S. Jendoubi, A. Martin, L. Liétard, B. Ben-yaghlane, and H. B. Hadji, Dynamic Time Warping Distance for Message Propagation Classification in Twitter, the proceedings of the 13th european conference on symbolic and quantitative approaches to reasoning with uncertainty, pp.419-428, 2015.
DOI : 10.1145/1835449.1835643

URL : https://hal.archives-ouvertes.fr/hal-01445443

S. Jendoubi, A. Martin, L. Liétard, H. B. Hadji, and . Bouteheina-ben-yaghlane, MAXIMIZING POSITIVE OPINION INFLUENCE USING AN EVIDENTIAL APPROACH, Uncertainty Modelling in Knowledge Engineering and Decision Making, pp.168-174, 2016.
DOI : 10.1142/9789813146976_0029

URL : https://hal.archives-ouvertes.fr/hal-01380348

S. Jendoubi, A. Martin, L. Liétard, H. B. Hadji, and . Bouteheina-ben-yaghlane, Two evidential data based models for influence maximization in Twitter . Knowledge-Based Systems Journal, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01435733

S. Ahmed and C. I. Ezeife, Discovering influential nodes from trust network, Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC '13, pp.121-128, 2013.
DOI : 10.1145/2480362.2480389

R. M. Anderson and R. M. May, Infectious Diseases of Humans, 1991.

A. Aregui and T. Denoeux, Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities, pp.344-355, 2007.
DOI : 10.1002/int.4550010403

A. Aregui and T. Denoeux, Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities, International Journal of Approximate Reasoning, vol.49, issue.3, pp.575-594, 2008.
DOI : 10.1016/j.ijar.2008.06.002

C. Aslay, N. Barbieri, F. Bonchi, and R. Baeza-yates, Online topic-aware influence maximization queries, Proceedings of the 17th International Conference on Extending Database Technology (EDBT), pp.24-28, 2014.

L. Azaza, S. Kirgizov, M. Savonnet, E. Leclercq, and R. Faiz, Influence Assessment in Twitter Multi-relational Network, 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp.436-443, 2015.
DOI : 10.1109/SITIS.2015.82

URL : https://hal.archives-ouvertes.fr/hal-01436493

S. Baccianella, A. Esuli, and F. Sebatiani, Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, Proceedings of the Seventh conference on International Language Resources and Evaluation, pp.2200-2204, 2010.

U. Bandes, A faster algorithm for betweenness centrality*, The Journal of Mathematical Sociology, vol.113, issue.2, pp.163-177, 2001.
DOI : 10.1017/CBO9780511815478

S. Banerjee, K. Ramanathan, and A. Gupta, Clustering short texts using wikipedia, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pp.787-788, 2007.
DOI : 10.1145/1277741.1277909

URL : http://www.hpl.hp.com/india/documents/papers/clusteringshorttexts.pdf

N. Barbieri, F. Bonchi, and G. Manco, Topic-aware social influence propagation models
DOI : 10.1007/s10115-013-0646-6

R. Baumeister, E. Bratslavsky, C. Finkenauer, and K. Vohs, Bad is stronger than good., Review of General Psychology, vol.5, issue.4, pp.323-270, 2001.
DOI : 10.1037/1089-2680.5.4.323

B. Jabeur and L. , Leveraging social relevance: Using social networks to enhance literature access and microblog search, 2013.

B. Jabeur, L. Tamine, L. Boughanem, and M. , Active Microbloggers: Identifying Influencers, Leaders and Discussers in Microblogging Networks, Proceedings of the 19th International Symposium String Processing and Information Retrieval, pp.111-117, 2012.
DOI : 10.1007/978-3-642-34109-0_12

N. Bhatia, Vandana: Survey of nearest neighbor techniques, IJCSIS) International Journal of Computer Science and Information Security, vol.8, issue.2, pp.302-305, 2010.

A. Bozorgi, H. Haghighi, M. S. Zahedi, and M. Rezvani, INCIM: A community-based algorithm for influence maximization problem under the linear threshold model, Information Processing & Management, vol.52, issue.6, pp.1-12, 2016.
DOI : 10.1016/j.ipm.2016.05.006

P. Brown and J. Feng, Measuring user influence on twitter using modified k-shell decomposition, Proceedings of ICWSM'11 Workshops, pp.18-23, 2011.

H. Bunke, On a relation between graph edit distance and maximum common subgraph, Pattern Recognition Letters, vol.18, issue.8, pp.689-694, 1997.
DOI : 10.1016/S0167-8655(97)00060-3

H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, A Comparison of Algorithms for Maximum Common Subgraph on Randomly Connected Graphs, International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pp.123-132, 2002.
DOI : 10.1007/3-540-70659-3_12

C. T. Butts, Social network analysis: A methodological introduction, Asian Journal Of Social Psychology, vol.3, issue.6, pp.13-41, 2008.
DOI : 10.1521/soco.1995.13.3.319

URL : http://courses.washington.edu/ir2010/readings/butts.pdf

M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, Measuring user influence in twitter: The million follower fallacy, Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM), pp.10-17, 2010.

D. Chen, L. Lü, M. S. Shang, Y. C. Zhang, and T. Zhou, Identifying influential nodes in complex networks, Physica A: Statistical mechanics and its applications, pp.1777-1787, 2012.
DOI : 10.1016/j.physa.2011.09.017

W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu et al., Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate, Procedings of SIAM SDM, pp.379-390, 2011.
DOI : 10.1137/1.9781611972818.33

C. M. Cheung and M. K. Lee, Online consumer reviews: Does negative electronic wordof-mouth hurt more? In: Proceeding of the fourteenth americas conference on information systems, p.143, 2008.

M. D. Choudhury, Y. R. Lin, H. Sundaram, K. S. Candan, L. Xie et al., How does the data sampling strategy impact the discovery of information discusion in social media? In: ICWSM'10, pp.34-41, 2010.

A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Transactions on Systems, Man, and Cybernetics, vol.25, issue.5, pp.804-813, 1995.
DOI : 10.1109/21.376493

T. Denoeux, S. Sriboonchitta, and O. Kanjanatarakul, Evidential clustering of large dissimilarity data. Knowledge-Based Systems, pp.179-195, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01324491

L. Derczynski, A. Ritter, S. Clark, and K. Bontcheva, Twitter part-of-speech tagging for all: Overcoming sparse and noisy data, Proceedings of the International Conference on Recent Advances in Natural Language Processing, pp.198-206, 2013.

P. Domingos and M. Richardson, Mining the network value of customers, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.57-66, 2001.
DOI : 10.1145/502512.502525

D. Dubois and H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence, vol.5, issue.1, pp.244-264, 1988.
DOI : 10.1016/0165-0114(78)90029-5

E. Dubois and D. Gaffney, The Multiple Facets of Influence, American Behavioral Scientist, vol.47, issue.6, pp.1260-1277, 2014.
DOI : 10.1145/1963405.1963504

M. L. Fernández and G. Valienteb, A graph distance metric combining maximum common subgraph and minimum common supergraph, Pattern Recognition Letters, vol.22, issue.6-7, pp.6-7, 2001.
DOI : 10.1016/S0167-8655(01)00017-4

L. C. Freeman, A Set of Measures of Centrality Based on Betweenness, Sociometry, vol.40, issue.1, pp.35-41, 1977.
DOI : 10.2307/3033543

C. Gao, D. Wei, Y. Hu, S. Mahadevan, and Y. Deng, A modified evidential methodology of identifying influential nodes in weighted networks, Physica A: Statistical Mechanics and its Applications, vol.392, issue.21, pp.5490-5500, 2013.
DOI : 10.1016/j.physa.2013.06.059

X. Gao, B. Xiao, D. Tao, and X. Li, A survey of graph edit distance, Pattern Analysis and Applications, vol.72, issue.3, pp.113-129, 2010.
DOI : 10.1007/s10044-007-0087-5

J. Goldenberg, B. Libai, and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Marketing Letters, vol.12, issue.3, pp.211-223, 2001.
DOI : 10.1023/A:1011122126881

M. Gomez-rodriguez, D. Balduzzi, and B. Schölkopf, Uncovering the temporal dynamics of diffusion networks, pp.561-568, 2011.

G. Rodriguez, M. Leskovec, J. Krause, and A. , Inferring networks of diffusion and influence, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.1019-1028, 2010.
DOI : 10.1145/1835804.1835933

A. Goyal, F. Bonchi, and L. V. Lakshmanan, Learning influence probabilities in social networks, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.241-250, 2010.
DOI : 10.1145/1718487.1718518

A. Goyal, F. Bonchi, and L. V. Lakshmanan, A data-based approach to social influence maximization, Proceedings of VLDB Endowment, pp.73-84, 2012.
DOI : 10.14778/2047485.2047492

A. Goyal, W. Lu, and L. V. Lakshmanan, CELF++, Proceedings of the 20th international conference companion on World wide web, WWW '11, pp.47-48, 2011.
DOI : 10.1145/1963192.1963217

M. Granovetter, Threshold models of collective behavior American journal of sociology pp, pp.1420-1443, 1978.

A. Guille, H. Hacid, C. Favre, and D. A. Zighed, Information diffusion in online social networks, ACM SIGMOD Record, vol.42, issue.1, pp.17-28, 2013.
DOI : 10.1145/2503792.2503797

URL : https://hal.archives-ouvertes.fr/hal-00819924

D. L. Hansen, B. Shneiderman, and M. A. Smith, Analysing social media network with nodeXL insights from a connected world, 2011.

W. He, S. Zhab, and L. Li, Social media competitive analysis and text mining: A case study in the pizza industry, International Journal of Information Management, vol.33, issue.3, pp.464-472, 2013.
DOI : 10.1016/j.ijinfomgt.2013.01.001

X. Hu, N. Sun, C. Zhang, and T. S. Chua, Exploiting internal and external semantics for the clustering of short texts using world knowledge, Proceeding of the 18th ACM conference on Information and knowledge management, CIKM '09, pp.919-928, 2009.
DOI : 10.1145/1645953.1646071

S. Jendoubi, A. Martin, L. Liétard, B. Hadj, H. Ben-yaghlane et al., MAXIMIZING POSITIVE OPINION INFLUENCE USING AN EVIDENTIAL APPROACH, Uncertainty Modelling in Knowledge Engineering and Decision Making, 2016.
DOI : 10.1142/9789813146976_0029

URL : https://hal.archives-ouvertes.fr/hal-01380348

S. Jendoubi, A. Martin, L. Liétard, B. Hadj, H. Ben-yaghlane et al., Two evidential data based models for influence maximization in twitter. Knowledge-Based Systems, p.14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01435733

S. Jendoubi, A. Martin, L. Liétard, B. Ben-yaghlane, B. Hadj et al., Dynamic Time Warping Distance for Message Propagation Classification in Twitter, Proceeding of ECSQARU, pp.419-428, 2015.
DOI : 10.1145/1835449.1835643

URL : https://hal.archives-ouvertes.fr/hal-01445443

S. Jendoubi, A. Martin, L. Liétard, and B. B. Yaghlane, Classification of Message Spreading in a Heterogeneous Social Network, Proceeding of IPMU, pp.66-75, 2014.
DOI : 10.1007/978-3-319-08855-6_8

URL : https://hal.archives-ouvertes.fr/hal-01108020

T. Joachims, Text categorization with Support Vector Machines: Learning with many relevant features, Proceeding of European conference on machine learning, pp.137-142, 1998.
DOI : 10.1007/BFb0026683

A. L. Jousselme, D. Grenier, and E. Bossé, A new distance between two bodies of evidence, Information Fusion, vol.2, issue.2, pp.91-101, 2001.
DOI : 10.1016/S1566-2535(01)00026-4

S. Jurvetson, What exactly is viral marketing? Red Herring 78, pp.110-112, 2000.

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through a social network, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.137-146, 2003.
DOI : 10.1145/956750.956769

D. Kempe, J. Kleinberg, and E. Tardos, Influential Nodes in a Diffusion Model for Social Networks, Prceedings of the 32th International Colloquium on Automata, Languages and Programming, pp.1127-1138, 2005.
DOI : 10.1007/11523468_91

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through a social network, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.105-147, 2015.
DOI : 10.1145/956750.956769

W. O. Kermack and A. G. Mckendrich, A Contribution to the Mathematical Theory of Epidemics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.115, issue.772, pp.700-721, 1927.
DOI : 10.1098/rspa.1927.0118

M. Kimura and K. Saito, Tractable Models for Information Diffusion in Social Networks
DOI : 10.1007/11871637_27

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen et al., Cost-effective outbreak detection in networks, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.420-429, 2007.
DOI : 10.1145/1281192.1281239

J. Leskovec, L. A. Adamic, and B. A. Huberman, The dynamics of viral marketing, ACM Transactions on the Web (TWEB), vol.1, issue.5, 2007.

V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, Soviet Physics Doklady, vol.10, issue.8, pp.707-710, 1966.

D. Li, Z. M. Xu, N. Chakraborty, A. Gupta, K. Sycara et al., Polarity Related Influence Maximization in Signed Social Networks, PLoS ONE, vol.14, issue.7, p.102199, 2014.
DOI : 10.1371/journal.pone.0102199.t001

T. M. Ligett, Interacting particle systems, 1985.

Z. G. Liu, Q. Pan, J. Dezert, and A. Martin, Adaptive imputation of missing values for incomplete pattern classification, Pattern Recognition, vol.52, pp.85-95, 2016.
DOI : 10.1016/j.patcog.2015.10.001

URL : https://hal.archives-ouvertes.fr/hal-01259203

Z. G. Liu, Q. Pan, J. Dezert, and G. Mercier, Credal c-means clustering method based on belief functions. Knowledge-Based Systems 74, pp.119-132, 2015.
DOI : 10.1016/j.knosys.2014.11.013

Y. W. Lo and V. Potdar, A review of opinion mining and sentiment classification framework in social networks, 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies, 2009.
DOI : 10.1109/DEST.2009.5276705

A. Martin and C. Osswald, Human experts fusion for image classification Information and Security, An International Journal, Special issue on Fusing Uncertain, Imprecise and Paradoxist Information (DSmT), vol.20, pp.122-143, 2006.

A. Martin and C. Osswald, Toward a combination rule to deal with partial conflict and specificity in belief functions theory, 2007 10th International Conference on Information Fusion, 2007.
DOI : 10.1109/ICIF.2007.4408007

URL : https://hal.archives-ouvertes.fr/hal-00281897

R. Mohamadi-baghmolaei, N. Mozafari, and A. Hamzeh, Trust based latency aware influence maximization in social networks, Engineering Applications of Artificial Intelligence, vol.41, pp.195-206, 2015.
DOI : 10.1016/j.engappai.2015.02.007

M. M. Mostafa, More than words: Social networks??? text mining for consumer brand sentiments, Expert Systems with Applications, vol.40, issue.10, pp.4241-4251, 2013.
DOI : 10.1016/j.eswa.2013.01.019

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for maximizing submodular set functions???I, Mathematical Programming, vol.16, issue.1, pp.265-294, 1978.
DOI : 10.1007/BF01588971

M. E. Newman, Networks: An introduction, 2010.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

M. Othman, H. Hassan, R. Moawad, and A. El-korany, Opinion mining and sentimental analysis approaches: A survey, Life Science Journal, vol.11, issue.4, pp.321-326, 2014.

F. Petitjean, J. Inglada, and P. Gancarski, Satellite Image Time Series Analysis Under Time Warping, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.8, pp.3081-3095, 2012.
DOI : 10.1109/TGRS.2011.2179050

URL : https://hal.archives-ouvertes.fr/hal-00940767

A. Rudat and J. Buder, Making retweeting social: The influence of content and context information on sharing news in Twitter, Computers in Human Behavior, vol.46, pp.75-84, 2015.
DOI : 10.1016/j.chb.2015.01.005

G. Sabidussi, H. Sakoe, and S. Chiba, The centrality index of a graph, Proceedings of the Seventh International Congress on Acoustics, pp.581-603, 1966.
DOI : 10.4153/CMB-1964-034-7

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.447-458, 1990.
DOI : 10.1109/34.55104

P. Smets, Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning, vol.9, issue.1, pp.1-35, 1993.
DOI : 10.1016/0888-613X(93)90005-X

P. Smets, The canonical decomposition of a weighted belief, International Joint Conference on Artificial Intelligence, pp.1896-1901, 1995.

P. Smets, Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning, vol.38, issue.2, pp.133-147, 2005.
DOI : 10.1016/j.ijar.2004.05.003

P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
DOI : 10.1016/0004-3702(94)90026-4

URL : https://hal.archives-ouvertes.fr/hal-01185821

B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas, Short text classification in twitter to improve information filtering, Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '10, pp.841-842, 2010.
DOI : 10.1145/1835449.1835643

J. Sung, S. Moon, and J. G. Lee, The influence in twitter: Are they really influenced? In: Behavior and Social Computing, pp.95-105, 2013.

S. E. Taylor, Asymmetrical effects of positive and negative events: The mobilization-minimization hypothesis., Psychological Bulletin, vol.110, issue.1, pp.67-85, 1991.
DOI : 10.1037/0033-2909.110.1.67

K. Toutanova, D. Klein, C. Manning, and Y. Singer, Feature-rich part-of-speech tagging with a cyclic dependency network, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology , NAACL '03, pp.252-259, 2003.
DOI : 10.3115/1073445.1073478

W. H. Tsai and K. S. Fu, Error-Correcting Isomorphisms of Attributed Relational Graphs for Pattern Analysis, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.12, pp.757-768, 1979.
DOI : 10.1109/TSMC.1979.4310127

W. Wallisa, P. Shoubridgeb, M. Kraetzb, and D. Rayc, Graph distances using graph union, Pattern Recognition Letters, vol.22, issue.6-7, pp.6-7, 2001.
DOI : 10.1016/S0167-8655(01)00022-8

Y. Wang, H. Wang, J. Li, and H. Gao, Efficient Influence Maximization in Weighted Independent Cascade Model, Proceedings of International Conference on Database Systems for Advanced Applications, pp.49-64, 2016.
DOI : 10.1145/1835804.1835935

URL : http://arxiv.org/abs/1510.06201

Y. Wang and C. Maple, A Novel Efficient Algorithm for Determining Maximum Common Subgraphs, Ninth International Conference on Information Visualisation (IV'05), pp.657-663, 2005.
DOI : 10.1109/IV.2005.11

D. Wei, X. Deng, X. Zhang, Y. Deng, and S. Mahadeven, Identifying influential nodes in weighted networks based on evidence theory, Physica A: Statistical Mechanics and its Applications, vol.392, issue.10, pp.2564-2575, 2013.
DOI : 10.1016/j.physa.2013.01.054

S. Wen, M. S. Haghighi, C. Chen, Y. Xiang, W. Zhou et al., A Sword with Two Edges: Propagation Studies on Both Positive and Negative Information in Online Social Networks, IEEE Transactions on Computers, vol.64, issue.3, pp.640-653, 2013.
DOI : 10.1109/TC.2013.2295802

D. B. West, Introduction to graph theory, 2001.

R. R. Yager, On the dempster-shafer framework and new combination rules, Information Sciences, vol.41, issue.2, pp.93-137, 1987.
DOI : 10.1016/0020-0255(87)90007-7

Q. Yao, R. Shi, C. Zhou, P. Wang, and L. Guo, Topic-aware Social Influence Minimization, Proceedings of the 24th International Conference on World Wide Web, WWW '15 Companion, pp.139-140, 2015.
DOI : 10.1145/1963405.1963499

H. Zhang, T. N. Dinh, and M. T. Thai, Maximizing the Spread of Positive Influence in Online Social Networks, 2013 IEEE 33rd International Conference on Distributed Computing Systems, pp.317-326, 2013.
DOI : 10.1109/ICDCS.2013.37

K. Zhou, A. Martin, and Q. Pan, A similarity-based community detection method with multiple prototype representation, Physica A: Statistical Mechanics and its Applications, vol.438, pp.519-531, 2015.
DOI : 10.1016/j.physa.2015.07.016

URL : https://hal.archives-ouvertes.fr/hal-01185866

K. Zhou, A. Martin, Q. Pan, and Z. G. Liu, Median evidential c-means algorithm and its application to community detection. Knowledge-Based Systems 74, pp.69-88, 2015.
DOI : 10.1016/j.knosys.2014.11.010

URL : https://hal.archives-ouvertes.fr/hal-01100902

A. Zubiaga, D. Spina, R. Martinez, and V. Fresno, Real-time classification of Twitter trends, Journal of the Association for Information Science and Technology, vol.38, issue.4, pp.462-473, 2015.
DOI : 10.1108/00251740010371748