G. Aloisi, The calcium carbonate saturation REFERENCES The Supplement related to this article is available online at doi:10, pp.13-5983

. Acknowledgements, the MODIF project of the Institut Pierre Simon Laplace (IPSL), and the CALHIS project (French ANR) We thank C. Schmechtig for providing access to the BIOSOPE database, F. Le Cornec and I. Djouraev for helping with PIC analysis at the Institut de Recherche pour le Développement (IRD) ALYSE platform and C. Labry and A. Youenou for carrying out the POP analysis at IFREMER Centre de Brest. From the Roscoff Biological Station we are grateful to C. Leroux for analysis of POC and PON samples and the Marine Chemistry research team, specifically T. Cariou for dissolved nutrient analyses and acid treatment of POC and PON samples, M. Vernet for help processing DIC samples, and Y. Bozec for DIC analysis. We also thank A. Charantonis for his advice for the modelling methodology and two anonymous reviewers for their useful comments, This project was supported by the TELLUS CLIMAHUX project The lead author was supported by a doctoral fellowship from the French Minister of Education and Research (MESR)

G. Aloisi, Covariation of metabolic rates and cell size in coccolithophores, Biogeosciences, vol.12, issue.15, pp.6215-6284, 2015.
DOI : 10.5194/bg-12-4665-2015-supplement

URL : https://hal.archives-ouvertes.fr/hal-01176428

L. Beaufort, M. Couapel, N. Buchet, H. Claustre, and C. Goyet, Calcite production by coccolithophores in the south east Pacific Ocean, Biogeosciences, vol.5, issue.4, pp.1101-111710, 1101.
DOI : 10.5194/bg-5-1101-2008

URL : https://hal.archives-ouvertes.fr/hal-00330268

I. Benner and U. Passow, Utilization of organic nutrients by coccolithophores, Marine Ecology Progress Series, vol.404, pp.21-29, 2010.
DOI : 10.3354/meps08474

O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, Journal of Process Control, vol.21, issue.10, pp.1378-1389, 2011.
DOI : 10.1016/j.jprocont.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-00847274

L. Berry, A. R. Taylor, U. Lucken, K. P. Ryan, and C. Brownlee, Calcification and inorganic carbon acquisition in coccolithophores, Functional Plant Biology, vol.29, issue.3, pp.289-299, 2002.
DOI : 10.1071/PP01218

P. W. Boyd, R. Strzepek, F. Fu, and D. A. Hutchins, Environmental control of open-ocean phytoplankton groups: Now and in the future, Limnology and Oceanography, vol.55, issue.3, pp.1353-1376, 2010.
DOI : 10.4319/lo.2010.55.3.1353

E. T. Buitenhuis, T. Pangere, D. J. Franklin, L. Quéré, C. Malin et al., Growth rates of six coccolithophorid strains as a function of temperature, Limnology and Oceanography, vol.53, issue.3, pp.1181-1185, 2008.
DOI : 10.4319/lo.2008.53.3.1181

H. Claustre and S. Maritorena, The Many Shades of Ocean Blue, pp.1514-1515, 2003.

H. Claustre, A. Sciandra, and D. Vaulot, Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program, Biogeosciences, vol.5, issue.3, pp.679-691, 2008.
DOI : 10.5194/bg-5-679-2008

URL : https://hal.archives-ouvertes.fr/hal-00330284

M. Y. Cortés, J. Bollmann, and H. R. Thierstein, Coccolithophore ecology at the HOT station ALOHA, Hawaii, Deep-Sea Res, Pt II, vol.48, issue.00, pp.10-1016, 1957.

C. J. Daniels, R. M. Sheward, and A. J. Poulton, Biogeochemical implications of comparative growth rates of <i>Emiliania huxleyi</i> and <i>Coccolithus</i> species, Biogeosciences, vol.11, issue.23, pp.6915-692510, 2014.
DOI : 10.5194/bg-11-6915-2014-supplement

M. R. Droop, Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition in Monochrysis Lutheri, Monochrysis Lutheri, pp.689-733, 1968.
DOI : 10.1038/191868a0

URL : https://link.springer.com/content/pdf/10.1007%2FBF01609935.pdf

A. Engel, C. Novoa, C. Wurst, M. Endres, S. Tang et al., No detectable effect of CO2 on elemental stoichiometry of Emiliania huxleyi in nutrient-limited, acclimated continuous cultures, Marine Ecology Progress Series, vol.507, pp.15-30, 2014.
DOI : 10.3354/meps10824

R. W. Eppley and E. H. Renger, NITROGEN ASSIMILATION OF AN OCEANIC DIATOM IN NITROGEN-LIMITED CONTINUOUS CULTURE, Journal of Phycology, vol.47, issue.1, pp.15-23, 1974.
DOI : 10.1042/bj0800324

R. W. Eppley, J. N. Rogers, and J. J. Mccarthy, HALF-SATURATION CONSTANTS FOR UPTAKE OF NITRATE AND AMMONIUM BY MARINE PHYTOPLANKTON1, Limnology and Oceanography, vol.14, issue.6, pp.912-920, 1969.
DOI : 10.4319/lo.1969.14.6.0912

K. M. Fagerbakke, M. Heldal, S. Norland, B. R. Heimdal, and H. Båtvik, . Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord, Sarsia, vol.34, issue.4, pp.79-349, 1994.
DOI : 10.1016/0377-8398(91)90004-P

Y. Feng, M. E. Warner, Y. Zhang, J. Sun, F. Fu et al., (Prymnesiophyceae), European Journal of Phycology, vol.76, issue.1, pp.87-98, 2008.
DOI : 10.1016/S0022-0981(02)00037-0

E. Fernández, P. Boyd, P. M. Holligan, and . Harbour, Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean, Marine Ecology Progress Series, vol.97, pp.271-285, 1993.
DOI : 10.3354/meps097271

K. Flynn, M. J. Follows, and S. Dutkiewicz, The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models, Journal of Plankton Research, vol.30, issue.4, pp.423-438, 2008.
DOI : 10.1093/plankt/fbn007

J. J. Fritz, Carbon fixation and coccolith detachment in the coccolithophore Emiliania huxleyi in nitrate-limited cyclostats, Marine Biology, vol.133, issue.3, pp.509-51810, 1999.
DOI : 10.1007/s002270050491

S. J. Gibbs, A. J. Poulton, P. R. Brown, C. J. Daniels, J. Hopkins et al., Species-specific growth response of coccolithophores to Palaeocene???Eocene environmental change, Nature Geoscience, vol.55, issue.3, pp.218-222, 2013.
DOI : 10.1038/nature04386

J. C. Goldman, J. J. Mccarthy, and D. G. Peavey, Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, vol.203, issue.5710, pp.210-215, 1979.
DOI : 10.1016/0022-0981(76)90126-X

W. W. Gregg and N. W. Casey, Modeling coccolithophores in the global oceans, Deep-Sea Res, Pt. II, vol.54, pp.447-477, 2007.

A. T. Haidar and H. R. Thierstein, Coccolithophore dynamics off Bermuda (N. Atlantic), Deep-Sea Res, pp.1925-1956, 2001.
DOI : 10.1016/s0967-0645(00)00169-7

J. Henderiks, A. Winter, M. Elbrchter, R. Feistel, A. Plas et al., Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic), Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic), pp.51-66, 2012.
DOI : 10.3354/meps09535

P. M. Holligan, W. M. Balch, Y. , and C. M. , The significance of subsurface chlorophyll, nitrite and ammonium maxima in relation to nitrogen for phytoplankton growth in stratified waters of the Gulf of Maine, Journal of Marine Research, vol.42, issue.4, pp.1051-1073, 2016.
DOI : 10.1357/002224084788520747

M. D. Iglesias-rodriguez, P. R. Halloran, R. E. Rickaby, I. R. Hall, E. Colmenero-hidalgo et al., Phytoplankton Calcification in a High-CO2 World, Phytoplankton calcification in a high-CO 2 world, pp.336-340, 2008.
DOI : 10.1111/j.0022-3646.1994.00230.x

R. W. Jordan and A. Winter, Assemblages of coccolithophorids and other living microplankton off the coast of Puerto Rico during January???May 1995, Marine Micropaleontology, vol.39, issue.1-4, pp.113-130, 1995.
DOI : 10.1016/S0377-8398(00)00017-7

A. Kaffes, Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations, Journal of Experimental Marine Biology and Ecology, vol.393, issue.1-2, pp.1-8, 2010.
DOI : 10.1016/j.jembe.2010.06.004

M. Keller, R. Selvin, W. Claus, and R. Guillard, MEDIA FOR THE CULTURE OF OCEANIC ULTRAPHYTOPLANKTON1,2, Journal of Phycology, vol.42, issue.4, pp.633-638, 1987.
DOI : 10.1111/j.1529-8817.1980.tb00724.x

C. Klaas and D. E. Archer, Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochemical Cycles, vol.46, issue.4, pp.10-1029, 1116.
DOI : 10.1016/S0967-0645(99)00082-X

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnology and Oceanography, vol.46, issue.8, 1998.
DOI : 10.4319/lo.2001.46.8.1998

S. A. Krug, K. G. Schulz, and U. Riebesell, Effects of changes in carbonate chemistry speciation on <i>Coccolithus braarudii</i>: a discussion of coccolithophorid sensitivities, Biogeosciences, vol.8, issue.3, pp.771-77710, 2011.
DOI : 10.5194/bg-8-771-2011-supplement

C. Labry, A. Youenou, D. Delmas, and P. Michelon, Addressing the measurement of particulate organic and inorganic phosphorus in estuarine and coastal waters, Continental Shelf Research, vol.60, pp.28-37, 2013.
DOI : 10.1016/j.csr.2013.04.019

G. Langer, M. Geisen, K. Baumann, J. Kläs, U. Riebesell et al., Species-specific responses of calcifying algae to changing seawater carbonate chemistry, Geochemistry, Geophysics, Geosystems, vol.272, issue.3, pp.155-161, 2006.
DOI : 10.1016/S0022-0981(02)00037-0

G. Langer, N. Gussone, G. Nehrke, U. Riebesell, A. Eisenhauer et al., Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate, Geochem. Geophys. Geosys, pp.10-1029, 2007.

G. Langer, K. Oetjen, and T. Brenneis, Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation, Journal of Experimental Marine Biology and Ecology, vol.413, pp.131-137, 2012.
DOI : 10.1016/j.jembe.2011.11.028

G. Langer, K. Oetjen, and T. Brenneis, Coccolithophores do not increase particulate carbon production under nutrient limitation: A case study using Emiliania huxleyi (PML B92/11), Journal of Experimental Marine Biology and Ecology, vol.443, issue.11, pp.155-161, 2013.
DOI : 10.1016/j.jembe.2013.02.040

J. Laroche, B. Rost, A. Engel, U. Riebesell, V. J. Fabry et al., Bioassays, batch culture and chemostat experimentation, Guide to Best Practices for Ocean Acidification Research and Data Reporting, 2010.

E. A. Laws, Evaluation of In Situ Phytoplankton Growth Rates: A Synthesis of Data from Varied Approaches, Annual Review of Marine Science, vol.5, issue.1, pp.247-268, 2013.
DOI : 10.1146/annurev-marine-121211-172258

N. Leonardos and R. J. Geider, ELEVATED ATMOSPHERIC CARBON DIOXIDE INCREASES ORGANIC CARBON FIXATION BY EMILIANIA HUXLEYI (HAPTOPHYTA), UNDER NUTRIENT-LIMITED HIGH-LIGHT CONDITIONS1, Journal of Phycology, vol.272, issue.6, pp.1196-1203, 2005.
DOI : 10.1029/2002GB001897

E. Litchman, C. A. Klausmeier, O. M. Schofield, and P. G. Falkowski, The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level, Ecology Letters, vol.12, issue.12, pp.1170-1181, 2007.
DOI : 10.1093/molbev/msh075

H. Loisel, J. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean, Journal of Geophysical Research, vol.47, issue.C8, pp.10-1029, 2006.
DOI : 10.1029/2005JC003367

M. W. Lomas and P. M. Glibert, COMPARISONS OF NITRATE UPTAKE, STORAGE, AND REDUCTION IN MARINE DIATOMS AND FLAGELLATES, Journal of Phycology, vol.36, issue.5, pp.903-913, 2000.
DOI : 10.1046/j.1529-8817.2000.99029.x

H. L. Macintyre, T. M. Kana, T. Anning, and R. J. Geider, PHOTOACCLIMATION OF PHOTOSYNTHESIS IRRADIANCE RESPONSE CURVES AND PHOTOSYNTHETIC PIGMENTS IN MICROALGAE AND CYANOBACTERIA1, Journal of Phycology, vol.38, issue.1, pp.17-38, 2002.
DOI : 10.1046/j.1529-8817.2002.00094.x

E. Marañón, P. Cermeño, D. C. López-sandoval, T. Rodríguez-ramos, C. Sobrino et al., Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use, Ecology Letters, vol.379, issue.3, pp.371-379, 2013.
DOI : 10.3354/meps07909

J. Monod, The Growth of Bacterial Cultures, Annual Review of Microbiology, vol.3, issue.1, pp.371-394, 1949.
DOI : 10.1146/annurev.mi.03.100149.002103

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud et al., Optical properties of the ???clearest??? natural waters, Limnology and Oceanography, vol.52, issue.1, pp.217-229, 2007.
DOI : 10.4319/lo.2007.52.1.0217

T. Moutin, D. M. Karl, S. Duhamel, P. Rimmelin, P. Raimbault et al., Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean, Biogeosciences, vol.55194, pp.95-10910, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00330336

M. N. Müller, A. N. Antia, and J. Laroche, Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi, Limnology and Oceanography, vol.53, issue.2, pp.506-512, 2008.
DOI : 10.4319/lo.2008.53.2.0506

M. N. Müller, L. Beaufort, O. Bernard, M. L. Pedrotti, A. Talec et al., Influence of CO 2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta), Biogeosciences, vol.95194, pp.4155-416710, 2012.

H. Okada and A. Mcintyre, Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean, Marine Biology, vol.17, issue.1, pp.319-328, 1979.
DOI : 10.1007/BF00395438

A. M. Oviedo, G. Langer, and P. Ziveri, Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi, Journal of Experimental Marine Biology and Ecology, vol.459, pp.105-113, 2014.
DOI : 10.1016/j.jembe.2014.04.021

E. Paasche, Reduced coccolith calcite production under light-limited growth: a comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae), Phycologia, vol.38, issue.6, pp.508-516, 1999.
DOI : 10.2216/i0031-8884-38-6-508.1

E. Paasche, A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, vol.40, issue.6, pp.503-529, 2002.
DOI : 10.2216/i0031-8884-40-6-503.1

P. Raimbault and N. Garcia, Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates, Biogeosciences, vol.5, issue.2, pp.323-33810, 2008.
DOI : 10.5194/bg-5-323-2008

URL : https://hal.archives-ouvertes.fr/hal-00327638

P. Raimbault, N. Garcia, C. , and F. , Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogendepleted waters, Biogeosciences, vol.55194, pp.281-29810, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00291812

J. A. Raven and K. Crawfurd, Environmental controls on coccolithophore calcification, Marine Ecology Progress Series, vol.470, pp.137-166, 2012.
DOI : 10.3354/meps09993

URL : http://www.int-res.com/articles/theme/m470p137.pdf

A. C. Redfield, The influence of organisms on the composition of sea-water, The Sea, pp.26-77, 1963.

R. Riegman, W. Stolte, A. A. Noordeloos, and D. Slezak, Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of emiliania huxleyi (prymnesiophyceae) during growth under n and p limitation in continuous cultures, Journal of Phycology, vol.36, issue.1, pp.87-96, 2000.
DOI : 10.1046/j.1529-8817.2000.99023.x

B. Rost, I. Zondervan, and U. Riebesell, Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi, 2002.

P. H. Roth, Distribution of coccoliths in oceanic sediments, in Coccolithophores, pp.199-218, 1994.

M. Rouco, O. Branson, M. Lebrato, and M. D. Iglesias-rodríguez, The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO 2 scenarios, Front. Aquat. Microbiol, 2013.

A. Sciandra, J. Harlay, D. Lefèvre, R. Leme, P. Rimmelin et al., Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation, Marine Ecology Progress Series, vol.261, pp.111-122, 2003.
DOI : 10.3354/meps261111

K. E. Selph, M. R. Landry, A. G. Taylor, E. Yang, C. I. Measures et al., Spatially-resolved taxon-specific phytoplankton production and grazing dynamics in relation to iron distributions in the Equatorial Pacific between 110 and 140??W, Deep Sea Research Part II: Topical Studies in Oceanography, vol.58, issue.3-4, pp.358-377, 2011.
DOI : 10.1016/j.dsr2.2010.08.014

J. D. Shutler, P. E. Land, C. W. Brown, H. S. Findlay, C. J. Donlon et al., Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO 2 from 10 years of satellite Earth observation data, Biogeosciences, vol.105194, pp.2699-270910, 2013.

K. L. Terry, NITRATE AND PHOSPHATE UPTAKE INTERACTIONS IN A MARINE PRYMNESIOPHYTE, Journal of Phycology, vol.23, issue.1, pp.79-86, 1982.
DOI : 10.1016/0006-3002(63)91866-3

J. D. Van-bleijswijk, R. S. Kempers, M. J. Veldhuis, and P. Westbroek, CELL AND GROWTH CHARACTERISTICS OF TYPES A AND B OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) AS DETERMINED BY FLOW CYTOMETRY AND CHEMICAL ANALYSES1, Journal of Phycology, vol.30, issue.2, pp.230-241, 1994.
DOI : 10.1111/j.0022-3646.1994.00230.x

P. Westbroek, C. W. Brown, J. Bleijswijk, . Van, C. Brownlee et al., A model system approach to biological climate forcing. The example of Emiliania huxleyi, Global and Planetary Change, vol.8, issue.1-2, pp.27-46, 1993.
DOI : 10.1016/0921-8181(93)90061-R

A. Winter, J. Henderiks, L. Beaufort, R. E. Rickaby, and C. W. Brown, Poleward expansion of the coccolithophore Emiliania huxleyi, Journal of Plankton Research, vol.36, issue.2, pp.316-325, 2014.
DOI : 10.1093/plankt/fbt110

URL : https://hal.archives-ouvertes.fr/hal-01458301

J. R. Young, A. J. Poulton, and T. Tyrrell, Morphology of <i>Emiliania huxleyi</i> coccoliths on the northwestern European shelf ??? is there an influence of carbonate chemistry?, Biogeosciences, vol.11, issue.17, pp.4771-4782, 2014.
DOI : 10.5194/bg-11-4771-2014

I. Zondervan, The effects of light, macronutrients, trace metals and CO 2 on the production of calcium carbonate and organic carbon in coccolithophores ? A review, Deep-Sea Res, Pt. II, vol.54, pp.521-537, 2007.