spinel oxide cathode, Ionics, vol.2, issue.5-6, pp.329-338, 2002.
DOI : 10.1107/S0567739476001551

S. Huang, Z. Wen, X. Zhu, and Z. Lin, Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries, Journal of Power Sources, vol.165, issue.1, pp.408-412, 2007.
DOI : 10.1016/j.jpowsour.2006.12.010

D. Wang, C. Zhang, Y. Zhang, J. Wang, and D. He, Synthesis and electrochemical properties of La-doped Li4Ti5O12 as anode material for Li-ion battery, Ceramics International, vol.39, issue.5, pp.5145-5149, 2013.
DOI : 10.1016/j.ceramint.2012.12.010

H. Liu, Q. Cao, L. Fu, C. Li, Y. Wu et al., Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries, Electrochemistry Communications, vol.8, issue.10, pp.1553-1557, 2006.
DOI : 10.1016/j.elecom.2006.07.014

D. Wang, H. Li, S. Shi, X. Huang, and L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochimica Acta, vol.50, issue.14, pp.2955-2958, 2005.
DOI : 10.1016/j.electacta.2004.11.045

S. B. Chikkannanavar, D. M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries, Journal of Power Sources, vol.248, pp.91-100, 2014.
DOI : 10.1016/j.jpowsour.2013.09.052

G. Zhu, Y. Du, Y. Wang, A. Yu, and Y. Xia, Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries, Journal of Electroanalytical Chemistry, vol.688, pp.86-92, 2013.
DOI : 10.1016/j.jelechem.2012.07.035

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future, Materials Today, vol.18, issue.5, pp.252-264, 2015.
DOI : 10.1016/j.mattod.2014.10.040

URL : https://doi.org/10.1016/j.mattod.2014.10.040

J. Zhang, Z. Xie, W. Li, S. Dong, and M. Qu, High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes, Carbon, vol.74, pp.153-162, 2014.
DOI : 10.1016/j.carbon.2014.03.017

S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria et al., Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, vol.257, pp.421-443, 2014.
DOI : 10.1016/j.jpowsour.2013.11.103

P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman et al., Rechargeable magnesium battery: Current status and key challenges for the future, Progress in Materials Science, pp.1-86, 2014.
DOI : 10.1016/j.pmatsci.2014.04.001

M. M. Huie, D. C. Bock, E. S. Takeuchi, A. C. Marschilok, and K. J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries, Coordination Chemistry Reviews, vol.287, pp.15-27, 2015.
DOI : 10.1016/j.ccr.2014.11.005

A. J. Crowe and B. M. Bartlett, Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte, Journal of Solid State Chemistry, vol.242, issue.2, pp.102-106, 2016.
DOI : 10.1016/j.jssc.2016.04.011

W. Jin, Z. Li, Z. Wang, and Y. Fu, Mg ion dynamics in anode materials of Sn and Bi for Mg-ion batteries, Materials Chemistry and Physics, vol.182, pp.167-172, 2016.
DOI : 10.1016/j.matchemphys.2016.07.019

R. E. Ciez and J. Whitacre, The cost of lithium is unlikely to upend the price of Li-ion storage systems, Journal of Power Sources, vol.320, pp.310-313, 2016.
DOI : 10.1016/j.jpowsour.2016.04.073

S. H. Mohr, G. M. Mudd, and D. Giurco, Lithium Resources and Production: Critical Assessment and Global Projections, Minerals, vol.100, issue.4, pp.65-84, 2012.
DOI : 10.1111/j.1530-9290.2011.00359.x

URL : http://www.mdpi.com/2075-163X/2/1/65/pdf

H. U. Sverdrup, Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model, Resources, Conservation and Recycling, pp.112-129, 2016.
DOI : 10.1016/j.resconrec.2016.07.002

X. Xiang, K. Zhang, and J. Chen, Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries, Advanced Materials, vol.227, issue.36, pp.5343-5364, 2015.
DOI : 10.1016/j.jpowsour.2012.10.034

R. C. Massé, E. Uchaker, and G. Cao, Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries, Science China Materials, vol.21, issue.98, pp.715-766, 2015.
DOI : 10.1039/c0jm04353b

S. Oh, S. Myung, J. Hassoun, B. Scrosati, and Y. Sun, Reversible NaFePO4 electrode for sodium secondary batteries, Electrochemistry Communications, vol.22, pp.149-152, 2012.
DOI : 10.1016/j.elecom.2012.06.014

B. L. Ellis and L. F. Nazar, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, vol.16, issue.4, pp.168-177, 2012.
DOI : 10.1016/j.cossms.2012.04.002

S. Shili, Balancing circuit control of energy storage system (supercapacitors) for state of health estimation and lifetime maximization, Thèse de Doctorat
URL : https://hal.archives-ouvertes.fr/tel-01403314

S. S. Zhang, The effect of the charging protocol on the cycle life of a Li-ion battery, Journal of Power Sources, vol.161, issue.2, pp.1385-1391, 2006.
DOI : 10.1016/j.jpowsour.2006.06.040

A. Hoke, A. Brissette, D. Maksimovic, A. Pratt, and K. Smith, Electric vehicle charge optimization including effects of lithium-ion battery degradation, 2011 IEEE Vehicle Power and Propulsion Conference, 2011.
DOI : 10.1109/VPPC.2011.6043046

E. Prada, D. Di-domenico, Y. Creff, J. Bernard, V. Sauvant-moynot et al., Physics-based modelling of LiFePO<inf>4</inf>-graphite Li-ion batteries for power and capacity fade predictions: Application to calendar aging of PHEV and EV, 2012 IEEE Vehicle Power and Propulsion Conference, pp.301-308, 2012.
DOI : 10.1109/VPPC.2012.6422717

E. Redondo-iglesias, P. Venet, and S. Pelissier, Measuring Reversible and Irreversible Capacity Losses on Lithium-Ion Batteries, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp.1-5, 2016.
DOI : 10.1109/VPPC.2016.7791723

URL : https://hal.archives-ouvertes.fr/hal-01393614

S. Pelissier, The french SIMSTOCK research network for modeling of energy storage system ageing in HEVs, Advanced Automotive Battery Conference (AABC), pp.1-4, 2009.

J. Lee and W. Choi, Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy, Journal of Power Electronics, vol.11, issue.2, pp.237-243, 2011.
DOI : 10.6113/JPE.2011.11.2.237

J. R. Belt, Battery Test Manual For Plug-In Hybrid Electric Vehicles, 2010.

J. P. Christophersen, Battery Test Manual For Electric Vehicles, 2015.
DOI : 10.2172/1186745

N. Omar, P. V. Bossche, T. Coosemans, and J. V. Mierlo, Peukert Revisited???Critical Appraisal and Need for Modification for Lithium-Ion Batteries, Energies, vol.51, issue.11, pp.5625-5641, 2013.
DOI : 10.1016/j.electacta.2012.03.026

M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw, Capacity and power fading mechanism identification from a commercial cell evaluation, Journal of Power Sources, vol.165, issue.2, pp.566-572, 2007.
DOI : 10.1016/j.jpowsour.2006.10.046

M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw, Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge, Journal of Power Sources, vol.174, issue.2, pp.1121-1125, 2007.
DOI : 10.1016/j.jpowsour.2007.06.185

M. Petzl and M. Danzer, Advancements in OCV Measurement and Analysis for Lithium-Ion Batteries " , Energy Conversion, IEEE Transactions on, vol.28, pp.675-681, 2013.

A. Delaille, S. Grolleau, F. Duclaud, J. Bernard, R. Revel et al., Simcal Project : Calendar Aging Results Obtained On a Panel of 6 Commercial Li-Ion Cells, ECS Meeting Abstracts, issue.14, p.1191, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920366

J. Gauchi, Plans d'expériences optimaux : un exposé didactique, pp.139-162, 2005.

J. Goupy, Les plans d'expériences, pp.74-116, 2006.

M. B. Marzouk, A. Chaumond, E. Redondo-iglesias, M. Montaru, and S. Pelissier, Experimental protocols and first results of calendar and/or cycling aging study of lithium-ion batteries -the MOBICUS project, EVS29 -2016 Electric Vehicle Symposium and Exhibition, pp.10-2016
URL : https://hal.archives-ouvertes.fr/hal-01363299

. Wu, Identifying battery aging mechanisms in large format Li ion cells, Journal of Power Sources, vol.196, issue.7, pp.3420-3425, 2011.

T. Kobayashi, N. Kawasaki, Y. Kobayashi, K. Shono, Y. Mita et al., A method of separating the capacities of layer and spinel compounds in blended cathode, Journal of Power Sources, vol.245, pp.1-6, 2014.
DOI : 10.1016/j.jpowsour.2013.06.039

A. Eddahech, O. Briat, and J. Vinassa, Determination of lithium-ion battery state-of-health based on constant-voltage charge phase, Journal of Power Sources, vol.258, pp.218-227, 2014.
DOI : 10.1016/j.jpowsour.2014.02.020

URL : https://hal.archives-ouvertes.fr/hal-00964082

E. Redondo-iglesias, P. Venet, and S. Pelissier, Impact of battery ageing on emobility energy efficiency, Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), p.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510765

S. Grolleau, Vieillissement calendaire des accumulateurs Lithium -Ion. Modélisation et analyses, Thèse de Doctorat, 2013.

R. Yazami and Y. F. Reynier, Mechanism of self-discharge in graphite???lithium anode, Electrochimica Acta, vol.47, issue.8, pp.1217-1223, 2002.
DOI : 10.1016/S0013-4686(01)00827-1

URL : https://hal.archives-ouvertes.fr/hal-00418086

Y. Reynier, R. Yazami, and B. Fultz, Thermodynamics and kinetics of selfdischarge in graphite-lithium electrodes, Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576), (Long Beach, pp.145-150, 2002.

D. U. Sauer and H. Wenzl, Comparison of different approaches for lifetime prediction of electrochemical systems???Using lead-acid batteries as example, Journal of Power Sources, vol.176, issue.2, pp.534-546, 2008.
DOI : 10.1016/j.jpowsour.2007.08.057

Q. Badey, Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d'un usage automobile, Thèse de Doctorat

C. Delacourt, C. Ades, and Q. Badey, Vieillissement des accumulateurs lithiumion dans l'automobile, Mécanique. Machines hydrauliques, aérodynamiques et thermiques ., Techniques de l'Ingénieur, 2014.

E. Prada, Aging modeling and lifetime optimization of Li-ion LiFePO4-graphite batteries according to the vehicle use, Thèse de Doctorat, 2012.
URL : https://hal.archives-ouvertes.fr/tel-01091347

C. Edouard, M. Petit, J. Bernard, C. Forgez, and R. , Sensitivity Analysis of an Electrochemical Model of Li-ion Batteries and Consequences on the Modeled Aging Mechanisms, ECS Transactions, vol.66, issue.9, pp.37-46, 2015.
DOI : 10.1149/06609.0037ecst

N. Damay, C. Forgez, M. Bichat, and G. Friedrich, Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation, Journal of Power Sources, vol.283, issue.0, pp.37-45, 2015.
DOI : 10.1016/j.jpowsour.2015.02.091

URL : https://hal.archives-ouvertes.fr/hal-01500605

I. Baghdadi, O. Briat, A. Eddahech, J. Vinassa, and P. Gyan, Electro-thermal model of lithium-ion batteries for electrified vehicles applications, 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), pp.1248-1252, 2015.
DOI : 10.1109/ISIE.2015.7281651

URL : https://hal.archives-ouvertes.fr/hal-01308668

A. Jossen, Fundamentals of battery dynamics, Journal of Power Sources, vol.154, issue.2, pp.530-538, 2006.
DOI : 10.1016/j.jpowsour.2005.10.041

S. Lukic, Charging ahead, IEEE Industrial Electronics Magazine, vol.2, issue.4, pp.22-31, 2008.
DOI : 10.1109/MIE.2008.930361

M. Montaru, Contribution à l'évaluation du vieillissement des batteries de puissance utilisées dans les véhicules hybrides selon leurs usages, Thèse de Doctorat, 2009.

H. He, R. Xiong, and J. Fan, Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach, Energies, vol.6, issue.12, pp.582-598, 2011.
DOI : 10.1016/S0378-7753(02)00194-5

J. P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz et al., Studies on LiFePO4 as cathode material using impedance spectroscopy, Journal of Power Sources, vol.196, issue.12, pp.5342-5348, 2011.
DOI : 10.1016/j.jpowsour.2010.09.121

L. Gagneur, A. Driemeyer-franco, C. Forgez, and G. Friedrich, Modeling of the diffusion phenomenon in a lithium-ion cell using frequency or time domain identification, Microelectronics Reliability, vol.53, issue.6, pp.784-796, 2013.
DOI : 10.1016/j.microrel.2013.03.009

J. Brand, Z. Zhang, and R. K. Agarwal, Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm, Journal of Power Sources, vol.247, issue.0, pp.729-737, 2014.
DOI : 10.1016/j.jpowsour.2013.09.011

R. Spotnitz, Simulation of capacity fade in lithium-ion batteries, Journal of Power Sources, vol.113, issue.1, pp.72-80, 2003.
DOI : 10.1016/S0378-7753(02)00490-1

M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev et al., Aging mechanism in Li ion cells and calendar life predictions, Journal of Power Sources, pp.97-98, 2001.

M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust et al., Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data, Journal of Power Sources, vol.215, pp.248-257, 2012.
DOI : 10.1016/j.jpowsour.2012.05.012

T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, and M. Wohlfahrt-mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries ??? A Post-Mortem study, Journal of Power Sources, vol.262, pp.129-135, 2014.
DOI : 10.1016/j.jpowsour.2014.03.112

M. Natrella, NIST/SEMATECH e-handbook of statistical methods, NIST/SEMATECH, 2010.

I. Bloom, B. Cole, J. Sohn, S. Jones, E. Polzin et al., An accelerated calendar and cycle life study of Li-ion cells, Journal of Power Sources, vol.101, issue.2, pp.238-247, 2001.
DOI : 10.1016/S0378-7753(01)00783-2

E. Redondo-iglesias, P. Venet, and S. Pelissier, Eyring acceleration model for predicting calendar ageing of lithium-ion batteries, Journal of Energy Storage, vol.13, pp.176-183, 2017.
DOI : 10.1016/j.est.2017.06.009

URL : https://hal.archives-ouvertes.fr/hal-01575005

O. Tebbi, Estimation des lois de fiabilité en mécanique par les essais accélérés, Thèse de Doctorat, 2005.

P. Kreczanik, P. Venet, A. Hijazi, and G. Clerc, Study of Supercapacitor Aging and Lifetime Estimation According to Voltage, Temperature, and RMS Current, IEEE Transactions on Industrial Electronics, vol.61, issue.9, pp.4895-4902, 2014.
DOI : 10.1109/TIE.2013.2293695

R. German, P. Venet, A. Sari, O. Briat, and J. Vinassa, Improved Supercapacitor Floating Ageing Interpretation Through Multipore Impedance Model Parameters Evolution, IEEE Transactions on Power Electronics, vol.29, issue.7, pp.3669-3678, 2014.
DOI : 10.1109/TPEL.2013.2279428

URL : https://hal.archives-ouvertes.fr/hal-00988961

H. Dai, X. Zhang, W. Gu, X. Wei, and Z. Sun, A Semi-Empirical Capacity Degradation Model of EV Li-Ion Batteries Based on Eyring Equation, 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), pp.1-5, 2013.
DOI : 10.1109/VPPC.2013.6671660

E. Redondo-iglesias, P. Venet, and S. Pelissier, Influence of the non-conservation of SoC value during calendar ageing tests on modelling the capacity loss of batteries, 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), p.5, 2015.
DOI : 10.1109/EVER.2015.7112987

URL : https://hal.archives-ouvertes.fr/hal-01278395

I. Baghdadi, O. Briat, J. Delétage, P. Gyan, and J. Vinassa, Lithium battery aging model based on Dakin???s degradation approach, Journal of Power Sources, vol.325, pp.273-285, 2016.
DOI : 10.1016/j.jpowsour.2016.06.036

URL : https://hal.archives-ouvertes.fr/hal-01657446

R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, On the LambertW function, Advances in Computational Mathematics, vol.1, issue.6, pp.329-359, 1996.
DOI : 10.5186/aasfm.1983.0805