A. Einstein and L. Infeld, The Evolution of Physics, 1938.

P. Kok, Linear optical quantum computing with photonic qubits, Reviews of Modern Physics, vol.64, issue.1, pp.135-174, 2007.
DOI : 10.1063/1.1558952

URL : http://arxiv.org/pdf/quant-ph/0512071

S. L. Braunstein and P. Van-loock, Quantum information with continuous variables, Reviews of Modern Physics, vol.87, issue.2, pp.513-577, 2005.
DOI : 10.1103/PhysRevLett.71.4287

T. Ralph and G. Pryde, Optical Quantum Computation, Progress in Optics, vol.54, issue.78, 2010.
DOI : 10.1016/S0079-6638(10)05409-0

S. Pirandola, Continuous-versus discrete-variables at metropolitan distances, Nat. Photon, vol.9, pp.773-775, 2015.

S. Takeda and A. Furusawa, Principles and Methods of Quantum Information Technologies, chap. Optical Hybrid Quantum Information Processing, pp.439-458, 2016.

S. Yokoyama, Nonlocal quantum gate on quantum continuous variables with minimal resources, Physical Review A, vol.90, issue.1, p.12311, 2014.
DOI : 10.1103/PhysRevA.49.1567

P. Van-loock, Hybrid quantum computation in quantum optics, Physical Review A, vol.78, issue.2, p.22303, 2008.
DOI : 10.1103/PhysRevA.73.052320

G. Qi, C. Liu-yong, W. Hong-fu, and Z. Shou, Universal quantum computation using all-optical hybrid encoding, Chin. Phys. B, vol.24, issue.120, p.40303, 2015.

U. L. Andersen, J. S. Neergaard-nielsen, P. Van-loock, and A. Furusawa, Hybrid discrete-??and continuous-variable quantum??information, Nature Physics, vol.1, issue.9, pp.713-719, 2015.
DOI : 10.1103/PhysRevLett.93.130409

A. Ourjoumtsev, R. Tualle-brouri, J. Laurat, and P. Grangier, Generating Optical Schrodinger Kittens for Quantum Information Processing, Science, vol.312, issue.5770, pp.83-86, 2006.
DOI : 10.1126/science.1122858

J. S. Neergaard-nielsen, B. Melholt-nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, Generation of a Superposition of Odd Photon Number States for Quantum Information Networks, Physical Review Letters, vol.11, issue.8, p.83604, 2006.
DOI : 10.1126/science.1122858

S. Deléglise, Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature, vol.32, issue.7212, pp.510-514, 2008.
DOI : 10.1038/nature07288

E. Bimbard, Homodyne Tomography of a Single Photon Retrieved on Demand from a Cavity-Enhanced Cold Atom Memory, Physical Review Letters, vol.112, issue.3, p.33601, 2014.
DOI : 10.1038/nphys1773

URL : https://hal.archives-ouvertes.fr/hal-00951366

K. Nemoto and W. J. Munro, Nearly Deterministic Linear Optical Controlled-NOT Gate, Physical Review Letters, vol.21, issue.25, p.250502, 2004.
DOI : 10.1364/OL.21.001936

S. Lloyd and S. L. Braunstein, Quantum Computation over Continuous Variables, Physical Review Letters, vol.70, issue.8, pp.1784-1787, 1999.
DOI : 10.1063/1.118224

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. Van-loock, Quantum computing with continuous-variable clusters, Physical Review A, vol.79, issue.6, p.62318, 2007.
DOI : 10.1103/PhysRevLett.97.130502

P. Marek, R. Filip, and A. Furusawa, Deterministic implementation of weak quantum cubic nonlinearity, Physical Review A, vol.84, issue.5, p.53802, 2011.
DOI : 10.1103/PhysRevLett.90.117901

O. Morin, Witnessing Trustworthy Single-Photon Entanglement with Local Homodyne Measurements, Physical Review Letters, vol.110, issue.13, p.130401, 2013.
DOI : 10.1103/PhysRevA.71.022313

URL : https://hal.archives-ouvertes.fr/hal-00848625

S. Takeda, T. Mizuta, M. Fuwa, P. Van-loock, and A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Nature, vol.96, issue.7462, pp.315-318, 2013.
DOI : 10.1103/PhysRevLett.96.020502

P. Van-loock, Hybrid Quantum Repeater Using Bright Coherent Light, Physical Review Letters, vol.96, issue.24, p.240501, 2006.
DOI : 10.1364/OL.30.001725

S. Takeda, M. Fuwa, P. Van-loock, and A. Furusawa, Entanglement Swapping between Discrete and Continuous Variables, Physical Review Letters, vol.114, issue.10, p.100501, 2015.
DOI : 10.1103/PhysRevX.3.041028

K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum-information processing, Physical Review A, vol.2, issue.6, p.62325, 2010.
DOI : 10.1103/PhysRevA.60.1888

URL : http://arxiv.org/pdf/1007.1279

J. A. Zieli?ska, F. A. Beduini, V. G. Lucivero, and M. W. Mitchell, Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics, Optics Express, vol.22, issue.21, pp.25307-25317, 2014.
DOI : 10.1364/OE.22.025307

O. Morin, Remote creation of hybrid entanglement between particle-like and wave-like optical qubits, Nature Photonics, vol.9, issue.7, pp.570-574, 2014.
DOI : 10.1038/nphys2681

URL : https://hal.archives-ouvertes.fr/hal-00906653

O. Morin, Non-gaussian states and measurements for quantum information, A. & Chuang, I. L. Quantum Computation and Quantum Information, vol.23, issue.7, pp.1066655-1066658, 2000.
URL : https://hal.archives-ouvertes.fr/tel-01066655

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light, 2010.
DOI : 10.1017/CBO9780511778261

S. Barnett and P. Radmore, Methods in theoretical quantum optics, 1997.
DOI : 10.1093/acprof:oso/9780198563617.001.0001

R. Loudon, The quantum theory of light, 2000.

S. Haroche and J. Raimond, Exploring the quantum: atoms, cavities, and photons, 2006.
DOI : 10.1093/acprof:oso/9780198509141.001.0001

R. Jozsa, Fidelity for Mixed Quantum States, Journal of Modern Optics, vol.135, issue.12, pp.2315-2323, 1994.
DOI : 10.1002/0471200611

Z. Chen, J. Pan, G. Hou, and Y. Zhang, Maximal Violation of Bell???s Inequalities for Continuous Variable Systems, Physical Review Letters, vol.403, issue.4, pp.40406-40413, 2002.
DOI : 10.1038/35000514

R. Filip and L. Mi?ta, Violation of Bell???s inequalities for a two-mode squeezed vacuum state in lossy transmission lines, Physical Review A, vol.61, issue.4, pp.44309-44316, 2002.
DOI : 10.1103/PhysRevA.61.052101

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering, Physical Review A, vol.1, issue.1, pp.10301-10309, 2012.
DOI : 10.1103/PhysRevLett.23.880

L. K. Shalm, Strong Loophole-Free Test of Local Realism, Physical Review Letters, vol.18, issue.25, pp.250402-250410, 2015.
DOI : 10.1103/PhysRevA.91.032105

URL : http://doi.org/10.1103/physrevlett.115.250402

M. Giustina, Significant-Loophole-Free Test of Bell???s Theorem with Entangled Photons, Physical Review Letters, vol.1, issue.25, p.250401, 2015.
DOI : 10.1103/PhysRevLett.112.110405

URL : http://doi.org/10.1103/physrevlett.115.250401

B. Hensen, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature, vol.484, issue.7575, pp.682-686, 2015.
DOI : 10.1038/nature11023

U. Leonhardt, Measuring the quantum state of light, pp.10-27, 2006.

R. L. Hudson, When is the wigner quasi-probability density non-negative?, Reports on Mathematical Physics, vol.6, issue.2, pp.249-252, 1974.
DOI : 10.1016/0034-4877(74)90007-X

E. Schrödinger, Die gegenw???rtige Situation in der Quantenmechanik, Die Naturwissenschaften, vol.23, issue.48, pp.807-812, 1935.
DOI : 10.1007/BF01491891

K. Huang, L. Jeannic, H. Ruaudel, J. Morin, O. Laurat et al., Microcontroller-based locking in optics experiments, Review of Scientific Instruments, vol.85, issue.12, pp.123112-123133, 2014.
DOI : 10.1364/OE.21.011546

URL : http://arxiv.org/pdf/1409.3675

J. Laurat, Etats non classiques et intrication en variables continues à l'aide d'un oscillateur paramétrique optique, p.7442, 2004.

O. Morin, Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators, Journal of Visualized Experiments, vol.87, issue.87, pp.51224-51250, 2014.
DOI : 10.3791/51224

R. Kumar, Versatile wideband balanced detector for quantum optical homodyne tomography, Optics Communications, vol.285, issue.24, pp.5259-5267, 2012.
DOI : 10.1016/j.optcom.2012.07.103

A. I. Lvovsky, Iterative maximum-likelihood reconstruction in quantum homodyne tomography, Journal of Optics B: Quantum and Semiclassical Optics, vol.6, issue.6, p.556, 2004.
DOI : 10.1088/1464-4266/6/6/014

URL : http://arxiv.org/pdf/quant-ph/0311097v2.pdf

A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Reviews of Modern Physics, vol.55, issue.1, pp.299-332, 2009.
DOI : 10.1111/j.1749-6632.1995.tb38959.x

URL : http://arxiv.org/pdf/quant-ph/0511044

O. Morin, C. Fabre, and J. Laurat, Experimentally Accessing the Optimal Temporal Mode of Traveling Quantum Light States, Physical Review Letters, vol.111, issue.21, pp.213602-213632, 2013.
DOI : 10.1038/nphoton.2010.6

URL : https://hal.archives-ouvertes.fr/hal-00848077

A. D. White, Frequency stabilization of gas lasers, IEEE Journal of Quantum Electronics, vol.1, issue.8, pp.349-357, 1965.
DOI : 10.1109/JQE.1965.1072246

R. W. Drever, Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

D. A. Shaddock, M. B. Gray, and D. E. Mcclelland, Frequency locking a laser to an optical cavity by use of spatial mode interference, Optics Letters, vol.24, issue.21, pp.1499-1501, 1999.
DOI : 10.1364/OL.24.001499

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Generation of Squeezed States by Parametric Down Conversion, Physical Review Letters, vol.21, issue.20, pp.2520-2523, 1986.
DOI : 10.1109/JQE.1985.1072640

T. Eberle, Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection, Physical Review Letters, vol.9, issue.25, pp.251102-251144, 2010.
DOI : 10.1364/OPEX.13.007516

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, 30 years of squeezed light generation, Physica Scripta, vol.91, issue.5, pp.53001-53043, 2016.
DOI : 10.1088/0031-8949/91/5/053001

URL : http://doi.org/10.1088/0031-8949/91/5/053001

W. P. Bowen, Experimental investigation of continuous-variable quantum teleportation, Physical Review A, vol.84, issue.3, pp.32302-32344, 2003.
DOI : 10.1103/PhysRevLett.84.2722

J. Aasi, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics, vol.11, issue.8, pp.613-619, 2013.
DOI : 10.1088/1367-2630/11/7/073032

F. Dell-'anno, S. De-siena, and F. Illuminati, Multiphoton quantum optics and quantum state engineering, Phys. Rep, vol.428, pp.53-168, 2006.

K. Huang, Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources, Physical Review Letters, vol.115, issue.2, pp.23602-23644, 2015.
DOI : 10.1103/RevModPhys.75.715

I. A. Walmsley, Quantum optics: Science and technology in a new light, Science, vol.342, issue.6164, pp.525-530, 2015.
DOI : 10.1126/science.1246164

R. Hadfield, Single-photon detectors for optical quantum information applications, Nature Photonics, vol.91, issue.12, pp.696-705, 2009.
DOI : 10.1080/09500340408235283

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications, Superconductor Science and Technology, vol.25, issue.6, pp.63001-63043, 2012.
DOI : 10.1088/0953-2048/25/6/063001

URL : http://iopscience.iop.org/article/10.1088/0953-2048/25/6/063001/pdf

K. M. Rosfjord, Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating, Optics Express, vol.14, issue.2, pp.527-534, 2006.
DOI : 10.1364/OPEX.14.000527

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array, Optics Express, vol.21, issue.2, pp.1440-1447, 2013.
DOI : 10.1364/OE.21.001440

S. Miki, T. Yamashita, H. Terai, and Z. Wang, High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler, Optics Express, vol.21, issue.8, pp.10208-10214, 2013.
DOI : 10.1364/OE.21.010208

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, Superconducting a-WxSi1???x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm, Applied Physics Letters, vol.98, issue.25, pp.251105-251148, 2011.
DOI : 10.1364/OPEX.14.000527

V. B. Verma, A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector, Applied Physics Letters, vol.101, issue.25, pp.251114-251157, 2012.
DOI : 10.1063/1.3610677

F. Marsili, Detecting single infrared photons with 93% system efficiency, Nature Photonics, vol.12, issue.3, pp.210-214, 2013.
DOI : 10.1021/nl302245n

V. B. Verma, High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5???K, Applied Physics Letters, vol.105, issue.12, pp.122601-122645, 2014.
DOI : 10.1063/1.4799397

A. J. Miller, Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent, Optics Express, vol.19, issue.10, pp.9102-9110, 2011.
DOI : 10.1364/OE.19.009102

L. Jeannic and H. , High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared, Optics Letters, vol.41, issue.22, pp.5341-5344, 2016.
DOI : 10.1364/OL.41.005341

URL : https://hal.archives-ouvertes.fr/hal-01420824

N. Gisin and R. Thew, Quantum communication, Nature Photonics, vol.77, issue.3, pp.165-56, 2007.
DOI : 10.1017/S0305004100019137

URL : https://hal.archives-ouvertes.fr/cel-00092981

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, vol.80, issue.6816, pp.46-52, 2001.
DOI : 10.1103/PhysRevLett.80.1121

M. Eisaman, J. Fan, A. Migdall, and S. Polyakov, Invited Review Article: Single-photon sources and detectors, Review of Scientific Instruments, vol.9, issue.7, pp.71101-56, 2011.
DOI : 10.1016/0030-4018(87)90028-9

URL : http://aip.scitation.org/doi/pdf/10.1063/1.3610677

N. Somaschi, Near-optimal single-photon sources in the solid state, Nature Photonics, vol.5, issue.5, pp.340-345, 2016.
DOI : 10.1080/09500340802337374

URL : https://hal.archives-ouvertes.fr/hal-01386640

O. Morin, V. D-'auria, C. Fabre, and J. Laurat, High-fidelity single-photon source based on a Type II optical parametric oscillator, Optics Letters, vol.37, issue.17, pp.3738-3740, 2012.
DOI : 10.1364/OL.37.003738

URL : https://hal.archives-ouvertes.fr/hal-00721186

R. Jin, Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors, Optics Communications, vol.336, pp.47-54, 2015.
DOI : 10.1016/j.optcom.2014.09.051

URL : http://arxiv.org/pdf/1309.1221

S. Ramelow, Highly efficient heralding of entangled single photons, Optics Express, vol.21, issue.6, pp.6707-6717, 2013.
DOI : 10.1364/OE.21.006707

S. Krapick, An efficient integrated two-color source for heralded single photons, New Journal of Physics, vol.15, issue.3, pp.33010-61, 2013.
DOI : 10.1088/1367-2630/15/3/033010

URL : http://iopscience.iop.org/article/10.1088/1367-2630/15/3/033010/pdf

E. Pomarico, B. Sanguinetti, T. Guerreiro, R. Thew, and H. Zbinden, MHz rate and efficient synchronous heralding of single photons at telecom wavelengths, Optics Express, vol.20, issue.21, pp.23846-61, 2012.
DOI : 10.1364/OE.20.023846

L. A. Ngah, O. Alibart, L. Labonté, V. D-'auria, and S. Tanzili, Ultra-fast heralded single photon source based on telecom technology, Laser & Photonics Reviews, vol.21, issue.2, pp.1-5, 2015.
DOI : 10.1364/OE.21.027177

URL : https://hal.archives-ouvertes.fr/hal-01134179

J. S. Neergaard-nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, High purity bright single photon source, Optics Express, vol.15, issue.13, pp.7940-7949, 2007.
DOI : 10.1364/OE.15.007940

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Photon subtracted squeezed states generated with periodically poled KTiOPO_4, Optics Express, vol.15, issue.6, pp.3568-3574, 2007.
DOI : 10.1364/OE.15.003568

URL : http://arxiv.org/pdf/quant-ph/0609153

M. Scholz, L. Koch, and O. Benson, Statistics of Narrow-Band Single Photons for Quantum Memories Generated by Ultrabright Cavity-Enhanced Parametric Down-Conversion, Physical Review Letters, vol.102, issue.6, pp.63603-61, 2009.
DOI : 10.1134/S1054660X06110053

M. Förtsch, A versatile source of single photons for quantum information processing, Nature Communications, vol.178, p.61, 1818.
DOI : 10.1038/1781447a0

K. Luo, Direct generation of genuine single-longitudinal-mode narrowband photon pairs, New Journal of Physics, vol.17, issue.7, pp.73039-61, 2015.
DOI : 10.1088/1367-2630/17/7/073039

URL : http://iopscience.iop.org/article/10.1088/1367-2630/17/7/073039/pdf

A. E. Nielsen and K. Mølmer, Transforming squeezed light into a large-amplitude coherent-state superposition, Physical Review A, vol.76, issue.4, p.43840, 2007.
DOI : 10.1038/35051009

A. E. Nielsen and K. Mølmer, Photon number states generated from a continuous-wave light source, Physical Review A, vol.1, issue.4, p.43801, 2007.
DOI : 10.1103/PhysRevA.45.6586

URL : http://arxiv.org/pdf/quant-ph/0612129

M. Sasaki, M. Takeoka, and H. Takahashi, Temporally multiplexed superposition states of continuous variables, Physical Review A, vol.77, issue.6, p.63840, 2008.
DOI : 10.1103/PhysRevA.77.062315

H. Takahashi, Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction, Physical Review Letters, vol.101, issue.23, pp.233605-63, 2008.
DOI : 10.1103/PhysRevA.76.043840

M. Takeoka, H. Takahashi, and M. Sasaki, Large-amplitude coherent-state superposition generated by a time-separated two-photon subtraction from a continuous-wave squeezed vacuum, Physical Review A, vol.77, issue.6, p.62315, 2008.
DOI : 10.1103/PhysRevA.30.1386

URL : http://arxiv.org/pdf/0804.0464

Z. Qin, Complete temporal characterization of a single photon, Light: Science & Applications, vol.101, issue.6, p.298, 2015.
DOI : 10.1103/PhysRevLett.101.103601

D. Menzies and R. Filip, Gaussian-optimized preparation of non-Gaussian pure states, Physical Review A, vol.79, issue.1, pp.12313-69, 2009.
DOI : 10.1103/PhysRevA.73.063804

T. Ralph, A. Gilchrist, G. Milburn, W. Munro, and S. Glancy, Quantum computation with optical coherent states, Physical Review A, vol.77, issue.4, pp.42319-70, 2003.
DOI : 10.1103/PhysRevLett.77.198

A. P. Lund, Boson Sampling from a Gaussian State, Physical Review Letters, vol.113, issue.10, p.100502, 2014.
DOI : 10.1103/PhysRevA.85.022332

T. C. Ralph and E. H. Huntington, Unconditional continuous-variable dense coding, Physical Review A, vol.65, issue.4, p.42321, 2002.
DOI : 10.1103/PhysRevA.65.011803

A. M. Bra?czyk and T. C. Ralph, Teleportation using squeezed single photons, Physical Review A, vol.78, issue.5, p.52304, 2008.
DOI : 10.1103/PhysRevA.72.013801

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, Experimental characterization of continuous-variable entanglement, Physical Review A, vol.5, issue.1, p.12304, 2004.
DOI : 10.1088/1367-2630/5/1/304

E. S. Polzik, J. Carri, and H. J. Kimble, Spectroscopy with squeezed light, Physical Review Letters, vol.31, issue.20, pp.3020-3023, 1992.
DOI : 10.1007/BF00702605

N. Treps, A Quantum Laser Pointer, Science, vol.301, issue.5635, pp.940-943, 2003.
DOI : 10.1126/science.1086489

H. Vahlbruch, The GEO???600 squeezed light source, Classical and Quantum Gravity, vol.27, issue.8, p.84027, 2010.
DOI : 10.1088/0264-9381/27/8/084027

URL : https://hal.archives-ouvertes.fr/hal-00587619

B. Abbott, Observation of Gravitational Waves from a Binary Black Hole Merger, Physical Review Letters, vol.27, issue.6, p.61102, 2016.
DOI : 10.1007/lrr-2016-1

URL : https://hal.archives-ouvertes.fr/in2p3-01273200

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Detection of 15??dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency, Physical Review Letters, vol.117, issue.11, p.110801, 2016.
DOI : 10.1103/PhysRevLett.97.011101

G. Leuchs, R. J. Glauber, and W. Schleich, -distribution, Physica Scripta, vol.90, issue.10, p.108007, 2015.
DOI : 10.1088/0031-8949/90/10/108007

G. Leuchs, R. J. Glauber, and W. P. Schleich, Dimension of quantum phase space measured by photon correlations, Physica Scripta, vol.90, issue.7, p.74066, 2015.
DOI : 10.1088/0031-8949/90/7/074066

B. Stiller, U. Seyfarth, and G. Leuchs, Temporal and spectral properties of quantum light. arXiv 1411, 2013.
DOI : 10.1093/oso/9780198768609.003.0004

C. R. Müller, Evading Vacuum Noise: Wigner Projections or Husimi Samples?, Physical Review Letters, vol.117, issue.7, p.70801, 2016.
DOI : 10.1201/9780203910894

H. Jeong and M. Kim, Efficient quantum computation using coherent states, Physical Review A, vol.77, issue.4, p.42305, 2002.
DOI : 10.1103/PhysRevLett.77.198

A. Gilchrist, Schrödinger cats and their power for quantum information processing, J. Opt. B: Quantum Semiclass. Opt, vol.6, issue.78, 2004.
DOI : 10.1088/1464-4266/6/8/032

A. Lund, T. Ralph, and H. Haselgrove, Fault-Tolerant Linear Optical Quantum Computing with Small-Amplitude Coherent States, Physical Review Letters, vol.100, issue.3, p.30503, 2008.
DOI : 10.1103/PhysRevA.70.022317

URL : http://arxiv.org/pdf/0707.0327

P. Marek and J. Fiurá?ek, Elementary gates for quantum information with superposed coherent states, Physical Review A, vol.82, issue.1, p.14304, 2010.
DOI : 10.1038/nphoton.2010.1

P. Van-loock, Optical hybrid approaches to quantum information, Laser & Photonics Reviews, vol.443, issue.2, pp.167-200, 2011.
DOI : 10.1038/nature05147

C. Wang, A Schrodinger cat living in two boxes, Science, vol.6, issue.11, pp.1087-1091, 2016.
DOI : 10.1038/ncomms9970

URL : https://hal.archives-ouvertes.fr/hal-01399479

T. Gerrits, Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum, Physical Review A, vol.82, issue.3, p.31802, 2010.
DOI : 10.1038/nphoton.2010.158

A. Ourjoumtsev, H. Jeong, R. Tualle-brouri, and P. Grangier, Generation of optical ???Schr??dinger cats??? from photon number states, Nature, vol.8, issue.7155, pp.784-79, 2007.
DOI : 10.1103/PhysRevLett.96.213601

J. Etesse, M. Bouillard, B. Kanseri, and R. Tualle-brouri, Experimental Generation of Squeezed Cat States with an Operation Allowing Iterative Growth, Physical Review Letters, vol.114, issue.19, pp.193602-79, 2015.
DOI : 10.1103/PhysRevX.3.041028

URL : https://hal.archives-ouvertes.fr/hal-01228957

K. Makino, Synchronization of optical photons for quantum information processing, Science Advances, vol.2, issue.5, pp.1501772-79, 2016.
DOI : 10.1126/sciadv.1501772

Y. Miwa, Exploring a New Regime for Processing Optical Qubits: Squeezing and Unsqueezing Single Photons, Physical Review Letters, vol.113, issue.1, p.13601, 2014.
DOI : 10.1209/0295-5075/1/4/004

R. Filip, Gaussian quantum adaptation of non-Gaussian states for a lossy channel, Physical Review A, vol.87, issue.4, p.42308, 2013.
DOI : 10.1364/OE.15.003568

J. Paavola, M. J. Hall, M. G. Paris, and S. Maniscalco, Finite-time quantum-to-classical transition for a Schr??dinger-cat state, Physical Review A, vol.84, issue.1, p.12121, 2011.
DOI : 10.1038/nphys1781

A. Serafini, M. G. Paris, F. I. Siena, and S. D. , Quantifying decoherence in continuous variable systems, Journal of Optics B: Quantum and Semiclassical Optics, vol.7, issue.4, pp.19-36, 2005.
DOI : 10.1088/1464-4266/7/4/R01

URL : http://arxiv.org/pdf/quant-ph/0501173v1.pdf

B. Vlastakis, Deterministically encoding quantum information in 100- photon Schrödinger cat states, Science, vol.342, issue.607, p.94, 2013.
DOI : 10.1126/science.1243289

M. Brune, Observing the Progressive Decoherence of the ???Meter??? in a Quantum Measurement, Physical Review Letters, vol.53, issue.24, p.4887, 1996.
DOI : 10.1103/PhysRevA.53.1295

D. Kienzler, Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets, Physical Review Letters, vol.116, issue.14, pp.140402-94, 2016.
DOI : 10.1103/PhysRevLett.112.190402

H. Jeong, Generation of hybrid entanglement of light, Nature Photonics, vol.54, issue.7, pp.564-569, 2013.
DOI : 10.1016/S0079-6638(10)05409-0

S. L. Braunstein and A. K. Pati, Quantum information with continuous variables (Kluwer Academic, p.100, 2003.

K. Kreis and P. Van-loock, Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement, Physical Review A, vol.7, issue.3, p.32307, 2012.
DOI : 10.1134/S0032946008030010

J. Rigas, O. Gühne, and N. Lütkenhaus, Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure, Physical Review A, vol.3, issue.1, p.12341, 2006.
DOI : 10.1103/PhysRevLett.92.117901

URL : http://arxiv.org/pdf/quant-ph/0510022

C. Wittmann, Witnessing effective entanglement over a 2km fiber channel, Optics Express, vol.18, issue.5, pp.4499-4509, 2010.
DOI : 10.1364/OE.18.004499

S. Lee and H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits, Physical Review A, vol.2, issue.2, pp.22326-100, 2013.
DOI : 10.1103/PhysRevLett.96.213601

URL : http://arxiv.org/pdf/1112.0825

T. P. Spiller, Quantum computation by communication, New Journal of Physics, vol.8, issue.2, 2006.
DOI : 10.1088/1367-2630/8/2/030

URL : http://iopscience.iop.org/article/10.1088/1367-2630/8/2/030/pdf

M. Dakna, Generating Schr??dinger-cat-like states by means of conditional measurements on a beam splitter, Physical Review A, vol.76, issue.4, p.3184, 1997.
DOI : 10.1103/PhysRevLett.76.2464

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, Exceeding the Classical Capacity Limit in a Quantum Optical Channel, Physical Review Letters, vol.26, issue.16, p.167906, 2003.
DOI : 10.1109/TIT.1980.1056243

M. Yukawa, Generating superposition of up-to three photons for continuous variable quantum information processing, Optics Express, vol.21, issue.5, 2013.
DOI : 10.1364/OE.21.005529

B. P. Lanyon, Manipulating Biphotonic Qutrits, Physical Review Letters, vol.100, issue.6, p.60504, 2008.
DOI : 10.1103/PhysRevLett.99.130503

M. Hofheinz, Synthesizing arbitrary quantum states in a superconducting resonator, Nature, vol.101, issue.7246, pp.546-549, 2009.
DOI : 10.1038/nature08005

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, -Level Systems, Physical Review Letters, vol.88, issue.12, p.127902, 2002.
DOI : 10.1103/PhysRevLett.88.127901

R. W. Spekkens and T. Rudolph, Degrees of concealment and bindingness in quantum bit commitment protocols, Physical Review A, vol.28, issue.1, p.12310, 2001.
DOI : 10.1023/A:1018820410908

N. K. Langford, Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment, Physical Review Letters, vol.4, issue.5, p.53601, 2004.
DOI : 10.1103/PhysRevLett.78.3414

URL : http://arxiv.org/pdf/quant-ph/0312072

L. Dicarlo, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature, vol.49, issue.7315, pp.574-578, 2010.
DOI : 10.1103/PhysRevB.77.180502

H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox, Physical Review Letters, vol.1, issue.14, p.140402, 2007.
DOI : 10.1103/PhysRevLett.96.150501

URL : http://arxiv.org/pdf/quant-ph/0612147

S. J. Jones and H. M. Wiseman, Nonlocality of a single photon: Paths to an Einstein-Podolsky-Rosen-steering experiment, Physical Review A, vol.84, issue.1, pp.12110-111, 2011.
DOI : 10.1515/9781400873173

M. Fuwa, S. Takeda, M. Zwierz, H. M. Wiseman, A. Furusawa et al., Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurement Analog of the Clauser-Horne-Shimony-Holt inequality for steering, Nat. Commun. J. Opt. Soc. Am. B, vol.6, issue.32, pp.111-74, 2015.

P. Girdhar and E. G. Cavalcanti, All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal, Physical Review A, vol.1, issue.3, p.32317, 2016.
DOI : 10.1038/srep22025

URL : http://arxiv.org/pdf/1601.01703

T. Guerreiro, Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection, Physical Review Letters, vol.117, issue.7, p.70404, 2016.
DOI : 10.1103/PhysRevLett.115.250401

P. Milman, A proposal to test Bell?s inequalities with mesoscopic non-local states in cavity QED, The European Physical Journal D, vol.82, issue.2, pp.233-239, 2005.
DOI : 10.1140/epjd/e2004-00171-6

R. García-patrón, Proposal for a Loophole-Free Bell Test Using Homodyne Detection, Physical Review Letters, vol.27, issue.13, p.130409, 2004.
DOI : 10.1103/PhysRevLett.93.020401

H. Nha and H. J. Carmichael, Proposed Test of Quantum Nonlocality for Continuous Variables, Physical Review Letters, vol.42, issue.2, p.20401, 2004.
DOI : 10.1103/PhysRevLett.89.207903

A. Kuzmich, I. A. Walmsley, and L. Mandel, Violation of Bell's Inequality by a Generalized Einstein-Podolsky-Rosen State Using Homodyne Detection, Physical Review Letters, vol.57, issue.7, pp.1349-1353, 2000.
DOI : 10.1103/PhysRevA.57.3123

H. Jeong, Testing Bell inequalities with photon-subtracted Gaussian states, Physical Review A, vol.1, issue.4, p.42101, 2008.
DOI : 10.1103/PhysRevA.74.052114

D. Angelo, M. Zavatta, A. Parigi, V. Bellini, and M. , Tomographic test of Bell's inequality for a time-delocalized single photon, Phys. Rev. A, vol.74, issue.115, p.52114, 2006.

J. Etesse, R. Blandino, B. Kanseri, and R. Tualle-brouri, Proposal for a loophole-free violation of Bell's inequalities with a set of single photons and homodyne measurements, New Journal of Physics, vol.16, issue.5, p.53001, 2014.
DOI : 10.1088/1367-2630/16/5/053001

B. Vlastakis, Characterizing entanglement of an artificial atom and a cavity cat state with Bell???s inequality, Nature Communications, vol.77, issue.115, 2015.
DOI : 10.1103/PhysRevB.77.104502

URL : https://hal.archives-ouvertes.fr/hal-01266469

J. Park, S. Lee, H. Lee, and H. Nha, Enhanced Bell violation by a coherent superposition of photon subtraction and addition, Journal of the Optical Society of America B, vol.29, issue.5, pp.906-911, 2012.
DOI : 10.1364/JOSAB.29.000906

J. S. Neergaard-nielsen, Optical Continuous-Variable Qubit, Physical Review Letters, vol.105, issue.5, p.53602, 2010.
DOI : 10.1103/PhysRevA.76.043840

S. A. Babichev, B. Brezger, and A. Lvovsky, Remote Preparation of a Single-Mode Photonic Qubit by Measuring Field Quadrature Noise, Physical Review Letters, vol.1, issue.4, pp.47903-116, 2004.
DOI : 10.1038/35051009

A. E. Ulanov, I. A. Fedorov, D. Sychev, P. Grangier, and A. Lvovsky, Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong???Ou???Mandel effect, Nature Communications, vol.3, issue.120, p.11925, 2016.
DOI : 10.1103/RevModPhys.81.299

URL : http://www.nature.com/articles/ncomms11925.pdf

U. L. Andersen and J. S. Neergaard-nielsen, Heralded generation of a micro-macro entangled state, Physical Review A, vol.88, issue.2, pp.22337-132, 2013.
DOI : 10.1103/PhysRevLett.110.170406

U. B. Hoff, J. Kollath-bönig, J. S. Neergaard-nielsen, and U. L. Andersen, Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics, Physical Review Letters, vol.27, issue.14, 2016.
DOI : 10.1103/PhysRevA.46.4239

URL : http://arxiv.org/pdf/1601.01663

A. Laghaout, J. S. Neergaard-nielsen, and U. L. Andersen, Assessments of macroscopicity for quantum optical states, Optics Communications, vol.337, issue.132, pp.96-101, 2015.
DOI : 10.1016/j.optcom.2014.07.046

H. Kwon, C. Park, K. C. Tan, and H. Jeong, Disturbance-based measure of macroscopic coherence, New Journal of Physics, vol.19, issue.4, 2016.
DOI : 10.1088/1367-2630/aa68f5

C. Lee and H. Jeong, Quantification of Macroscopic Quantum Superpositions within Phase Space, Physical Review Letters, vol.106, issue.22, p.220401, 2011.
DOI : 10.1103/PhysRevLett.102.060403

N. Bruno, Displacement of entanglement back and forth between the micro and macro domains, Nature Physics, vol.7, issue.9, pp.545-548, 2013.
DOI : 10.1038/nphys2083

R. Ghobadi, Optomechanical Micro-Macro Entanglement, Physical Review Letters, vol.112, issue.8, p.80503, 2014.
DOI : 10.1126/science.1244563

A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad, and C. Simon, Observation of micro???macro entanglement of light, Nature Physics, vol.105, issue.9, pp.541-544, 2013.
DOI : 10.1103/PhysRevLett.105.113602

A. Tiranov, Demonstration of Light-Matter Micro-Macro Quantum Correlations, Physical Review Letters, vol.116, issue.19, p.132, 2016.
DOI : 10.1364/OE.20.023798

M. C. Tichy, C. Park, M. Kang, H. Jeong, and K. Mølmer, Macroscopic entanglement in many-particle quantum states, Physical Review A, vol.7, issue.4, pp.42314-133, 2016.
DOI : 10.1103/PhysRevA.82.052312

H. Jeong, M. Kang, and H. Kwon, Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields, Optics Communications, vol.337, issue.150, pp.12-21, 2015.
DOI : 10.1016/j.optcom.2014.07.012

URL : https://doi.org/10.1016/j.optcom.2014.07.012

P. Sekatski, N. Sangouard, and N. Gisin, Size of quantum superpositions as measured with classical detectors, Physical Review A, vol.89, issue.1, p.12116, 2014.
DOI : 10.1038/nphys2681

P. Sekatski, N. Gisin, and N. Sangouard, How Difficult Is It to Prove the Quantumness of Macroscropic States?, Physical Review Letters, vol.113, issue.9, p.90403, 2014.
DOI : 10.1103/PhysRevA.88.062114

H. Jeong, Generation of hybrid entanglement of light, Nature Photonics, vol.54, issue.7, pp.564-569, 2014.
DOI : 10.1016/S0079-6638(10)05409-0

B. Yadin and V. Vedral, General framework for quantum macroscopicity in terms of coherence, Physical Review A, vol.93, issue.2, p.22122, 2016.
DOI : 10.1007/978-3-319-07097-1

F. Fröwis and W. Dür, Measures of macroscopicity for quantum spin systems, New Journal of Physics, vol.14, issue.9, pp.93039-144, 2012.
DOI : 10.1088/1367-2630/14/9/093039

Y. Lim, J. Joo, T. P. Spiller, and H. Jeong, Loss-resilient photonic entanglement swapping using optical hybrid states, Physical Review A, vol.2, issue.6, 2016.
DOI : 10.1038/nphoton.2015.83

H. Kwon and H. Jeong, Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state, Physical Review A, vol.91, issue.1, p.12340, 2015.
DOI : 10.1088/0953-2048/25/6/063001

N. V. Corzo, Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide, Physical Review Letters, vol.117, issue.13, p.133603, 2016.
DOI : 10.1088/1367-2630/12/4/043052