R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Plasmonics: the next chip-scale technology, Materials Today, vol.9, issue.7-8, pp.20-27, 2006.
DOI : 10.1016/S1369-7021(06)71572-3

URL : https://doi.org/10.1016/s1369-7021(06)71572-3

E. L. Hu, M. Brongersma, and A. Baca, Applications: Nanophotonics and Plasmonics, pp.318-340, 2008.
DOI : 10.1007/978-94-007-1168-6_10

M. L. Brongersma and V. M. Shalaev, The Case for Plasmonics, Science, vol.317, issue.5845, pp.440-441, 2010.
DOI : 10.1126/science.1133268

J. Heber, Plasmonics: Surfing the wave, Nature, vol.461, issue.7265, pp.720-722, 2009.
DOI : 10.1073/pnas.2232479100

URL : http://www.nature.com/news/2009/091007/pdf/461720a.pdf

L. M. Liz-marzán, C. J. Murphy, and J. Wang, Nanoplasmonics, Chemical Society Reviews, vol.43, issue.11, pp.3820-3822, 2014.
DOI : 10.1039/c4cs90026j

R. W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Proc. Phys. Soc. London, pp.269-275, 1902.

R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Physical Review, vol.114, issue.5, pp.874-881, 1957.
DOI : 10.1007/BF01329519

C. J. Powell and J. B. Swan, Origin of the Characteristic Electron Energy Losses in Aluminum, Physical Review, vol.36, issue.4, pp.869-875, 1959.
DOI : 10.1139/p58-120

E. A. Stern and R. A. Ferrell, Surface Plasma Oscillations of a Degenerate Electron Gas, Physical Review, vol.111, issue.1, pp.130-136, 1960.
DOI : 10.1103/PhysRev.111.1214

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, Spectrally coded optical data storage by metal nanoparticles, Optics Letters, vol.25, issue.8, pp.563-565, 2000.
DOI : 10.1364/OL.25.000563

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, Scanning plasmon near-field microscope, Physical Review Letters, vol.4, issue.4, pp.476-479, 1992.
DOI : 10.1364/OL.4.000236

A. Brolo, Plasmonics for future biosensors, Nature Photonics, vol.82, issue.11, pp.709-713, 2012.
DOI : 10.1021/ac101495m

O. L. Berman, R. Y. Kezerashvili, and G. V. Kolmakov, Harnessing the Polariton Drag Effect to Design an Electrically Controlled Optical Switch, ACS Nano, vol.8, issue.10, pp.10437-10447, 2014.
DOI : 10.1021/nn503787q

C. M. Cobley, J. Chen, E. C. Cho, L. Wang, and Y. Xia, Gold nanostructures: a class of multifunctional materials for biomedical applications, Chem. Soc. Rev., vol.40, issue.1
DOI : 10.1021/ar0401045

M. I. Stockman, Nanoplasmonics: The physics behind the applications, Physics Today, vol.49, issue.2, pp.39-44, 2011.
DOI : 10.1016/j.neuroimage.2009.07.035

E. A. Coronado, E. R. Encina, and F. D. Stefani, Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale, Nanoscale, vol.6, issue.10, pp.4042-4059, 2011.
DOI : 10.1038/nphys1776

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol.88, issue.6950, pp.824-830, 2003.
DOI : 10.1103/PhysRevLett.88.187402

URL : https://hal.archives-ouvertes.fr/hal-00472360

S. Maier, Plasmonics: Fundamentals and applications, 2007.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons, Physics Reports, vol.408, issue.3-4, pp.3-4, 2005.
DOI : 10.1016/j.physrep.2004.11.001

I. Freestone, N. Meeks, M. Sax, and C. Higgitt, The Lycurgus Cup ??? A Roman nanotechnology, Gold Bulletin, vol.9, issue.4, pp.270-277, 2007.
DOI : 10.1007/BF03215423

K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews, vol.111, issue.6, pp.3828-3857, 2011.
DOI : 10.1021/cr100313v

S. Maier, M. Brongersma, and P. Kik, Plasmonics-A Route to Nanoscale Optical Devices, Advanced Materials, vol.13, issue.19, pp.1501-1505, 2001.
DOI : 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

S. Enoch and N. Bonod, Plasmonics -From basics to advanced topics, 2012.

K. E. Fong and L. L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection, Nanoscale, vol.126, issue.24, pp.12043-12071, 2013.
DOI : 10.1021/ja047118q

K. L. Kelly, E. A. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J

Y. Chen and H. Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor, Photonic Sensors, vol.99, issue.3, pp.37-49, 2012.
DOI : 10.1063/1.465276

A. O. Pinchuk and G. C. Schatz, Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles, Materials Science and Engineering: B, vol.149, issue.3, pp.251-258, 2008.
DOI : 10.1016/j.mseb.2007.09.078

S. Maier, M. Brongersma, P. Kik, and H. Atwater, Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy, Physical Review B, vol.32, issue.19, pp.1-4, 2002.
DOI : 10.1364/AO.32.006173

I. Tokarev and S. Minko, Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers, Soft Matter, vol.3, issue.22, pp.5980-5987, 2012.
DOI : 10.1021/nl034372s

X. Wang, P. Gogol, E. Cambril, and B. Palpant, Near- and Far-Field Effects on the Plasmon Coupling in Gold Nanoparticle Arrays, The Journal of Physical Chemistry C, vol.116, issue.46, pp.24741-24747, 2012.
DOI : 10.1021/jp306292r

URL : https://hal.archives-ouvertes.fr/hal-00833011

P. K. Jain and M. A. Sayed, Plasmonic coupling in noble metal nanostructures, Chemical Physics Letters, vol.487, issue.4-6, pp.4-6, 2010.
DOI : 10.1016/j.cplett.2010.01.062

. Aussenegg, Optical properties of two interacting gold nanoparticles, Opt. Commun, vol.220, issue.13, pp.137-141, 2003.

G. Lévêque and R. Quidant, Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film, Optics Express, vol.16, issue.26, pp.22029-22038, 2008.
DOI : 10.1364/OE.16.022029

. Aussenegg, Non?diffraction-limited light transport by gold nanowires, Europhys

Y. Sun, L. Jiang, L. Zhong, Y. Jiang, and X. Chen, Towards active plasmonic response devices, Nano Research, vol.8, issue.2, pp.406-417, 2015.
DOI : 10.1002/lpor.201300214

D. Dai and S. He, Low-loss hybrid plasmonic waveguide with double low-index
DOI : 10.1364/oe.18.017958

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, vol.89, issue.2, pp.83-91, 2010.
DOI : 10.1088/1464-4258/8/4/S06

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter, Optics Letters, vol.22, issue.7, pp.475-477, 1997.
DOI : 10.1364/OL.22.000475

M. L. Brongersma, J. W. Hartman, and H. Atwater, Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Physical Review B, vol.281, issue.24, pp.356-359, 2000.
DOI : 10.1016/0039-6028(93)90865-H

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters, vol.23, issue.17, pp.1331-1333, 1998.
DOI : 10.1364/OL.23.001331

C. Girard and R. Quidant, Near-field optical transmittance of metal particle chain waveguides, Optics Express, vol.12, issue.25, pp.6141-6146, 2004.
DOI : 10.1364/OPEX.12.006141

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel et al., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Materials, vol.61, issue.4, pp.229-232, 2003.
DOI : 10.1016/0304-3991(95)00146-8

C. Bürgi, T. Umeton, and . Bunning, All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals, J. Mater. Chem. C, vol.1, issue.45, pp.7483-7487, 2013.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, vol.85, issue.7083, pp.508-511, 2006.
DOI : 10.1063/1.1835997

J. R. Aussenegg and . Krenn, Silver nanowires as surface plasmon resonators

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander et al., Branched Silver Nanowires as Controllable Plasmon Routers, Nano Letters, vol.10, issue.5, p.1950
DOI : 10.1021/nl101168u

A. Klinkova, R. M. Choueiri, and E. Kumacheva, Self-assembled plasmonic nanostructures, Chemical Society Reviews, vol.25, issue.11, pp.3976-91, 2014.
DOI : 10.1002/adma.201205178

J. Gong, G. Li, and Z. Tang, Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application, Nano Today, vol.7, issue.6, pp.564-585, 2012.
DOI : 10.1016/j.nantod.2012.10.008

F. Westerlund and T. Bjørnholm, Directed assembly of gold nanoparticles, Current Opinion in Colloid & Interface Science, vol.14, issue.2
DOI : 10.1016/j.cocis.2008.07.002

M. Li, H. Schnablegger, and S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature, vol.9, issue.6760, pp.393-395, 1999.
DOI : 10.1021/cm970113q

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-marzán, Directed Self-Assembly of Nanoparticles, ACS Nano, vol.4, issue.7, pp.3591-3605, 2010.
DOI : 10.1021/nn100869j

J. Israelachvili and R. Pashley, The hydrophobic interaction is long range, decaying exponentially with distance, Nature, vol.86, issue.5890, pp.341-342, 1982.
DOI : 10.1038/300341a0

Z. Nie, D. Fava, M. Rubinstein, and E. Kumacheva, ???Supramolecular??? Assembly of Gold Nanorods End-Terminated with Polymer ???Pom-Poms???:??? Effect of Pom-Pom Structure on the Association Modes, Journal of the American Chemical Society, vol.130, issue.11, pp.3683-3689, 2008.
DOI : 10.1021/ja711150k

. Marzán, Hydrophobic interactions modulate self-assembly of nanoparticles, ACS Nano, vol.6, issue.12, pp.11059-11065, 2012.

A. Lukach, K. Liu, H. Therien-aubin, and E. Kumacheva, Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers, Journal of the American Chemical Society, vol.134, issue.45
DOI : 10.1021/ja309475e

Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker et al., Selfassembly of metal?polymer analogues of amphiphilic triblock copolymers

H. Xia, G. Su, and D. Wang, Size-Dependent Electrostatic Chain Growth of pH-Sensitive Hairy Nanoparticles, Angewandte Chemie International Edition, vol.12, issue.13, pp.3726-3730, 2013.
DOI : 10.1021/nl3011512

C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos, and P. G. Schultz, DNAbased assembly of gold nanocrystals, Angew. Chemie Int. Ed, vol.38, issue.12, p.pp

F. N. Gür, F. W. Schwarz, J. Ye, S. Diez, and T. L. Schmidt, Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates, ACS Nano, vol.10, issue.5, pp.5374-5382, 2016.
DOI : 10.1021/acsnano.6b01537

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Building plasmonic nanostructures with DNA, Nature Nanotechnology, vol.9, issue.5, pp.268-276, 2011.
DOI : 10.1021/nl9030709

N. C. Seeman and N. R. Kallenbach, Design of immobile nucleic acid junctions, Biophysical Journal, vol.44, issue.2, pp.201-209, 1983.
DOI : 10.1016/S0006-3495(83)84292-1

J. D. Le, Y. Pinto, N. C. Seeman, K. Musier-forsyth, T. A. Taton et al., DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface, Nano Letters, vol.4, issue.12, pp.2343-2347, 2004.
DOI : 10.1021/nl048635+

B. Saccà and C. M. Niemeyer, DNA Origami: The Art of Folding DNA, Angewandte Chemie International Edition, vol.478, issue.1
DOI : 10.1038/nature10500

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.4, issue.7082, pp.297-302, 2006.
DOI : 10.1021/nl048635+

S. H. Ko, G. M. Gallatin, and J. A. Liddle, Nanomanufacturing with DNA Origami: Factors Affecting the Kinetics and Yield of Quantum Dot Binding, Advanced Functional Materials, vol.90, issue.5, pp.1015-1023, 2012.
DOI : 10.1529/biophysj.105.069526

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures, Chemical Reviews, vol.111, issue.6, pp.3736-3827, 2011.
DOI : 10.1021/cr1004452

R. Schreiber, I. Santiago, A. Ardavan, and A. J. Turberfield, Ordering Gold Nanoparticles with DNA Origami Nanoflowers, ACS Nano, vol.10, issue.8, pp.7303-7306, 2016.
DOI : 10.1021/acsnano.6b03076

. Cha, Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami, Nat. Nanotechnol, vol.5, issue.2, p.121

C. Zhou, X. Duan, and N. Liu, A plasmonic nanorod that walks on DNA origami, Nature Communications, vol.3, p.8102, 2015.
DOI : 10.1103/PhysRevB.6.4370

URL : http://www.nature.com/articles/ncomms9102.pdf

D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength

N. Davidenko, O. Garcia, and R. Sastre, The efficiency of titanocene as photoinitiator in the polymerization of dental formulations, Journal of Biomaterials Science, Polymer Edition, vol.29, issue.7, pp.733-746, 2003.
DOI : 10.1016/0032-3861(92)90738-I

. Swtrigger-38, TTTATTTTGCTCCCAATC CAAATAAGTGAGTTAA SWtrigger-63: TTCAAGCAAGACGCGCCT GTTTATCAAGAATCGC SWtrigger-42: TTAGGCGTTACAGTAGGG CTTAATTGACAATAGA ? A list of sequences with Dy-781 (receptor 1 in the lower corner) in 5' terminus of the oligonucleotide (scale: 40 nM

. Swrec-183, TGGTTTTTAACGTCAA AGGGCGAAGAACCATC SWRec-185: CTTGCATGCATTAATG AATCGGCCCGCCAGGG ? A list of sequences with ATTO 740 (receptor 2 in the upper corner) in 5' terminus of the oligonucleotide (scale: 40 nM

E. Dehmlow and T. Kelle, Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures?, Synthetic Communications, vol.49, issue.11, pp.2021-2031, 1997.
DOI : 10.1021/ja00523a025

M. Yuan, Z. Liu, J. Guo, H. Chen, W. Yu et al., Acceptor or Donor (Diaryl B or N) Substituted Octupolar Truxene:?? Synthesis, Structure, and Charge-Transfer-Enhanced Fluorescence, The Journal of Organic Chemistry, vol.71, issue.20, pp.7858-7861, 2006.
DOI : 10.1021/jo061210i

O. Mongin, M. Sankar, M. Charlot, Y. Mir, and M. Blanchard-desce, Strong enhancement of two-photon absorption properties in synergic ???semi-disconnected??? multiporphyrin assemblies designed for combined imaging and photodynamic therapy, Tetrahedron Letters, vol.54, issue.48, pp.6474-6478, 2013.
DOI : 10.1016/j.tetlet.2013.09.076

URL : https://hal.archives-ouvertes.fr/hal-00916343

S. Cavazzini, S. Orlandi, and . Quici, Fluorous molecules for dye-sensitized solar cells: Synthesis and characterization of fluorene-bridged donor/acceptor dyes with bulky perfluoroalkoxy substituents, J. Phys. Chem. C, vol.116, issue.40, pp.21190-21200, 2012.

Y. Tian, W. Wu, C. Chen, T. Strovas, Y. Li et al., 2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(??-caprolactone) copolymers for bioimaging, Journal of Materials Chemistry, vol.13, issue.9, pp.3-1728, 2010.
DOI : 10.1002/jbm.a.32607

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865149/pdf

T. A. Gschneidtner and K. Moth-poulsen, A photolabile protection strategy for terminal alkynes, Tetrahedron Letters, vol.54, issue.40, pp.5426-5429, 2013.
DOI : 10.1016/j.tetlet.2013.07.144

T. Cardolaccia, Y. Li, and K. S. Schanze, Phosphorescent Platinum Acetylide Organogelators, Journal of the American Chemical Society, vol.130, issue.8, pp.2535-2545, 2008.
DOI : 10.1021/ja0765316

D. Talaga, M. Comesaña-hermo, S. Ravaine, R. A. Vallée, and S. Bonhommeau, Colocalized dark-field scattering, atomic force and surface-enhanced Raman scattering microscopic imaging of single gold nanoparticles, Journal of Optics, vol.17, issue.11, p.114006, 2015.
DOI : 10.1088/2040-8978/17/11/114006

URL : https://hal.archives-ouvertes.fr/hal-01220995

N. Vilar-vidal, S. Bonhommeau, D. Talaga, and S. Ravaine, One-pot synthesis of gold nanodimers and their use as surface-enhanced Raman scattering tags, New Journal of Chemistry, vol.135, issue.9
DOI : 10.1021/ja309074a