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Abstract

Nowadays, the adoption of the Internet of Things (loT) drastically witnesses an
increase in different domains, and contributes to the fast digitalization of the uni-
verse. Henceforth, next generation of loT-based systems are set to become more
complex to design and manage. Collecting real-time IoT generated data unleashes
a new wave of opportunities for business to take more precise and accurate deci-
sions at the right time. Nonetheless, a set of challenges including the complexity
of loT-based systems and the management of the ensuing big and heterogeneous
data as well as the system scalability; need to be addressed for the development of
exible smart loT-based systems that drive the business decision-making.

With respect to challenge which relates to the complexity of loT management,
we propose to automate the management of loT-based systems based on an auto-
nomic computing approach. However, autonomic computing alone is not enough
for the development of smart loT-based systems. Indeed, these systems should im-
plement cognitive capabilities that allow them learning and generating decisions
at the right time. Consequently, we propose a model-driven methodology for de-
signing smart loT-based systems. We de ned within this methodology a set of
autonomic cognitive design pattertigat aim at (1) delineating the dynamic coor-
dination of the management processes to deal with the system's context change-
ability and requirements evolution at run-time, and (2) adding cognitive abilities to
loT-based systems to understand big data and interact with human through gener-
ating new insights. Our ultimate goal was to assist the architect when designing
exible smart loT-based systems by selecting the right pattern or combination of
patterns to solve complex requirements.

With respect to challenges which relate to big data and scalability management,
we propose a generic semantic big data platform that integrates heterogeneous dis-
tributed data sources deployed on the cloud, and generates knowledge that will
be exposed as a servidénowledge as a Service—-KaaJ he proposed architec-
ture represents an extension of the NIST Big Data and Cloud Computing reference
architectures with a semantic layer that enables the machines collecting and in-
terpreting the received data, curating and harmonizing it for better analytic and
visualization. More speci cally, we are interested in healthcare as an applicative
domain. Thus, based on big data tools for data stream processing, we proposed
a cognitive monitoring system implementing a combination of the proposed pat-
terns for managing the patient health based on wearables and promptly detecting
personalized anomalies. Hence, we elaborated\th@rable Healthcare Ontology
(WH_O)for the integration of heterogeneous wearable data. The proposed system
is deployed within the KaaS, and its performance (in terms of response time and
scalability) when processing huge amount of heterogeneous data streams has been
evaluated following different KaaS con gurations.



Finally, to provide smart loT-based systems able to reason and generate rec-
ommendations, we enriched the proposed system with new cognitive mechanisms
including the medical procedural knowledge and the personalization process. Thus,
a methodology for extracting and formalizing the medical knowledge based on the
collaboration of medical experts is proposed. The output of this methodology is a
exible semantic model namet@ireatment Plan Ontology (TP@hat describes the
medical interventions. We also de ned @mtology-based planning algoriththat
integrates TPO with external existing knowledge sources in order to provide per-
sonalized decisions concerning the patient treatment. We evaluated the proposed
algorithm through simulating real clinical use cases and comparing the generated
recommendations to the experts' advice. We highlighted also the system perfor-
mance on the cloud, and provided recommendations for selecting the appropriate
IT con guration based on the system requirements.
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CHAPTER1
General Introduction

“If you can't explain it simply, you don't understand it well

enough."”
- Albert Einstein
Contents
1.1 Introduction . . . . . . . . . . . . . e 1
1.2 HealthcareContext . . . . . . . . . . . . . . ... 3
1.3 ResearchProblems ... ... ... .. ... .. .. ....... 4
1.3.1 SmartloT Design Complexity . . . .. ... ... ..... 4
1.3.2 Knowledge and Big Data Challenges . . . ... ... ... 5
1.3.3 System Scalability . . ... ... .. ... ... ..., 7
1.4 ExistingWork . . . . ... ... ... 8
1.5 ThesisPositioning . . . . . . ... .. 9
1.6 Scientic Contributions . . . . . . . . . ... ... 10
1.7 DissertationOutline . . . . . . . . . .. . ... ... .. ..... 12

1.1 Introduction

THe human brain is the quintessential complex system in the world. Its amazing

energy and supernatural abilities impelled many research activities in cogni-

tive science including psychology, neuroscience and philosophy [1, 2, 3] to study
and model its activities and structure to better understand how it instantly per-
ceives the external world, processes and interprets the massively complex received
data, and aggregates it with already stored information to deduce the action to do.
Computing systems have been in uenced by these potential ndings and proposed
new approaches that mimic the human brain to realize leap forward smart systems.
They have been evolved from imperative computing, to autonomic computing, to
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reach cognitive computing [4]. While imperative computing includes traditional
programming with passive technologies, autonomic computing [5] introduces self-
management mechanisms that automatically adapt the system behaviours based on
its context changes. Freshly, cognitive computing has been introduced for the de-
velopment of intelligent systems able to perceive, learn and think as human do [6].
Perhaps, IBM Watson [7] is the most famous question answering cognitive system
that won the Jeopardy in February 2011.

Industrially speaking, computing systems have made great strides, and are gain-
ing further recognition with the integration of a new phenomenon called the Inter-
net of Things (IoT) where devices including sensors and actuators are sharing the
observations and communicating through the internet. Nowadays, the 10T mar-
ket witnesses an important increase. According to Gartner [8], around 25 Billion
Connected “Things” will be in use in 2020. The integration of 10T is popular in
different domains such as healthcare, smatrt cities, autonomous cars, etc. For in-
stance, Apple proposed the Healthiditat allows developing healthcérapps for
continuously monitoring the patient health based on sensors integrated in the Apple
watch.

Analogously to human sensors, these novel technologies churn out myriad of
data through enabling objects sensing the physical world. The effective use of loT
is much more than just connecting things, it encompasses as a primary concern
the management and the transformation of the I0T generated data into insights
and business bene ts [9]. Recently, a new era of I0T called “Cognitive 10T"[10]
has been enunciated. It aims at integrating cognitive technologies into loT-based
systems to ensure the smart management through enabling the cooperation and
interaction between IoT and human. So that loT-based systems may learn from
human intelligence and provide more accurate analytic.

Clearly, attaining IoT values lean on how the IoT data is analyzed and inte-
grated with external sources in order to unleash a new wave of opportunities for
business and people to take real-time and accurate decisions. However, 10T prolif-
eration poses signi cant challenges pertaining to the complexity of designing and
managing such systems, to the heterogeneity of the generated data, to the scalabil-
ity and the exibility of the system to support the integration of highly distributed
and heterogeneous data and knowledge sources.

The ultimate goals of this chapter are:

Introducing the role of IoT in healthcare, and their importance in delivering
patient-centric management (section 1.2).

Highlighting the main challenges that should be considered to conceive smart
loT-based systems able to understand the collected data, and take the right

Ihttps://developer.apple.com/healthkit/
2http://www-05.ibm.com/innovation/uk/watson/watson_in_healthcare.shtml
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decision at the right time based on the domain knowledge (section 1.3).

Presenting our position compared to existing works as well as the main ap-
proaches that cover the identi ed challenges (section 1.4 and section 1.5).

Finally introducing our thesis' contributions and presenting the dissertation
structure (section 1.6 and section 1.7).

1.2 Healthcare Context

Advances in healthcare technologies have transformed the patient care manage-
ment from paper-based into computer-based through the implementation of Elec-
tronic Health Records (EHRS) [11]. EHRs store the patient medical and treatment
histories in a digital format, which make the health information available, sharable
and up-to-date for better decisions. Additionally, with the development of the in-
ternet and web technologies, medical knowledge becomes available, easy to share
and reuse. It describes new discovered treatments, drugs characteristics and dis-
ease management strategies in order to drive decision-making. For instance, Drug-
Bank [12] is an example of accessible medical knowledge describing drug-drug
and drug-food interactions which help personalizing the patient treatment.

Recently, the emergency of 10T has revolutionized healthcare through captur-
ing real-time and individualized data concerning patients. It fosters providing pa-
tient centric management as well as preventing health complications. The wearable
computing, as an example of 0T technologies, is fast gaining momentum. A recent
study conducted by ABI Researchastimates that the global market for wearable
devices in health and tness could reach 169.5 million devices by 2017. The use
of wearable computing allows enhancing the patient's care and life style manage-
ment through enabling remote data stream processing and detecting anomalies at
the right time which profoundly impacts the decision process. Its utility goes fur-
ther to enable disabled person's feeling motions and doing actions, despite their
impairment [13].

Real-time analyzing the data stemming from the patient wearable devices, and
integrating them with the patient medical history and with medical knowledge
could far-reaching bene ts for accelerating the decision-making and personalizing
the patient treatment. Figure 1.1 illustrates the next generation of smart loT-based
healthcare system for the patient centric management. It portrays the main actors,
as well as the data and knowledge sources that should be integrated to ensure such
purpose. However, a set of challenges, which will be detailed in the next section,
need to be overcome to guarantee the integration and provide better quality of care
to patients.

Shttps://www.abiresearch.com/press/wearable-sports-and- tness-devices-will-hit-90-mi/
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Figure 1.1: Next generation of healthcare system: patient-centric approach

1.3 Research Problems

The proliferation of 10T has given rise to new challenges pertaining to the com-
plexity of designing and managing the dynamic evolution of systems, to the big
data and to the system scalability.

1.3.1 Smart loT Design Complexity

The wide adoption of 10T yields to more complex and heterogeneous systems of
systems (SoS) [14] that should interact with each other to meet the system require-
ments. As these technologies sense the physical world, it is easy to detect con-
text changes but hard to manage. Thus, automating the management of loT-based
systems may alleviate the system complexity, accelerate and facilitate interactions
with domain experts for better decision making. Hence, two main challenges need
to be addressed when conceiving smart loT-based systems:

Context changeability,. Complex systems implementing real-world applications
continuously evolve and generate unforeseen requirements [15]. For in-
stance, in healthcare, we consider managing patients with diabetes as a pri-
mary requirement. During treating diabetes, because of aging and biologi-
cal changes, a new requirement such as managing the hypertension may oc-
cur. Thus, new processes for controlling hypertension need to be integrated
into the system. However, traditional management systems are considered
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as ad-hoc systems —designed and implemented from scratch, which impedes
the dynamic self-management and requires additional human efforts. Smart
self-managed systems should be able to support the dynamic discovery of
the processes, their composition and coordination to manage more complex
situations, especially those unpredictable at design-time.

System exibility : Integrating new sensors at run-time to monitor and collect
more data about the system may require re-engineering the system for inte-
gration purposes due to the heterogeneity of the data. This yields to a high
design and implementation cost. Thus, the evolution of the system architec-
ture should be considered at design-time in order to provide more exible
loT-based systems. Consequently, conceptual models and patterns, which
elucidate how to manage loT-based system evolution, are required to effec-
tively assist software architect providing ef cient solutions based on the sys-
tem’'s requirements.

1.3.2 Knowledge and Big Data Challenges

Despite the ability to detect the context changes, a smart loT-based system should
be able to take the right decision at the right time in order to assist the domain
experts with business benets. Thus, they should interact with human to learn
from their deep knowledge of the domain and to provide hidden knowledge about
the system from the gathered data.

1.3.2.1 Knowledge Challenges

Knowledge is the key element for an ef cient decision-making. It is located in
documents, videos, images and in human mind. With the development of the Web
2.0, domain knowledge is being published in the web for sharing and reuse by hu-
man. Nowadays, large-scale knowledge bases are available, but with unstructured
format, which make manually exploring them time consuming and complex.
Automating the reuse and the inference of available knowledge is crucial for
better decision support, but it remains challenging since machines cannot interpret
and understand the meaning of the populated knowledge. Thus, it is important to
provide a well-formalized knowledge representing a common understanding of the
practices and experiences solving speci ¢ domain problems. Knowledge should be
represented in a computer interpretable format in order to enable the collaboration
of machines with human. Thus, any update within its content or structure is au-
tomatically taken into consideration by machines to generate up-to-date decisions.
For instance, in healthcare, considerable efforts have been invested in formalizing
the medical knowledge and making them available as linked data to be reused by
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machines. Bio2RDF databd9d6] and Linked Life Data are examples of medi-

cal knowledge base aggregating and integrating various sources. Nonetheless, the
diversity of knowledge representation hinders the smooth integration of existing
available knowledge sources to complete each other.

Despite thantegrability, smart loT-based systems should be able to solve the
domain problems. This requires interacting with domain experts to learn and en-
code their know-how describing the problems and the solutions. For instance, for
the development of knowledge-based clinical decision support system, knowledge
should be acquired based on the collaboration with the medical experts to guarantee
high quality and provide the right decisions. In this way, it is important to provide a
collaborative user-friendly interaction when updating decision rules, since the do-
main experts are not necessarily familiar with IT. Additionally, providing a exible
and easy to maintain procedural knowledge representation is crucial to facilitate
the knowledge update and evolution.

Consequently, the development of smart loT-based systems identi es a bidirec-
tional knowledge acquisition interaction: (1) from experts to 0T systems where
the system is learning from human intelligence to accelerate the decision making;
and (2) from loT systems to experts where hidden knowledge is generated based
on analyzing the 10T data. The rst interaction relies on acquiring knowledge from
experts, while the second interaction requires dealing with big data challenges de-
tailed in the next section.

1.3.2.2 Big Data Challenges

loT technologies have spawned a growing of the datasets, and have stressed not
solely the huge volume of data, but also its diversity and the speed at which it must
be managed. Thus, they contribute to creating the big data phenomenon which is
de ned by the International Data Cooperation (IDC) asfew generation of tech-
nologies and architectures, designed to economically extract value from very large
volumes of a wide variety of data, by enabling high-velocity capture, discovery,
and/or analysis[17].

However, traditional data-intensive systems and mining algorithms are not able
to cope with the scale and highly swift of data, especially unstructured data stem-
ming from multiple wearables and connected things [18]. Taking into consider-
ation the following challenges paves the way for generafmge including new
knowledge, insights and recommendations that drive the decision-making process:

Data Volume: According to IDC, the volume of digital data is doubling
each year, and it is expected to reach 44 zettabytes in 2020. The IoT po-

“http://download.bio2rdf.org/release/3/release.html
Shttp://linkedlifedata.com/
Shttp://idcdocserv.com/1678
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tentially contributes to increasing the data volume as 32 billion things will
be connected by 2020 Collecting and storing this myriad amount of data
need to be driven by potential solutions, since data must be available to be
exploited by cognitive technologies such as machine learning algorithms in
order to create and identify hidden knowledge about the patient, and to visu-
alize complex data for better interpretation. Thus, scalable data storage and
analytics should be considered when designing such systems.

Data Variety: Data is structured, semi-structured and unstructured mostly
generated by connected devices and mobile systems. As different vendors
are investing in loT market, the data type, units and representation are differ-
ent with incompatible formats [19]. This heterogeneity leads to the dearth of
semantic integration and interoperability which precludes data mining, ma-
chine learning algorithms [20], as well as near real-time visualization of the
generated data streams. Within these various representations, the meaning of
the data is mostly hidden and unspeci ed. According to IDC [21], in 2013
less than 5% of information was analyzed because very little was known
about the data. Failing to take the heterogeneity challenge into account can
easily derail the decision making. Thus, data analytic requires content har-
monization to provide high quality of data.

Data Velocity: The proliferation of I0T fosters the generation of real-time
data that may reach millions of events per seéoithus, timely processing
and correlating data stemming from multiple data sources allow portraying
more accurate information to provide the right decision at the right time.

Data Veracity: The quality of the data is challenging for accurate analytic,
especially in healthcare. For instance, wearable data can be corrupted or
imprecise due to failure to wear the sensor [19]. Cleaning the loT-generated
data is required to reject poor quality data and provide better decisions.

1.3.3 System Scalability

The loT-based system scalability is another important challenge which is adrift
from the aforementioned problems. It concerns the ability of the system to support
the deployment of new management processes and knowledge/data sources, and
to support the storage of the generated big data as well as managing the real-time
processing.
In general, the scalability of the systems is constrained with the availability

of IT resources including CPU, memory, the storage capacity and the network
throughput. In this thesis, we are interested in the scalability from the processes

"http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
8http://www.gartner.com/newsroom/id/3221818
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and the data management perspectives. Details about the mass deployment of 10T
devices in the network can be found in [22].

In complex system of systems, large number of management processes should
be de ned to control the subsystems' evolution. Deploying for each subsystem
its own management processes, that allows monitoring the system evolution and
taking the decision to adapt its behavior based on context changes, may lead to an
overhead and system failure. Moreover, such solution is costly in terms of money
since it requires allocating suf cient IT resources for the deployment and the ex-
ecution of the management processes. Thus, it is important to provide a trade-off
between the system scalability and its cost. For instance, sharing and virtualizing
the resources based on the cloud computing principles, when deploying manage-
ment processes, may help reducing the cost.

1.4 Existing Work

Software models and architectures have been introduced to alleviate the system
complexity by identifying the main interactions among the system components,
while self-managed systems have been enunciated to automate the system man-
agement tasks and to minimize the human intervention. Based on the state of the
art, we found that the Autonomic Computing initiative [5] has a strong focus on
managing complex systems through automating tasks based on the MAPE-K loop
pattern (abbreviation of Monitoring, Analysis, Plan, Execution, and Knowledge).
Many research activities [23, 24, 25, 26] refer to the autonomic computing for de-
signing adaptive and self-managed systems that automatically adapt their structure
and behavior based on the context changes. Adopting the autonomic computing for
managing loT complexity seems promising [27]. Recently, Ben Alaya et al. [22]
have proposed the FRAMESELF framework implementing the autonomic com-
puting paradigm for the self-management of M2M systems in the context of smart
cities.

Nevertheless, within traditional autonomic and self-adaptive systems, there is
insuf cient focus on (1) the nature of interactions between the MAPE-K compo-
nents when multiple loops are managing system of systems, (2) the dynamic co-
ordination among the management processes (Monitoring, Analysis, Plan and Ex-
ecution) to manage the requirement evolution, and (3) the integration of cognitive
capabilities (including the procedural knowledge and human-machine interaction)
for generating smart business decision-making [15, 28]. To address this de ciency,
we harvested the list of software design patterns, and we surveyed knowledge en-
gineering and management techniques in order to propasenomic Cognitive
Design Patternshat help conceivingmart loT-based systems

From the platform perspective, to guarantee the horizontal scalability and elas-
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ticity, loT-based systems should leverage big data and cloud computing technolo-
gies to store the myriad of data in NoSQL databases and provide exible data
stream processing [29, 30, 31, 32, 33]. However, the heterogeneity of the data re-
mains challenging for data mining and analytics [18]. In this context, we found that
ontologies and semantic web are the most used techniques to share a common vo-
cabulary of the domain and enable the interoperability and the integrability among
the loT-based systems [34, 35, 36, 37, 38]. Nonetheless, storing huge amount of
data in ontology may lead to inconsistency when maintaining the knowledge struc-
ture. Moreover, it may raise scalability challenges due to the frequent access to the
ontology when updating its content and reasoning on it [39].

1.5 Thesis Positioning

The main goals of this thesis are (1) enhancing the design and development of com-
plex loT-based systems through integrating autonomic and cognitive technologies
and (2) ensuring the integration of heterogeneous loT-generated data for better an-
alytic, while guaranteeing the system scalability. To this end, we have classi ed
these challenges into three management leypatseessknowledgeanddata

The process level deals with the identi cation of the management processes'
interactions and their coordination to ensure the system functional requirements
and manage its context changeability. The knowledge level deals with capturing
the experts' knowledge to automate the decision-making, while considering the in-
tegration and the reuse of existing external knowledge sources. Finally, the data
level deals with huge volume of data, their distribution, velocity and variety to sat-
isfy the system non-functional requirements. With respect to these challenges, we
propose an amalgamation of approaches from software engineering and knowledge
engineering. Figure 1.2 summarizes the challenges that should be managed as well
as the adopted approaches leading to the production of Autonomic and Cognitive
loT-based systems.

For smart loT manageability satisfaction. We propose a set afesign pat-
ternsthat allow the dynamic coordination of the management processes in order
to meet the system evolution and solve complex requirements at runtime. The
proposed patterns guarantee itmeroperabilitythrough providing a common rep-
resentation of the data meaning and processes functionalities based on semantic
web technologies as well as tivgegrability through connecting the management
process and knowledge sources via a mediator. Furthermore, we take into consid-
eration the interaction of IoT systems with human for ef cient decision making.
Thus, we propose to formalize the procedural knowledge, called also tacit knowl-
edge, based on collaborative technologies that allow acquiring the knowledge from
experts for later reuse by the management processes.
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For scalability and big data management satisfaction We propose to inte-
grate the cloud computing to enable the virtualization of resources as well as stor-
ing the huge volume of data in cloud clusters. Moreover, we propose to integrate
parallel data processing which is suitable to deal with the rapid growth of data.

For generic, evolutive, exible and extensible systemAs technologies con-
tinuously evolve, we adopt a model-driven design methodology to have an open,
generic and reusable solution that can be instantiated using new technological
platforms. Furthermore, we propose to semantically describe the data/knowledge
sources and the management processes. Thus, the system is easily extensible at
runtime with new sources and processes as long as it understands its meaning and
structure.

Figure 1.2: Autonomic and cognitive loT-based systems' challenges and ap-
proaches

In the next section, we provide an overview of our contributions and how the
existing approaches have been integrated for developing smart loT-based systems.

1.6 Scienti ¢ Contributions

As presented in Figure 1.3, our thesis' contributions fall into three main research
directions:Software Engineerind>ata & Knowledge EngineeringndHealthcare
as an applicative domain.
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Figure 1.3: Thesis main research areas

Our rst scienti ¢ contribution focuses on the design and coordination of the
management processes to meet the loT-based system requirements evolution. To
manage the design complexity, we proposedaalel-driven methodolodiiat con-
ceptually considers the challenges over the process, knowledge and data manage-
ment levels. Within this methodology, we de nedset of design patternthat
propose solutions to: (i) manage the dynamic coordination of the management pro-
cesses based on the system requirements; (ii) handle the knowledge organization
and semantic integration in order to provide smart systems able to think and inter-
act with humans; (iii) and support big data management to provide more accurate
insights, while managing system scalability. By following a separation of con-
cerns approach, it is possible to combine the proposed patterns to manage complex
system of systems' requirements. Furthermore, to deal with the system' context
changeability at runtime, we propose a semantic description of the management
processes in order to dynamically discover and activate the appropriate process(es)
based on the system evolution. The proposed patterns are domain-independent and
formally described with the UML language, which make them reusable and exible
to support domain concepts.

Our second scienti ¢ contributioproposes a platform speci ¢ model hosting
the management processes and the generated data. It mainly considers the chal-
lenges, raised by the Monitoring and Analysis processes, such as the data hetero-
geneity and the system scalability as well as the ability to process the data at the
right time. To this end, we proposeKaowledge as a Service (Kaa&)chitecture
for enabling thesemantic big data managemer®@ur KaaS aims at continuously
generating new knowledge about the system from the heterogeneous gathered data
stored in a cloud environment. It combines both the NIST cloud computing and big
data reference architectures, and extends them with a semantic web layer incorpo-
rating ontological models describing the system. As an application, we combined
and instantiated a set of the proposed design patterns for the developm&ugf a
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nitive Monitoring Systernto manage the patient health based on wearables. Thus,
we elaborate th&Vearable Healthcare Ontolodyr the integration of data stem-
ming from multiple wearable devices; and we deployed the management processes
as well as the knowledge/database components on the KaaS. After that, we evalu-
ated the system performance and scalability following different KaaS con guration

in order to measure its cost function.

Ourthird scienti ¢ contributionenriches our second contribution with new cog-
nitive capabilities in order to allow loT-based systems thinking and generating
decisions concerning the patient treatment. Within this contribution, we mainly
focus on the knowledge representation and the plan process for the development
of Prescriptive Cognitive Systeable to assist the physicians through automating
treatment personalization based on the patient context changes. Medical knowl-
edge is distributed, mostly located in medical experts' minds, which makes sharing
and reusing it challenging. To deal with this challenge, we proposed a collabo-
rative methodology for extracting and formalizing the experts' knowledge. The
output of this methodology is a fruitful model nam@&deatment Plan Ontology
(TPO) which semantically represents the characteristics of the medical interven-
tions. Its exible structure allows integrating external reliable knowledge sources
such as DrugBank. Thus, we proposed and implementeshentogy-based plan-
ning algorithmthat integrates the TPO instances with DrugBank knowledge source
to detect drug-drug interactions and provides personalized treatments. Finally, we
elaborated two appraisals to evaluate the proposed prescriptive cognitive system
from two perspectives:

Clinical Evaluationwhich refers to the ability of the system to generate the
appropriate recommendation. We identi ed, based on the collaboration of

a medical expert from the Hedi Chaker Hospital in Sfax-Tunisia, different
real use cases in diabetes type 2 with different complexity levels. Then, we
simulated these use cases to compare what our system generates as recom-
mendations to the expert's advice.

Performance Evaluationvhich refers to the performance of the proposed
ontology-based planning algorithm (plan process) in terms of response time
and scalability when reasoning. We proposed two approaches to evaluate the
planning performance: (1) DrugBank online connection and (2) DrugBank
caching system. After selecting the appropriate approach, we evaluated its
cost with different cloud con gurations to drive the selection of the appro-
priate one based on the system requirements and associated cost.

1.7 Dissertation Outline

The rest of this dissertation is organized as follows:
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Chapter 2. General Background and State of the Art

This chapter provides a detailed understanding of the main concepts which con-
stitute the basis of this thesis' contributions. It is hierarchically structured starting
with describing the management processes ending with the most elementary entity
which is data. This chapter rstly delineates existing research works dealing with
the design of autonomic and self-adaptive systems. Secondly, it details the main
approaches used to manage cognitive capabilities including the knowledge and big
data layers. Finally, it highlights the cloud computing vision for managing scala-
bility and elasticity. All over these sections, existing works are discussed and some
limitations are highlighted.

Chapter 3. Autonomic Cognitive Design Patterns for the Design of Smart loT-
based Systems

This chapter deepens our rst contribution dealing with the desigAubnomic

and Cognitive loT-based systenkdrst, it studies existing software design patterns
and highlights their reusability to solve problems encountered when designing loT-
based systems. Then, it delineates our proposed model-driven methodology as well
as the proposed patterns that enable the dynamic coordination of the management
processes, and support cognitive capabilities. The use of each pattern is illustrated
with an example from the healthcare domain, more precisely for the patient-centric
management.

Chapter 4. A Knowledge as a Service Platform for Heterogeneous Wearable
Data Integration

This chapter highlights our second contribution dealing with the semantic integra-
tion in the context of big data systems. First, it delineates the use of wearable com-
puting in healthcare. Then, it surveys existing loT platforms for the management
of the generated data, and classi es these works according to three main criteria:
semantic management, big data management and cloud management. After that, it
provides an overview of the proposkdowledge as a Service (Kaa@ptform to
manage heterogeneous data based on semantic and cloud-based big data technolo-
gies. Through combining a set of the proposed patter@ognitive Monitoring
Systenis proposed for managing patient health. Thus,Wearable Healthcare
Ontology (WH_OJs elaborated to enable the system understanding the meaning
of the received data. The system performance and scalability have been demon-
strated in different KaaS con gurations.
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Chapter 5. A Prescriptive Cognitive System for Patient Treatment Manage-
ment

This chapter introduces with cognitive capabilities to automate decision making in
healthcare. First, it discusses clinical decision support systems and details works
supporting the patient treatment adaptation. Then, it provid@escriptive Cog-

nitive Systenthat enriches the previous system with a formal representation of the
procedural medical knowledge describing the medical interventions. This model
is namedTreatment Plan Ontology (TP@nd it is conceived to support the inte-
gration of external complementary knowledge sources and acquire decision rules
from medical experts. To assist the physicians when taking the decision concerning
the patient treatment, an ontology-based planning algorithm has been proposed to
reason on TPO and DrugBank in order to generate personalized treatments. The
system ef ciency is demonstrated through the simulation of real use cases. Like-
wise, its performance and scalability have been evaluated on the cloud. Finally,
recommendations have been proposed to select the appropriate cloud infrastruc-
ture based on the system requirements.

Chapter 6. Conclusion & Perspectives

This last chapter summarizes all the work achieved during this thesis, and provides
an overview of the perspectives as enhancement of the proposed work.

Figure 1.4: Dissertation structure
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Background & State of the Art

“If I have seen further, it is by standing on the shoulders of giants."
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2.1 Introduction

Wlth the development of information and communication technologies, systems

tend to become more complex to manage. The proliferation of IoT underpins
the emergence of heterogeneous System of Systems (SoS) that pinpoint not only
the system design complexity, but also managing its evolution.
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To tackle the challenges previously mentioned in Chapter 1, several approaches
have been proposed in the literature. From the conceptual perspective, model-
driven methodologies and design patterns have been introduced in order to miti-
gate the system complexity and provide exible and easy to maintain system ar-
chitecture. From the system management perspective, the autonomic computing
has been widely used to reduce human intervention through automating the system
management tasks, while the cognitive computing has been introduced for devel-
oping smart systems able to solve problems as human do. From the technological
perspective, big data and cloud computing have been recently enunciated for man-
aging huge volume of the generated data and the computational load to guarantee
system scalability, despite its evolution.

In this chapter, we provide a deep understanding of these approaches and in-
vestigate their integration for the development of smart and exible 10T systems.
Thus, we survey existing adaptive and autonomic design patterns for the design
of complex systems. After that, we delineate the cognitive computing principals
for the development of smart systems from mainly two perspectives: knowledge
management and big data management. Third, we provide an insight on the cloud
computing and its bene ts of 10T systems. Finally, we shed light on new research
directions that we followed during the elaboration of this thesis.

2.2 Model-driven Methodologies

Model-driven engineering (MDE) has been introduced to alleviate the system com-
plexity design. Through the abstraction of the physical system, MDE allows the
software designer focusing on the relevant details of the system [40]. It empha-
sizes primarily the use of models that describe complex systems at multiple levels
of abstraction and from a variety of perspectives [41].

Software designers should be able to deal with software design problems and
provide exible models with a trade-off between the functional requirements and
the non-functional requirements. In this context, design guidelines and best prac-
tices (e.g. design patterns) have been proposed to solve design and development
problems. Software patterns are particularly relevant to MDE due to the heavy
reliance on modeling techniques and principles [42]. Different design patterns in-
cluding object-oriented design patterns, architectural patterns and work ow pat-
terns [43, 44, 45] have been de ned to propose reusable solutions to common de-
sign and implementation problems. These patterns identify solutions in different
granularity levels describing the interactions among subsystems, activities and ob-
jects. For instance, the GoF design patterns [45] have been mainly introduced to
solve problems related to object-oriented software design, while the work ow pat-
terns have been proposed to provide solutions when connecting activities to ensure
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work ow synchronization [46]. Furthermore, with the advent of new architectural
styles such as Service-Oriented Architecture (SOA), Enterprise Architecture (EA)
and Cloud Computing (CC), new patterns have been heralded to solve more spe-
ci c problems [47, 48]. However, these patterns are still informally described,
which make reusing and applying them dif cult.

Basically, model-driven engineering including design patterns are relevant for
the design of complex loT-based systems [49]. Recently, a new project named Pa-
pyrus for IoT* proposed a model-driven development environment for managing
heterogeneous applications, provide real-time models and design methods describ-
ing interconnected devices and monitoring critical system. Nonetheless, due to
the dynamic evolution of 10T systems and the heterogeneity of the generated data,
which is the fuel of business insights, providing exible 10T systems is challeng-
ing. Consequently, proposing models that deal with the 10T challenges from the
data, processes and infrastructure perspectives increases the productivity and fa-
cilitate the system maintenance and extensibility. Moreover, designing loT-based
systems should not be limited to the identi cation of the components interactions,
but also integrate self-management mechanisms that facilitated the system man-
agement with minimal human interventions. For instance, systems implementing
real-world applications continuously evolve and churn out large amount of hetero-
geneous data which make their management tricky.

In the next section, we provide details about a well-known paradigm that has
been used to enable the self-management capabilities, called autonomic computing.

2.3 Autonomic System Design

In this section, we rst provide an overview of the autonomic computing; then,
we survey existing autonomic and self-adaptive design patterns for the design of
self-managed systems.

2.3.1 The Autonomic Computing Vision

Originally inspired from the human autonomic nervous system and its ability to
react to changes, the autonomic computing [5] has been enunciated to overcome
the management complexity and to reduce its cost. Despite overwhelming the sys-
tem administrators with maintenance tasks and managing distributed nodes, the au-
tonomic computing de nes self-management mechanisms that aim at automating
these tasks based on the system context changes, with minimum human interven-
tions.

Ihttps://www.eclipse.org/community/eclipse_newsletter/2016/april/article3.php
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The development of autonomic systems for IT organizations follows an evo-
lutionary approach that identi es ve maturity levels starting from the basic level
ending with the most high level which is the autonomic level [50, 26]. More the
management functions are automated, more the system maturity level is increased.

Basic Levelltis the starting level where the system management is manually
done. Human skills are required for monitoring, analyzing, taking decisions
and executing them.

Managed LevelAt this level, new technologies are introduced to automat-
ically collect data about the system and its environment. Human skills are
required to analyze the collected data and take the decision for the system
management.

Predictive Level: It is an evolution of the managed level where the system is
able to analyze the collected data, identify the symptoms and predict future
performance. At this level, the human efforts are reduced, but their interven-
tion is still required to approve (or not) the recommendation and to initiate
the corrective actions.

Adaptive LevelAt this level, the closed loop is automatically executed. The
system is able to automatically monitor, analyze, decide and execute the ac-
tions based on the provided knowledge. The IT-management is driven by
business policies such as Service Level Agreements (SLA), response time,
etc.

Autonomic Levellt is the most mature level. The business policies and ob-
jectives govern the IT infrastructure operations. At this level, the system
is able to understand the business metrics, optimize e-business performance
and quickly deploy newly optimized e-business solutions. Human concen-
trates on the business level and interacts with the autonomic system to mon-
itor the business processes.

An autonomic system corresponds to a managed element which is monitored
and controlled by autonomic manager(s) through touchpoints: sensors and effec-
tors (see Figure 2.1). An autonomic manager implements the MAPE-K pattern
that includes a Knowledge block and the Monitor-Analyze-Plan-Execute functional
composition. The interactions among these components have the overarching goal
to enable the self-managing behavior.

TheMonitoring collects data about the managed element(s) and its external en-
vironment through sensors, while tAealysisdenti es a request change and sends
it to the Planningcomponent, if an abnormal situation has been detected. If it is
the case, the Planning reasons on the knowledge to select the appropriate plan, and
sends it to thé&xecutioncomponent. This later performs the selected plan through
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effectors. All these autonomic components operate ofktievledge which con-

stitutes the foremost element that facilitates automating the system management
tasks.

Figure 2.1: The autonomic computing reference architecture

Many research works have adopted the autonomic computing paradigm for the
development of self-managed systems [24, 51, 52]. Managing autonomic systems
implementing real-world applications with a single MAPE loop is challenging [28],
since unforeseen requirements may appear at runtime [15]. Thus, conceiving mul-
tiple control loops that coordinate their management functions and delegate tasks
to each other to solve more complex situations is required.

However, the lack of design guidelines describing the autonomic components
coordination yields to a high design and implementation cost since conventional
autonomic systems are considered as ad hoc solutions — designed and imple-
mented from scratch [53, 54]. Additionally, new data capture technologies such
as wearables and connected things pave the way for the development of advanced
systems with business bene ts, but create new challenges such as heterogeneity
and scalability. Hence, the emergence of new business requirements may lead to
re-engineering the system to integrate new management processes to attain self-
management properties. Indeed, design models that describe the structure and the
behavior of the management processes remain unclear to the autonomic system de-

signers who should conceive exible systems that effectively operate to guarantee
functional and non-functional requirements.

In the next section, we provide a thorough survey of the existing research activ-

ities that proposed design patterns for building autonomic systems and modeling
the interactions among the management functions.
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2.3.2 Patterns for the Design of Adaptive and Autonomic Sys-
tems

Autonomic and self-adaptive research community has spent little efforts on the
concrete implementation, the interaction and the coordination of autonomic com-
ponents [15, 53]. We surveyed the literature covering research works proposing
design patterns and models for building autonomic systems. Table 2.1 detailed the
harvestable works from three perspectives: the management processes interactions,
the knowledge and data management, and the principals used for the software de-
sign.

Dazzi et al. [53] proposed a behavioral pattern based on the GoF strategy pat-
tern for the design of autonomic stream-classi cation-systems. This pattern aims
at enabling the dynamic recon guration of the classi er behavior according to the
input stream. However, the proposed pattern is speci ¢ to the stream classi cation
and does not consider the heterogeneity of the input stream for the recon gura-
tion (such as format, meaning, etc.). Furthermore, it does not support the design
of complex system, where different autonomic components should be coordinated.
Solomon et al. [55] proposed an autonomic architecture based on real-time pat-
terns for automating the system IT management. The main focus of this work is
dealing with problems from the communication perspective such as synchronous
or asynchronous messages exchange, and concurrency management. Based on a
separation of concerns approach, the authors identi ed the main autonomic sys-
tem components and their basic functionalities that can be deployed in distributed
nodes to lighten the computational workload. These components are orchestrated
based on the coordinator component. Nevertheless, the coordination is limited to
the components belonging to one loop managing one system.

Based on the generalization of several existing GoF design patterns [45],
Ramirez and Cheng [54] proposed twelve adaptation-oriented design patterns that
aim at separating the development of the functional logic from the adaptive logic.
The proposed patterns are formalized using UML class and sequence diagrams to
describe the objects within the monitoring, the decision-making, and the recon gu-
ration processes (adding, removing, and recon guring a server at runtime). The au-
thors extended the template description with behavior and constraints-based elds
to enables developers to understand the consequences and trade-offs. In the same
context, Mannava and Ramesh [56] proposed a pattern, which is the combination of
existing design patterns (see Table 2.1), for designing dynamically recon gurable
systems. They are mainly interested in providing a solution that blocks all transac-
tions and communications among the components until the system is successfully
con gured. Thus, they avoid the system deadlock state when inserting, removing
or modifying of the component parameter at runtime. Frey et al. [57] proposed
a set of architectural design patterns for integrating autonomic systems. The inte-
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gration may occur “internally” when integrating MAPE loops within one system or
“externally” when integrating MAPE loops managing independent systems to form
a coherent system. The authors focused on solving the possible goals con icts that
may appear within the autonomic integration and presented seven patterns illus-
trated through use cases of smart homes connected to a micro smart grid.

However, none of the aforementioned works delineate the interaction and coor-
dination of multiple autonomic loops to manage complex systems. In this context,
Al-Shishtawy et al. [58] proposed four patterns for the coordination of multiple
autonomic managers for the network management:

the stigmergypattern represents indirect interaction where the autonomic
managers make changes on the managed resources, and these changes are
sensed by other autonomic managers that will do more actions. Within the
stigmergy, undesired behaviour may occur at runtime if many autonomic
managers are involved.

the hierarchical managemergattern adopts a re exive approach in which

the autonomic managers (children) monitors and manages the systems. In
turns these managers are controlled and orchestrated by another autonomic
manager (parent). This pattern may cause scalability problems in complex
systems, when the parent should manage a big number of autonomic man-
agers.

thedirect interactionpattern relies on binding to the appropriate managers.

the sharing of the managed elemeattern refers to sharing information
about their states (knowledge) and synchronizing their actions.

However, these patterns are abstract since the interactions among the MAPE-
K functions are not clearly presented. Recently, Weyns et al. [28] presented a
seminal work identifying the interactions of MAPE loops through considering both
the inter/intra-interactions. The authors proposed ve decentralized design patterns
for self-adaptive systems. The rst two patterns are fully distributed while the
rest of the patterns are based on hierarchical approach that re ects a separation of
concerns among the control loops. Choosing the right pattern or combination of
patterns depends on the system requirements and its complexity.

Within the coordinated contropattern, autonomic components belonging to
the same autonomic manager can interact with external autonomic compo-
nents having the same type and belonging to another autonomic manager. In
other words, this pattern describes the M-M, A-A, P-P and E-E interactions.

The information sharingpattern illustrates the M-M interaction, while the
other components operate independently. From the scalability perspective,
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this pattern provides more scalable solution than the rst one, since it limits
the interactions to M-M.

The Master/Slavepattern considers the (M, E) as slaves speci ¢ to the man-
aged element, while the (A-P) as master shared among the slaves. For large-
scale systems, this pattern may cause problems related to the master over-
head, if many Monitoring components send data to the Analysis component.
Moreover, the master remains the failure point.

Theregional planningpattern proposes for each region one Plan component
which is shared among the (M, A, E) of each sub-system belonging to this
region. This Plan may interact with another Plan belonging to another region.

Finally, thehierarchical controlpattern which is similar to the hierarchical
management pattern presented by Al-Shishtawy et al. [58].

Both Al-Shishtawy et al. [58] and Weyns et al. [28] proposed patterns for the
coordination of autonomic managers. However, they did not consider the commu-
nication and data integration challenges as well as the system requirements evolu-
tion at run-time when new requirements appear (e.g. the deployment of new auto-
nomic managers that should interact with existing ones). Frey et al. [57] proposed
a set of architectural design patterns for integrating autonomic systems. The inte-
gration may occur “internally” when integrating MAPE loops within one system or
“externally” when integrating MAPE loops managing independent systems to form
a coherent system. The authors focused on solving the possible goals con icts that
may appear within the autonomic integration and presented seven patterns illus-
trated through use cases of smart homes connected to a micro smart grid. Recently,
Abuseta and Swesi [59] proposed a metamodel describing the MAPE-K loop inter-
actions for designing self-adaptive systems. The proposed pattern covers the M-M,
M-A, A-A, A-P, P-P, P-E and E-E interactions based on the observer pattern. They
used the class diagram to model the structural patterns as well as the sequence
diagram to model the behavioral patterns. The authors instantiated the proposed
patterns to manage the QoS (the scalability, the response time and throughput) of a
Virtual Learning Environment via enabling the load balancing adaptation.

To ensure the coordination of the management processes at runtime, Oliveira et
al. [60] provided an autonomic coordination based on the knowledge component
and exchanging events among the monitoring and execution components. They
identi ed two types of knowledge: the private knowledge which is shared with the
components of the same loop, and the public knowledge which is shared among the
existing MAPE loops. To synchronize the execution of the communicating control
loops, the authors proposed to share and exchange a token among all the loops.
Thus, each loop needs to request for the token, and when this latter is released the

rst loop requesting the token starts its execution, and so on.
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The solution proposed in [60] is very ef cient to answer con dential and con-
currency issues and enable the system stability. It doesn't impact the system scala-
bility but highly impact on the processing time. The authors applied the proposed
solution to the cloud computing in order to coordinate the adaptation of both the
PaaS and laaS according to the workload, the VM charge fees and the physical ma-
chine utilization. However, locking the execution of the loop excludes the parallel
management and increases the waiting time of the adaptation, which is not adapted
for real time system management.

Based on this survey, we noted that none of these patterns integrate the I0T sys-
tems, except the work of Vidal et al. [49] which presents a model-driven methodol-
ogy, hamed MindCPS, for the design and development of autonomic Cyber Physics
System (CPS). The methodology implements a metamodel that drives the system
design through de ning the interaction of the autonomic components and the main
functionalities. The proposed model describes the sensors measurements and pro-
tocols, identi es simple and complex lIters to process the received data and detects
symptoms to enable the adaptation. A set of model-to-code transformation, which
automatically generates the JAVA code implementing the autonomic control loop as
well as EPL queries for the real-time management of the events and SQL queries
for the management of the non-real time data, are identi ed. However, the pro-
posed model did not take into consideration the data heterogeneity and its volume,
as well as the scalability of such complex system.

2.3.3 Discussion

Despite the diversity of the proposed research activities, there are open challenges
[15, 61] that should be considered when designing autonomic systems such as:

the coordination of decentralized MAPE functions (management processes),
the distribution and the heterogeneity of the generated data,

the interaction with the knowledge which remains the cloudy component in
autonomic computing,

and the self-provisioning of the management process in order to manage at
runtime the system context evolution which is unpredictable at design time.

As advocated in Table 2.1, almost works detail the MAPE interactions at design
time except the work of Solomon et al. [55] which coordinates the autonomic com-
ponents belonging to the same control loop, and the work of Oliveira et al. [60]
which coordinates different autonomic managers based on shared public knowl-
edge. Moreover, none of the presented works provides a solution that enables the
dynamic discovery of the management processes to meet the system requirements
and context evolution at runtime. With the proliferation of IoT, most of the data are
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unstructured generated by sensors with different representations. Thus, new pat-
terns that extend the basic management processes to support processing and storing
big data are required.

Conventional autonomic and adaptive patterns do not portray the knowledge
structure and its interaction with the MAPE functions. Indeed, autonomic comput-
ing technologies do not rely on instructive and procedural information [4] which
are the basis for smart decision-making. In the basic autonomic computing model,
knowledge is considered aalfnost any sort of structured data or information that
could be used to carry out processes, especially processes that can be autémated
For the development of smart autonomic IoT system, knowledge should not be
overlooked. It is not limited to describing tasks for automating system manage-
ment, but it should include cognitive capabilities that allow 10T systems learning
and generating business decisions to interact with human.

In the next section, we provide an insight on the cognitive computing concepts
that can serve for the smart management of autonomic IoT systems.

2.4 Cognitive Computing Concepts

Wang [4] de ned the Cognitive Computing asri emerging paradigm of intelli-

gent computing methodologies and systems that implements computational intel-
ligence by autonomous inferences and perceptions mimicking the mechanisms of
the brairi. This paradigm is the amalgamation of concepts from arti cial intelli-
gence, natural language processing, ontologies, and big data analytics [62] for the
development of smart systems. In this section, we are interested in the knowledge
representation based on ontologies as well as big data technologies for the design
of cognitive systems.

2.4.1 Knowledge for Cognitive Computing

Cognitive computing is not limited to machine learning; it includes also the knowl-
edge modeling and ontologies constructiomBut rst, it is important to distin-

guish knowledge from data and information, especially with the emergence of the
IoT and mobile systems that instantly generate huge volume of raw data. The
DIKW pyramid has been introduced to hierarchically organize data, information,
knowledge and wisdom [63]. As presented in Figure 2.2, data is at the bottom. It
represents primary data gathered from sources, such as IoT, unprocessed and un-
organized facts. Information, next pyramid layer, is data processed, organized and
associated to the context. Knowledge represents the practical use of the processed

2http://www.ibm.com/developerworks/autonomic/library/ac-edge6/
Shttp://www.dataversity.net/cognitive-computing-semantic-technology-worlds-connect/



2.4. Cognitive Computing Concepts 29

information, or put into action. And on the top level of the pyramid, wisdom is the
application of knowledge resulting in the ability to add value and provide insights
for decision-making.

Figure 2.2: DIKW pyramid

Davenport and Prusak agreed with this distinction and de ned the knowledge
as “a uid mix of framed experience, values, contextual information, and expert in-
sight that provides a framework for evaluating and incorporating new experiences
and informatiori [64]. Many classi cations of the knowledge type have been pro-
posed:

From thecognitive psychologgrea, John Anderson, a psychology professor at
Carnegie-Mellon University, introduced two classi cations for the knowl-
edge typedeclarativeandprocedural[65]. Declarativeknowledge consists
in describing the know-that including facts and information about things,
while the proceduralknowledge focuses on delineating the know-how in-
cluding skills and steps of a task or procedure.

From theknowledge managememsearch area, knowledge cargsglicitor tacit
[63]. Explicit knowledge can be easily accessed, transferred and shared,
since it is published in multimedia content taking the form of textual, im-
age or video representation. Contrarily to the explicit knowledgetabi
knowledge, which refers to the know-how, is critical to understand and reuse
since it is located in the human heads and embedded in human behavior.
While explicit knowledge can be straightforwardly integrated into knowl-
edge management software systems, tacit knowledge must rst be converted
to explicit knowledge.

Woods and Cortada [66] summarize these de nitions as follows: the declarative
is viewed as explicit and ties to “describing”, while the procedural is viewed as tacit
and ties to “doing”.
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2.4.1.1 Knowledge Management

Practically speaking, the value of the knowledge leans on the way it is managed and
explored. In this context, a set of knowledge management activities (KM) have
been proposed to represent, capture, understand, share and reuse the knowledge
through which the decision is made. Figure 2.3 portrays the main KM activities
that foster the knowledge extraction and application based on IT technologies:

Knowledge Acquisitianlt represents the most important process where the
needed knowledge to perform a task is extracted. Traditionally, it was viewed
as the process of extracting the knowledge from experts and transferring the
knowledge into knowledge based system.

Knowledge Storagelt refers to the process of storing the knowledge in
repositories for present and future use [67]. Recent IT technologies promote
the storage to guarantee the accessibility to the knowledge.

Knowledge SharingOnce the knowledge is stored, it should be shared to en-
able the collaboration that increases the productivity. Despite its importance
in KM, many cultural and social factors may hinder knowledge exchange and
reuse.

Knowledge Reusdt encompasses three roles [68]: knowledge producer who
generates the knowledge, knowledge intermediary who indexes and catego-
rizes the knowledge and knowledge consumer who retrieves and uses the
knowledge to create value.

Figure 2.3: Main activities of knowledge management

To enable the system learning and thinking using inference and reasoning tech-
nigues, knowledge should be well-formalized and represented based on a com-
mon understanding in order to allow the system interpreting the meaning behind
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it. James Kobielu, the IBM Big Data evangelist, saidfof’ cognitive computing

to achieve its promise we need a thick metadata layer that incorporate semantic
tagging format&®. Thus, it is important to provide semantic support for the devel-
opment of smart systems, because data is nothing without meaning.

2.4.1.2 Ontologies for Knowledge Representation

In Arti cial Intelligence, Knowledge Representation (KR) is the fundamental pro-
cess that aims at transforming explicit knowledge into computer-interpretable for-
mat in order to automate the reasoning process. Among the rst KR languages that
have been proposed, we cite the Frame [69] and the Semantic Networks [70]. How-
ever, these languages lack formal (logic-based) semantics [71]. To overcome this
de ciency, the Description Logic (DL) was introduced. In this context, Sowa [72]
de nes the knowledge representation #éise* application of logic and ontology to

the task of constructing computable models for some ddmBased on rst order

logic, DL guarantees a formal expressiveness of the knowledge representation [73]
and can be used to describe domain knowledge through using ontology.

Ontology is the key for offering smart support for KM by highlighting the
meaning of the silos of information and representing the knowledge in a computer
interpretable format able to be understood, despite its heterogeneity [74]. Origi-
nally, ontology is de ned asé branch of metaphysics relating to the nature and
relations of beiny ® . It tends to describe what exists. In computer science, Gruber
de nes the ontology asdn explicit speci cation of a conceptualizativfir5]. It
describes the semantics of the data based on a common shared understanding of the
domain through classes, relations and axioms that add meaning to information, and
provides techniques that automatically seek for the required information [76, 77].

For the development of smart 10T systems, ontologies can be used from two
perspectives:

From one hand, they can be used to formalize the declarative knowledge
and provide a common understanding of the system context. For instance,
M2M and loT-based systems leverage this technique to describe the sensors,
their observations and their properties. We cite the Semantic Sensor Network
Ontology (SSN) [78] proposed by the W3C as the most popular ontology in
this domain. Moreover, they have been considered as a main solution for
integrating heterogeneous systems and data sources [79, 80].

From the other hand, ontologies can be used to describe the problems and
actions for the decision making -the procedural knowledge. Thus, 0T sys-
tems may reason and aggregate this knowledge to provide decisions based

“http://www.dataversity.net/cognitive-computing-semantic-technology-worlds-connect/
SMerriam-Webster: http://www.merriam-webster.com/dictionary/ontology
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on the observations they capture. For example, in healthcare, ontologies
have been used to describe clinical guidelines in order to develop knowledge-
based clinical decision support systems.

Regardless of the purpose of use, ontology representation requires following
a methodology for building its schema and capturing the real-world. In the next
section, we delineate the main methodologies for formalizing the knowledge based
on ontologies.

2.4.1.3 Methodologies for Building Ontologies

Many methodologies have been proposed to build ontologies [81, 82]. METHON-
TOLOGY is the most known methodology developed in the Arti cial Intelligence
Lab from the Technical University of Madrid (UPM). Its skeleton was developed
through taking the IEEE 1074-1995 standard as a starting point [83]. It covers the
ontology development process, the ontology life cycle and the techniques used to
achieve each activity [84] from the speci cation to the maintenance of the imple-
mented ontology. On-To-Knowledge [85] is another methodology that introduces
the balance between human problem solving and the automated IT solutions, since
knowledge management is not governed only by IT. It starts with a feasibility study
where problems and actors are identi ed. Then, the ontology requirements are
speci ed, and a semi-formal ontology description of the target application is pro-
vided. Based on the rst model, a re nement process is initiated to produce an
application-oriented ontology. After that, the provided ontology is evaluated by
checking the requirements. Finally, the ontology is applied in the application envi-
ronment and maintained.

METHONTOLOGY and On-To-Knowledge methodologies do not consider
collaborative construction of ontologies [86] which is a complicated task and
mandatory to formalize the experts' tacit knowledge (procedural knowledge) and
converge to a uni ed ontology. In this context, Kotis and Vouros [87] proposed a
Human-Centered Ontology Engineering Methodology (HCOME). Unlike the ex-
isting methodologies, the HCOME contributes to involving the knowledge worker
in the ontology development. HCOME starts by identifying the requirements and
the aim of the ontology by discussing with collaborators. Then, each worker will
focus on developing his/her ontology in his/her personal space by importing on-
tologies, consulting top ontologies and discussing with experts. At this stage, each
worker manages his/her own ontology versions. These ontologies are shared with
other workers or collaborators for review and evaluation. Thus, this methodol-
ogy requires a deep knowledge in ontology formalization and modeling, however,
domain experts generally are not necessary familiar with ontology development.
In the same context, NeOn methodology [88] identi es nine scenarios for collab-
oratively building ontologies and ontology networks, reusing and re-engineering
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knowledge resources (ontological and non-ontological). However, NeOn does not
de ne a work ow for the ontology development based on human involvement for
tacit knowledge conceptualization.

Formalizing the tacit knowledge into an ontological model relies on the experts'
collaboration as the key success. Despite the advantages of IT to create a sharable
and virtual environment that overcomes space and time constraints, the face-to-face
communication remains more effective and exhibits higher performance results
[89]. Thus, considering social barriers and personality traits in the methodology
processes is required, which is not well-addressed in the previous works, in order
to foster knowledge sharing, collaborative ontology construction and acquisition.
Indeed, studies in psychology have shown that knowledge sharing behavior among
individuals is in uenced by personality traits [90].

2.4.1.4 Semantic Web for Cognitive Computing

Once the ontology structure is de ned, it should be implemented in order to be
shared and reused during the annotation process. Semantic web is well-known for
these purposes. It has been introduced by Tim Berners-Lee in 192 &xten-

sion of the current web, in which information is given well-de ned meaning, better
enabling computers and people to work in cooperéti@i]. Based on standard-

ized languages such as OWL, RDF and RDFS recommended by the World Wide
Web Consortium (W3C), semantic web data can describe the knowledge content
underlying both web pages and multimedia content like images and videos [92].

Many semantic web technologies have been proposed and evaluated to store
large scale annotation following the RDF format [93]. Other semantic web tech-
nologies have been developed to enable the collaboration among human and com-
puters such as the semantic wikis. Semantic wikis [94] represent an evolution of
basic wikis, which are the most popular web-based solution that enables human-
human collaboration and exchanging the knowledge through acquiring new con-
tents from several users in the web [95]. Through coupling ontologies with wiki-
based platforms, semantic wikis unleash the power of both technologies to smartly
manage the knowledge and to guarantee accessing to data from anywhere at any
time. Many semantic wiki engines [96] have been proposed as open source or
commercial platforms with different characteristics and purposes. They have been
classi ed into two categories [97]: wiki for semantics that supports collaborative
ontology development such as Semantic MediaWiki [98] and semantics for wiki
that focuses on adding meta-data to wiki pages such as SweetWiki [99].
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2.4.2 Big Data Management

Big data is attracting more and more interests from the research and industries
through its ability to provide new discoveries and insights. There is no a com-
plete agreement on big data de nition, some de nitions associate it to the data
distribution and scalability management, while other to the massively parallel data
processing. The National Institute of Standards and Technology (NIST) de ned
the big data as follows [100]:Big Data consists of extensive datasets—primarily

in the characteristics of volume, variety, velocity, and/or variability—that require a
scalable architecture for ef cient storage, manipulation, and analydtsom this

de nition, managing big data refers to deal with two-pronged: data storage, and
data analytic and visualization.

2.4.2.1 Big Data Storage

Nowadays, the digital universe accounts more than 90% of unstructured data with
different format such as text les and multimedia contents [17]. Surely, 10T sys-
tems point out this phenomenon through generating dynamic and heterogeneous
data. According to the EME the percentage of data generated by mobile “things”
will grow to 27% in 2020. Due to the limited processing speed and the signi -
cant storage expansion cost [101], conventional relation databases, which are orig-
inally conceived to manage structured data, are inadequate to store loT-generated
data. For instance, fed by sensors and connected things, real-time loT-applications
should support fast read and write operations within large data sets in order to pro-
vide timely information.

Bearing that in mind, the NoSQL databases have been developed to deal with
such limitations. The main purpose of NoSQL is to offer exible management of
distributed non-relational data models, guarantee the horizontal scale over servers
nodes and provide high availability of the data [102, 103]. Four NoSQL data stor-
age approaches have been identi ed [104]: key-value database, document database,
column-family database and the graph database. For instance, MongoDB, which is
a document database, has been used to store loT-generated data [101, 105]. Cou-
pling NoSQL technologies with the cloud computing [106] is a suitable solution
for the management of 0T data in order to guarantee the scalability of the system.

Steadily storing loT-generated data without analyzing them is a waste of re-
sources. Big data is not limited to storing large amount of data, but it includes
another important phase which is data analytics.

Shttp://www.emc.com/leadership/digital-universe/2014iview/internet-of-things.htm
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2.4.2.2 Big Data Analytics & Visualization

More type and larger-scale the data are, the higher accuracy the analytics results
will have [107]. However, the diversity of the data format, its huge volume and its
quality represent barrieres for better analytics. Traditional analytics tools, includ-
ing data mining, machine learning and statistical tools, are not able to cope with
both the scale and the high interference of loT-data [18]. In this context, big data
analytics bring advanced and rigorous techniques that deal with the processing and
the analysis of distributed, heterogeneous and huge amounts of data [108, 20, 109].
Thus, new patterns can be identi ed to retrieve hidden information and provide
straight business insights for smarter and faster decision-making. Given this back-
ground, new data analytic platforms are required to parallelize the processing of
the data being generated.

Recently, research activities in healthcare have been invested to leverage the
potential bene ts of big data. DiabeticLifks an example of big data platform that
has been developed by the University of Arizona and National Taiwan University
for patient empowerment and personalization [110]. It allows exchanging disease
information and experience through aggregating multiple sources of data such as
forums, drug side effects, and electronic health records. The genomic research area
has also bene t from big data [111] to discover novel genes and help personalizing
the treatment. We cite for instance the collaboration that has been made between
Cloudera and the Institute for Genomics and Multiscale Biology to provide a big
data platform that assists researchers predicting and understanding the treatment of
diseas@

Technically speaking, many platforms and libraries have been developed to
deal with the big data analytics. Apache Hadbispthe rst popular open source
platform for batch processing based on the MapReduce framework operating on
Hadoop Distributed File System (HDFS) or on other external databases. It sup-
ports the parallel processing of large-scale data stored in distributed server nodes.
Hadoop has been widely used in industry [112], for instance Yahoo uses Hadoop
running over 42,000 severs at four data centers for searching and spam ltering,
while Facebook announced that their Hadoop cluster is able to process 100 petabyte
(PB) data.

Presently, many plugins have been developed over Hadoop to extend its ca-
pabilities such as Pig Latin developed by Yahoo Research that offers a high level
language for expressing data analysis programs for encoding data analysis tasks in
MapReduce programs; and Hive initially introduced by Facebook for analyzing its

http://www.diabeticlink.org/

8http://www.zdnet.com/article/cloudera-and-mount-sinai-the-structure-of-a-big-data-
revolution/

%http://hadoop.apache.org/
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generated data and for generating reports [113]. Other Apache projects have been
developed for data collection and ingestion such as S§dbat allows importing
relational databases such as MySQL into the HDFS; Flithat allows aggregat-

ing and moving large amounts of log data; and Chukwhat allows collecting

large scale distributed data and rapidly processing it. Other projects have been in-
troduced to manage the performance of the big data platforms and coordinate the
parallel processing such as OdZiand Zookeepéf. Recently, Apache Spark

has been developed for the large-scale data processing based on the MapReduce
framework. It is considered as 100 times faster than the Hadoop MapReduce in
memory.

To enable more complex analytic such as clustering and predictive analytic,
new platforms offering parallel data mining and machine learning algorithms op-
erating on large-scale data are required. In this context, M&hdut-Hadoopg’
and Spark MLIi® libraries have been developed to offer scalable machine learn-
ing. Freshly, Apache FlinR, which is an open source platform for distributed
stream and batch data processing, has introduced FlidkNilrary implementing
supervised machine learning and recommendation algorithms.

The strengths of big data resides also on its ability to provide real-time big data
analytics which is de ned asthe ability to make better decisions and take mean-
ingful actions at the right timie[114]. To this end, distributed publish/subscribe
platforms have been developed to support the integration of other big data stream
processing platforms. For instance, LinkedIn has developed Apache XKafka
messaging and has integrated it with Apache S&frfpa distributed stream pro-
cessing. Apache Storitis another interesting framework for stream processing. It
is a distributed fault-tolerant real-time computation system. Apache Storm is scal-
able and allows processing until one million messages per second per node. Also,
Apache Spark introduces the spark streaming library which has been used by Net-
ix 24 associated with Kafka to consume events from Net ix devices, while Apache

Ohttp://sqoop.apache.org/

Uhttp:// ume.apache.org/
https://chukwa.apache.org/docs/r0.3.0/index.html
Bhitps://oozie.apache.org/

Lhttp://zookeeper.apache.org/

Bhitps://spark.apache.org/

8https://mahout.apache.org/

https://code.google.com/p/ml-hadoop/
Bhttp://spark.apache.org/docs/latest/mllib-guide.html

Pnttp:// ink.apache.org/

2Onttps://ci.apache.org/projects/ ink/ ink-docs-master/apis/batch/libs/ml/index.html
2Ihttp://kafka.apache.org/

2’http://samza.apache.org/

23nttp://storm.apache.org/
2https://spark-summit.org/2015/events/spark-and-spark-streaming-at-net ix/
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Flink introduces Flink DataStream A®Iwhich has been used by Bouygues Tele-
conr® to provide real-time diagnostics and alarming based on users upstream.

Despite big data analytics, data visualization plays an important role to inter-
act with experts and accelerate the decision-making through mapping the analytic
results into interactive multimedia contents (images, videos, etc.). Some visual-
ization libraries have been developed such as D3.js, Polymaps, NéfexXt.

For instance, to visualize twitter conversations, the Moebio #atksveloped the
Newk?® application.

2.4.3 Discussion

Cognitive computing feeds on big data and leverages the knowledge modeling to
provide smart systems. The main purpose of big data analytic (batch and stream
processing) is to retrieve more accurate results and help scientist and domain ex-
perts to discover and extract new information not known in advance. Despite this
wide range of big data platforms and libraries, the lack of data semantic descrip-
tion impedes data analytic. The concern is not related to having more data, but
is more related to the ability of the system to understand the meaning of the data
in order to be correctly processed and aggregated with existing structured/unstruc-
tured databases. An IoT big data system should be able to curate the data and
understand its meaning in order to be automatically processed and to get better de-
cisions. These aspects should be considered since the design of the system in order
to provide exibility and extensibility when adding new data sources that enrich
the analytics.

Semantic web contributes to the development of cognitive computing through
giving meaning to the data emanating from heterogeneous and distributed data
sources, and annotating the extracted information for further reuse. Moreover,
data integration is crucial, especially in 10T systems where different vendors are
manufacturing devices implementing different syntax and formats. Cleaning and
Itering the received data from I0T systems remain a mandatory task to provide a
high quality of data. Likewise, it is important to guarantee the availability of data
and knowledge for real-time analytics and reasoning.

ZShttps://ci.apache.org/projects/ ink/ ink-docs-master/apis/streaming/index.html
26http://data-artisans.com/ ink-at-bouygues-html/
2Thttp://www.nodexlgraphgallery.org/Pages/Default.aspx

28nttp://moebio.com/

2http://moebio.com/newk/twitter/
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2.5 Cloud Computing

Cloud computing is a new paradigm, well known for its ability to deliver highly
scalable distributed computing platforms in which computational resources are of-
fered as a service [115]. It provides advanced mechanisms for data storage, compu-
tation, and dynamic resource allocation according to real-time computation needs.
The cloud computing is characterized by the elasticity concept which refers to the
ability to add or remove resources in order to manage the system workload much
more closely [116].

2.5.1 NIST Cloud Computing

The NIST de nes the cloud computing ag‘model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of con gurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interactiori [117]. The NIST has de ned a generic cloud computing ref-
erence architecture that regroups various cloud services into three service models:
infrastructure as a service (laaS), platform as a service (PaaS), and software as
a service (SaaS) [118]. The laaS layer contains the physical resources, such as
servers, processors, and networks, on which the platforms will be deployed. The
PaasS layer offers platforms for data storage, programming languages, and web ap-
plication servers. Finally, the SaaS layer handles software applications that directly
access infrastructure resources or refer to the PaaS layer for their computing plat-
form and data access.

Recent works [119, 120] focus on integrating of the cloud computing and loT
systems in order to leverage storing the data in cloud [106], processing the data [33]
and ef ciently sharing resources based on virtualization to manage the system cost
[121]. This combination opens the door for developing scalable system ensuring
the near real-time data processing in order to generate new knowledge about the
system at the right time. Making this knowledge reusable, accessible and available
is crucial for the development of smart 0T systems.

Many research activities took advantage of the cloud and its ability to offer
everything as a service to propose new cloud layers such as Thing as a Service
[122], Big Data as a Service [123], Sensor Data as a service [124] and Machine
Learning as a Service [125], etc. In the next section, we detail works dealing with
Knowledge as a Service.

3ONIST: National Institute of Standards and Technology
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2.5.2 Knowledge as a Service

Several works adopted the Kaa$S in different domains to facilitate sharing and ac-
cessing knowledge from different sources. Knowledge as a Service was de ned
by Xu et al. [126] as the process by which a knowledge service provider answers
gueries presented by knowledge consumers through a knowledge’s&mewl-

edge is typically extracted from large volume of data coming from heterogeneous
data owners according to knowledge models and is then delivered as a cloud com-
puting service. Based on these knowledge models, the knowledge server is able to
deliver the right answer to the right consumer at the right time [127]. Figure 2.4
represents an overview of the Kaa$S paradigm.

Figure 2.4: The KaaS paradigm

Qirui [128] brought new thinking to agricultural information-system develop-
ment by using the KaaS approach. In this approach, KaaS provides services that
offer recommendations about planting on the farm according to user speci cations
and environmental factors. The knowledge representation in this KaaS is based
on ontologies, while the data are stored in a relational database (MySQL). Kan-
nimuthu et al. [129] applied KaasS in the e-commerce domain, where they focused
mainly on how to extract knowledge from data based on data mining techniques
to attract the user to other products of the same enterprise. Ultimately, this leads
to nancial bene t for the enterprise. In their approach, data are formatted and
stored in an XML database. Another interesting approach was proposed by Lino
et al. [130], who used KaasS to facilitate emergency response in natural disasters
like tsunamis and earthquakes using interactive digital TV. In this work, knowledge
is shared by means of ontological descriptions. Moreover, the authors focused on
implementing a planning algorithm for emergency response in the KaaS layer to
support evacuation of unsafe areas. However, the system architecture seems to be
restricted to a speci c client/server architecture as opposed to an accepted cloud
computing architecture.
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2.5.3 Discussion

The KaaS approach seems to be a very interesting concept that can serve the IoT-
based systems, since these systems churn out mountain of data that should be auto-
matically processed to generate new knowledge (business bene ts). The generated
knowledge should be accessible and available for better decision making. From the
literature, we noted that Qirui [128], Kannimuthu et al. [129], and Lino et al. [130]

all proposed a KaaS architecture; however, they did not follow a well-accepted
cloud computing reference model such as those proposed by NIST, CISCO, or
IBM. Moreover, none of the aforementioned works did consider managing big data
to generate new knowledge from distributed heterogeneous data sources, especially
in case of loT-based systems which are data-intensives, complex and distributed
systems. This huge volume of data should be managed with appropriate methods
and techniques in order to generate more accurate and precise analytics.

2.6 Conclusion

In this chapter, we provided an overview of the main research areas to which this
thesis belongs. We delineated also existing research works dealing with the chal-
lenges presented in chapter 1 and we identi ed the techniques and approaches they
are using. Moreover, we highlighted the use of existing approaches for the design
and development of smart 10T systems and pointed out how their contributions are
synergistic. To summary, based on studying existing works, we notice that there is:

Lack of guidelines and patterns that drive the design of smart IoT systems
while taking into consideration the dynamic evolution of the system context,
big data and scalability challenges.

Lack of knowledge and big data management to support the smart manage-
ment of I0T systems through enabling cognitive capabilities.

Consequently, the aim of this thesis is proposing solutions that foster the devel-
opment ofAutonomic and Cognitive 10T system3 he next chapter will detail our
rst contribution dealing with managing the design complexity of such systems.
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3.1 Introduction

I oT systems implementing real-world applications continuously evolve. To deal
with this dynamic evolution, management processes are required in order to
automatically manage the system requirements, while reducing the human efforts
and the associated cost. An loT-based system represents an example of complex
system of systems where the coordination of the management processes is needed
to guarantee their smooth functioning. However, loT-based systems are inherently
distributed, heterogeneous and complex to design and manage.

Consequently, in this chapter, we identify the problems that may occur when
designing smart loT-based systems, we study in the literature existing reusable
software patterns and we highlight their limitations. After that, we propose a
model-driven methodology to assist the architect designing and developing smart
loT-based systems. Based on the autonomic and cognitive computing approaches,
we de ne within this methodology a set of autonomic cognitive design patterns
to iteratively drive the architect when identifying the interaction among the man-
agement processes. The proposed patterns integrate existing design patterns, and
extend them with new capabilities to support (1) the dynamic coordination of the
management processes and (2) big data management, while guaranteeing a exible
and extensible architecture. We refer to the healthcare as an applicative domain
of loT-based systems. Thus, we illustrate the ef ciency of the proposed patterns
when managing the patient treatment. But rst, we delineate the utility of auto-
nomic computing in healthcare and its ability to automate the patient treatment
management based on medical sensors and wearable devices in order to accelerate
the decision-making and avoid health complications.

3.2 |oT Healthcare System for Patient Treatment
Management

The human is a complex system of systems composed of interconnected and de-
pendent organs and cells which are coordinated to work together in order to regulate
the body's internal mechanisms. Thus, the dysfunction of one sub-system caused
by a chronic disease and/or the application of a medical intervention to manage a
problem may affect other sub-systems. For example, the management of a patient
with type 2 diabetes should consider the management of the heart failure risk factor
[131], since some diabetes drugs may be linked to heart fail@ensequently, it

is important to coordinate the management of different sub-systems and provide a
preventive approach when adjusting the patient treatments.

https://iwww.nlm.nih.gov/medlineplus/news/fullstory_158144.html|
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3.2.1 Autonomic Computing for Patient Treatment Manage-
ment

We propose to adopt the autonomic computing paradigm (1) to reduce the com-
plexity of managing the treatment of patients with chronic diseases, and (2) to ex-
pedite the decision-making based on 10T devices. The ultimate goal is to enable the
dynamic prediction and/or detection of the patient health deterioration as well as
proposing personalized treatment plan, while taking into consideration the patient
health evolution. Figure 3.1 portrays the management processes that can be auto-
mated for the patient treatment management based on the autonomic computing.
For clarity reasons, we present only one loop managing a chronic disease. These
processes, forming the MAPE loop, operate onKinewledgewhich is the fore-

most element that enables the coordination of the MAPE processes for the smart
management of the patient treatment.

Figure 3.1: Autonomic computing for managing patient treatment

The Monitoring process collects the patient data coming from medical sen-
sors and wearable devices, and/or measured by health professionals.

The Analysisprocess analyzes the received data to identify patient health

deterioration. This later may implement detection rules, or predictive algo-

rithms such as machine learning. According to the severity of the detected or
predicted anomaly, an alert will be sent to the Plan process.

The Planreasons on the knowledge to automatically search the appropriate
treatments based on the patient medical conditions, the interventions con-
traindications, the medical interactions and the drug side effects. Finally, the
personalized recommendations are sent to the physicians for validation.
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When managing the patient treatment, feecutionprocess requires the
physician intervention to approve the execution of the plan.

When managing patient treatment, complex situations such as comorbidity may
occur. Comorbidity refers to the simultaneous or sequential occurrence of two
disorders or illnesses in the same person. It also implies interactions between the
illnesses that affect the course and prognosis of both [132]. In such cases, multiple
management processes should be deployed and coordinated in order to manage
the presented diseases and avoid possible complications derived from the diseases'
interactions.

3.2.2 Maturity Levels for Autonomic and Cognitive loT-based
Systems

Automating the combination of the management processes depends on the patient
context and the system requirements, while their interactions may re ect different
maturity levels of the system. We identi ed four maturity levels, as portrayed in
Figure 3.2, which combine the management processes of the autonomic computing
with cognitive capabilities to represent the timeline evolution of the autonomic and
cognitive loT-based systems development. We specialized these maturity levels
for the smart management of the patient treatment, based on IoT systems. The
proposed maturity levels are the following:

The Cognitive Monitoring Managememével is the basic level that allows
loT system interacting with human through collecting and visualizing the
observations. At this level, only the monitoring process is automated and
it implements cognitive capabilities that allow perceiving the received data
streams. This level is adequate for near real-time visualization of the system
context evolution. For example, in healthcare, it is important to continuously
monitor the glucose level of prediabetes or elderly people that have the risk
to get diabetes, and automatically detect possible degradation.

The Predictive Cognitive Managemetdvel is an evolution of th€Cogni-

tive Monitoring Managemenevel. At this level, the system goes further
the visualization and detection to apply intelligent mechanisms such as ma-
chine learning and data mining algorithms that allow the system learning and
predicting other related anomalies initially imperceptible from existing ob-
servable parameters. For example, if the patient has con rmed diabetes and
is following speci c treatments to manage her glucose level, it is important
to predict the hypertension as it is a risk factor of diabetes, especially if the
patient is not equipped with a blood pressure sensor.
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At the Prescriptive Cognitive Managemelatvel, the system is able to pro-

vide business decisions to the expert based on the system context and through
reasoning on the procedural knowledge, which includes the business rules
populated by the business experts. As decisions are business related, the sys-
tem sends the recommendations to the appropriate practitioner. For example,
if the system detects that a patient with diabetes is getting worse while fol-
lowing a speci c treatment; it will adapt the treatment through generating
another personalized treatment and send it to the right physician.

The most mature level is thutonomic Cognitive Managemdavel. In sys-

tem of systems, the context is dynamically changing, especially if the sub-
systems are interconnected and dependent. Thus, the system should be able
to dynamically discover management processes based on the sub-systems'
context evolution in order to provide a proactive management. For example,
we consider a patient is managed throulghy (A4, P4, E4) deployed for dia-

betes management. Because of aging, the patient may develop hypertension,
thus, it is important that the system should be able to automatically search
and activate the appropriate management processes managing the hyperten-
sion disease, besides diabetes, while interacting with experts who validate
their activation as well as their recommendations for automatic execution.

Figure 3.2: Autonomic cognitive loT-based system maturity levels

Reaching these maturity levels requires managing many challenges starting
from the dynamic coordination of the management processes ending with the man-
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agement of the generated data (volume, velocity and variety). Consequently, in
the next section, we identify the main design and development problems that we
have faced when building smart IoT systems, identify useful reusable patterns in
software engineering, and highlight their consequences.

3.3 Design Patterns Identi cation

From the survey that we have conducted in chapter 2, section 2.3.2, we found that

the patterns proposed by Weyns et al. [28] are the most relevant for the design of

autonomic systems. However, these patterns remain abstract and do not detail the
following points:

the knowledge component and its interaction with the management processes
which explicitly increases the complexity of the patterns descriptions.

the coordination of the management processes as well as the dynamic dis-
covery of these processes to automatically meet the context evolution.

And nally, how to deal with challenges related to the integration of 10T
like big data management, and how to perceive the received data for the
development of cognitive loT-based systems.

Consequently, we identi ed and classi ed the encountered problems into three
categories related to (1) tmanagement process€) thedata managemenand
(3) theinfrastructure managementVe gathered from the literature useful patterns
that may cover the identi ed design problems. Table 3.1 summarizes our ndings
and elucidates the list of patterns that can be reused.

3.3.1 Management Processes Level

Generally, the coordination of the management processes remains an open issue in
autonomic cognitive management. We found that in Arti cial Intelligence domain,
the blackboard pattern [133] has been widely used for the dynamic control and co-
ordination of the knowledge sources (KS) based on a control component (C). The
blackboard pattern provides effective solution to the design and implementation of
complex systems where heterogeneous modules have to be dynamically combined
to solve a problem [133]. The control component supervises the shared blackboard
among the KS. If the blackboard is modi ed, the control component activates the
appropriate KS. It seems that this pattern is useful to model the management pro-
cesses coordination, since we consider them as knowledge sources that generate
new knowledge concerning the managed element.

Moreover, in complex systems, multiple management processes should be de-
ployed to manage several sub-systems at the same time. The distribution of the
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management processes allows gaining performance management, but their interac-
tions become more dif cult. Within a distributed system, management processes
may not have enough information concerning other separate processes such as their
de nition and endpoint in order to interact with. In this context, we found that the
mediator pattern [45] provides a loosely coupled solution where the distributed
management processes may communicate. Nevertheless, the heterogeneity of the
processes description is challenging to ensure the interoperability. Thus, we pro-
pose to extend the mediator with a common semantic description of the processes
to overcome such challenge.

3.3.2 Data Management Level

The 10T market witnesses an important increase. Thus, managing the system scal-
ability is crucial to provide timely information, particularly when consuming the
data generated by such devices. The publish/subscribe pattern [134] offers a scal-
able management of the monitoring process as well as an easy extensibility of the
system to support new devices. However, the publish/subscribe pattern presents in-
exible semantic coupling. Indeed, in this pattern, the semantic and data structure
are well de ned. Thus, if a new device is deployed to send different data structure
(e.g. different data ordering and data separator), the consumer fails processing the
data. With this in mind, we propose to provide a exible solution by enriching
the publish/subscribe pattern with a semantic description of the data structure and
ordering. Thus, adding new devices will not affect the data consumption process,
since the consumer knows all information related to the received data: the meaning
and the structure. Consequently, we propose to use ontology as a semantic descrip-
tion method to deal with the heterogeneity from two perspectives: rst to describe
the management processes, their functions and endpoints; second to describe the
meaning of the managed data and its structure to provide more accurate analysis.
Another important aspect that characterizes the IoT-based system is the near-
real time data processing to provide timely information. With the variety of the
received data, it is important to Iter and curate the data in order to easily integrate
and aggregate it, and provide near real-time visualization. Coupling the interceptor
pattern with the chain of responsibility pattern [45] provides a solution for near-
real time data curation based on Iters implemented in the subscriber. Thus, the
development of Iters based on the semantic description seems promising.



Problem Description

Pattern Name / Ap;
proach

Consequences

Management Processes

Managing complex autonomic systems requires coordinating various

management processes in order to deal with the evolution of the ca
changes.

nBatckboard Pattern

**

Dynamic control/
changeability

** Reusability

** Robustness

Management processes are distributed and have little or no know
of the de nitions of other separate processes that may be reused t¢
with context evolution.

edge
D Maliator Pattern

** Loosely coupled
communication
** Maintainability

Management processes are heterogeneous, which make reusing
dif cult and requires programming efforts for the integration and th
composition.

) eenantic description o
eine management prg
cesses (Ontologies)

f ** Interoperability

-** Dynamic discovery
of the management pra
cesses
** Maintainability

The number of I0T devices keeps growing rapidly, which may cauReblish/subscribe Pa

scalability problems when consuming the data.

tern

[-** Scalability
** Extensibility

Data Management

Based on connected things, the monitoring process generates huge vol-
ume of data stored in distributed clusters that should be processed.

Data velocity: data stream processing

Master/Slave Pattern

** Parallel data Pro-
cessing

** Performance

** Response time

** Fault-Tolerant
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IoT devices generate heterogeneous stream data with different
especially that each vendor uses its own format.

Sharing a common description and harmonizing the data to get acq
analysis are required.

Bgmantic
meaning (Ontologies)

rarceptor & Chain of
Responsibility Patterns

description **
resentations, which make its processing at real-time is a tricky task,data structure andsense

Sharing common
** Data integration

** Data
& Curation

Filtering

Existing loT-based systems may store the generated data in distriputed
external databases. Each database has its own structure and its owA@dtor Pattern

to extract data, which may increase the maintainability cost.

** Reusability

Both the Monitoring and Analysis Processes need to frequently access
to the knowledge to extract the semantic and understand the meaning

of the received data. In complex systems, where multiple manage
processes are deployed, this causes performance problems.

n@athe Pattern

** Performance
** Scalability

In dynamic systems, the knowledge is dynamically updated, which re-
quires notifying the caches with the changes in order to allow the ma@mbservers Pattern

agement processes processing the updated information.

** One-to-many depen;
dency management

Infrastructure Management

Limitation of the resources to deploy the management processes an&ihgle Root I/O

knowledge component.

Virtualization Pattern

** Elasticity

In complex systems, deploying multiple management processe
creases the cost. Sharing these processes promotes cost manage

S in-
méurlti-tenant Pattern

**  Sharing the cost
among consumers.

Table 3.1: Inventory of reusable patterns
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The semantic description including ontologies plays an important role in pro-
viding cognitive systems able to perceive and understand the data. However, in
large-scale systems, the frequent access to this layer may cause bottleneck and per-
formance limitation, especially in distributed systems. In this sense, we found that
the cache pattefris useful. Thus, management processes that frequently require
understanding the data meaning should have their own cache. Nonetheless, the up-
date of the cache is challenging, especially in highly dynamic systems where new
devices are added and the context is changing. At this point, we found that the
observer pattern [45] can be reused to automatically update the distributed caches
at the right time, thus, provide accurate autonomic management.

3.3.3 Infrastructure Management Level

Deploying a high number of management processes and knowledge components
to manage complex systems is constrained by the availability of IT resources. In-
creasing the IT resources for the system function leads to an increase of the cost
management. Cloud computing comes with solutions to deal with such problems.
Virtualizing the resources will gain the system elasticity and the ability to automat-
ically allocate the resources based on the process workload. Moreover, conceiving
a multi-tenant architecture, where the management processes and the knowledge
components share the IT resources with respect to the con dentiality, fosters shar-
ing the cost among the consumers, thus, reducing the cost management.

Based on this study, we propose an amalgamation of the surveyed patterns and
herald new patterns for the design of autonomic and cognitive loT-based systems.
These patterns will be enunciated within a model-driven methodology that eluci-
dates the different phases for the design of smart loT-based systems.

3.4 A Model-driven Methodology for the Design of
Autonomic and Cognitive loT-based Systems

We present, in this section, an overview of the proposed methodology as well as
the proposed patterns. We illustrated the use of these patterns when managing the
patient treatment.

3.4.1 An Overview of the Proposed Methodology

We propose a collaborative model-driven methodology that combines software
modeling and knowledge engineering principals to facilitate the design and de-

2https://msdn.microsoft.com/fr-fr/library/dn589799.aspx
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velopment of autonomic and cognitive loT-based systems. Figure 3.3 depicts an
overview of the proposed methodology. Two main phases are identi edRé1)
quirements ldenti catiorand (2)Requirements Formalization

Figure 3.3: A model-driven methodology for the design of autonomic and cognitive
loT-based systems

Requirements identi catiors based on discussions with the domain experts in
order to retrieve the system functions and identify the non-functional requirements.
It is an iterative process, where the functional requirements are incrementally re-
ned and represented using business models describing the behaviour of the system
without specifying any implementation details.

The next phase, which is tieequirement Formalizatigrfocuses on formal-
izing and structuring the identi ed requirements into concrete models describing
the system processes' interactions. The aim of our methodology is providing smart
loT-based systems, thus, we propose to map the system functions into management
processes which can be the monitoring, analysis, plan and execution process; or
their combination. For the development of smart loT-based systems, we denote the
existence of a new actor, in the second phase, who is the the knowledge engineer.
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This later collaborates with the domain experts in order to formalize the domain
knowledge (business problem-solving knowledge) in order to acquire the system
the ability to generate business decisions. WithinReguirement Formalization
phase, we introduce three sub-levels in order to incrementally deal with challenges
related to the design of smart loT-based systems such as the coordination of man-
agement processes, the semantic integration and the big data management:

The rst level is the ‘Management Processes' CoordinationWithin this

level, we identi ed ve patterns that consider the smart manageability, ex-
tensibility and maintainability of loT-based systems. These patterns delin-
eate how the management processes should be coordinated and interact to
meet the system's functional requirements based on the knowledge pattern.
The proposed patterns identi ed also the system maturity level and have been
conceived to be combined to solve complex requirements.

Once the management processes are identi ed and modeled, the next level
is the “Semantic Integraticghwhere mainly the information about the sys-
tem and its environment as well as the procedural knowledge (know-how)
for decision-making are formalized in order to be automatically reused by
the management processes. Within this level, we identi ed Beniantic
Knowledge Mediatdrpattern to guarantee the interoperability and the in-
tegration for the smooth functioning of the system. The application of this
pattern leads to the production of three types of knowledge: the sensory,
the context and the procedural knowledge. It is worth mentioning that the
knowledge engineer intervenes at this level and collaborates with the domain
experts when formalizing their tacit knowledge (know-how).

Finally, the last level is theBig Data & Scalability Managemehtvhere

we de ned three patterns that deal with the big data challenges (volume,
variety, velocity), scalability, system performance as well as the system cost
management.

In the following, we deepen the proposed patterns, which have been generalized
for the design of autonomic and cognitive loT-based systems; and we illustrate their
use through examples from the healthcare domain.

3.4.2 Management Processes Coordination Patterns

We proceed with a separation of concerns approach where the functional require-
ments are decomposed into atomic requirements ascribed to the appropriate atomic
management process (business logic) that should be coordinated to manage com-
plex requirements. To facilitate the system design, we propose four patterns that
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model the management processes coordination, and a knowledge pattern that iden-
ti es the main knowledge types that will interact with the management processes.
These patterns refer to the de ned maturity levels (section 3.2.2), and they can be
combined to manage more complex situations and manage the context evolution
based on the system context and requirements.

To this end, we referred to the blackboard pattern as the basis for the coordi-
nation. To clearly illustrate the use of these patterns, we abstract away both the
knowledge and control components in the examples, while we delineate them in
the pattern model.

3.4.2.1 Knowledge Pattern

How the knowledge component is organized for the smart management of loT-
based systems?

Context. In general, an autonomic system that manages the business level and
provides decisions concerning the managed element requires the declarative knowl-
edge -detailed information about the system and its environment (know-that), and
the procedural knowledge -deep business knowledge (know-how) to take decisions.

Problem. Many works dealing with the autonomic computing centralize the
knowledge component and provide a common repository describing the knowl-
edge. However, there is a dearth in de ning how the management processes inter-
act with the knowledge. In general, all the management processes are connected to
a single repository which may cause a bottleneck and scalability problems. More-
over, mixing everything together causes problems when maintaining the knowl-
edge.

Solution. To deal with these challenges, we propose to organize the knowl-
edge into sub-components that will be reused later to identify the interactions with
the management processes. This decomposition deals with separation of concerns
within the knowledge, and has been inspired from the human multi-store mem-
ory model that includes the sensory memory, the short-memory and the long-term
memory [135]. More precisely, we referred to the Tulving classi cation [136]
which identi es within the long-term memory three types of memoegssodic
memory semantic memorgnd procedural memory The episodiccontains expe-
riences and events in the context in which they occurred, whilesémeanticis
more structured and includes facts, meanings and general knowledge about the
world by referring to concepts shared with others independent from the personal
context. Bothsemanticandepisodicmemories constitute the declarative memory
[137]. Meanwhile, the procedural memory includes expertise, skills and proce-
dures “Know-how”.

Given this background, we propose three types of knowledge which are the
followings:
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Figure 3.4: Knowledge pattern

Sensory Knowledge [Sensory Memory + Semantic Memory]. It describes

the monitored data and the main characteristics of the sensors used to capture
the data (such as the name of the parameter, the units, its endpoint, etc.).
It is worth mentioning that IoT generated data is not stored in the Sensory
Knowledge.

Context Knowledge [Episodic Memory + Semantic Memory]. It describes
the managed element experiences including the conditions, the context evo-
lution and events.

Procedural Knowledge [Procedural Memory + Semantic Memory]. It de-
scribes the know-how that includes the skills and solutions that can be per-
formed to solve problems. It is acquired from the domain experts based on
their practices or learned from past experiences.

As advocated, these knowledge components are interconnected through con-
cepts and facts represented through a common semantic vocabulary describing the
system context.

Example. Consider an loT-based system integrating autonomic computing to
adapt the patient treatment (i.e. automatically monitoring the patient health indica-
tors based on sensors, detecting the patient health deterioration and recommending
the appropriate decisions to the physicians). To ensure such functionalities, the sys-
tem should be able to understand the meaning of the received data and explore the
patient medical conditions and history as well as the disease management strategies
to provide the right decisions to physicians. Figure 3.5 instantiates the proposed
knowledge pattern for the patient treatment management based on 0T devices.

Consequence The decomposition of the knowledge structure fosters the col-
laboration when acquiring its content and facilitates the maintenance process of
each sub-component. Moreover, by distributing these components, the system of-
fers better scalability. However, the distribution may raise problems when main-
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Figure 3.5: Instantiation of the knowledge pattern in healthcare

taining the classes that interconnect these knowledge sources. As a solution to
this problem, we propose to provide a generic schema for each knowledge sub-
component, then, it will be specialized to the domain. Thus, the integration of
these knowledge sources is based on the generic concepts.

3.4.2.2 Cognitive Monitoring Management Pattern

How the monitoring process can perceive the data and interact with experts for
loT-based system management?

Context. The integration of 10T devices promotes the development of context-
aware applications. Through collecting real-world data, the experts/users may get
more information about the system evolution. A smart loT-based system should
be aware of the used devices and understand the meaning of the received data to
detect context changes, and offers visualization services.

Problem. Conventional monitoring systems are developed for speci ¢ devices
generating data with the same unit, using the same syntax and representation. If
new loT devices are integrated, new applications need to be developed to explore
the acquired data which is costly. Moreover, there is a lack of bi-directional inter-
action between IoT systems and human, since the primary objective was getting
the captured data.

Solution. We propose to apply the Blackboard pattern in order to enable the
dynamic interaction of 10T systems with the experts/users. Figure 3.6 represents a
conceptual model designing the interaction between IoT systems and human. We
identi ed two types of interactions: theT-Humaninteraction to visualize the data
and receive noti cations in case of context changes, anéitrean-loTinteraction
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to manage the system through modifying its context and con guration.

Figure 3.6: Cognitive monitoring management pattern for loT and human interac-
tion

The knowledge source can be the experts (human) who analyze the 10T data to
extract new insights; or also the Monitoring process which receives the data from
0T devices and detects context changes. Based on the knowledge pattern, we de-
compose the blackboard component into SensoryKnowledge and ContextKnowl-
edge, and we extend it with the CuratedDataBlackboard. The ContextKnowledge
describes the target goals of the monitored data and time-related information of
each sub-system, while the SensoryKnowledge describes the meaning of the gen-
erated IoT data, but not the observations. The CuratedDataBlackboard stores the
prepared data for visualization and future analytics.

To deal with the heterogeneity of the data, the Monitoring process implements
techniques that curate the data by referring to the SensoryKnowledge and store
the prepared data in the CuratedDataBlackboard. Moreover, a smart loT-based
system should be able to keep the users up-to-date with the system context changes.
Thus, the monitoring process refers to the ContextKnowledge to retrieve the system
goal and to automatically detect problems. If detected, the monitoring process
updates the ContextKnowledge; and the Control component selects and noti es the
appropriated experts. It is worth mentioning that this pattern can be instantiated for
data stream or batch processing.

Example. Using wearables and medical sensors to continuously monitor the
prediabetes is promising to prevent the progress of prediabetes to diabetes [138]
and avoid health complications. Figure 3.7 illustrated the application of the Cogni-
tive Monitoring pattern for managing the patient health evolution.
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Figure 3.7: Instantiation of the cognitive monitoring pattern in healthcare
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It allows continuously monitoring the glucose level and sending noti cations
to the appropriate physician at the right time when the measurement exceeds the
patient target goal. Likewise, it allows the physician and the patient interacting
with the systems to visualize the evolution of the monitored parameter. At this
stage, the patient treatment management is manually done by the physician.

ConsequenceBased on the sensory knowledge, the proposed pattern is able to
manage heterogeneous loT devices and offers a exible system that can be easily
extended with new devices that collect individualized data. The blackboard main-
tainability is guaranteed and can be done collaboratively. Problems related to the
big data management will be delineated in section 3.4.4.

3.4.2.3 Predictive Cognitive Management Pattern

How the system is able to cope with the context evolution and detect unpredictable
deterioration?

Context. Complex systems that continuously evolve need to implement ad-
vanced techniques that enable the dynamic coordination of the management pro-
cesses in order to predict the system context changes, and generate new knowledge
about the system to help experts taking the appropriate decisions.

Problem. Within real-world applications, unforeseen requirements may occur
and need to be managed at run-time. If we consider deploying and activating all
the monitoring and analysis processes at design time for each patient, this requires
increasing the IT resources, consequently increasing the cost. Moreover, hard cod-
ing all rules within the analysis process causes maintainability and extensibility
problems.

Solution. The proposed pattern is presented in Figure 3.8. We assume that all
processes are deployed but activated based on the context changes. We propose to
decompose the management processes into atomic functions and extend the cog-
nitive monitoring management pattern to enable the coordination of three types of
interactions:

Monitoring-Analysis: TheControlMA supervises thé&uratedDataBlack-
board If new data is acquired, it activates the appropriate Analysis processes
to get more precise view about the managed element.

Analysis-Analysis: The&ontrolAA-AEsupervises th€ontextKnowledgdf
the context changes, new analysis processes should be activated based on
rules implemented within th€ontrolAA-AE

Analysis-Expert: If a deterioration is detected/ predicted GbatrolAA-AE
noti es the experts to take decisions.
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The controllers encode rules that activate the appropriate process. Thus, new
rules can be dynamically added and removed without modifying the code source
of the management processes.

Figure 3.8: Predictive cognitive management pattern

Example. Figure 3.9 depicts an example of instantiation of this pattern for di-
abetes management. We consider that initially two management procekses (
toringGlucose AnalzingGlucoskeare deployed to collect and analyze the glucose
level of a patient who is recently diagnosed with diabetes. The patient is taking
the metformin as a primary treatment. If a problem is detectedAttazingGlu-
coseprocess updates tl@ontextKnowledgeThus, theControlAA-AENoti es the
physician with the update in order to adjust the patient treatment. However, it is
important to check the hypertension, each 3 months, to prevent health complica-
tions due to diabetes, or due to external factors such as stress, anxiety or aging.
As this rule is implemented in th@ontrolAA-AE the system activate tHeredict-
ingHypertensiomprocess that allows predicting the risk that the patient may develop
hypertension based on other available parameters such the BMI, waist circumfer-
ence, waist-hip ratio and waist-height ratio [139]. If the hypertension is predicted,
a noti cation will be sent to the physician.



Chapter 3. Autonomic Cognitive Design Patterns for the Design of Smart
60 loT-based Systems

Figure 3.9: Instantiation of predictive pattern in healthcare
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ConsequenceThe proposed pattern supports the dynamic coordination of the
monitoring and the analysis processes, while interacting with experts based on the
context changes. It also ensures extensibility and maintainability through modular-
izing the management processes, and separating the system management based on
the control components. It enables the reusability of the management processes and
the system exibility to support new management processes and new coordination
rules.

3.4.2.4 Prescriptive Cognitive Management Pattern

How the system is able to cope with context changes and generate personalized
recommendations with minimum human intervention?

Context. Smart loT-based systems should automatically monitor, analyze and
provide decisions based on the context and the available knowledge. The system
should be able to proactively generate new information about the managed element
and to aggregate different knowledge sources in order to provide better decision.
In business-oriented systems, the interaction with the business expert is mandatory
for decision approval.

Problem. Due to the dynamicity of the sub-systems' context, a single MAPE
loop is not suf cient for managing complex systems. We assume that initially the
adaptation is based on enacting Plan (P1). If the context changes, the P1 generates
the right adaptation and readjusts the current plan. However, the system context
pertaining to other parameters may change and impact on the decision process. It
is important to get updated/discovered information about the managed element in
order to avoid contraindications and con icts when re-planning. Thus, the coor-
dination between the Analysis and Plan process is crucial to guarantee that these
actions do not impact on other sub-systems. Moreover, the system requires a well-
formalized procedural knowledge when reasoning to generate the right decisions.

Solution. We propose the prescriptive cognitive management pattern, presented
in Figure 3.10, that extends the predictive cognitive management pattern through
automating the Plan process and enable its interaction with the expert. Moreover,
in order to allow the loT-based system generating recommendations, we extend the
blackboard with thé’roceduralKnowledgeescribing the know-how for decision-
making. The proposed pattern coordinates the following interactions: Monitoring-
Analysis, Analysis-Analysis, Analysis-Plan, Plan-Expert. The generated plan will
be stored in the ContextKnowledge; and it is the role of @matrolPExptcom-
ponent to notify the appropriate expert for approval. The Plan process aggregates
and reasons on théontextKnowledgand theProceduralKnowledgéo provide
personalized decisions.
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Figure 3.10: Prescriptive cognitive management pattern

Example. Figure 3.11 represents an instantiation of the Prescriptive Cogni-
tive Management pattern for managing diabetes and preventing comorbidity. We
assume that a patient has the following management processes for managing di-
abetes lonitoringGlucose AnalyzingGlucosePlanDiabetesTreatment Having
a complete knowledge about the patient helps generating precise decisions. For
instance, it is crucial to know if the patient has the risk to develop hypertension in
order to avoid diabetes treatments that may amplify this condition. According to
the Predictive Cognitive Management Pattern, analyzing the hypertension is trig-
gered each 3 months. However, if the system detects an increase in the blood sugar
after 2 months, it is important to check the hypertension when planning for the new
patient treatment. Consequently, thentrolAA-APactivates théredictingHyper-
tensionthat updates the ContextkKnowledge with new knowledge about the patient.
Thus, thePlanDiabetesTreatmermirocess may generate preventive treatment that
avoid hypertension complication. The generated plan is updated i@daheex-
tKnowledgeand theControlPExptsends it to the physician.

ConsequenceThe proposed pattern enables the dynamic coordination of the
monitoring, the analysis, the plan and the expert to manage the system context
changeability. It offers a smart management through automating the decision mak-
ing based on the knowledge component, while the experts are in the loop to validate
the recommendations. In the predictive cognitive and prescriptive cognitive man-
agement patterns, the management processes are deployed and known at design
time, and their dynamic coordination is based on rules implemented in the control
components. Thus, adding new management processes requires maintaining the
code of the control components by adding the appropriate rules that support their
activation.



Figure 3.11: Instantiation of the Prescriptive Cognitive Management Pattern in Healthcare
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3.4.2.5 Autonomic Cognitive Management Pattern

How the system is able to self-provision management processes in order to manage
the context changeability?

Context. An autonomic system is a smart system that should be able to manage
its changes and evolution at runtime. The dynamic evolution of the business context
requires dynamically integrating the management processes implementing business
logic, while interacting with the experts. Managing a complex system refers to
simultaneously managing its sub-systems and coordinating the actions and their
side effects that may impact on the system functioning and state evolution, while
optimizing the system cost.

Problem. Management processes are heterogeneous and distributed, which
hinder the integration and the collaboration of these processes to manage com-
plex requirements at runtime. Moreover, in business-oriented applications such as
healthcare, the interaction with experts is required to automate the execution of the
generated plan as well as to learn business rules for the adaptation. Furthermore, in
complex systems, the massive deployment of management processes may lead to
an increased cost. It is important to think about the ability of sharing and reusing
processes such as the analysis and the plan processes in order to help reducing the
cost.

Solution. To deal with these problems, we propose to extend the prescriptive
cognitive pattern with the Execution process and detail its interaction with the ex-
pert who validates the dynamic execution of the plan, as presented in Figure 3.12.
Moreover, to ensure the self-provisioning of the management processes to meet
the system's requirements evolution, we propose to extend the control components
with a semantic model, named “Management Process Ontology” (MPO), describ-
ing the management processes as well as their conditions of activation, as presented
in Figure 3.13. For clarity reasons, we simpli ed the representation of the previ-
ous patterns through abstracting the management processes and their interactions
through introducing the “Management Process” class which represents a general-
ization of the Monitoring, Analysis, Plan and Execution processes. The coordi-
nation is achieved through the control components that automatically discover the
management process that should be activated to meet the system context evolution.

Figure 3.13 delineates tidanagement Process OntologWe associated for
each managed element a set of conditions describing the context and a set of man-
agement processes. Each management process is considered as an atomic pro-
cess that has a set of preconditions expressed as conditions in order to guaran-
tee its activation and enactment. As previously mentioned, these management
processes can be the “mpo:MonitoringProcess”, the “mpo:AnalysisProcess”, the
“mpo:PlanProcess” or the “mpo:ExecutionProcess”. As we consider all processes
are atomic, so the “mpo:MonitoringProcess” monitors only one “mpo:Parameter”
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Figure 3.12: Autonomic cognitive management pattern

Figure 3.13: Management Process Ontology (MPO)
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and stores the measured data in the “mpo:DataBlackBoard” identi ed through an
ID and an endpoint that will be used to retrieve the stored data. In case of ob-
serving more than one parameter, the “mpo:ManagedElement” is supervised by
multiple “mpo:MonitoringProcess”.

MPO reuses existing ontologies such as the MSM ontdlogkus, each man-
agement process is a sub-class of the “msm:Operation” that has inputs and outputs
represented respectively through the “msm:hasinput” and “msm:hasOutput” prop-
erties. MPO specializes the “msm:hasinput” and “msm:hasOutput” by introducing
the following properties to guarantee the consistency of the acquired knowledge:

“mpo:TakesInput” to specify that the analysis process takes as input at least
one parameter.

“mpo:GeneratesOutput” to specify that the analysis process analyzes one pa-
rameter.

“mpo:TakesIinputAnomaly” to specify that the plan proces takes as input at
least one anomaly.

“mpo:Generates” to specify that the plan process generates a personalized
plan.

An ontological representation of MPO using protégeé is presented in Figure A.1.
The MPO has been conceived to allow the business experts populating the business
rules through creating relations among these classes. Thus, the system easily in-
terprets the business logic and enables the self-provisioning through dynamically
composing the management processes to meet the system evolution. To this end, a
set of SPARQL queries are proposed to enable the dynamic discovery of the man-
agement processes and keep the control components up-to-date with new manage-
ment processes. Listing 3.1 represents an example of a generic query that aims
at discovering the monitoring processes and activating them based on the context
changes. For instance, a patient with diabetes needs to check each 3 months her
hypertension. Thus, the system should be able to search for possible available
monitoring process to activate it. Thus, if the patient is equipped with a sensor that
measures the blood pressure, it will activate this process, else, if the patient doesn't
have a sensor, the control component executes the query presented in listing 3.2 to
enable the predictive cognitive management of the hypertension.

Listing 3.1: Discovery of the monitoring process to activate based on the context
changes

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

Shttp://kmi.github.io/iserve/latest/data-model.html
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PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX MPO:<http://homepages.laas.fr/lemezghan/untitled-ontology
-TT#>
SELECT distinct (?el AS ?ManagedElement) (?s AS ?Sensor) (?ap AS
?MonitoringProcess ) (?endp AS ?Endpoint ) Where
{?ap MPO:HasEndpoint ?endp.
{
?apl rdf:type MPO:MonitoringProcess.
?el MPO:IsManagedBy ?apl.
?el MPO:HasSensor 7s.
?s MPO:Implements ?ap.
Filter (?apl != ?ap).

}
{Select ?e ?ap Where
{
?ap rdf:type MPO:MonitoringProcess.
?el MPO:HasCondition ?cond.
?ap MPO:HasActivationCondition ?cond.
}

1} GROUP BY ?ap ?el ?s ?endp

Listing 3.2 implements the query that allows discovering the required predictive
analysis processes that should be deployed in order to provide preventive manage-
ment based on the context of the managed element. This query is a sub-query, hav-
ing three nested queries. At a rst stage, it selects the list of management processes
that have common preconditions with the managed element context. Then, from
the list of the returned processes, it lters those all preconditions are satis ed and
should be activated. The next step will focus on selecting from the generated list
the processes that can be enacted based on the availability of the patient monitored
data. For example, if the selected analysis process takes as input two parameters
while the managed element has only one monitored parameter, the process cannot
be activated due to knowledge/data incompleteness.

Listing 3.2: Discovery of the predictive analysis process that should be activated

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX MPO:<http://homepages.laas.fr/lemezghan/untitled-ontology
-T7#>
Select (?el AS ?ManagedElement) (?ap AS ?AnalysisProcess ) (?endp
AS ?Endpoint ) WHERE
{ Filter (?m1 = ?m2).
?ap MPO:HasEndpoint ?endp.
{Select distinct ?el ?ap ?m1l (count(?p) AS ?m2) where
{?ap MPO:Takeslnputs ?p.
{SELECT distinct ?el ?ap (count(?param) AS ?ml) Where
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?ap MPO:HasEndpoint ?endp.

?apl rdf:type MPO:MonitoringProcess.
?el MPO:IsManagedBy 7?apl.

?apl MPO:MonitorParam ?param.
?ap MPO:Takeslnputs ?param.

?ap MPO:HasType ~?type.

?ap MPO:generatesOutput ?paramO.
?el MPO:IsManagedBy ?ape.

?ape MPO:generatesOutput ?paraml.
?ap MPO:HasType “?type.

Filter (?ap != ?ape).

Filter (?paraml != ?paramO).

Filter (?type = 'Predictive’).

} GROUP BY ?el ?ap ?ml

} Group by ?el ?ap ?ml ?m2
}
{Select distinct ?7ap WHERE
{Filter (?cl1 = ?c2).
{SELECT distinct ?ap (count(?cond) AS ?cl) (count(?condl) AS ?
c2) Where
{

{
?ap rdf:itype MPO:AnalysisProcess.

?ap MPO:HasActivationCondition ?cond.
?el MPO:HasCondition ?cond.

}
UNION

{
?ap MPO:HasActivationCondition ?cond1.

}
} GROUP BY ?ap ?cl ?c2

1

Example. We consider in this example managing patients with diabetes and
hypertension diseases (comorbidity). A set of management processes for manag-
ing diabetesNlonitorGlucose AnalyzeGlucosdéPlanDiabetesand Execution) and
hypertension AnalyzeHypertensioand PlanHypertensiopare deployed and an-
notated in the MPO. Figure 3.14 describes the application of the autonomic cogni-
tive management pattern. For clarity reasons, we abstract the blackboard and the
control components. It is worth noting that the interaction among the management
processes is done through the control components. As presented in Figure 3.14, Pa-
tient 1, who has diabetes, has a wearable that can measure blood sugar and blood
pressure through two different interfaces implementing two measurement services.
Initially, only the monitoring of the blood sugar is activated to continuously moni-
tor the glucose level.



Figure 3.14: Instantiation of the autonomic cognitive management pattern in healthcare
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If an increase of the blood sugar of Patientl is detected after 2 monthghe
dictHypertensiorprocess is activated. If the hypertension is predicted, the system
searches for the list of management processes to control hypertension and sends it
to the physician for validation. In this case, the management processkkoare
itorBloodPressureand AnalyzeHypertensionListing 3.1) represents a SPARQL
guery that deduces the activation of lenitorBloodPressurbased on the patient
context, while Listing 3.3 represents the SPARQL query that searches for reusable
analysis process once the monitoring process is deployed.

At the same time, the PlanDiabetes process takes into consideration the pre-
dicted hypertension, generates the appropriate treatment and sends it to the physi-
cian. At the end, the Patient 1 will be managed by both the diabetes and hyperten-
sion management processes.

ConsequenceReusing management processes such ag\tladysisand the
Planprocess reduces the cost of deploying for each managed element its own man-
agement processes. Based on the semantic description of the management pro-
cesses and the exible implementation of the business rules, the proposed pattern
enables the dynamic discovery and the self-provision of the management processes.
The proposed pattern also keeps the experts in the loop for decisions approval.

Con icts when generating plans may occur when two or more Plan processes
managing dependent sub-systems are simultaneously operating. As a solution, a
synchronization based on a token to manage the concurrency access to the Contex-
tKnowledge may be deployed. However, we noted that when managing the patient
treatment this situation is seldom encountered, especially that we consider a pre-
ventive approach based on the disease risk factors and patient medical conditions
when generating treatments.

Listing 3.3: Discovery of the predictive analysis process that should be activated
based on the new deployed monitoring process

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX MPO:<http://homepages.laas.fr/femezghan/untitled-ontology
-T7#>
Select (?el AS ?ManagedElement) (?a AS ?AnalysisProcess) (?endp
AS ?Endpoint) WHERE {
Filter (?cl= 7?c2).
?a MPO:HasEndpoint ?endp.
{
Select distinct ?el ?a (count(?param2) AS ?cl) (count(?param3) AS
?c2) WHERE
{
{
{
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{?m2 rdfitype MPO:MonitoringProcess.
?el MPO:IsManagedBy ?m2.

?m2 MPO:MonitorParam ?param2.
?a MPO:Takeslnputs ?param2.

Union
{?a MPO:Takeslnputs ?param3. }

}

}

{SELECT distinct ?el ?a WHERE

{
?el MPO:HasSensor 7s.
?m rdf:itype MPO:MonitoringProcess.
?s MPO:Implements ?m.
?el MPO:IsManagedBy ?m.
?m MPO:MonitorParam ?param.
?a rdf:itype MPO:AnalysisProcess.
?a MPO:HasType ?type.
?a MPO:generatesOutput ?param.
?al rdfitype MPO:AnalysisProcess.
?el MPO:IsManagedBy ?al.
Filter (?a != 7?al).
Filter (?type = 'Detection’).

}

}
} Group By ?el ?a ?cl ?c2}}

3.4.3 Semantic Knowledge Mediator Pattern

How the system is able to understand the meaning of the IoT generated data and
interpret the procedural knowledge in order to be reused by the management pro-
cesses?

Context. Many existing distributed and heterogeneous data/knowledge sources
exist with different representations and types. These sources can be sensors, appli-
cations, connectors to databases, evenly human. Enabling a smart management of
the system requires the collaboration of these sources to get a deep understanding
of the business knowledge (know-how) and detailed information about the system
and its environment as well as their integration.

Problem. The heterogeneity of the knowledge representation hinders under-
standing the meaning of data, exploring and visualizing it. Moreover, if a new
source is added to the system, modi cations in its code source are required to take
into consideration the new data source which is identi ed as impediments of the
system maintainability and extensibility.

Solution. We propose in Figure 3.15 ttf&mantic Knowledge Mediatpattern
that extends the basic Mediator pattern with semantic capabilities for data/knowl-
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edge integration. The proposed pattern enables the collaboration of different kind
of providers when populating the knowledge: human, machine and management
processes. As presented in section 3.4.2.1, three type of knowledge are produced
following different semantic models describing a common vocabulary of the do-
main. The annotations are stored in a large scale triple store. The access to the
mediator to produce and consume the knowledge is driven by an authentication
service.

Figure 3.15: Semantic knowledge mediator pattern

Example. Instantiating the prescriptive cognitive management pattern for the
patient treatment management requires the integration of various type of informa-
tion related to the patient and to the medical interventions, as well as the collabo-
ration of:

The medical experts who transfer their medical knowledge through annotat-
ing the medical interventions (procedural knowledge).

The management processes which generate new context about the patient
and annotate it (context knowledge).

Sensors, wearables and devices which are annotated in order to provide the
meaning of the generated data as well as their structure (sensory knowledge).
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ConsequenceThe proposed pattern enables the collaboration and offers the
semantic integration of various knowledge sources based on a common description
of the domain. It guarantees also the exibility of the system and its extensibility
to support new knowledge sources. Many research activities [36, 140] proposed
to store the monitored data in ontologies. However, this approach raises scalability
problems in such data-intensive systems. Consequently, we propose to characterize
only the data structure and meaning and store these annotations in the ontology.

One major challenge comes out within this pattern is related to maintaining the
knowledge schema that we have mentioned in section 3.4.2.1. But, as the knowl-
edge is distributed and interconnected via common concepts, modifying some of
these concepts requires updating the other knowledge concepts.

3.4.4 Big Data & Scalability Management Patterns

The monitoring and the analysis are the main processes which encounter big data
challenges. Consequently, we proposeBigData Stream Detectioand theBig

Data Predictivepatterns as extensions of the Cognitive Monitoring Management
pattern and Predictive Cognitive Management pattern in order to respectively man-
age the real-time processing, and the integration of distributed data sources to pre-
dict new information. Besides these patterns, we propos#/itiig-tenant Man-
agement Procegzattern which delineates the deployment of the management pro-
cesses and the knowledge sub-components to provide scalable loT-based system.

3.4.4.1 Big Data Stream Detection Pattern

How the monitoring process is able to perceive the received data at real-time while
supporting its heterogeneity and high volume?

Context. Many vendors are developing their devices/sensors implementing
their own applications which results in a diversity of the generated data. Offering
a service to a wide range of patients to monitor the evolution of their health status
as well as providing personalized detection requires guaranteeing the scalability to
support huge data streams and the ability to correctly interpret the data.

Problem. Besides the heterogeneity, the data velocity and their huge volume
hinder data integration for near-real time anomalies detection and data stream vi-
sualization. Manually harmonizing and curating loT-generated data requires IT
skills, which is costly and time consuming. Automating the real-time data process-
ing is challenging within loT-based systems due to the dynamicity of the generated
data. Thus, it is important to provide a exible and scalable loT-based system
that supports the integration of new IoT devices, and interacts with human through
providing the right information at the right time.



Chapter 3. Autonomic Cognitive Design Patterns for the Design of Smart
74 loT-based Systems

Solution. We propose th&ig Data Stream Detectiopattern which represents
a specialization for data stream processing and extendSdbaitive Monitoring
Managemenpattern to cover big data and scalability challenges. Thus, we pro-
pose to decompose tihdonitoring process into sub-processes that understand and
curate the data based on t8ensoryKnowledgestore the curated data in tiGu-
ratedDataBlackboardor visualization and analytic, and detect changes based on
the ContextKnowledge The ultimate goal of this pattern is providing a exible
loT-based system able to perceive the data, retain attentions, and interact with ex-
perts. Figure 3.16 portrays the conceptual model oBligeData Stream Detection
pattern.

Figure 3.16: Big data stream detection pattern

In order to ensure exibility when modeling these sub-processes and their in-
teraction with the blackboard, we reused the following existing software design
patterns:

1. Publish/Subscribet is represented with the orange color. It is used to guar-
antee the scalability between the data publishers (IoT devices) and the con-
sumers responsible for harmonizing and/or detecting context changes. We
added a coordinator in order to enable the distributed/parallel execution of
tasks within consumers.
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2. Interceptor it is represented with the pink color. It is used to intercept the
received data from topics in order to process data and harmonize it based on
Iters. We extended this pattern with a cache that retrieves semantic infor-
mation concerning the loT devices in order to provide exible Iters inde-
pendent from the tuples structure.

3. Cache itis used to guarantee system performance when retrieving semantic
information from theSensoryKnowledger the ContextKnowledge

4. Observer it is represented with the green color. It is used to keep the caches
up-to-date, when changes occur in tBensoryKnowledgand theContex-
tKnowledgerepositories.

In this pattern, we delineate the structure of the monitoring process to support
the data heterogeneity and the scalability when receiving large amount of data. We
introduced the Coordinator componentin order to ensure fault-tolerance, since each
piece of data may encapsulate important information that may change the system
behaviour.

Example. For diabetes management, we can found sensors measuring blood
sugar which express the observations in mmol/L and others in mg/dL. If a diabetic
patient starts using a device generating data in mmol/L then switches to another
sensor generating data in mg/dL, it is important to harmonize the generated data
to offer near-real time visualization services and also to explore this data with ad-
vanced analytic tools. The application of this pattern enable such objective based
on the semantic-based harmonization process.

ConsequenceBased on the semantic description of the generated data, the
proposed pattern fosters the stream data integration, and proposes a exible harmo-
nization process that can be shared and reused by various data providers. Likewise,
it guarantees the system maintainability and exibility through separating the data
processing algorithms from the data structure and type. It offers also a scalable
solution based on the publish/subscribe pattern and provides better performance
through caching the sensory and context knowledge.

3.4.4.2 Big Data Analytic Predictive Pattern

How the monitoring and analysis processes are able to deal with the distribution
and the heterogeneity of large datasets in order to generate new knowledge about
the managed element?

Context. In data intensive systems, huge volume of heterogeneous data are
being generated and stored in distributed databases. These databases should be
integrated in order to learn from different data samples and generate new knowl-
edge about the system. Providing a preventive system requires deploying predictive
mechanisms that automatically correlate the collected data to detect new patterns.
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Problem. Technically, the heterogeneity and distribution of databases hinder
data mining and machine learning. Applying machine learning on a centralized
large database requires both space to store the data, and memory to run the al-
gorithm. Thus, it is a costly process in terms of time and money, especially for
real-time applications where information should be timely available.

Solution. The proposed pattern, presented in Figure 3.17, extendRréukc-
tive Cognitive Managemephattern to support cognitive mechanisms to portray the
aggregation of distributed large datasets. The rst step focuses on curating the data
to manage its heterogeneity. This process consists in importing data from external
databases (if we have access) into a temporary memory, curating the data based
on theSensoryKnowledgend storing the curated data in distributed clusters (the
long term memory —CuratedDataBlackboard) to be reused by machine learning al-
gorithms. To optimize the memory space, the temporary memory is periodically
cleaned.

Figure 3.17: Big data analytic predictive pattern

The proposed pattern adopts the following existing patterns:

1. Adapter It allows reusing existing databases without modifying their imple-
mentation.
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2. Filter Chain Responsibility Similar to theBig Data Stream Detectiopat-
tern, the harmonization process implements lters that refer t&Seresory-
Knowledgedescribing the characteristics of the databases.

3. Master/Slavelt has been used twice: (i) in the harmonization process where
we introduced CurationWorkers which are executed in parallel on the tem-
porary memory to accelerate this process, and (ii) in the data analytic where
we identi ed PredictiveWorkers which read part of the data and execute the
analytic algorithm. This later can be easily implemented with the Apache
Spark MLIib library.

Example.In case of comorbidity, the patient has more than one disease such as
diabetes and hypertension. Each disease is managed by the appropriate physician
who belongs to a speci ¢ healthcare organization implementing its own database.
Thus, the patient data is stored in different databases with different format (SQL,
text le, etc.). To predict the hypertension based on data related to diabetes, it
is important to aggregate both databases in order to learn from data pertaining to
diabetic patient with hypertension and without hypertension, and construct mod-
els that allow predicting the risk that a diabetic patient may develop hypertension
[141]. The application of this pattern allows aggregating these databases and pro-
viding analytic services.

ConsequenceSimilar to theBig Data Stream Detectiopattern, the semantic
description of the external databases structure fosters the data integration as well
as the system maintainability. Additionally, the adapter pattern allows easily inte-
grating new external databases in order to enrich the database with new data, while
the Master/Slave pattern is used for data ingestion and analysis. This later ensures
fault-tolerance and parallelism when processing data.

3.4.4.3 Multi-tenant Management Process Pattern

How to manage the cost of autonomic and cognitive loT-based systems as well as
its performance and con dentiality?

Context. Deploying multiple management processes, knowledge components
and databases increases the system complexity and cost. Moreover, when con-
ceiving loT-based systems, it is important to consider the con dentiality of the
monitored data, especially in business-oriented application.

Problem. In complex System of Systems, different sub-systems need to be
managed. The deployment of the management processes, the knowledge compo-
nents and databases for each managed element will increase the system complexity
as well as the cost in terms of memory, network traf c and CPU consumption.
Consequently, the cost of the offered services in terms of money (customer side)
increases in turns. Moreover, data should not be mixed.
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Solution. The proposed pattern, presented in Figure 3.18, is the combination of
(1) the cloud computing virtualization that allows reducing the system cost through
sharing the resources among the management processes, the knowledge stores and
the databases; and (2) the multi-tenancy that allows multiple users sharing the same
process instance while isolating the context knowledge and the database of each
tenant to guarantee con dentiality.

Figure 3.18: Multi-tenant management process pattern (UML deployment dia-
gram)

For clarity reasons, we abstract the representation of the management processes
interactions as they have been delineated in section 3.4.2. The tenants (consumers)
may share the same processes with customized con guration or not, depending on
the system requirements. During the customization, access control policies should
be identi ed to control the access to the database and to the context knowledge.

Example. If we are managing complex systems such as a high number of pa-
tients with diabetes, deploying for each sub-systems (patient) its own processes
requires allocating more resources (increasing the cost). Based on virtualization, it
is possible to share and reuse the same IT resources among various processes such
as theMonitoring, the Analysisand thePlan processes.

ConsequenceBased on the cloud computing virtualization, the proposed pat-
tern is able to reduce the cost through sharing the resources among the processes,
the knowledge and the database. Moreover, it allows enhancing the system per-
formance through horizontally scaling by adding new resources. Also, based on
multi-tenancy, the system isolates the managed element' context and data in order
to guarantee the con dentiality.



3.5. Conclusion 79

3.5 Conclusion

In this chapter, we delineated our collaborative model-driven methodology for de-
signing autonomic and cognitive loT-based systems. Within this methodology, we
proposed a set of generic patterns classi ed as follows: four patterns describing
the management processes coordination, one pattern enabling the semantic inte-
gration to generate three types of knowledge (sensory, context and procedural),
two patterns dealing with big data challenges and nally one pattern dealing with
the scalability management. The de nition of these patterns has been motivated
by the need in healthcare domain. We illustrated the use of the proposed patterns
based on concrete examples pertaining to managing the treatment of patients with
chronic diseases, and we detailed the consequences of using them as well as their
limitations.

In the next chapters, we propose instantiating the proposed patterns for patient
health management. Thus, we provide a semantic cloud-based big data platform
that allows integrating heterogeneous data sources based on the management pro-
cesses in order to generate new knowledge offered as a service.
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4.1 Introduction

BY enabling communication and data exchange amongst heterogeneous devices,
the 10T ultimately involves huge amount of data which analytics can offer new
opportunities for business development and/or accurate decision making. However,
its integration unquestionably points out challenges related to the heterogeneity of
the data, to the system scalability, and performance.

Taking the wearable technology as a clue success of 10T, in this chapter, we
highlight its trends in healthcare as well as the challenges derived from their adop-
tion. Then, we discuss existing 10T platforms dealing with the heterogeneity and
big data management. After that, we detail our propdsedwledge as a Ser-
vice (KaaS)platform for the integration of heterogeneous data source to gener-
ate knowledge about the system. Based on the patterns proposed in chapter 3,
we provide a cognitive monitoring system combining the semantic web, big data
and cloud computing technologies to create unprecedented opportunities that allow
timely processing and analyzing health big data stream stemming from heteroge-
neous wearable devices.

As an illustrative example, we refer to the healthcare as applicative domain.
Thus, we instantiate it for managing the patient health evolution. To this end, we
propose théMearable Healthcare OntologfyVH_O) which aims at providing a
common description of the wearable data. This ontology is the foremost element
that allows the system dynamically understanding the meaning of the received data.
Finally, we evaluate the system performance within the KaasS, in terms of response
time and scalability management as well as evaluate the associated function cost.

4.2 Wearable Computing in Healthcare

The wide adoption of wearable devices propels industries and researchers to team
up together and provide more ef cient solutions to track the human activities and
continuously monitoring the patient's vital signs [142, 143, 144, 145]. Their in-
tegration in healthcare to monitor patients with serious conditions contributes to
potentially reducing the healthcare cost by 88%

Recently, Penders et al. [146] have pointed out the importance of tracking the
lifestyle behaviors including physical activity, sleep, stress, diet, and weight man-
agement based on wearable sensors during pregnancy. The objective is to adapt and
personalize the life style behaviors based on the collected data to provide healthier
pregnancy. The use of wearable devices also pinpoints its impetus in the Active and
Assisted Living (AAL) area, which aims at helping the disabled persons and elderly

http://nealthcare.orange.com/eng/news/latests-news/2014/infographic-wearable-tech-boom-
in-healthcare
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to offer a better quality of life. For instance, the work of Nicolelis [147] proposed
to connect the brain to external devices in order to transform the brain signals into
actions executed by the machine, such as moving the limbs just by thinking [13],
to help people suffering from catastrophic body paralysis performing the desired
actiort.

Nowadays, the wearable market focuses on producing a new range of tiny wear-
ables embedded within clothing and accessories to provide more ef cient services
and offer an easy interaction with. For instance, Ford is collaborating with RWTH
Aachen University to integrate heart-monitoring sensors in the car seats to detect
abnormal heartbeat and heart attacks. If detected, automated steering and brak-
ing systems will be activatéd Furthermore, Google X research lab has collabo-
rated with the pharmaceutical business Novartis and Alcon's to create smart con-
tact lenselsthat measure glucose levels in tears for diabetes patients and correct
vision for people with presbyopia. At the University of Southern in Los Angeles,
computer scientists and medical experts collaborate together and created an algo-
rithm that uses data generated by various sensors including body sensors to better
treat Parkison's disease [148]. In this way, medical experts can evaluate the treat-
ment ef ciency and notify patients. Other research activities focus on managing IT
challenges related to the integration of I0T. For instance, IBM Watson Health and
Apple have announced a new collaboration that focuses on providing cloud-based
platform for a secure management of the patient data. Based on Apple ResearchKit,
IBM's secure cloud and advanced analytics capabilities provide additional tools to
accelerate discoveries across a wide variety of health i3sues

The wearable market withesses an important increase. According to the In-
ternational Data Corporation (ID&)the worldwide wearables market forecast
shipped 45.7 million units in 2015 and it is expected to reach 126.1 million units
in 2019. Nevertheless, the rapid growth of this marker and its adoption create chal-
lenges in the development of smart 0T healthcare systems. The heterogeneity and
the large amount of the generated data remain the main challenges from the data
management and computational perspectives. In the next section, we discuss exist-
ing loT platforms and approaches that have been proposed to semantically integrate
data generated by the loT/wearable systems.

2http://www.ctvnews.ca/sci-tech/cyborg-soccer-how-a-paraplegic-took- rst-kick-at-the-world-
cup-1.1868837

Shttp://www.medtees.com/content/ecg_seat_fact_sheet_2.pdf

“http://lwww.cnet.com/news/google-extends-smart-lens-tech-for-those-with-diabetes-vision-
problems/

5IBM Press: http://www-03.ibm.com/press/us/en/pressrelease/46583.wss

8International Data Cooperation: http://www.idc.com/getdoc.jsp?containerld=pruS25519615
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4.3 Existing loT Platforms

Despite the development of standards, interoperability and data integration are still
open issues. In healthcare, the work of Kim et al. [149] is an example of research
efforts that deal with integrating the HL7 with the IEEE 1451 standard to ensure
interoperability when monitoring the patient data. The heterogeneity of wearable
devices impedes their integration into existing systems which require additional
efforts to develop applications from scratch [150].

Ontologies and semantic description have been widely used to provide a com-
mon vocabulary and representation of sensors. The Semantic Sensor Network On-
tology (SSN) [78], which is proposed by W3C, is the most famous ontology de-
scribing sensors and devices. Many works adopted SSN in de ning loT platforms
in order to deal with the heterogeneity of the sensors. [0T-A [35] is an 0T refer-
ence architecture that has been proposed to enable the interoperability among loT
connected devices. It describes sensors properties based on SSN, the service model
with OWL-S and extends them with an 10T information Model [151]. Moreover,
loT-A integrates the cloud computing for complex event processing [152] to guar-
antee scalability and ef ciency.

OpenloT [34] is another platform that uses X-GSN to annotate the sensors and
observed value based on SSN, and stores them in RDF stores in a cloud infrastruc-
ture in order to guarantee the scalability and the elasticity of the platform. Based
on the semantic annotation, OpenloT enables the semantic search and discovery
of sensors and services. The observed data is stored as linked data and processed
based on SPARQL queries which are continuously executed once data arrive. Sen-
sors and devices are connected to the X-GSN middleware via publish/subscribe
mobile broker in order to guarantee near real-time management.

Recently, Ben Alaya et al. [37] enriched the SSN ontology with the description
of actuators. The authors proposed the 10T Ontology (loT-O) for the autonomic
management of M2M systems. The [0T-O is the amalgamation of various exist-
ing ontologies such as SSN, DUL, HREST, ACT, TIME, MSM and QUDT. loT-O
describes sensors and actuators, as well as the observed values and the services of-
fered by each device. It has been instantiated for the management of smart home.

In healthcare, Lasierra et al. [36] proposed an ontology to describe the patient's
vital signs and to enable semantic interoperability when monitoring patients data by
formalizing the X73 standard. Following the same direction, Kim et al. [38] pro-
posed an ontology driven interactive healthcare with wearable sensors (OdIH_WS)
to acquire context information at real-time using ontological methods by integrat-
ing external data such as meteorological web site in order to prevent disease. How-
ever, the work of [36] and [38] did not consider the system scalability.

The adoption of IoT emphasizes the big data phenomenon and raises scalability
challenges related to the data storage as well as to the computational and near real-
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time data processing. In this context, Xu et al. [153] proposed the Time Series
analytics as a Service (TSaaaS), a cloud-based analytic service for time series data
in 0T scenarios. The aim of TSaaas is to provide scalable pattern search service
that leverages the large amount of 10T generated data with low search latency and
high search accuracy. TSaaaS is based on the IBM Cloud platform, stores loT data
in IBM Informix database server, and offers RESTful interfaces to simplify the
search process. It offers a faster pattern search compared to existing pattern search
techniques, with additional storage cost. However, the proposed solution does not
detail how the heterogeneity of 0T data is managed.

Mingozzi et al. [154] proposed the Building the Environment for the Things
as a Service (BETaaS) for the integration of distributed and heterogeneous ex-
isting IoT systems. The solution adopted in BETaaS concentrates on exposing
things as services (TaaS) through service-oriented interfaces. Thus the integration
is achieved with limited efforts and modi cations. BETaaS is a semantic-driven so-
lution where two ontologies [155] are de ned: the BETaaS Things Ontology which
reuses existing ontologies such as SSN, OWL-Time and QUDT, and the BETaaS
Context Ontology which is the integration of the BOnSAl ontology, GeoNames on-
tology and GeoSPARQL ontology. BETaaS [122] includes also a big data manager
in the TaaS and service layers that have the main functionalities gathering, storing,
adapting, processing, and analyzing data. However, TSaaaS [153] and BETaaS
[154] are not following a well-accepted cloud computing and big data reference
models.

Sowe et al. [124] proposed a big data cloud platform for the management of
data stemming from sensors. The proposed platform helps research scientists eas-
ily discovering and managing data from various sensors, as well as sharing their
knowledge and experience relating to air pollution impacts. The authors identi ed
the following cloud layers:

The laaS includes a set of virtual machines and the Service-Controlled Net-
working that collects and analyzes data from physical and social sensors.

The PaaS includes distributed databases (MySQL, MongoDB, etc) named
SDaaS and interact with the users based on MediaWiki to enable collabora-
tive authoring and build a knowledge repository from a variety of sensors.

The SaaS includes customized web-based applications that allow, for exam-
ple, visualizing sensors data, tracking and discussing the quality of the data.

However, there is a lack of support for the diversity and heterogeneity of the
received data in terms of units and format, especially that many IoT vendors are
introduced in the market using various standards and data representation.

In healthcare, Forkan et al. [156] proposed a cloud-based context-aware sys-
tem called CoCaMAAL which covers challenges related to data collection and data
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processing in ambient assisted living systems. The authors proposed to mitigate
the complexity of data computation from sensors to the cloud. They identi ed an
abstract ontology to describe the context including patient information, the envi-
ronment and devices. Jiang et al. [157] are interested in big data solutions for
wearable systems in healthcare. They proposed a wearable sensor system with an
intelligent information forwarder that adopts the Hidden Markov Model (HMM) to
estimate the hidden wearer's behaviors from sensor readings, and to determine the
probability that the patient has a speci ¢ health state. The heterogeneity of data
units, format, and representation generated by different wearable devices remains
challenging in the works of Forkan et al. [156] and Jiang et al. [157].

Figure 4.1: IoT Platforms' approaches

Figure 4.1 provides a visual classi cation of the discussed IoT platforms fol-
lowing three approaches: the semantic management to ensure interoperability and
integrability; the big data management to provide accurate analytics while man-
aging the data volume and velocity; and the cloud management to guarantee scal-
ability and elasticity. Table 4.1 highlights the techniques and tools used by each
work. We noted that few research activities focus on coupling these approaches.
Almost works supporting the semantic management of loT-based systems store
the observed data in ontology which may cause scalability problems when rea-
soning. Moreover, it is important to guarantee the con dentiality and the privacy
when storing the monitored data (patients' data should not be mixed in the same
les/table/RDF Graph). Furthermore, none of the aforementioned platforms clearly
demonstrate their exibility and extensibility to support the integration of new data
sources for better decisions.



Related Works Semantic Management Big Data Management Cloud Computing Management
I0T-A [35] SSN and OWL-S ontologies| - Yes:

Cloud CEP
OpenloT [34] SSN - Yes:

Data Storage

Lasierra et al. [36]

Vital signs description X73
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Ben Alaya et al. [37] 10T-O - -
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Concequently, we propose thKeowledge as a Servigdatform that relies on
ontologies to describe the characteristics of data providers, on cloud computing to
lighten the computational tasks and expose the knowledge as service, and on big
data to manage the large amount of data and its velocity. Compared to existing
platform, our KaaS leverages cloud computing and big data technologies to store
measurements in order to guarantee the system scalability, and uses ontology to
tag wearable devices characteristics and data types to guarantee interoperability
and integrability. Within the KaaS, analytic services and information extraction
methods are exposed as services. They are exible enough to be reused by different
consumers, which is challenging in healthcare monitoring system [18].

4.4 Knowledge as a Service for Semantic Cloud-
based Big Data Management

In this section, we present a generic semantic big data reference architecture adopt-
ing the Knowledge as a Service (KaaS) approach to deal with data heterogeneity
and system scalability challenges. Then, we specialize it to healthcare for manag-
ing patient health.

4.4.1 Overview of the KaaS Architecture

Many research activities [130, 128, 129, 127] proposed the Knowledge as a Service
(KaaS) to enable the collaboration of distributed data providers through generating
knowledge from heterogeneous data and make it available as a service. However,
none of these works built their solutions based on well-accepted cloud architecture
or consider the big data management related to loT-based systems.

From the cloud computing perspective, we proposed the KaaS layer as an en-
richment of the NIST cloud computing architecture [118]. We introduced the KaaS
as a new sub-layer on top of the standard PaaS layer and under the SaaS layer
[158]. This de nition has been motivated by the fact that the KaaS refers to the
PaaS, where the collected data is stored in a distributed way, in order to extract
new knowledge that will be consumed by the SaaS for better decision-making and
visualization services. By means of the PaaS, the KaaS layer is able to use virtual
and physical network resources available in the laaS layer to integrate distributed
and collaborative knowledge sources. From the big data perspective, our KaaS
implements the NIST Big Data reference architecture [159] de ned by the NIST
Working Group, where 5 abstract components are identi ed: data collection, data
curation, analytics, visualization and access control.

As multiple data sources are being available and following various data repre-
sentation with different semantics, integrating a new existing data provider to the
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Kaas is challenging and requires IT skills to maintain the system to consider the
new received data. To this end, we propose enriching the NIST Big Data reference
architecture with Semantic Web (1) to cope with the heterogeneity of data and (2)
to transform the result of the analytics into sharable and reusable knowledge. Fig-
ure 4.2 depicts the proposed KaasS architecture. We identi ed three layeBathe
Storage Layewhere large datasets are stored in the PaaSBith®ata Layerthat
includes the NIST Big Data components associated to scalable technologies for
data processing; and tif&mantic Knowledge Layéhnat offers the common un-
derstanding of data. This architecture allows preparing data to be interpreted and
reused by computers and human, and to be easily integrated with external informa-
tion systems, independent of its structure and its representation.

Figure 4.2: The generic conceptual KaaS architecture

Based on ontology, th&emantic Knowledge Laydormalizes the sensory
knowledge (colored in blue) and the context knowledge (colored in yellow) in-
troduced in the Knowledge pattern (see chapter3, section 3.4.2.1). The sensory
knowledge, which is acquired through tiée¢mantic Data Source Annotaticser-
vice, describes the data providers' characteristics (e.g. the monitored parameter, its
meaning, its storage location, etc.). It is used by data processing services to sense
and perceive the meaning of the monitored data. The context knowledge, which is
acquired through theSemantic Value Annotatidservice, describes the managed
elements goals and status. It is used by the analytic services to detect/predicted
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the context changes. The knowledge is stored in an RDF triple store and queried
through SPARQL which is a standard recommended by the W3C.

Once the data providers are known by the KaaS, the data collection is triggered
within the Big Data Layer We identi ed two modes: the pull mode in which the
data are collected at real-time from wearables and sensors, and the push mode in
which the data is imported from external databases through using the appropriate
API (SPARQL, SQL, etc.) depending on how the data is represented. The gathered
data is stored in distributed big data clusters deployed irDida Storage Layer
(PaaS).

The next step focuses on harmonizing the collected data to be processed by the
domain analytic services. Data curation operates on the semantic layer and the data
storage layer in order to enrich the generated data with context information. It is
mainly composed of four services (as presented in Figure 4.2):

(i) thesemantic enrichmeniat adds meaning to the data based on the ontology;

(i) the data normalizatiorthat uni es the data values related to the same ob-
served parameters;

(i) the data cleaningthat plays an important role in improving the quality of
data by removing corrupt or inaccurate records such as those resulting from
the misbehavior of sensors;

(iv) and thedata storagethat stores the prepared data in big data clusters to be
exploited by the analytics and the visualization services.

The analytic services operate on the harmonized datasets to discover new
knowledge related to the domain based on scalable machine learning algorithms,
MapReduce jobs and other big data technologies for distributed large datasets pro-
cessing. The results of the analytic services will be annotated using#radntic
Value Annotatiohservice in order to expose the generated knowledge as a service
to the appropriate consumers or to be reused by the management processes. Fur-
thermore, our KaasS offers also visualization services to graphically represent data
and the analytics results in order to facilitate the interpretation for domain experts.
The access to our KaaS services is based on access control policies.

In the next section, we specialize the KaaS in healthcare and we represent an on-
tological model within the&Semantic Knowledge Layewrhich represents the fore-
most element for the integration of heterogeneous data stemming from multiple
wearable devices for the patient health management.

4.4.2 Wearable Healthcare Ontology

Our proposed/Nearable Healthcare OntologfvVH_O)[160] is designed to deal
with the heterogeneity of wearable data to ensure semantic interoperability and
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allow the system perceiving and understanding the received data in order to gener-
ate more accurate knowledge about the patient such as detecting and/or predicting
anomalies. The WH_O characterizes the wearable devices and their generated data
to provide a smart system for patient care management, independent of the disease.
Figure 4.3 depicts the main classes of the WH_O providing a common represen-
tation and sharing the same meaning among the different wearable devices. An
ontological representation of WH_O using protége is presented in Figure A.2.

Based on our state of the art, we found that the 10T-O [37] is the most generic
representation of 10T, based on wide range of upper ontologies, and supports the
autonomic management through describing the sensors and actuators. However,
within 10T-O, the sensors' observations are stored in the ontology, while in our
work we propose to store the observed data in NoSQL databases. Consequently,
we de ne data processing services that harmonize the data based on wearables
description. To this end, we propose to reuse and extend 10T-O to support the
wearable healthcare management. For clarity reasons, in Figure 4.3, we present
only the main concepts of I0T-O that have been aligned with WH_O. A wearable
device is considered as a sub-class of the Sensor class in 10T-O. In this way, we
reuse: (i) the Sensor Model of 10T-O to describe the wearable capabilities, (ii) the
Service Model to describe the wearable services and methods, and (iii) the Actuator
Model for the autonomic management. We replace the Observation Model with the
Wearable Healthcare Modevhich describes the sensory model (blue color) and
the patient context (yellow color).

In WH_O, each patient may be equipped with a set of wearable devices hav-
ing speci ¢ con guration that depends on the patient medical conditions and dis-
ease severity. Consequently, each patient has at least one “WearableCon guration”
which is speci c to a wearable device. Each “WearableCon guration” is charac-
terized by its “StartDate” and “EndDate”, as well as the frequency of measurement
(e.g. 1 measurement per day). Each wearable may implement at least one “Mea-
surementService” which is responsible for measuring a parameter such as “Blood
Sugar”, “Blood Pressure”, “Heart Rate”, “Step”, etc. Each “MeasurementService”
expresses the generated value with a speci ¢ unit, and stores the observed data in
datasets identi ed through their endpoints. Each unit may correspond to another
equivalent unit measuring the same parameter. The measured parameters allow
identifying medical conditions (disease, symptom, etc.). For example, the “Hyper-
tension” is associated to monitoring the “Blood Pressure”. Semantically character-
izing this piece of information fosters the dynamic discovery and deduction of new
medical conditions that may affect the patient.

To provide a personalized management of the patient health, each patient
should have his/her own “TargetGoal” which depends on the patient medical char-
acteristics and disease stage. This goal, which is xed by the physician, is the clue
for detecting anomalies.



Chapter 4. A Knowledge as a Service Platform for Heterogeneous Wearable
92 Data Integration

Figure 4.3: Depiction of the main classes and relationships of the Wearable Health-
care Ontology

In this way, the system supports the speci cation of personalized anomalies
depending on each patient' characteristics and data generated by the wearables
without modifying the analytic services. The WH_O identi es two main types of
anomalies: “Detected Anomaly” such as detecting an “increased glucose level”
based on rules, and “Predicted Anomaly” such as predicting “hypertension” based
on machine learning algorithms operating on datasets of patients having diabetes
(with and without hypertension) [141]. If an anomaly is detected or predicted, it
will be automatically populated in the KaaS. According to its severity, noti ca-
tions will be sent to the appropriate physicians to keep them up-to-date about the
patient health evolution and avoid complications by taking preventive and timely
interventions.

It is worth noting that the interactions among the different components of the
KaaS are driven by the patterns that have been proposed in chapter 3 for the de-
velopment of Autonomic and Cognitive loT-based systems. Thus, we propose in
the next section an instantiation of these patterns to design and develop the KaaS
platform speci c model for the near real-time management of the patient health
evolution.
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4.4.3 A Cognitive Monitoring System for Patient Health Man-
agement

We propose a&ognitive Monitoring Systerto timely manage the patient health
evolution, based on data stemming from multiple wearable devices. To this end,
we instantiated and integrated mainly three patterns presented in chapter 3. The im-
plementation of the proposed patterns will be offered as services through following
the proposed KaaS architecture. The adopted patterns are:

() the Cognitive Monitoring Managemepiattern in order to identify the inter-
actions among the wearable devices and the physicians;

(i) the Semantic Knowledge Mediat@attern in order to manage data hetero-
geneity and enable the collaboration and interaction among the wearable de-
vices and the physicians;

(i) and the Big Data Stream Detectiopattern, which is an evolution of the
Cognitive Monitoring Managemermattern supporting the big data stream
processing, in order to provide near real-time visualization and personalized
detection while managing data heterogeneity and velocity.

Based on a user-friendly interface, we developed a collaborative semantic web plat-
form, implementing th&emantic Knowledge Mediatpattern, to allow acquiring
the characteristics of the used wearable devices based on the WH_O. It is built on
the top of Semantic MediaWikiSMW), which is a collaborative semantic author-
ing tool. SMW unleashes the power of wikis for collaborative knowledge man-
agement, and ontologies for providing a common understanding of the domain. It
offers mapping mechanisms for formalizing annotations embedded in wiki pages
into OWL DL ontology language [98]. Originally, SMW stores the annotations
in SQL database (e.g. MySQL). Thus, to leverage SPARQL querying language,
we extend our platform with Apache Fus&ki order to store annotations in RDF
format. Thus, our platform provides a SPARQL endpoint that allows the man-
agement processes automatically seeking the appropriate information. Figure 4.4
represents a snapshot of the user interface when annotating the wearable devices'
characteristics. Likewise, the platform is used by the physicians to annotate the
patient' context and specify his/her target goal for each monitored parameter. As
previously mentioned, the generated annotations represent mainly the sensory and
context knowledge that will be used in tB&gg Data Stream Detectigpattern when
processing the data.

In the Big Data Stream Detectiopattern, the monitoring refers to collecting
the data, normalizing and storing it in distributed clusters, while the analysis pro-
cess refers to detecting personalized anomalies. Figure 4.5 illustrates the work ow

"https:/iwww.semantic-mediawiki.org/wiki/Semantic_MediaWiki
8https://jena.apache.org/documentation/serving_data/
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Figure 4.4: An expert of the collaborative semantic web platform for providers'
characteristics annotation

and the interactions among the different components for the development of the big
data stream detection within the KaaS. Once the wearable devices are subscribed
to the semantic platform through annotating their characteristics based on WH_O,
they will be con gured to send asynchronous data to Apache Kafkdhich is a
scalable and high-throughput distributed publish/subscribe messaging system. The
wearable devices are considered as data producers (publishers). And, we propose
to use Apache Stortfito consume the data from the Kafka topics based on Kafka-
storm connector. We de ned a storm topology that encodes the data work ow
processing using three bolts for (1) data normalization, (2') data storage in dis-
tributed system to be analyzed, and (2”) near real-time problem detection. Both
data storage and problem detection are executed in parallel. In the context of man-
aging diabetes, we assume that we have wearable devices that measure the “Blood
Sugar”, but group of them express the measured data in mg/dL while the rest in
mmol/L. Herein, an example of the received stream data from W1ID (mg/dL) and
W2ID (mmol/L):

W1ID,timestamp,170

W2ID; timestamp;11

%http://kafka.apache.org/
Ohttp://storm.apache.org/



Figure 4.5: Big data stream detection sequence diagram within the KaaS
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The Normalization bolt refers to theSensor Cach&here information about
the active wearable unit and delimiter are retrieved from Fuseki through enacting
the query presented in Listing 4.1. After that, it refers again toSesor Cache
to extract the unit, and decide if the measured value should be converted or not.
Once data is normalized, it will be sent in parallel to the Hadoop's HDFS system
and to theDetectionbolt. The harmonized data stored in HDFS can be visualized,
and also used by advanced analytic services implemented using Apache Spark and
MapReduce framework.

Listing 4.1: Retrieve the units and delimiter of active wearables

PREFIX prop:<http://192.168.0.104/Healthcare/index.php/Special:
URIResolver/Property-3A>
Select distinct ?wid ?unit ?delim where
{ ?wc prop:lsSpecificTo ?w.
?w prop:HasID ?wid.
?w prop:Implements ?ms.
?ms prop:HasUnit ?unit.
?ms prop:HasDelimiter ?delim.
?ms prop:MonitorParameter ?param.
?param prop:HasName ?paramName.
?wc prop:HasStartDate ?sd.
?wc prop:HasEndDate ?ed.
Filter (?paramName ="topic").#such as Blood Sugar
Filter (?sd<= "date"). # date when updating the cache
Filter (?ed>="date").

The Detectionbolt refers to the patiereoal Cachen order to detect person-
alized anomalies according to the xed patient target goal. Goal Cacheis
dynamically up-to-date through enacting the SPARQL query presented in Listing
4.2. If a problem is detected, it will be populated in the SMW platform, and a
noti cation is sent to the appropriate physician.

Listing 4.2: Retrieve the list of patients with their target goal

prop:<http://192.168.0.104/Healthcare/index.php/Special:
URIResolver/Property-3A>
Select ?ID ?m where
{ ?p prop:HasIndividualizedTargetGoal ?goal.
?goal prop:IsRelatedTo ?param.
?goal prop:LessThan ?m.
?param prop:HasName ?lab.
Filter (?lab="ParamName").# for example, Blood Sugar
?p prop:HasPatientID ?ID.

Uhttp://hadoop.apache.org/
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In the next section, we evaluate the performance of the proposed system within
the KaasS for the near real-time detection following different deployment con gu-
rations in order to appraise the system response time and scalability as well as its
cost.

4.5 Performance Evaluation

To evaluate the proposed cognitive monitoring system performance within the
KaaS, let's consider different patients with type 2 diabetes equipped with hetero-
geneous wearable devices measuring the blood sugar parameter. These wearable
devices are connected and characterized in the KaaS. In turns, the patient medical
conditions and target goals are also updated in the KaaS. To simulate the wearable
devices' behavior, we inspired from the data published in [161]. Thus, we ex-
tract an expert of this data expressed in mg/dL, modify the data structure and add
some elds such the wearable ID, the delimiter, etc. We converted some of them
to mmol/L to create heterogeneous data. Then, we duplicated the data to create
different scenarios. These scenarios have been tested in different KaaS con gura-
tions including three infrastructures with two different modes related to the Storm
topology con guration. We used the ArchiMate standard to represent the business,
application and technology layers of each KaaS con guration.

To conclude, the evaluation process has been conducted as follows:

At a rst stage, we evaluate the system performance following the on-
premises deployment, and compatre it to the results obtained when applying
the multi-tenant management process pattern on the cloud.

At a second stage, we propose a multi-node deployment of the system com-
ponents in the cloud —fully distributed system. We evaluate the response time
when parallelizing the data processing over 2 workers in two different cloud
infrastructure con gurations. Moreover, we deduce for each cloud con gu-
ration the cost function in terms of CPU consumption.

Our goal is not to nd the optimal con guration but to illustrate that thanks to
our exible architecture, we can dynamically allocate the required resources and
instantiate the needed distributed components in order to cope with a large diversity
of non-functional requirements.

4.5.1 On-premises vs Cloud Evaluation

In this evaluation, we use two different infrastructures: a local machine for the
on-premises deployment and a cloud server for the cloud deployment.
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First, we ran the experiments on the following machine con guration: mem-
ory 12GB; processor Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz; and 64-bit
Windows 7 operating system. We installed Proxitfamn this machine for virtu-
alization. Proxmox allows easily exporting the virtual containers to be hosted in
a cloud environment and to bene t from the elasticity of the cloud. We created
two virtual containers hosting Ubuntu operating system, which play the role of
distributed machines. We attributed 6 GB of memory to Proxmox distributed as
follows: (Fuseki, 4GB) and (Semantic MediaWiki, 2GB). Moreover, we installed
another virtual machine including Ubuntu operating system and consuming 8GB
of memory. Within this machine, we installed Apache Kafka, Apache Hadoop,
Apache Storm and Apache Zookeeper (to coordinate Kafka and Storm instances).
Due to memory constraints, only the Fuseki container is running. The deployment
of the proposed architecture is portrayed in Figure 4.6.

We varied the number of incoming streams in order to evaluate both the sys-
tem response time and scalability. It is worth mentioning that all the data stream
providers (connected devices) are using the same instance of the consumer (storm
topology executed through 1 worker).

Figure 4.6: On-premises deployment of the cognitive monitoring system

Figure 4.7 portrays the response time in seconds of each executed scenario. We

2Proxmox: https://www.proxmox.com/en/
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noted that a delay is reported when big number of requests is sent to the platform. It
took around 4545 seconds75 minutes to process 600,000 data streams, which is
not adequate for healthcare applications where timely response is required to man-
age the patient health. For instance, if the system is managing patients with severe
diabetes, it is required to provide near real-time processing to intervene at the right
time when the glucose drop too low. Moreover, we noted that for 1,200,000 data
streams, a bottleneck is reported in the kafka broker. These results strongly depend
on the hardware con guration on which the experiment is conducted as well as the
deployment of the system components.

Figure 4.7: Performance evaluation on-premises deployment

Consequently, to provide better system performance as well as near real-time
data processing, we propose to apply¥héti-tenant Management Procepattern
in order to bene t from the scalability, multi-tenancy and IT resources virtualiza-
tion on the cloud. We refer to the following cloud server infrastructure (cloud-
con gl): 8 Intel(R) Xeon(R) CPU D-1521@ 2.40GHz, 32 GB of memory, and
1.77 TiB of disk storage.

We used proxmox as a virtualization environment, and we created four linux
containers (LXC) (106, 110, 107 and 108). The “container 106" contains SMW
associated to a set of extensions in order to offer a collaborative user-friendly in-
terface for semantic annotations, while the “container 110" contains the Fuseki to
store the semantic annotations based on/earable Healthcare OntologyBoth
of these two containers constitute the implementation oSlmantic Knowledge
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Mediator pattern. The “container 107” deploys Storm, Zookeeper and Kafka for
data collection, harmonization and anomaly detection, while the “container 108"
deploys Hadoop for storing the harmonized data, visualizing as well as analyzing
the data based on MapReduce jobs and other big data frameworks. Figure 4.8 de-
scribes the deployment process following telti-tenant Management Process
pattern.

Figure 4.8: Cognitive monitoring system deployment in cloud-con g1

To evaluate the gain of this architecture, we run the same testing scenarios,
which have been already conducted in the on-premises deployment, on the cloud-
con g1l. We run the storm topology implementing 1 worker on a Storm local clus-
ter, then, we measured the processing time and the ability of the platform to process
all the incoming streams. Table 4.2 portrays the measurements. We noted a huge
gap between the cloud deployment and on-premises deployment in terms of pro-
cessing time and scalability management.

Figure 4.9 delineates the gain that results from offering the data processing and
detection as a service. Unlike the on-premises deployment, on the cloud, the sys-
tem is able to successfully process all the 1,200,000 received streams in around 6
minutes without noting any bottleneck or stream lost, which is crucial in patient
management systems. Indeed, each data stream should be successfully processed
since it may include important information about the managed patient that may im-
pact on the decision process. For instance, let's consider a big number of patients
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managed by various wearable devices measuring the blood sugar and the blood
pressure. If the system fails to process one of the received streams that may in-
dicate that the diabetic patient is developing hypertension, this may lead to health

complication when adapting the diabetes treatment, because some diabetic drugs

may amplify the hypertension condition.

Processing Time in second

Number of incoming | 1 worker On-premises| 1 worker on cloud
streams

1000 5.066 0.65
4000 15.438 1.958
8000 23.184 4.769
40000 76.631 16.646
80000 81.686 26.899
120000 138.296 42.294
400000 364.636 127.142
600000 4545.653 181.972
1200000 Bottleneck 384.233

Table 4.2: Performance measurements on-premises vs cloud deployment

Figure 4.9: Comparison of the system performance on-premises vs cloud deploy-

ment
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It is axiomatic that the cloud deployment (application of the Multi-tenant Man-
agement Process pattern) potentially contributes to providing better scalability and
response time compared to the on-premises deployment. However, we noted that
a drawback is adrift from this deployment architecture. It concerns the ability of
the system to keep processing data if the “container 107” stops working or crashes.
Thus, centralizing the deployment of Kafka and Storm with a local cluster deploy-
ment mode of Storm is not recommended. Consequently, we propose a multi-node
deployment of the cognitive monitoring system within the Kaa$S in order to enact
the storm topology on a production cluster (Master/Slave deployment).

45.2 Multi-Node Cloud Evaluation

To fully leverage the distribution and the parallelism on the cloud, Figure 4.10
proposes a new deployment of the proposed cognitive monitoring system for data
stream processing. Unlike the architecture described in Figure 4.8, Storm is de-
ployed over three containers following the master/slave pattern. The “container
113" contains the master storm running the nimbus daemon, while two storm slaves
are deployed in the “container 114” and the “container 115" to run the topology
workers and threads. The coordination of the master and the supervisors is con-
trolled by Zookeeper. Both Kafka and Zookeeper are installed in the “container
111", Figure 4.10 describes the allocated IT resources for each container based
on cloud-con gl. Data providers are deployed in other containers and are sending
asynchronous messages to the Kafka broker.

Following this architecture, we run the storm topology in production cluster
with two different con gurations:

1 worker. each boltis executed by only one thread. As two storm supervisors
are deployed, only one supervisor is selected to run the topology.

2 workers This con guration supports the parallelism when processing the
data streams in a distributed way over the two deployed supervisors. To
increase the parallelism, we set tparallelism_hint of the Normalization

bolt and Storage bolt to 2.

We evaluated both con gurations' performance through running the aforemen-
tioned testing scenarios. The measurement of the processing time for each con g-
uration is illustrated in Table 4.3, while a visual representation of the performance
is represented in Figure 4.11. We noted that the parallelism contributes to reduc-
ing the processing time, especially when processing a big number of data streams.
For instance when processing 1,200,000 data streams in cloud Con g1, with the
parallelism, we gained 53 seconds which is an important value for near real-time
applications.
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Figure 4.10: A multi-node deployment on the cloud

Processing Time in second (cloud-con g1)

Number of incoming | 1 worker 2 workers
streams

1000 1.497 1.251
4000 4.174 4.081
8000 6.485 6.180
40000 17.281 15.668
80000 28.682 27.410
120000 43.740 39.775
400000 132.685 118.348
600000 194.636 170.841
1200000 390.200 337.745

Table 4.3: Performance evaluation of the parallelism on the cloud
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Despite the processing time, we measured the function cost in terms of CPU
consumption from the Storm's supervisors side (CT114 and CT115), since the
topology is running on these containers. Figure 4.12 provides an overview of the
CPU consumption when running ontyworkeron CT115, and when running
workerson both containers CT114 and CT115. We noted that the execution of 2
workers over 2 containers provide faster processing time than using only 1 worker.
However, when running 2 workers on storm production mode, each container may
consume an average of 30% of the allocated resources (2CPU for each one), while
when running 1 worker, only one container is running and its CPU consumption
may reach 35% of the allocated resource (2CPU). Thus, the parallelism provides
better performance, but requires more CPU resources.

Figure 4.11: Performance evaluation of the cognitive monitoring system in produc-
tion mode

At a second stage, we increased the allocated CPU units of CT114 and CT115
to 4 units and the CT111 to 3 units in a new cloud server that has the following
con guration (cloud-con g2): 8 Intel(R) Xeon(R) CPU D-1521@ 2.40GHz, 128
GB of memory, and 1.77 TiB of disk storage. After deploying the different con-
tainers on cloud-con g2, we evaluated again the same testing scenarios, and we
compared the performance of the system when implemetiwgrkersto what
we got in cloud-con gl. Table 4.4 and Figure 4.13 portray the obtained results.
We noted that increasing the CPU contributes to reducing the processing time, es-
pecially when processing big number of incoming data streams. For instance, when
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Figure 4.12: CPU consumption in the Storm supervisors when processing
1,200,000 streams

receiving 1,200,000 data streams, we gained up to 30 seconds which is considered
as gain for near real-time systems.

Processing Time in second
Number of incoming | 2Workers 2Workers
streams cloud-con g1 cloud-con g2
1000 1.251 1.285
4000 4.081 4.080
8000 6.180 5.247
40000 15.668 14.623
80000 27.410 27.247
120000 39.775 34.861
400000 118.348 111.443
600000 170.841 163.003
1200000 337.745 301.639

Table 4.4: The cognitive monitoring system performance measurements on two
cloud infrastructures
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Figure 4.13: Evaluation of the impact of IT resources con guration on system
performance

To conclude, choosing the appropriate cloud infrastructure and the system de-
ployment con guration within the KaaS depend on the application requirements
and the availability of IT resources. For instance, if the system is used to manage
patients with chronic disease at early stage to prevent the patient health degrada-
tion, the 30 seconds that we gained in cloud-con g2 is not considered as a delay
in cloud-con g1. In this case, the function cost will be used to select the right
con guration. However, if the system is conceived for managing patients with se-
vere clinical conditions, near real-time detection is mandatory. In this case, the
distributed architecture deployed on cloud-con g2 is more adequate.

4.6 Conclusion

In this chapter, we provided linowledge as a Servigaatform that extends the

NIST cloud computing and NIST big data reference architectures with a semantic
layer in order to cover the heterogeneity of data stemming from wearable devices,
while guaranteeing the system scalability. The proposed KaaS platform will be
used to deploy the management processes, knowledge components and databases
based on the proposed patterns in chapter 3.
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As an application, we referred to managing patient health evolution based on
wearable devices. Thus, we proposed a cognitive monitoring system implementing
the Cognitive Monitoringpattern, theéSemantic Knowledge Mediatpattern, the
Big Data Stream Detectiopattern and th&ulti-tenant Management Procepat-
tern in order to provide a scalable interactive loT-based system for patient health
management. To this end, we elaborated the WH_O that semantically describes
the wearable devices for the integration of healthcare data. Based on WH_O, the
system is able to process heterogeneous data stream independently of their struc-
ture. An implementation of the proposed system is provided based on big data and
semantic web technologies and we evaluated its performance as well as the asso-
ciated cost based on different cloud infrastructures and con gurations. The main
goal of the proposed evaluation is illustrating that the non-functional requirements
of diverse healthcare scenarios can be satis ed by the the dynamic con guration of
the KaaS where the monitoring cognitive system is deployed.

In the next chapter, we propose to enhance @ognitive Monitoring system
with new components including management process and cognitive components in
order to evolve to &rescriptive Cognitive systeable to assist the physicians in
solving problems when personalizing the patient treatment.
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5.1 Introduction

I N the previous chapter, we highlighted the bene ts of using wearable technolo-
gies for the management of patient health evolution to provide personalized
anomalies detection at the right time. Nevertheless, loT-based systems' capabilities
can go further to support reasoning and smart management of patient treatment. In
healthcare, the personalization of patient treatment requires the integration of dif-
ferent types of knowledge such as the used strategies to manage a particular disease
(procedural knowledge), the drug characteristics, side effects, etc. Advances in web
technologies foster sharing medical knowledge. But, integrating these knowledge
sources is not straightforward and costly for physicians, due to their distribution,
heterogeneity and huge volume. Acquiring the 10T systems the ability to reason on

these knowledge sources requires understanding and interpreting its meaning.

Consequently, in this chapter, we extend the system proposed in the previous
chapter with new capabilities in order to reach grescriptive cognitive maturity
levelwhere the loT-based system is able to provide recommendations to physicians.
Thus, rst, we discuss existing works dealing with treatment adaptation and person-
alization. Through collaborating with medical experts, we propose a methodology
for extracting and formalizing the treatment plan based on ontologies. The output
is a exible generic semantic model nam@&deatment Plan Ontology (TPQle-
scribing the medical interventions and their granular characteristics that underpin
the adaptation of the patient treatment. To facilitate the interaction with medical
experts, we develop a collaborative semantic web platform that allows the medical
experts transferring their knowledge based on TPO, and exposing it as linked data
to automate decision making. The next step focuses on integrating TPO with exter-
nal reusable medical knowledge sources in order to provide personalized treatment
management. Hence, we propose an ontology-based planning algorithm that ag-
gregates TPO with DrugBank to detect drug-drug interaction, especially in case of
comorbidity where different diseases are presented. Finally, we evaluate the pro-
posed plan process from the clinical perspective through managing hyperglycemia
in type 2 diabetes, and we highlight its performance on the cloud.

5.2 Decision-making for Treatment Management

In this section, we introduce the clinical decision support system. Then, we identify
medical knowledge sources that can be reused in the personalization process. After
that, we survey recent works dealing with the treatment adaptation and highlight
the main used approaches and techniques.
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5.2.1 Clinical Decision Support System

Clinical decision support systems (CDSS) have shown great ef ciency in managing
patients' health and providing personalized treatment based on information tech-
nologies. CDSS may focus on sharing the patient pro le including the treatment
history, the observations, etc., diagnosing patient health, and generating clinical
recommendations based on evidence-based medicine and clinical guidelines [162].
The development of CDSS is classi ed into two categories [163]:

Non-knowledge-based CDSS which uses machine learning and other statis-
tical pattern recognition approaches that allow the computer automatically
learning from past experiences and/or detecting patterns from the clinical
data;

Knowledge-based CDSS relies on the conceptualization of the medical
knowledge encoded in a computer interpretable format, called computer-
interpretable guidelines (CIGs) [164] as well as the reasoning process in
order to elucidates and facilitates the decision-making.

However, current CIG languages are not exible enough to support the integra-
tion of external knowledge sources, the dynamic knowledge update, and the pa-
tient treatment personalization based on context changes [165]. Few studies focus
on the dynamic adaptation of the patient treatment based on the context changes.
Indeed, treatment adaptation requires more exible representation of the medical
knowledge on which the management processes operate. Generating personalized
treatment should take into consideration both the changes of the patient conditions
and environment factors that in uence response to therapy, as well as the medical
knowledge including reliable accessible sources. In the next section, we focus on
the treatment adaptation: the approaches used to model the medical knowledge,
and the methods used to select recommendations.

5.2.2 Treatment Adaptation & Personalization

Various approaches have been used to represent the medical knowledge and adapt
the patient treatment. Table 5.1 classi es the harvested works and delineates the
used techniques for recommendation as well as the methods used to formalize the
medical knowledge.

Huang et al. [166] proposed a recommendation service that implements a so-
phisticated algorithm based on mathematical model and data mining technique to
match patient status with medical interventions and calculates the recommenda-
tions ratings. Ferrer et al. [167] mapped the clinical guideline to the Asbru model
and then to the HPDL in order to automatically generate the patient care pathway
based on the Hierarchical Task Network (HTN) planning technique. However, the
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proposed approach does not take into consideration the dynamic adaptation of the
care pathway based on the context changes. Similar to Ferrer et al. [167], Mil-
lan et al. [168] used the HTN for generating recommendations. But, Millan et al.
[168] contributed in the dynamic adaptation through using the PELEA architec-
ture, which is a continuous planning approach. Thus, based on the monitoring and
the detection of deviations, their system is able to adapt the care pathway through
extracting information related to patient and resources from the Virtual Medical
Record (VMR). As a continuity of this work, Sdnchez-Garzén et al. [169] inte-
grated the monitoring of patients' daily activities in an ambient environment. Thus,
based on the collected data about the patient and the Clinical Practice Guidelines,
the system is able to repair the current plan and to automatically update the medical
record. However, Huang et al. [166], Ferrer et al. [167] and Millan et al. [168] did
not consider the medical knowledge evolution and the dynamic update of the deci-
sion rules since the planning is based on use cases, or on problems and solutions
described in text les.

In this context, ontologies have been widely used for formalizing the medical
knowledge and reasoning to generate recommendations. We cite for instance the
work of Riafio et al. [170] which provided a complex personalized care ontol-
ogy for chronic disease namely Case Pro le Ontology (CPO) in the context of the
K4CARE project. The adaptation is realized by instantiating the speci c CPO
ontology according to the patient pro le, then, extracting individualized decisions
from the general formal interventions designed with SDA* model. Emerencia et
al. [171] proposed wegweis, which is a web-based advice platform, for manag-
ing patients with schizophrenia. Wegweis provides behavioral advices based on a
problem severity and advice priority through a selection and ranking algorithms.
The authors used the ontology to decouple the problem from the advice and to add
robustness by inferring advices of hierarchical problems. Likewise, Grando et al.
[165] proposed a state-based goal framework implemented within the argumen-
tation technique to represent medical decision within guideline. The association
among goals, tasks, argument, belief, temporal constraints, actors and patient are
designed with ontology, and the selection of the decision is achieved through rules
and an aggregation function based on the argument-weight. The ontology classes
and rules are implemented in the COGENT system which provides a graphical
interface to de ne models and context, and to simulate the execution of the model.

Riafio et al. [170], Emerencia et al. [171] and Grando et al. [165] proposed
expert systems that do not support the dynamic adaptation, they are limited to the
medical knowledge formalization and proposing decision rules.

1K4CARE: http://www.k4care.net/



Related Works Dynamic Medical Medical Knowledge | Recommendation
Adaptation Knowledge Sources | Representation Technique
Huang et al. [166] No Clinical Cases - Data Mining
Ferrer et al. [167] No Clinical Guideline Text File (HPDL) HTN Planning
Millan et al. [168] Yes Clinical Guideline Text File (HPDL) HTN Planning
Riafo et al. [170] No Clinical Guideline SDA* model -
Experts
Emerenciaetal. [171]| No Experts OWL (Protégé) Selection and ranking
algorithm
Grando et al. [165] No Clinical Guideline GOGENT language Rule based
(classes and rules)
Alexandrou et al. [172] Yes Experts OWL (Protégé) SWRL rules
Yao and Kumar [173] | No - OWL (Protégé) SWRL rules
Lasierra et al. [36] Only detection the X73 standard (sen-OWL-DL (Protégé) -

sors) + Physicians feed
backs

Table 5.1: A survey on treatment adaptation and personalization
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In this context, Alexandrou et al. [172] proposed an ontology based solution
able to automatically observe the execution of each task speci c to a patient treat-
ment work ow process and to dynamically adapt the treatment schema concerning
the healthcare business process. The proposed ontology is named Adaptive Clin-
ical Pathway Ontology. It is implemented in OWL and the medical knowledge is
acquired by experts using Protégé, while the adaptation process is based on the Se-
mantic Web Rule Language (SWRL). Similar to Alexandrou et al. [172], Yao and
Kumar [173] proposed to use Protégé to acquire the clinical context ontology and
SWRL rules to generate recommendations based on the patient context changes.
Yao and Kumar [173] identi ed a wider work which supports the patient treat-
ment generation and prescription checking based on rules. However, these rules
are static and hard-coded. Thus, if new medical knowledge is updated, new rules
should be encoded, and/or existing ones should be updated. Lasierra et al. [36] pre-
sented a relevant work that relies on the autonomic computing to manage patients
with chronic disease. The authors used ontology to enable semantic interoperabil-
ity when monitoring the patient at home based on medical sensors. However, their
work is limited to the monitoring and analysis processes in order to identify alarms
and send warnings to physicians and patients.

5.2.3 Linked Data in Healthcare

Linked data refers to enabling the extension of the Web with a global data space
based on open standards —the Web of Data. It provides a common data model
that makes it possible to implement generic applications that operate over the com-
plete data space [174]. From the technical perspective, linked data uses RDF as a
standardized data representation format, and HTTP as a standardized access mech-
anism [175]. Different endpoints have been proposed to extract the data using the
SPARQL query language.

Recently, considerable efforts [176] have been invested to bring the medical
knowledge onto the Web using Semantic Web technologies [91] in order to inte-
grate different sources and to share, update and reuse the knowledge. Noticeably,
drug-drug interactions, drug-food interactions and adverse drug reactions are be-
ing published and accessible as linked data [177, 178]. For instance, Bio2RDF
[16] offers different SPARQL endpoints to DrugB&nd 2] describing the drug-
drug and food-drug interactions. Some other efforts have focused on integrating
multiple existing linked data into a common repository such as life linked®data
which integrates 25 popular biomedical data sources.

Freshly, research works focus on integrating these knowledge sources in order
to enrich their systems with external information. In this context, Ostankov et al.

2DrugBank SPARQL Endpoint: http://drugbank.bio2rdf.org/sparq|
SLinked Life Data: http://linkedlifedata.com/sparq|
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[179] proposes a Linked Health Answers system for question answering. This sys-
tem implements mechanisms that transform natural language questions into formal
semantic request taking the form of RDF triple (<?s,?p,?0>) based on NLP tools
and machine learning-based algorithm. Once the request is transformed, it will be
invoked over the ontology connector (e.g. Linked Life Data, FreeBase and DB-
pedia). In the pharmaceutic industry, Jentzsch et al. [175] referred to LinkedCT,
DrugBank and Diseasome repositories in order to integrate accessible data related
to companies, drugs, diseases and genetic variation, and continuously keep the user
up-to-date with the available extra data.

Medical Open Linked Data seems to be promising for generating personalized
decision. In this context, Khalili and Sedaghati [180] proposed the Pharmer sys-
tem, an intelligent medical prescription system. Pharmer is a collaborative system
that involves the patient, the physicians, the pharmacists and pharmaceutical re-
searchers. It integrates various open linked data such as DrugBank, DailyMed and
RxNorm in order to automatically detect the drugs and semantically annotate the
e-prescription. It offers up-to-date information about the drugs coming from mul-
tiple dynamic data sources. However, the authors didn't detail how the system may
help the physicians selecting the right treatment strategy. Moreover, they didn't
evaluate the impact of integrating external linked data on the system performance.

5.2.4 Discussion

Automating the decision-making is crucial in healthcare to provide a support to
health professionals for processing huge available medical knowledge combined
with the patient context for a personalized treatment. But, it remains limited only
to provide recommendations or alerts as always the nal decision comes to the
physician. In general, the discussed works refer to adaptation as the process of
mapping the generic recommendations to the patient pro le without considering
the dynamicity of patient context. Most of them deal with the medical knowledge
formalization in order to automate the decision-making. Mainly three techniques
have been used: data mining [166], HTN planning [167, 168, 169] and ontology
reasoning [165, 170, 171, 172, 173] which is the most used technique. However,
based on our survey, we found that some important points need to be considered
for the smart management of the patient treatment:

Mechanisms for the adaptation of the patient treatment to accelerate the de-
cision making and providing a preventive management of the patient to avoid
health complications, except the work of Lasierra et al. [36] and Sanchez-
Garzon et al. [169].

Encoding the characteristics of the medical interventions in order to provide
exible schema that underpins the dynamic generation of the patient treat-
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ment based on the context changes.

Following a methodology to formalize the medical knowledge for chronic
disease management and build the appropriate ontology based on the system
requirements.

Updating medical knowledge and decision rules. It is important to provide
a collaborative user-friendly interface that allows not merely annotating the
clinical guidelines, but also transferring the medical experts' tacit knowl-
edge, who are not necessarily IT-experts.

Integrating reusable external knowledge sources such as DrugBank to com-
plete information within the clinical guidelines in order to provide personal-

ized decisions and avoid medical errors. For instance, according to a study
done on 4.152 diabetic patients [181], 62.3% had one or more medical errors.

Evaluating the impact of the reasoning process on the system performance
(response time and scalability), except the work of Lasierra [182] which fo-
cuses only on the monitoring and the analysis evaluation.

Consequently, we propose a prescriptive cognitive system that allows adapting
the patient treatment through monitoring the patient vital signs, analyzing the cap-
tured data and planning for better personalized decisions in order to assist the physi-
cian in taking the right decision at the right time. In the next section, we provide
an overview of the proposed system, mainly the patterns that we have instantiated,
and we delineate the cognitive capabilities of the system for decision-making.

5.3 A Prescriptive Cognitive System for Personaliza-

tion

In this section, rst, we propose an overview of the reused patterns for the devel-
opment of a prescriptive cognitive system. Then, we mainly deepen the procedural
medical knowledge as well as the plan process for personalized decisions concern-
ing the patient treatment.

5.3.1 System Architecture Overview

Following the model-driven methodology proposed in chapter 3, we combined a
set of design patterns to provide a scalable prescriptive cognitive system for the
smart management of the patient treatment. The design patterns that have been
instantiated are the following:

The Prescriptive Cognitive Management Pattewe propose to instantiate
this pattern to coordinate the monitoring, the analysis and the plan when
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managing patients with comorbidity, while notifying with the physician with
the generated plan. Thus, a set of management processes and their interac-
tions are de ned as well as the knowledge components.

The Semantic Knowledge Mediator Patterwe propose to instantiate this
pattern when acquiring th8ensoryKnowledgehe ContextKnowledgand

the ProceduralKnowlegden order to enable the collaboration among the
machines (wearables), the management processes and the human (experts);
and to ensure knowledge sharing and reuse. Within this pattern, two ontolog-
ical models are implemented théearable Healthcare Ontologyescribing

both the SensoryKnowledge and ContextKnowledge (presented in chapter 4,
section 4.4.2); and th&reatment Plan Ontologgescribing both the Con-
textKnowledge and the ProceduralKnowlegde (presented in section 5.3.3).
These two models are linked to each other through common concepts related
to the context.

The Multi-tenant Management Process Patteime propose to apply the
Multi-tenant Management Process pattern in order to dynamically allocate
IT resources to satisfy the system requirements and provide better perfor-
mance. We have already highlighted the gain of applying this pattern when
monitoring the system in chapter 4. In this chapter, we are mainly interested
in evaluating the application of this pattern when deploying the procedural
knowledge and the plan process.

We reused th€ognitive Monitoring Systemproposed in chapter 3 in order to
guarantee the scalability, the big data management and semantic integration within
the monitoring process. In this chapter, we enriched this system with a seman-
tic platform, implementing th&emantic Knowledge Mediatpattern, in order to
allow the medical experts populating their medical knowledge (procedural knowl-
edge) to be automatically reused by the plan process for decision-making. It is
worth mentioning that we consider that the execution of the analysis process is
done by the experts. As previously mentioned in our model-driven methodology,
the development of smart loT-based systems requires formalizing the procedural
knowledge, called also tacit knowledge, based on the collaboration of domain ex-
perts (in our case, the medical experts). Thus, the next section provides an overview
of the proposed methodology.

5.3.2 A Collaborative Methodology for Medical Knowledge
Formalization

Medical knowledge formalization is a complex task, and requires a deep under-
standing of the domain and of the disease management strategies for the treatment
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personalization. Thus, medical experts' collaboration and participation is required
when building the ontology to provide an ef cient knowledge transfer and shar-
ing. Nevertheless, some cultural and social factors may hinder the progress of
this process, especially that participants may feel and think that knowledge sharing
depletes the time and the efforts that can be invested in other activities more bene -
cial for themselves [183]. Consequently, we propose a collaborative methodology
for the tacit knowledge capture. To deal with the previously stated issues, we de-
ned three phases: thareparation theknowledge organizatioand theknowledge
reuse

Thepreparation phasés introduced to lighten the issue pertaining to the avail-
ability of medical experts. Hence, despite directly contacting them, the knowledge
engineer proceeded with studying and collecting from the literature information
about treatment personalization, and identifying techniques and tools related to the
medical knowledge representation (1). Besides, the knowledge engineer reviews
existing patient records and use cases (1') to extract the context, and review also
the clinical guidelines and consensus for personalization to identify the diseases
management strategies (1”). During this phase, an iterative process is identi ed
to re ne the identi ed concepts (2). The output of this phase is the identi cation
of patient related information such as the preferences, the personalized goal, his-
tory, symptoms, etc., as well as information related to medical knowledge such
as the characteristics of medical interventions including contraindications, side ef-
fects, interactions, alternatives, parameters to be monitored, etc. (Figure 5.1). The
collected information is the input to the second phase.

The second phase is thaowledge organizationit is based on the collabora-
tion with medical experts to de ne the need for the personalization process and the
key elements for the decision making. To avoid barriers related to social and psy-
chological dimensions when collaborating with experts, our methodology adopts
an incremental approach in which the identi cation of the knowledge structure is
decomposed into sub-steps. Thus, we organized meeting with each expert to vali-
date and enrich the de ned concepts (3, 4). We collaborated with medical experts
from different domains (General Doctor, General Surgeon, Endocrinologist, and
Radiologist) in order to identify a generic representation that can be specialized
and instantiated in different domains. By repeating the processes (3, 4), differ-
ent models are generated. In this way, problems such as being in uenced by each
other as well as the dif culty to nd a common available time slot for meeting
are covered. Furthermore, according to the expert character, different methods and
guestions are adopted to extract his/her knowledge. For example, based on the
preparation phase, the knowledge engineer animates the discussion in order to deal
with problems pertaining to people less in agreeableness or less in extraversion.



Figure 5.1: A three-phase methodology for the Treatment Plan Ontology design and implementation
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The next step consists in integrating the generated models (5) to provide a uni-
ed ontology schema which is approved and validated by the experts (6). When
integrating the different models, we tried to provide a trade-off between the expres-
siveness of the representation language and the dif culty of the reasoning over its
representation. Indeed, the more expressive is the language, the harder is the rea-
soning [184]. The output of the knowledge organization phase isTreatment
Plan Ontology (TPO) model that depicts a common and coherent representation
of the chronic disease treatments based on ontology. TPO will be the basis for
knowledge acquisition and reasoning.

The nal phase is th&nowledge reusphase. It includes the implementation
of TPO in a computer interpretable format (8) in order to produce and consume
the knowledge. But before implementing TPO, the knowledge engineer identi es
existing reliable medical knowledge sources to be reused (7) such as DrugBank
published as linked data.

Similar to existing methodologies for building ontologies, detailed in (chap-
ter 2, section 2.4.1.3), our proposed methodology relies on common steps for the
ontology construction (such as the identi cation of requirements, the identi ca-
tion of the ontology terms and the reuse of exiting ontologies), and extends them
with a well-de ned work ow that involves experts in the conceptualization and
schema organization phase. Contrarily to existing methodologies, our methodol-
ogy takes into consideration social and psychological factors that impede capturing
the experts' tacit knowledge, and the collaboration process when constructing the
meta-knowledge.

To conclude, our methodology relies ata rst stage on face-to-face exchange for
the identi cation of the meta-knowledge re ecting experts' vision based on a for-
mal representation. Then, the knowledge is collaboratively populated in a sharable
virtual environment through a user-friendly interface. It is worth mentioning that
our methodology has been generalized in order to be adopted in other domains such
as scienti ¢ research activities management [185]. In the next section, we deepen
the TPO structure, and we evaluate its capabilities to provide personalized treat-
ment pertaining to a speci ¢ patient having the hyperglycemia in type 2 diabetes.

5.3.3 Treatment Plan Ontology

We propose a exible TPO schema that builds the bridge between the arti cial
intelligence planning and the semantic representation to grasp the computational
intelligence. Planning is de ned aste reasoning side of acting. Itis [...] process

that chooses and organizes actions by anticipating their expected outtidi8ék

Thus, the proposed TPO [187] semantically represents the medical interventions as
actions, characterized through preconditions and side effects, that aim at reaching
the patient objective. The ultimate purpose is to provide a generic model that fos-
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ters automating the decision making according to the detected problems. For clarity
reasons, Figure 5.2 portrays the main classes and relationships of our TPO formal-
izing a problem-solving knowledge for chronic disease management. Referring to
the knowledge pattern (section 3.4.2.1), TPO portraysPtioeeduralKnowledge
describing the medical interventions to manage chronic diseases (orange color);
and theContextKnowledgelescribing the patient conditions (yellow color). An
ontological representation of TPO using protégé is presented in Figure A.3.

The ProceduralKnowledgevithin TPO introduces the medical condition class
which is de ned by the Segen's Medical Dictionary asdisease, illness or injury;
any physiologic, mental or psychological condition or disorder ... A biological or
psychological state which is within the range of normal human variation is not a
medical conditioir In our work, we consider measureable conditions which are
identi ed through measurable parameters, for instance, the HbAlc identi es a high
or low blood sugar medical condition. We consider that a disease has symptoms
which are, in turn, medical conditions. Idem, each medical condition has risk
factors which are de ned as conditions that could make a person more likely to
develop a disease or to amplify the symptoms of an existing disease. For example,
both obesity and hypertension are risk factors of the type 2 diabetes. These medical
conditions can be minimized and/or stabilized through medical interventions that
help achieving the patient goal. An intervention can be behavioral, surgical or
drug-based characterized by its route of administration.

To automate the selection of a treatment, our TPO associates each medical inter-
vention with the appropriate disease strategy, and encodes the strategies hierarchy
through the HasSuccessorStrategy property. For example, in type 2 diabetes, four
strategies are identi ed: the “monotherapy”, the “dual combination”, the “triple
combination” and the “complex insulin” [188]. If a patient, who is following a
“monotherapy” strategy, presents an increased blood sugar, it is recommended to
prescribe for him/her a “dual combination” strategy. Other properties have been in-
troduced such as HasPrecondition and HaslIntervPrecondition to respectively verify
criteria related to the patient conditions, and encode the disease interventions or-
dering like prescribing the “sulfonylurea” if the “metformin” fails. Moreover, to
provide personalized treatments, TPO describes the medical contraindication as
well as the interactions and side effects expressed as conditions that foster the inte-
gration of external reliable knowledge sources such as DrugBank.

Focusing on treatment personalization, @entextKnowledgeithin TPO in-
cludes concepts related to the patient pro le such as diseases, medical conditions
including the allergies, the monitored signs, the family history, the current treat-
ments and preferences. Likewise, each patient has a speci ¢ TargetGoal, which is
already represented in WH_O and used byAhalysisprocess to detect personal-
ized anomalies. Each anomaly is associated to a medical condition in order to be
explored by thé’lan process to extract the interventions addressing it.



Figure 5.2: Depiction of the main classes and relationships with their cardinalities in the proposed Treatment Plan On
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To conclude, TPO is a generic representation that semantically formalizes the
medical interventions and patient context. It has been conceived to allow the med-
ical experts populating the decision rules through creating relations among TPO
instances, as well as to integrate existing knowledge sources. Thus, medical ex-
perts can easily update medical decision rules, which will be later reused by the
management processes. To this end, we propose in the next section a collabora-
tive semantic web platform that implements TPO to foster the development of the
knowledge reuse phase.

5.3.4 A Collaborative Semantic Web Platform for Medical
Knowledge Acquisition

One of the main challenges of acquiring knowledge is interacting with experts who
are not necessarily IT-experts. To hide the complexity of annotating the medical
interventions based on TPO, we developed a collaborative user-friendly platform
that allows medical experts transferring and sharing their medical knowledge. Sim-
ilar to the collaborative platform that we have developed for the annotation of the
wearable characteristics in chapter 4, the medical knowledge acquisition platform
is an instantiation of th&emantic Knowledge Mediatpattern, and it is based on

the same semantic web technologies (Semantic MediaWiki and Apache Fuseki).
We installed around 30 extensions to guarantee an easy interaction with the ex-
perts. Our collaborative semantic web platform integrates Openl‘DéEontrol

the access to the patient medical conditions. The aforementioned components are
deployed in virtual containers hosted in Proxmox as presented in Figure 5.3.

Figure 5.3: The main component of the proposed collaborative semantic web plat-
form

40OpenLDAP: http://www.openldap.org/
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The management processes consume the populated knowledge based on ex-
ible SPARQL queries enacted through restful web services using the Jersey API
to retrieve the required information from Fuseki. The elaborated SPARQL queries
are generic and rely on the TPO schema. They do not integrate speci ¢ conditions
related to the patient, which make them reusable.

In this thesis, we decided to instantiate our solution for hyperglycemia in type 2
diabetes in order to evaluate its usability by experts and its bene ts in managing the
patient treatment. Thus, the rst step consists in annotating the medical interven-
tions and strategies published by the American Diabetes Association (ADA) and
European Association for the Study of Diabetes (EASD) [188] based on TPO. Fig-
ure 5.4 depicts a snapshot of user-interfaces used to annotate simple and composite
medical interventions based on TPO. The user interface is personalized according
to the selected item. For instance, if the selected strategy is “monotherapy”, the
list of drugs is displayed; else the list of interventions is displayed. In case of
composite intervention, the list of drugs is automatically deduced from the simple
interventions composing it based on inference techniques. Once these annotations
are saved in the platform, they will be automatically stored in Fuseki and exposed
as linked data. These annotations will be reused by the management processes and
integrated with external knowledge sources for ne-grained decision.

Figure 5.4: Semantic MediaWiki for medical intervention annotation



Figure 5.5: An expert of TPO instantiation describing diabetes treatments
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Figure 5.5 portrays an excerpt extracted from the platform for the annotation
of “Metformin combined with sulfonylurea” which is speci ¢ for managing “hy-
perglycemia”. The shapes represent the instances of TPO classes, while the arrows
represent the relations among these instances. This intervention is ascribed to the
“Dual Combination” strategy, and it is composed of two simple interventions: the
“Metformin” and the “Sulfonylurea”. According to [188], this composed interven-
tion is selected if the “Metformin” fails to manage the patient blood sugar. This
statement is designed through the “HaslIntervenPrecondition” property. The con-
traindications of the “Metformin combined with sulfonylurea” are deduced from
the simple interventions composing it. For instance, the “Sulfa Allergy”, “Severe
renal insuf ciency” and “Alcoholism” are contraindications deduced from the “Sul-
fonylurea” intervention. Likewise, the list of drugs of this intervention as well as
their side effect are automatically deduced from its composite interventions (en-
coded from [188]: Figure 2 page 1371 and Table 1, page 1368).

In the next section, we delineate the planning algorithm that we propose to rea-
son on TPO and DrugBank to automate the personalization of the patient treatment.

5.3.5 Ontology-based Planning Algorithm for Treatment Per-
sonalization

A patient-centered approach refers pdviding care that is respectful of and re-
sponsive to individual patient preferences, needs, and values, and ensuring that
patient values guide all clinical decisiohg 88, 189]. In this context, we propose

a planning algorithm that meets the individual needs of each patient, while avoiding
contraindications and drugs interactions as well as minimizing side effects of the
medical interventions and the risk factors of developing new diseases. Figure 5.6
portrays the main steps for the generation of personalized recommendation for the
chronic disease management. The proposed work ow has been validated with the
medical expert.

Algorithm 1 represents a formalization of the proposed decision work ow that
operates on TPO and DrugBank instances. The algorithm is generic and does not
hardcode the medical decision rules and disease interventions. It takes as input: the
patient identi er {dp;), the list of detected anomalies sent by Amalysisprocess,
the TPO individuals and relations describing the medical intervention and medical
conditions, and the DrugBank knowledge base [12] describing medical interac-
tions. The rst step (Step 1) consists in initializing the parameters and extracting
the patient conditions (PC) including the medical conditions (MC), and current
treatments (PI). Then, the proposed planning algorithm proceeds with selecting,
among the possible interventions corresponding to the right strategy (1), the inter-
ventions that address the patient detected anomalies and do not contraindicate the
patient medical conditions (Step 2). Once the rst list of possible recommendations



5.3. A Prescriptive Cognitive System for Personalization 127

is established, the algorithm Iters these recommendations by eliminating the in-
terventions that interact with the patient current treatments, in case of comorbidity
(Step 3).

Figure 5.6: The work ow for personalizing treatment decision

At this stage, the DrugBank knowledge base is reused to detect drug interac-
tions. After that, the planning reorders the generated personalized recommenda-
tions according to the patient preferences (Step 4). Indeed, it is important to take
into consideration the patient preferences when elaborating the treatment [190].
The next step (Step 5') consists in eliminating the interventions those side effects
may amplify the patient medical conditions or diseases risk factors. If this step
returns recommendations, they will be automatically displayed (Step 6); else the
planning goes to Step 5” to reorder the interventions generated in Step 4 based on
the side effects and the disease risk factors. Finally, the algorithm consists in re-
turning the list of the personalized recommendations (Step 6) to the physician who
will select or propose the appropriate intervention.
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Algorithm 1 An ontology-based planning algorithm for patient treatment person-

alization

Input: idp;: the identi er of patient i;A= {azj,...,an; } /* the detected anomalies of patiédp; */
Data: Ontology functions (TPO individuals and relations); DrugBank Knowledge Base
Output: the list of the ranked personalized interventions

[*Stepl. Initialization: Information Extraction */
PC GetPatientConditiondp;) /*PC={pci,...,pCm } m 1*/
MC GetPatientMedicalConditioitp; ) /*MC={mc1,...,mc;} | 1*
Pl GetPatientCurrentTreatmeiotf; )/*Pl={pi1,...,pit} t 1%/
Strategy GetPatientNextStrateggf; )/*Get the Next Strategy*/
| Extractinterventions(disease, Strategy¥/{l1,...,Iv}v 1*
/*Step2. Extract interventions addressing the detected anomalies and belonging to the next strategy while avoiding
contraindications*/
Selectedinterv empty_array;
h=0;
fora2 A do
81 j v1 k|
if ((relatedTo(a, mcy)8 ;) " (IsSpecicToMC(;, mck)é ;) ~ (HasPreconditioni() PC) ~
((HasContralndication(j )\ PC =3 )) then
Selectedinterv[h] [j;
h=h+1;
end
end
*Step3. Avoid Interactions by referring to DrugBank Knowledge Sourcé/
for st 2 Selectedinterv do
81 k size(Pl)
if (dr:ddi-interactor-in(st,pix )6 ;)) then
| removestfrom SelectedIntery
end

~

end

/*Step4. Ranking the interventions according to patient preferenc#
size=length(SelectedInterv)-1;
x=0;
PrefRankedInterventionsempty_array;

for p 2 Personalizedinterv do
[*Extract the list of drugs included in the intervention p*/

D IncludeDrug(p);

if @2 D, HasRouteofAdministration(dHasDrugPreferencédp;)=; then
‘ PrefRankedInterventions[size]p;

size=size-1;
else
PrefRankedInterventions[x] p;
X=X+1,;
end
end

/*Step5'&5”. Filter the interventions those side effects amplify the patient condition or their risk factors*/
PersonalizedInterventions empty_array;
RankedInterventionsWithSideEffectsempty_array;
n=0;
b=0;
for st 2 PrefRankedInterventions do

if ((HasSideEffect(st)PC6 ;) _ (HasSideEffect(st)HasRiskFactonfick )6 ;)) then
‘ RankedInterventionsWithSideEffects[bt;

b=b+1;
else
PersonalizedInterventions[n]st;
n=n+1;
end
end

/*Step6. The nal personalized recommendationy
if PersonalizedInterventioBs; then
| return (P ersonalizedInterventions );
else
return (RankedlInterventionsW ithSideEffects );

end
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5.4 Clinical Evaluation

During the evaluation, we collaborated with an endocrinologist from the “Hedi
Chaker Hospital” in Sfax-Tunisia to validate the ef ciency of the proposed TPO
and the planning algorithm. We identi ed with the medical expert two use cases
and we referred to the literature to illustrate the algorithm behavior. For each use
case, we provide a description of the patient pro le, we detail the execution of the
proposed planning algorithm and nally compare what the system generates to the
medical expert's advice. It is worth noting that the list of drugs annotated in the
semantic platform are extracted from [188] Table 1, page 1368.

54.1 UseCasel

Patient Pro le. The use case describes a 61 years old women. She has had dia-
betes since 2008. The patient is not obese and no family history has been reported.
Her medical history includes hypertension treated with Valsartan and hypercholes-
terolemia treated with Atorvastatin. On physical exam, her weight was equal to
67 kg and her BMI was 23.6 kg?. Her rst HbA1C was equal to 6.7% and
clearance was equal to 60ml/min. She does not present any complication from her
diabetes and does not have any preference. The patient HbAlc target goal is xed
by the physician to 7%. As a rst treatment, the physician prescrilbéetformin
combined with sulfonyluréa

During taking the following treatments, the next measurement of the HbA1C
reveals 7.9%, which is greater than the patient goal, and the measurement of the
clearance is equal to 25ml/min; which reveals a severe renal impairment. Thus, an
adaptation of the patient treatment is required.

Simulation of the Planning ProcessThe patient is taking “Metformin combined

with sulfonylurea” which is a dual combination. According to the encoded medical
knowledge, the next strategy can be “dual combination” by modifying the drugs
combination, “triple combination” by adding a third drug or “Insulin Injection”.

As the patient has severe renal insuf ciency (clearance < 30ml/min), the drug-
based interventions are systematically avoided. This rule has been encoded in TPO
through considering “severe renal insuf ciency” as contraindication of the diabetes
drug-based interventions (see Figure 5.5). Moreover, as presented in Figure 5.7, no
drug interaction has been detected. Thus, the possible interventions are “One In-
sulin” or “Multiple Insulin Daily Dose”. When discussing with the medical expert,
she claims that the patient was treated with “Multiple Insulin Daily Dose”, and
validates the reasoning of the planning algorithm.
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Figure 5.7: The ordered personalized treatments for use case 1

5.4.2 Use Case 2

Patient Pro le. A 42 years old woman has had type 2 diabetes for 7 years. The
family history includes obesity and diabetes. Her medical and surgical history in-
cludes hypertension treated with Methyldopa (Aldomet) and dyslipidemia treated
with brates (Gem brozil). Five years ago, she was diagnosed with phlebitis
(Thrombose veineuse) treated with Acenocoumarol (sintrom). On physical exam,
her weight is 115 kg, height is 1.52 m, and her BMI is 49.hk&/Her blood pres-
sure is 140/70 mm Hg. She has no acanthosis nigricans or skin tags on the neck.
The patient prefers oral drug. Her blood sugar (fasting) was 3.5 g/l and HbAlc is
equal to 9.5%. The HbA1C patient goal has been xed by the physician to 7%.
The current diabetes treatment is based on Metformin 850 mg (three times
daily) while following a Diet. During taking the following treatment, the HbAlc
reaches 9% which is greater than the xed objective. Thus, it is important to adapt
the patient treatment.

Simulation of the Planning Process.The enactment of the proposed algorithm
starts rst with extracting the patient information like the medical conditions and
current treatments. In this use case, the patient is taking a monotherapy inter-
vention to treat diabetes. So, the algorithm selects the interventions that belong
to the “Dual Combination” and do not contraindicate with the patient conditions
(see Figure 5.8). After that, the algorithm proceeds with detecting and eliminating
interactions that may take place with the patient current treatments. Three interac-
tions have been detected. The “Metformin+TZD” intervention has been eliminated
from the list of recommendation because both the “Pioglitazone” and the “Rosigli-
tazone”, which are drugs of the Thiazolidinedione, interact with “Gem brozil”.
Likewise, the “Exenatide” drug is eliminated from the list of the proposed drugs
corresponding to “GLP-1 receptor agonist” (the last recommendation). The ob-
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tained interventions are reordered according to the patient preference, the interven-
tion side effect and disease risk factors. The nal result is portrayed in Figure 5.8.
When discussing with the medical expert to evaluate the generated recommenda-
tions, the expert chooses “Metformin combined with sulfonylurea” and selects as
drugs “Metformin” with “Glimepiride”.

Figure 5.8: The ordered personalized treatments for use case 2

5.4.3 Use Case 3 from Clinical Diabetes Journal

We referred to a case study published in the Clinical Diabetes journal [191] in order
to simulate the planning algorithm.

Patient Pro le. A 67-year-old African-American man has had type 2 diabetes for
11 years. He was diagnosed incidentally through laboratory testing. Metformin
was initiated at diagnosis and eventually titrated to his current dose of 1000 mg
twice daily. The patient is self-referred to the clinic for help with blood glucose
management. He checks his blood glucose once daily fasting. His medical and sur-
gical history includes hypertension treated with lisinopril, hyperlipidemia treated
with pravastatin, right-knee osteoarthritis, a right hip replacement at the age of 61
years, pneumothorax at the age of 35 years, and benign prostatic hypertrophy. He
has no complications from his diabetes. On physical exam, his BMI is 3fi%g/

He has no acanthosis nigricans or skin tags on the neck. He has no peripheral
neuropathy. His liver and kidney functions are normal, and urine microalbumin is
negative. The HbA1C patient goal has been xed by the physician to 7%. During
taking the Metformin, the laboratory testing of the HbA1C (A1C) reveals 7.5%,
which requires adjusting the patient treatment.
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Simulation of the Planning ProcessThe enactment of the proposed algorithm is
presented in Figure 5.9. The patient is following a “monotherapy” intervention,
so the next strategy to be followed is the “Dual Combination”. The algorithm ex-
tracts the list of interventions that belong to the “Dual Combination” and do not
contraindicate the patient conditions. The next step focuses on avoiding the inter-
ventions that interact with the patient current treatment (Lisinopril and Pravastatin).
In this use case, no interaction has been detected. So, the algorithm proceeds with
ordering the selected interventions based on the patient preference (Oral). Then,
it eliminates the interventions those side effects may amplify the patient medical
conditions or emphasis the diabetes risk factors. The patient has obesity and hy-
pertension history, so interventions that include the Thiazolidinediones (TZD) are
avoided, because it may cause weight gain and heart failure. Moreover, the patient
is at early stage of the hyperglycemia, thus, interventions that may cause hypo-
glycemia such as the Insulin and Sulfonylurea should be avoided.

Figure 5.9: The ordered personalized treatments for use case 3

Hence, the algorithm retains two recommendations: ki¢tformin combined
with DPP-4-inhibitor’ (oral drugs) and (2) Metformin combined with GLP-1 re-
ceptor agonists(oral+injection), which are ranked according to the patient pref-
erence (oral). Our algorithm proposes for each intervention the list of drugs which
do not interact with the patient's current treatments. It is the role of the physician
to select the combination of drugs. It is worth mentioning that the enactment of
the proposed algorithm is limited to Step 5', since the algorithm is able to nd the
recommendations that t the patient needs. The proposed recommendations are
consistent with what the use case claims [191]. Moreover, we validated the result
with the medical expert with who we collaborated in the aforementioned use cases.
The medical expert claims that the rst recommendation should be retained.

It is axiomatic that integrating DrugBank, which describes around 62,229 drug-
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drug interactions, within the decision algorithm is crucial to generate personalized
decisions and avoid health complications. However, its integration leads to addi-
tional cost that may impact the system performance in terms of response time. In
the next section, we evaluate the impact of integrating DrugBank into the planning
algorithm.

5.5 Performance Evaluation

Despite the ability of generating personalized treatment, it is important to evaluate
the planning performance in terms of response time and scalability management,
especially when integrating external knowledge sources such as DrugBank. To
this end, at a rst stage, we simulated a set of scenarios that have been conducted
on the following machine hardware con guration: memory 12GB; processor In-
tel(R) Core(TM) i7-2640M CPU@2.80GHz; and 64-bit Windows 7 operating sys-
tem. We installed Proxmox on this machine and we created two virtual contain-
ers, hosting Ubuntu operating system. We attributed 6.5GB of memory to Prox-
mox distributed on the created virtual containers as follow: (Fuseki, 1 CPU, 2GB)
and (Planning, 2CPU, 4GB). The Planning machine run the proposed planning al-
gorithm which aggregates TPO instances (17,606 triples), hosted in Fuseki, with
DrugBank which is hosted on an external server including around 1,376,989,061
triples.

We measured the response time of each use case presented in section 5.4
through using two approaches: (1) Online DrugBank Connection and (2) Drug-
Bank Caching. Within the rst approach, the planning algorithm connects to the
external server hosting DrugBank to extract at runtime the detected interactions.
While in the second approach, we de ned a cache, which is periodically updated,
storing the drug-drug interaction. Figure 5.10 portrays the response time of the
planning algorithm for each use case. We noted that the response time highly
depends on the complexity of the patient pro le and on the adopted approach
when integrating DrugBank. The caching approach is more ef cient and provides
faster response compared to the online connection, due to the network throughput
connection when detecting interactions. Moreover, one drawback within the on-
line connection is related to the availability and accessibility to DrugBank. If the
SPARQL endpoint is not available, the algorithm is not enacted.

Second, we evaluated the scalability of the system when processing concurrent
requests. Thus, we created multiple pro les similar to the use case 2, which is
complex and includes the detection of drug interactions. Then, we incrementally
increase the number of the simultaneous requests in order to (1) evaluate the ability

SExtracted from http://drugbank.bio2rdf.org/spargl in October 12, 2016
5Result extracted in October 12, 2016
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Figure 5.10: Evaluation of the planning response time per use case

of the system to process all requests and (2) and evaluate the average response time.
Similar to the previous evaluation, we used the online and caching approaches to
highlight the limitation of each one. Figure 5.11 portrays the system scalability and
response time when managing simultaneous requests. We noted that the approach
implementing the online connection to DrugBank is not scalable enough to support
the execution of more than 40 requests in parallel, while the approach implement-
ing a cache of the drug interactions may support the execution of 400 requests in
parallel. From this evaluation, we retained the DrugBank caching approach for the
planning and treatment personalization.

When running 400 requests in parallel, the average response time may reach
around 4 minutes to successfully process all the incoming requests. This measure-
ment is considered reasonable, when following a preventive approach for managing
the patient treatment through instantiating Brescriptive Cognitive Management
Patternand/or theAutonomic Cognitive Management Pattekhowever, it is con-
sidered as a delay if the proposed planning algorithm is used by physicians during
the consultation to get recommendations when adjusting the patient treatment.

We noted that, when running the experiments on a machine hosting proxmox
(Planning, 2CPU, 4GB), while using the caching approach, the response time ex-
ponentially increases if the number of concurrent requests increases (due to IT
resources constraint -memory and CPU). Thus, in complex systems where a high
number of planning requests are sent, the planning may take a long time to re-
spond, which is not recommended especially if we are managing patients with
severe medical conditions and requires timely interventions. Moreover, despite us-
ing Proxmox to virtualize the IT resources and allow the users sharing the cost, the
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system may fail processing all the incoming requests, if a big number of users are
simultaneously demanding the service with IT resources constraints.

Indeed, the planning response time depends on the algorithm complexity, the
implemented processing operations (used API and technologies), the complexity
of the patient pro le and the allocated IT resources (CPU and memory).

Figure 5.11: The impact of integrating DrugBank on system scalability & response
time

To provide better performance and guarantee scalability, we propose to offer
the planning algorithm as a service. Thus, we used the following powerful cloud
server: 8 Intel(R) Xeon(R) CPU D-1521@ 2.40GHz, 128 GB of memory, and 1.77
TiB of disk storage. We run different experiments with different CPU con gura-
tions. Table 5.2 provides the response time of the planning service with different
IT resources con guration. We hosted the same machines on a cloud server and
we increased the memory to 20GB. We run again the same scenarios and we noted
that increasing the memory potentially contributes to decreasing the response time
compared to the rst measurements as presented in Figure 5.12.

However, we found that the planning service slows down when receiving a high
number of concurrent requests. For instance, within 2CPU, the average time for
processing 4000 concurrent requests is around 18 minutes. Moreover, we noted that
the 2CPU are fully used, and even the system presents congestion when managing
the requests, which explains the delay when receiving the answers. Thereby, we
varied the CPU con guration of the planning machine from 2CPU, to 4CPU and
then to 6CPU. And, we observed the performance of the planning service regarding
the response time. We noted that increasing the CPU limits drastically decrease the
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response time. For instance, with 6CPU, the planning service is able to process the
4000 received requests 2.7 times faster than using only 2CPU on the cloud.

Planning Response Time in second

on-premises on the cloud
Number of | Cong Congl Con g2 Con g3
concurrent | (2CPU/4GB) | (2CPU/20GB) | (4CPU/20GB)| (6CPU/20GB)
requests
1 1.763 1.457 1.214 0.671
10 10.769 6.502 3.694 2.525
40 45.492 19.08 10.307 6.468
50 59.036 24.514 12.098 8.279
100 86.898 35.443 19.793 13.436
200 135.035 69.192 31.918 23.532
350 219.391 110.149 59.003 29.536
400 244.884 129.39 66.007 45.036
500 294.765 156.565 79.835 54.444
1000 580.92 294.696 152.962 103.151
4000 2359.133 1111.086 566.076 400.956

Table 5.2: Planning performance evaluation based on the allocated IT resources

Figure 5.12: Impact of the CPU con guration on the planning performance
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Consequently, nding a trade-off between IT cost and response time depends
on the system requirements:

If the planning service will be used within tH&rescriptive Cognitive Man-
agement Patterior the Autonomic Cognitive Management Pattéranning

in the background) in order to prevent patient health complications, both
Con gl and Con g2 are acceptable, especially that the IT cost is shared
with the users.

If the system requires faster response, for example when managing patients
with advanced stage of the disease, the Con g 3 with 6CPU can be selected.
In this case, the response time is decreased and the system is able to simul-
taneously serve 4000 change requests in around 7 minutes.

If the planning service is intended to interact with the physicians at real-time,
during the consultation for example, it is important in this case to provide
faster response. So, in this case, the selection of the appropriate con gu-
ration depends on the number of the subscribed physicians to the service.
For instance, if the number of physicians does not exceed 50, all users can
share the same instance within the Con g3. Thus, the response time does
not exceed 9 seconds and the cost is shared among the users. In case of more
complex system, where many physicians are subscribed, multiple instances
of the planning should be offered as a service and shared by group of users
according to the required response time.

5.6 Conclusion

To go towards a prescriptive cognitive management of the patient treatment, 10T-
based systems should collaboratively interact with the domain experts in order to
acquire the know-how, and in turn, assist them with the right decision at the right
time based on cognitive capabilities.

Thus, in this chapter, we mainly concentrated in detailing the procedural knowl-
edge and the plan process within the prescriptive cognitive management pattern
for the adaptation and personalization of the patient treatment. Thus, we collab-
orated with medical experts to identify a exible and generic ontological model,
named TPO, describing the medical interventions for the management of chronic
diseases. TPO has been instantiated and specialized for managing hyperglycemia
in type 2 diabetes in order to evaluate its exibility when reasoning to generate the
right treatment based on the patient pro le. We proposed an ontology-based plan-
ning algorithm that integrates TPO with DrugBank in order to generate personal-
ized decisions. We demonstrated the ef ciency of the proposed planning algorithm
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through three real use cases that have been validated with the medical expert. Like-
wise, we evaluated its performance through measuring the average response time,
and its scalability on the cloud. Finally, we provided some recommendations that
help selecting the appropriate IT con guration based on the system requirements.



CHAPTERG
Conclusion and Perspectives

“Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.”

- Antoine de Saint-Exupery
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In this chapter, we rstly provide a summary of the main contributions and results
accomplished during this PhD thesis. Then, we present a set of enhancements and
give an insight into new research directions that enrich this work.

6.1 Conclusion

Nowadays, the Internet of Things (IoT) phenomenon is fast gaining momentum and

touches different applicative domains. Its speed of adoption is creating challenges
for IT professionals due to the increased number of connected things as well as
their heterogeneity. Given, that these challenges impede the integration of IoT-

based systems for better business bene ts, this PhD thesis comes to provide new
solutions that foster the development of smart loT-based systems, particularly in

the healthcare application domain. The achieved work is summarized below.

Autonomic Cognitive 10T Design Patterns

The sheer scale and design complexity of loT-based systems lead us to propose a
set of design patterns that drive the architect providing exible 10T architecture. In
this sense, chapter 3 de nes a model-driven methodology for the design of smart
loT-based systems. The proposed methodology adopts different re nement levels
that allows incrementally incorporating the system requirements through model-
ing the interactions among management processes and knowledge sources. The
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proposed design patterns represent the core of our methodology. They have been
proposed to deal with the system functional requirements through delineating the
coordination of the management processes and their interactions with human; and
the system non-functional requirements through ensuring the semantic integration,
and managing big data and scalability issues. The proposed patterns are classi ed
into three levels:

Management Processes' Coordination level

— Knowledge patterrt Inspired from the human memory model, this pat-
tern organizes the knowledge for the smart management of loT-based
systems through composing it into sub-componei@snsoryKnowl-
edge ContextKnowledgandProceduralKnowledge

— Cognitive Monitoring Management pattern: This pattern enables the
interaction of 10T systems with human. It identi es a bidirectional
interaction: loT-Human interactiorto visualize the data, extract new
insights and receive noti cations in case of context changes; and the
Human-loT interactionto manage the system through modifying its
context and allow the loT-based system learning from experts and ac-
quiring knowledge. Only the monitoring process is automated.

— Predictive Cognitive Management pattern It extends the Cognitive
Monitoring Management pattern through modeling the coordination be-
tween the monitoring, the analysis processes and the expert. It also de-
lineates the interaction of the management processes with the sensory
and context knowledge in order to generate new knowledge about the
managed element.

— Prescriptive Cognitive Management pattern This pattern coordi-
nates the monitoring, the analysis and the plan processes, while inter-
acting with the experts. It incorporates new mechanisms that allow the
loT-based system generating recommendations to assist the experts in
taking business decisions.

— Autonomic Cognitive Management pattern To manage at runtime
the system requirement evolution, this pattern proposes the dynamic
discovery of management processes based on the system context. The
dynamic discovery is achieved based on KMenagement Process On-
tologywhich describes the characteristics of the processes and the con-
ditions for their activation. This pattern can be combined with the afore-
mentioned patterns in order to manage unforeseen requirements. The
expert is always kept in the loop to validate the execution of the discov-
ered processes and the generated plans.
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Semantic Integration level

— Semantic Knowledge Mediator pattern This pattern proposes a so-
lution to enable the collaboration among the machines (loT devices),
the human and the management processes based on semantic models
describing the sensory, context and procedural knowledge. Thus, it
guarantees the integrability as well as the knowledge sharing and reuse.

Big Data & Scalability Management level

— Big Data Stream Detection pattern This pattern extends th@ogni-
tive Monitoring Managemertb support data velocity, and specialize it
for data stream processing. Thus, it delineates the monitoring process
into sub-processes that understand and curate the received data, and
retain attention.

— Big Data Analytic Predictive pattern: This pattern extends there-
dictive Managemertb support the big data management for batch pro-
cessing. This pattern is also inspired from the human brain informa-
tion processing: it imports data from external database into a tempo-
rary database (short-term memory), applies parallel batch-processing to
harmonize the data and store it in clusters (long term memory). Then,
this pattern introduces parallel data analytic service that may implement
machine learning operating on the harmonized data clusters to generate
new knowledge.

— Multi-tenant Management Process pattern This pattern is intro-
duced to manage the system scalability and cost. Based on cloud com-
puting principles, this pattern delineates the deployment of the manage-
ment processes as well as the knowledge components. Thus, the tenants
(i.e. consumers) may share or not the same processes with customized
con guration, depending on the system requirements.

These patterns form the basis for designing and developing exible smart IoT-
based systems. The deployment of the proposed management processes and knowl-
edge components requires a scalable platform that considers big data and data
heterogeneity management. Thus, our second contribution focuses on offering a
semantic cloud-based big data platform, named Knowledge as a Service.

Knowledge as a Service

Our KaaS extends the NIST cloud computing reference architecture with a new
layer that aims at integrating heterogeneous data sources deployed on the cloud to
generate new knowledge offered as a service. To deal with big data challenges,
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our KaaS implements the NIST big data reference architecture identifying the fol-
lowing processes: data collection, data curation, analytics, visualization and ac-
cess control. To manage the data heterogeneity, our proposed KaaS extends the
NIST big data reference architecture with a semantic layer which includes the dif-
ferent knowledge components proposed in the Knowledge pattern. The proposed
Kaas is generic and can be instantiated for any domain. In this thesis, we are in-
terested in healthcare as an application domain, more precisely the patient health
management. Thus, we proposed within the Ka&sgnitive Monitoring System

which is the combination of th€ognitive Monitoring Managemenmattern, the

Big Data Stream Detectiopattern and the Semantic Knowledge Mediator pattern,

for managing the patient health based on data stemming from wearable devices.
So, domain ontologies describing the sensory, context and procedural knowledge
are elaborated and integrated within the semantic layer. These semantic models are
delineated in Chapter 4 and Chapter 5.

Wearable Healthcare Ontology

Chapter 4 proposed thW&earable Healthcare OntologWH_O) to foster the inte-
gration of heterogeneous data stemming from wearable devices. It is the foremost
element which allows the proposé&tbgnitive Monitoring Systeranderstanding

the meaning of the received data, as well as its structure. It reuses and extends IoT-
O to support the wearable healthcare management as well as some concepts related
to the patient context in order to generate personalized detection. Contrarily to ex-
isting works which store the observations in the ontology, our KaaS platform refers
to the WH_O to understand and curate the observations, and then, store the har-
monized data in big data clusters. In order to annotate the wearable devices based
on WH_O, chapter 4 presented a collaborative semantic web platform based on
Semantic Mediawiki. This platform represents an implementation oS#raantic
Knowledge Mediatopattern. To evaluate the performance of the proposed cogni-
tive monitoring system based on WH_O, we followed different KaaS con guration
based on théulti-tenant Management Procegsittern in order to illustrate the
ability of our KaaS to satisfy the system non-functional requirements.

Treatment Plan Ontology

Chapter 5 complements chapter 4 through enrichin@tbgnitive Monitoring Sys-
temwith new cognitive components and management processes in order to allow
the loT-based systems assisting the physicians through generating personalized
treatment at the right time. This enhancement leads to the productiofPd-a
scriptive Cognitive Systemvhich combines the patterns used for the design of the
Cognitive Monitoring System with thBrescriptive Cognitive Managemepsttern
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to automate the decision making and tBemantic Knowledge Mediatgattern

to describe the procedural knowledge (medical interventions). Thus, a semantic
formalization of the medical interventions and their granular characteristics is pre-
sented through the TPO model in order to allow the loT-based systems reasoning
to automate the treatment personalization. To acquire the medical interventions,
we elaborated a collaborative Semantic Web platform implementin§engantic
Knowledge Mediatoto interact with the medical experts based on user-friendly
interfaces. Furthermore, we proposed an ontology-based planning algorithm to
integrate TPO with DrugBank for generating personalized recommendations. Fol-
lowing the Multi-tenant Management Procepsattern, we evaluated the proposed
planning service from the clinical and performance perspectives, and we provided
a set of recommendations concerning the IT con guration according to the system
requirements.

6.2 Perspectives

Research conducted during this PhD thesis helped addressing challenges which
hinder the development of smart loT-based systems. The outcomes of our research
work open important and interesting research perspectives. Some of them are listed
below.

Automate the Model Transformation

In this thesis, we proposed in chapter 3 a model-driven methodology for the

design of smart loT-based systems. Within this methodology, we de ned a

set of design patterns that satisfy both functional and non-functional require-

ments. We propose, as an extension of our work, the elaboration of a set of
transformation rules that automatically re ne the loT-based system design

based on the system requirements.

Optimization of the IT resources Allocation

In this thesis, during the evaluation phase, we illustrated the importance of
providing a well-adapted con guration of IT resources and distributed ar-
chitecture instance in order to cope with the system non-functional require-
ments. As extensions to the proposed KaaS platform, automatic con gura-
tion and recon guration decision models should be elaborated to dynami-
cally manage the KaaS allocated IT resources based on the system require-
ments and context observations.

Automate Tacit Knowledge Acquisition

The collaborative methodology, which has been proposed in chapter 5 to
extract the medical knowledge, aims mainly at formalizing the knowledge
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structure and decision rules based on ontology to provide more exible man-
agement. To acquire the medical knowledge, we have developed a semantic
web platform offering user-friendly interface to facilitate the interaction with
medical experts. To reduce the medical experts' efforts, we propose adding
new cognitive features based on Natural Language Processing (NLP) tech-
niques to extract the medical interventions from available text documents and
annotate this knowledge based on TPO. Thus, the medical experts will vali-
date/adjust the acquired knowledge before being used by the plan process.

Heuristic Approach for Personalizing the Patient Treatment

Current proposed planning algorithm doesn't consider the drug-doses when
generating recommendations. Therefore, as an extension, we propose en-
riching the planning algorithm with machine learning and optimization ca-
pabilities in order to be able to calibrate the drug-doses. However, this per-
spective is constrained by the availability of medical databases describing the
patients' pro les and their treatments.



APPENDIXA

Appendix

This appendix portrays the proposed ontologies using the ProtégéV@Wiyin

that offers user-oriented visualization of ontologies on protégé. The circle repre-
sents the ontology class, the arrow linking two circles represents the object prop-
erty, and the green rectangle represents the data property of the class, while the
yellow rectangle represents its type.

Figure A.1: MPO visualization using VOWL

http://vowl.visualdataweb.org/protegevowl.html
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Figure A.2: WH_O visualization using VOWL

Figure A.3: TPO visualization using VOWL
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