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A B S T R A C T

This thesis, a collaboration between CEMES-CNRS, Satie laboratory (ENS
Cachan) and NXP Semiconductors is motivated by the comprehension of the
failure mechanisms of low voltage power MOSFET devices produced for ap-
plications in the automotive industry.
A limiting factor for the long-term reliability of power modules is the electro-
thermal and/or thermo-mechanical aging of the metallic parts of the source:
Al metallization and bonding wires. At the temperature reached during the
on-off operating cycles (few hundred degrees), the difference in the coefficient
of thermal expansion between the metallization and the oxide and semicon-
ductor parts induces an inevitable plastic deformation in the metal, which is
the softest material in the complex MOSFET architecture.
We have characterized the metal microstructure before and after accelerated
electro-thermal aging tests, by using specific techniques from the field of the
physical metallurgy: electron and ion microscopy, grain orientation and chem-
ical composition mapping. For the first time the source metallization has been
characterized both away and under the bonding connections, which are one
hundred times thicker than the metallization layer. The latter is a critical loca-
tion for the reliability assessment because the ultrasonic bonding process may
weaken the initial metallization microstructure by adding an important plas-
tic deformation prior to aging. This is, however, poorly stated in the literature
because of the difficulty to access the metallization under the wires without
damaging their bonding, which is known to be particularly weak in case of
aged modules.
In order to investigate the wire-metallization interface, we have set up origi-
nal sample preparations, based on ion polishing, that allowed us to disclose
the metallization under the bonding wires without introducing preparation
artifacts in the microstructure. The bonding process induces a severe and non-
uniform plastic deformation in the metallization under the wires without re-
creating a good electrical contact: small cavities and native oxide residues, have
been systematically observed at the Al/Al interface, in all the analyzed mod-
ules, before and after aging.
The main mechanism behind the device failure is the generation and propa-
gation of fatigue cracks in the aluminum metallization, associated to a local
Al oxidation that prevents these crack from closing. Away and under the wire
bonds, they run perpendicularly from the surface down to the silicon substrate
following the grain boundaries, due to an enhanced intergranular diffusion of
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aluminum atoms. In the bonding area, the phenomenon of parallel cracking is
favored by the initial imperfections in the wire-metallization bonding. Ion to-
mography experiments have shown that these cracks are confined to the wire-
metal interface and do not propagate in the wire despite its lower strength
(pure Al, larger grain structure). Crack propagation along the Al/Al interface
can cause a contact reduction between the wire and the source metallization
and eventually its failure. Such discontinuities in the metal can explain the lo-
cal increase in the device resistance and temperature that accelerates the aging
process until failure.
This study settled new, dedicated techniques and quantification methods to as-
sess the aging of the metal parts of MOSFET devices. The full characterization
of the intrinsically defective interface generated by the bonding process and
the metallization degradation during electro-thermal aging indicated paths to
possible improvements of current technologies and potential developments of
new processes.
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R E S U M É

Cette thèse, effectuée en collaboration entre le CEMES-CNRS, le laboratoire
Satie (ENS Cachan) et NXP Semiconductors est motivée par la compréhension
des mécanismes de défaillance des dispositifs MOSFET pour les applications
dans l’industrie automobile.
Un facteur limitant de la fiabilité à long terme des modules de puissance basse
tension est le vieillissement électrothermique et/ou thermo-mécanique des par-
ties métalliques de la source: métallisation en aluminium (ou alliage) et fils de
connexion. A cause de la différence de coefficient de dilatation thermique en-
tre la métallisation les oxydes et le substrat semi-conducteur, la température
atteinte pendant les cycles de fonctionnement (quelques centaines de degrés),
induit une déformation plastique inévitable dans le métal, qui est le matériau
le plus mou dans l’architecture complexe du MOSFET.
Nous avons caractérisé la microstructure métallique avant et après les tests
de vieillissement électrothermique accélérés, en utilisant des techniques spéci-
fiques du domaine de la métallurgie physique: microscopie électronique et ion-
ique, cartographie d’orientation de grains et de la composition chimique. Pour
la première fois, la métallisation de la source a été caractérisée sous les fils
de connexion, qui sont cent fois plus épais que la métallisation. Cet emplace-
ment est critique pour la fiabilité du composant, car le processus de soudure
par ultrasons induit une déformation plastique importante qui peut affaiblir
la métallisation initiale avant le vieillissement. Ceci est peu étudié dans la lit-
térature en raison de la difficulté à accéder à la métallisation sous les fils sans
altérer leur interface, souvent endommagée et fragilisée dans les modules vieil-
lis.
Nous avons mis en place des méthodes de préparation d’échantillon, basées
sur le polissage ionique, pour étudier cette interface, sans introduire d’artefacts
de préparation. Le processus de soudure à froid induit une déformation plas-
tique sévère et non uniforme dans la métallisation sous les fils sans parvenir
à recréer un bon contact électrique: de petites cavités et des résidus d’oxyde
natif, ont été systématiquement observés à l’interface Al / Al, dans tous les
modules analysés, avant et après vieillissement.
Le mécanisme principal de défaillance des modules est la génération et la
propagation de fissures de fatigue dans l’aluminium, associée à une oxydation
locale qui empêche la fermeture de ces fissures. Sous et en dehors des fils
de connexion, ces fissures traversent la métallisation perpendiculairement à la
surface jusqu’au substrat en silicium en suivant les joints de grains. Cette fissur-
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ation est due à la diffusion intergranulaire accélérée des atomes d’aluminium.
Dans la zone de soudure, le phénomène de fissuration parallèle à l’interface
est favorisé par les imperfections initiales (cavités, oxyde). Les expériences de
tomographie ionique ont montré que ces fissures sont confinées à l’interface
fil-métal et ne se propagent pas dans le fil malgré sa plus faible résistance mé-
canique (Al pur, structure à grains plus grands). La propagation de la fissure
le long de l’interface Al/Al peut provoquer une diminution du contact entre
le fil et la métallisation de la source et éventuellement son décollement. Les
fissures dans le métal source peuvent expliquer l’augmentation locale de la
résistance et de la température du module qui accélère le processus de vieil-
lissement jusqu’à l’échec.
Cette étude a établi de nouvelles techniques dédiées et des méthodes de quan-
tification pour évaluer le vieillissement des parties métalliques des modules
MOSFET. La caractérisation complète de l’interface soudée, intrinsèquement
défectueuse et la dégradation de la métallisation pendant le vieillissement
électrothermique ouvrent la voie à l’amélioration possible les technologies
actuelles et au développement potentiel de nouveaux procédés.
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1
I N T R O D U C T I O N

Over the last few decades, the automotive industry has started to progressively
replace electro-mechanical components by purely electronic devices or minia-
turized electro-mechanical systems based on Si-technologies. This paradigm
shift has initially involved support electronic systems (e.g. ABS, power-assisted
steering, speed limiter, air conditioning, etc.). However, the constant technol-
ogy evolution and miniaturization have rapidly broadened the field of appli-
cation of electronics in automotive, involving the main vehicle functions (e.g.
propulsion, lighting, brakes, engine, fan control, battery management etc.) and
increasingly replacing the conventional mechanical and hydraulic loads.

Nowadays, the power electronic sector is the strongest growth market in au-
tomotive. Semiconductor-based power switches are rapidly replacing conven-
tional electromechanical relays in most of the main vehicles functions as well
as in comfort, safety and communication applications. An additional growing
segment is represented by the market for alternative propulsion technologies,
in line with the new regulations for road transport aimed at the reduction of
greenhouse gas emission level (30% lower by 2030 in the EU). This trend is
seen nowadays with more and more focus on electric vehicle concepts, pure
(EV) and hybrid (i.e. micro-, mild-, full-, plug-in-hybrid), until the most recent
projects of autonomous cars.

The rise in electronic technology in automotive inevitably creates new de-
mands in terms of low costs, operation under extreme environmental condi-
tions (temperature, humidity, vibration, etc.), greater system power density, in-
creasing miniaturization, etc. Moreover, high levels of reliability are of course
required to guarantee the safety of products and people over extended periods
of time. This requires an in-depth knowledge of the possible evolutions of the
electronic components as a function of operating time and failure mechanisms.
Failure analysis and reliability studies are, then, key steps in the manufacture
industry, in order to develop devices that are 100% reliable during their life-
time. This life-time is one of the parameters required by car manufactures,
among others, defined by the Automotive Electronic Council (Qualifications
documents, e.g. AEC-Q100, AEC-Q200, etc...).

This work is motivated by the comprehension of the failure mechanisms oc-
curring in power electronic switches produced by NXP Semiconductors com-
pany for the automotive industry. During their normal life, these components
undergo high power levels over a long time, leading to gradual reduction of
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2 introduction

their performance. Here, we present a method to assess the device electro-
thermal aging, focusing on a specific study case: power switches, based on
the MOSFET (Metal Oxide Semiconductor) technology, used for the automo-
bile lightning system. This application is particularly aggressive for MOSFET
components because it involves repetitive on/off cycles associated with high
electrical pulses and large temperature excursions, leading to a progressive al-
teration of the device’s initial performances. In particular, its initial resistance
in the "ON" state increases over time, which in turn, increases its operating
temperature. Our objective is to investigate the phenomena behind the degra-
dation of the microstructure of the critical parts of these devices that have
been identified as the metallic ones, probably because of their susceptibility to
plastic deformation. This would allow us to determine physical models that
can explain the main failure mechanisms to be correlated with the progressive
worsening of the whole device electrical performances. To do this, we have set-
tled new dedicated techniques and quantification methods to assess the aging
of the metal parts of MOSFET devices.

In the first chapter, we present the state of the art of power electronics tech-
nologies. Then, we focus on low-voltage MOSFET power devices used in car
applications and we present the LFET1T components, the e-switches from NXP
Semiconductors under investigation. We also go through the main reliability
issues associated to this kind of devices. They are related to the complex struc-
ture of the power component, which integrates different materials at different
scale. We explain why, the source metallization and bonding wires are the
parts of the LFET1T technology where failure is the most prone to happen in
the most recent technologies. Finally we present the electro-thermal aging tests
that we have used to accelerate the device degradation and failure.

The second chapter details the specific physical metallurgy techniques that
we set up in order to characterize the microstructure of the source metalliza-
tion during aging at two main locations: away and under the bonding connec-
tions. These techniques consist essentially in electron and ion microscopy, and
grain structure mapping. Because of the complexity and fragility of the device
structure, dedicated sample preparations are also needed and described. We
try to point out the choices that have motivated the established experimental
protocol and the contribution of each technique to the comprehension of the
degradation mechanisms.

In the third chapter we introduce the results of the microstructural character-
ization of the metallic parts of LFET1Ts for 12V and 24V battery applications.
We compare the metal microstructure away and under the bonding wires, and
we follow its evolution during aging. The contacted metallization is a critical
location because the bonding process induces plastic deformation prior to ag-
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ing. We show that the main mechanism behind the metallization degradation
is the generation and propagation of intergranular fatigue cracks in both lo-
cations. Then, we describe and use original quantification methods that allow
us, for the first time, to assess the initial plastic deformation induced by the
bonding process and the crack propagation during aging.

These results are discussed in detail in chapter 4. We try to highlight the uni-
versal degradation mechanisms behind the electro-thermal aging of the metal
and show that many parameters can influence the potential evolution of its mi-
crostructure, such as the composition of metallization and wire, the grain size,
the interface created between the two metals. At the beginning of the chapter
we also show the link between the on-state resistance of the device and the
increasing in temperature of the power modules during aging.

Final considerations and possible perspectives of our study conclude this
dissertation.
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P O W E R E L E C T R O N I C S F O R T H E A U T O M O T I V E
I N D U S T RY, FA I L U R E M O D E S A N D R E L I A B I L I T Y I S S U E

At present, power electronics is the most advanced electrical energy conversion
technology that attains both high flexibility and efficiency. As an engineering
field, power electronics came into existence about 60 years ago, with the de-
velopment and the market introduction of the so-called silicon controlled rec-
tifier, known today as the thyristor [Owe07] [Hol01] [Lut11]. The structures
of today’s most important power semiconductor devices are shown in Fig. 1.
Details on each power component will be given in the following section 2.1.

Figure 1: Basic structures of common power semiconductor devices [Lut11].

Fig. 2 illustrates the practical application range of each type of silicon device
in classical switching power converters. Note that for these applications the
operation ranges are within a hyperboloid. This suggests that the product of
switching power (product of maximum voltage and current) and switching fre-
quency that can be attained per device in practical conversion systems using
silicon devices appears to be fairly constant. This frequency-power product is

5
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a good performance indicator for how well the designer was able to maximize
utilization of the power semiconductors and to improve the power density of
the converter [Lut11]. For high power applications (> 103 kW), a GTO (gate
turn-off) thyristor would be the first choice. However, they will be limited by
a low switching frequency. On the other hand, for lower power applications,
different possibilities could be taken into account depending on the switch-
ing frequency: bipolar transistor for low frequencies (< 10 kHz), the IGBT for
medium frequencies (10-100 kHz) and MOSFET for high frequencies (> 100

kHz).

Figure 2: Operating range of silicon power semiconductor devices [Lut11].

In our study, we focus on smart power devices used as switches in automo-
tive applications that require low power and high switching frequency. Thus,
we will see that they are based on MOSFET technology, in particular vertical
MOSFET controlled by a "smart" circuit that have sensor and protection func-
tions [San99] [Tur03].

The devices under test will be described in section 2.2, together with the
main reliability issues intrinsic to the structure and application field of the
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devices. On the base of the failure analysis conducted on previous technologies
developed by NXP [Mar10] [Mar14] [Kho07b] [Kho05], the weakest parts of the
power device complex architecture have been identified as the metallic ones. In
this work we will focus, thus, on the failure mechanisms involving the source
electrode metallization and the relative bonding connections.

Our method to understand the physical mechanisms behind the device fail-
ure is described in section 2.3 and consists in putting the devices under acceler-
ated electro-thermal aging and follow the degradation of the metal microstruc-
ture during aging. In this section we will focus on the description of the test
protocols, whereas the physical metallurgy approach, used to study the metal-
lization degradation mechanism and constituting the main part of this work,
will be detailed in the next chapter.

2.1 power electronics technology evolution

This part provides an insight into the main basic structures of power semicon-
ductor device. It has the purpose to summarize the evolution of the semicon-
ductor electronics since the bipolar transistor until the more recent technolo-
gies, in terms of structure and operational mode.

2.1.1 Bipolar transistor

The bipolar transistor, or Bipolar Junction Transistor (BJT), was invented in
1948 at the Bell Laboratories by John Bardeen and Walter Brattain under the
direction of William Shockley [Sho52]. The basic function of a BJT is to amplify
current and they are then used in integrated circuits as amplifiers or switches.

A bipolar transistor consists of a three-layer sandwich of doped semiconduc-
tor materials, either NPN or PNP, separated by two PN junctions. The N areas
contain an excess of electrons, whereas the P area an excess of holes (or a lack
of electrons). The principle of operation of the two transistor types, PNP and
NPN, is exactly the same the only difference being in their biasing and the po-
larity of the power supply for each type. A BJT has three terminals connected
to the three doped regions: emitter, collector and base. In a NPN transistor, rep-
resented in Fig. 3, the base terminal is connected to the central P-type region,
whereas in the PNP type to the central N-type one. The electrical parameters
of a BJT are the IE, IC and IB that are respectively the emitter, collector and base
current and VBE and VCB that are the emitter base voltage and collector base
voltage respectively.

If a tension VBE is applied to the transistor, an electron current flows from
the emitter to the base because of the difference of potential between the two
electrodes. These electrons can diffuse until the collector, by applying a reverse
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tension between the collector and the base (VCB). In this configuration, a cur-
rent flows from the emitter to the collector by applying a tension at the base
(common base configuration). At this point, if VCE is lower than a threshold
(VCE lin), then an important electron-hole recombination takes place at the base
and the IC current gain is low (saturation region). On the other hand, if the
VCE is higher enough (VCE > VCE lin), then majority of the electrons are col-
lected at the collector terminal. The transistor operates in the linear region and
the current IC is independent from the applied tension VCB.

Fig. 4 shows the qualitative characteristic curves of a BJT. The plot summa-
rize the three regions of operation: the saturation, the cutoff, the active (each
family of curves is drawn for increasing IB values):

1. Cutoff region: the base-emitter junction is reverse biased, then no current
flows in the device.

2. Saturation region (VCE < VCE lin): the base-emitter and collector-base junc-
tions are forward biased, with VCE < VBE. IC reaches a maximum value
which is independent from VCE.

3. Linear region (VCE > VCE lin): the base-emitter junction is forward biased,
while the collector-base junctions is reverse biased, with VBE < VCE < VCC.
IC is proportional to IB, IC = �IB. The transistor can be considered as a
current amplifier with gain �.

Figure 3: Bipolar transistor general structure.
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Figure 4: Electrical characteristic curves of a NPN bipolar junction transistor. The blue
curve corresponds to VBE = f( IB). The red curves correspond to IC = f( VCE)
at increasing IB values. The red area (VCE < VCE lin) indicates the saturation
region whereas the green one (VCE > VCE lin) the linear region. The green
curve corresponds to IC = f( IB). � is the curve slope, that is the device gain.



10 power electronics for the automotive industry, failure mode . . .

2.1.2 Thyristor

Silicon controlled rectifier or thyristor is a family of semiconductor devices in-
troduced by W. Shockley in 1950 [Sho51] and later developed by Ebers [Ebe52]
[Mol56] [Mue58] as an evolution of the bipolar transistor.

Thyristor is basically a four layered pn junction device, with two p and two
n portions and three p-n junctions J

1

, J
2

, J
3

(Fig. 5). It has three terminals, the
anode and the cathode across the four layers, and the gate attached to the p-
type layer near the cathode. As represented in Fig. 6, the thyristor operates in
three different modes:

• Reverse blocking mode: the device is reverse-biased and behaves as a
blocking diode.

• Forward blocking mode: voltage between anode and cathode (VAC) is
applied in the direction that would cause the diode to break down, but
the thyristor is not triggered into conduction.

• Forward conducting mode: the thyristor has been triggered into conduc-
tion (VAC>VBO or IG>0) and will remain conducting until the forward
current drops below a threshold value ( IAC< IH) known as the "holding
current".

When the anode is at a positive potential VAC with respect to the cathode with
no voltage applied at the gate, junctions J1 and J3 are forward biased, while
junction J

2

is reverse biased. As J
2

is reverse biased, no conduction takes place
(Off state). Now if VAC is increased beyond the breakdown voltage VBO of the
thyristor, avalanche breakdown of J

2

takes place and the thyristor starts con-
ducting (On state). If a positive potential VG is applied at the gate terminal
with respect to the cathode, the breakdown of the junction J

2

occurs at a lower
value of VAC. This means that the value of VG trigger the switching frequency
of the thyristor. Once avalanche breakdown has occurred, the thyristor contin-
ues to conduct, independently from the gate voltage VG, until the potential
VAC is removed or the current through the device (IAC) becomes less than the
holding current specified by the manufacturer (IH).



2.1 power electronics technology evolution 11

Figure 5: Thyristor general structure. Without the application of any voltage, it has
three diffusion regions. If we apply a positive voltage at the anode with re-
spect to the cathode, the junctions J

1

and J
2

become forward biased while J
2

is reverse biased. In this state, if a positive signal is applied at the gate termi-
nal, J

2

turns to forward biased state and current starts to flow. On removal
of gate signal, the current continues to flow as charge is drifted from anode
to cathode.

Figure 6: Thyristor static characteristic curve. The thyristor works under three modes:
forward conducting mode, forward blocking mode and reverse blocking
mode. The minimum anode current that causes the device to stay at for-
ward conduction mode as it switch from forward blocking mode is called
the latching current. If the SCR is already conducting and the anode current
is reduced from forward conducting mode to forward blocking mode, the
minimum value of anode current to remain at the forward conducting mode
is known as the holding current.
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2.1.3 MOSFET transistor

A MOSFET transistor (Metal Oxide Semiconductor Field Effect Transistor) is a
semiconductor-base device widely used as switch or signal amplifier in elec-
tronic integrated circuits, with applications at high frequencies. The basic prin-
ciple of the field effect transistor was first patented by Julius Edgar Lilienfeld in
1930 [Lil26], but it’s only about thirty years after that Martin Atalla [Sho51] and
Dawon Kahng [Sho51] from the Bell Laboratories developed the first MOSFET
examples.

The main feature of the MOSFET transistors is the use of an electrical field
to control the conductivity of a thin channel inside the semiconductor material.
They distinguish operationally and structurally from the bipolar junction tran-
sistors since they involve single-carrier-type operation. Two different types of
MOSFET exist, depending on the type of charge carriers flowing through the
channel: holes in pMOSFETs and electrons in nMOSFETs. These, in turn, can
work in depletion or enhancement mode, according to the polarisation of the
device. In the following we will consider an n-type enhancement MOSFET as
example to describe the transistor operational mode.

A MOSFET transistor consists in four electrodes, represented in Fig. 7: source
(S), drain (D), gate (G) and the body (B). It is composed primarily by a large
block, the body, of p-type silicon. Into the body, two regions of heavily doped
n-type silicon are created to form the source and the drain. Gate is the control-
ling terminal and it is isolated from the rest of the transistor by an oxide layer
sitting between the gate and the channel. This prevents current from flowing
into/out of the gate, resulting in a high input impedances (1012 - 1014⌦) and
a low power consumption, which make the MOSFET the fastest component
during switching operations.

The transistor operation modes are represented in Fig. 8a and 8b, which de-
scribe respectively the ID-VGS and ID-VDS characteristic curves. By applying a
potential difference between the gate and the body, the conductive character-
istics of the channel region can be changed to allow current flow. If a small
positive voltage is applied between gate and body (VGB), the positive potential
at the gate repels part of the charges creating a region with a small negative
charge known as depletion region. As VGB is increased, the depletion region
grows. When VGB is increased beyond some threshold voltage (typically a few
V) an inversion layer of electrons is formed near the gate. This provides a
conductive channel between drain and source which allows current to flow be-
tween source and drain and voltage drop across the two terminals. The body
is generally internally connected to the source. This means that the gate to
base voltage VGB is the same as the gate to source voltage VGS and to create
the inversion layer VGS needs to be above the threshold voltage (Vth). If VGS
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is less than Vth, no inversion layer is present and so no current can flow be-
tween source and drain and the transistor is said to be cut-off. When VGS is
greater or equal to Vth, the transistor is conductive. At this point, if VDS > 0, the
positive charge of the drain pulls electron away from the channel to be more
distributed around the drain, where the inversion layer is smaller and the de-
pletion region is larger than near the source. In this region, where VGS > Vth

and VDS < (VGS - Vth), the transistor is in the linear (or ohmic) region. It
behaves as a voltage controlled resistor, where VGS controls the resistance. The
current ID does not depend on VDS. As VD is increased, the depletion region
near the drain continues to get larger and the inversion layer near the drain
continues to shrink. At some point, the inversion layer entirely disappears and
the drain is said to be pinched-off. Current still flows between source and
drain and the potential difference is so large between the two terminals that
electrons are able to push through the pinched-off area that contains few car-
riers. However, further increases in VD results in minimal further increases in
current, as the additional potential overcome the increased pinched-off region.
The transistor is said to be in the saturation region.

Figure 7: General structure of a nMOSFET. Under a positive VGS, the charge carriers
flow through the channel between source and drain.



14 power electronics for the automotive industry, failure mode . . .

Figure 8: n-type MOSFET characteristics (a) Id = f(VDS) and (b) Id = f(VGS)

2.1.4 IGBT transistor

Insulated Gate Bipolar Transistor (IGBT) is the functional integration of power
MOSFET and BJT devices in monolithic form. IGBT was developed in the 1980s
by B.W. Scharf and J.D. Plummer to provide a superior alternative to bipolar
power transistors [Rus83] [Bal84]. It combines the gate-drive characteristics of
MOSFETs (high input impedance and application at high frequency) with the
high-current and low-saturation-voltage capability of bipolar transistors (low
on state power loss), to achieve the optimal device characteristics. The structure
of an IGBT is very similar to a vertical MOSFET (see next section) with the
difference that the block connected to the drain terminal is a N+-type substrate
in the vertical MOSFET, whereas in an IGBT it is P+-substrate (Fig. 9). For this
reason the IGBT is often described as an N-channel power MOSFET on top of
a p+ type substrate. IGBTs operate in a similar way to MOSFETs. An inversion
layer is formed in the P+ area by applying a tension at the gate. However, if
the potential of the collector is increased, the flow of electrons draws positive
charges from the p-type substrate into the drift region, significantly increasing
the conductivity of the channel region and dramatically reducing the voltage of
the IGBT. This property gives the IGBTs a higher current density and capability
compared to similarly gate-driven MOSFETs, resulting in low on-state power
loss. Thus, IGBTs are specially designed to turn on and off rapidly in high-
current applications.

2.1.5 Recent solutions: trench technology

In the last years, power semiconductor electronics have rapidly evolved in or-
der meet the requirements of new applications involving smaller and smaller



2.1 power electronics technology evolution 15

Figure 9: Comparison between (a) a vertical MOSFET and (b) an IGBT. The main dif-
ference consists in a n-type substrate in the vertical MOSFET and a p-type
substrate in the IGBT (respectively in orange and green).

technology sizes and higher and higher current densities [Bay08] [Ish04a] [Kor09].
The vertical trench technology is the most common configuration that we can
find in the market nowadays, for both MOSFETs and IGBTs used in low power
and high current densities application. In the following, a brief description
of these components is provided, focusing, as example, on a MOSFET device,
which is at the base of the technology under investigation in this work.

2.1.5.1 Vertical MOSFET

As suggested by the name, vertical MOSFETs (or VDMOS, Vertical Diffused
MOS) differ from the lateral MOSFETs (Fig. 7) for their vertical structure (Fig.
10): the source electrode is placed over the drain, resulting in a current mainly
vertical when the transistor is in the on-state [Mor96]. More precisely, the
source is connected to a highly doped N+ region that is confined insight a
P region under the gate. The vertical channel is then formed between the latter
and the N- region below, connected to the drain electrode by a N+ layer. The
working principle and electrical characteristic curves of a VDMOS are exactly
the same of a planar MOSFET (Section 2.1.3):

• If the gate to source voltage (VGS) is lower than a threshold value (Vth),
a depletion layer is formed in the P area. The channel is isolated and the
transistor is cut-off.

• When VGS is greater than Vth, the carrier inversion layer is formed in the
channel and the transistor is in the on state: an electron current, linearly
proportional to the tension applied at the gate, flows from the source to
the drain.



16 power electronics for the automotive industry, failure mode . . .

Thanks to its vertical structure, the main advantage of a VDMOS device
consists in the possibility of a high integration of many small symmetrical
cells connected in parallel to the same source metallization, at surface, and
drain layer, which is directly connected to the device substrate. It is, then, the
gate width that determines the number of cells which can be integrated in
a single VDMOS device. Moreover, contrary to a planar structure, in which
the current and breakdown voltage ratings are both functions of the channel
dimensions, in a vertical structure, the voltage rating of the transistor is a
function of the doping and thickness of the N+ epitaxial layer, while the current
rating is a function of the channel width. This makes it possible for the VDMOS
to sustain both high blocking voltage and high current within a compact piece
of silicon. For these reasons, vertical power MOSFETs are typically employed
in applications that involve high power densities in single device packages of
power modules.

Figure 10: Schema of a VDMOS.

2.1.5.2 Trench MOSFET

Different kinds of VDMOS exist depending on their structure: planar MOS,
V-groove MOS (VMOS), trench MOS (UMOS), etc.

In a trench MOSFET, also called UMOS, the gate electrode is buried in a
trench etched in the silicon. The comparison between a vertical v-groove struc-
ture (VMOS) and a trench structure is depicted in Fig. 11.
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The fabrication process of a trench MOSFET is shortly described by Williams
et al. [Wil17]. As shown in Fig. 11b after forming the VDMOS source and body
regions, an etched trench of narrow width (e.g., 0.8 to 1.5 µm across) is oxi-
dized to form a gate oxide lining the trench and subsequently filled with phos-
phorus in situ doped polysilicon. A polysilicon CVD deposition completely
fills the trench, overflowing the etched trench onto the silicon surface. Except
for a small masked area needed for gate contact, the polysilicon is then "etched
back" so that the top surface of the polysilicon gate is recessed, but still overlap-
ping the N+ source. Subsequent thermal oxidation caps and seals the recessed
polysilicon with a protective layer of oxide. A contact mask then selectively
exposes the transistor’s surface gate and its numerous cellular source/body
regions to an oxide etch (while protecting the oxide above the trench). Af-
ter contact etch, metal deposition and photolithographic patterning are per-
formed interconnecting a series of separate and distinct trench VDMOS cells
into a single three-terminal trench power MOSFET. Except for the polysilicon
gate contact, the resulting die surface is nearly planar, so that problematic
step coverage issues of the v-groove structure (Fig. 11a) are completely elim-
inated. The resulting cell pitch was half that of any other vertical device, im-
proving channel-resistance, epitaxial current uniformity, and total RDS(on). As
represented in the graph of Fig. 12, increasing cell density of a trench MOS-
FET decreases the devices RDS(on) hyperbolically. In contrast, planar VDMOS
or VMOS exhibit a U-shaped dependence, declining in RDS(on) with increasing
density before reaching a minimum, then rising rapidly at higher densities as
a result of a decrease in channel packing density and poor current uniformity
in the epitaxial layer [Wil17].

Figure 11: Cross section of (a) a v-groove VDMOS (or VMOS) and (b) of a trench gate
vertical MOSFET (or trench VDMOS) [Wil17].
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Figure 12: Impact of cell density on RDS(on). Planar VDMOS exhibits a minimum while
trench VDMOS benefits from scaling [Wil17].

2.2 smart power mosfet for the automotive industry : reliabil-
ity issue and description of the devices under test

In this work we focus on low voltage MOSFET-based smart power devices
used as lightning switches in car and truck applications. Fig. 13a shows an
example of e-switch smart power MOSFET from NXP Semiconductors.

Fig. 13b represents the main parts composing the layered structure of a
power device for standard low voltage applications:

• Power die. It is theMOSFET active area of the device, consisting mainly
in the Si block coated by the source top metallization layer, generally
made out of Al or Cu. In the "smart" power modules, the power die is
connected to a control die (soldered on the same lead frame) with sensor
and protection functionalities.

• Internal bonding connections. They allow a low-resistance current flow
through the power die. Al or Cu bonding wires (Fig. 14a) are ones of
the most common solution used at the moment. Several wire bondings,
which a standard diameter that varies from few tens of micrometers to
a maximum of 500µm, are connected in parallel in order to support and
distribute high currents. Ribbon (Fig. 14b), clips and ball-bonding (Fig.
14c) are other examples of bonding internal connections that we can find
in the commercial power devices.

• Lead frame. It serves primarily to support the chip mechanically during
the assembly of plastic packages and to connect the chip electrically with
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Figure 13: (a) Power MOSFET device from NXP Semiconductors for low voltage ap-
plications. (b) Schematic representation of the cross-section of the power
MOSFET. The lead frame, made out of Cu, serves as heat sink and is di-
rectly soldered on the PCB. The bonding wires are cold welded on the
Al top metallization by ultrasonic process. The device is encapsulated in a
plastic mold compound.

Figure 14: Examples of internal bonding connections in a low voltage power module.
(a) Cu bonding wires, (b) Al ribbons, (c) ball-bonding [San17].
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the printed circuit board (PCB). It has also the function of a heatsink as
it is made of a thick Cu plate.

• Solder joints. They allow the electrical and thermal contact between power
die and lead frame and between lead frame and PCB. The most common
alloys used nowadays are lead-free and are made out of tin, silver and
copper (Sn-Ag-Cu). Many studies are focusing on these replacement sol-
der materials [Lee17] and will be addressed later in section 2.2.2.1.

• Mold compound. It is the most widely used polymer-composite packag-
ing material for encapsulating low voltage power devices [Pro03]. The
main function of the epoxy-based package is to provide environmental
and mechanical protection for the devices. It must deliver a balanced
combination of properties in the areas of mechanical strength and tough-
ness, chemical resistance, electric insulating performance, thermal con-
ductivity and moisture stability in the range of -65 to 200

�C. In order to
control thermal conductivity, internal stress characteristics and reliability
performances, filler particles (commonly made out of silica or alumina)
are integrated in the epoxy resin [Ham89].

2.2.1 Stress conditions in power electronics for automotive

Power electronics for automotive must comply with standard qualification re-
quirements described in the AEC-Q100 documents, developed by the Auto-
motive Electronics Council (AEC) component technical committee. These doc-
uments contain detailed qualification requirements for integrated circuit and
include failure mechanisms based stress test methods. Components meeting
these specifications are suitable for use in the harsh automotive environment.

The basic standard lifetime requirements for passengers vehicles today are:

• Lifetime: 15 years

• Operation time: 10.000 hours

• Mileage: 300.000 km

In the following, we provide a short description of the main stresses at which
power electronics for automotive are subject during their normal operational
mode.

2.2.1.1 Thermal stress

During their on-off operating cycles, power components undergo passive and
active thermal cycles. They are subject to extremely diverse external climate
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conditions. At the same time, when the vehicle is on, the motor compartment
warms up to 130

�C [Kas01] [Bou08]. This results in passive thermal cycles from
- 40

�C to 130

�C [Sch10]. On the other hand, active thermal cycles correspond
to the temperature increase due to Joule heating and thermal dissipation. The
combination of these two stresses can severely influence the power electron-
ics reliability, especially when the external temperature is high. In automotive
applications, power devices are designed to tolerate a maximum operating
temperature of 175

�. When this value is reached, the integrated control circuit
turns the device off as protection. The thermal amplitude in a single on-off
cycle is not critical for the materials composing the device layered structure.
However, the iteration of these thermal cycles induces important stresses in
the electronics components during their life-time due to the difference in the
coefficients of thermal expansion (CTE). These stresses can locally induce plas-
tic deformation in the softest parts (solders, metallization, bonding wire, mold
compounds) and cracks in the most fragile parts (oxides and silicon). This
problem of CTE difference will be further addressed in "Source metallization"
section (2.2.2.2).

2.2.1.2 Electromagnetic stress

The electromagnetic interferences (due to high tension power lines, mobile
phones, radio waves, etc.) and the vehicle system itself can cause a transient
electrical noise that can interfere with the electrical components in the vehicle.
Ignition and lighting system, electromechanical actuators, starters, alternators,
etc. are the source of potential electromagnetic noise. The manufacturer must
comply with electromagnetic compatibility and emission regulations [Mar11].

2.2.1.3 Mechanical and chemical stress

Mechanical stress arises from the deformations and vibrations of the engine
system. The parts that are the most sensitive to this stress are the solder joints
and the bonding connections.

In addition, the devices are affected by environmental conditions as mois-
ture, fog, saline atmosphere, etc. that can cause corrosion in the device com-
ponents. The plastic packaging play an important role to protect the power
device from the aggressive environmental factors.

2.2.2 Failure modes in power MOSFETs

Reliability is defined as the ability of an item to perform a required function
under stated conditions for a certain period of time, which is often measured
by probability of failure, by frequency of failure, or in terms of availability
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[Ele12] [Wan13]. Power device failure or degradation can be caused by external
factors, such as moisture, temperature, vibrations, mechanical shock, etc. (see
previous section 2.2.1), or internal factors, such as, for instance, the normal
usage of the component or repetitive high current cycles, associated to thermal
cycles (due to the Joule effect), that result in fatigue degradation of the main
parts composing the device. These kinds of degradation or failure correspond
then to the final part of the typical failure rate profile ("bathtub" curve - Fig.
15) as a function of the device life-time. The failure rate in this stage increases
with the usage duration and the device aging and this defines the life-time of
the device.

Figure 15: Bathtub curve of failure rate.

Considering our specific application field, power switches driving the vehi-
cle light system are located far from the engine system. Thus, the mechanical
stress and the thermal variations generated by the engine system, can be ne-
glected. The main stress they undergone is the electro-thermal one. In fact,
during their life, the components undergo several short-circuits and avalanche
[Ber10] events, inducing thermo-mechanical effects, added to the normal ther-
mal excursions due of the environment in which they operate. These repetitive
electro-thermal stresses produce degradation effects at the interfaces between
the different materials composing the device structure, because of the differ-
ence in their physical properties (table 1), and in particular in the coefficients
of thermal expansion (CTE).

Fig. 16 shows a schema of a smart power device with the main critical parts
during electro-thermal aging: the solder joint and the metallic parts (source
electrode metallization and bonding wires). In the following the associated
failure mechanisms are described. In this work, we will focus on the failure
mechanisms of the metallic parts.
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Table 1: Physical properties of the main representative materials at 25

�Cl [Pie11].

Function Semiconductor Conductor Solder
Material Si Al Cu PbSn5Ag2.5

CTE [10-6/K] 4.15 23.1 16.5 21

Young modulus [GPa] 131 70 120 10

Poisson ratio 0.27 0.35 0.34 0.4
El. cond. [⌦-1m-1] (doping dependent) 10-3 37.7 ⇤ 106 59.6 ⇤ 106 6.67 ⇤ 106

Thermal cond. [Wm-1K-1] 148 237 385 50

Thermal capacity [Jkg-1K-1] 752 897 385 150

Figure 16: Schematic representation of a LFET1T-like smart MOSFET power device.
The critical points subject to electro-thermal stress are: die/leadframe solder
joint, Al source metallization, bonding wires.
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2.2.2.1 Die/substrate solder joints fatigue

The solder joint between the Si substrate of the power die and the Cu lead
frame ensures their thermal, electrical and mechanical contact. At increasing
temperature, the power die heating is transferred through this connection to
the lead frame where it is dissipated. Since 2006, after the restriction of the
use of hazardous substances in electronic equipments, the lead-based solder-
ing process has been replaced by high temperature (> 270

�C) process and
Pb-free solders, consisting essentially in Sn-Ag-Cu alloy, are more and more
used from the electronics manufacturers. The low elastic limit of these materi-
als induces deformation in the solder layer even at low stress. In addition, the
CTE mismatch between Si and Cu can strain the solder joint connection, and
over the component lifetime can contribute to mechanical solder joint fatigue
failure [Lee00]. Two phenomena can then occur during the electro-thermal ag-
ing of the device: cavities multiplication and delamination starting from the
edges of the solder towards the center (Fig. 17). Both of them limit the cur-
rent flow in the solder layer, increasing the RDS(on) of the device. It has been
demonstrated that the less is the solder thickness the more fragile is the solder
[Hay02] [You15] [Gué02]. However, an increase in the thickness results in a in-
crease in the thermal resistance of the solder layer, because of the low thermal
conductivity of the materials constituting the solder. A trade-off between ther-
mal conductivity and mechanical strength is then required in phase of design
of the solder interface.

Figure 17: Delamination of a lead-free solder joint between the die Si substrate and
the Cu lead frame [Bou08].
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2.2.2.2 Failure modes in the active zone

The active zone of the power device corresponds to the MOSFET die and the
bonding wires connected to the source metallization. In this area, the electro-
thermal cycles induce mechanical stress in the softest parts of the complex
layered structure that, by nature, consists in the interconnection of different ma-
terials (metal-oxide-semiconductor) and constitutes the MOSFET device. They
are the Al source metallization and bonding wires, which have higher coeffi-
cient of thermal expansion respect to the oxide and the Si (table 1).

Source metallization

Reconstruction of the aluminum metallization is an effect observed since the
early times of microelectronics [San69] [Phi71]. During thermal cycling of IGBT
and MOSFET devices, periodical compressive and tensile stresses are intro-
duced in the thin metalization film by the different CTEs of the aluminum and
of the silicon chip, due to the large thermo-mechanical mismatch between both
materials and due to the stiffness of the silicon substrate [Cia02]. The thermo-
mechanical stresses in the Al results in the gradual change in its granular
structure. Fig. 18 shows the comparison between the Al metallization surface
in a power MOSFET before and after electro-thermal cycles. The aged metal is
characterized by an higher roughness and cracks along the grain boundaries.

Figure 18: Electro-thermal ageing of the source electrode metallization in a smart
power MOSFET. Scanning electron micrograph of the (a) fresh metalliza-
tion and (b) at failure [Pie11].

To assess the stress seen in interconnects during operation, Flinn and cowork-
ers [Fli87] considered the simplest approximation of a chip: a metal layer de-
posited on a silicon substrate. They measured the stress arising during thermal
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cycles due to the mismatch between both materials using a laser reflectometer
set up and the approximation of the Stoney equation [Sto09] [Fre99] [Jan09].

�f =
Est

2
s

6(1- ⌫)tfR
(1)

In this equation, only the thicknesses of both film and substrate (tf and ts) are
needed, along with the substrate Young’s modulus and Poisson’s ratio (Es and
⌫). The film stress �f is then directly deduced from the radius of curvature
R measured by the laser. Because the substrate is more rigid and does not
plastically deform at room temperature, most of the plasticity is expected to
occur in the metallic film. In their first paper, the metallization was an Al-1%Si
thin film and the cycles were performed from room temperature to 400

�C at
a rate of about 20�C/min. During the process, the Al layer would go from
slightly tensile to compressive stresses (max 100 MPa) during heating, before
deforming plastically in tension during the cooling, up to a stress of 300 MPa
(Fig. 19).

Figure 19: (a) Typical stress-temperature cycle for a 1-µm-thick poly-crystalline Al film
on oxidized Si substrate (Tmax ⇠ 450�C ). (b) Finite element simulation
showing the Von Mises stresses generated by a temperature change of 50

�C in a 1 cm x 2cm x 0.5 mm specimen (typical size used in wafer curvature)
[Leg09].

Several publications followed (a nice and recent review can be found in
Wiederhirn’s thesis [Wie07] and established that the film strength 1 increased
as the inverse of the film thickness. This increase in film thickness was then ra-
tionalized in term of threading dislocation movements by Nix in 1989 [Nix98],

1 During thermal cycles, metallic thin films experience two yield stresses, at the end of the elastic
compression stage (heating) and in tension during cooling. The maximum stress is usually
reached at the end of the cooling and is considered as the "film’s strength"- see [Leg06]



2.2 smart power mosfet for the automotive industry 27

from an initial calculation of image forces in thin films by Matthews and
Blakeslee [Mat74] [Mat75]. Later on, this model was questioned [Mue98] [Leg09]
because the amorphous layer between the Si substrate and the metal film (usu-
ally Si oxide), acted as a dislocation sink. This later effect may however reflect
an artifact of TEM observation because Si oxide seems to soften significantly
under electron beam [Zhe10]. In any case, the reversible motion of threading
dislocations (Nix’s model) cannot explain the strong and non-crystallographic
roughening of Al films on Si, observed in power mosfets ([Pie11] or plain thin
Al films on substrates [Tur92] [Leg05] [Kao03].

Another approach consisted in applying the Frost and Ashby deformation
mechanisms maps [Fro82] to the stress/temperature cycles. These maps and
equation were established for bulk materials and link a given plastic strain rate
✏̇ to a given stress and temperature. By comparing the predicted stress/temper-
ature cycles using these maps and the experimentally established one (by laser
curvature), Bostrom [Bos01] showed that a large discrepancy existed between
both approaches, underlying the fact that thin films on substrate deformed in
a specific way.

Recently, a qualitative model adapted to the bamboo-microstructure of thin
film was developed to explain how the plastic deformation proceeded by atomic
self diffusion of Al atoms along the grain boundaries (GBs) [Mar14]. These
GBs, acting as fast diffusion paths would gradually open during tension (cool-
ing phase). During heating, the Al atoms are expelled to the surface through
the same GBs, as predicted by the model from Gao [Gao99], and contribute to
its roughening. The irreversibility of the process is due to the native oxidation
of cracks surfaces that will prevent crack healing during compression.

Bonding wires

Reliability of bonding connections in power modules, and in particular of
wire bonds soldered on the source electrode metallization by cold-bonding
process, is an important issue for the reliability of power systems because of
extending operation temperatures (due to the Joule effect in the wire itself and
to the power dissipation in the Si substrate) which induce high levels of thermo-
mechanical stress in the bonding area [Cia02] [Gla04] [Dup07]. Ramminger et
al. [Ram00] described and modeled this cyclic stress as wire flexure by thermal
expansion or wire deformation under mechanical shock loading if the bond
surfaces are able to move relatively to each other (Fig. 20).

As consequence of this stress, mainly two kinds of failures of wire bonds
have been reported in the literature:

1. Heel crack failure (Fig. 21a), originating from bending caused by thermal
expansion or by mechanical deformation of the wire [Meh99] [Cia02].
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Figure 20: Bonding wire subjected to cyclic mechanical stress applied by lateral dis-
placement of one bonding area relatively to the other in Ramminger et al.
experiments [Ram00].

2. Bond wire lift-off (Fig. 21b), resulting from material fatigue at the chip
metallization. This is caused by shear forces which result from the differ-
ent coefficients of thermal expansion on the interface [Ber98] [Cia02].

These degradation modes have been mainly observed in components that un-
dergo active cycles and rarely under extreme conditions (avalanche or short-
circuit). In the latter case, the metallization is the location most prone to degra-
dation, but even in the cases of faster bonding failure, metallization reconstruc-
tion is always observed [Sme11].

The failure mechanisms at the bonding connections are generally studied
combining experimental test and simulation. Ramminger has demonstrated,
by a finite element model based on stress experiments, that the number of cy-
cles to heel crack failure is strongly dependent on the loop geometry [Ram00].
He has also considered that cracks in the bonding wires and at the wire-
metallization interface do not propagate towards the metallization because of
its higher yield strength [Ram98]. The layout of the bonding connection also
play a role in the reliability of power device. According to Ishiko et al., the re-
liability of IGBT components can be improved by optimizing the wire position
configuration by thermo-electric simulation in order to make the temperature
distribution of the devices more uniform [Ish06].

In parallel to the studies in simulation, the microstructure of the bonding
wires has been inspected in order to investigate the influence of the grain
structure evolution on the crack growth and the device life-time. Yamada et
al. [Yam07] showed that the crack growth increases with the number of ther-
mal cycles (from -40

�C to 200

�C), resulting in a reduction of the residual
bonding length of Al wires that seems to be independent by the limited re-
crystallization of the wire grains at high temperature.
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Figure 21: Examples of bond failures in power components: (a) heel crack failure
[Cia02] and (b) wire lift-off [Den17].

2.2.3 Thermosensitive aging indicators

The electro-thermal aging of power devices, either IGBTs or MOSFETs, is as-
sociated with the evolution of the electrical parameters, such as VTH, IDSsat,
on-state resistance (RDS(on)). They are then aging indicators as they can be mon-
itored during the device testing procedures to assess its aging and predict their
life-time. During our characterization we have focused on the RDS(on) evolution.

2.2.3.1 RDS(on)

During the on state, in the linear region, the VDMOS can be considered as a re-
sistance between drain and source: the RDS(on), defined as the ratio between the
drain voltage and current when VDS approaches zero (Fig. 22a). It is one of the
main parameters of a power MOSFET: the goal during the design of a power
MOSFET is to lower this resistance in order to limit the device self-heating and
the voltage reduction during the on state. The RDS(on) value depends on the
voltage applied at the gate terminal, and so on the channel size.

The on-state resistance RDS(on) can be considered as the sum of several com-
ponents as shown in Fig. 22b:

RDS(on)(VGS) = RS + RCH(VGS) + RA(VGS) + RJ + RD + RSUB (2)

Where:

• RS = Source diffusion resistance.

It is made up of three elements: the bonding wires resistance (Rwire), the
metallization layer resistance (Rmetal) and the N+ wells resistance (RN+).



30 power electronics for the automotive industry, failure mode . . .

This contribution is greater than the resistance at the drain (RSUB) be-
cause of the high resistivity of the long bonding wires cold welded by
ultrasound on the source film. Compared to Rmetal and Rwire, RN+ is then
negligible, due to the low thickness (< 1µm) and high doping of the N+

well.

• RCH = Inversion channel resistance.

It represents one of the main contribution to the total RDS(on) and it is
inversely proportional to the channel width and, for a given die size, to
the channel density:

RCH =
1

W
Leff

C
0

µE(VG)(VGS - V th)
(3)

where W and Leff are respectively width and length of the channel, C
0

the
electrical capacitance of the gate oxide per surface unit, µE the electron
mobility in the inversion layer and Vth the threshold voltage. On the basis
of this equation, three solutions can be adopted to lower the RDS(on):

1. Shortening the inversion channel length (Leff). However after a limit
value (pinch-off) we have the formation of a gap between the source
and the drain [Mor96].

2. Increasing VGS. However, for voltage higher than 20 V there is the
risk to damage the gate oxide.

3. Increasing the inversion channel length (W) per surface unit by de-
creasing the single cell sizes.

• RA = Accumulation resistance.

It represents the resistance of the accumulation region in the epitaxial
zone under the gate electrode, where the direction of the current changes
from horizontal (in the channel) to vertical (to the drain contact). The
resistance is described by the following equation [Sun80]:

RA =
1

3

1
W
L0eff

C
0

µa(VG)(VG - VTD)
(4)

whereµa is the electron mobility in the accumulation layer, L0eff the ef-
fective length of the channel in depletion mode and VDT a voltage de-
pending on the doping concentration inside the epitaxial region. In order
to reduce this resistance, the channel length needs to be increased, that
means that the power device cells must be tightened.
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• RJ = "JFET" component-resistance between two P body regions.

It is due to the formation of a bottleneck in the charge carrier path be-
tween the two P areas. This is the detrimental effect of the cell size reduc-
tion mentioned above: the P implantations form the gates of a parasitic
JFET transistor that tend to reduce the width of the current flows in the
N- epitaxial region. This junction is modulated by VDS: an increase in VDS
determines the bottleneck shrinkage. In order to prevent this contribution
increasing the RDS(on), the distance between the transistor cells must be
increased, contrary to the considerations made for the other resistances.

• RD = Drift region resistance

It represents the resistance of the epitaxial layer. The role of this layer is to
sustain the blocking voltage, so RD is directly related to the voltage rating
of the device. A high voltage MOSFET requires a thick, low-doped and
highly resistive epitaxial layer, whereas a low-voltage transistor requires
a thin layer with a higher doping and less resistive layer. As a result, RD is
the main factor responsible for the resistance of high-voltage MOSFETs.

• RSUB = Substrate resistance

It is the resistance of the drain, including the resistance of the N+ sub-
strate (RN+) and the package connection. The RN+ contribution here is
significantly higher than in the source because of the higher thickness of
the drain layer (few hundreds microns). However, RSUB is overall lower
than RS because of the absence of the wire bondings (the device substrate
is directly soldered on the Cu lead frame).

In power MOSFET-based devices for low voltage and high current applica-
tions, like the components studied in this work, the sum of the source and
drain contributions (RS+RSUB) represents more or less the 50% of the total
RDS(on). In this study, we focus on the metallization that shows degradation
and thus resistance increase during electrical cycling [Kho07b].

2.2.4 Devices under test: 45V and 65V LFET1T technology

LFET1T is the commercial name of the technology developed in 2008 by NXP
Semiconductors (at that time Freescale) for automotive low voltage (< 48V) and
frequencies (< 1 kHz) applications and based on trench MOSFET modules. Two
versions of this technology have been characterized in this work:

1. 12V SPD06 (Fig. 23a), designed for 12 V batteries in car applications, with
breakdown voltage of 45V. They consists in 2 MOSFET sectors, each one
connected by 3 bonding wires and having a RDS(on) of 6 m⌦.
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Figure 22: MOSFET vertical structure, showing the total resistances that make up
RDSon.

2. 24V T07D17 (Fig. 23b), designed for 24V batteries in truck applications,
with breakdown voltage of 65V. They consists in 5 MOSFET sectors, con-
nected by 8 bonding wire and having a RDS(on) of 17 m⌦ and 7 m⌦.

The trench MOSFET structure, with a small cell pitch of ⇠ 1- 2µm (Fig. 24b)
allows the LFET1T modules to get three times higher channel current densities
(> 1000mA/in2) compared to the previous generation of NXP power MOSFET
devices based on a planar structure (Fig. 24a), together with a reduction in
die and package sizes (and thus cost). However, this also implies a higher
possibility of thermal instability of the device. For this reason, an isolated poly-
diode for temperature sense has been integrated in the technology. The details
of the technology are summarized in table 2, showing a comparison between
the 12V SPD06 and 24V T07D17 modules. The composition and thickness of
the source metallization and bonding wire are the same in both modules. The
source metallization consists in an aluminum (Al) film of 0.5 wt% of copper
(Cu) and tungsten (W), coated (only in the 24 V devices) by a 0.5µm thick SiO

2

passivation layer everywhere, except in the bonding areas. The wire bonds are
made out of pure Al and have a diameter of 400µm. The Al bonding wires are
contacted to the Al source metallization by a classical cold-bonding process
by ultrasound [Bro15] [Goe12]. The bonding parameters are reported in table
3. The bonding force of 10 N applied to an area of 450 ⇤ 750µm2 results in a
bond stress of ⇠ 30MPa. These values are in line with the bonding parameters
optimized by Goehre [Goe12].
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Table 2: LFET1T Technology Differences.

LFET1T 45V LFET1T 65V
SPD06 T07D17

4.0µm 5.3µm
Epi

0.50⌦ ⇤ cm 0.85⌦ ⇤ cm
P-edge Implant B11, 120keV B11, 110keV
P-deep Implant B11, 200keV B11, 220keV

ISD Poly
6K, As 6K, As

Single wafer Single wafer
Al (Cu, W) Al (Cu, W)

Source metal
3.6µm 3.6µm

/ SiO
2Metal passivation

0.5µm
Al Al

Bonding wire
400µm 400µm

Table 3: Bonding parameters.

Bonding force 10 N
Bonding pressure 37 MPa
Bond width 450 µm
Bond length 750 µm
Bond Area 0.265 mm2 (elliptical)

Figure 23: LFET1T smart power MOSFET device from NXP Semiconductors. (a) 45V,
12V SPD06, (b) 65V, 24V T07D17.
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Figure 24: (a) planar vs (b) trench MOSFET structure in NXP power devices.

2.3 reliability assessment of lfet1t power devices : methodol-
ogy and accelerated aging test description.

The reliability assessment of power devices is a complex issue that can be ad-
dress following different approaches. Fig. 25 shows a methodology schema
representing the three approaches that are currently adopted to study the ro-
bustness of power electronics systems:

1. Experimental testing. The reliability assessment is addressed experimen-
tally by:

• Accelerating aging test to reproduce the stress at which the device
is subject.

• Localization and identification of the failure.

• Degradation analysis of the critical points.

2. Degradation mechanisms modelling. The goal is to determine:

• Accelerating aging factors.

• Life-time predictive laws.

• New design strategies.

3. Numerical study, to simulate:

• The stresses undergone by the device.

• The correlation between the stresses and the degradation mecha-
nisms.
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On the basis of the mission profile, these three methods (or a combination of
them) contribute to provide a predictive evaluation of the device life-time and
to identify the degradation physical mechanisms.

Figure 25: Methodology used to assess the reliability of power devices. In this work we
use an experimental approach to assess the degradation of the metallic parts
of LFET1T power devices under repetitive accelerated aging conditions.

This work is based on the first approach and tries to give a contribution
in the investigation of the degradation mechanisms of the critical points in
power devices undergone accelerated electro-thermal aging test. In particular
here we focus on the degradation of the metallic parts of of LFET1T power
dies. The degradation of the Al source metallization, together with the wire
bondings, (section 2.2.2) is assessed following a physical metallurgy approach,
described in detail in the next chapter, in order to understand the degradation
mechanisms behind the failure of LFET1Ts. The qualification tests used by the
microelectronics community, together with the failure localization techniques
(SAM, x-rays, OBIRCH, etc.) are nowadays well standardized (AECQ100 stan-
dard for the automotive). However, the physical mechanisms at the base of the
failure are still difficult to comprehend, because of rapid technology evolution,
and of the lack of standard quantification methods. Here we try to offer some
paths to quantify the degradation occurring in the source metal through the
development of new investigation technologies and systematic measurements
of the structure and microstructure of the Al metallization and wires. These
dedicated techniques and quantification methods could serve as references for
the investigation of other devices.

In this work, the aging tests have been performed in intermittent operating
life (IOL) mode, which consists in applying cyclical electrical pulses until the
device failure (Fig. 26). This choice is motivated by previous studies [Kho07a]
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showing that continuous current tests (steady state operating life mode, SSOL)
do not allow to bring the power modules to failure in a reasonable time.

Figure 26: IOL (Intermittent Operating Life) test: the device undergoes electrical
pulses during the time interval ton. The test current and ton values are
generally limited by the control die, that protects the control die from "bulb
inrush" phenomena.

LFET1T devices have undergone two different kinds of IOL accelerated electro-
thermal test:

1. Tests at NXP on 65V LFET1T (T07D17).
They consist in qualification tests, used by the manufacturers to deter-
mine the device life-time, in conformity with the AECQ100-12 standard
[Kel06]. The objective is to reproduce the power device behaviour in their
normal operating mode, regulated by the control die. A repetitive short-
circuit (SC) is imposed to the power die. At this point the control die
detects a current overflow and turns the power die off. Energy is dissi-
pated at this stage, leading to an increase in the device temperature and
affecting the device aging conditions.

2. Tests at Satie laboratory on 45V LFET1T (SPD06).
These tests are complementary to the previous ones: they have been de-
signed in order to push the devices to their technology limits and moni-
tor the electrical aging indicators during the tests. For these tests, SPD06

devices have been assembled without control die and mold compound,
and put under extreme SC conditions in a test bench designed by the
Satie laboratory [Ros13]. This original configuration gave us the possibil-
ity to bypass the current regulation of the control die and to control the
dissipated energy by playing on the duration of the SC pulses (tON).
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During both tests, only one sector undergoes the electrical pulses, the one
inside the red rectangle in 45V LFET1Ts (Fig. 27a) and 65V LFET1Ts (Fig. 27b),
so we could use the others as reference during the microstructural characteri-
zations.

The test features and conditions are summarized in Table 5 and detailed in
the next two sections.

Figure 27: Localization of the MOSFET sector under accelerated aging test (red rect-
angle) in a (a) LFET1T 45V (SPD06) and (b) LFET1T 65V (T07D17) power
device.
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Table 4: Accelerated aging test parameters

Test @ NXP Test @ SATIE

DUT
T07D17

Normal configuration

SPD06

Without control die and mold
compound

Aging test
parameters

Current regulated
qualification test

Ith = 120 A
f = 2 Hz

Vds = 14V
L = 5µH

R = 10m⌦

SC test
without current limitation

Ton = 40µ s
f = 5 Hz

Vds = 30V
E = 150 mJ

Test temperature
25

�C
70

�C
25

�C

Aging indicators
monitoring

No
Device brought directly to
failure without monitoring

Yes
Monitoring of the electrical

parameter and source
metallization evolution during

aging

DUT Life-time
5.3 million cycles at 25

�C
300k cycles at 70

�C
330kcycles
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2.3.1 Test NXP

2.3.1.1 Electro-thermal test bench

Power devices underwent accelerated aging conditions in a dedicated test
bench developed by NPX Semiconductors company in 2005 (Fig. 28a). The
bench consists in a Climats Sapratin Excal 2223-TE climatic chamber (in red),
a power supply unit (in blue), and a control panel (in green), and allows to
test 10 devices at the same time at controlled uniform temperature and current
conditions.

The temperature in the climatic chamber can be set in the range from -80�C
to 180

�C and its homogeneity inside the chamber has been optimized in a pre-
vious thesis work [Kho07a], by placing deflector shields in order to equally
distribute the heating flux, and so the thermo-mechanical stress, on each de-
vice under test. This allows to age the devices under well-defined thermal
conditions.

The 10 printed circuit boards (PCBs), each one containing a power device to
test, are placed in a motherboard inside the climatic chamber (Fig. 28b). The
80 V, 200 A motherboard power supply unity integrates an active electrical
charge that provides to the system a constant current between 5 and 200 A. In
fact, during aging, the increase in RdsON value causes a decrease in the cur-
rent intensity through the devices under test, and thus the aging conditions
change and become less aggressive. The active charge is fundamental to coun-
terbalance this current drop and keep the aging conditions stable during the
all test.

A dedicated electronic board in the control panel (in green in Fig. 28a) allows
to test one sample at a time. It acts as a switch, turning on the first component
for the required duration, while all the others nine are off. Then, the first one is
turned off and the second one is activated, and so on, until the complete aging
of the 10 power devices. Moreover, a thermocouple (Fig. 28b) is connected to
each device package, to follow the global temperature evolution, due to the
current flow through the transistors, during aging. This measure, visualized
in the display of the control panel, gives useful information about the device
behaviour during the test.

2.3.1.2 Electro-thermal test conditions

Electrical test circuit and waveforms (according to the AECQ100-12 standard
[Kel06]) are depicted respectively in Fig. 29 and Fig. 30. The supply resistance
and inductance are fixed at R = 10m⌦ and L = 5µH, which correspond to an
output of Rshort = 50m⌦ and Lshort = 5µH. The current threshold, that is
the overload value at which the control die shuts the power die down is set at
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Figure 28: (a) Climats Sapratin Excal 2223-TE test bench at NXP Semiconductros. it
consists in an electrical part (in blue), equipped with a 80 V, 200 A power
supply and an active charge (5 - 200 A), a climatic chamber (-80�C - 180

�C)
containing the devices under test (in red), and a control panel (in green)
with an electronic board that control the devices switching.
(b) Inner part of the climatic chamber, showing the motherboard and the
PCBs containing the power devices to test. The motherboard is in charge
of sending the current to the devices and communicates with the control
electronic board during the switch stage.
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I = 120A. The dissipated energy leads to an increase in the device temperature
up to 250- 300�C. Under these conditions, T07D17 devices have been aged at
room temperature and at 70

�C, in order to investigate the catalytic role of the
temperature in the device failure. In the first case, the components failed at
⇠ 5.3 million cycles, whereas at higher temperature at ⇠ 300kcycles.

Figure 29: Accelerated aging test circuit.
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Figure 30: (a) Typical signals during a short cycle event in the power MOSFET by
activation of overload protection. (b) Dissipated energy (E) and power (P)
during the SC phase.
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2.3.2 Test Satie Laboratory

2.3.2.1 Electro-thermal test bench

This test bench has been designed by the Satie laboratory in Cachan (Paris) in
order to perform accelerated electro-thermal aging tests complementary to the
industrial qualification tests, with the objective to monitor the aging indicators
(RDS(on), Vth, etc.) during the test and investigate their correlation with the
device life-time. This is done by increasing the power losses, and thus the
temperature excursions, in power devices that are deprived of the control die
during the test.

The test set-up, controlled by a labVIEW interface, is showed in. Fig. 31a and
consists in:

1. Xantrex input power connections (150 V, 8 A).

2. Grouping of capacitors 6 ⇤ 1000µF.

3. Climatic chamber head positioned on the device under test. It allow to
keep the device under controlled temperature conditions during the test.

4. Driving board, better showed in Fig. 31c, connected to the device under
test.

5. Output measurement connections (VGS, VDS, etc.).

As anticipated, the main feature of this set-up consists in the possibility to
interrupt the aging test and replace the driving board with a measuring board
(showed in Fig. 31b) that allowed us to regularly measure the RDS(on) (from the
ID = f(VDS) vs ID = f(VGS) characteristic) without moving the device PCB
from the aging set-up.

Three different aging test configuration can be set up in the Satie test bench
[Ros13]:

• Normal protection mode (Fig. 32a).
It simulate the "normal" over-current protection function of the control
die. This mode is, then, equivalent to the qualification tests previously de-
scribed (section 2.3.1). The current is limited by a resistive and inductive
load.

• Avalanche switching mode (Fig. 33a).
Power converter switches off under inductive current load.

• Short-circuit (SC) switching mode (Fig. 34a). It is performed by switching
the power die directly on the power source voltage.
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Figure 31: (a) Accelerated aging test bench set up at the Satie laboratory. The device
under test can be connected to (b) a measuring board or to (c) the driving
board.
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In order to compare the life-time of power devices as a function of the dif-
ferent aging modes, Rostaing and colleagues [Ros13] put SPD06 smart power
MOSFETs under accelerated aging conditions in these three possible configu-
rations (normal mode, avalanche and SC), keeping the dissipated energy level
constant (300-320 mJ) and varying the test duration and supply voltage. The rel-
ative test curves are depicted in Fig. 32b, 33b and 34b, respectively for normal
mode, avalanche and SC. At equal dissipated energy, they found out that the
life-time of the devices that underwent SC conditions was severely decreased
compared to the ones under normal and avalanche tests, exhibiting a similar
behaviour. Their results are summarized in Fig. 35): for an equal tON of 50µs,
the life-time of the MOSFETs under normal and avalanche mode exceeds 300

kcycles , while under SC is only 55 kcycles.

2.3.2.2 Electro-thermal test conditions

On the base of Rostaing et al. results [Ros13] (previous section 2.3.2.1), in this
work we have decided to use the test bench in SC mode, in order to put the
device under the most extreme and accelerated conditions possible.

The repetitive SC test have been performed at room temperature with a
switching frequency set to 5 Hz (1 cycle every 0.2 s) in order to ensure that
the temperature of the device returns to ambient temperature after each cycle.
Short-circuit phase duration has set to TON = 44µs, drain-to-source voltage
VDS = 30V and gate-to-source voltage VGS = 15V . Note that here TON (and
thus the energy) has been lowered respect to Rostaing et al. tests (they used
TON of 50µs): these allowed us to increase the device life-time (from 55 to 330

kcycles) and monitor the evolution of the device resistance during aging over
a longer test duration. Electrical waveforms (current and voltage) are depicted
in Fig. 36a, just before failure (300 kycles) and in Fig. 36b (330 kcycles). During
the SC phase, the drain current increases in 10µs until a maximum value of
600 A, that corresponds to a dissipated energy equal to 4J/cm2 in the active
area during the whole SC phase. This results in an important increase in the
power die temperature and in the consequent current decrease. The test has
been regularly interrupted at increasing number of cycles (1, 5, 10, 100, 200,
300 kcycles) in order to monitor the electrical parameters of the device and the
Al metallization microstructure evolution.

2.3.2.3 Supplementary characterizations

During the SC tests, live potential and temperature mapping of the Al source
metallization have been performed in order to follow the evolution of these
two parameters at increasing number of aging cycles. The thermal mapping is
the result of a collaboration with the University of Naples Federico II ultrafast
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Figure 32: (a) Normal protection mode circuit and (b) waveforms, VSUP = 30V , TON =
200µs, TAMB = 25�C.

Figure 33: (a) Avalanche switching mode circuit and (b) waveforms, VDSmax = 84V ,
IDmax = 50A, TON = 200µs, E = 300mJ, TAMB = 25�C.

Figure 34: (a) Short-circuit mode circuit and (b) waveforms, VSUP = 24V , TSC = 50µs,
E = 320mJ.
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Figure 35: Rostaing’s test protocol [Ros13]. At equal dissipated energy (E), power
MOSFETs under normal and avalanche conditions are characterized by a
similar life-time (⇠ 400kcycles), whereas the devices under SC conditions
fail much early (⇠ 50kcycles).

where there is a temperature measurement set-up based on a ultra-fast infrared
(IR) camera. The aging test bench (described in section 2.3.2.1) was moved in
Naples laboratories in order to reproduce the same aging conditions of the
experiments performed in the Satie laboratory.

Potential mapping

The experimental set-up for the source potential measurements is shown
in Fig. 37a and consists in a voltage spring probe moved by a three-axes
robot (ISEL), connected to a data acquisition device and a PC which con-
trols the overall system and stores the data (current, voltage and 2D po-
sition of the voltage sensor). This voltage probe maps the 2D electric
potential distribution on the metallization layer along x and y axes (with
a 0.1 mm scanning step in the both directions) when the power die is
in the conducting state. Fig. 37b shows the probe in contact with the
source Al metallization in a SPD06 device during the source potential
measurement. During the measurement of the source potential in a de-
vice undergoing SC aging pulses, the power die is maintained in the on
state (VGS = 15V) with a drain current set to 1 A, in order to avoid the
device self-heating.

Temperature mapping by IR camera (Naples)

Temperature mapping has been performed in a system developed in 2014

by the Department of Electrical Engineering and Information Technolo-
gies of the University of Naples Federico II [Rom14]. Fig. 38 show a
schema of the main elements of the measure set-up. The core of the
thermal mapping system is the SC7650 IR Camera produced by FLIR
Systems. It is equipped with a cooled InSb Focal Plane Array (FPA) of
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Figure 36: SC characteristics (a) just before failure (after 300 kcycles) and (b) at failure
(330 kcycles). VDS = 15V , f = 5Hz, TON = 40µs.
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Figure 37: (a) Experimental set-up for source potential mapping of the power die. (b)
Spring probe for source potential mapping, VGS = 15V , IDS = 1A.
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640 x 512 pixels. The pixel pitch is 15µm and the maximum real time
full-frame acquisition rate is 100 Hz. The spatial resolution depends on
the optical magnification and is limited by the diffraction phenomenon
to about 2.5µm. The temperature resolution depends on the dynamic
input range and the selected integration time of the sensors. To further
increase the frame-rate capabilities of the system, a new synchronization
network has been realized. It generates timing signals to drive the ex-
periment and trigger the IR camera in equivalent-time acquisition mode,
reaching 2.5 MHz equivalent bandwidth. A PC communicates over a Gi-
gabit Ethernet link with the IR camera to send commands and download
the stream of IR images into the memory. The synchronization with the
digital circuit is implemented on a Cyclon IV FPGA, configurable de-
pending on the experiment and the desired timing. The PC sends all
the settings through an USB channel to an MCU board equipped with
the ATmega328P microcontroller that ensures the communication with
the FPGA. All the instruments are controlled with a MATLAB Graphical
User Interface (GUI).

Figure 38: Schema of the IR setup showing the connections between the different parts
of the system.
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M I C R O S T R U C T U R A L C H A R A C T E R I Z AT I O N

In the reliability assessment of power modules, the metallic parts, and in par-
ticular the Al source metallization and wire bondings, constitute a key link
as they are systematically prone to plastic deformation. The main sources of
mechanical stress arise from the difference in the CTE between the metal and
the oxide/semiconducting parts. As aging progresses, the degradation of the
metal may increase its resistance, which in turn increase the temperature of the
device in the on-state, therefore augmenting the mechanical stress. This feed-
back causes a degradation of the top metal through specific processes (see sec-
tion in chapter 1), occurring at submicron scale. Moreover, the wire bondings,
which are cold welded on top of this metallization, complexify significantly
the initial device structure, introducing plastic deformation prior to aging in
the contact areas.

In order to study these degradation mechanisms, we need to access the in-
ner metallic parts of the devices, which can not be revealed preserving the
package integrity, and investigated through fault localization techniques, such
as scanning microscopy, X-ray analysis, thermal mapping, optical examination,
etc. The complex and fragile power module architecture, involving different
kinds of materials assembled at different length scale (from few microns of the
MOSFET cells to few centimeters of the entire device), requires to use specific
physical metallurgy techniques to observe the microstructure of the metallic
parts, preserving at the same time their integrity. These are electron and ion
microscopy, together with grain structure mapping techniques. They allowed
us to characterize the Al grain structure and follow its degradation during
electro-thermal aging in terms of grain size, grain boundaries, dislocations, etc.
evolution, to be linked to the evolution of the device mechanical and electrical
properties.

This chapter describes the physical metallurgy approach that we used to in-
vestigate the Al top metallization and wire bondings degradation of LFET1TB
modules upon aging. We will introduce the destructive techniques to image
and characterize the metal microstructure before and after aging, at two main
locations: away from the bonding contact (we will call this zone "naked metal")
and under the bonding wires. For the latter case, we will describe an origi-
nal preparation, that we have set up in order to preserve the weak bonding
contact (especially in the case of aged modules) and analyse the whole wire-
metallization interface. These techniques, together with the relative sample
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preparation methods, are described following an order that reflects the real
needs we encountered during our study, on the basis of the results gradually
obtained. First of all, a package decapsulation step is required in order to ac-
cess the metallic parts of the power devices (Section 3.1). Then, the physical
analysis is carried out starting from the surface level (Section 3.2) and, succes-
sively, moving deep in the metallization thickness in contact with the MOSFET
cells and the Si bulk (Sections 3.3 and 3.4).

A systematic comparison of the metallization surface before and after aging
is carried out through Scanning Electron microscopy (Section 3.2.1). Electron
Backscattered Diffraction (Section 3.2.2) is used to characterize the initial Al
grain structure, but it is not applicable to the aged zones because of the strong
surface reconstruction. Thus, cross-sectional cuts are performed by Focused
Ion Beam (Section 3.3.1) and Cross Polisher (Section 3.3.2) and the inner Al
grain structure is revealed by ion channeling contrast. Finally, these results
are compared to a finer cross-sectional analysis by Transmission Electron Mi-
croscopy and grain structure mapping (Section 3.4.2) on metallization ultra
thin lamella prepared in the focus ion beam (Section 3.4.1).

3.1 package decapsulation

Since in their final application the power devices are encapsulated in epoxy
molding compounds, a preliminary sample preparation is needed in order to
remove the epoxy parts and to disclose the power device on the side of the
Al source metallization and the bonding wires (front-side) for their microstruc-
tural characterization, as in Fig. 39. This step has been carried out in NXP
Analog Mixed-Signal Investigation Laboratory.

Each semiconductor company optimizes its own method for the decapsula-
tion of epoxy-packaged semiconductor devices. Generally laser-based or chem-
ical methods are used [Wen83] [Low08]. We coupled the two techniques, roughly
removing a first part of the packaging by IR laser decapsulation system (Fig. 40a)
in order to decrease the time of the final step which consists in a chemical at-
tach of the remaining package by a mixture 3:1 of nitric and sulfuric acid in a
pressurized jet system (Fig. 40b). Finally, the decapsulated device is rinsed in
an ultrasonic bath of cleaning solvents, in order to remove undesired residues
from the die surface.
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Figure 39: Decapsulation of epoxy-packaged semiconductor devices. Al source metal-
lization and bonding wires are beneath the front epoxy side.

Figure 40: Equipment used for the decapsulation semiconductor devices. (a) IR laser
decapsulation system. (b) Pressurized jet system.
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3.2 surface analysis

We performed a preliminary analysis of the top Al metallization surface of
power modules in order to follow the evolution of the microstructure during
the aging tests. Scanning Electron Microscopy images of the as-processed mod-
ules gave us a first idea of the initial granular metal structure, which served
as comparison to investigate the high surface reconstruction occurring at fail-
ure in the aged modules. In parallel we acquired orientation maps by Elec-
tron Back-Scattered diffraction technique. The aim was to follow the evolution
of the metallization texture as a result of the plastic deformation during the
electro-thermal cycles. Unfortunately, this turned out to be unfeasible because
of the heavy degradation of the metal surface together with the diffractions pat-
terns that are collected to build the orientations maps. However the electron
back-scattered diffraction analysis gave us useful information about the initial
texture of the Al metallization, as well as the grain size and misorientation.

3.2.1 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy

In scanning electron microscopy (SEM), a fine probe of electrons, with energies
up to 30 keV, is focused on a specimen and scanned along a pattern of parallel
lines. As a result of the interaction of the incident electron beam with the spec-
imen, different signals are generated. These are mainly low-energy secondary
electrons (SE), high-energy electrons back-scattered (BSE) from the primary
beam, characteristic X-rays, and Auger electrons [Gol03]. The secondary elec-
trons, which provide topographic contrast, are collected to form a grey-scale
image of the specimen surface, whereas the x-rays give information about its
chemical composition.

For the microstructural inspection of the metallization surface we used a He-
lios NanoLab 600 DualBeam (FIB/SEM) system (Fig. 41a) from FEI Company
(Acht, Eindhoven, The Netherlands). Fig. 41b represents the schematic config-
uration of the main components of the microscope (described below), used
during our characterizations.

1. The microscope is equipped with a high resolution Elstar electron col-
umn with a Field Emission Gun (FEG) electron source. The electron beam
theoretical resolution is less than 1 nm at 15 kV and less than 2.5 nm at 1

kV.

2. The FIB gun is a liquid Gallium ion (Ga+) source which allowed us to
both image and mill the sample surface. The typical dual-beam column
configuration is a vertical electron column with a tilted ion column. In
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this case, the sample will be tilted to 52

�for milling normal to the sample
surface (see Section 3.3.1).

3. Several detectors for the emitted signals are installed in the sample cham-
ber. The majority of SEM images presented in this thesis was collected
by using an Everhart-Thornley (ETD) detector for SE signal. The detector
consists mainly of a scintillator, surrounded by a Faraday cage, which
specifically attracts the SE and converts them in photons. Then, the elec-
trical signal is conducted to a photomultiplier outside the SEM and am-
plified to form a 2D topographic image of the device surface at different
magnifications, as in Fig. 42a and Fig. 42b.

4. The Helios is also equipped with a X-MaxN Silicon (Lithium) Drift Detec-
tor (SDD) from Oxford, installed in 2016, for the Energy Dispersive X-Ray
Spectroscopy (EDS), used for the chemical characterization of the sample
surface. The detector collects the x-rays emitted from the interaction of
the primary electron beam with the specimen. Since the x-ray energy is
characteristic of the element from which it was emitted, thanks to a ded-
icated software (AZtecHKL from Oxford Instruments) we can determine
the elemental composition of the scanned source metallization (Fig. 42c),
with a sub 10 nm spatial resolution.

5. An EBSD (Electron Backsattered Diffraction) detector is installed. The de-
tails about this technique, the detector features and the sample-detector
configuration are provided in the next section (3.2.2).

6. A multiple gas injection system (GIS) is installed for material deposition
(Platinum, Tungsten, Carbon, etc.) in conjunction with either electron or
ion beam pattern definition.

7. The Omniproble module consists in a micro manipulator, which allowed
us to extract a TEM sample in situ (see Section 3.4.1).

3.2.2 Electron Backscattered Diffraction

The Electron Backscattered Diffraction (EBSD) in a SEM is a widely used tech-
nique for the characterization of the local microstructure, as well as the dis-
tribution of crystallographic orientations (texture) and the structure analysis
(phase identification), of poly-crystalline materials at length scale ranging from
tens of nanometers to millimeters. The EBSD operates by placing a flat, usually
polished bulk sample in a highly tilted configuration (typically 70

�), in order
to maximize the backscattering efficiency (Fig. 43a). The crystallographic in-
formation is provided by the diffraction Kikuchi patterns (also called Kikuchi
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Figure 41: (a) FEI Helios dual beam microscope. (b) Schema of the main components
of the microscope.

lines or Kikuchi bands) produced by low energy loss backscattered electrons
arising from the interaction of the primary beam with the crystal lattice at the
Bragg angle (Fig. 43c), according to the Bragg law:

2dhkl sin ✓B = n�e (5)

Where dhkl is the inter-planar spacing for a family of planes, ✓B is the Bragg
angle, n is an integer value giving the order of reflection (n=1 for EBSD), and �e
is the electron wavelength. As these diffractions result in two cones (Kikuchi or
Kossel cones) of electron radiation generated from a single set of lattice planes
hkl, each pair of Kikuchi lines represents the projections in a phosphor screen,
placed at short distance to the sample, of the geometry of a single plane in the
crystal.

Hence, an automated SEM-based EBSD system consists in three main parts:
the SEM, the pattern detector and the software for the indexing procedure.
(Fig. 43b) shows the set-up of our experiments: we used the dual beam FEI
Helios microscope, in SEM mode (acc. V = 20 kV, I = 11 nA), equipped with
a 70

�pre-tilted sample holder. The sample is placed at a working-distance of
about 10-12 mm from the SEM pole piece. The EBSD signal is collected by a
NordlysNano detector from Oxford Instruments. It consists in a CCD camera
with four forescatter detectors mounted to the top and bottom of a phosphor
screen, giving both orientation and phase contrast of the sample. The detector
has motorized insertion and retraction, and can be placed as close as possible
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Figure 42: (a) SEM image of an Al bond wire welded on the Al source metallization.
(b) At higher magnification, bare metallization of a reference module. (c)
EDX spectrum from the Al metallization.
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Figure 43: (a) SEM-based EBSD schema and (b) Helios microscope chamber configu-
ration during an EBSD experiment. (c) Kikuchi lines formation schema. (d)
Pattern recognition by AZtecHKL
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to the sample to maximize the intensity of the acquired diffracted signal. Fi-
nally, the camera communicates with the AZtecHKL acquisition software from
Oxford Instruments. During the acquisition, the software matches the informa-
tion from each point of the scanned source metallization with a database of
simulated orientations and returns the orientation of each grain (Fig. 43c).

Thanks to a post-processing software (HKL Channel5, Oxford instruments)
dedicated to the off-line manipulation and analysis of the EBSD data, we could
build orientation maps along the three axis x, y, z. We could also determine
the misorientation and grain size distributions of the scanned areas. The sizes
are obtained by either grain reconstruction method, approximating each grain
to a circle and measuring the equivalent diameter (Fig. 44), or by lineal inter-
cept method [Hum01]. In the former approach, a prior decision about which
misorientation constitutes a grain boundary must be taken (15

�is often used).

Figure 44: Approximation of a single real grain to a circle shape one for the measure-
ment of a equivalent diameter.

3.3 bulk cross-sectional analysis

Since it was not possible to follow the evolution during aging of the metalliza-
tion texture at surface level by EBSD, we decided to move deep insight the
material, performing cross-sectional cuts perpendicular to the surface. These
cross-sections were then observed using electron and ion channeling contrast.
We will further see that ion channeling contrast is strictly related to the grain
orientation [Ish97] [Lan15]. Therefore, we used this kind of images to observe
the evolution of the grain size and use this information as an indication of the
mechanism at play during the aging of the device. For instance, grain growth
is commonly observed during thermal annealing while grain reduction could
serve as an indicator of severe plastic deformation.
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The cross-sectional analysis of the Al metallization before and after aging
has been performed at two different locations:

• Under the bonding wire, with particular interest in the wire-metal inter-
face. As discussed before, this zone is critical for the reliability assess-
ment because it is initially deformed during the bonding process.

• Away from the bonding area (naked metallization). At this location the
initial metallization is in a non-deformed state and so we could compare
it to the metallization beneath the wire.

Two different instruments, based on ion beam milling, have been used to
perform the cross-sectional cuts:

• Focused Ion Beam.

• Ion Cross-Polisher.

Both approaches, described below, require a dedicated preliminary sample
preparation, in order to access the wire-metal interface for the final milling.

3.3.1 Focused ion beam milling and microscopy

For these experiments we used the FEI Helios microscope (Fig. 41a) in its dual-
beam functionality, which combines a scanning electron beam produced by a
field emission gun (previously used for the surface analysis), with a focused
ion beam of gallium ions. Since the electron and ion columns are 52

�tilted with
respect to each other, the sample is placed at the eucentric position, that is the
position where the ion and the electron beam converge with an angle of 52

�,
as in Fig. 45a and Fig. 45b.

Depending on the geometrical configuration of the sample in the microscope
chamber, and on the ion beam energy, the FIB works both as a milling beam
and as a probe for a scanning ion microscope (SIM).

• When the microscope stage is tilted at 52

�, the sample is perpendicular
to the FIB source. In this configuration, the high-energy ion beam is used
to cut perpendicular to the sample surface, while the relative images are
acquired by the electron column to constantly monitor the preparation
progress. More details will be given in the next paragraphs.

• Tilting the stage back to 0

�and working at more gentle ion beam currents
(to prevent excessive atom sputtering from the sample surface and its
consequent amorphisation), we could inspect the prepared cross-sections
by ion channeling contrast.
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Figure 45: (a) Schematic representation of the dual beam FIB/SEM operational mode.
(b) Helios microscope chamber configuration during the cross-section ex-
periments.

Ion channeling behavior is a well-known phenomenon where the ion-solid
interactions change drastically with crystal orientation, affecting the sputter
yield of the emitted secondary electrons (i+SE) and imaging contrast [Kem01].
Generally, darker grains sputter more slowly than brighter grains [Gia11]. The
dark grains are consistent with ion trajectories parallel (or nearly parallel) to
low index crystallography planes where ions will travel long distances prior to
losing energy and interacting with the target (Fig. 46a). Since most of the ion-
solid interactions occur deeper in the sample, the sputter yield is lower and
the gray-scale signal is darker. On the other side, grains, which are oriented
greater than the critical angle to the ion trajectory (Fig. 46b), will cause the
ions to interact closer to the surface, losing energy more quickly and yielding
a brighter signal. Therefore, ion channeling contrast images give us visual in-
formation about the grain orientation and, as previously mentioned, they are
useful to access the deformation of the Al metallization during aging.

3.3.1.1 Naked metal cross-section

To prepare the imaging cross-sectional face of the naked metallization, a rect-
angular patterned region measuring ⇠ 1000µm2 is milled (Fig. 47a). Essentially,
the ion beam (with an energy of 30 KeV) scans the surface and when ions col-
lided with the atoms of the material they are ejected away, until a 50 ⇤ 20µm
face had been milled and all the bulk in the path of the ion beam removed.
This has been done in two steps:
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Figure 46: Secondary electrons emission by ion-solid interaction for two different ori-
ented crystals. The ion channeling contrast is darker in (a), where the ion
trajectories are parallel to crystallographic planes, whereas is brighter in (b),
where the angle between the ion direction and the crystallographic planes
increases.

1. A rough cut of the rectangular patterned region at high ion beam current
(65 nA) to remove most of the bulk material in the minor time as possible.

2. A finer polishing of the imaging face at decreasing ion beam currents (9.3
nA and 2.5 nA) to get rid of the curtaining and redeposition artefacts of
the previous cut.

In parallel, the cross-section preparation progress is monitored by SEM.
Fig. 47b shows a SEM image of the final milled area. At higher magnifica-
tion (Fig. 47c), we can distinguish the layered structure of the power module,
including the top source metallization, the MOSFET area and the Si bulk.

The ion beam is used in conjunction with a gas injection system to deposit a
thick layer (⇠ 1µm) of Platinum (Pt) or Tungsten (W) on the top surface of the
sample, above the region of interest. This system releases a precursor gas close
to the sample. When the gallium ions interact with the sample, in the presence
of this gas, decomposition takes place, causing Pt/W solid to be deposited
on the surface of the sample where the ion beam is directed. This additional
deposition of a platinum layer (visible in Fig.47c) immediately above the region
of interest reduced FIB milling artifacts, particularly prominent in the case of
aged module, where the surface roughness is higher. Without it, non-uniform
milling can lead to excessive streaking or vertical stripes down to the milled
face, known as curtaining effect. Fig. 48 shows the comparison between an ion
contrast image of a cross-section prepared without protective coating layer (a)
and of another one with 1 µm thick Pt layer deposited prior to milling (b). In
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Figure 47: (a) Schematic representation of FIB cross-section from a region of interest
(red cross) of the power die naked metallization. (b) SEM image of a FIB
cut from a reference module and (c) relative higher magnification of the Al
metallization bamboo structure, with the MOSFET area, on the Si substrate.

the former image, the surface roughness affects the imaging face, whereas in
the latter one the Pt protective layer leads to a perfectly polished imaging face.

3.3.1.2 Wire-metallization interface preliminary preparation

Because aged devices are fragile due to their damaged interface, cross-mechanical
polishing may alter the wire-metallization interface or simply remove it. A clas-
sical option adopted by other teams is to embed the whole device in epoxy to
hold parts, even poorly attached like partial wire-lift-off, together. This ap-
proach has been used by Pedersen and co-workers for example to inspect opti-
cally the wire bonds of an IGBT [Ped14]. It is however detrimental to SEM and
FIB observations because the charged beam is prone to deflections (and then
image distortions) when scanning over a strong insulator.

A cross-sectional polishing by ion beam seems to be the best approach to
inspect the metallization under the bonding wire, preserving their fragile in-
terface. However, it is practically unfeasible to cut through the entire wire
thickness by a FIB ion beam, because it would take too long and redeposition
would prevent the observation of large unaffected zones. For this reason, FIB
cross-sectional observation of the Al power metallization under the bonding
wire requires a specific preliminary sample preparation of the device.
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Figure 48: Cross-sectional SEM images of the Al metallization in an aged modules (a)
without and (b) with Pt protective layer. Scale bar 1 µm.

Figure 49: (a) Schematic representation of the preliminary sample preparation for
the wire-metal interface FIB inspection. The wire is cut and polished at
45

� before being cut by FIB for interface observation. (b) Front-view pho-
tograph of a power die prepared for the FIB and (c) relative lateral-view
SEM image of a 45

�polished wire. The white arrows indicate the imaging
direction of the FIB-prepared cross-sectional faces (in red).
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The original preparation procedure that we have set up for this study com-
bines a mechanical grinding of the bonding wires at 45

�, in order to locally
reduce the wires thickness, and a final ion polishing by FIB at various loca-
tions (Fig. 49a). In particular, we used a precision diamond wire saw (Fig. 50a)
to take the power die out (and get rid of the remaining resin and the control
die), and then a polishing machine (Fig. 50b) with silicon carbide papers at
decreasing roughness for the manual polishing of the wire-metallization inter-
face at 45

�. Fig. 49b and Fig. 49c show respectively a front-view photograph of
a power die prepared for FIB milling and the correspondent higher magnifica-
tion SEM image (lateral-view) of a 45

�polished wire-metal interface. The white
arrows in Fig. 49c indicate the imaging direction of the FIB sections (inside the
red area). Thanks to this preparation we have been able to inspect the metal-
lization both under the bonding wire and in naked locations at the same time.
If we embedded the device in resin we would have lost most of the naked met-
allization parts that are essential to compare them to the metallization beneath
the wire.

Figure 50: Sample preparation equipment: (a) diamond wire saw and (b) polishing
lapping machine.

3.3.1.3 Metal under the bonding wire cross-section

Once the wires thickness is locally reduced, the wire-metal interface is ready
for the FIB milling. Fig. 51a shows the preparation schema of the polished face
for the ion imaging. Since the wire-metal interface is too wide (⇠ 400µm) to be
entirely milled (because the ion beam would take too long and the redeposition
would prevent the observation of the area of interest), several smaller rectangu-
lar patterned region ⇠ 1500µm2 are milled all along the interface (Fig. 51b and
Fig. 51c). We followed the same preparation procedure previously explained
for the naked metallization:



66 microstructural characterization

1. Deposition of a Pt (or W) protective layer to prevent the curtaining arti-
fact on the imaging face.

2. Rough cutting of the rectangular patterned region at high ion beam cur-
rent (65 nA) to remove most of the bulk material in the minor time as
possible.

3. Finer polishing of the imaging face at decreasing ion beam currents (9.3
nA and 2.5 nA) to get rid of the curtaining and redeposition artefacts of
the previous cut.

Figure 51: (a) Schematic representation of FIB cross-section from a region of interest
(red cross) of the power die wire-metal interface. (b) SEM image of FIB
cuts along the wire-metal interface and (c) higher magnification of a single
cut, showing the layered structure: Al bonding wire, Al top metallizaiton,
MOSFET area and Si substrate.

At this location, the deposition of a Pt (or W) protective layer (step 1) and the
final polishing (step 3) are even more critical because the face to be polished,
which includes also a piece of the bonding wire, is higher. Fig. 52 shows a ion
image of the Al metallization under the bonding wire, where we can notice
the presence of Cu-W precipitates detected also at the naked metal surface by
EDX.
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Figure 52: SIM image of the wire-metallization interface. In the Al metallization some
Cu-W precipitates are visible in white contrast.

3.3.2 Cross-polisher milling and ion imaging

In order to increase the observation area without damaging the sample, an al-
ternative to the FIB cross-sectional preparation could be an ion milling by cross-
polisher system. In particular, we used a Cross Section Polisher IB-09010CP
from JEOL USA (Fig. 53a). The cross polisher (CP) operating principle is based
on a broad argon ion (Ar+) beam with selectable acceleration voltage range of 2

to 6 kV. The beam irradiates the region of interest and creates a mirrored face
for the FIB/SEM inspection, by placing a masking plate across the selected
area (Fig. 53b).

Use of the broad argon ion beam eliminates the problems associated with
the conventional mechanical polishing and, at the same time, allows for larger
high quality cross-sectional areas to be prepared with precision compared to
FIB methods. A single cut is typically up to 1 mm wide and several hundreds
of microns deep. This means that we could polish the whole wire-metal inter-
face (⇠ 400µm wide) and have a global vision of the metallization under the
bonding wire.

However, in order to obtain a highly polished face, this method needs the
sample surface to be perfectly flat and parallel to the CP shield. This is not the
case of our devices, where the bonding wires on top of the Al metal don’t allow
a perfect sample-shield contact, which is mandatory to prevent the curtaining
artifacts during polishing. For this reason, a preliminary sample preparation
prior to cross-polishing is needed, in order to make the device surface flat and
the area of interest (wire-metal interface) perpendicular to the CP ion beam.
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Figure 53: (a) Cross Section Polisher IB-09010CP from JEOL USA. (b) CP inner cham-
ber: the shielding plate is in its lifted position to allow the sample (also
visible at higher magnification in the upper-right insert) to be positioned.

3.3.2.1 Preliminary sample preparation

Fig. 54 shows a schema of the whole CP procedure, from the preliminary
preparation of the power die for the cross polisher (steps 1-7) to the investi-
gation by FIB/SEM of the polished face (step 8).

1. The power die is first covered by G-1 epoxy (Gatan Inc.) to form a
solid block by an over-night curing at ⇠ 80�C. In order to prevent ex-
cessive charging effects and image distortion during the electron/ion mi-
croscopy, we added to the epoxy mixture few drops of conductive carbon
paint (Agar Scientific).

2. The block is then mechanically polished (by diamond papers at decreas-
ing roughness) parallel to the device bulk, in order to create a flat surface
still including the bonding wire part in contact with the device top metal.

3. A 90

�mechanical polishing is needed to prepare a rough polished face of
the wire-metal interface.

4. Now the device is perfectly flat, with the top surface parallel to the bulk,
and the perpendicular face ready for the CP milling.

5. Inside the CP, a shielding plate is superposed on the block surface. Only
few tens of micrometers (generally ⇠ 50µm) exceed the mask to be milled
by the Ar+ beam.

6. The ion beam (6 kV) hits perpendicular to the sample surface and makes
a cross section perpendicular to the surface.

7. At the end of the process we obtain a clean mirrored face ⇠ 1mm wide
and deep (Fig. 55a).
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8. Finally, the sample can be transfer in the dual-beam microscope for the
electron/ion contrast imaging (Fig. 55b and Fig. 55c).

Figure 54: Schema of the sample preparation prior to CP cross-section.

3.3.2.2 SEM, SIM and EDX analysis

Once we have mechanically polished the device-epoxy block from both sides
(insert in Fig. 53b), according to the preparation previously explained, the sam-
ple presents eight wire-metal interfaces that can be finer polished by CP. Two
of them, in the aged module, underwent the repetitive electro-thermal cycles
and can be investigated by SEM and SIM in comparison to the corresponding
non-aged ones.

For the acquisition of ion contrast images of the metallization under the
bonding wire we used the MAPS Automation software (FEI). MAPS allows to
automatically acquire high resolution images over the large wire-metal inter-
face area (Fig. 56), by setting the horizontal field of view (HFW) of each tile
(green rectangles).
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Figure 55: (a) Representation of the solid epoxy-device block (only one wire is repre-
sented for sake of simplicity) before and after CP sectioning. (b) SEM low-
magnification image of the polished face, showing the layered structure: Al
bonding wire, Al top metal, Si substrate, die attach and Cu radiator. (c) In
the SIM higher magnification image also the MOSFET area is visible.
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In the case of abruptly failed modules, where a severe crack propagation
affects not only the Al parts but also the Si bulk, the EDX analysis in the
FIB/SEM microscope turned out to be a useful technique to study the diffusion
phenomena of the two materials along the fatigue cracks. The polished face is
place at 90

�to the SEM beam, in order to maximize the x-rays counts to the
EDX detector, for the elemental mapping of the regions of interest.

Figure 56: MAPS program interface. The wire-metal interface is split in consecutive
tiles (green rectangles) of user-defined size, superposed of few microns.
Each tile corresponds to a high resolution SIM image.

3.3.3 Focused ion beam tomography

The ion channeling contrast imaging of the power die cross-sectional cuts pro-
vides useful information about the microstructure of the metallic parts before
and after aging. However, this is a punctual 2D information limited to a precise
location of a significantly bigger area. Focused ion beam tomography, that is
the acquisition of high-resolution 3D images by performing an in-situ milling,
allows us to follow the evolution of the metal critical points in a user-defined
volume.

We use the FEI Helios FIB/SEM, equipped with the Auto Slice and View soft-
ware (FEI), which completely automates the tomography process. The sample
is placed at the eucentric position, where the ion and the electron beam con-
verge with an angle of 52

�. While the ion beam is used to mill and polish
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serial thin sections (slices), the relative images stack is acquired by the electron
column (Fig. 57a and Fig. 57b).

Fig. 57c shows the Auto Slice and View software interface relative to the
preparation or the region of interest (ROI) prior to the serial sectioning. It
consists in the following steps:

1. Deposition of a Pt (or W) protective layer (⇠ 0.5µm thick) on the top
surface of the ROI, which is typically 20 µm wide and 10 µm deep (yellow
rectangular pattern).

As already explained, this step is fundamental to avoid curtaining arti-
facts during imaging.

2. Preparation of the parallelepiped to section.

This step consists in roughly milling by ion beam (30 kV, 9.3 nA) three
trenches (blue and magenta patterns), ahead and on either side of the
region of interest previously defined, by ion beam.

• The front trench (in magenta) needs to disclose and polish the imag-
ing face. It must be wide at least as the milling area and deep
enough to disclose the entire imaging face.

• The lateral ones (in blue) need to prevent redeposition on the imag-
ing face. Milling trenches to the same depth (or even more) as the
ROI depth and 5-10 µm wide provides sufficient space for sputtered
material to deposit innocuously during the serial milling.

The preliminary trenching is crucial for the success of the FIB tomogra-
phy. Fig. 58a shows an example of bad preparation of the ROI, compared
to a good one (Fig. 58b). We can clearly understand that the trenches size
setting is fundamental in order to avoid the redeposition that, especially
during the final steps of the milling, becomes an obstacle to the imag-
ing of the polished face. In this case the lateral trenches were not deep
enough and the front trench not wide enough.

3. Creation of a reference mark close to the area of interest (red cross in
Fig. 57c), for the automated drift correction.

The sample is then ready for the serial sectioning and acquisition of the
SEM images stack. We set the thickness of each slice (z-spacing) to 50 nm and
so the result is a sequence of 200 SEM images representing the 10 µm deep
volume (Fig. 57d). The current of the ion beam used for the serial milling (2.5
nA) is lower than the one used for the preliminary rough trenching (9.3 nA),
in order to provide perfectly polished imaging faces. We collected SEM images
stacks from the metallization both away and under the bonding wire. They
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Figure 57: Schematic illustration of the serial sectioning procedure by dual-beam FIB:
(a) front view and (b) lateral view of the 52

�tilted sample inside the FIB
chamber. (c) Slice and View FEI software interface for the preliminary
trenching preparation. (d) Stack of SEM images with a z-spacing of 50 nm,
through 10 µm (200 images in total).
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allow us to investigate the crack propagation inside the metallization volume
of the aged modules. We could also perform statistical analysis at the wire-
metal interface, to access the proportion of weak interface vs perfectly Al-Al
contact area.

Figure 58: Comparison between two SEM imaging faces during the last steps of the
serial milling. (a) The redeposition hides part of the face to be inspected be-
cause of a bad preliminary trenching. (b) The imaging face is redeposition-
free thanks to an adequate trench size setting. Scale bar 2 µm.

3.4 finer cross-sectional analysis

The SIM images gave us direct information about the grain size and orientation.
However this in only a qualitative measure, based on the image gray-level. It is
not possible to know the real misorientation between grains and, consequently,
the real grain size. In fact, we are not able to distinguish between grains and
subgrains (grains with a misorientation smaller than 15

�).
Different approaches can be adopted to complement the results obtained

by FIB cross-sectional analysis. We chose to prepare thin lamella by FIB of
the Al metallization (Fig. 59a) and wire-metallization interface (Fig. 59b) to be
investigated by transmission electron microscopy.

Transmission electron microscopy (TEM) is an imaging technique in which
an electron beam is transmitted through an ultra-thin specimen and focused
onto an imaging system to form a grey-scale image with nanometric resolu-
tion. Fig. 60a and Fig. 60b show two of the transmission electron microscopes
installed in the CEMES laboratory, used for our analysis: they are respectively a
Jeol 2010 HC and a Philips CM20 FEG, both operating at 200 kV and equipped
with several sample holders (e.g. heating in-situ holder, single and dual-axis
rotation holder, etc.).

Fig. 60c represents a typical TEM column inner structure. The emission
source (electron gun) consists in a thermionic lanthanum hexaboride (LaB6)
tip in the Jeol 2010, and a field emission tungsten (W) filament in the Philips
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Figure 59: Schematic representation of FIB lamella preparation of the metallization (a)
away and (under) the bonding wire.
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CM20 FEG. The emitted electrons are accelerated by a high potential difference
(200 kV) to form a convergent electron beam that is focused onto the sample
through an electromagnetic lenses system. The sample holder is positioned just
above the objective aperture, which forms a first (intermediate) image of the
sample. The TEM image contrast is due to the absorption of electrons in the
material, which depends on its thickness and composition. Under the sample,
other lenses (projector and intermediate) highly magnifie the final image that
is projected on the imaging system (typically a fluorescent screen or a CCD
camera).

The described operational mode (known as conventional TEM mode) gave
us structural information of the power device critical points, thanks to high-
magnification images formed by an electron beam going through the sample
and transmitted on the imaging system. It is also possible to work in diffraction
mode (Fig. 60d), by using a selective area diffraction aperture (SAED) and
collecting the transmitted electron signal. The obtained diffraction patterns
gave us information about the orientation of the crystalline parts crossed by
the electron beam.

However, the main drawback of this technique is related to the characteris-
tics of the sample. In fact, it has to fit the TEM sample holder size (3 mm of
radius) and to be thin enough to the electron transparency (typically 100 nm).
Therefore, our power modules cannot be directly inserted in the TEM as they
are: they need a dedicated sample preparation of the metallic parts in order to
satisfy the size requirements.

3.4.1 TEM lamella preparation by FIB

3.4.1.1 Why we used the FIB

The choice of the most appropriate sample preparation technique is crucial in
order to have reliable and reproducible results for the transmission electron
microscopy analysis of the Al metallization and its interface with the bonding
contacts. In particular, as already explained, we have to take into account that
our devices present big bonding wires welded on the top metallization and
a fragile wire-metallization interface, especially in the case of aged modules.
A classical mechanical polishing by tripod would require getting rid of the
bonding wires and would increase the risk of loosing the fragile Al-Al contact,
in the case of wire-metallization interface analysis.

The main advantages of using the FIB for TEM sample preparation are:

• No other technique can select the target area as precisely as FIB. Lamella
can be prepared with a spatial accuracy of tens of nanometers.
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Figure 60: (a) Jeol 2010 HC and (b) Philips CM20 FEG installed in the CEMES labo-
ratory. (c) Schema of a TEM inner column. (d) Conventional TEM imaging
mode vs diffraction mode.
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• There is no need of a preliminary destructive sample preparation. Once
we have selected a ROI by surface and/or cross-sectional analysis, we
can directly extract in the FIB a thin lamella for the final polishing in the
TEM support.

• We can rapidly obtain (in ⇠5 hours) thin lamella up to 15 µm wide and
deep enough to include the Al metllization, together with a small piece
of Si bulk and bonding wire (in the case of wire-metal interface analysis).

On the other side, the main disadvantage of the FIB is caused by the nature
of the milling process: the ion collisions, at the base of the sputter removal,
can also lead to ion implantation and cause damage to the material. However,
various procedures have been developed to reduce this damage [May07].

3.4.1.2 Sample preparation protocol

Fig. 61 shows the configuration of the FEI Helios FIB/SEM, used for the TEM
lamella preparation. The sample is placed at the eucentric position, where the
two beams converge with and angle of 52

�, so that the ion machining process
is monitored by SEM images in real time. In addition, the gas injection system
(GIS) for the deposition of Pt or W is used, as well as a nanomanipulator for
the lamella lifting-out (Omniprobe, Oxford Instruments) [Gia11].

The following images, presented to explain the lamella preparation proto-
col, refer to the metallization away the bonding wire, but the same considera-
tions can be made for the preparation at the wire-metal interface. However the
presence of the bonding wire requires a few adaptations that will be further
explained.

1. Selection of the area of interest and protective layer deposition.

The area of interest is selected by performing systematic cross-sectional
cuts in order to precisely localize by ion imaging the features for the TEM
(Fig. 62a). A Pt layer, with a thickness on the order of 2 µm, deposited
just above the region of interest (Fig. 62b) by ion beam (30 kV, 80 pA), is
fundamental to protect the lamella during the preparation. Without this
protection, the lamella would be destroyed by the ion beam during the
final thinning and polishing steps.

2. Bulk-out.

A sample piece ⇠ 2µm thick, containing the final lamella, is cut by re-
moving matter behind the region of interest (Fig. 63). This is done in two
steps: we dig close to the lamella by a fast rough milling at high ion beam
current (30 kV, 9.3 nA) and we complete with a finer milling at lower ion
beam current (30 kV, 2.5 nA).
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Figure 61: Schematic representation of the dual beam FIB/SEM during the TEM
lamella preparation.

Figure 62: SEM images of the step 1: (a) selection of the region of interest and (b) Pt
deposition above it.)
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Figure 63: SEM image of the step 2: preparation of a ⇠ 2µm thick lamella, by removing
matter behind the region of interest.

3. Lamella cut.

This step consists in cutting the lamella for the extraction. Only a small
portion of sample remains attached to the bulk to ensure the lamella
stability. The remaining part will be further cut, after the bonding to the
Omniprobe. Due to the cut shape (Fig. 64), this step is often called U-cut.

4. Lamella lift-out and TEM grid positioning.

In this step the lamella is welded to a dedicate TEM support (TEM grid).
The transfer is done by a nanomanipulator Omniprobe, consisting in a
W tip with the extremity curvature radius of ⇠ 500 nm. Fig. 65 shows
the main steps of the transfer. The GIS is inserted and the Omniprobe is
put in contact with the lamella, so that a Pt/W welding deposition fixes
the lamella to the Omniprobe (Fig. 65a). Once the lamella is totally cut,
the nanomanipulator is moved to the TEM grid for the lamella welding,
again by Pt/W deposition. Now the lamella is fixed to the TEM support,
so the Omniprobe tip can be cut away and retracted (Fig. 65b).

5. Rough thinning.

At this stage, the lamella is ⇠ 2µm thick with both faces contaminated by
amorphous material, due to the previous ion beam machining (Fig. 66a).
This step consists in removing the amorphous from both faces and thin-
ning the lamella until 1 µ - 500 nm (Fig. 66b), by using a quite intense
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Figure 64: SEM image of the step 3: lamella U-cut prior to the lift-out.

Figure 65: FIB images of the step 4: (a) lamella lift-out and (b) lamella bonding to the
TEM grid. Scale bar 5 µm.



82 microstructural characterization

ion beam (30 kV, 0.79 nA) with an incident angle of 1

�to the normal to
the sample surface (in order to obtain two parallel faces [Ish04b].

Figure 66: Front-view SEM image of the lamella (a) before and (b) after thinning/pol-
ishing step (step 5). (c) Top-view of the final lamella (after step 6 and 7) to
check the required thickness of 100-150 µm. Scale bar 2.5 µm.

6. Final thinning.

In this step we thin and polish each face of the lamella, still too thick for
the TEM, until getting a final thickness on the order of 100 nm, required
for the electron transparency. The first face is thinned in two steps by
an ion beam at decreasing energies and increasing incident angles to the
normal to the sample surface, in order to limit the amorphisation of the
lamella edges [Ish04b]:

• 30 kV, 80 pA at 1

�;

• 16 kV, 45 pA at 2

�.

For the second face we follow the same protocol, after a rotation of 180

�of
the FIB stage, until we obtained the suitable lamella thickness.

7. Finishing stage.

It consists in removing part of the amorphous on each lamella face by a
finer low-energy ion polishing (5 kV, 15 pA) at an incident angle of 3

�to
the normal to the sample surface. Thanks to the possibility of constantly
monitoring the preparation process, we can check the final thickness and
make sure that the thin lamella is perfectly straight (Fig. 66c).

The entire procedure is summarized in Fig. 67.

3.4.1.3 Lamella preparation at the wire-metal interface

The most critical step when we want to prepare a TEM lamella that includes the
wire-metallization interface (Fig. 68) is the matter digging behind the region
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Figure 67: Summary of a FIB lamella preparation for the TEM inspection of the device
top Al metallization. Scale bar 2.5 µm.

of interest (point 2 in the previous section). In fact, despite the wire thickness
has been locally reduced by a 45

�mechanical polishing prior to FIB machin-
ing, it is still more than ten times higher than the metallization thickness. So
the cross-sectional cut behind the region of interest must be deep enough to re-
move matter behind the whole piece of wire, down to the metallization and the
MOSFET area. Increasing the cut depth means not only increasing the cut du-
ration but also the amount of redeposition gathering at the base of the lamella
back-face, making the U-cut impossible to perform.

It is therefore mandatory to increase the cut pattern high behind the wire-
metallization lamella (Fig. 69), in order to provide sufficient space for the rede-
posited matter to spread out in the cut area. In this way, making a rotation of
180

�with respect to the front-face, we could also monitor the cut progress and
directly check the lamella back-face polishing.

3.4.2 TEM techniques

3.4.2.1 Automated Crystal Orientation Mapping

The Automated Crystal Orientation Mapping (ACOM) is a transmission elec-
tron microscope technique, developed in 1999 by Edgar Rauch (SIMAP, Greno-
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Figure 68: (a) SEM image of a wire-metallization interface lamella prepared by FIB
and (b) relative high-magnification TEM image.

Figure 69: Top view schematic representation of the metallization (a) naked and (b) un-
der the bonding wire, during the lamella preparation by FIB. The dashed
rectangular patterns represent the sample area to be milled behind the re-
gion of interest, in order to obtain a 1µm thick lamella prior to the lift-out
and the final polishing. The pattern in (b) is higher because the area to be
milled is deeper, due to presence of the bonding wire.
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ble) in collaboration with NanoMEGAS, that allows the characterization of
crystalline materials by indexing the diffraction patterns [Rau08] [Rau14]. Ori-
entation mapping, usually performed in SEM by EBSD, is extended down to
nanoscale thanks to the reduced probe sizes available in FEG-TEM.

The NanoMEGAS ACOM unit (Fig. 70b) is installed in the Philips CM20

FEG microscope, operating in micro-diffraction mode: it controls the deflec-
tion coils, making sure that the electron beam scans the sample, to generate
a diffraction pattern from each point of the area of interest (Fig. 70c). At the
same time an external fast-rate camera acquires the diffraction signal and send
it to a computer, equipped with a software dedicated to the pattern recognition
(Fig. 70a).

Figure 70: Automated Crystal Orientation Mapping (ACOM).
(a) The NanoMEGAS ACOM unit collects the diffraction signal, acquired
by an external fast-rate camera, and controls the electron beam in the TEM.
(b) The NanoMEGAS ACOM unit consists in a digital scan generator, a
beam controller console and a computer with the pattern-recognition soft-
ware.
(c) The digital scan generator controls the electron beam which scans the
sample to generate a diffraction pattern from each point of the area of in-
terest.

The software matches the diffraction patterns from the sample with a database
of simulated diffraction patterns to identify the most plausible crystallographic
orientation of each point (Fig. 71a). The result is then an orientation map of
the region of interest, as in Fig. 71b.
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This technique allowed us to identify the domains with the same crystallo-
graphic orientation (grains), as well as the morphology and the orientation of
each grain, in case of multicrystalline materials, with a resolution of about 5

nm. We performed orientation mapping of thin lamella prepared by FIB, to val-
idate the qualitative results of the SIM on Al metallization layer cross-sections,
both away and under the bonding wire.

Figure 71: ACOM pattern recognition software windows.
(a) The diffraction image from each point of the area of interest is digitized
and compared with simulated diffraction patterns of a databank.
(b) The result of the matching can be visualized in an orientation map,
where each color represents a specific crystallographic orientation.

3.4.2.2 Chemical Analysis: EDX and EELS

The CM20 FEG microscope is also equipped with an EDX detector for the
chemical analysis at nanometric scale of ultra-thin lamella. The x-rays are emit-
ted from the sample, under the interaction with the electron beam, in the TEM
operating in STEM (Scanning Transmission Electron Microscopy) mode. As in
the SEM, we could have information about the chemical composition of the Al
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top metallization. For instance, we could exploit the higher resolution of the
TEM to image the Cu-W precipitates in the metallization (Fig. 72a and Fig. 72b)
and perform a compositional mapping of the elements present in the region of
interest (e.g. Cu in Fig. 72c).

Figure 72: (a) TEM image of the Al metallization decorated with Cu/W precipitates.
(b) Higher magnification TEM image of some of these precipitates and (c)
relative EDX map, corresponding to the Cu element.

In parallel, Electron Energy Loss Spectroscopy (EELS) was carried out in
a Tecnai TEM from FEI. EELS is an analytical technique that measures the
change in kinetic energy of electrons after they have interacted with the speci-
men, giving information about its structure and chemical composition [Ege08],
with higher spatial resolution and best analytical sensitivity compared to the
EDX [Tit89]. We used EELS in order to investigate the chemical composition
of the wire-metal interface, and, in particular, to detect possible bonding pro-
cess residues of aluminum oxide (AlO2), that could affect the good contact
between the two Al parts. The reason why we preferred EELS to EDX is that,
in the EELS spectra, we can clearly distinguish the contribution of the oxygen
in its linked-state from the surface contamination. However, this technique re-
quires a TEM lamella thickness between 50 and 70 nm, lower than the one
needed for conventional TEM imaging and orientation mapping (100-150 nm).
Consequently, the final thinning-polishing step of the FIB preparation has been
particularly demanding in this case. In order to avoid the risk of amorphiza-
tion and bending of the final lamella, we had to reduce the size of the region
of interest.
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3.4.2.3 In situ heating experiment

The TEM in situ technique allows us to observe in real time the evolution
of the sample micro and/or nanostructure, when a controlled change to the
specimen environment is made. In our work, temperature experiments have
been carried out. In particular, we were interested in studying the temperature-
induced degradation mechanisms of the Al metallization layer, deposited onto
the silicon substrate. In fact, at this location, the temperature changes result in
mechanical stress due to the difference in the CTS between the Al and the Si
[Leg09]. The TEM, generally used in conventional mode, allowed us to follow
the dislocations and grain boundaries evolution inside the Al metallization
during the temperature cycles.

In situ experiments was carried out in the JEOL 2010 TEM, equipped with a
double tilt heating holder from Gatan (Fig. 73b). It consists in a heating micro-
resistance and a temperature sensor (Fig. 73b), both controlled by a dedicated
module for the temperature setting (Fig. 73a). The sample holder can reach
500

�C, without cooling system, and 1100

�C, by activating an external water-
cooling system. However, in our experiments we did not need to exceed 500

�C.
In fact, during the normal life of a device, the control die prevents the power
die getting this temperature. So we decided to perform repetitive cycles from
ambient temperature to 450

�C, with a rate of 50

�C/min. At the same time,
the TEM CCD camera, connected to a recording device, acquired the sample
structural evolution.

Figure 73: In situ heating TEM settings. (a) The JEOL 2010 is equipped with a (b) dou-
ble tilt heating holder (Gatan) connected to a temperature control unit. (c)
The TEM grid containing the sample is placed at the extremity of the sample
holder and it is connected to a heating micro-resistance and a temperature
sensor.
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This chapter presents the results of the study of Smart Power SPD06 and
T07D17 devices that underwent accelerated electro-thermal aging conditions
(described in Section 2.2.4). During the on-off cycles, the top source metalliza-
tion increases its resistance, and thus its temperature, until failure. Our objec-
tive is to correlate the evolution of the electrical parameters during aging with
the parallel microstructural degradation of the metallic parts. We go down to
the submicrometric scale, trying to understand the physical phenomena be-
hind the resistance and temperature increase. Our characterizations, based on
the physical-metallurgy approach described in the previous chapter, focus on
the grain structure of the metallization and on the interface of this metalliza-
tion with the bonding wires. Previous studies [Cia02] have shown that these
locations are the most prone to deterioration. This will be confirmed in the
first paragraphs of this chapter. We systematically compare the module under
test –we call it "aged" or "failed"– with the modules of the device that did not
underwent the electro-thermal cycles –we call it "as-is" or "as processed"–.

The main mechanism associated to the mechanical stress of the metallic parts
is the generation of fatigue cracks in the Al metallization. We demonstrate that
these cracks follows the grain boundaries. For this reason, we focus on the
Al grain structure, which is subject to plastic deformation during the electro-
thermal cycles. We characterize the grains evolution by electron backscattered
diffraction, at surface, and by ion microscopy and automated crystal orienta-
tion mapping, in cross-section.

The cross-sectional analysis of the Al metallization constitutes the main con-
tribution of this work, as at surface level the grain structure upon aging is lost
because of a heavy surface reconstruction. The metallization is inspected at
two different locations: under the bonding wires and away from the bonding
contact (naked metallization). In the latter case, we investigate also the areas
coated by SiO2 passivation (when present). We present the results of the study
on the two types of LFET1T technology in two different Sections:

• Section 4.1 : 24V SPD06 components

• Section 4.2 : 12V T07D17 components

This organization is due to the fact that NXP Semiconductors provided us
with the devices at different times, so we adapted our research to the indus-
trial needs evolution. First, the SPD06 (in production since 2008) served as
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test components to optimize the techniques, together with the relative sam-
ple preparations used in this work. Since they underwent gradual short-circuit
conditions, we could follow the degradation mechanisms at increasing electro-
thermal cycles until failure and identify the points of interest. On the other side,
the T07D17 (in production since 2009) components have been provided later
by the company. Those were endured industrial aging tests until failure. We
used these devices to improve our study, on the basis of the previous results,
and to investigate the effects of abrupt electrical overstress (EOS) on the Al mi-
crostructure. Moreover, the instrument availability evolved during this work.
This is the reason why we could perform large scale cross-sectional cut by
Cross Polisher only to study the entire wire-metallization interface of T07D17

components, while we have been limited to smaller cross sectional cuts by Fo-
cused Ion Beam for the SPD06 ones. However, both types of device belong to
the same technology batch, and there is no difference in terms of their criti-
cal features of our analysis, such as Al metallization thickness, MOSFET type,
wires bonding process and size. Therefore, in the following we have assumed
that the results found for the T07D17 modules are valid also for the SPD06s.
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4.1 aging of spd06 components

For SPD06 devices under increasing electro-thermal cycles, we have system-
atically compared the metallization microstructure of the aged module and
the as-processed one, until 300kcycles, just before failure (which occurs at
⇠ 315kcycles). At the end of the aging test, a clear change in the metal surface
is easily visible even by optical microscopy (Fig. 74): the failed module looks
darker and less bright compared to the adjacent one, that did not undergo
the electro-thermal cycles. We investigate the finer evolution of the metal mi-
crostructure at higher resolution, first by SEM (Section 4.1.1), and by FIB and
TEM later (Section 4.1.2), in order to find a possible explication of the on-state
resistance increasing in the Al degradation mechanisms.

Figure 74: Optical image of an SPD06 power die after accelerated aging test (300 kcy-
cles at room temperature). Only one module underwent the electro-thermal
cycles, whereas the other one serves as reference for the microstructural
characterization of the critical points.

4.1.1 Topographical study

A closer inspection by SEM of the Al top metallization confirms the optical re-
sult (Fig. 74): the Al microstructure image at failure (Fig. 75b, c) is significantly
different to the relative as-is part (Fig. 75a) and reveals a heavy surface recon-
struction, which is not uniform in the analyzed module. Some zones, close to
the central wire contacts, presents a higher roughness (Fig. 75b), in others the
Al grain structure is still visible but large cracks propagate along the grain
boundaries (GBs) (Fig. 75c), or a mix of the two.

In the following we focus before on the as-processed Al structure and then
we show its evolution at increasing number of electro-thermal cycles.
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Figure 75: Top view SEM images showing the Al metallization of (a) an as-is module
and (b), (c ) a failed one at two different locations. The grain structure is
visible in all of them as GBs are slightly grooved in (a) and more heavily
cracked in (b) and (c). Scale bar 10 µm.



4.1 aging of spd06 components 93

4.1.1.1 As-is metallization microstructure

(Fig. 75a) shows that the initial Al metallization is characterized by a granular
microstructure that is made visible by the grooves formed by the intersection
of the GBs at the surface [Mul93]. The horizontal "wave" pattern is due to
the underlying transistor architecture. EBSD orientation maps of as-is metal-
lization portions (Fig. 76a) allowed us to accurately characterize the initial Al
microstructure. They reveal a strong <111> texture along z, that is the depo-
sition direction. From these maps, we can also determine the grain misorien-
tation and size distributions. To identify the grains, and therefore calculate
their size, the definition of a critical misorientation angle is required, so that
all boundary segments with an angle higher than the defined angle are consid-
ered grain boundaries (GBs). The critical angle between low- and high-angle
grain boundaries is usually set between 10 and 15 ° [Hum01] depending on the
crystal structure. The physical reason for this value lies in the fact that dislo-
cations constituting low-angle grain boundaries (or sub-grain boundaries) are
discernable while they become close to each other and thus indiscernable in
high angle GBs. From the analyzed area (Fig. 76a), we can plot a grain misori-
entation distribution (Fig. 76b), from which we decided to take the lower peak
(10°) as the critical angle between low angle and high angle GBs. From this,
the grain size distribution (Fig. 76c) is then calculated by grain reconstruction
method (see Section 3.2.2). We can see in the plot that the mean grain size (⇠4

µm) is on the same order, or even larger, than the Al metallization thickness.

4.1.1.2 Aged metallization microstructure

Fig. 75b and Fig. 75c show an important degradation of the Al metallization
structure at failure. It is characterized by an increase in surface roughness and
the presence of several large cracks along the grain boundaries. In some cases,
it is no possible anymore to recognize the initial grain structure.

We asked ourselves when the surface reconstruction starts to show up dur-
ing the life of a SPD06 component. To answer this question we observed by
SEM the Al metallization evolution after increasing aging until failure, which
occurs at 315 kcycles. Fig. 77 shows the metal microstructure a) before aging
and after b) 1, c) 10, d) 100, e) 200 and f) 300 kcycles. One can notice a weak
change in the Al surface starting from 10kcycles (Fig. 77c), but it is only after
100kcycle (Fig. 77d) that we observe a significant reconstruction. For sake of
accuracy, we have to precise that each SEM image in Fig. 77 refers to a different
SPD06 device aged at increasing number of cycles. We tried to follow the evo-
lution of the same metallization portion, in the same device, but it turned out
to be impossible. In fact, every time we stopped the aging cycles to inspect the
metallization by electron beam, the device systematically failed as soon as we
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Figure 76: (a) EBSD orientation mapping along x, y and z axis of the Al metallization
of a reference module and relative histograms of the (b) grain misorienta-
tion and (c) grain size (equivalent diameter).

restart the test. We suppose that this is due to a charge accumulation during
the interaction with the electron beam in the SEM, that causes the failure when
the device is put again in the on-state. However, since the device production is
highly reproducible and the initial metal structure is similar in all the analyzed
modules, we assume that all the devices age similarly.

Observations:

• After 1kcycles (Fig. 77b) we do not observe any sign of surface reconstruc-
tion, the grain structure is preserved and the horizontal transistor wave
pattern is still visible. However, some grains are characterized by a sort of
ridge-notch pattern (white arrows). It is evident at higher magnification
in Fig. 78a (in the big central grain). This could remind the intrusions
and extrusions formation at the basis of fatigue cracks initiation in met-
als under stress cycles [Sur98]. If so, the inner Al structure beneath the
ridges should be characterized by slip bands along the <111> direction,
containing stack of several aligned dislocations. However, the TEM im-
age (Fig. 78c) of a FIB lamella perpendicular to the ridge-notch pattern
from the grain of interest (Fig. 78b) does not present these features: only
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few dislocations (black contrasted traits in the TEM image) are uniformly
distributed in the grain portion close to the surface.

• After 10kcycles we start observing a surface reorganization (Fig. 77c):
the grain boundaries are less defined and we loose the transistor wave
pattern.

• But it’s only at 100kcycles that the Al surface reconstruction occurs (Fig. 77d).
The Al metallization here looks similar to the failed one close to the bond-
ing contacts (Fig. 75b).

• However, several cracks propagate along the grain boundaries and it
seems that they become larger and larger at the final aging steps (Fig. 77e
and 77f).

This means that, starting from 100 kcycles until failure, the evolution of the
metallization surface occurs at the grain interfaces. It could have been interest-
ing, then, to follow possible rearrangements of the grain structure until fail-
ure by EBSD. In particular the apparent grain size reduction that is observed
by FIB (see Martineau et al. [Mar10], Bernoux et al. [Ber09]], and following
paragraphs) could have been quantified in terms of misorientations and val-
idated or invalidated. However, this turned out to be unfeasible because of
the high surface reconstruction. This reconstruction strongly increases the sur-
face roughness which is a known factor to impede the EBSD signal-noise ratio
[Mic07], [Rei86] [Sch00]. The few attempts to obtain pseudo Kikuchi EBSD
patterns from aged metallization confirmed this impossibility. For this reason,
we decided to prepare cross-sections of the metallization perpendicular to the
surface and observe the inner grain structure by ion channeling contrast.
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Figure 77: Top view SEM images showing the evolution of the Al source metallization
surface. Grain structure (a) before starting the accelerated aging and after
(b) 1 kcyles, (c) 10 kcycles, (d) 100 kcycles, (e) 200 kcycles and (f) 300 kcycles.
Scale bar 5 µm.
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Figure 78: (a) SEM image of the Al metallization from a 1kcycles aged module. The
bigger central grain is characterize by a ridge-notch pattern. We have inves-
tigated the dislocation distribution beneath this area by TEM, preparing an
ultra-thin lamella by FIB. The first step of the preparation (a cross-sectional
cut perpendicular to the surface, ahead of the region of interest) is depicted
in (b). (c) The TEM image just below the Al metallization surface (covered
by a dark-contrasted Pt protective layer) reveals the presence of few uni-
formly distributed dislocations (dark lines) and the absence of slip bands.
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4.1.2 Cross-sectional study

Systematic cross-sectional cuts of the metallization in the vicinity of the bond-
ing wire (naked metallization) have been prepared by FIB (Section 3.3.1.1).
Thanks to the original sample preparation that we set up to locally reduce the
wire thickness (Section 3.3.1.2), we could also access the metallization under
the bonding connections and compare it to naked parts.

In the following, the results of the aged metal refers to modules under-
went 100kcycles and more, characterized by an evident surface reconstruction
(Fig. 77).

4.1.2.1 Naked metallization

Using SIM imaging, the initial grain size appears on the order or larger than
the metallization thickness (Fig. 79a) outside of the wire bonds area. This kind
of structure is called "bamboo" as most of the grain boundaries run perpendic-
ular to the surface down to the substrate ([Arz11], [Joo94], [Wal92a]). A TEM
cross-section oriented using the ACOM system (Fig. 80) reveals a strong <111>
texture along the deposition direction. This confirms the results of the EBSD
mapping of the initial metallization surface (Fig. 76a) and shows that each
grain orientation is conserved from the surface down to the transistor region.

Figure 79: SIM imaging of the Al source metallization of an (a) as-is and (b) 100, (c)
200 and (d) 300 kcycles aged power modules. Scale bar 2 µm.
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In Fig. 79b-d we can observe the metallization cross-sections of aged mod-
ules, respectively at 100, 200 and 300 kcycles. Aging seems to lower the grain
size, as also observed by Bernoux [Ber09] and Martineau [Mar14]. We tried to
measure the average grain size in a tens of SIM images from as-is and aged
modules by lineal intercept method. This method take into account the number
of times that a series of uniformly distributed lines drawn on the SIM images
intercepts the grain boundaries and returns a mean lineal intercept length,
which can be associated to the grain size [Tom45]. The result for a 100kcycles
aged device is reported in Fig. 81, showing that the average grain size is ⇠ 4

times lower in the aged metallization compared to the as-is one.
However, ACOM mapping shows that most of the grain domains revealed by

FIB have a small misorientation, less than 10

�. Fig. 82 shows this as two grains

Figure 80: ACOM mapping of the cross-section of an as-is module, showing a strong
<111> texture of the Al grains along the deposition direction. The standard
stereographic triangle gives the color codes of the grain orientations, taken
here along the vertical growth direction. Scale bar 2.5 µm.

Figure 81: Grain size calculated by lineal intercept method in 10 FIB cross-sections of
each analysed module, both aged at 130 kcycles (in blue) and as-processed
(in orange).
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(1 and 2) visible in ionic contrast (Fig. 82a) have only an 8

�misorientation when
measured by the ACOM system (Fig. 82b and c). These are then subgrains
potentially formed by the gathering of pre-existing dislocations inside a single
initially large bamboo grain [Mar14]. This process may occur very early during
aging and does not seem to have impact on further GB cracking.

Moreover, many cracks, running from the surface to the Si substrate, are
observed (Fig. 79b-d). They follow the grain boundaries and broaden at the
end of the life of the device, confirming the previous observations at surface
level (Fig. 77d-f).

Figure 82: (a) FIB imaging and (b) ACOM orientation mapping of the source metal
of an aged module (short circuit, 130k cycles) at the interface with the Si
substrate. The standard stereographic triangle gives the color codes of the
grain orientations, taken here along the horizontal direction. (c) The plot
represents the misorientation between the grains 1 and 2 along the white
line in b).
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4.1.2.2 Metallization under the bonding wire

Fig. 83 shows SIM images of the wire-metallization interface from the side of
the bonding contact (Fig. 83b and c) and at the center (Fig. 83d-g) for an as-is
module (left) and a 100kcycles aged one (right), according to the larger view
in Fig. 83a. Under the wire, the initial Al metallization has endured plastic
deformation, due to the cold-bonding process, and the initial grain size seems
systematically smaller compared to the bamboo structure of the naked metal-
lization (Fig. 79a).

One can also notice that the wire-bonding interface is not uniform all along
the bonding, for both the as-is and the aged part.

• The contact between the two metals is systematically absent at the two
edges (for ⇠ 10µm towards the inside) even prior to aging (Fig. 83b and c).
This demonstrates that only a fraction of the nominal metallization area
impacted by the bonding (0.25mm2, according to the LFET1T standard
specifications) is truly in contact with the wire of metallization surface
is truly in contact with the wire. A very coarse estimation would lead
to a third of the metallization being impacted by wire-bonding plastic
deformation 1.

• In the central area (Fig. 83d-g), the bonding between the metallization
and the wire shows initial imperfections, probably due to Al oxide (ap-
pearing in white contrast in SIM imaging) and small cavities. Moreover,
the plastic deformation is highly uneven along the applied stress of the
wire bonding, which is perpendicular to the wire-metal interface. Some
section shows a straight interface (Fig. 83d and e), whereas in other ones
(Fig. 83f and g) the source metallization is more deformed.

We tried to quantify the plastic deformation of the source metallization un-
der the wires, by measuring the minimum metallization thickness in the FIB
sections (Fig. 84b) and taking the initial metallization thickness (away from the

1 To estimate the effective imprint of the wire on the metallization, we made the following cal-
culation and assumption: The plastic deformation of the metallization imposed by the bonding
process is about 10% in average in compression (Fig. 85). If we assume that the yield stress of
the metallization is only dictated by its grain size (which is an underestimate because we ne-
glect the effect of alloying), it should have deformed at stresses between 100 to 150 MPa (values
given by Tsuji et al [Tsu02]). The force imposed to the 0.25mm2 metallization by the wire is on
the order of 10 N which correspond to a stress of 40 MPa only. This should not be sufficient to
deform the metallization unless only a portion of the metallization is impacted. A simple rule
of mixture leads to about 1/3rd of the surface of the wire imprint (40 ⇤ 3 = 120MPa).
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wire) as a reference (Fig. 84a). The deformation is then locally calculated as
follow:

✏ =
lref - lmin

lref
(6)

Fig. 85 shows the plastic deformation values of the Al metallization under
the bonding wires of as-is and aged modules for three devices: aged at 1, 100

and 300 kcycles. Plastic deformation ranges from 5% to 25% in the measured
sections (7 for each analyzed module, each one ⇠ 15µ m wide). This wide
range may be due to the fact that the number of measured cross-sections (7 for
each sample) is not enough to have consistent statistics or to the fact that the
wire-metallization interface is highly uneven along the wire-metal interface (in
line with the high standard deviation relative to each data set). Moreover, we
can notice that the metal under the bonding wire is severely deformed prior
to aging and upon electro-thermal cycles the amount of plastic deformation
perpendicular to the interface does not change significantly. However, grain
growth is observed, at variance with what happens outside the wire-bonding
area. The initial dislocation density is also higher in this zone, which forecasts
larger rearrangements, cell formations and subsequent grain boundaries cre-
ation.
These results have been further exploited in the next session, relative to the mi-
crocharacterization of T07D17 power device. We have improved the number of
analyzed cross-sections and proposed different methods for the measurement
of plastic deformation.
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Figure 83: (a) FIB cross-sectioning schema under a 45

�polished bonding wire from an
as-is module (left) and an aged one (right). The arrows indicate the imaging
direction.
The relative SIM images have been collected from the edge of the bonding
wire of the (b) as-is and (c) aged (100 kcycles) module, and at the center
of the bonding wire of the (d,f) as-is and (e,g) aged (100 kcycles) module.
Scale bare 2.5 µm.
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Figure 84: SIM images of the Al metallization (a) away and (b) under the bonding wire.
The naked metal thickness (lref) serves as reference for the measurement of
the minimum thickness (lmin) in the deformed sections under the bonding
wires.

Figure 85: Plastic deformation of the Al metallization under the bonding wires of the
as-is and the aged module of three different devices: aged at 1, 100 and 300

kcycles. The deformation has been calculated as the minimum metalliza-
tion thickness in the wire-metallization FIB sections (7 for each analyzed
module, each one ⇠ 15µ m wide), taking the initial metallization thickness
(away from the bonding wire) as a reference.
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4.1.3 Temperature cycles: TEM heating in situ experiments

To observe the behavior of the dislocations and grain structure of the metalliza-
tion under thermal cycling, cross-sectional TEM samples were prepared and
in situ heated and cooled, in the microscope, between 25

�C and 450

�C by
steps of 10-50

�C. A complete cycle takes roughly 40 minutes for the first one
(20

�C/min in average) and usually faster for the subsequent ones (because
the dislocation movements are more scarce). The dislocation propagation in-
side the Al grains are observed in real time. It is induced by stresses due to
the difference of CTE between silicon, silicon oxide and aluminum. Two types
of samples were prepared: one with a FIB lamella welded to a Cu grid, and
another one with a tripod polisher. The reason for this is that in a FIB lamella,
the leftover of the Si substrate is too small to induce significant stresses in the
Al layer.

Figure 86: In situ TEM thermal cycling of a device FIB-prepared cross-section from
25

�C to 450

�C. (a)-(c) are snapshots captured during the heating up phase
from 250

�C to 300

�C, showing curved slip traces associated to a combi-
nation of dislocation climbing and gliding. Once the dislocations are dis-
persed, during the correspondent cooling down phase (d), no reverse mo-
tion is observed because the Si substrate is too thin to induce significant
stress in the Al film.

This is verified in Fig. 86 : during heating a group of dislocation starts to
move at around 300

�C. These movements are probably generated by the re-
pulsive interaction between the dislocations that seem to have all the same
Burgers vector (same contrast). Once they are dispersed, the absence of stress
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due to the very thin Si substrate leftover is not able to reverse their motion dur-
ing cooling. As anticipated, a subsequent cycle (50-450

�C) did not make the
dislocations move again. One can note that the slip traces are curved, which
indicates that, in this temperature range (> 300�C), dislocation motion involve
a strong proportion of climb (in pure planar glide, the slip traces would be
straight, and if cross-slip was present, they would display a zig-zag pattern).

A second type of sample was prepared using tripod polishing (procedure in
Appendix A). In this cross-section configuration, the full substrate thickness is
preserved (in a thin foil, of course), retaining part of the deltaCTE-originated
stresses. As a result dislocations motions are partly reversible, following the
stress inversion expected in a Al/Si substrate thin film (Fig. 87g). As observed
previously, dislocations are "activated" during heating up. At variance from
the FIB lamella, those dislocations move even if they are apart from each oth-
ers (Fig. 87a, b) , suggesting that the stress originates from the delta CTE. This
is even further confirmed during cooling where reversible motion of the dis-
locations left in the interiors of grain is observed. They are first straightening
(Fig. 87c) before bowing in opposite direction (Fig. 87d) and moving towards
the oxide and the grain boundaries. Once they reach these spots, they are
trapped and do not move further (Fig. 87e, f). This is why the dislocation
density decreases rapidly over the first cycles. In a TEM, where there are free
surfaces created when preparing the thin foil, the phenomenon is accelerated,
and after a couple cycles, no moving dislocation can be observed anymore. As
previously observed, dislocations move using a mix of climb and glide, the
first process being important above 350

�C and the second around 200

�C and
below.

In both experiments, no grain growth was observed. No subgrain formation
was observed during these heating experiments.
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Figure 87: In situ TEM thermal cycling from 25

�C to 450

�C of a device cross-section
prepared by tripod. The Si substrate is preserved, inducing a reversible mo-
tion, according to the stress inversion for a Al/Si substrate thin film in the
stress-temperature curve [Fli87]. (a)-(b) are snapshots captured during the
heating up phase from 350

�C to 450

�C, showing the dislocation activation.
During the cooling down phase, the reversible motion is characterized by
an initial dislocation straightening (c) followed by a bowing in the opposite
direction (d), towards the oxide (d)-(e).
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4.2 aging of t07d17 components

In this Section we present further results of the metal microstructural charac-
terization of LFET1T components. We assess the effects of operational mission
profile tests performed on T07D17 components at two different temperatures
(25

�C and 70

�C) in the failure analysis laboratories of NXP Semiconductors.
On the basis of the preliminary results from SPD06 components that under-
went gradual short-circuit conditions (Section 4.1), here we focus on the met-
allization structure away and under the bonding wire to address two main
degradation mechanisms:

• Crack propagation through the Al metallization upon aging.

• Plastic deformation of the initial metallization under the wire due to the
bonding process.

We have expanded the microstructural characterizations and the statistical
analysis proposed for the SPD06 devices. For the T07D17, we have collected
a consistent number of FIB cross-sectional images (15 for each sample instead
of 7 as for the SPD06s) to quantify the cracks in the naked metallization and
the deformed area under the bonding contacts. Moreover, the preparation by
cross-polisher of the wire-metal interface offers us a broader vision, compared
to the smaller FIB cuts, of the whole bonding area, down to the Si bulk under
the MOSFET region.

From the point of view of the microstructural analysis of the Al parts, TO7D17

power devices differ from SPD06 ones only in the presence of a SiO
2

passiva-
tion layer, which covers the source metallization everywhere, except in the
bonding areas to allow the electrical contact (Fig. 88a). Fig. 88b shows the
metallization surface close to the bonding wire (where the passivation layer is
absent) for and as-is module. As for the SPD6 modules, we can distinguish the
Al grain structure an the "wave" pattern due to the MOSFET trenches below
the metallization.

As expected, we observe at failure a heavy surface reconstruction, with many
cracks running along the grain boundaries, for both the 25

�C and 70

�C tested
module (Fig. 89a and b). We have investigated the propagation of these cracks
through the metallization thickness, together with the Al grain microstructure.
In the following, we present a cross-sectional analysis of the metallization close
to the bonding contacts, by a systematic comparison of as-is, 25

�C and 70

�C
aged modules.
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Figure 88: (a) SEM image of an Al bond wire welded on the Al source metallization on
an as-is module. Away from the bonding area the metallization is coated by
a SiO

2

passivation layer. (b) Higher magnification of the bare metallization
close to the bonding wire.
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Figure 89: SEM images of the Al metallization close to the bonging wire in a (a) 25

�C
aged module (failed after 5.3 million cycles) and in a (b) 70

�C aged one
(failed after 300 kcycles). Scale bar 10 µm
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4.2.1 Naked metallization cross-sectional study

The structure of the metallization close to the bonding area (without passiva-
tion coating) was observed by ion channeling contrast after having made FIB
cross-sectional cuts. Fig. 90 shows the comparison between a non-aged mod-
ule (a) and an aged one at 25

�C (b), failed after 5.3 million cycles, and 70

�C
(c), failed after 300 kcycles. The SIM images reveal a strong degradation upon
aging of the initial bamboo structure, with many cavities and cracks running
vertically from the surface, following the grain boundaries, and horizontally
along the transistor interface. In Fig. 90c one can also notice that the fist tran-
sistor from the right is fractured. This could be due to the propagation of the
cracks from the metal to the transistor area and then to the semiconductor
below.

Figure 90: SIM images of the naked metallization cross-sections of (a) as-is, (b) 70

�C
aged and (c) 25

�C aged power modules. The top layer (⇠ 1µm thick) is the
Pt protective coating to prevent curtaining artefacts on the imaging faces.
Scale bar 2.5 µm.
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Cavities and cracks in the Al top metallization are also visible at higher
resolution in the TEM images (Fig. 91) of thin lamella prepared by FIB from a
non-aged module (a, b) and an aged one at 25

�C (c, d) and 70

�C (e, f):

• Fig. 91a shows the columnar grain structure of the as-processed metalliza-
tion. The dark-contrasted layer on top is the Pt protection used during
the lamella preparation. At higher mangification, in Fig. 91b, we can bet-
ter see small grains between the transistors, formed in the early stage of
the Al deposition process, prior the the bamboo grain growth.

• Fig. 91c and Fig. 91d refer to a 25

�C aged module. Vertical cracks run
from the surface along the grain boundaries and branch off alongside
the transistors.

• These cracks are also visible in the metallization of a 70

�C aged module.
In few rare case, some grain results fractured and the crack (pointed out
by the white arrows in Fig. 91e) does not follow the grain boundaries.
However most of the cracks follow the grain boundaries (Fig. 91e).

The previous images (Fig. 90, Fig. 91) show also a grain shrinkage upon ag-
ing. However, as we also see for the SPD06 components, the orientation map-
ping by ACOM-TEM system (Fig. 92) reveal that most of the grain domains in
the aged metallization (at 25

�C in Fig. 92d and 70

�C in Fig. 92f) have a small
misorientation as they have very similar colors. We reported directly in the fig-
ures the misorientations between a few grains. These misorientations are less
than 10

�. This means that most of the grains with different gray scale colour in
the FIB and TEM images are subgrains, probably formed by the gathering of
pre-existing dislocations inside a single initially large bamboo grain (Fig. 92b)
at the beginning of the electro-thermal cycles [Mar14]. This is clearly visible for
the 25

�aged module (Fig. 92d), where we can recognize three bamboo domains
(the misorientations between them are higher, ⇠ 30�) with vertical cracks along
the grain boundaries, and smaller subgrains inside each domain. These images
confirm again that cracks propagate along the GBs and not along the sGBs.

We can conclude that during aging no change of the metallization texture
occur. In other words, the Al metallization, away from the bonding wire, is not
subject to a heavy dislocation-based plastic deformation that could justify the
device failure. On the other hand, we have observed a heavy crack propagation
along the GBs due to an enhanced intergranular diffusion of Al atoms during
aging. This can, for sure, explain a local increase in the metal resistance and
temperature that accelerate the aging process until failure. In the next section,
we propose a method to quantify these cracks, in order to access the effect of
the intergranular Al diffusion both in the naked parts and under the passiva-
tion.
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Figure 91: TEM images of some details of the transistor/metallization area from the
naked metallization of an (a, b) as-is, (c, d) 25

�C aged and (e, f) 70/degree
C aged power modules. The trench MOSFET layered structure is described
in (b) and consists in: source metal, inter-layer dielectric (ILD), gate oxide
and polySi (Polygate), epitaxial Si. Scale bar: 1 µm.
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Figure 92: TEM images of FIB lamella extracted from the naked metallization of an (a)
as-is, (c) 25

�C aged and (d) 70

�C aged power modules.
ACOM mapping relative to the red area in the TEM images for the (b) as-
is, (d) 25

�C aged and (f) 70

�C aged lamella. The standard stereographic
triangle gives the color codes of the grain orientations, taken here along
the horizontal direction, perpendicular to the growth direction, in order to
have better visibility (the relative misorientation between subgrains does
not change along the three axis).
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4.2.1.1 Cracks propagation statistics

SIM (Fig. 90) and TEM (Fig. 91) images reveal a heavy fatigue cracking of the
Al source metallization of T07D17 modules at failure, both at 25

�C and 70

�C.
The cracks run vertically from the metallization surface down to the Si bulk
and horizontally along the transistor area, following the grain boundaries.

We tried to quantify these fatigue cracks in the FIB images of the naked Al
metallization, aged at 25

�C and 70

�C. In order to perform a coherent statisti-
cal analysis on the two batch of images (⇠ 40 for each aging temperature), we
had to determine a clear criterion to count the cracks affecting the metalliza-
tion cross-sections. On the basis of our observations, we defined two different
criteria to count vertical and horizontal cracks (Fig. 93a):

1. Vertical cracks.
Since vertical cracks propagate along the grain boundaries starting from
the metal surface, we decided to count the number of grain boundaries
(GBs) affected by cracks or cavities at surface. For instance, in Fig. 93a,
we can distinguish 8 GB, out of which one (GB

5

) is cracked. Then, in this
section we count 1 cracked GB and 7 undamaged. An so on for all the
images we collected from the naked metallization of 25

�C and 70

�C aged
modules. At the end, we summed up all the cracked GB in the analysed
sections and we obtained the ratio of cracked grain boundaries to the
undamaged ones. These percentage values are represented in Fig. 93b,
for the 25

�C aged module and in Fig. 93c, for the 70

�C aged one.
We can conclude that the metallization affected by vertical fissurations in
the analyzed sections is 31% in the 25

�C aged module and 33% in the
70

�C aged one.

2. Horizontal cracks.
On the other side, horizontal cracks run alongside the transistors, at the
interface with the Si bulk. For this reason we decided to count the number
of MOSFET units with cracks on top. As depicted in Fig. 93a, a MOSFET
unit consists not only in the area upon the transistor itself but also in
the adjacent area before the next one. This allowed us not to neglect the
case in which the cracks propagate between two transistors. For instance,
In Fig. 93a there are 4 MOSFET units, 2 of which are affected by cracks.
We summed up the number of cracked MOSFET units in the analyzed
sections to obtain the ratio of crack unit to the undamaged ones. These
percentage values are represented in Fig. 93d, for the 25

�C aged module
and in Fig. 93e, for the 70

�C aged one.
The metallization affected by horizontal fissurations in the analyzed sec-
tions is 50% in the 25

�C aged module and 67% in the 70

�C aged one.
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If we suppose that fatigue cracking initiates at surface, then we can conclude
that vertical crack propagation along the GBs saturates when ⇠ 30% of the Al
metallizatation is fractured in the analyzed sections, for both modules aged
at 25

�C and 70

�C. At this point, cracks start propagating horizontally deep in
the source metal, close to the transistor area at the interface with the semicon-
ductor bulk. On the basis of our statistics, the percentage of transistor units
affected by cracks is greater in the module aged at higher temperature (67%)
than in the module aged at ambient temperature (50%).

4.2.1.2 Cracks propagation under the passivation layer

We have also characterized the microstructure of the Al metallization in the
aged modules outside the bonding apertures, under the SiO

2

passivation layer.
This coating layer is generally used in power devices to prevent reconstruction
phenomena during electro-thermal aging.

SIM imaging reveals that the metallization aging is not uniform under the
passivation, as we can see in Fig. 94, which represents two close FIB cross-
sections from the same 70

�C aged module. The metallization portion in Fig. 94a
looks similar to an as-is part, with an undamaged columnar grain structure. On
the contrary, the close section in Fig. 94b shows clear signs of aging, as for the
naked metallization next to the wires (Fig. 90 and Fig. 91), with the formation
of subgrains and many cracks running along the grain boundaries from the
surface to the MOSFET region.

We have quantified these cracks in the passivated metallization FIB sections
(⇠ 20) from a 25

�C and 70

�C aged module. We have applied the same method,
reported in the previous section (Fig. 93a), to count the cracked GBs and the
MOSFETs units. The percentage of passivated metallization affected by vertical
and horizontal cracks is reported respectively in Fig. 95a and Fig. 95c for the
25

�C aged module and in Fig. 95b and Fig. 95d for the 70

�C aged one. The
amount of cracked metallization in the analyzed sections under the passivation
layer is lower than in the naked metallization (Fig. 93b - b). This confirms
that the passivated metallization does not age uniformly: the initial bamboo
structure is preserved in some zones, whereas fatigue cracks concentrate in
others. If we look at the vertical crack propagation, the ratio of cracked to
undamaged metallization is not so different under the passivation layer and
in the naked areas close to the bonding wires (25% vs 31% for the 25

�C aged
module and 20% vs 33% for the 70

�C aged module). However, the horizontal
propagation of fatigue cracks alongside the transistors is drastically reduced
under the passivation (15% for the 25

�C aged module and 6% for the 70

�C
aged one) compared to the values obtained from the naked metallization (50%
for the 25

�C aged module and 67% for the 70

�C aged one).
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Figure 93: Horizontal and vertical cracks statistics in a 25

�C and 70

�C aged module.
(a) Vertical cracks are evaluated by counting at the metal surface the num-
ber of cracked (GB

5

) and undamaged (GB
1

-GB
4

and GB
6

-GB
8

) grain
boundaries . Horizontal cracks are evaluated by counting the number of
transistor units with cracks on top (Transistor unit 2 and Transistor unit 3)
with respect to the undamaged ones (Transistor unit 1 and Transistor unit
4).
The ratio of cracked vs undamaged GBs is showed in (b) for a 25

�C aged
module and in (c) for a 70

�C aged one.
The ratio of cracked vs undamaged transistor units is showed in (d) for a
25

�C aged module and in (e) for a 70

�C aged one.
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Figure 94: SIM image of the Al top metallization coated by SiO
2

passivation from two
close cross-sections in a 70

�C aged module.
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Figure 95: Ratio of cracked vs undamaged GBs in (a) a 25

�C aged module and in a (b)
70

�C aged one.
Ratio of cracked versus undamaged transistor units in (c) a 25

�C aged mod-
ule and in a (d) 70

�C aged one.
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4.2.2 Metallization under the bonding wire

Under the bonding wire we find again that the bonding process causes plastic
deformation of the Al metallization prior to aging. Fig. 96 shows a FIB cross-
section of the metallization under the wire in an as-si module. Here the initial
grain size seems systematically smaller compared to the bamboo structure of
the naked metallization prior to aging (Fig. 90a).

To confirm the apparent grain reduction under the wire bond observed in
ionic contrast, we have also performed ACOM mapping on a TEM lamella
from the interface region (Fig. 97a). As expected, the grains in the bonding
Al wire are much larger and the plastic deformation of the interface is highly
uneven. The grain size reduction in the metallization is here appending with
a real grain reorientation, as exemplified by the large grain boundaries that
are created under the wire. In Fig. 97b the misorientation between grain 1 and
grain 2 is above 30

�.
The metal microstructure and the uneven wire-metallization profile do not

significantly change at failure, as we can see in Fig. 98a and Fig. 98c, which
refer respectively to a 25

�C and a 70

�C aged metallization taken at the cen-
ter of the bonding contact. However, as for the aged naked metallization,
many cracks run from the metallization surface to the transistor area follow-
ing the grain boundaries. This has been particularly observed when the wire-
metallization contact is not tight, closer to the edge of the bonding interface
(Fig. 98b, from a 25

�C aged module and Fig. 98d for a 70

�C aged one).
In the following, we focus first on the wire-metallization interface imperfec-

tions and then we quantify the plastic deformation in the metallization layer.

Figure 96: SIM images of the wire-source metallization interface, at the center of the
bonding wire, in an as-processed module. Scale bar 2.5 µm.
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Figure 97: (a) ACOM map of the wire-metal interface of an as-processed module. (b)
Misorientation between the grains 1 and 2 along the white dashed line
respectively in (a). The standard stereographic triangle gives the color codes
of the grain orientations, taken here along the horizontal direction.

4.2.2.1 Wire-metallization interface

The bonding between the metallization and the wire is characterized by small
cavities and initial imperfections, visible in white contrast in Fig. 99a. This
white contrast suggests that the material is very different. In order to ana-
lyze the chemical composition of these imperfections, we have prepared thin
lamella from the wire-metal interface area and we inspect them in a TEM
equipped with an EELS detector. Fig. 99b shows the EELS spectra from the
wire (in blue), the metallization (in green) and the wire-metallization interface
(in red). The spectrum at the wire-metallization interface reveals the presence
of oxygen, proving that the initial imperfections are linked to the presence of
Al oxide. The most probable explanation for this presence is that the native
oxide is not fully broken during the bonding process.

During aging, cracks can propagate along these imperfections, causing a
reduced contact between the wire and the metallization or, at worst, the wire
lift-off. Cracks also run perpendicularly to the interface under the wires, as in
the metallization away form the bonding area.

Crack propagation upon aging has been investigated by FIB-tomography
experiments. In Fig. 100, a series of six (non consecutive) SEM images from
the wire-metallization interface of a 70

�C aged module are showed. In the
analyzed area, the contact between the wire and the metallization is severely
affected by the electro-thermal aging (image 1). A measure of the horizontal
delamination surface using the complete stack of tomographic SEM sections
leads to a delamination ratio of 78% over the tested volume. If we assume that
about 33% of the wire was attached to the metallization (see Section 4.1.2.2),
then the delamination affected another 10% of the expected contact during
aging. Of course, the volume tested by FIB is too small to make robust statis-
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Figure 98: (b) Central and (c) side SIM images of the wire-metallization interface in
a 25

�C aged module. (d) Central and (e) side SIM images of the wire-
metallization interface in a 70

�C aged module. The images correspond to
the FIB cross-section locations ("center" and "side") in the schema in (a).
Scale bar 2.5 µm.
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tics, but we have gathered convergent observations showing that a significant
delamination occurs between the wire and the metallzation it is attached to.
Going through the metallization volume, one can note some cavities appear
(image 43) and subsequently constitute a single crack running from the bond
interface to the transistor area (image 228). This crack splits in two new cracks
(images 135 and 166) that propagate in the Al metallization (image 176). As
demonstrated in Fig. 98, the same mechanisms are observed in devices tested
at 25

�C and 70

�, but at different number of cycles. Temperature is therefore
accelerating mechanisms that are the same in both cases.

Figure 99: (a) SIM image of the initial artifacts which characterize the wire-
metallization bonding of an as-is module. (b) EELS spectra from the wire
(in blue), the metallization (in green) and the wire-metallization interface
(in red). The red spectrum at the wire-metallization interface reveals the
presence of oxygen.
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Figure 100: (b) Selection of six non consecutive SEM images from the data stack of
the wire-metallization interface (according to the schema in (a)) of a 70

�C
aged device (slicing distance 50 nm). The yellow rectangle in (a) represents
the milled imaging face. Scale bar 2.5 µm.
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4.2.2.2 Plastic deformation due to the bonding process - Statistics

We have also assessed the uneven plastic deformation along the applied stress
of the wire bonding, that is perpendicular to the wire-metallization interface.
We developed and used two different methods to quantify the deformation
metallization under the wire:

1. Minimum thickness based statistics.
In Section 4.1.2.2 we locally measured the deformation in as-is and aged
SPD06 modules as the minimum metallization thickness in the analyzed
sections, by taking the initial metallization thickness away from the bond-
ing wire (in a non-aged device) as reference. We did the same for T07D17

power devices aged at 25

�C and 70

�C, increasing the number of analyzed
sections (⇠ 15 for each T07D17 module, ⇠ 7 for each SPD06 module), in
order to have a more consistent statistics.
Fig. 101 shows the mean deformation percentages in a 25

�C and 70

�C
aged module, and in the relative as-is parts. Here, we found out that plas-
tic deformation ranges between 21% and 12% in average in the measured
sections. This range is narrower than the one obtained for the SPD06 de-
vices (Fig. 85), probably due to the fact that we measure a higher number
of T07D17 sections. However, the standard deviation of the sets of values
is comparable, or even higher, compared to the SPD06 data sets, confirm-
ing that the wire-metallization interface is highly uneven.

Figure 101: Plastic deformation of the Al metallization under the bonding wires of the
as-is and aged modules in a 25

�C and 70

�C aged device. The deformation
has been calculated as the minimum metallization thickness in the wire-
metallization FIB section, taking the initial metallization thickness (away
from the bonding wire) as a reference.
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2. Deformed area based statistics.
The previous method takes into account only the metallization parts in
compression under the bonding wire, measuring the metallization thick-
ness minimum value respect to the reference thickness (measured away
from the bonding wire). However, under the bonding we can observe
the succession of compression and extrusion parts, corresponding to the
zones where the metallization thickness is lower and higher than the ref-
erence thickness (102 and Fig. 103). This second method, illustrated in
Fig. 102, has been developed in order to considered both parts. The de-
formation is measured with respect to a reference that corresponds to the
initial position of the metallization free surface (red line) by computing
the metallization areas under (zones -) and over (-zones +) this reference.
The deformation is then calculated as follows:

DeformedAreaRatio =
Areadef

Arearef
(7)

where:

Areadef =
X

i

Ai (8)

Arearef = lcut ⇤ href (9)

Figure 102: Schematic illustration of the area-based measurement method of the plas-
tic deformation imposed to the Al source metallization by the bonding
process. href = initial metallization thickness, href = image width.

The method takes in account the fact that the initial deformation is not
uniform along the wire-metallization interface, that the interface is not
straight, and that both extrusion and compression of the metallization oc-
cur during the bonding process. This is clearly seen in Fig. 103, showing
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two closed cross-sections of the Al metallization under the same bonding
wire: in Fig. 103a the wire-metal interface is almost straight without de-
formation, whereas in Fig. 103b a severe plastic deformation significantly
changes the interface profile, provoking a thinning of the metallization
on the sides of the micrograph and a bulging in the middle.
As plotted in Fig. 104, the deformation ranges from a minimum value of -
0.4% (the - sign indicates that the extruded parts dominate in this section)
to a maximum of +36% (the + sign indicates that the compressed parts
dominate in this section) in average in the measured sections (⇠ 10 for
each module, equivalent to Fig. 102). The images corresponding to these
two peak values are shown in Fig. 103. This wide range is in agreement
with the results obtained with the previous method.

The wide deformation ranges obtained with the two proposed methods con-
firm that the wire-metal interface is highly uneven in the measured sections
and that the plastic deformation is also very non uniform. But they also prove
that these measurements strongly depend on the location of the sections along
the bonding interface. However, FIB preparation does not allow to cut the en-
tire bonding area, and so measuring the total deformation in the whole cross-
section was impossible until recently.

In the following, we proposed an alternative cross-sectional preparation,
using the JEOL Cross-Polisher system, that allowed us to cut and visualize
the whole wire-metallization interface without introducing additional defor-
mation, which was the initial challenge that we had to overcome.
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Figure 103: SIM images of the wire-metallization interface in two close areas under
the same bonding wire. The images refer to a non-aged module. The red
straight line represents the initial metallization surface. White arrows show
how the interface moved from this initial position after wire bonding. Scale
bar 2.5 µm.
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Figure 104: Deformed area ratio of the Al metallization under the bonding wires of
a module aged at 25

�C (b), with the relative as-is part (a), and of a 70

�C
aged module (d), with the relative as-is part (c).
The deformation has been measured in 10 sections for each analysed mod-
ule according to the method represented in Fig. 102.
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4.2.3 In depth investigation of the whole wire-metallization interface by Cross Pol-
isher preparation

Up to now we have focused on local studies that do not allow to observe
the degradation phenomena occurring at larger scale. The study showed in
this section, instead, focuses on a lager field of view and allow us to address
these phenomena. FIB cross-sections of the Al source metallization of T07D17

modules limit the microstructural investigation to a few tens of micrometers
wide areas and few micrometers deep in the Si bulk, below the interface with
the MOSFETs. This forced us to perform several time-consuming cuts in the as-
is and aged module, both away and under the bonding wires, in order to collect
a sufficient number of SEM and SIM images for a thorough study. However, as
shown in the previous paragraphs where statistics where sometimes limited,
we felt the need of a larger field of view:

• The measurements of plastic deformation proposed in the previous sec-
tion (4.2.2.2) are based on local methods. Hence, the obtained defor-
mation values are strictly dependent on the location of the analyzed
cross-sections along the bonding interface. The cut of the whole wire-
metallization interface could allow us to compute the total deformed
area under the wire in the analyzed section.

• A few SIM images of the aged metallization away and under the wires
(Fig. 90c and Fig. 98d) showed the propagation of fatigue cracks from the
Al to the Si bulk, through the MOSFET area. A deeper cross-sectional cut
could allow us to follow these cracks in the semiconductor and investi-
gate their extension.

• In many cases, the region of the device where failure arises is easily
recognizable. For instance, in the power module of Fig. 105a (aged at
25

�C) we can observe the local melting of the bonding wire with a severe
cracking of the bonded metallization (Fig. 105b) and of the passivated
area around it (Fig. 105c). When we looked at the inner metallization
below these zones, by FIB cross-sectional cuts, we observed a generalized
crack propagation, not only in the Al top metal but also in the Si bulk.
This is visible in (Fig. 106a), under the passivated metallization, and in
(Fig. 106b, 106c), under the naked metallization closer to the wire. It is
not easy to determine the origin of these cracks, if they propagate from
the semiconductor to the metal surface or the other way around. A wider
inspection of the device layered structure below the failed bonding wire
could help us to investigate these failure mechanisms.
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Here we try to address these points, showing the results of the preparation
by the CP system, which allowed us to section ⇠ 1mm ⇤ 1mm bonding areas of
T07D17 devices, to be imaged by electron and ion contrast.

Figure 105: (a) Top view SEM image of an Al bond wire welded on the Al source
metallization in a 25

�C aged device, after a short-circuit event. At higher
magnification, big cracks propagating in (b) the passivated metallization
and (c) next to the bonding wire (located in the boxes (b) and (c) in (a)).
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Figure 106: Cross-sectional SEM images of the heavily cracked metallization (a) in the
passivated area and (b) close to the melted bonding wire of the module
depicted in (Fig. 105a).
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4.2.3.1 Plastic deformation of the initial metallization under the bonding wire

In the SEM micrograph of Fig. 107 we can see the overview of a cross-section
prepared by CP from an as-is module. It includes the Al bonding wire and
the Si bulk, attached to the Cu heat sink below. The Al source metallization
on the transistor area, at interface with the semiconductor, together with the
wire-metallization interface, are not visible at this magnification. The red area
indicates the location of the interface between the Al wire and metallization
that is depicted at higher magnification in Fig. 108b. We have collected a mo-
saic of 12 consecutive SIM images (according to the schema in Fig. 108a) to
reconstruct the entire bonding area at a resolution good enough to distinguish
the grain Al microstructure of the two metallic parts and their interface. Below
the metallization we can also notice the transistor units at the interface with
the Si bulk.

We used these images to measure the total deformation in the initial Al
metallization due to the bonding process. We applied the second method ex-
plained in Section 4.2.2.2, based on the measurement of the metallization areas
under and over a reference corresponding to the initial position of the met-
allization free surface. If we sum up the absolute values of the compression
and extrusion areas under the bonding wire, then we obtained a total plastic
deformation of 4.9% in the analyzed section. This value is confirmed for other
bonding areas: in the relative aged module of the same device, for instance, we
found out a plastic deformation of 5.2%.

The ion contrast images of Fig. 108 gave us also a visual idea of the granular
Al structure, both in the wire and in the metallization. As previously observed
in the FIB sections and confirmed by ACOM mapping (Fig. 96, 97a, 98), the
grains size in the wire is generally larger than in the Al metallization. We can
also observe that the grain refinement in the source metallization is not uni-
form along the bonding area. In some zones, we can notice some columnar
larger grain (as in Fig. 108l). This is particularly true at the extremity of the
bonding (Fig. 108n), where the two metallic parts are not in contact. Moreover,
the Al-Al interface is more uneven in some parts (Fig. 108e, g) than in others
(Fig. 108l), which are more straight. This confirms the results of the local inves-
tigation by FIB cuts in the previous section (4.2.2.2), that plastic deformation is
not uniform in the metallization under the bonding wires.
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Figure 107: SEM image of a cross-section prepared by Cross Polisher system in an as-is
module. The large cut area shows the power die layered structure: Al wire,
Si bulk and Cu heat sink. The Al source metallization on the transistor
area, at interface with the semiconductor, is not visible at this scale. The
red area indicates the location of the Al wire-metallization interface that is
shown in detail in Fig. 108a - n.
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Figure 108: (b) SIM images mosaicing of the whole wire-metallization cross-section
prepared by cross-polisher, according to the schema in (a). The images
sequence offers a global vision of the metallization grain structure under
the bonding wire and of the wire metallization interface. It can be used to
calculate the total amount of deformed area due to the bonding process.
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4.2.3.2 Crack propagation in the metal and semiconductor of the aged modules

We have investigated the cross-sectional inner structure of the aged module,
in correspondence to the superficial metallization melting point that indicates
the failure location (Fig. 105a). Large scale cross-sectioning reveals that under
this area, the Si substrate is affected by a severe cracking. In the following, we
present these degradation phenomena observed in two aged module, the first
one at 70

�C and the second one a 25

�C.

70

�C aged module.

The SEM image in Fig. 109 shows a 70

�C aged module with the two
bonding connections. In the insert we can see their position in the power
device. Under the left wire in the SEM micrograph (named wire 1), large
cracks propagate in the Si layer close to the metallization surface and
down to the die attach, at the interface with the heat sink. A closer in-
spection under wire 1 (Fig. 110) shows two different crack types:

1. a thicker one, visible at lower magnification in Fig. 110a,

2. and a finer one, showed at higher magnification in Fig. 110c, 111a
and 111b.

The latter is connected to cavities in the Al metallization (Fig. 110c) that
are larger and rounder than the fatigue cracks generated during electro-
thermal aging (Fig. 110b). Moreover, these bound cracks are filled with
Al as shown in the EDX maps of a crack portion (Fig. 111c) and in the
relative live scan plot (Fig. 111d), representing the element distribution
along the dashed line in Fig. 111c. This suggests that local melting or
large Al diffusion took place in a device that remained hot long enough,
or that keep conducting a current despite not functioning anymore (these
damages are too important to keep the device operational and have obvi-
ously destroyed several transistors). On the other side, we have verified
that the larger cracks in the Si bulk are not filled with Al, meaning that
the device was completely failed, non-conductive and cold when they
opened.

A similar scenario could be envisaged under the passivated metallization
between the two wires (Fig. 112). Here we can see a large crack in the
Si layer branching out and propagating until the metallization surface,
which in some cases appears completely broken (Fig. 112b). This remind
us the FIB images of a 25

�C aged module seen at the beginning of this
section (Fig. 106a). Moreover, in Fig. 112 we can also observe finer Si
cracks in the MOSFET region (on the left in Fig. 112a) and connected to
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Al cavities (Fig. 113a). The EDX mapping confirms that these finer cracks
are filled with Al (Fig. 113c).

Figure 109: SEM overview of a 70

�C aged module prepared by CP for the SEM/SIM in-
spection. In the insert, optical image image of the T07D17 device, showing
the position in the aged module (in red) of wire 1 and 2 under investiga-
tion.
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Figure 110: (a) SEM cross-sectional imaging of the bonding wire from an aged power
module (70

�C aged) showing different types of cracks; (b), (c) ionic higher
magnification images of the wire- metallization interface located in the
boxes (b) and (c) in (a). The die crack resulted from an electro-thermal
event occurring at failure time.
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Figure 111: (a) Low and (b) high magnification SEM image of the cracked Si bulk
under the bonding contact. (c) EDX mapping of the crack in the Si bulk
and (d) relative line scan plot showing the element distribution along the
dashed line in (c).
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Figure 112: (a) SEM cross-sectional imaging of the naked metallization between the
two bonding wire of the 70

�C aged module, showing different types of
cracks: fatigue cracks in the metallization layer and fragile cracks in the Si
substrate; (b) at higher magnification, the Al top metallization continuity
results abruptly compromised as result of the crack propagation in the Si
substrate until the surface.



4.2 aging of t07d17 components 141

Figure 113: (a) SEM cross-sectional image of a fine crack in the Si layer contacted to the
Al metallization in a 70

�C aged module. (b) Al mapping by EDX showing
some of these Si fine cracks filled with Al. Scale bar 5µm
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25

�C aged module.

Similar degradation phenomena have been observed in a 25

�C aged mod-
ule. The Si layer under one of the two wires results considerably fractured
(Fig. 114a). The position of this wire is the same as wire 1 in the 70

�C aged
module previously observed (Fig. 109). Then, it seems that failure in the
two analyzed modules occurs always at the same location, corresponding
to the region beneath wire 1 in the insert of Fig. 109. Here, a large crack
branches out everywhere in the Si substrate: upwards, through the inter-
face with the MOSFETs area, breaking a dozen of transistors under the
center of the bonding (Fig. 114a) and others under at the edge (Fig. 114c),
and downwards until the die attach.
But the feature that has drawn the most of our attention is the round-
shape area of ⇠ 100µm of diameter in the Si layer, visible at low mag-
nification in Fig. 114a and at higher magnification in Fig. 115a. Since its
contrast looks similar to the one of the Al, we decided to analyze its
chemical composition. In Fig. 115b we can see the EDX mapping of this
zone, revealing that the round-shape feature is filled with Al. It means
that the Al metallization and bonding wire melted and diffused in the Si
because of the the high temperatures during failure. This is in accordance
with the situation at surface level (Fig. 105b), showing a heavy melting
of the bonding wire. EBSD mapping (Fig. 116) in the same zone reveals
that the Al material diffused in the Si bulk is characterized by a granular
microstructure. This means that the melted Al recrystallized when the
device ceased to operate and cooled down.
At this point, in the highest magnification images of the area close to the
bonding wire (Fig. 114b and Fig. 114c) we can notice that the Al-Al in-
terface is no more visible in this bonding contact. On the contrary, SEM
images (Fig. 117a and Fig. 117b) and EBSD mapping (Fig. 117c) from
the adjacent bonding in the same aged module (corresponding to wire
2 in the insert in Fig. 109) show a normal structure : we can still distin-
guish a well defined wire-metallization interface with a finer granular
microstructure in the Al metallization and larger grains in the bonding
portion on top. This demonstrate that the warm-up has been localized in
the first bonding area, where failure occurred. Here, the high tempera-
ture caused the melting of the two initial metallic parts, creating a new
Al microstructure, and the diffusion of material in the Si below.
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Figure 114: (a) SEM cross-sectional imaging of the bonding wire from an aged power
module (25

�C aged) showing different types of cracks; (b), (c) higher
magnification images of the wire- metallization interface located in the
boxes (b) and (c) in (a). The die crack resulted from an electro-thermal
event occurring at failure time.
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Figure 115: (a) SEM cross-sectional imaging of the round shape feature in the Si sub-
strate (Al contrasted like) from an aged power module (25

�C aged); in (b)
the corresponding EDX maps of the Si (in light blue) and Al (in yellow)
are overlapped, showing that the round shape feature in the Si substrate
is made out of Al. This has probably diffused from the top wire during
the short-circuit event, because of the local melting of the metallic parts at
high temperature.
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Figure 116: EBSD map of the melted area at the wire-metal cross-sectional interface
from a 25

�C aged module. The standard stereographic triangle gives the
color codes of the grain orientations, taken here along the horizontal direc-
tion.
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Figure 117: (a) SEM cross-sectional imaging of the wire-metallization interface pointed
by the white arrows, (a) at the center and (b) at the extremity of the bond-
ing area. (c) Relative EBSD map of the wire-metallization-semiconductor
layered structure. The standard stereographic triangle gives the color
codes of the grain orientations, taken here along the horizontal direction.
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D I S C U S S I O N

Device burnout is a common failure mode in power modules approaching
their lifetime limit. Temperature runaway leading to this type of failure is often
attributed to an increase of the drain-source resistance. In particular, the metal
parts of power modules such as IGBT and MOSFET show alterations that could
lead to such an increase of resistance. The alterations seen by these metallic
parts are often attributed to their poor resistance to mechanical deformation,
even if the mechanisms by which the alterations occur remain unclear.

Because solders and wire bondings failures are in part process- and in part
material-dependent, tuning the mechanical resistance of these metal parts may
increase their reliability. In fact, new generations of power devices have been
designed to delay such failures, transferring some of the load to the source
metal. This is particularly true for solders in the case of NXP power modules:
the LFET1T power MOSFETs studied in this work aged mainly through met-
allization degradation The aging of the source metallization, instead, cannot
be fully controlled and seems governed by intrinsic and universal degrada-
tion mechanisms that will be discussed in this chapter. The Al technology em-
ployed here is rather representative of many back-end packaging in the field:
Al wires are ultrasonic-welded to the metallization. Aside from the subsequent
electrothermal cycling, many parameters can influence the potential evolution
in this set-up:

• the composition of both the wire and the metallization. Alloying will
increase its mechanical and ohmic resistance;

• the grain size of both elements will influence their hardness and mi-
crostructural stability (small grains will make the metal harder but will
be prone to grain growth);

• the interface created between the wire and the metallization will depend
on the bonding parameters, may affect the microstructure of both the
wires and the metallization and introduce external elements.

We will first recall how the Rds(on) can be linked to the elevating temper-
ature of the module during aging. Then we will compare the as-process and
aged microstructures of both metallization and wires, and then discuss the
possible mechanisms of aging for each parts, focussing on the metallization
(passivated or not) and the evolution of the wire/metal interface.
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5.1 Rds(on) evolution during electro-thermal aging

The device burnout is the failure mode mainly observed in the LFET1T com-
ponents under investigation (Fig. 118), as consequence either of a failure event
occurring somewhere in the device or of its wear out [Cia02]. It is associated
with the short-circuit conditions imposed during the accelerated aging tests,
which compel the device to endure large current flows while the battery volt-
age is applied. This leads to thermal stress peaks, corresponding to a local
increase in the Rds(on), which accelerate the device aging until the final fail-
ure [Cia02] [Ber10] [Kho07a] [Mar14].

During the first part of this work, we have set up a test protocol that allowed
us to monitor the device aging through the evolution of the Rds(on) and, in
parallel, the change in the microstructure of the Al source metallization. The
result is reported in Fig. 119. The plot shows the Rds(on) at increasing number
of SC cycles and confirms an increase, of about 14%, in the Rdson during
aging, until failure. As seen in details in the previous chapter (section 4.1) and
summarized in 120), this is associated to a progressive Al surface metallization
reconstruction, that to clearly show up after ⇠ 100 kcycles.

Figure 118: Burnout spots detected after failure (a) between two bond wires in a SPD06

module and (b) at the bonding connection in a T07D17 module. Scale bar:
250µm.

5.1.1 Potential and temperature mapping

In order to assess the role of the top metal resistivity in the Rdson curve, poten-
tial mapping have been performed on the top surface of the DUT at 1kcycles,
50 kcycles, 200 kcycles and 300 kcycles (Fig. 121). Due to the damages induced
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by the probe during the potential measurement, each map has been acquired
from a different device. Therefore, the obtained results are not consistent for
a quantitative comparison of the ageing factors. However, we can observe a
metallization voltage drop arising in the center of the device during aging. An
increase of approximately 0.6 mV at 1 A DC occurred between the initial state
(1Kcycles in Fig. 121a), and the end of life (300kcycles in Fig. 121a). This means
that the electrical resistivity of the top metal layer has significantly increased
with the ageing of the DUT. The short circuit current with a maximum value
of 600 A will be responsible for a greater increase in the source potential.

A similar analysis has been conducted using an IR thermal mapping system.
The ageing effects on the device electro-thermal behavior has been assessed
by measuring the time- dependent temperature increase on the top surface of
the DUT. The thermal measurements have been performed in equivalent time
domain using 500 kHz frame rate. The short circuit pulse has been periodi-
cally repeated during each measure. Also in this case, different devices have
been used to evaluate different ageing levels. As result, Fig. 121b depicts the
hottest maps for 1 kcycles, 50 kcycles, 200 kcycles and 300 kcycles respectively.
IR maps show relatively homogeneous temperature increase during short cir-
cuit event for low aged devices while the middle of the device experiences the
highest temperature area. The locations of the hottest points on the DUT have
been marked on the maps by black arrows. For components having undergone
a significant number of short-circuit events, we observe the emergence of hot
spot close to the wire bonding pads location with a reduced temperature peak
at the device center, as predicted by the source potential analysis [Rom14].
This hot spot is the result of focusing of the current and it is the main cause
of device performance degradation and eventually failure [Ira05]. It can also
be connected to the metallization reconstruction and the depolarization of the
gate in areas distant from wire bonding. It is also clearly shown that the posi-
tioning of the on chip temperature sensor becomes critical as the ageing factor
increases [Ira05]. In fact, as stated above, the hottest point changes position,
moving from the device center to the bonding wires locations.
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Figure 119: Increase of about 14% in the on-state resistance after repetitive SC events
(3.55 J/cm2) at ambient temperature. At 300kcycles the device failed.

Figure 120: Increase of about 14% in the on-state resistance after repetitive SC events
(3.55 J/cm2) at ambient temperature. At 300kcycles the device failed.
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Figure 121: (a) Active module of an SPD06 device under aging test. Potential and
temperature mapping of its surface have been performed during aging.
(b) Source voltage mapping [V] at ID = 1A under SC conditions, after
1kcycles, 50 kcycles, 200 kcycles and 300 kcycles.
(c) Temperature distribution [K] under SC conditions, after 1kcycles, 50

kcycles, 200 kcycles and 300 kcycles. Areas where the temperature is lowest
correspond the bonding connections, according to the picture of the active
module in (a).
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5.2 source metallization reconstruction and crack propaga-
tion - naked metallization

A systematic SEM and SIM study of the Al source metallization of SPD06 and
T07D17 modules that underwent different electro-thermal aging conditions re-
veals common metal degradation mechanisms. They consist in a heavy metal-
lization reconstruction in the vicinity of the bonding connections. It occurs, at
surface level, by an increase in the metallization roughness compared to the
initial granular Al structure Fig. 122, and, deep inside the material, by an ap-
parent grain shrinkage (Fig. 123. At the same time, fatigue cracks run from the
Al surface down to the transistor area, following the grain boundaries.

The results of our microstructural characterization are in line with the degra-
dation mechanisms described in the literature for Al and Cu metallizations
[Gla04] [Cia02] [Mar14] [Nel11] [Nel13]:

• Before tests, the metallization surface is smooth and fits the wave-pattern
structure of the transistors (Fig. 122a). As in standard Al films, grains are
detected at the surface and little depressions define the grain boundary
grooving. They form at grain boundaries and triple junctions in order to
balance grain boundary surface energy and metallization surface energy
[Mar14] [Mul93] [Tho00]. Inside the layer, the interface between grains
are visible by ion channeling contrast; bamboo Al grains, with 4µm av-
erage diameter and height equal to the layer thickness, fill all the met-
allization volume. The high diffusivity of atoms at grain boundary and
at the surface explains the formation of these depressions after deposi-
tion at high temperature and cooling or during thermal cycles [Hei10].
In aluminum, surface diffusion is supposed to be shut off by the natural
oxide that grows almost instantly when bare Al atoms are in contact with
oxygen. Grain boundary grooves are however systematically observed in
bare Al thin films, especially those deposited at high or medium tem-
perature, as for these sputtered metallizations. This means that oxida-
tion probably occurs after the films are cooled, or that surface and grain
boundary diffusion, aided by the tensile stress state of the film on cool-
ing remains sufficiently active to overcome surface oxidation and provide
stress relaxation.

• After tests, the metallization surface is modified and shows a strong al-
teration due to plastic deformation and extrusions; the initial structure of
transistors is almost no longer visible. Inside the layer, grains are divided
in smaller grains and inter granular cracks appear.

We have then developed various hypothesis of mechanisms that could lead
to this transformation of the metallization:



5.2 source metallization reconstruction and crack propagation 153

• an increased surface roughness with no particular crystallographic orien-
tation;

• a grain size that seems smaller than the initial bamboo structure;

• an accentuation of the initial GB grooves that dive down to the transistor
area.

Figure 122: Al source metallization top view. (a) The initial Al structure is smooth and
fits the underlying MOSFETs structure. (b) After electro-thermal aging the
metallization roughness increases and many cracks propagate along the
grain boundaries. The grain structure and the transistor pattern are almost
no longer visible. Scale bar: 10µm.
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Figure 123: Cross-sectional cuts through the Al source metallization. (a) Before aging,
bamboo Al grains fill all the metallization volume. After electro-thermal
aging, an apparent grain shrinkage and crack propagation along the grain
boundaries are observed. Scale bar: 2.5µm.
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5.2.1 Possible deformation mechanisms

Several approaches are possible to assess the possible mechanisms at play. A
first manner would be to refer to the "Deformation Mechanisms Maps" from Frost
and Ashby [Fro82] who have compiled the dependency of stress, temperature
and plastic strain rates for various materials (in bulk form). For each type of
material (metals and ceramics) they define different domains in a stress ver-
sus temperature chart in which the deformation rate is predicted. Obviously,
a piece of aluminum loaded at high stress and high temperature will deform
faster than the same piece at low stress and low temperature. Some mecha-
nisms are also predictable:

• at low stress and high temperature, deformation can occur through var-
ious type of diffusions ("Coble creep" when the atoms diffuse through
grain boundaries and "Nabarro-Herring creep" at higher temperature
when this diffusion is massive through the crystalline lattice).

• At high stress and low temperature, deformation will very probably take
place through dislocation glide processes.

In the materials, there is no defined frontier between the various mechanisms
and these charts were definitely not intended to be universal and may be
adapted for various situations. For instance, the maps are microstructure-
dependent: the grain size will play a role in the Coble creep diffusion. The
smaller the grain size, the denser the GBs in the material, and thus the higher
strain rate for a given temperature and stress when Coble creep is activated.
Also, mixed mechanisms such as dislocation climb (often included in the more
vague denomination " power-law creep ") appear to be effective between the
two extremes (low T- high stress, high T, low stress).

This approach constitutes one of the reasons why we tried to set up a stress
measurement system during this thesis. Our system, described in Appendix B
was first tested in mid-2017 after multiple technical issues. We were able to re-
trieve a few stress/temperature curves, as the one in Fig. 124 before additional
technical issues stopped us. This plot describes the evolution of the bi-axial
stress in a naked SPD06 die (without bonding wires) after being cooled to liq-
uid nitrogen. Initially (at 25

�C), the Al is in compression because it expands
more than the Si substrate on which it is attached. Very rapidly (at around
50 MPa), it relaxes plastically until 160

�C where the heating (20

�C/min) is
reversed to cooling. We chose this point as the zero stress 1. The stress then
increases linearly until 100MPa in tension (this linear part corresponds to an

1 In absence of absolute wafer curvature prior to the device fabrication, we don’t have an absolute
value of the stress in the wafer + film system. The stress variations are real, but relative.
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elastic loading) before remaining constant from about 80

�C down to 25

�C. This
plateau is also the signature of a plastic relaxation. Such plot would therefore
indicate two temperature segments in which the Al metallization deforms plas-
tically :

• From 40 to 160

�C in compression

• From 80 down to 25

�C in tension

The stress amplitude is lower than 150MPa. If we refer to the Frost and Ashby
maps for these stress and temperature, the mechanism predicted is clearly
dislocation-based plasticity.

Figure 124: Stress-temperature plot for a 20-160

�C temperature cycle performed on
a naked SPD06 die. The stress is directly deduced from the die curva-
ture (measured by laser reflectometry - see Appendix B ) using the Stoney
equation (chapter 2, section 2.2.2).

It is interesting to note that O. Bostrom in 2001 [Bos01] followed the same ap-
proach for Al films deposited on Si substrates: stress measurements based on
wafer curvature and Frost and Ashby mechanisms maps. By building a map
for the specific case of a 1µm thick Al film with a bamboo structure deposited
on an oxidized Si wafer, he concluded that the equations of [Fro82] underesti-
mated grossly the stress in the film at medium and high temperatures and were
unable to reproduce the experimental stress/temperature curves obtained by
profilometry.

Expanded from epitaxial semiconductors [Mat74], a dislocation-based plas-
ticity model was also set-up by Nix in the late 1980’s. In this model, that mainly
focus on the yield stress of thin metal films, plastic deformation is exclusively
resulting from the motion of so-called "threading dislocations". These disloca-
tions, by shearing the film, also lied down a dislocation segment at the metal/-
substrate interface. The thinner the film, the higher the stress to stabilize this
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interfacial dislocation segment. Analytical calculations lead to a 1/film thick-
ness dependence of the yield stress, a relation that has been widely verified in
many metal/substrate systems [Wie07]. This model has been implemented by
Thompson [Tho00] to take in account the role of grain size in polycrystalline
films, such as the bamboo structure present in the present DUT metallizations.
In this dislocation-based approach, the smallest dimension (grain size or film
thickness) will dictate the yield stress of the film, provided the dislocations are
stopped by the interface or the GBs.

5.2.2 Plasticity by dislocation propagation

A more straightforward approach to test the possible deformation mecha-
nisms at play in the metallization is to perform temperature cycles on a cross-
sectional sample inside a TEM. TEM is one of the few tools able to image
dislocations with the appropriate resolution, and probably the only one able
to capture dislocations movements at video rate inside single Al grains. As
described in chapter 4, section 4.1.3. The difference between the silicon and
aluminum CTE is large enough to induce irreversible dislocation motion. In
our experiments, dislocations movements did not start before 300

�C, both in
the FIB lamella and the tripoded sample. It is important to point out that the
dislocation activity linked to � CTE effect has only been observed in the TEM
specimen having the Al layer in contact with the entire Si substrate thickness.
This was not the case for the ultra-thin TEM lamella, prepared by FIB, that
we used for the ACOM mapping of the Al metallization. In this later case, the
small remnant of the Si substrate is not able to impose a stress to the Al layer.
Although the thickness of the TEM specimen is much smaller than in the real
metallization, the absolute level of stress should be similar (about 20% lower
for the Von Mises stress [Leg09]. This explain why it is usually necessary to
reach higher temperatures in an in-situ TEM compared to a wafer-curvature
experiment. However, the differences that we see here are important (300

�C
in the TEM and less than 100

�C in the wafer curvature experiments). This
discrepancy is not completely explained as for now, but much more wafer cur-
vature experiments (with varying parameters such as temperature gradients,
temperature holds...) and in situ TEM temperature cycles (different grain ori-
entations, initial microstructures, ...) would be needed to rationalize it.

What has been clearly demonstrated during these in-situ experiments and
those previously reported in the literature [Mar14] is that the density of mov-
ing dislocations decreases during successive thermal cycles. They escape through
surfaces and crystal-amorphous interfaces [Leg02] but are also trapped in sub-
grains they contribute to form. These observations are in line with Martineau
et al. results and with the observations by FIB of grain shrinkage after thermal
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cycling reported in our work and in the literature [Ber09]. At first instance, this
division surprised us as grain growth is usually observed for polycrystalline Al
thin films on Si submitted to thermal cycles [Leg02] [Sch93]. However, ACOM-
TEM mapping showed that this division is due to the high sensitivity of elec-
tron channeling in FIB imaging. In fact, misorientations between these smaller
grains is less than 10

�, which means that they are subgrains formed by the
gathering of preexisting dislocations inside a single ”mother grain” [Hum05].
This means that the plastic deformation generated by dislocations is very low
(Martineau et al. reported a value of 0.3% per cycle from 25

�C to 450

�C for
an Al layer of 10µm [Mar14]) and cannot lead to the formation of voids be-
tween the various grains, as observed (Fig. 122b and 123b). Moreover, we can
expect very low stress values at the end of a cycle owing to the layer thickness
(4µm), as it has been experimentally shown that this stress varies inversely
proportional to the thickness [Nix89] [Nix98] [Wie07].

Thus, on the base of in-situ TEM observations, we can conclude that after
this first phase of very low plastic deformation and grain reorganization (that
probably happens in the very first cycles) other mechanisms than dislocation-
based plasticity must occur to explain the Al source metallization plasticity
and degradation.

5.2.3 Plasticity by atom diffusion

Plasticity by diffusion is described by an analytical model developed by Gao
in 1999 [Gao99] [Wei01]. According to Gao’s model, a tensile stress is relaxed
by the diffusion of matter from the free surface towards the film interior. Trav-
elling along grain boundaries, the extra atoms contribute to the formation of
a flexion boundary, which can be seen as an array of edge dislocations. Since
the film is constrained by the substrate, the stress concentrates at the grain
boundary/substrate interface and may generate emission of dislocations along
the film substrate interface. The opposite mechanisms, that is the compression
stresses, has not been taken into account. Gao’s model has been validated on
ultra fine copper films (200 nm) during heating experiments in a TEM [Bal03].
It is supposed to work for ultra fine films (< 300 nm) with bamboo structure
(in which the diameter is equal or smaller than the film thickness) and without
native oxide. It can, therefore, explain gold and copper film behavior, but it is
not applicable to thicker, self-oxidized Al metallization layers.

However, it has been showed by Legros et al. that this deformation mecha-
nism can be generalized to more complex systems including Al films [Leg03]
[Leg05]. Moreover, a few years ago, Pietranico et al. studied by SEM the evolu-
tion of the source metallization structure during the aging of power MOSFETs-
based devices without packaging [Pie11] [Pie09]. This is exactly what we did
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as first step to characterize the Al microstructure of SPD06 power modules at
increasing aging cycles. In line with our observations, the authors showed an
increased grain boundaries grooving with the number of cycles, with the conse-
quent formation of fatigue cracks and extrusion close to the grain boundaries.
On the basis of these considerations, supported also by similar observations
with thin films on substrate submitted to thermal cycles [Hei10], we can con-
clude that the plasticity of these metal layers takes place at grain boundaries
and that diffusion is the main deformation mechanism behind the metal degra-
dation.

Based on the Gao’s theory, Martineau et al. were the first ones to propose
a qualitative model to explain the crack initiation and propagation during
positive and negative electro-thermal stresses of power MOS metallizations
[Mar14]. This model, presented in Fig. 125, fits well the experimental obser-
vations on the LFE1T under investigation. The initial Al bamboo grain struc-
ture is represented in yellow on the Si substrate in blue (Fig. 125a). At their
interface, the line layer represents the transistor area, whereas at surface the
self-oxidation layer is in red. The model is described by Martineau [Mar14] as
following:

During the first thermal cycles, dislocations in the large grains of
the Al as-processed film rearrange themselves in cells (Fig. 125b),
and then in sub-grain boundaries (Fig. 125c). Remaining mobile
dislocations are absorbed at oxide interface and free surface. At
this point, there is no more easy plastic deformation vector and dif-
fusion takes over. Upon heating, the Al layer expands more than
silicon but, constrained by the substrate, goes in compression. Alu-
minum atoms move toward the free surface along grain boundaries
that are the more rapid paths for diffusion. If the stress is large
enough or lasts long enough, they can go through the oxide barrier
located at the bottom of the thermal grooves and oxidize when ex-
posed to the atmosphere. The accumulation causes small, oxidized
hillocks that cannot annihilate by surface diffusion (Fig. 125d). Dur-
ing cooling, the layer stress turns tensile causing boundary groov-
ing to self-passivates through surface oxidation (Fig. 125e). These
grooves cannot bond again during compression because of the oxi-
dation layer formed at the Al free surface (Fig. 125f). Over repeated
cycles, grooves become deeper cracks as they duck down into the
Al (Fig. 125e). Some of them reaching the interface with silicon
(Fig. 125g), causing a local electrical disconnection between neigh-
boring Al grains.
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Figure 125: Gao’s model extended to Al layers undergoing tension and compression
stresses during thermal cycles [Mar14]. (a-c) The dislocation density de-
creases by recombination in sub grain boundaries and absorption at GB
interfaces. (d-g) Al diffusion along grain boundaries, and subsequent oxi-
dation causing crack propagation through the Al layer.
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5.2.4 Plasticity by electromigration

Another possible explanation for the formation of hillocks and the degrada-
tion of metal layer in the vicinity of the bonding connections is electromigra-
tion. This mechanism, consisting in the transport of mass in metals stressed at
high current densities, has been reported in literature since the ’60s as a fail-
ure mode in aluminum-based metallizations for semiconductor devices [Bla69]
[Vai80]. The electron flow drags metal atoms resulting in the formation of
voids, where atoms are ejected, and extrusion, in the area where they gather
[Zen02]. This can lead to the formation of an open circuit in the Al metalliza-
tion due to void formation by condensation of vacancies. Another consequence
is the growth of etch pits into Si, where electrons leave and enter the Al, by the
solid-state dissolution of Si into Al and the transport of the solute ions at the
Al-Si interface [Bla69]. However, current densities needed for this mechanism
are significantly higher than the ones present in the present MOSFET wires
and metallization [Lie05].

During the microstructural characterization of LFET1T power devices, we
have never observed neither any asymmetry in the degradation of the surface
layer, according to the direction of the polarization, nor accumulation/deple-
tion of atoms whether at the Al surface or at the Si interface. We did not either
observe electro migration evidence near bonding as it was observed by Tse
and Latch [Tse95]. We can therefore conclude that, if electro migration is an
active mechanism, it is not observed here, either because it is too weak, or be-
cause its effects are largely compensated by another phenomenon like surface
or GB diffusion [Mar14]. This conclusion as also been reached by researchers
in Denmark that have cycled power diodes [Bri15] [Bri16].
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5.2.5 Fatigue crack propagation: SPD06 vs T07D17

According to the previous discussion, we can conclude that metallization degra-
dation in LFET1T power modules starts with a grain division by dislocation
glide that rapidly exhausts, followed by an accelerated diffusion of Al atoms
through the grain boundaries from the metallization interior to the surface.
This justifies the formation of fatigue cracks along the grain boundaries that
are bound to propagate deeper and deeper in the Al layer until failure (they
can not heal during compression phases because of the oxidation of Al free
surface). During aging, cracks propagate along GBs and not along sGBs. This
is because they are initiates at the GB grooves at the early stage of aging and
sGBs are formed after.

At this point, two different degradation mechanisms have been observed in
the LFET1T power modules under test, according to the schema in Fig. 126:

• Cross-sectional images of the bare Al metallization (without mold and
oxide passivation) in SPD06 power modules under progressive aging cy-
cles show a generalized broadening of the fatigue cracks in the final stage
of the device life (Fig. 126a). In same points, the metallization roughness
is comparable to its thickness, resulting in one or more MOSFET cells
almost uncoated, without conducting layer on top (Fig. 126b).

• On the other side, T07D17 components have been inspected only after
failure, so we do not have information about the crack evolution dur-
ing aging. However, at failure we could observe that here vertical cracks
are finer than the ones observed in SPD06 failed modules and branch
out deep in the Al. At this stage horizontal cracks propagate along the
interface with the oxide and the Si bulk (Fig. 126c and Fig. 126d).

These models of crack propagation along grain boundaries could explain
both the metal degradation morphologies during thermal cycles and the as-
sociated local rise of metallization resistance and temperature. In the case of
SPD06 devices, aging seems to be more localized at surface level in the Al
metal layer, where larger and larger voids interrupt the current flow through
the conductor until a failure event. Whereas, cracking in T07D17s systemati-
cally affect also the deeper layers, the oxide and the semiconductor 127.

It is difficult to compare the different failure mechanisms and draw a cer-
tain conclusion about the failure origin because the devices under study have
been tested at different aging conditions. Anyway, we can suppose that this
difference in the crack propagation models is due to the fact that the SPD06s
have been depackaged before test, in order to follow the metallization surface
evolution during aging, whereas T07D17 power modules remained closed in
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the mold compound, as during the normal operation. Moreover, in T07D17

modules, the metallization is coated by a SiO
2

passivation layer.
We can, therefore, suppose that the presence of the mold compound and the

oxide passivation slow down the groove broadening. However, despite its per-
fect adherence to the metallization and its stiffness, the oxide passivation layer
does not completely block the grooving at the GBs. SGs formation and crack-
ing are observed during aging in the passivated zones, as in the bare ones
(Fig. 128). The formation of SBs means that passivated areas are subject to
the same initial dislocation-based plasticity mechanisms observed in the bare
metal. On the other hand, crack initiation and propagation is more difficult to
explain since the adherent passivation film is expected to shut-out surface dif-
fusion and thus the grooves opening. However this phenomenon has already
been observed in studies on self-passivated thin films [Kra02], which proves
that diffusion at GBs remains efficient even in a context of diminished surface
diffusion. These results have been also confirmed by the statistical measure-
ments on crack propagation, detailed in the following.

Figure 126: Crack propagation models through the Al layer at failure. (a) For SPD06

power modules at the final aging stage until failure, fatigues cracks run-
ning from the surface along the grain boundaries become broader and
broader. (b) SIM cross-sectional image of the cracked metal in a failed
SPD06, showing a crack width on the same order of the metallization thick-
ness. (c) In T07D17 failed power modules, finer vertical cracks branch out
and propagate horizontally all long the MOSFETs region. (d) Relative SIM
cross-sectional imaging form a 70

�C aged module.



164 discussion

Figure 127: SEM cross-sectional image showing the whole metal-oxide-semiconductor
crossed by cracks in a 70

�C aged T07D17 module.

5.2.6 Passivation and temperature effect on crack propagation

The oxide passivation coating, around the bonding areas, in T07D17 devices
is supposed to limited the Al diffusion at surface [Cia02], and consequently
along the GBs, preventing the Al reconstruction phenomenon. Fig. 128 shows
the crack propagation in a passivated (a) and bare - the metallization is coated
only by the mold compound - (b) zone.

In order to quantify these cracks, we have established the method described
in section 4.2.1.1, which consists in measuring the number of cracked and un-
damaged vertical GBs, and the number of MOSFET cells horizontally cracked
and undamaged. The result of the statistics is summarized in Fig. 129. The plot
clearly shows that cracks in the passivated zones thin out, especially in the case
of horizontal cracks. These observations suggest that horizontal cracks initiate
and propagate once the vertical ones reach the transistor area, starting from
the metal surface. If we take as reference the naked metallization and we as-
sume that vertical cracking saturates when 30% of GBs are cracked, then we
can explain why horizontal cracks are reduced in the passivated parts, where
a minor number of vertical GBs is cracked (20%).

The temperature effect is also more pronounced in the case of bare metal-
lization. Here the horizontal crack percentage in the analyzed sections is sig-
nificantly higher at 70

�C then at room temperature. This difference is lowered
in the passivated parts.
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Figure 128: Cross-sectional SIM images of the (a) passivated and (b) bare Al source
metallization, showing a localized propagation of vertical cracks in the
first one and a generalized degradation in the second one, with horizon-
tal cracks branching out all along the metal-transistor interface. Scale bar:
2.5µm

Figure 129: Metallization crack statistics for a T07D17 module aged at 25

�C and 70

�C,
in non passivated –bare– (left) and passivated (right) zones.
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We can conclude that, as expected [Cia02], crack initiation and propagation
in the source metallization of LFET1T modules is controlled by the oxide passi-
vation layer. However, this coating does not completely block the intergranular
diffusion of Al along the GBs and discontinuities in the passivated metal –
even if reduced in number and more localized compared to the bare parts–
can generate a peak thermal stresses that can accelerate the aging process.
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5.3 weakening of the bonding connections - metallization un-
der the bonding wire

The surface reconstruction of the Al metallization away from the bond connec-
tions is one of the aging effect that has been reported since the early times
of microelectronics and considered as one of the main failure mechanisms of
modern power modules[Cia02] [Phi71] [San69].. We also reported this metal
aging effect in the LFET1T power die studied in this work in the vicinity of the
bond wires. This surface reconstruction is well described by existing models
of Al atom diffusion along the grain boundaries [Gao99] [Mar14] leading to
heavy fatigue crack propagation through the Al thickness. This aging mecha-
nism and can provide an explanation of the increase in the metal resistance
detected at failure.

However, a large part of the Al source metallization, located under the bond-
ing connections, is not taken into account in these models. One reason is the
poor accessibility of this zone. SPD06 and T07D17 devices include pure Al
bonding wires, respectively 6 and 8, connected to the active zone of the power
modules. They are 400µm in diameter and they are cold welded by ultrasound
to the 4µm thick Al source metallization, for a total bond area of ⇠ 0.3mm2

each connection. We expect, therefore, that plastic deformation induced by the
bonding process complexifies considerably the situation in the Al metalliza-
tion under the bond wires prior to aging. At the same time, during the normal
device operation and the electro-thermal tests this zone is particularly criti-
cal because of the highest currents and temperatures concentrating under the
bond connections.

A wide literature exist on wire bondings, describing the influences of tech-
niques, geometries (sections and loop shape [Cel11], composition [Agy11] and
bonding parameters [Lum06]) on the adherence and long-term reliability of
this contact through thermal or thermo-mechanical stress. In our case, the
wire is made of pure Al, bonded on an Al metallization, which excludes all
the potential problem of intermetallic formation [Xu11]. The metallization is
also reinforced with Cu and W atoms. This, added to the fact that the grains
in the wire are larger than in the metallization (section 4.2.2) let us anticipate
that the wire will be softer than the metallization.

Despite several authors have studied the wire bonding process and its im-
pact either on the wire structure itself, the metallization or the cracks devel-
oping at the interface [Bro15] [Krz89] [Goe10], to the best of our knowledge
no systematic studies of the granular microstructure of the metallization un-
der the bond wires has been published. However, such resolution could give
us useful feedback about the bonding quality before and after aging or about
the initial deformed condition of the bonded metallization. This zone is partic-



168 discussion

ularly difficult to access and investigate by electron and ion microscopy, due
to the presence of the bonding connections that are 100 times thicker that the
Al metallization below. Recent studies [Yam07] showing a grain mapping of
wires observed in cross-section confirmed that the grain size in the wire was
in the range of a 100µm, much larger than in the metallization. This grain size
clearly decreases near the interface and also under the cutting tool (lower and
upper portion of the wire, respectively), but the authors did not focus on the
interface microstructural changes. Thanks to the original sample preparation
that we set up in this work to locally reduce the wire thickness before FIB
sectioning, we have been able to disclose the metallization under the bonding
wires in the as-is and aged power modules. This also allowed us to compare
the microstructure of the metal away and under the bonding wire, using ion
channeling contrast and the grain orientation techniques.

5.3.1 Initial wire-metallization interface

Before bonding process, the wires are in the form of Al cylinders of ⇠ 400µm

of diameter. During the bonding process, a bond force of ⇠ 10N is applied to
the two sides of the cylinder extremity along the black fleshes in the schema
in Fig. 130a, representing the cross-section of the wire on the metal-oxide-
semiconductur layered structure. The result is a total bond area of ⇠ 0.3mm2

with two tail sides (Fig. 130b) and an elliptical profile (Fig. 132c). Cross-sectional
SIM and TEM investigation of the bonding area before electro-thermal aging al-
lowed us to observe at high resolution the wire-metallization interface and the
Al-Al microstructure. Fig. 131 shows a cross-section through a bonding wire
before aging. The white arrow points out the transition from the non-bonded
to the welded region, in line with the literature images for analog bonding
processes [Cia02]. A higher magnification of these two zones is reproposed
here, in Figs. 132a (non-bonded part) and 132b (bonded part). The very first
observation which arises from this kind of images is that a wire-metallization
interface is still visible passing from the non-bonded to the bonded part. An
Al-Al interface exists even in the central areas of the bonding, meaning that
no Al atoms interdiffusion occurred between the two metallic parts during the
bonding process. If the bonding had been perfect, the wire material would
not have been distinguished from the Al metallization [Cia02]. Here, instead,
the bonding interface is characterized by initial imperfections which have been
linked to the presence of small cavities and Al oxide residues, according to
our SIM/SEM images and TEM chemical analysis. The most probable expla-
nation for this presence is that the Al native oxide is not fully broken during
the bonding process at room temperature, avoiding the interdiffusion of the Al
atoms and the formation of a perfect bonding. The Al-Al interface delimits two
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different granular microstructures. The grains in the bonded metallization are
finer than the ones in the bond wire (Fig. 132b), and also in the non-bonded
metallization part (Fig. 132a). This is due to the severe plastic deformation im-
posed by the bonding process to the Al metallization. TEM grain orientation
mapping of the metallization under the wires demonstrates that the grain re-
finement here is real, and is not related to a FIB artefact (as for the subgrains
formed in the first stage of the electro-thermal aging away from the bonding
wire).

Figure 130: Cross-sectional schema of the cylindric wire on the top metallization (a)
before and (b) after bonding process. The black flashes in (a) represent the
force direction during the bonding process. (c) Lateral view SEM image of
the elliptical bond area.
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Figure 131: SEM Cross-sectional image of the tail side of an as-processed wire on Al
metallization, showing the transition from the non-bonded to the welded
region

Figure 132: High magnification SIM image of the (a) non-bonded region and (b) the
welded one, showing that no Al-Al interdiffusion between the two metallic
parts occurred during the bonding process.
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5.3.2 Initial Plastic deformation

On the basis of the previous considerations, SIM and SEM cross-sectional im-
ages gave us a useful feedback about the bonding process in the as-processed
LFET1T devices: the Al-Al bond is not perfect and the two metal structures
remain overall separated by a finer interface composed by native Al oxide
residues and small cavities. Moreover, due to the bonding process, the met-
allization layer undergoes a severe plastic deformation prior to aging. These
images give also a useful feedback about the stress distribution during the
bonding process. According to the schema in Fig. 130a, the maximum stress
in the bond wire concentrates in the center, resulting in a uniform distribu-
tion of the stress in the metallization under the wire. This is demonstrated
by the fact that overall the Al metallization thickness is uniform all along the
wire-metallization interface in the analyzed sections (Fig. 133a, c). If not, we
would have observed an ellipsoidal profile similar to the one in Fig. 133b, with
a significant and non-uniform thinning of the central part of the metallization
under the wire, compared to the initial metallization thickness away from the
bonding wire (represented by the red dashed line as a reference). In our case,
instead, we have observed an uneven wire-metallization interface profile char-
acterized by the succession of straight segments and extrusion and compres-
sion parts (Fig. 133c). As proof of this, the difference between the thinning and
bulging metallization areas is almost zero in the analyzed cross-sections. This
also means that plastic deformation is not uniform along the applied stress
of the wire bonding perpendicular to the wire-metal interface. It is ⇠ 5%, if
we consider entire sections and ranges between 5% and 25% in average if we
calculate the deformation in smaller FIB sections, confirming that plastic de-
formation in the metallization under the bond wires is variable and the wire-
metallization profile is highly uneven. These values are obtained on a total
section area of ⇠ 1300µm2, which is small compared to the volume impacted
by the wire bonding (⇠ 0.3mm2), but not negligible. Taking in account the
pressure applied during the ultrasonic process, the average compressive stress
on the metallization is ⇠ 30MPa. This stress is much smaller than the yield
stress of a commercially pure Al with a grain size in the range of 1- 2µm, typ-
ically in the range of 100- 150MPa [Tsu02]. To explain that significant plastic
deformation occurred under this small load, we have to assume that only a
fraction of the 0.3mm2 of the metallization surface was truly in contact with
the wire. A very coarse estimate would lead to a third of the metallization be-
ing impacted by wire-bonding plastic deformation. This also explains why the
surface is deformed very inhomogeneously. The fact that only a portion of the
wire is welded to the metallization and that this portion decreases upon aging
is supported by previous experiments [Goe10]. Knowing more precisely the
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mechanical properties of both the wire and the metallization (which depends
heavily on impurity content, grain size, etc.) would be needed to perform a
better estimation of the impacted metallization surface, but predicting the very
heterogeneous deformation of the interface would remain out of reach anyway.

Figure 133: (a) Schema of the wire-metallization interface corresponding to (a) a uni-
form and (b) non uniform bonding stress along the interface. (c) SEM im-
age of the uneven wire-metallization interface of a LFET1T power device,
according to the schema in (a).
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5.3.3 Aging in the metallization under the bonding wires

We have asked ourselves if the initial plastic deformation in the contacted met-
allization could influence and favour aging in these bonding areas. This could
happen if grain shrinking multiply GBs, then the number of potential crack
paths. However, the presence of an Al/Al interface complicates this issue.

When plastic deformation is weak (⇠ 1%), only dislocation-based phenom-
ena and SGs formation take place. On the other hand, when several percent-
age of deformation are applied, we can expect a grain structure rearrangement,
with new cell formation, and a grain refinement. The results of our measure-
ments state that plastic deformation due to the bonding process can locally
reach high values, up to 20 or 30 %, that are enough to induce grain frag-
mentation. This has been confirmed by ACOM-TEM mapping, showing a a
refinement of the initially large bamboo grains, with the formation of new
grain domains having a relative misorientation of ⇠ 30�. Despite the GBs mul-
tiplication, associated to new potential paths for crack propagations, we have
not observed an evident increase in the number of cracks in the metal under
the wires. They are, on the contrary, limited to the zones chracterized by a
loss in contact between the wire and the metal (Fig. 134b), where the surface
metallization is free and diffusion phenomena can favour fatigue vertical crack
initiation and propagation, as we have seen in naked metallization.

We have, then, focuses on the effects of aging on the grain size. Accord-
ing to Thompson theories on structure evolution during thermal processing
of polycrystalline films [Tho00], we should expect a grain growth during ag-
ing from an initially smaller grain size. A grain growth in the bonding region
could change the wire-metal interface, favouring an improvement of the bond-
ing process. However, no significant grain growth have been observed in the
metallization under the bonding wire during aging. This can explain the sys-
tematic presence of a well-defined wire-metal interface also in the modules
that underwent electro-thermal aging. These consideration are only based on
qualitative results, a consistent statistics on the grain size before and after ag-
ing should be performed.

5.3.4 Crack propagation during electro-thermal aging

High resolution imaging by ion and electron microscopy shows that the met-
allization under the bond wires is significantly different from the naked met-
allization, as the bonding process induce plastic deformation prior to aging.
Moreover, during the bonding process, the native Al oxide covering the met-
allization layer is not fully broken. The result of the bonding is therefore an
Al-Al interface, consisting in small cavities and Al oxide residues (Fig. 134a),
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which prevents the interdiffusion of Al atoms between the two metallic parts.
This is a possible explanation of the fact that no signs of bond wire fatigue,
heel cracking or complete lift off [Cia02] have been detected in the failed mod-
ules. During aging, all the electro-thermal and/or thermo-mechanical load is
transmitted to the metallization beneath the bonding area and affects the wire-
metallization interface. This basically occurs by propagation of fatigue cracks
along the initial bonding imperfections, causing a reduced contact between the
wire and the metallization (Fig. 134b). Cracks also run perpendicularly to the
interface under the wires along the grain boundaries, as in the metallization
away from the bonding area.

The high density of metal breaks revealed by the tomography stacks can ex-
plain the increase of the Rdson, which implies that subsequent electrical pulses
will generate more heat, thus more deformation, and crack propagation. The
same aging mechanisms are observed in devices tested at room temperature
and at 70

�C, but at different number of cycles. This means that the mechanisms
are probably the same and they are just accelerated by the overall temperature
increase, explaining the lower life-time of the components aged at 70

�C. In
these tests, the self passivation of the Al layers are observed as the thickness
of the initial oxide keeps increasing upon aging, which is in agreement with
the observation of oxygen content increase in the metallization of diodes un-
dergoing electro-thermal aging [Bri16]. However, contrary to what has been
observed by these authors, this growth does not prevent the propagation of
cracks. In our devices, most of the horizontal crack propagation remains con-
fined at the metallization/wire.

Figure 134: Wire-metallization interface (a) before and (b) after aging (at 70

�C). The
Al-Al interface of as-processed modules presents initial imperfections, con-
sisting in small cavities and native Al oxide residues. During aging, cracks
propagate along these imperfections, causing a reduced contact between
the wire and the metallization. Scale bar 2.5µm
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This is a strong indication that this interface is weak. Indeed, if the Al-Al bond-
ing were initially perfect, the crack would deviate to the softer material that is
here the wire, because of its larger grain size. This is only observed scarcely,
and often the crack deviates again towards the interface, creating small cavities
above it, as showed in Fig. 134b. Further statistical analysis is required to bet-
ter assess the proportion of weak interface vs perfectly welded Al-Al contact
area, but our study clearly show that weak bonding is linked to the presence
of oxide, and this favor an horizontal crack propagation at the interface.

The amount of plastic deformation does not change significantly upon aging
in the analyzed sections under the bonding wires. As observed in the metal-
lization away from the bonding connections, the aging mechanisms are driven
by a severe metal breaking due to an enhances self-diffusion of Al atoms. On
the contrary plastic deformation induced by the electro-thermal load is not
significant and does not explain the local increase in the Rdson.





6
C O N C L U S I O N A N D P E R S P E C T I V E S

The main goal of this thesis was to assess the aging mechanisms of the Al-
based (or Al alloys) source metallization in power MOSFET devices. The electro-
thermal and/or thermo-mechanical aging of the metallic parts is one of the
intrinsic limiting factors for the long term reliability of power MOSFETs. Dur-
ing the on-off operating cycles, the temperature changes result in mechanical
stress due the difference in the coefficient of thermal expansion between the
metal and the oxide/semiconducting parts. Since Al has a low mechanical
yield stress, the source metallization is expected to deform plastically even at
moderate temperature excursions (200 °C), while the Si remains in its elastic
domain. As aging progresses, the degradation of the metal increases its resis-
tance, which in turn will increase the temperature of the device in the on-state
and therefore augment the mechanical stress. This feedback causes a degrada-
tion of the top metal through specific processes.

We have investigated the Al degradation mechanisms in a specific case
study: LFET1T power MOSFETs from NXP Semiconductors, used as lightning
switches in the automotive industry. This work has been motivated by real
industrial exigences, as the comprehension of the LFET1T technology limits
would serve as reference for new MOSFET generations that are currently un-
der development.

Standard qualification tests have been performed by NXP at different temper-
atures in order to determine the device life-time and localize the critical points.
In parallel, reference LFET1T power dies, unpackaged and disconnected from
the control die, have undergone extreme short-circuit conditions in a dedi-
cated test bench, developed by the Satie laboratory with the aim to monitor
the thermo-sensitive parameters during aging and, at the same time, follow
the evolution of the metal degradation. Common failure mechanisms resulted
from these tests, but at different life-times, involving mainly the metallization
around the bonding connections.

Our contribution consisted in characterizing the metal microstructure under
electro-thermal aging, using dedicated physical metallurgy techniques, such
as ion and electron microscopy and grain structure mapping. We have set up
specific characterization and quantification methods to assess the main feature
influencing the device aging: fatigue crack propagation and plastic deforma-
tion in the metallization due to the bonding process.
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In particular we focused on the bonding areas. This has required the use
of dedicated sample preparation in order to preserve the Al/Al bonding, par-
ticularly fragile in case of aged devices. The original preparation method that
we have proposed, combines a preliminary 45

�mechanical polishing with fi-
nal FIB cuts to locally reduce the thickness of the bonding wires and disclose
the metallization below, without introducing preparation artefacts and altering
the metal microstructure. This allowed us not only to assess the initial bond-
ing quality in reference modules, but also to inspect the bonding area evolution
during aging, even if fragile. To increase the observation area with respect to
the FIB-based preparation and gain some statistical data, we also performed
ion beam polishing in a cross-polisher system.

During our characterizations, we have systematically compared the metal-
lization microstructure away and under the bonding wire, before and after
aging.

Aging of the Al metallization away from the bonding wires

• During the first stage of aging, the initial “bamboo” grain structure struc-
ture undergoes a limited dislocation-based plastic deformation, that ex-
plains the apparition of subgrain boundaries leading to an apparent grain
shrinkage in FIB imaging. Aging is dominated by an enhanced diffusion
of Al atoms along the grain boundaries. This mechanisms is at the base of
initiation and propagation of fatigue cracks running perpendicular to the
surface down to the Si substrate, following the initial grain boundaries.

• At failure, cracking is different in bare, mold passivated and SiO2 passi-
vated metallization.

– In bare metallization (from unpackaged power dies under test), GB
grooves become equivalent (or even larger) to the inter-transistor
spacing.

– Mold passivated metallization is even fractured, but cracks are finer,
and they branch out and propagate horizontally at the oxide/semi-
conductor interface.

– A stiffer and more adherent oxide passivation layer slows down GB
diffusion but does not completely stop it. Cracks are more localized
and concentrated, but still present.

What is the best in terms of electrical and thermal dissipation through the
metallization layer is still an open question. Crack propagation is slowed
down by the oxide passivation layer and it is concentrated in specific
zones. However, could this induce more harmful peak thermal stresses
and provoke an abrupt failure event?
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Aging of the bonding area

• The initial bonding area is characterized by the systematic presence of an
uneven wire-metallization interface, made out of Al-oxide residues and
small cavities. This means that the bonding is not perfect and no Al-Al
interdiffusion occurs during the cold-bonding process.
Aging accentuates the initial bonding defects, that are the starting point
to horizontal crack propagation at the wire-metallization interface, caus-
ing an even more reduced contact between the two metals. In this poorly-
contacted zones, cracks can also propagate vertically down to the Si bulk
following the grain boundaries, as in the naked parts. Cracks remain lim-
ited to the wire-metal interface and do not propagate in the wire. This
is a strong indication that the Al/Al interface is weak and its presence
induces specific degradation phenomena. If the bonding were initially
perfect, cracks would deviate to the softest material that is here the wire,
with a larger grain structure.

• Under the wire, the initial metallization microstructure is finer than else-
where (naked metallization and wire). The rearrangement of the grain
structure, proved by grain orientation mapping, is due to an important
and not uniform plastic deformation imposed by the bonding process.
We have measured this plastic deformation to be 10% in average in com-
pression, with local peaks up to 30%. Contrary to our expectations, this
initially deformed microstructure does not significantly change upon ag-
ing and does not influence crack propagation to the wire.

• The local increase in temperature during aging is not sufficient to influ-
ence the wire-metallization interface. This interface remains systemati-
cally present during aging and no real grain reconstruction between the
wire and the metallization has been observed until melting.

Crack propagation in the Si substrate

Thermal runaway due to metallization degradation and resistivity increase
seems like the major failure mechanism. A severe crack propagation has been
observed in the Si substrate, around and under the failed wires, where hot
spot are detected. We have distinguished primary and secondary cracks:

• Primary cracks are smaller and filled with Al. This is probably due to dif-
fusion of melted Al inside the brittle Si substrate during runaway [Jac13].

• Secondary cracks are larger and not filled with Al. They probably oc-
cur during the cooling down of the whole device, when the Al can not
extrude, after the final failure.
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This observation may indicate that, even after the formation of primary fragile
cracks in Si, the device keeps conducting current and remains hot for periods
of time long enough to create Al melting and recrystallization inside the Si
substate.

In conclusion, the aging of the Al source metallization in LFET1T technology
can be associated to two phenomena:

• a heavy metal reconstruction characterized by the generation of GB cracks
that are specific of Al-based power device and location.

• A systematic poor bonding of the wires due to Al natural oxide, that
is never broken until complete Al meting (associated with the device’s
failure) and along which, parallel cracks propagate.

Both mechanisms concur to increase the local resistivity and to favor hot spots
that can lead to the melting of the Al and to the Si substrate fracture.

Although changing industrial processes are difficult and definitely beyond
the scope of this thesis, our study suggests possible ways to improve the relia-
bility of this type of device and also some future paths to complete the present
conclusions.

• The cold-bonding bonding process does not provide a perfect Al/Al con-
tact and the presence of a defective interface remains until failure. At that
point only, a real reconstruction of the metallization-wire microstructure
is achieved. Ideally, the Al oxide should be broken during or just prior
to the wire bonding. This could be achieved by performing a reduction
of the metal and wire, or by doing this bonding at high temperature, or
may be changing the wire shape to create local spikes that would create
enough stress concentration as well as increasing the adherence surface
to initiate a grain growth (by local diffusion) at the interface. We showed
that a significant plastification of the metal under the wire is probably
very bearable for the device.

• A change in the metal type would also make a difference. Copper on
copper bonding should not encounter this type of adherence problem.
However, it is well known that Cu interconnects require a much more
severe chemical insulation from the Si substrate.

• Our few attempts to quantify the info about the stress increase in the
metal during aging are insufficient. Curvature experiments to measure
the stress and to possibly correlate it (or not) with the surface reconstruc-
tion might be useful.
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• Passivation of the metallization by an oxide seems to reduce the crack
density and increase the life-time. However, it does not seem possible to
completely passivate the metal around the wire bonding feet, leaving and
possibly concentrating metal degradation to this location. Also, we don’t
have enough statistics on the topic and the main question is wether this
type of passivation may favor earlier catastrophic events by concentrating
the hot spots. In other terms, for an increased number of cycles, the time
at which a failure occurs may strongly diverge.





Part I

A P P E N D I X





A
C O N V E N T I O N A L C R O S S - S E C T I O N T E M S A M P L E
P R E PA R AT I O N

There are many ways to prepare a TEM specimen, depending on what we
want to study and the characteristics of the material [Wil09]. No matter the
method used, the primary requirement is that the specimen must be ultra-thin
(typically ⇠ 100µm or less) to be electron transparent. Of course, heavy ma-
terials (Au, W, Pt,...) need to be thinned more than light ones (Be, Al, Si,... ),
and the type of microscopy (conventional, high-resolution, chemical analysis,
holography,...) also requires different thicknesses. "Conventional TEM prepa-
ration" refers to several different methods that involve mechanical thinning
(by grinder or tripod) followed, if needed, by an ion milling to prepare bulk
electron transparent specimen for TEM inspection [Wil09].

In this work, we have distinguished such a preparation from the lamella
preparation by ion beam in the FIB-SEM microscope. The dual beam micro-
scope offered us the possibility to precisely localise the area of interest (the Al
metallization) and directly extract and sample lamella for the successive TEM
investigation and grain structure mapping in TEM. These lamella include the
Al metallization layer, that is 4µm thick, and, at most, a comparable thickness
of Si bulk. In case of wire-metallization lamella preparation, the Si is even thin-
ner. This turned out to be an issue during our in situ heating experiments: the
leftover of the Si substrate was too thin to induce significant stresses in the Al
layer and a scarce dislocation activity was detected.

For this reason, we chose to perform in parallel a conventional sample prepa-
ration, that allowed us to obtain a final ⇠ 100µm thin cross-section foils, pre-
serving the entire Si bulk thickness. This mode of preparation is well-suited
for a thin film deposited on a Si substrate because the Si provides a stiff
support during mechanical polishing. Another advantage is that the electron-
transparent areas are usually much wider than the one accessible by FIB. On
the other hand, fragile interfaces, such as the wire-bonding metallization inter-
face, may not sustain such mechanical polishing, and be prone to an alteration
of its microstructure. This is why tripod polishing was specifically dedicated
to the naked die.

The main steps of the preparation are shown in Fig. 135 and described in
the following. It consists in a mechanical thinning by tripod system and a final
ion milling by precision ion polishing system (PIPS).
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Figure 135: Sketch of the conventional TEM sample preparation procedure.

1. The sample surface is carefully cleaned in solvent in order to obtain a
perfectly clean surface.

2. Two pieces of substrate-film are glued together using an epoxy glue (G1

from Gatan), in order to prevent polishing damages on the metallic film.
The sandwich is introduced in a press to obtain a very thin glue film and
the whole mounting is placed in a oven at 80

�C for 2 hours to ensure a
proper glue polymerization.

3. The sandwich is then sliced by diamond wire saw into ⇠ 500µm thick
pieces to reduce the block thickness for the polishing step.

4. The first face of the piece is thinned down and polished by tripod system,
using progressively finer diamond lapping paper (30µm down to 1µm) in
order to obtain a scratch-free surface. Then the sample is turned upside
down an the second face is thinned and polished until a final thickness
of a few tens of microns.

5. The two side polished thin foil is glued using a fast-curing epoxy on a
TEM copper grid and transferred in the PIPS for the final ion milling of
the cross-section. A dual argon beam system is focused from the top and
the bottom on the middle of the sample in order to create an hole at the
film-glue-film interface.
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6. By playing on the beam angle and energy parameters (generally we start
the milling at ±6� and 6 keV and then we finish at ±4�and 3 keV), at the
edge of the hole the sample should thin enough to be electron transparent
for the TEM observation.

Classical tripod polishing may skip this ion-beam final milling by using
finer diamond papers (0.5µm) and colloidal silica, but involves more risk in
obtaining an artifact-free Al layer (mechanical damages). Fig. 136 represents a
low magnification TEM image of the electron transparent region around the
PIPS hole: we can notice the two metallization films on the Si bulks and small
glue residues between them. During heating in the TEM, both epoxy glues
are temperature-resistant enough (450

�C is generally considered slightly above
their temperature application range, but since there is no large stresses on the
sample, adhesion remains sufficient). If this would not be the case (heating
above 500

�C for instance), a small drop of alumina- or zirconia-based cement
is used to attach the sample to its grid.

Figure 136: Low magnification TEM image showing the electron transparent cross-
section of two bulk-film-film-bulk sandwich prepared by tripod and ion
milling.





B
C U RVAT U R E E X P E R I M E N T

During curvature experiments, metallic films deposited onto Si or ceramic sub-
strates undergo thermal-only cycles. The difference in CTE between bulk and
film is sufficient to strain the film, first elastically and then plastically. This gen-
erates a curvature (Fig. 139b), that can be directly related to the stress variation
in the film using the Stoney equation [Sto09] [Jan09].

�f =
Est

2
s

6(1- ⌫s)tfR
(10)

where �f is the average biaxial stress in the film, Es, ⌫s and ts are, respectively,
the Young’s modulus, Poisson’s ratio and thickness of the substrate; R is the
curvature measured by the laser; tf is the film thickness. The robustness of
this equation and measurement method is in the fact that no assumption is
needed regarding the film’s elastic properties, as only those of the substrate
are needed [Leg03] [Fli87]. A typical thermal cycle where the film yields first in
compression (during heating) before being stressed in tension (upon cooling)
is shown in Fig.137.

Figure 137: Typical stress-temperature cycle for a 590 nm thick poly-crystalline Al film
on oxidized Si substrate (Tmax ⇠ 450�C) [Fli87].
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In this work, thermal cycles were performed under vacuum between -190

�C
and 350

�C in a home-made test bench based on a KSA MOS laser reflectometer
and an ARS cryo-holder. The tested samples are reference power dies, without
the bonding wire connections. We considered it, in a first approximation, as
an equivalent of a 4 micron thin Al film deposited on a 260 micron thick Si
substrate. The first experiments that we performed (Fig. 140) showed that this
may be wrong.

Figure 138: Laser reflectometry test bench assembled for curvature experiments. The
sample (reference SPD06, before assembly) is placed under vacuum on a
Cu support, inside the ARS sample holder.

Fig. 138 represents the main parts of the experimental set-up, described in
the following:

• KSA MOS laser module, from K-Space.
The module focuses several laser beams on the reflective surface (film) of
the sample (Fig. 139b) and measure the curvature imposed by the Al film
to the Si substrate by laser profilometry (on the base of the laser spots
divergence or convergence - Fig. 139c). The laser unit and its operating
principle are showed respectively in Fig. 139a and b.

• ARS cryogenic sample holder.
It allows to heat the sample up to 525

�C and cool it down until the liq-
uid nitrogen temperature. This temperature range is significantly higher
with respect to the real operating temperatures of power devices [Pie09].
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However, the T gradient is set to 20�C/min, probably orders of magni-
tude lower than the real ones [Sau08]. An innovative faster set-up, based
on a high speed camera, has been recently developed by the KAI cen-
ter (Villach, Austria) [Isl15] in order to monitor the material behavior at
heating rates comparable to the ones occurring during usage.

• PC station. Two computers communicate respectively with the holder
controller and the laser module.

• Vacuum pump system. The whole system is under vacuum during the
thermal cycles.

Fig. 140 shows one of the cycles that we have performed between -190

�C
and 350

�C. Starting the experiment at -190

�C, the metallic layer yields in com-
pression (c) during heating, before being stressed in tension (t) upon cooling.
As in Fig. 124 in Chapter 5, in absence of an absolute value of the wafer cur-
vature prior to the die construction, we chose the zero stress state at the end
of the heating ramp. Further experiments would have been necessary to un-
derstand the full physics of the deformation of the die as this figure entails
several features, some expected, and some that we don’t understand as for
now. As expected, the elastic regime is shorter at high temperature than at
low temperature. This is because the yield stress, that is probably thermally
activated (most of the mechanisms described in Chapter 5 - Section 5.2.1 are
thermally activated) will occur at higher values at low T and at lower values
at high T. Between these elastic parts in tension and compression, most of the
stress relaxes by plastic deformation. The dominant role of diffusion in the
relaxation is evidenced by the much lower stress levels reached at high tem-
perature (diffusion is more dependent on temperature than dislocation glide).
However, the fact that the stress decreases in tension below 200

�C and then
increases again in compression below 0

�C does not make sense, no matter the
relaxation mechanism invoked. The film should be in tension at the end of the
cooling. Right now, we don’t have an explanation for this. Possible hypothe-
sis would be that our simplified view of the die as an Al metallization over a
Si substrate is oversimplified. If other layers (oxydes, poly Si, nitrides) play a
significant role, we may have stresses building up in more complex ways. An
artifact of the die moving during the experiment also cannot be ruled out as
we haven’t been able to run additional tests (power control break down of the
set-up at the end of 2017).

Also, the temperature amplitude of the thermal cycles performed in the re-
flectometer is larger than the temperature gradients occurring during electro-
thermal aging. The goal of extending this amplitude was to compensate the
slow temperature rate (and thus strain rate) of this experiment where only a
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Figure 139: (a) MOS K-space module interior and (b) laser operating principle. (c) The
larger CTE of the Al film compared to the Si substrate induces elastic
and plastic strains in the film. The Al film is then stressed in compression
during the heating phase and in tension upon cooling.
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few cycles can performed, compared to the fast temperature excursions in the
die in operation, smaller but repeated millions of time.

If we consider an Al film on Si, the total strain is 1% for a cycle of -190

�C
to 350

�C (in the reflectometer) and 0.3% for a cycle from 25

�C to 160

�C (if
we assume that 160

�C is a typical temperature attained in the die at the end
of the ON state [Sau08]). After about 5 cycles, no surface change (cracks, slip
traces) has been observed using SEM/FIB and EBSD mapping.

Figure 140: Stress-Temperature cycle for the Al thin film deposited onto the Si wafer.
The relative stress is measured along the larger die dimension, and the
zero value is here taken at 350

�C. The cycle is initiated at T = -190�C,
and the T gradient is set to 20�C/min during heating and cooling.





Part II

R É S U M É É T E N D U





C
M O D E S D E FAT I G U E D E S M É TA L L I S AT I O N À B A S E
D ’ A L U M I N I U M D A N S L E S C O M P O S A N T S M O S F E T D E
P U I S S A N C E

c.1 introduction et objectifs

Depuis plusieurs décennies, l’industrie automobile remplace de plus en plus
les composants électromécaniques par des dispositifs purement électroniques
ou des systèmes électromécaniques miniaturisés basés sur des technologies Si.
Ce changement de paradigme a initialement intéressé les fonctions électron-
iques d’assistance (par exemple ABS, direction assistée, limiteur de vitesse, cli-
matisation, etc.). Cependant, une constante évolution technologique et minia-
turisation ont fait que le champ d’application de l’électronique dans l’automobile
se propage sur les fonctions principales du véhicule (injection, éclairage, freins,
gestion des batteries, etc.) en remplaçant l’ensemble des liaisons mécaniques
ou hydrauliques.

Le secteur de l’électronique de puissance est actuellement le marché le plus
important dans l’automobile. Les commutateurs de puissance à semi-conducteurs
remplacent rapidement les relais électromécaniques classiques dans la plupart
des fonctions principaux des véhicules, ainsi que dans les applications de con-
fort, de sécurité et de communication. Le marché de la propulsion automobile
alternative représente un autre secteur en croissance, conformément à la nou-
velle réglementation du transport routier visant à réduire les émissions de gaz
à effet de serre (reduction du 30% d’ici au 2030 pour l’UE). Cette tendance se
voit de plus en plus avec le development des concepts de véhicules électriques,
purs (EV) et hybrides (micro-, mild, full-, plug-in-hybrid), jusqu’aux projets les
plus récents de voitures autonomes.

L’evolution de la technologie électronique dans l’automobile crée inévitable-
ment de nouvelles exigences en termes de reduction des coûts, fonctionnement
dans des conditions environnementales extrêmes (température, humidité, vi-
brations, etc.), une plus grande densité de modules de puissance, une minia-
turisation croissante, etc. De plus, un niveau élevé de fiabilité est nécessaires
pour garantir la sécurité des produits et des personnes sur de longues périodes.
Cela nécessite une connaissance approfondie de l’evolution des composants
électroniques en fonction du temps de fonctionnement et des mécanismes de
défaillance. L’analyse des défaillances et les études de fiabilité sont donc des
étapes clés dans l’industrie manufacturière, afin de développer des disposi-
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tifs 100% fiables pendant toute leur durée de vie. La durée de vie est un des
paramètres requis par les constructeurs automobiles définis par l’Automotive
Electronic Council (documents de qualification, par exemple AEC-Q100, AEC-
Q200, etc ...).

Cette étude est motivé par la compréhension des mécanismes de défail-
lance survenant dans les commutateurs électroniques de puissance produits
par l’entreprise NXP Semiconductors pour l’industrie automobile. Au cours de
leur vie, ces composants transportent des niveaux de puissance élevés pendant
de longues périodes, ce qui peut conduire à une baisse graduelle de leurs per-
formances.. Ici, nous présentons une méthode pour évaluer le vieillissement
électrothermique du composant de puissance, en se concentrant sur un cas
d’étude particulier: les commutateurs de puissance à base de MOSFET (Metal
Oxide Semiconductor), utilisés pour la commutation de l’éclairage des voitures.
Cette fonction est particulièrement agressive pour les composants MOSFET
car l’allumage d’une lampe s’accompagne d’une impulsion de courant très in-
tense que le composant doit supporter un très grande nombre de fois. Elles
s’accompagnent à des grandes variations de température, conduisant à une
degradation progressive du composant. Notre objectif est d’étudier les phénomènes
à la base de la dégradation de la microstructure des parties critiques, en ciblant
la métallisation qui est la partie qui concentre les dégradations microstruc-
turales inévitables du vieillissement de ces dispositifs. Cela a nous permis de
déterminer des modèles physiques pouvant expliquer les principaux mécan-
ismes de défaillance à corréler avec l’aggravation progressive des performances
électriques de l’ensemble du dispositif.

c.2 technologie lfet1t et vieillissement accéléré des composants

Dans le cadre de cette thèse nous avons étudié les mécanismes de dégradation
de la métallisation et des fils de connexion en aluminium (Al) dans un cas spé-
cifique: les MOSFET de puissance LFET1T produits par NXP Semiconductors
et utilisés pour la commutation de l’éclairage des voitures et camions. Ce tra-
vail a été motivé par des exigences industrielles réelles, car la compréhension
des limites de la technologie LFET1T serve de référence pour les nouvelles
générations de MOSFET actuellement en cours de développement à NXP. Des
tests de qualification ont été effectués par NXP à différentes températures afin
de déterminer la durée de vie des composants et de localiser les points cri-
tiques. En parallel, des puces de puissance LFET1T de référence, débôités et
déconnectées de la puces de contrôle, ont été soumis à des conditions extrêmes
de court-circuit au sein d’un banc d’essai développé par le laboratoire SATIE
afin de suivre les paramètres thermosensibles au cours du vieillissement, et,
au même temps, la dégradation des métaux.
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c.2.1 Technologie LFET1T

LFET1T est le nom commercial de la technologie développée en 2008 par NXP
Semiconductors (à l’époque Freescale) basée sur des modules MOSFET trench,
pour des applications à basse tension (<48V) et fréquence (<1 kHz). Il s’agit
de smart power MOSFETs, où le term “smart” indique que la puce de puis-
sance est contrôlé et protégé par une puce de control. Deux versions de cette
technologie ont été caractérisées dans cette étude:

• 12V SPD06 power die (Fig. 141a), conçu pour les batteries 12 V (applica-
tions voitures), avec une tension de breakdown de 45V. Ils sont constitués
de 2 secteurs MOSFET, chacun connecté par 3 fils de bonding et ayant un
RDS(on) de 6m⌦.

• 24V T07D17 power die (Fig. 141b), conçu pour les batteries 24V (appli-
cations camions), avec une tension de breakdown de 65V. Ils sont consti-
tués de 5 secteurs MOSFET, connectés par 8 fils de bonding et ayant un
RDS(on) de 17m⌦ et 7m⌦.

La composition et l’épaisseur de la métallisation et des fils de connection sont
les mêmes dans les deux modules de puissance. La métallisation se compose
d’un film d’Al avec 0.5% en poids de cuivre (Cu) et de tungstène (W). Dans
le cas seulement des T07D17s, la métallisation est passivée par une couche
mince de SiO2 de 0.5µm d’épaisseur (sauf dans les zones de bonding). Les
fils de connection sont en Al pur et ont un diamètre de 400µm. Ils sont mis
en contact avec la métallisation par un procédé classique de soudage à froid
par ultrasons [Bro15] [Goe12]. La force de bonding de 10 N, appliquée à une
surface de 450 ⇤ 750µm2 entraîne une contrainte de bonding de ⇠ 30MPa, en
ligne avec les paramètres de bonding optimisés par Goehre et al [Goe12].

c.2.2 Tests de vieillisssement accéléré

Les modules LFET1T ont subi deux différents tests électrothermiques accélérés
de type IOL (Intermittent Operating Life), qui consiste en une alternance de
périodes où le composants sont à l’état passant (on) e de périodes où le com-
posants sont à l’état non-passant (off).

1. Tests à NXP sur 65V LFET1T (T07D17).
Ils consistent en des tests de qualification, utilisés par les fabricants pour
déterminer la durée de vie du composant, conformément à la norme
AECQ100-12 [Kel06]. L’objectif est de reproduire le comportement des
puces de puissance dans leur mode de fonctionnement normal, régulé
par la puce de contrôle. Un court-circuit répétitif est imposé à la puce
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de puissance. La puce de contrôle alors détecte un excès de courant et
éteint la puce de puissance. De l’énergie est dissipée à ce stade, entraînant
une augmentation de température du composant et affectant les condi-
tions de vieillissement de l’appareil. La durée de vie des composants est
5.3 milion de cycles pour les tests effectués à température ambiante et
diminue à 300 kcycles à 70

�C.

2. Tests au laboratoire SATIE sur 45V LFET1T (SPD06).
Ces tests sont complémentaires aux précédents: ils ont été conçus pour
pousser les dispositifs à leurs limites technologiques et suivre, au même
temps, les indicateurs de vieillissement électrique pendant les tests, et
notamment l’evolution de la resistance du dispositif (RDS(on)) et de la
temperature à la surface de la métallisation de source. Les SPD06s ont été
soumis à des conditions extrêmes de court-circuit dans un banc d’essai
conçu par le laboratoire Satie [Ros13]. Cette configuration particulière a
nous donné la possibilité de contourner la puce de contrôle et de con-
trôler l’énergie dissipée en jouant sur la durée des singles impulsions de
courant (tON). Avec tON = 40µs, les dispositifs arrivent à défaillance
après ⇠ 330 kcycles .

Les conditions des deux types de test sont résumées dans le tableau 5 suivante
et les relatives formes d’onde au moment de la défaillance sont montrée en
Fig. 142.

Figure 141: Composants de puissance de type LFET1T smart power MOSFET, produits
par NXP Semiconductors. (a) 45V, 12V SPD06, (b) 65V, 24V T07D17.

c.3 techniques expérimentales de characterization microstruc-
turelle de la métallisation

Notre contribution a consisté à caractériser la microstructure métallique sous
vieillissement électrothermique, en utilisant des techniques de métallurgie dédiées,
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Table 5: Tests de vieillissement accelerés

Test @ NXP Test @ SATIE

Composant
T07D17

configuration normale

SPD06

Sans puce de controle
et bôite

Paramètres des
test de vieillissement

Test de qualification
à regulation de courrant

Ith = 120 A
f = 2 Hz

Vds = 14V
L = 5µH

R = 10m⌦

SC test
Sans limitation de courrant

Ton = 40µ s
f = 5 Hz

Vds = 30V
E = 150 mJ

Test temperature
25

�C
70

�C
25

�C

Aging indicators
monitoring

Non Oui

DUT Life-time
5.3 million cycles at 25

�C
300k cycles at 70

�C
330kcycles
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Figure 142: Formes d’onde au moment de la défaillance pour un composant (a)
T07D17 soumis à des tests de qualification standard chez NXP et (b) SPD06

vieilli au sain du laboratoire SATIE par de test de court-circuit extrêmes.
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comme la microscopie ionique (SIM –Scanning Ion Microscopy–) et électron-
ique (SEM –Scanning Electron Microscopy– et TEM –Transmission Electron
Microscopy–), et la cartographie de la structure des grains. Nous avons mis
au point des méthodes de caractérisation et de quantification spécifiques pour
évaluer le principale caractéristique qui influence le vieillissement du disposi-
tif: la propagation de fissures dans le métal et la déformation plastique due au
processus de bonding.

Nous nous sommes concentrés sur les zones de bonding. Contrairement à
la métallisation de source qui recouvre les transistors, la partie qui se trouve
sous les fils de bondings a subi une importante déformation plastique lors du
procédé de soudage à froid. Pour y accéder, il est nécessaire de faire une coupe
mais une action mécanique va masquer sur plusieurs microns l’état réel de
cette interface. Les gravures ioniques ne peuvent se faire sur de trop grandes
profondeurs et on ne peut donc pas traverser les 200 µm de fils pour atteindre
l’interface et l’étudier selon le processus décrit ci-dessus. La solution originale
que nous avons proposé dans cette étude consiste à découper la partie puis-
sance à l’aide de fil diamant et à polir l’attache des fils à 45

�ce qui produit
une surface écrouie mais que l’on peut ensuite enlever avec la gravure ionique
(Fig. 143a et b). Cette preparation a nous permis pas seulement d’évaluer la
qualité du bonding à l’état initial (Fig. 143c), dans les modules de référence,
mais aussi de suivre l’évolution de la zone de bonding au cours du vieillisse-
ment. Pour augmenter la zone d’observation par rapport à la préparation basée
sur le FIB et obtenir des données statistiques, nous avons également effectué
un polissage par faisceau ionique dans un cross-polisher system. Lors de nos
caractérisations, nous avons systématiquement comparé la microstructure de
métallisation à l’extérieur et sous le fil de liaison, avant et après le vieillisse-
ment.

c.4 etude du vieillissement de la metallisation et des fils de

connextion

Le burnout est un mode de défaillance courant dans les modules de puissance
qui s’approchent de leur limite de durée de vie. Ce type de défaillance est sou-
vent associé à une soudaine augmentation de la résistance drain-source. En
particulier, les parties métalliques des modules de puissance IGBT et MOSFET
montrent des altérations qui pourraient conduire à une telle augmentation de
la résistance. Les altérations observées par ces pièces métalliques sont souvent
attribuées à leur faible résistance à la déformation mécanique, même si les mé-
canismes par lesquels les altérations se produisent restent peu clairs. Puisque
les défaillances des soudures et des fils de connextion dépendent en partie
du processus et en partie du matériau, le control de la résistance mécanique
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Figure 143: (a) Schématisation du procédé de preparation de l’interface métallisation-
fils de bonding d’un composant LFET1T: la zone de gravure au FIB est
préalablement polie à 45

�. (b) Le résultat de la preparation est répresenté
dans l’imagerie SEM à bas grandissement, où on peut voir le fils coupé
à 45

�et deux gravures FIB à niveau de l’interface fil / métallisation. (c) À
plus fort grandissement, l’imagerie ionique permet de montrer le bonding
Al / Al: les microstructures du fil et de la métallisation sont très différentes
notamment en terme de taille de grain.
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de ces parties métalliques peut augmenter leur fiabilité. En fait, de nouvelles
générations de dispositifs d’alimentation ont été conçues pour retarder telles
défaillances, en transférant une partie de la charge électrique au source métal.
Ceci est particulièrement vrai pour les soudures dans le cas des modules de
puissance NXP: les MOSFET de puissance LFET1T étudiés dans ce travail vieil-
lissent principalement par dégradation de métallisation. Le vieillissement de
la métallisation de source ne peut pas être entièrement contrôlé et elle semble
être contrôlée par des mécanismes de dégradation intrinsèques et universels.
La technologie Al utilisée ici est plutôt représentative de nombreux back-end
packaging utilisés. Indépendamment des cycles électrothermiques, nombreux
paramètres peuvent influencer la potentielle évolution de ce set-up:

• la composition du fil et de la métallisation. Des alliages augmenteront
leur résistance mécanique et ohmique;

• la taille des grains des deux éléments influera sur leur dureté et la stabil-
ité de la microstructure (les petits grains rendront le métal plus dur mais
seront sujets à la croissance des grains);

• l’interface créée entre le fil et la métallisation dépend des paramètres de
bonding (dans le cas des LFET1Ts, les fils d’Al sont soudés par ultra-
sons à la métallisation), peut affecter la microstructure des fils et de la
métallisation et introduire des éléments externes.

Nous montreront dans la suite les principaux mécanismes de dégradation
de la métallisation de source observés lors de nos caractérisations. Nous avons
systématiquement comparé la microstructure de métallisation autour et sous
les fils de connection, avant et après vieillissement. Cette progressive dégra-
dation des parties métalliques s’accompagne à une augmentation de Rds(on)

on, comme il est démontré par la Fig. 144. Le graphique montre une aug-
mentation du14% deRds(on) pour un composant SPD06 à défaillance (après
⇠ 330kcycles).

c.4.1 Métallisation nue (hors zone de bonding)

Une étude SEM et SIM systématique de la métallisation de source Al des mod-
ules SPD06 et T07D17 qui ont subi différentes conditions de vieillissement
électrothermique révèle des mécanismes de dégradation de la métallisation
communs. Il s’agit d’une significative reconstruction de la métallisation au
voisinage des fils de connexion. Elle se produit à niveau de surface, par une
augmentation de la rugosité (Fig. 145a) par rapport à la structure granulaire
initiale de l’Al (Fig. 145a) et, à l’intérieur du matériau, par un apparent rétré-
cissement des grains et l’apparition des fissures (Fig. 145d). Ces résultats sont
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Figure 144: Evolution de Rds(on) en cours de vieillissement, jusqu’à defaillance (après
⇠ 330kcycles).

en accord avec les mécanismes de dégradation décrits dans la littérature pour
les métallisations Al et Cu [Gla04] [Cia02] [Mar14] [Nel11] [Nel13].

• Avant les tests, la surface de la métallisation est lisse et suive la structure
des ondes des transistors (Fig. 145a). Comme pour les films Al classiques,
des grains sont détectés à la surface et de petites dépressions définissent
les rainures des joints de grains. À l’intérieur de la couche, l’interface
entre les grains est visible par le contraste ionique (Fig. 145c): es grains
d’Al bambou [Arz11] [Joo94] [Wal92b], avec un diamètre moyen de 4µm

et une hauteur égale à l’épaisseur de la couche, remplissent tout le vol-
ume de la métallisation.

• Après les test de vieillissement, la surface de la métallisation est modifiée
et présente une forte altération due à la déformation plastique et aux ex-
trusions Fig. 145b; la structure initiale des transistors n’est presque plus
visible. À l’intérieur de la couche, les grains sont divisés en sous-joins
(grains avec une désorientation < 15

�, mesurée par cartograhie ASTAR,
Fig. 146) et des fissures intergranulaires s’étendent de la surface jusqu’à
la zone du transistor (Fig. 145d). Ces résultats révèlent que la structure
granulaire a subi une déformation plastique limitée par dislocation, ce
qui explique l’apparition de sous-grains conduisant à un rétrécissement
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apparent du grain dans l’imagerie FIB. Le vieillissement de la métalli-
sation est dominé par une diffusion accrue des atomes d’Al le long des
joints de grain, à la base de l’initiation et propagation des fissures inter-
granulaires perpendiculaires à la surface jusqu’au substrat de Si [Mar14].

À défaillance, nous avons observé une différente fissuration dans la métalli-
sation nue, passives par le mold compound et avec passivation SiO2 (Fig. 147).

• Dans la métallisation nue (Fig. 147a), les rainures GB deviennent équiva-
lentes (voire plus grandes) à l’espacement entre les transistors.

• La métallisation passivée par le mold compound (Fig. 147b) est aussi frac-
turée, mais les fissures sont plus fines et se propagent horizontalement à
l’interface oxyde / semiconducteur.

• Une couche de passivation d’oxyde plus rigide (Fig. 147c) et plus ad-
hérente ralentit la diffusion du GB mais ne l’arrête pas complètement.
Les fissures sont plus localisées et concentrées, mais toujours présentes.

Pour essayer de quantifier les fissuration dans les zones passivées seulement
par le mold compound (“bare” dans le graphique en Fig. 148b) et par une
couche supplémentaire en SiO2 (“passivated” dans le graphique en Fig. 148b),
nous avons inventé la méthode suivante: étant donné que la métallisation est
constituée de joints de grain bambou, disposés de façon à peu près propor-
tionnelle aux transistors, nous avons compté le nombre de joints verticaux
fissurés/non fissurés et le nombres de cellules fissurées horizontalement (le
long de l’interface métal/substrat) par rapport à celles ne contenant aucune
fissure. Ce qui est résumé sur la Fig. 148a. Les résultats sont donnés sur la
Fig. 148b. Il apparaît clairement que la fissuration est plus clairsemée dans
les parties passivées avec SiO2, mais cette différence est plus marquée sur la
fissuration horizontale. Les précédentes observations montrent que la fissura-
tion horizontale se déclenche lorsque la fissuration verticale atteint la zone des
transistors depuis la surface. Si on suppose que cette fissuration verticale "sa-
ture" lorsque 30% des joints sont atteints (métallisation non passivée) on peut
expliquer que la fissuration horizontale soit limitée dans le cas de la métallisa-
tion passivée seulement par le mold compound, puisque 20% des joints sont
atteints dans ce cas. L’effet de la température est aussi plus marqué dans le
cas de la métallisation sans SiO2, puisque les fissures horizontales sont beau-
coup plus développées à 70

�C qu’à 25

�C, effet que l’on retrouve moins dans la
métallisation passivée par SiO2.
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Figure 145: Évolution de la microstructure de la métallisation à base d’aluminium de
SPD06 pendant vieillissement à température ambiante. Les observations
en surface (a) avant et (b) après vieillissement sont faites en SEM. Les
coupes transverses (c) avant et (d) après vieillissement sont faite en FIB /
SEM et les images sont faites par contraste ionique. Barre d’échelle: 2.5µm.

Figure 146: Mesures de taille de grains par MET-ACOM sur un module T07D17

vieilli à 25

�C. Les relatives images ionique (Fig. 145d) montre parfois des
domaines cristallins qui ne sont que des sous-grains (désorientation in-
férieure à 10°).
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Figure 147: Fissuration de la métallisation développée dans une zone (a) non passivée,
(b) passivée par mold compound et (c) passivé par SiO2 (plus mold com-
pound). Barre d’échelle: 2.5µm.
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Figure 148: (a) Méthode de comptage des fissures verticales et horizontales en fonc-
tion des joints de grains (verticaux) et des cellules de transistor (pour les
fissures horizontales).
(b) Statistiques de fissuration de la métallisation pour des modules T07D17

vieillis à 25

�C et 70

�C, dans les zones passivées uniquement par le mold
compound (gauche) et passivées par une couche de SiO2 (gauche).
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c.4.2 Interface métallisation / fils

• La zone de bonding initiale est caractérisée par la présence systématique
d’une interface bien définie et irrégulière entre la métallisation et le fil
(Fig. 149a), faite par de résidus d’oxyde d’aluminium (Fig. 149c) et de
petites cavités. Cela signifie que le bonding n’est pas parfaite et qu’il n’y
a pas d’interdiffusion Al-Al à cause de la barrière d’oxyde natif qui n’est
pas casé pendant le processus de soudage à froid. Le vieillissement ac-
centue ces défauts initiaux, qui sont le point de départ de la propagation
horizontale de fissures à l’interface entre la métallisation le fil, causant
une réduction de contact entre les deux métaux (Fig. 149b). Dans ces
zones peu contactées, les fissures peuvent également se propager verti-
calement jusqu’à le substrat de Si suivant les joints de grains, comme
dans les parties autour des fils. Il est important de remarquer que les
fissures restent limitées à l’interface fil-métal et ne se propagent pas dans
le fil. Ceci est une forte indication que l’interface Al / Al est faible et sa
présence induit des phénomènes de dégradation spécifiques. Si la liaison
était initialement parfaite, les fissures auraient dévié vers le matériau le
plus mou qui est le fil, puisque il a des grains plus larges.

• Sous le fil (Fig. 150b), la microstructure de la métallisation initiale est
plus fine que ailleurs (métallisation nue et fil). Le réarrangement de la
structure granulaire, prouvé par l’ASTAR (Fig. 150c), est dû à une défor-
mation plastique importante et non uniforme engendrée par le procédé
de bonding sur la métallisation de source. Nous essayé pour la première
fois à mesurer cette deformation. La méthode que nous avons mis au
point est montrée en Fig. 151a. On compte les déformations par rapport
à une référence (ligne rouge) en mesurant des aires de métal enfoncées
(zone -) ou dépassant (zone +) de cette référence qui correspond à la
position initiale de la surface de la métallisation. La déformation est
ensuite calculée en comparant ces aires (AreaDef) par rapport à l’aire
initiale (AreaRef) de la métallisation dans la zone observée. La défor-
mation plastique mesurée est de 5% en moyenne, si on considère des
sections entières et varie entre 0% et 25% si l’on calcule dans des sections
FIB plus petites. Ces résultats confirment que la déformation plastique
induite par le procédé de bonding est très dishomogène, comme nous
l’avons observé qualitativement dans les images élétroniques, qui mon-
tre une iterface fil-métallisation très irrégulière. Les valeurs précédentes
sont obtenues sur une section totale de ⇠ 1300µm2, ce qui est petit par
rapport au volume impacté par le fil de bonding (⇠ 0.3mm2), mais pas
négligeable. Compte tenu de la pression appliquée pendant le processus
à ultrasons, la contrainte de compression moyenne sur la métallisation
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est de ⇠ 30MPa. Cette contrainte est beaucoup plus faible que la limite
d’élasticité d’un Al commercial pur avec une granulométrie comprise en-
tre 1 et 2µm, typiquement comprise entre 100 et 150 MPa [Tsu02]. Pour
expliquer le fait qu’une déformation plastique si importante se produise
avec cette petite charge, nous avons supposé que seulement une fraction
de 0.3mm2 de la surface de métallisation était réellement en contact avec
le fil. Une estimation très grossière conduirait à un tiers de la métalli-
sation impactée par une déformation plastique liée au fil. Ceci explique
aussi pourquoi la surface est déformée de manière très inhomogène. Le
fait que seulement une partie du fil est soudé à la métallisation et que
cette partie diminue au vieillissement est supporté par des expériences
précédentes [Goe10]. Il serait nécessaire de connaître plus précisément
les propriétés mécaniques du fil et de la métallisation (qui dépendent
fortement des impuretés présentes, de la granulométrie, etc.) pour mieux
estimer la surface de métallisation influencée par le bonding, mais la pré-
diction de la déformation très hétérogène de l’interface resterait, de toute
façon, hors de portée.

• Contrairement à nos attentes, cette microstructure initialement déformée
ne change pas de manière significative au curs du vieillissement et n’influence
pas la propagation des fissures vers le fil. L’augmentation locale de la tem-
pérature n’est pas suffisante pour influencer l’interface entre la métalli-
sation et le fil. Cette interface reste systématiquement présente pendant
le vieillissement et aucune reconstitution significative des grains du fil et
de la métallisation a été observée jusqu’à la fusion finale du metal.

c.5 fissuration dans le semiconducteur

L’augmentation local et incontrôlé de temperature, due à la dégradation de la
métallisation et à l’augmentation de sa résistivité, semble être le mécanisme de
défaillance le plus récurrent. Nous avons observé une sévère propagation de
fissures dans le substrat de Si, autour et sous les fils défectueux, où des points
chauds ont été détectés (Fig. 152a). Nous avons observé des fissures primaires
et secondaires (Fig. 152b):

1. Les fissures primaires sont plus petites et remplies d’Al (Fig. 152c). Ceci
est probablement dû à la diffusion de l’aluminium fondu à l’intérieur du
substrat de Si.

2. Les fissures secondaires sont plus larges et pas remplies d’Al. Elles provo-
quent probablement la défaillance finale du périphérique.
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Figure 149: (b) Spectres EELS enregistrés à trois endroits, relatives aux points colorés
en (a), proche de l’interface fil/métallisation dans un composé non vieilli.
Le pic correspondant à l’oxygène ne ressort qu’à l’interface et prouve donc
la présence d’oxyde localisé. (c) Pendant vieillissement, ces imperfections
favorise la propagation de fissures le long de l’interface fil/métallisation,
qui determine un détachement local de deux métal. À cette endroit, des
fissures verticales along the joints de grains peuvent aussi se propager
jusqu’au substrat de Si, comme dans les portions de métallisation nues.
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Figure 150: (a) Cross section SEM d’un module T07D17 non vieilli effectuée par
un cross-polisher system. (b) L’encart est réalisé en image ionique afin
d’observer les grains de l’interface fil/métallisation. (c) Mesures de taille
de grains par MET-ACOM sur des sections équivalents à (b).

Figure 151: Méthode de mesure de la déformation plastique imposée par les fils de
bonding (en haut) à la métallisation de la source (en bas).
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Ces deux types de fissures peuvent indiquer que après la formation de fissures
primaires dans le Si, le dispositif continue à conduire de la courant et reste
chaud pendant une période suffisamment longue pour créer une fusion et une
recristallisation d’Al à l’intérieur du substrat de Si.

Figure 152: Image SEM à bas (a) et plus fort (b) grossissement du substrat de Si fis-
suré sous le fil de contact (1 = fissure primaire, 2 = fissure secondaire). (c)
Cartographie EDX d’une fissure plus fine dans le Si, qui montre qu’elle est
remplie d’Al.

Une preuve plus flagrante de diffusion d’Al dans le Si est montrée en Fig. 153a.
Un précipité de forme circulaire est placé sous le fil. Son diamètre est d’environ
200µm, du même ordre de grandeur que le diamètre du fil d’amenée de
courant. L’analyse EDX montre sans ambiguïté que c’est de l’Aluminium, et
qu’à cette échelle d’observation, il est quasi pur (Fig. 153b). Cela signifie que
le fil de bonding et la couche de métallisation d’Al ont fondu et diffusé dans le
Si en raison des températures élevées pendant la défaillance. La cartographie
EBSD (Fig. 153c) dans la même zone révèle que le matériau d’Al diffusé dans
le volume Si est caractérisé par une microstructure granulaire. Cela signifie
que l’Al fondu a recristallisé lorsque l’appareil a cessé de fonctionner et s’est
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refroidi. À ce stade, nous pouvons remarquer que l’interface Al-Al n’est plus
visible dans la zone de bonding. Au contraire, la cartographie EBSD provenant
du fil adjacente dans le même module vieilli montre une structure normale
(Fig. 154): on peut encore distinguer une interface de métallisation de fil bien
définie avec une microstructure granulaire plus fine dans la métallisation Al et
des grains plus gros dans la partie de liaison supérieure. Ceci démontre que
l’échauffement a été localisé dans la première zone de bonding, où la défail-
lance s’est produite. Ici, la température élevée a provoqué la fusion des deux
parties métalliques initiales, créant la diffusion du matériau dans le Si dessous
et une nouvelle microstructure d’Al.

Figure 153: (a) Précipité quasi-millimétrique d’Al situé dans le substrat de Si dans
un composant vieilli à défaillance. (b) Coupe FIB et cartographie EDX (Si
bleu et Al-jaune). (c) Cartographie EBSD du précipité d’Al recristallisé
dans le substrat. Chaque domaine de couleur correspond à une cristallite
d’orientation distincte. Noter le domaine rouge au centre du grain, sans
doute cristallisé en dernier.

c.6 conclusions et perspectives

En conclusion, le vieillissement de la métallisation de source dans la technolo-
gie LFET1T peut être associé à deux phénomènes:

• Une reconstruction significative du métal, caractérisée par la génération
de joints de grain spécifiques des modules de puissance à base d’Al.

• Une systématique mauvaise adhérence des fils à la métallisation, due à
l’oxyde native d’Al, qui n’est jamais cassé avant la fusion finale d’Al (as-



C.6 conclusions et perspectives 217

Figure 154: Cartographie EBSD d’une portion de la zone de bonding non fondue dans
un module vieilli.

sociée à la défaillance de l’appareil). Des fissures se propagent parallèles
le long de l’interface entre le deux métals.

Ces deux mécanismes concourent à augmenter la résistivité locale et à favoriser
les points chauds, et peuvent conduire à la fusion de l’Al et à la fracture du
substrat de Si. Même si le changement des processus industriels est difficile et
il est hors du cadre de cette thèse, notre étude suggère des possibles moyens
d’amélioration de la fiabilité de ce type de dispositif, ainsi que des voies futures
pour compléter les présentes conclusions.

• Le procédé de soudage à froid ne fournit pas un contact Al / Al parfait et
la présence d’une interface défectueuse persiste jusqu’à la défaillance. À
ce stade seulement, une vrai reconstruction de la microstructure de fil de
métallisation est réalisée. Idéalement, l’oxyde d’aluminium devrait être
cassé pendant ou juste avant la connexion par fil. Ceci pourrait être réal-
isé en effectuant une réduction du métal et du fil, ou en effectuant cette
soudure à haute température. On peut changer la forme du fil pour créer
des pointes locales qui créeraient une concentration de contrainte suff-
isante et augmenteraient la surface d’adhérence pour favoriser la crois-
sance des grains (par diffusion locale) à l’interface. Nous avons montré
qu’une plastification importante du métal sous le fil est probablement
très tolérable de la part du composant.

• Un changement de type de métal pourrait également faire une différence.
Une connexion cuivre / cuivre ne devrait pas avoir ce type de problème
d’adhérence. Cependant, il est bien connu que les interconnexions Cu
nécessitent une isolation chimique beaucoup plus sévère du substrat Si.
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• Nos avons fait de tentatives pour quantifier l’information sur l’augmentation
du stress dans le métal au cours du vieillissement, mais ils sont insuff-
isantes. À ce propos, des expériences de courbure pour mesurer le stress
et le corréler (ou non) avec la reconstruction de la surface pourraient être
utiles.

• La passivation de la métallisation par un oxyde semble réduire la densité
de fissure et augmenter la durée de vie des puces de puissance etudiés.
Cependant, il ne semble pas possible de passiver complètement le métal
autour des fils de bonding, pour concentrer la dégradation du métal à cet
endroit. En plus, nous n’avons pas assez de statistiques sur ce sujet. La
question principale est de savoir si ce type de passivation peut favoriser
des événements catastrophiques précoces, associés à des concentration
de points chauds. Pour un nombre accru de cycles, le moment auquel
une panne se produit peut fortement diverger.
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the crystallographic planes increases. . . . . . . . . . . . 62

Figure 47 (a) Schematic representation of FIB cross-section from
a region of interest (red cross) of the power die naked
metallization. (b) SEM image of a FIB cut from a ref-
erence module and (c) relative higher magnification of
the Al metallization bamboo structure, with the MOS-
FET area, on the Si substrate. . . . . . . . . . . . . . . . . 63

Figure 48 Cross-sectional SEM images of the Al metallization in
an aged modules (a) without and (b) with Pt protective
layer. Scale bar 1 µm. . . . . . . . . . . . . . . . . . . . . 64

Figure 49 (a) Schematic representation of the preliminary sample
preparation for the wire-metal interface FIB inspection.
The wire is cut and polished at 45

� before being cut
by FIB for interface observation. (b) Front-view photo-
graph of a power die prepared for the FIB and (c) rela-
tive lateral-view SEM image of a 45

�polished wire. The
white arrows indicate the imaging direction of the FIB-
prepared cross-sectional faces (in red). . . . . . . . . . . . 64

Figure 50 Sample preparation equipment: (a) diamond wire saw
and (b) polishing lapping machine. . . . . . . . . . . . . . 65

Figure 51 (a) Schematic representation of FIB cross-section from
a region of interest (red cross) of the power die wire-
metal interface. (b) SEM image of FIB cuts along the
wire-metal interface and (c) higher magnification of a
single cut, showing the layered structure: Al bonding
wire, Al top metallizaiton, MOSFET area and Si substrate. 66

Figure 52 SIM image of the wire-metallization interface. In the
Al metallization some Cu-W precipitates are visible in
white contrast. . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 53 (a) Cross Section Polisher IB-09010CP from JEOL USA.
(b) CP inner chamber: the shielding plate is in its lifted
position to allow the sample (also visible at higher mag-
nification in the upper-right insert) to be positioned. . . . 68
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Figure 54 Schema of the sample preparation prior to CP cross-
section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 55 (a) Representation of the solid epoxy-device block (only
one wire is represented for sake of simplicity) before
and after CP sectioning. (b) SEM low-magnification im-
age of the polished face, showing the layered structure:
Al bonding wire, Al top metal, Si substrate, die attach
and Cu radiator. (c) In the SIM higher magnification im-
age also the MOSFET area is visible. . . . . . . . . . . . . 70

Figure 56 MAPS program interface. The wire-metal interface is
split in consecutive tiles (green rectangles) of user-defined
size, superposed of few microns. Each tile corresponds
to a high resolution SIM image. . . . . . . . . . . . . . . . 71

Figure 57 Schematic illustration of the serial sectioning procedure
by dual-beam FIB: (a) front view and (b) lateral view of
the 52

�tilted sample inside the FIB chamber. (c) Slice and
View FEI software interface for the preliminary trench-
ing preparation. (d) Stack of SEM images with a z-spacing
of 50 nm, through 10 µm (200 images in total). . . . . . . 73

Figure 58 Comparison between two SEM imaging faces during the
last steps of the serial milling. (a) The redeposition hides
part of the face to be inspected because of a bad prelimi-
nary trenching. (b) The imaging face is redeposition-free
thanks to an adequate trench size setting. Scale bar 2 µm. 74

Figure 59 Schematic representation of FIB lamella preparation of
the metallization (a) away and (under) the bonding wire. 75

Figure 60 (a) Jeol 2010 HC and (b) Philips CM20 FEG installed in
the CEMES laboratory. (c) Schema of a TEM inner col-
umn. (d) Conventional TEM imaging mode vs diffrac-
tion mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 61 Schematic representation of the dual beam FIB/SEM
during the TEM lamella preparation. . . . . . . . . . . . . 79

Figure 62 SEM images of the step 1: (a) selection of the region of
interest and (b) Pt deposition above it.) . . . . . . . . . . 79

Figure 63 SEM image of the step 2: preparation of a ⇠ 2µm thick
lamella, by removing matter behind the region of interest. 80

Figure 64 SEM image of the step 3: lamella U-cut prior to the lift-out. 81

Figure 65 FIB images of the step 4: (a) lamella lift-out and (b)
lamella bonding to the TEM grid. Scale bar 5 µm. . . . . 81
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Figure 66 Front-view SEM image of the lamella (a) before and (b)
after thinning/polishing step (step 5). (c) Top-view of
the final lamella (after step 6 and 7) to check the re-
quired thickness of 100-150 µm. Scale bar 2.5 µm. . . . . 82

Figure 67 Summary of a FIB lamella preparation for the TEM in-
spection of the device top Al metallization. Scale bar 2.5
µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 68 (a) SEM image of a wire-metallization interface lamella
prepared by FIB and (b) relative high-magnification TEM
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 69 Top view schematic representation of the metallization
(a) naked and (b) under the bonding wire, during the
lamella preparation by FIB. The dashed rectangular pat-
terns represent the sample area to be milled behind the
region of interest, in order to obtain a 1µm thick lamella
prior to the lift-out and the final polishing. The pattern
in (b) is higher because the area to be milled is deeper,
due to presence of the bonding wire. . . . . . . . . . . . . 84

Figure 70 Automated Crystal Orientation Mapping (ACOM).
(a) The NanoMEGAS ACOM unit collects the diffrac-
tion signal, acquired by an external fast-rate camera,
and controls the electron beam in the TEM.
(b) The NanoMEGAS ACOM unit consists in a digital
scan generator, a beam controller console and a com-
puter with the pattern-recognition software.
(c) The digital scan generator controls the electron beam
which scans the sample to generate a diffraction pattern
from each point of the area of interest. . . . . . . . . . . . 85

Figure 71 ACOM pattern recognition software windows.
(a) The diffraction image from each point of the area
of interest is digitized and compared with simulated
diffraction patterns of a databank.
(b) The result of the matching can be visualized in an
orientation map, where each color represents a specific
crystallographic orientation. . . . . . . . . . . . . . . . . . 86

Figure 72 (a) TEM image of the Al metallization decorated with
Cu/W precipitates. (b) Higher magnification TEM im-
age of some of these precipitates and (c) relative EDX
map, corresponding to the Cu element. . . . . . . . . . . 87
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Figure 73 In situ heating TEM settings. (a) The JEOL 2010 is equipped
with a (b) double tilt heating holder (Gatan) connected
to a temperature control unit. (c) The TEM grid contain-
ing the sample is placed at the extremity of the sample
holder and it is connected to a heating micro-resistance
and a temperature sensor. . . . . . . . . . . . . . . . . . . 88

Figure 74 Optical image of an SPD06 power die after accelerated
aging test (300 kcycles at room temperature). Only one
module underwent the electro-thermal cycles, whereas
the other one serves as reference for the microstructural
characterization of the critical points. . . . . . . . . . . . . 91

Figure 75 Top view SEM images showing the Al metallization of
(a) an as-is module and (b), (c ) a failed one at two dif-
ferent locations. The grain structure is visible in all of
them as GBs are slightly grooved in (a) and more heav-
ily cracked in (b) and (c). Scale bar 10 µm. . . . . . . . . . 92

Figure 76 (a) EBSD orientation mapping along x, y and z axis of
the Al metallization of a reference module and relative
histograms of the (b) grain misorientation and (c) grain
size (equivalent diameter). . . . . . . . . . . . . . . . . . . 94

Figure 77 Top view SEM images showing the evolution of the Al
source metallization surface. Grain structure (a) before
starting the accelerated aging and after (b) 1 kcyles, (c)
10 kcycles, (d) 100 kcycles, (e) 200 kcycles and (f) 300

kcycles. Scale bar 5 µm. . . . . . . . . . . . . . . . . . . . . 96

Figure 78 (a) SEM image of the Al metallization from a 1kcycles
aged module. The bigger central grain is characterize by
a ridge-notch pattern. We have investigated the disloca-
tion distribution beneath this area by TEM, preparing
an ultra-thin lamella by FIB. The first step of the prepa-
ration (a cross-sectional cut perpendicular to the sur-
face, ahead of the region of interest) is depicted in (b).
(c) The TEM image just below the Al metallization sur-
face (covered by a dark-contrasted Pt protective layer)
reveals the presence of few uniformly distributed dislo-
cations (dark lines) and the absence of slip bands. . . . . 97

Figure 79 SIM imaging of the Al source metallization of an (a) as-
is and (b) 100, (c) 200 and (d) 300 kcycles aged power
modules. Scale bar 2 µm. . . . . . . . . . . . . . . . . . . . 98
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Figure 80 ACOM mapping of the cross-section of an as-is module,
showing a strong <111> texture of the Al grains along
the deposition direction. The standard stereographic tri-
angle gives the color codes of the grain orientations,
taken here along the vertical growth direction. Scale bar
2.5 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 81 Grain size calculated by lineal intercept method in 10

FIB cross-sections of each analysed module, both aged
at 130 kcycles (in blue) and as-processed (in orange). . . 99

Figure 82 (a) FIB imaging and (b) ACOM orientation mapping of
the source metal of an aged module (short circuit, 130k
cycles) at the interface with the Si substrate. The stan-
dard stereographic triangle gives the color codes of the
grain orientations, taken here along the horizontal direc-
tion. (c) The plot represents the misorientation between
the grains 1 and 2 along the white line in b). . . . . . . . 100

Figure 83 (a) FIB cross-sectioning schema under a 45

�polished bond-
ing wire from an as-is module (left) and an aged one
(right). The arrows indicate the imaging direction.
The relative SIM images have been collected from the
edge of the bonding wire of the (b) as-is and (c) aged
(100 kcycles) module, and at the center of the bonding
wire of the (d,f) as-is and (e,g) aged (100 kcycles) mod-
ule. Scale bare 2.5 µm. . . . . . . . . . . . . . . . . . . . . 103

Figure 84 SIM images of the Al metallization (a) away and (b) un-
der the bonding wire. The naked metal thickness (lref)
serves as reference for the measurement of the mini-
mum thickness (lmin) in the deformed sections under the
bonding wires. . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 85 Plastic deformation of the Al metallization under the
bonding wires of the as-is and the aged module of three
different devices: aged at 1, 100 and 300 kcycles. The
deformation has been calculated as the minimum metal-
lization thickness in the wire-metallization FIB sections
(7 for each analyzed module, each one ⇠ 15µ m wide),
taking the initial metallization thickness (away from the
bonding wire) as a reference. . . . . . . . . . . . . . . . . 104
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Figure 86 In situ TEM thermal cycling of a device FIB-prepared
cross-section from 25

�C to 450

�C. (a)-(c) are snapshots
captured during the heating up phase from 250

�C to 300

�C, showing curved slip traces associated to a combina-
tion of dislocation climbing and gliding. Once the dislo-
cations are dispersed, during the correspondent cooling
down phase (d), no reverse motion is observed because
the Si substrate is too thin to induce significant stress in
the Al film. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 87 In situ TEM thermal cycling from 25

�C to 450

�C of a de-
vice cross-section prepared by tripod. The Si substrate
is preserved, inducing a reversible motion, according to
the stress inversion for a Al/Si substrate thin film in the
stress-temperature curve [Fli87]. (a)-(b) are snapshots
captured during the heating up phase from 350

�C to
450

�C, showing the dislocation activation. During the
cooling down phase, the reversible motion is character-
ized by an initial dislocation straightening (c) followed
by a bowing in the opposite direction (d), towards the
oxide (d)-(e). . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 88 (a) SEM image of an Al bond wire welded on the Al
source metallization on an as-is module. Away from the
bonding area the metallization is coated by a SiO

2

pas-
sivation layer. (b) Higher magnification of the bare met-
allization close to the bonding wire. . . . . . . . . . . . . 109

Figure 89 SEM images of the Al metallization close to the bonging
wire in a (a) 25

�C aged module (failed after 5.3 million
cycles) and in a (b) 70

�C aged one (failed after 300 kcy-
cles). Scale bar 10 µm . . . . . . . . . . . . . . . . . . . . . 110

Figure 90 SIM images of the naked metallization cross-sections of
(a) as-is, (b) 70

�C aged and (c) 25

�C aged power mod-
ules. The top layer (⇠ 1µm thick) is the Pt protective
coating to prevent curtaining artefacts on the imaging
faces. Scale bar 2.5 µm. . . . . . . . . . . . . . . . . . . . . 111

Figure 91 TEM images of some details of the transistor/metalliza-
tion area from the naked metallization of an (a, b) as-is,
(c, d) 25

�C aged and (e, f) 70/degree C aged power mod-
ules. The trench MOSFET layered structure is described
in (b) and consists in: source metal, inter-layer dielec-
tric (ILD), gate oxide and polySi (Polygate), epitaxial Si.
Scale bar: 1 µm. . . . . . . . . . . . . . . . . . . . . . . . . 113
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Figure 92 TEM images of FIB lamella extracted from the naked
metallization of an (a) as-is, (c) 25

�C aged and (d) 70

�C
aged power modules.
ACOM mapping relative to the red area in the TEM im-
ages for the (b) as-is, (d) 25

�C aged and (f) 70

�C aged
lamella. The standard stereographic triangle gives the
color codes of the grain orientations, taken here along
the horizontal direction, perpendicular to the growth
direction, in order to have better visibility (the relative
misorientation between subgrains does not change along
the three axis). . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 93 Horizontal and vertical cracks statistics in a 25

�C and
70

�C aged module.
(a) Vertical cracks are evaluated by counting at the metal
surface the number of cracked (GB

5

) and undamaged
(GB

1

- GB
4

and GB
6

- GB
8

) grain boundaries . Hori-
zontal cracks are evaluated by counting the number of
transistor units with cracks on top (Transistor unit 2 and
Transistor unit 3) with respect to the undamaged ones
(Transistor unit 1 and Transistor unit 4).
The ratio of cracked vs undamaged GBs is showed in
(b) for a 25

�C aged module and in (c) for a 70

�C aged
one.
The ratio of cracked vs undamaged transistor units is
showed in (d) for a 25

�C aged module and in (e) for a
70

�C aged one. . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 94 SIM image of the Al top metallization coated by SiO
2

passivation from two close cross-sections in a 70

�C aged
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 95 Ratio of cracked vs undamaged GBs in (a) a 25

�C aged
module and in a (b) 70

�C aged one.
Ratio of cracked versus undamaged transistor units in
(c) a 25

�C aged module and in a (d) 70

�C aged one. . . 119

Figure 96 SIM images of the wire-source metallization interface,
at the center of the bonding wire, in an as-processed
module. Scale bar 2.5 µm. . . . . . . . . . . . . . . . . . . 120
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Figure 97 (a) ACOM map of the wire-metal interface of an as-
processed module. (b) Misorientation between the grains
1 and 2 along the white dashed line respectively in (a).
The standard stereographic triangle gives the color codes
of the grain orientations, taken here along the horizontal
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 98 (b) Central and (c) side SIM images of the wire-metallization
interface in a 25

�C aged module. (d) Central and (e) side
SIM images of the wire-metallization interface in a 70

�C
aged module. The images correspond to the FIB cross-
section locations ("center" and "side") in the schema in
(a). Scale bar 2.5 µm. . . . . . . . . . . . . . . . . . . . . . 122

Figure 99 (a) SIM image of the initial artifacts which characterize
the wire-metallization bonding of an as-is module. (b)
EELS spectra from the wire (in blue), the metallization
(in green) and the wire-metallization interface (in red).
The red spectrum at the wire-metallization interface re-
veals the presence of oxygen. . . . . . . . . . . . . . . . . 123

Figure 100 (b) Selection of six non consecutive SEM images from
the data stack of the wire-metallization interface (ac-
cording to the schema in (a)) of a 70

�C aged device
(slicing distance 50 nm). The yellow rectangle in (a) rep-
resents the milled imaging face. Scale bar 2.5 µm. . . . . 124

Figure 101 Plastic deformation of the Al metallization under the
bonding wires of the as-is and aged modules in a 25

�C
and 70

�C aged device. The deformation has been cal-
culated as the minimum metallization thickness in the
wire-metallization FIB section, taking the initial metal-
lization thickness (away from the bonding wire) as a
reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 102 Schematic illustration of the area-based measurement
method of the plastic deformation imposed to the Al
source metallization by the bonding process. href = ini-
tial metallization thickness, href = image width. . . . . . . 126

Figure 103 SIM images of the wire-metallization interface in two
close areas under the same bonding wire. The images
refer to a non-aged module. The red straight line rep-
resents the initial metallization surface. White arrows
show how the interface moved from this initial position
after wire bonding. Scale bar 2.5 µm. . . . . . . . . . . . . 128
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Figure 104 Deformed area ratio of the Al metallization under the
bonding wires of a module aged at 25

�C (b), with the
relative as-is part (a), and of a 70

�C aged module (d),
with the relative as-is part (c). The deformation has been
measured in 10 sections for each analysed module ac-
cording to the method represented in Fig. 102. . . . . . . 129

Figure 105 (a) Top view SEM image of an Al bond wire welded on
the Al source metallization in a 25

�C aged device, after
a short-circuit event. At higher magnification, big cracks
propagating in (b) the passivated metallization and (c)
next to the bonding wire (located in the boxes (b) and
(c) in (a)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 106 Cross-sectional SEM images of the heavily cracked met-
allization (a) in the passivated area and (b) close to the
melted bonding wire of the module depicted in (Fig. 105a).132

Figure 107 SEM image of a cross-section prepared by Cross Pol-
isher system in an as-is module. The large cut area shows
the power die layered structure: Al wire, Si bulk and Cu
heat sink. The Al source metallization on the transistor
area, at interface with the semiconductor, is not visible
at this scale. The red area indicates the location of the
Al wire-metallization interface that is shown in detail in
Fig. 108a - n. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 108 (b) SIM images mosaicing of the whole wire-metallization
cross-section prepared by cross-polisher, according to
the schema in (a). The images sequence offers a global
vision of the metallization grain structure under the bond-
ing wire and of the wire metallization interface. It can
be used to calculate the total amount of deformed area
due to the bonding process. . . . . . . . . . . . . . . . . . 135

Figure 109 SEM overview of a 70

�C aged module prepared by CP
for the SEM/SIM inspection. In the insert, optical image
image of the T07D17 device, showing the position in the
aged module (in red) of wire 1 and 2 under investigation. 137

Figure 110 (a) SEM cross-sectional imaging of the bonding wire
from an aged power module (70

�C aged) showing dif-
ferent types of cracks; (b), (c) ionic higher magnification
images of the wire- metallization interface located in the
boxes (b) and (c) in (a). The die crack resulted from an
electro-thermal event occurring at failure time. . . . . . . 138
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Figure 111 (a) Low and (b) high magnification SEM image of the
cracked Si bulk under the bonding contact. (c) EDX map-
ping of the crack in the Si bulk and (d) relative line scan
plot showing the element distribution along the dashed
line in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 112 (a) SEM cross-sectional imaging of the naked metalliza-
tion between the two bonding wire of the 70

�C aged
module, showing different types of cracks: fatigue cracks
in the metallization layer and fragile cracks in the Si sub-
strate; (b) at higher magnification, the Al top metalliza-
tion continuity results abruptly compromised as result
of the crack propagation in the Si substrate until the sur-
face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 113 (a) SEM cross-sectional image of a fine crack in the Si
layer contacted to the Al metallization in a 70

�C aged
module. (b) Al mapping by EDX showing some of these
Si fine cracks filled with Al. Scale bar 5µm . . . . . . . . 141

Figure 114 (a) SEM cross-sectional imaging of the bonding wire
from an aged power module (25

�C aged) showing dif-
ferent types of cracks; (b), (c) higher magnification im-
ages of the wire- metallization interface located in the
boxes (b) and (c) in (a). The die crack resulted from an
electro-thermal event occurring at failure time. . . . . . . 143

Figure 115 (a) SEM cross-sectional imaging of the round shape fea-
ture in the Si substrate (Al contrasted like) from an aged
power module (25

�C aged); in (b) the corresponding
EDX maps of the Si (in light blue) and Al (in yellow)
are overlapped, showing that the round shape feature
in the Si substrate is made out of Al. This has proba-
bly diffused from the top wire during the short-circuit
event, because of the local melting of the metallic parts
at high temperature. . . . . . . . . . . . . . . . . . . . . . 144

Figure 116 EBSD map of the melted area at the wire-metal cross-
sectional interface from a 25

�C aged module. The stan-
dard stereographic triangle gives the color codes of the
grain orientations, taken here along the horizontal di-
rection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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Figure 117 (a) SEM cross-sectional imaging of the wire-metallization
interface pointed by the white arrows, (a) at the center
and (b) at the extremity of the bonding area. (c) Rela-
tive EBSD map of the wire-metallization-semiconductor
layered structure. The standard stereographic triangle
gives the color codes of the grain orientations, taken
here along the horizontal direction. . . . . . . . . . . . . 146

Figure 118 Burnout spots detected after failure (a) between two
bond wires in a SPD06 module and (b) at the bonding
connection in a T07D17 module. Scale bar: 250µm. . . . . 148

Figure 119 Increase of about 14% in the on-state resistance after
repetitive SC events (3.55 J/cm2) at ambient tempera-
ture. At 300kcycles the device failed. . . . . . . . . . . . . 150

Figure 120 Increase of about 14% in the on-state resistance after
repetitive SC events (3.55 J/cm2) at ambient tempera-
ture. At 300kcycles the device failed. . . . . . . . . . . . . 150

Figure 121 (a) Active module of an SPD06 device under aging test.
Potential and temperature mapping of its surface have
been performed during aging.
(b) Source voltage mapping [V] at ID = 1A under SC
conditions, after 1kcycles, 50 kcycles, 200 kcycles and
300 kcycles.
(c) Temperature distribution [K] under SC conditions,
after 1kcycles, 50 kcycles, 200 kcycles and 300 kcycles.
Areas where the temperature is lowest correspond the
bonding connections, according to the picture of the ac-
tive module in (a). . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 122 Al source metallization top view. (a) The initial Al struc-
ture is smooth and fits the underlying MOSFETs struc-
ture. (b) After electro-thermal aging the metallization
roughness increases and many cracks propagate along
the grain boundaries. The grain structure and the tran-
sistor pattern are almost no longer visible. Scale bar:
10µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 123 Cross-sectional cuts through the Al source metalliza-
tion. (a) Before aging, bamboo Al grains fill all the met-
allization volume. After electro-thermal aging, an ap-
parent grain shrinkage and crack propagation along the
grain boundaries are observed. Scale bar: 2.5µm. . . . . . 154
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Figure 124 Stress-temperature plot for a 20-160

�C temperature cy-
cle performed on a naked SPD06 die. The stress is di-
rectly deduced from the die curvature (measured by
laser reflectometry - see Appendix B ) using the Stoney
equation (chapter 2, section 2.2.2). . . . . . . . . . . . . . 156

Figure 125 Gao’s model extended to Al layers undergoing tension
and compression stresses during thermal cycles [Mar14].
(a-c) The dislocation density decreases by recombina-
tion in sub grain boundaries and absorption at GB in-
terfaces. (d-g) Al diffusion along grain boundaries, and
subsequent oxidation causing crack propagation through
the Al layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 126 Crack propagation models through the Al layer at fail-
ure. (a) For SPD06 power modules at the final aging
stage until failure, fatigues cracks running from the sur-
face along the grain boundaries become broader and
broader. (b) SIM cross-sectional image of the cracked
metal in a failed SPD06, showing a crack width on the
same order of the metallization thickness. (c) In T07D17

failed power modules, finer vertical cracks branch out
and propagate horizontally all long the MOSFETs re-
gion. (d) Relative SIM cross-sectional imaging form a
70

�C aged module. . . . . . . . . . . . . . . . . . . . . . . 163

Figure 127 SEM cross-sectional image showing the whole metal-
oxide-semiconductor crossed by cracks in a 70

�C aged
T07D17 module. . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 128 Cross-sectional SIM images of the (a) passivated and (b)
bare Al source metallization, showing a localized prop-
agation of vertical cracks in the first one and a gener-
alized degradation in the second one, with horizontal
cracks branching out all along the metal-transistor in-
terface. Scale bar: 2.5µm . . . . . . . . . . . . . . . . . . . 165

Figure 129 Metallization crack statistics for a T07D17 module aged
at 25

�C and 70

�C, in non passivated –bare– (left) and
passivated (right) zones. . . . . . . . . . . . . . . . . . . . 165

Figure 130 Cross-sectional schema of the cylindric wire on the top
metallization (a) before and (b) after bonding process.
The black flashes in (a) represent the force direction dur-
ing the bonding process. (c) Lateral view SEM image of
the elliptical bond area. . . . . . . . . . . . . . . . . . . . . 169
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Figure 131 SEM Cross-sectional image of the tail side of an as-
processed wire on Al metallization, showing the tran-
sition from the non-bonded to the welded region . . . . 170
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