A. Arias, All jet-printed polymer thin-film transistor active-matrix backplanes, Applied Physics Letters, vol.43, issue.15, pp.3304-3306, 2004.
DOI : 10.1103/PhysRevB.68.085316

H. Sirringhaus, T. Kawase, and R. H. Friend, High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits, MRS Bulletin, vol.25, issue.07, pp.539-543, 2001.
DOI : 10.1023/A:1008968511133

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Ink-jet printing of doped polymers for organic light emitting devices, Applied Physics Letters, vol.72, issue.5, pp.519-521, 1998.
DOI : 10.1063/1.118584

T. Shimoda, K. Morii, S. Seki, and H. Kiguchi, Inkjet Printing of Light-Emitting Polymer Displays, MRS Bulletin, vol.20, issue.5, pp.821-827, 2003.
DOI : 10.1380/jsssj.24.90

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, Polymer based organic solar cells using ink-jet printed active layers Applied physics letters 92, 2008.
DOI : 10.1063/1.2833185

S. H. Eom, Polymer solar cells based on inkjet-printed PEDOT:PSS layer, Organic Electronics, vol.10, issue.3, pp.536-542015, 2009.
DOI : 10.1016/j.orgel.2009.01.015

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends, Advanced Materials, vol.99, issue.22, pp.3973-3978, 2007.
DOI : 10.1557/mrs2003.231

K. Abe, K. Suzuki, and D. Citterio, Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper, Analytical Chemistry, vol.80, issue.18, pp.6928-6934, 2008.
DOI : 10.1021/ac800604v

H. Sirringhaus, High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, Science, vol.87, issue.5398, pp.2123-2126, 2000.
DOI : 10.1063/1.373452

T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Inkjet printing of polymer thin film transistors. Thin Solid Films 438?439, pp.279-287, 2003.

J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. Huck, and H. Sirringhaus, Dewetting of conducting polymer inkjet droplets on patterned surfaces, Nature Materials, vol.3, issue.3, pp.171-176, 2004.
DOI : 10.1038/nmat1073

J. Bharathan and Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo, Applied Physics Letters, vol.72, issue.21, pp.2660-2662, 1998.
DOI : 10.1063/1.119483

K. X. Steirer, Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells, Thin Solid Films, vol.517, issue.8, pp.2781-2786, 2009.
DOI : 10.1016/j.tsf.2008.10.124

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, Printing Highly Efficient Organic Solar Cells, Nano Letters, vol.8, issue.9, pp.2806-2813, 2008.
DOI : 10.1021/nl801365k

J. Jang, J. Ha, and J. Cho, Fabrication of Water-Dispersible Polyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-Sensor Applications, Advanced Materials, vol.106, issue.13, pp.1772-177510, 2007.
DOI : 10.1002/adma.200602127

K. Crowley, Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles, Talanta, vol.77, issue.2, pp.710-717022, 2008.
DOI : 10.1016/j.talanta.2008.07.022

J. E. Fromm, Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets, IBM Journal of Research and Development, vol.28, issue.3, pp.322-333, 1984.
DOI : 10.1147/rd.283.0322

N. Reis and B. Derby, Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation, MRS Online Proceedings Library, vol.625, pp.10-1557, 2000.

B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, Annual Review of Materials Research, vol.40, issue.1, pp.395-414, 2010.
DOI : 10.1146/annurev-matsci-070909-104502

A. Denneulin, J. Bras, F. Carcone, C. Neuman, and A. Blayo, Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films, Carbon, vol.49, issue.8, pp.2603-2614, 2011.
DOI : 10.1016/j.carbon.2011.02.012

P. D. Angelo, R. R. Farnood, and . Poly, Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Inkjet Inks Doped with Carbon Nanotubes and a Polar Solvent: The Effect of Formulation and Adhesion on Conductivity, Journal of Adhesion Science and Technology, vol.13, issue.6, pp.643-659, 2010.
DOI : 10.1021/cm0101632

Y. Aleeva and B. Pignataro, Recent advances in upscalable wet methods and ink formulations for printed electronics, J. Mater. Chem. C, vol.1, issue.32, pp.6436-6453, 2014.
DOI : 10.1039/C2BM00114D

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, Direct writing of copper conductive patterns by ink-jet printing, Thin Solid Films, vol.515, issue.19, pp.7706-7711, 2007.
DOI : 10.1016/j.tsf.2006.11.142

J. Perelaer, B. De-gans, and U. S. Schubert, Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks, Advanced Materials, vol.30, issue.16, p.2101, 2006.
DOI : 10.1002/adma.200502422

H. K. Seung, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology, vol.18, p.345202, 2007.

H. Kim, S. R. Dhage, D. Shim, and H. Hahn, Intense pulsed light sintering of copper nanoink for printed electronics, Applied Physics A, vol.16, issue.12, pp.791-798, 2009.
DOI : 10.1557/PROC-810-C4.16

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, Size-Dependent Melting of Silica-Encapsulated Gold Nanoparticles, Journal of the American Chemical Society, vol.124, issue.10, pp.2312-2317, 2002.
DOI : 10.1021/ja017281a

E. C. Go, Effects of oligomer-to-monomer ratio on ink film properties of white UVcurable gravure ink for printing on biaxially oriented polypropylene (BOPP)

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x, Journal of the Chemical Society, Chemical Communications, issue.16, pp.578-580, 1977.
DOI : 10.1039/c39770000578

F. Beck and M. Oberst, Electrocatalytic deposition of polypyrrole in the presence of bromide, Journal of Applied Electrochemistry, vol.28, issue.4, pp.332-340, 1992.
DOI : 10.1002/bbpc.19870910109

C. Li, C. Sun, W. Chen, and L. Pan, Electrochemical thin film deposition of polypyrrole on different substrates, Surface and Coatings Technology, vol.198, issue.1-3, pp.474-477, 2005.
DOI : 10.1016/j.surfcoat.2004.10.065

B. Muthulakshmi, D. Kalpana, S. Pitchumani, and N. Renganathan, Electrochemical deposition of polypyrrole for symmetric supercapacitors, Journal of Power Sources, vol.158, issue.2, pp.1533-1537, 2006.
DOI : 10.1016/j.jpowsour.2005.10.013

A. Ramanavi?ius, A. Ramanavi?ien?, and A. Malinauskas, Electrochemical sensors based on conducting polymer???polypyrrole, Electrochimica Acta, vol.51, issue.27, pp.6025-6037, 2006.
DOI : 10.1016/j.electacta.2005.11.052

M. F. Mabrook, C. Pearson, and M. C. Petty, Inkjet-printed polypyrrole thin films for vapour sensing, Sensors and Actuators B: Chemical, vol.115, issue.1, pp.547-551, 2006.
DOI : 10.1016/j.snb.2005.10.019

R. Gangopadhyay and M. R. Molla, Polypyrrole-polyvinyl alcohol stable nanodispersion: A prospective conducting black ink, Journal of Polymer Science Part B: Polymer Physics, vol.12, issue.11, pp.792-800, 2011.
DOI : 10.1002/bip.1973.360120816

T. Hibbard, K. Crowley, and A. J. Killard, Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor, Analytica Chimica Acta, vol.779, pp.56-63, 2013.
DOI : 10.1016/j.aca.2013.03.051

Y. Xu, Screen-Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks, Advanced Energy Materials, vol.5, issue.8, pp.1035-104010, 2013.
DOI : 10.1007/s12274-012-0246-x

A. Morrin, Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles, Electrochemistry Communications, vol.7, issue.3, pp.317-322, 2005.
DOI : 10.1016/j.elecom.2005.01.014

L. Huang, Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications, Biomacromolecules, vol.9, issue.3, pp.850-858, 2008.
DOI : 10.1021/bm7011828

T. A. Skotheim and J. Reynolds, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, 2006.

C. Cho, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells, Solar Energy Materials and Solar Cells, vol.95, issue.12, pp.3269-3275, 2011.
DOI : 10.1016/j.solmat.2011.07.009

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synthetic Metals, vol.126, issue.2-3, pp.311-316, 2002.
DOI : 10.1016/S0379-6779(01)00576-8

P. Leleux, Conducting Polymer Electrodes for Electroencephalography Advanced healthcare materials 3, pp.490-493201300311, 2014.
DOI : 10.1002/adhm.201300311

D. Khodagholy, In vivo recordings of brain activity using organic transistors, Nature Communications, vol.459, 1575.
DOI : 10.1002/cne.10622

URL : https://hal.archives-ouvertes.fr/emse-00854071

M. Berggren and A. Richter-dahlfors, Organic Bioelectronics, 92 GHOSH et al. Nano-structured conducting polymer network based on PEDOT-PSS, pp.3201-3213, 2001.
DOI : 10.1002/adma.200700419

S. K. Jönsson, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)???polystyrenesulfonic acid (PEDOT???PSS) films, Synthetic Metals, vol.139, issue.1, pp.1-10, 2003.
DOI : 10.1016/S0379-6779(02)01259-6

X. Crispin, Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study, Journal of Polymer Science Part B: Polymer Physics, vol.56, issue.21, pp.2561-258310, 2003.
DOI : 10.1021/jp994440s

J. Ouyang, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer, vol.45, issue.25, pp.8443-8450, 2004.
DOI : 10.1016/j.polymer.2004.10.001

S. Xiong, L. Zhang, and X. Lu, Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives, Polymer Bulletin, vol.15, issue.1, pp.237-24710, 2013.
DOI : 10.1002/adma.200305038

A. M. Nardes, R. A. Janssen, and M. Kemerink, A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films, Advanced Functional Materials, vol.70, issue.140, pp.865-87110, 2008.
DOI : 10.1007/978-3-662-02403-4

M. Fabretto, The mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)???poly(styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance, Thin Solid Films, vol.516, issue.21, pp.7828-7835099, 2008.
DOI : 10.1016/j.tsf.2008.04.099

E. Vitoratos, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, vol.10, issue.1, pp.61-66, 2009.
DOI : 10.1016/j.orgel.2008.10.008

J. Huang, P. F. Miller, J. C. De-mello, A. J. De-mello, and D. D. Bradley, Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films, Synthetic Metals, vol.139, issue.3, pp.569-572, 2003.
DOI : 10.1016/S0379-6779(03)00280-7

R. Merletti and M. Migliorini, Surface EMG electrode noise and contact impedance, 1998.

D. R. Kipke, Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities, Journal of Neuroscience, vol.28, issue.46, pp.11830-11838, 2008.
DOI : 10.1523/JNEUROSCI.3879-08.2008

D. Khodagholy, In vivo recordings of brain activity using organic transistors, Nature Communications, vol.459, p.1575, 2013.
DOI : 10.1002/cne.10622

URL : https://hal.archives-ouvertes.fr/emse-00854071

N. Meziane, J. Webster, M. Attari, and A. Nimunkar, Dry electrodes for electrocardiography, Physiological Measurement, vol.34, issue.9, p.47, 2013.
DOI : 10.1088/0967-3334/34/9/R47

URL : http://iopscience.iop.org/article/10.1088/0967-3334/34/9/R47/pdf

E. Pdf, Available at: http://www.analog.com/media, Analog Devices : Biopotential Electrode Sensors in, 2016.

A. Searle and L. Kirkup, A direct comparison of wet, dry and insulating bioelectric recording electrodes, Physiological Measurement, vol.21, issue.2, p.271, 2000.
DOI : 10.1088/0967-3334/21/2/307

T. Linz, C. Kallmayer, R. Aschenbrenner, and H. Reichl, Fully untegrated EKG shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flexible electronics, p.26, 2006.
DOI : 10.1109/bsn.2006.26

L. Rattfält, M. Lindén, P. Hult, L. Berglin, and P. Ask, Electrical characteristics of conductive yarns and textile electrodes for medical applications, Medical & Biological Engineering & Computing, vol.2, issue.2, pp.1251-1257, 2007.
DOI : 10.1007/s11517-007-0266-y

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, A carbon nanotube strain sensor for structural health monitoring, Smart Materials and Structures, vol.15, issue.3, pp.737-748, 2006.
DOI : 10.1088/0964-1726/15/3/009

B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes, Nano Letters, vol.8, issue.12, pp.4151-4157, 2008.
DOI : 10.1021/nl801495p

D. Pani, Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems, IEEE Transactions on Biomedical Engineering, vol.63, issue.3, pp.540-549, 2016.
DOI : 10.1109/TBME.2015.2465936

S. Takamatsu, Direct patterning of organic conductors on knitted textiles for long-term electrocardiography, Scientific Reports, vol.6, issue.131, 2015.
DOI : 10.1038/nmat1817

URL : https://hal.archives-ouvertes.fr/hal-01235717

N. Matsuhisa, Printable elastic conductors with a high conductivity for electronic textile applications, Nature Communications, vol.445, 2015.
DOI : 10.1038/nature05533

K. Yang, C. Freeman, R. Torah, S. Beeby, and J. Tudor, Screen printed fabric electrode array for wearable functional electrical stimulation, Sensors and Actuators A: Physical, vol.213, pp.108-115, 2014.
DOI : 10.1016/j.sna.2014.03.025

Y. Li, R. Torah, S. Beeby, and J. Tudor, An all-inkjet printed flexible capacitor for wearable applications, Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2012 Symposium on, pp.192-195, 2012.

T. Roberts, Flexible Inkjet-Printed Multielectrode Arrays for Neuromuscular Cartography, Advanced Healthcare Materials, vol.10, issue.12, pp.1462-1470, 2016.
DOI : 10.1016/S1050-6411(00)00027-4

A. P. Alves, Experimental Study and Evaluation of Paper-based Inkjet Electrodes for ECG Signal Acquisition, pp.275-281, 2014.

H. C. Jung, CNT/PDMS Composite Flexible Dry Electrodesfor Long-Term ECG Monitoring, IEEE Transactions on Biomedical Engineering, vol.59, issue.5, pp.1472-1479, 2012.
DOI : 10.1109/TBME.2012.2190288

P. Leleux, Conducting Polymer Electrodes for Electroencephalography, Advanced Healthcare Materials, vol.97, issue.4, pp.490-493, 2014.
DOI : 10.1016/j.eplepsyres.2011.07.013

M. Isik, Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology, Journal of Materials Chemistry C, vol.15, issue.34, pp.8942-8948, 2015.
DOI : 10.1016/S0002-8703(38)90860-9

D. Kim, Epidermal Electronics, Science, vol.5, issue.17, pp.838-843, 2011.
DOI : 10.1038/nmat1532

W. Yeo, Multifunctional Epidermal Electronics Printed Directly Onto the Skin, Advanced Materials, vol.25, issue.20, pp.2773-2778, 2013.
DOI : 10.1111/j.1468-3083.2010.03886.x

X. Huang, Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain, Advanced Functional Materials, vol.59, issue.124, pp.3846-3854, 2014.
DOI : 10.1097/01.sap.0000257149.42922.7e

L. Bareket, Temporary-tattoo for long-term high fidelity biopotential recordings, Scientific Reports, vol.49, issue.1, p.25727, 2016.
DOI : 10.1109/TBME.2002.1001974

A. Zucca, Tattoo Conductive Polymer Nanosheets for Skin-Contact Applications, Advanced Healthcare Materials, vol.19, issue.7, pp.983-990, 2015.
DOI : 10.1109/TNSRE.2011.2108667

A. Zucca, Roll to roll processing of ultraconformable conducting polymer nanosheets, Journal of Materials Chemistry C, vol.22, issue.145, pp.6539-6548, 2015.
DOI : 10.1109/TNSRE.2014.2330451

M. Rivera-ruiz, C. Cajavilca, and J. Varon, Einthoven's String Galvanometer: The First Electrocardiograph, Tex. Heart Inst. J, vol.35, p.174, 2008.

M. Word-the and E. Booklet, doc -ABC-EMG-ISBN.pdf Available at: http://www.noraxon.com/wp-content/uploads, ABC-EMG-ISBN.pdf, vol.2712, 2014.

J. Xu, S. L. Murphy, K. D. Kochanek, B. A. Bastian-]-p, P. A. Heidenreich et al., Actuators Phys, National Vital Statisctics Reports, pp.933-271, 2000.

M. Berggren and A. Richter-dahlfors, Organic Bioelectronics, Advanced Materials, vol.600, issue.20, p.3201, 2007.
DOI : 10.1002/adma.200700419

A. Campana, T. Cramer, D. T. Simon, M. Berggren, and F. Biscarini, Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold, Advanced Materials, vol.3, issue.23, p.3874, 2014.
DOI : 10.1109/RBME.2010.2084078

URL : http://liu.diva-portal.org/smash/get/diva2:737365/FULLTEXT01

S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, ECG to identify individuals, Pattern Recognition, vol.38, issue.1, p.133, 2005.
DOI : 10.1016/j.patcog.2004.05.014

S. Park, S. Jayaraman, ]. D. Bull, R. Marculescu, N. H. Marculescu et al., Mazzaro, Risk of skin reaction when using ECG electrodes Actuators Phys, Proc. IEEE 2003 Cardiovascular diseases (CVDs), pp.585-232, 1995.

D. Pani, A. Dessì, J. F. Saenz-cogollo, G. Barabino, B. Fraboni et al., Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems, IEEE Transactions on Biomedical Engineering, vol.63, issue.3, p.540, 2016.
DOI : 10.1109/TBME.2015.2465936

M. Berggren and A. Richter-dahlfors, Organic Bioelectronics, Advanced Materials, vol.600, issue.20, p.3201, 2007.
DOI : 10.1002/adma.200700419

S. Takamatsu, T. Lonjaret, E. Ismailova, A. Masuda, T. Itoh et al., Wearable Keyboard Using Conducting Polymer Electrodes on Textiles, Advanced Materials, vol.40, issue.22, p.4485, 2016.
DOI : 10.1080/001401397187793

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. Tee, J. A. Bolander et al., Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates, Chemistry of Materials, vol.24, issue.2, p.373, 2012.
DOI : 10.1021/cm203216m

M. Isik, T. Lonjaret, H. Sardon, R. Marcilla, T. Herve et al., Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology, Journal of Materials Chemistry C, vol.15, issue.34, p.8942, 2015.
DOI : 10.1016/S0002-8703(38)90860-9

URL : http://pubs.rsc.org/en/content/articlepdf/2015/tc/c5tc01888a

X. M. Tao, Smart Fibres, Fabrics and Clothing: Fundamentals and Applications, 2001.
DOI : 10.1533/9781855737600

S. Park and S. Jayaraman, Smart Textiles: Wearable Electronic Systems, MRS Bulletin, vol.89, issue.08, pp.585-591, 2003.
DOI : 10.1080/00405009808658682

N. Matsuhisa, Printable elastic conductors with a high conductivity for electronic textile applications, Nature Communications, vol.445, 2015.
DOI : 10.1038/nature05533

S. Wagner, Electronic skin: architecture and components, Physica E: Low-dimensional Systems and Nanostructures, vol.25, issue.2-3, pp.326-334, 2004.
DOI : 10.1016/j.physe.2004.06.032

D. Kim, Epidermal Electronics, Science, vol.5, issue.17, pp.838-843, 2011.
DOI : 10.1038/nmat1532

B. C. Tee, C. Wang, R. Allen, and Z. Bao, An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications, Nature Nanotechnology, vol.50, issue.12, pp.825-832, 2012.
DOI : 10.1126/science.1194773

W. Yeo, Multifunctional Epidermal Electronics Printed Directly Onto the Skin, Advanced Materials, vol.25, issue.20, pp.2773-2778, 2013.
DOI : 10.1111/j.1468-3083.2010.03886.x

X. Huang, Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain, Advanced Functional Materials, vol.59, issue.124, pp.3846-3854, 2014.
DOI : 10.1097/01.sap.0000257149.42922.7e

S. Takamatsu, Direct patterning of organic conductors on knitted textiles for long-term electrocardiography, Scientific Reports, vol.6, issue.131, 2015.
DOI : 10.1038/nmat1817

URL : https://hal.archives-ouvertes.fr/hal-01235717

M. Papaiordanidou, Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles, Advanced Healthcare Materials, vol.107, issue.16, 2001.
DOI : 10.1152/jn.00611.2011

URL : https://hal.archives-ouvertes.fr/hal-01387198

L. Rattfält, M. Lindén, P. Hult, L. Berglin, and P. Ask, Electrical characteristics of conductive yarns and textile electrodes for medical applications, Medical & Biological Engineering & Computing, vol.2, issue.2, pp.1251-1257, 2007.
DOI : 10.1007/s11517-007-0266-y

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, A carbon nanotube strain sensor for structural health monitoring, Smart Materials and Structures, vol.15, issue.3, pp.737-748, 2006.
DOI : 10.1088/0964-1726/15/3/009

B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes, Nano Letters, vol.8, issue.12, pp.4151-4157, 2008.
DOI : 10.1021/nl801495p

M. Berggren, A. Richter-dahlfors, and . Bioelectronics, Organic Bioelectronics, Advanced Materials, vol.600, issue.20, pp.3201-3213, 2007.
DOI : 10.1002/adma.200700419

F. Greco, Ultra-thin conductive free-standing PEDOT/PSS nanofilms, Soft Matter, vol.53, issue.22, p.10642, 2011.
DOI : 10.1016/j.electacta.2007.10.033

URL : http://pubs.rsc.org/en/content/articlepdf/2011/sm/c1sm06174g

F. Greco, A. Zucca, S. Taccola, B. Mazzolai, and V. Mattoli, Patterned Free-Standing Conductive Nanofilms for Ultraconformable Circuits and Smart Interfaces, ACS Applied Materials & Interfaces, vol.5, issue.19, pp.9461-9469, 2013.
DOI : 10.1021/am402142c

A. Zucca, Tattoo Conductive Polymer Nanosheets for Skin-Contact Applications, Advanced Healthcare Materials, vol.19, issue.7, pp.983-990, 2015.
DOI : 10.1109/TNSRE.2011.2108667

A. Zucca, Roll to roll processing of ultraconformable conducting polymer nanosheets, Journal of Materials Chemistry C, vol.22, issue.145, pp.6539-6548, 2015.
DOI : 10.1109/TNSRE.2014.2330451

L. Bareket, Temporary-tattoo for long-term high fidelity biopotential recordings 22. Limb Loss Awareness Month | Amputee Coalition. 23. Roberts, T. et al. Flexible Inkjet-Printed Multielectrode Arrays for Neuromuscular Cartography, Sci. Rep. Adv. Healthc. Mater, vol.6, issue.5, pp.25727-1462, 2016.

G. Scheiblin, Screen-printed organic electrochemical transistors for metabolite sensing. MRS Commun. 1?5 doi:10.1557/mrc.2015.52 25. Bihar, E. et al. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor, Sci. Rep, vol.6, p.27582, 2016.
DOI : 10.1557/mrc.2015.52

A. Searle and L. Kirkup, A direct comparison of wet, dry and insulating bioelectric recording electrodes, Physiological Measurement, vol.21, issue.2, p.271, 2000.
DOI : 10.1088/0967-3334/21/2/307

H. S. White, G. P. Kittlesen, and M. S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor, J. Am. Chem. Soc, vol.6, issue.106, pp.5375-5377, 1984.

X. Strakosas, M. Bongo, and R. M. Owens, The organic electrochemical transistor for biological applications, Journal of Applied Polymer Science, vol.3, issue.15, 2015.
DOI : 10.1088/1741-2560/3/3/001

F. Marinelli, An organic field effect transistor as a selective NOx sensor operated at room temperature, Sensors and Actuators B: Chemical, vol.140, issue.2, pp.445-450, 2009.
DOI : 10.1016/j.snb.2009.04.035

L. Torsi, M. Magliulo, K. Manoli, and G. Palazzo, Organic field-effect transistor sensors: a tutorial review, Chemical Society Reviews, vol.6, issue.172, pp.8612-8628, 2013.
DOI : 10.1002/pro.5560060604

K. Schmoltner, J. Kofler, A. Klug, and E. J. List?kratochvil, Electrolyte-Gated Organic Field-Effect Transistor for Selective Reversible Ion Detection, Advanced Materials, vol.18, issue.47, pp.6895-6899, 2013.
DOI : 10.1002/elan.200603539

J. Rivnay, High-performance transistors for bioelectronics through tuning of channel thickness, Science Advances, vol.1, issue.4, 2015.
DOI : 10.1126/sciadv.1400251

D. Khodagholy, High transconductance organic electrochemical transistors, Nature Communications, vol.25, 2013.
DOI : 10.1002/adma.201204322

URL : https://hal.archives-ouvertes.fr/emse-00854207

M. Sessolo, J. Rivnay, E. Bandiello, G. G. Malliaras, and H. J. Bolink, Ion-Selective Organic Electrochemical Transistors, Advanced Materials, vol.25, issue.28, pp.4803-4807, 2014.
DOI : 10.1002/adma.201204322

L. H. Jimison, Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor, Advanced Materials, vol.7, issue.44, pp.5919-5923, 2012.
DOI : 10.1016/j.orgel.2005.10.002

URL : https://hal.archives-ouvertes.fr/emse-00853414

J. Rivnay, Organic electrochemical transistors for cell-based impedance sensing, Applied Physics Letters, vol.36, issue.4, p.43301, 2015.
DOI : 10.1063/1.2266250

H. Tang, F. Yan, P. Lin, J. Xu, and H. L. Chan, Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials, Advanced Functional Materials, vol.86, issue.12, pp.2264-2272, 2011.
DOI : 10.1063/1.1854192

D. Khodagholy, Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing, Journal of Materials Chemistry, vol.9, issue.10, p.4440, 2012.
DOI : 10.1109/TITB.2005.854505

X. Strakosas, Catalytically enhanced organic transistors for in vitro toxicology monitoring through hydrogel entrapment of enzymes, J. Appl. Polym. Sci, 2016.

A. Pappa, Organic Transistor Arrays Integrated with Finger-Powered Microfluidics for Multianalyte Saliva Testing, Advanced Healthcare Materials, vol.50, issue.17, pp.2295-2302, 2016.
DOI : 10.1016/j.archoralbio.2004.07.012

G. Scheiblin, Screen-printed organic electrochemical transistors for metabolite sensing. MRS Commun. 1?5 doi:10.1557/mrc.2015.52 16. Scheiblin, G. et al. Fully printed metabolite sensor using organic electrochemical transistor, pp.95681-95681, 2015.
DOI : 10.1557/mrc.2015.52

I. Gualandi, Textile Organic Electrochemical Transistors as a Platform for, Wearable Biosensors. Sci. Rep, vol.6, p.33637, 2016.

M. Chen, Printed Electrochemical Devices Using Conducting Polymers as Active Materials on Flexible Substrates, Proc. IEEE 93, pp.1339-1347, 2005.

R. Mannerbro, M. Ranlöf, N. Robinson, and R. Forchheimer, Inkjet printed electrochemical organic electronics, Synthetic Metals, vol.158, issue.13, pp.556-560, 2008.
DOI : 10.1016/j.synthmet.2008.03.030

L. Basiricò, Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors, Organic Electronics, vol.13, issue.2, pp.244-248, 2012.
DOI : 10.1016/j.orgel.2011.11.010

A. Ersman, P. Nilsson, D. Kawahara, J. Gustafsson, G. Berggren et al., Fast-switching all-printed organic electrochemical transistors, Organic Electronics, vol.14, issue.5, pp.1276-1280, 2013.
DOI : 10.1016/j.orgel.2013.02.027

E. Bihar, A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor, Scientific Reports, vol.2, issue.1, p.27582, 2016.
DOI : 10.1136/bmj.2.6050.1479

K. K. Park, Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen, Applied Physics Letters, vol.91, issue.9, p.94102, 2007.
DOI : 10.1088/0957-4484/15/8/002

S. B. Karch and M. D. , Drug Abuse Handbook, Second Edition, 1129.
DOI : 10.1201/9781420003468

B. Inc, Calibration Service, Date of access: 07/09 Link: https://www.breathometer, 2015.

G. Cui, Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip, Talanta, vol.54, issue.6, pp.1105-1111, 2001.
DOI : 10.1016/S0039-9140(01)00377-0

X. Strakosas, M. Bongo, and R. M. Owens, The organic electrochemical transistor for biological applications, Journal of Applied Polymer Science, vol.3, issue.15, p.41735, 2015.
DOI : 10.1088/1741-2560/3/3/001

P. Lin, F. Yan, J. Yu, H. L. Chan, and M. Yang, The Application of Organic Electrochemical Transistors in Cell-Based Biosensors, Advanced Materials, vol.80, issue.33, pp.3655-3660, 2010.
DOI : 10.1002/adma.200902329

J. Rivnay, R. M. Owens, and G. G. Malliaras, The Rise of Organic Bioelectronics, Chemistry of Materials, vol.26, issue.1, pp.679-685, 2013.
DOI : 10.1021/cm4022003

M. Berggren and A. Richter-dahlfors, Organic Bioelectronics, Advanced Materials, vol.600, issue.20, pp.3201-3213, 2007.
DOI : 10.1002/adma.200700419

G. Scheiblin, Abstract, MRS Communications, vol.41735, issue.03, pp.507-511, 2015.
DOI : 10.1002/adfm.200601239

A. Ersman, P. Nilsson, D. Kawahara, J. Gustafsson, G. Berggren et al., Fast-switching all-printed organic electrochemical transistors, Organic Electronics, vol.14, issue.5, pp.1276-1280, 2013.
DOI : 10.1016/j.orgel.2013.02.027

R. Mannerbro, M. Ranlöf, N. Robinson, and R. Forchheimer, Inkjet printed electrochemical organic electronics, Synthetic Metals, vol.158, issue.13, pp.556-560, 2008.
DOI : 10.1016/j.synthmet.2008.03.030

Y. Kitagawa, K. Kitabatake, I. Kubo, E. Tamiya, and I. Karube, Alcohol sensor based on membrane-bound alcohol dehydrogenase, Analytica Chimica Acta, vol.218, pp.61-68, 1989.
DOI : 10.1016/S0003-2670(00)80282-2

D. A. Bernards, Enzymatic sensing with organic electrochemical transistors, J. Mater. Chem., vol.123, issue.13, pp.116-120, 2008.
DOI : 10.1021/ja001835c

C. Shan, Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosensors and Bioelectronics, vol.25, issue.6, pp.1504-1508, 2010.
DOI : 10.1016/j.bios.2009.11.009

C. R. Raj and S. Behera, Mediatorless voltammetric oxidation of NADH and sensing of ethanol, Biosensors and Bioelectronics, vol.21, issue.6, pp.949-956, 2005.
DOI : 10.1016/j.bios.2005.03.001

P. Ramesh, P. Sivakumar, and S. Sampath, Renewable surface electrodes based on dopamine functionalized exfoliated graphite:, Journal of Electroanalytical Chemistry, vol.528, issue.1-2, pp.82-92, 2002.
DOI : 10.1016/S0022-0728(02)00888-4

T. A. Alobaidi, D. W. Hill, and J. P. Payne, Significance of variations in blood: breath partition coefficient of alcohol., BMJ, vol.2, issue.6050, pp.1479-1481, 1976.
DOI : 10.1136/bmj.2.6050.1479

Y. Xia, K. Sun, and J. Ouyang, Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices, Advanced Materials, vol.19, issue.18, pp.2436-2440, 2012.
DOI : 10.1002/adfm.200801258

N. Shim, All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator, Sensors, vol.7, issue.12, pp.9896-9902, 2009.
DOI : 10.1016/j.orgel.2005.10.002

URL : https://hal.archives-ouvertes.fr/emse-00447490

Y. H. Yun, A Glucose Sensor Fabricated by Piezoelectric Inkjet Printing of Conducting Polymers and Bienzymes, Analytical Sciences, vol.27, issue.4, pp.375-379, 2011.
DOI : 10.2116/analsci.27.375