E. Steckhan, Electroenzymatic synthesis, Top. Curr. Chem, vol.170, p.83, 1994.
DOI : 10.1007/3-540-57729-7_3

F. Hildebrand and S. Lütz, Stable Electroenzymatic Processes by Catalyst Separation, Chemistry - A European Journal, vol.17, issue.20, p.4998, 2009.
DOI : 10.1007/3-540-57729-7_3

J. Madoz-gurpide, J. M. Abad, J. Fernandez-recio, and M. Velez, Reductase onto Modified Gold Electrodes, Journal of the American Chemical Society, vol.122, issue.40, p.9808, 2000.
DOI : 10.1021/ja001365m

R. Wichmann and D. Vasic-racki, Cofactor Regeneration at the Lab Scale, Adv Biochem Engin/Biotechnol, vol.92, p.225, 2005.
DOI : 10.1007/b98911

V. Urbanova, G. Kohring, T. Klein, Z. Wang, O. Mert et al., Sol-gel Approaches for Elaboration of Polyol Dehydrogenase-Based Bioelectrodes, Zeitschrift f??r Physikalische Chemie, vol.1, issue.5, p.667, 2013.
DOI : 10.1002/elan.201100574

URL : https://hal.archives-ouvertes.fr/hal-01507027

R. Wienkamp and E. Steckhan, Indirect Electrochemical Regeneration of NADH by a Bipyridinerhodium(I) Complex as Electron-Transfer Agent, Angewandte Chemie International Edition in English, vol.21, issue.10, p.782, 1982.
DOI : 10.1002/anie.198207822

K. Délécouls-servat, R. Basséguy, and A. , Membrane electrochemical reactor (MER): application to NADH regeneration for ADH-catalysed synthesis, Chemical Engineering Science, vol.57, issue.21, p.4633, 2002.
DOI : 10.1016/S0009-2509(02)00393-7

K. Délécouls-servat, R. Basséguy, and A. , Designing membrane electrochemical reactors for oxidoreductase-catalysed synthesis, Bioelectrochemistry, vol.55, issue.1-2, p.93, 2002.
DOI : 10.1016/S1567-5394(01)00132-3

E. Steckhan, Electroenzymatic synthesis, Top. Curr. Chem, vol.170, p.83, 1994.
DOI : 10.1007/3-540-57729-7_3

F. Hildebrand and S. Lu, Electroenzymatic synthesis of chiral alcohols in an aqueous???organic two-phase system, Tetrahedron: Asymmetry, vol.18, issue.10, p.1187, 2007.
DOI : 10.1016/j.tetasy.2007.05.002

B. Tan, D. P. Hickey, R. D. Milton, F. Giroud, and S. D. Minteer, Regeneration of the NADH Cofactor by a Rhodium Complex Immobilized on Multi-Walled Carbon Nanotubes, Journal of the Electrochemical Society, vol.162, issue.3, p.102, 2015.
DOI : 10.1149/2.0111503jes

Y. Kashiwagi, Y. Yanagisawa, N. Shibayama, K. Nakahara, F. Kurashima et al., Preparative, electroenzymatic reduction of ketones on an all components-immobilized graphite felt electrode, Electrochimica Acta, vol.42, issue.13-14, p.2267, 1997.
DOI : 10.1016/S0013-4686(97)85509-0

A. Bergel and M. Comtat, Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.302, issue.1-2, p.219, 1991.
DOI : 10.1016/0022-0728(91)85042-N

T. Tzedakis, K. Cheikhou, R. Jerome, G. S. Karine, and R. Olivier, Electrochemical study in both classical cell and microreactors of flavin adenine dinucleotide as a redox mediator for NADH regeneration, Electrochimica Acta, vol.55, issue.7, p.2286, 2010.
DOI : 10.1016/j.electacta.2009.11.071

K. Délécouls, P. Saint-aguet, and C. Zaborosch, Mechanism of the catalysis by Alcaligenes eutrophus H16 hydrogenase of direct electrochemical reduction of NAD+, Journal of Electroanalytical Chemistry, vol.468, issue.2, p.139, 1999.
DOI : 10.1016/S0022-0728(99)00156-4

J. Cantet, A. Bergel, and M. Comtat, Coupling of the electroenzymatic reduction of NAD+ with a synthesis reaction, Enzyme and Microbial Technology, vol.18, issue.1, p.72, 1996.
DOI : 10.1016/0141-0229(96)00059-2

R. J. Fisher, J. M. Fenton, and J. Iranmahboob, Electro-enzymatic synthesis of lactate using electron transfer chain biomimetic membranes, Journal of Membrane Science, vol.177, issue.1-2, p.17, 2000.
DOI : 10.1016/S0376-7388(00)00446-4

K. I. Voivodov, S. B. Sobolov, M. D. Leonida, and A. J. Fry, Enzymatic transformation in an electrochemical reactor utilizing a redox mediator-modified enzyme electrode for NAD(H) regeneration, Bioorganic & Medicinal Chemistry Letters, vol.5, issue.7, p.681, 1995.
DOI : 10.1016/0960-894X(95)00099-F

E. Siu, K. Won, and B. P. Chan, Electrochemical Regeneration of NADH Using Conductive Vanadia-Silica Xerogels, Biotechnology Progress, vol.23, issue.1, p.293, 2007.
DOI : 10.1021/bp060247l

J. M. Obón, P. Casanova, A. Manjón, V. M. Fernández, and J. L. Iborra, Stabilization of Glucose Dehydrogenase with Polyethyleneimine in an Electrochemical Reactor with NAD(P)+ Regeneration, Biotechnology Progress, vol.13, issue.5, p.557, 1997.
DOI : 10.1021/bp970063u

A. Radoi and D. Compagnone, Recent advances in NADH electrochemical sensing design, Bioelectrochemistry, vol.76, issue.1-2, p.126, 2009.
DOI : 10.1016/j.bioelechem.2009.06.008

Y. Dilgin, L. Gorton, and G. Nisli, Photoelectrocatalytic Oxidation of NADH with Electropolymerized Toluidine Blue O, Electroanalysis, vol.20, issue.2-3, p.286, 2007.
DOI : 10.1016/S0022-0728(81)80387-7

D. G. Dilgin, D. Gligor, and H. I. , Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH, Microchimica Acta, vol.56, issue.82, p.469, 2011.
DOI : 10.1016/j.electacta.2010.10.084

O. Miyawaki and T. Yano, Electrochemical bioreactor with immobilized glucose-6-phosphate dehydrogenase on the rotating graphite disc electrode modified with phenazine methosulfate, Enzyme and Microbial Technology, vol.15, issue.6, p.525, 1993.
DOI : 10.1016/0141-0229(93)90087-I

T. Osa, Y. Kashiwagi, and Y. Yanagisawa, Electroenzymatic Oxidation of Alcohols on a Poly(acrylic acid)-coated Graphite Felt Electrode Terimmobilizing Ferrocene, Diaphorase and Alcohol Dehydrogenase, Chemistry Letters, vol.23, issue.2, p.367, 1994.
DOI : 10.1246/cl.1994.367

D. Degenring, I. Schroder, C. Wandrey, A. Liese, and L. Greiner, Resolution of 1,2-Diols by Enzyme-Catalyzed Oxidation with Anodic, Mediated Cofactor Regeneration in the Extractive Membrane Reactor:?? Gaining Insight by Adaptive Simulation, Organic Process Research & Development, vol.8, issue.2, p.213, 2004.
DOI : 10.1021/op034122y

R. Basseguy, K. Delecouls-servat, and A. , Glucose oxidase catalysed oxidation of glucose in a dialysis membrane electrochemical reactor (D-MER), Bioprocess and Biosystems Engineering, vol.26, issue.3, p.165, 2004.
DOI : 10.1007/s00449-004-0351-7

R. Devaux-basseguy, G. Pierre, and A. , Electroenzymatic Processes: A Clean Technology Alternative for Highly Selective Synthesis?, Journal of Chemical Technology & Biotechnology, vol.68, issue.4, p.389, 1997.
DOI : 10.1002/(SICI)1097-4660(199704)68:4<389::AID-JCTB647>3.0.CO;2-9

P. Gros and A. , Electrochemically enhanced biosynthesis of gluconic acid, AIChE Journal, vol.60, issue.3, p.989, 2005.
DOI : 10.1007/978-3-642-86602-9

S. Kawabata, N. Iwata, and H. Yoneyama, Asymmetric Electrosynthesis of Amino Acid Using an Electrode Modified with Amino Acid Oxidase and Electron Mediator, Chemistry Letters, vol.29, issue.2, p.110, 2000.
DOI : 10.1246/cl.2000.110

S. Krishnan, J. B. Schenkman, and J. F. Rusling, Bioelectronic Delivery of Electrons to Cytochrome P450 Enzymes, The Journal of Physical Chemistry B, vol.115, issue.26, p.8371, 2011.
DOI : 10.1021/jp201235m

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128182/pdf

C. E. Immoos, J. Chou, M. Bayachou, E. Blair, J. Greaves et al., Electrocatalytic Reductions of Nitrite, Nitric Oxide, and Nitrous Oxide by Thermophilic Cytochrome P450 CYP119 in Film-Modified Electrodes and an Analytical Comparison of Its Catalytic Activities with Myoglobin, Journal of the American Chemical Society, vol.126, issue.15, p.4934, 2004.
DOI : 10.1021/ja038925c

J. Lu, D. Cui, H. Li, Y. Zhang, and S. Liu, Cytochrome P450 bienzymes assembled on Au/chitosan/reduced graphene oxide nanosheets for electrochemically-driven drug cascade metabolism, Electrochimica Acta, vol.165, p.36, 2015.
DOI : 10.1016/j.electacta.2015.02.183

S. Krishnan, D. Wasalathanthri, L. Zhao, J. B. Schenkman, and J. F. Rusling, Efficient Bioelectronic Actuation of the Natural Catalytic Pathway of Human Metabolic Cytochrome P450s, Journal of the American Chemical Society, vol.133, issue.5, p.1459, 2011.
DOI : 10.1021/ja108637s

A. E. Horst, K. M. Mangold, and D. Holtmann, Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion, Biotechnology and Bioengineering, vol.34, issue.2, p.260, 2015.
DOI : 10.1016/j.ijhydene.2008.11.003

K. Min, D. Park, and Y. Je, Electroenzymatic synthesis of l-DOPA, Journal of Biotechnology, vol.146, issue.1-2, p.40, 2010.
DOI : 10.1016/j.jbiotec.2010.01.002

F. Qu, R. Nasraoui, M. Etienne, Y. B. Saint-côme, A. Kuhn et al., Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes, Electrochemistry Communications, vol.13, issue.2, p.138, 2011.
DOI : 10.1016/j.elecom.2010.11.034

I. Ali, A. Gill, and S. Omanovic, Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes, Chemical Engineering Journal, vol.188, p.173, 2012.
DOI : 10.1016/j.cej.2012.02.005

Y. H. Kim and Y. J. Yoo, Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme and Microbial Technology, vol.44, issue.3, p.129, 2009.
DOI : 10.1016/j.enzmictec.2008.10.019

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7, p.2646, 2008.
DOI : 10.1021/cr068076m

B. J. Sanghavi and A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochimica Acta, vol.55, issue.28, p.8638, 2010.
DOI : 10.1016/j.electacta.2010.07.093

S. Shuo-han, J. Zhang, X. Gao, and H. Ying, Carbon nanostructure modified enzyme-catalyzed biosensor for bio-electrochemical NADH regeneration, Journal of Materials Chemistry B, vol.26, issue.1, p.6626, 2015.
DOI : 10.1002/jcc.20291

J. Krenková and F. Frantisek, Immobilized microfluidic enzymatic reactors, ELECTROPHORESIS, vol.5, issue.19, p.3550, 2004.
DOI : 10.1016/S0075-7535(08)70469-8

F. Hildebrand and S. Lütz, Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor, Tetrahedron: Asymmetry, vol.17, issue.23, p.3219, 2006.
DOI : 10.1016/j.tetasy.2006.11.013

E. Nouri-nigjeh, R. Bischoff, A. P. Bruins, and H. P. Permentier, Electrochemistry in the Mimicry of Oxidative Drug Metabolism by Cytochrome P450s, Current Drug Metabolism, vol.12, issue.4, p.359, 2011.
DOI : 10.2174/138920011795202929

M. Varni, T. Vidakovi-c-koch, and K. Sundmacher, Gluconic Acid Synthesis in an Electroenzymatic Reactor, Electrochimica Acta, vol.174, p.480, 2015.
DOI : 10.1016/j.electacta.2015.05.151

D. Membreno, L. Smith, and . Dunn, Silica sol???gel chemistry: creating materials and architectures for energy generation and storage, Journal of Sol-Gel Science and Technology, vol.199, issue.11, p.203, 2014.
DOI : 10.1016/j.jmatprotec.2007.10.060

M. J. Moehlenbrock and S. D. Minteer, Extended lifetime biofuel cells, Chemical Society Reviews, vol.158, issue.6, p.1188, 2008.
DOI : 10.1016/j.polymer.2004.11.092

E. Lojou, Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochimica Acta, vol.56, issue.28, p.10385, 2011.
DOI : 10.1016/j.electacta.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00677206

T. Schlick, MolecularModeling and Simulation An Interdisciplinary Guide, 2010.
DOI : 10.1007/978-1-4419-6351-2

URL : https://link.springer.com/content/pdf/bfm%3A978-1-4419-6351-2%2F1.pdf

A. Walcarius, R. Nasraoui, Z. Wang, F. Qu, V. Urbanova et al., Factors affecting the electrochemical regeneration of NADH by (2,2???-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: Impact on their immobilization onto electrode surfaces, Bioelectrochemistry, vol.82, issue.1, p.46, 2011.
DOI : 10.1016/j.bioelechem.2011.05.002

L. Zhang, N. Vilà, T. Klein, I. Kohring, G. Mazurenko et al., Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol???Ene Click Chemistry, ACS Applied Materials & Interfaces, vol.8, issue.27, p.17591, 2016.
DOI : 10.1021/acsami.6b02364

T. Hudlicky and J. W. Reed, Applications of biotransformations and biocatalysis to complexity generation in organic synthesis, Chemical Society Reviews, vol.229, issue.Suppl., p.3117, 2009.
DOI : 10.1039/CC9960001717

D. A. Gaffney, S. O. Neill, M. C. O-"-loughlin, U. Hanefeld, J. C. Cooney et al., -tagged protein onto nickel(ii)???cyclam grafted mesoporous silica, Chem. Commun., vol.120, issue.180, p.1124, 2010.
DOI : 10.1021/ja974025i

Y. Lin, M. Liang, Y. Lin, and C. Chen, Specifically and Reversibly Immobilizing Proteins/Enzymes to Nitriolotriacetic-Acid-Modified Mesoporous Silicas through Histidine Tags for Purification or Catalysis, Chemistry - A European Journal, vol.221, issue.95, p.13059, 2011.
DOI : 10.1126/science.221.4607.259-a

M. Mielecki, J. Wojtasik, M. Zborowska, K. Kurz?tkowska, K. Grzelak et al., Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode???The base of electrochemical biosensor, Electrochimica Acta, vol.96, p.147, 2013.
DOI : 10.1016/j.electacta.2013.02.085

D. S. Waugh, Making the most of affinity tags, Trends in Biotechnology, vol.23, issue.6, p.316, 2005.
DOI : 10.1016/j.tibtech.2005.03.012

A. A. Karyakin, Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode, Electrochemistry Communications, vol.5, issue.8, p.677, 2003.
DOI : 10.1016/S1388-2481(03)00152-8

D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi et al., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry, Chemistry of Materials, vol.26, issue.1, p.724, 2014.
DOI : 10.1021/cm402180t

Q. Ran, R. Peng, C. Liang, S. Ye, Y. Xian et al., Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry, Analytica Chimica Acta, vol.697, issue.1-2, p.27, 2011.
DOI : 10.1016/j.aca.2011.04.035

L. Wang, Q. Ran, Y. Tian, J. Xu, Y. Xian et al., Covalent immobilization of redox protein via click chemistry and carbodiimide reaction: Direct electron transfer and biocatalysis, Journal of Colloid and Interface Science, vol.350, issue.2, p.544, 2010.
DOI : 10.1016/j.jcis.2010.07.018

P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner et al., Measurement of protein using bicinchoninic acid, Analytical Biochemistry, vol.150, issue.1, p.76, 1985.
DOI : 10.1016/0003-2697(85)90442-7

N. Vilà, M. Van-brussel, M. D. "-amours, J. Marwan, C. Buess-herman et al., Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups, Journal of Electroanalytical Chemistry, vol.609, issue.2, p.85, 2007.
DOI : 10.1016/j.jelechem.2007.06.026

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, 1995.

C. D. Bain, H. A. Biebuyck, and G. M. Whitesides, Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides, Langmuir, vol.5, issue.3, p.723, 1989.
DOI : 10.1021/la00087a027

J. Jeffery, L. Cummins, M. Carlquist, and H. , Properties of Sorbitol Dehydrogenase and Characterization of a Reactive Cysteine Residue Reveal Unexpected Similarities to Alcohol Dehydrogenases, European Journal of Biochemistry, vol.78, issue.2, p.229, 1981.
DOI : 10.1016/0003-2697(72)90144-3

S. Kim, G. Y. Lee, J. Lee, E. Rajkumar, J. Baeg et al., Efficient electrochemical regeneration of nicotinamide cofactors using a cyclopentadienyl-rhodium complex on functionalized indium tin oxide electrodes, Electrochimica Acta, vol.96, p.141, 2013.
DOI : 10.1016/j.electacta.2013.02.074

T. Quinto, V. Köhler, and T. R. Ward, Recent Trends in Biomimetic NADH Regeneration, Topics in Catalysis, vol.44, issue.5, p.321, 2014.
DOI : 10.1021/ar100099u

W. Liu and P. Wang, Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnology Advances, vol.25, issue.4, p.369, 2007.
DOI : 10.1016/j.biotechadv.2007.03.002

H. Zhao and W. , Van Der Donk, Curr. Opin. Biotechnol, pp.14-583, 2003.

E. Steckhan, S. Herrmann, R. Ruppert, E. Dietz, and M. Frede, Analytical study of a series of substituted (2,2'-bipyridyl)(pentamethylcyclopentadienyl)rhodium and -iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical reduction of NAD(P)+, Organometallics, vol.10, issue.5, p.1568, 1991.
DOI : 10.1021/om00051a056

N. Vilà, M. Van-brussel, M. D. "-amours, J. Marwan, C. Buess-herman et al., Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups, Journal of Electroanalytical Chemistry, vol.609, issue.2, p.85, 2007.
DOI : 10.1016/j.jelechem.2007.06.026

L. Rover-júnior, J. C. Fernandes, G. De-oliveira-neto, L. T. Kubota, E. Katekawa et al., Study of NADH Stability Using Ultraviolet???Visible Spectrophotometric Analysis and Factorial Design, Analytical Biochemistry, vol.260, issue.1, p.50, 1998.
DOI : 10.1006/abio.1998.2656

Z. Wang, M. Etienne, G. Kohring, Y. Bon-saint-côme, A. Kuhn et al., Electrochemically assisted deposition of sol???gel bio-composite with co-immobilized dehydrogenase and diaphorase, Electrochimica Acta, vol.56, issue.25, p.9032, 2011.
DOI : 10.1016/j.electacta.2011.05.130

R. L. Garrell, J. E. Chadwick, D. L. Severance, N. A. Mcdonald, and D. C. Myles, Adsorption of Sulfur Containing Molecules on Gold: The Effect of Oxidation on Monolayer Formation and Stability Characterized by Experiments and Theory, Journal of the American Chemical Society, vol.117, issue.46, p.11563, 1995.
DOI : 10.1021/ja00151a022

E. Delamarche, B. Michel, H. Kang, and C. Gerber, Thermal Stability of Self-Assembled Monolayers, Langmuir, vol.10, issue.11, p.4103, 1994.
DOI : 10.1021/la00023a033

M. H. Schoenfisch and J. E. Pemberton, Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces, Journal of the American Chemical Society, vol.120, issue.18, p.4502, 1998.
DOI : 10.1021/ja974301t

M. Deiamar, R. Hitmi, J. Pinson, and J. M. Savbnt, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts, Journal of the American Chemical Society, vol.114, issue.14, p.5883, 1992.
DOI : 10.1021/ja00040a074

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, vol.119, issue.1, p.201, 1997.
DOI : 10.1021/ja963354s

A. Adenier, M. Bernard, M. M. Chehimi, E. Cabet-deliry, B. Desbat et al., Covalent Modification of Iron Surfaces by Electrochemical Reduction of Aryldiazonium Salts, Journal of the American Chemical Society, vol.123, issue.19, p.4541, 2001.
DOI : 10.1021/ja003276f

A. Chausse, M. M. Chehimi, N. Karsi, J. Pinson, F. Podvorica et al., The Electrochemical Reduction of Diazonium Salts on Iron Electrodes. The Formation of Covalently Bonded Organic Layers and Their Effect on Corrosion, Chemistry of Materials, vol.14, issue.1, p.392, 2002.
DOI : 10.1021/cm011212d

A. C. Cruickshank, E. S. Tan, P. A. Brooksby, and A. J. Downard, Are redox probes a useful indicator of film stability? An electrochemical, AFM and XPS study of electrografted amine films on carbon, Electrochemistry Communications, vol.9, issue.7, p.1456, 2007.
DOI : 10.1016/j.elecom.2007.02.004

Y. Liu and R. L. Mccreery, Reactions of Organic Monolayers on Carbon Surfaces Observed with Unenhanced Raman Spectroscopy, Journal of the American Chemical Society, vol.117, issue.45, p.11254, 1995.
DOI : 10.1021/ja00150a024

H. Yang and R. L. Mccreery, Effects of Surface Monolayers on the Electron-Transfer Kinetics and Adsorption of Methyl Viologen and Phenothiazine Derivatives on Glassy Carbon Electrodes, Analytical Chemistry, vol.71, issue.18, p.4081, 1999.
DOI : 10.1021/ac9902392

C. Saby, B. Ortiz, G. Y. Champagne, and D. Be, Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups, Langmuir, vol.13, issue.25, p.6805, 1997.
DOI : 10.1021/la961033o

A. Laforgue, T. Addou, and D. Be, Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations, Langmuir, vol.21, issue.15, p.6855, 2005.
DOI : 10.1021/la047369c

J. Lyskawa and D. Belanger, Direct Modification of a Gold Electrode with Aminophenyl Groups by Electrochemical Reduction of in Situ Generated Aminophenyl Monodiazonium Cations, Chemistry of Materials, vol.18, issue.20, p.4755, 2006.
DOI : 10.1021/cm060752d

J. L. Bahr and J. M. Tour, Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds, Chemistry of Materials, vol.13, issue.11, p.3823, 2001.
DOI : 10.1021/cm0109903

M. P. Stewart, F. Maya, D. Kosynkin, S. M. Dirk, J. J. Stapleton et al., Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs, and Pd Surfaces from Aryldiazonium Salts, Journal of the American Chemical Society, vol.126, issue.1, p.370, 2004.
DOI : 10.1021/ja0383120

J. L. Hudson, H. Jian, A. D. Leonard, J. J. Stephenson, J. M. Tour et al., Triazenes as a Stable Diazonium Source for Use in Functionalizing Carbon Nanotubes in Aqueous Suspensions, Chemistry of Materials, vol.18, issue.11, p.2766, 2006.
DOI : 10.1021/cm060020l

N. Nair, W. Kim, M. L. Usrey, and M. S. Strano, A Structure???Reactivity Relationship for Single Walled Carbon Nanotubes Reacting with 4-Hydroxybenzene Diazonium Salt, Journal of the American Chemical Society, vol.129, issue.13, p.3946, 2007.
DOI : 10.1021/ja068018i

K. Roodenko, M. Gensch, J. Rappich, K. Hinrichs, N. Esser et al., Time-Resolved Synchrotron XPS Monitoring of Irradiation-Induced Nitrobenzene Reduction for Chemical Lithography, The Journal of Physical Chemistry B, vol.111, issue.26, p.7541, 2007.
DOI : 10.1021/jp072440j

W. Yang, S. E. Baker, J. E. Butler, C. Lee, J. N. Russell et al., Electrically Addressable Biomolecular Functionalization of Conductive Nanocrystalline Diamond Thin Films, Chemistry of Materials, vol.17, issue.5, p.938, 2005.
DOI : 10.1021/cm048060h

B. P. Corgier, C. A. Marquette, J. Blum, and C. B. Lyon, Diazonium???Protein Adducts for Graphite Electrode Microarrays Modification:?? Direct and Addressed Electrochemical Immobilization, Journal of the American Chemical Society, vol.127, issue.51, p.18328, 2005.
DOI : 10.1021/ja056946w

B. P. Corgier, F. Li, J. Blum, C. A. Marquette, and L. Icbms, On-Chip Chemiluminescent Signal Enhancement Using Nanostructured Gold-Modified Carbon Microarrays, Langmuir, vol.23, issue.16, p.8619, 2007.
DOI : 10.1021/la700689b

J. Wang and J. A. Carlisle, Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films, Diamond and Related Materials, vol.15, issue.2-3, p.279, 2006.
DOI : 10.1016/j.diamond.2005.09.017

D. Guo and H. Li, High Dispersion and Electrocatalytic Properties of Platinum on Functional Multi-Walled Carbon Nanotubes, Electroanalysis, vol.57, issue.10, p.869, 2005.
DOI : 10.1002/elan.200403164

A. Adenier, M. M. Chehimi, I. Gallardo, and J. Pinson, Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces, Langmuir, vol.20, issue.19, p.8243, 2004.
DOI : 10.1021/la049194c

L. Santos, A. Mattiuzzi, I. Jabin, N. Vandencasteele, O. Reinaud et al., One-Pot Electrografting of Mixed Monolayers with Controlled Composition, The Journal of Physical Chemistry C, vol.118, issue.29, p.15919, 2014.
DOI : 10.1021/jp5052003

URL : https://hal.archives-ouvertes.fr/hal-01151709

G. Liu, M. Chockalingham, S. M. Khor, A. L. Gui, and J. J. Gooding, A Comparative Study of the Modification of Gold and Glassy Carbon Surfaces with Mixed Layers of In Situ Generated Aryl Diazonium Compounds, Electroanalysis, vol.53, issue.9, p.918, 2010.
DOI : 10.1016/j.electacta.2008.05.001

M. R. Axet, O. Dechy-cabaret, J. Durand, M. Gouygou, and P. Serp, Coordination chemistry on carbon surfaces, Coordination Chemistry Reviews, vol.308, p.236, 2016.
DOI : 10.1016/j.ccr.2015.06.005

X. Zhou, D. Micheroni, Z. Lin, C. Poon, Z. Li et al., Cl for Syngas Generation from Carbon Dioxide, ACS Applied Materials & Interfaces, vol.8, issue.6, p.4192, 2016.
DOI : 10.1021/acsami.5b11958

L. Hussein, G. Urban, and M. Krüger, Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications, Physical Chemistry Chemical Physics, vol.55, issue.103, p.5831, 2011.
DOI : 10.1016/j.electacta.2009.09.080

A. L. Goff, F. Moggia, N. Debou, P. Jegou, V. Artero et al., Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and ??-stacking interactions and their relevance to glucose bio-sensing, Journal of Electroanalytical Chemistry, vol.641, issue.1-2, p.57, 2010.
DOI : 10.1016/j.jelechem.2010.01.014

URL : https://hal.archives-ouvertes.fr/cea-01022790

M. Sprecher, R. Breslow, O. Uziel, and T. M. Link, MONOSUBSTITUTED 2,2???-BIPYRIDINES, Organic Preparations and Procedures International, vol.273, issue.6, p.696, 1994.
DOI : 10.1021/jo00151a001

Y. Wan, On the Controllable Soft-Templating Approach to Mesoporous Silicates, Chemical Reviews, vol.107, issue.7, p.2821, 2007.
DOI : 10.1021/cr068020s

A. Walcarius and L. Ercier, Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants, Journal of Materials Chemistry, vol.396, issue.314, p.4478, 2010.
DOI : 10.1016/0927-6513(93)80058-3

A. Walcarius, Comptes Rendus Chim, p.93, 2005.

M. Hasanzadeh, N. Shadjou, M. De-la-guardia, M. Eskandani, and P. Sheikhzadeh, Mesoporous silica-based materials for use in biosensors, TrAC Trends in Analytical Chemistry, vol.33, p.117, 2012.
DOI : 10.1016/j.trac.2011.10.011

S. Frasca, A. Milan, A. Guiet, C. Goebel, F. Pørez-caballero et al., Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes???Electrochemical characterization and direct enzyme communication, Electrochimica Acta, vol.110, p.172, 2013.
DOI : 10.1016/j.electacta.2013.03.144

S. Jun, S. H. Joo, R. Ryoo, M. K. Ruk, M. Jaroniec et al., Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, Journal of the American Chemical Society, vol.122, issue.43, p.10712, 2000.
DOI : 10.1021/ja002261e

C. Mousty, Biosensing applications of clay-modified electrodes: a review, Analytical and Bioanalytical Chemistry, vol.18, issue.1, p.315, 2010.
DOI : 10.1016/j.cis.2005.05.006

A. Walcarius, S. D. Inteer, J. Wang, Y. Lin, and A. Merkoåi, Nanomaterials for bio-functionalized electrodes: recent trends, Journal of Materials Chemistry B, vol.12, issue.167, p.4878, 2013.
DOI : 10.1002/tcr.201100025

URL : https://hal.archives-ouvertes.fr/hal-01505219

E. Nanomaterials, . Sensing, and . Biosensing, P umera), Taylor &F rancis Group,B oca Raton FL, 2013;e-book version, 2014.

Z. Dai, X. Xu, L. Wu, and H. , Detection of Trace Phenol Based on Mesoporous Silica Derived Tyrosinase-Peroxidase Biosensor, Electroanalysis, vol.15, issue.45, p.1571, 2005.
DOI : 10.1002/elan.200403256

Z. Dai, H. Ju, and H. Chen, Mesoporous Materials Promoting Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase, Electroanalysis, vol.43, issue.45, p.862, 2005.
DOI : 10.1002/cjoc.201190114

L. Zhang, Q. Hang, and J. Li, Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic???organic hybrid film, Electrochemistry Communications, vol.9, issue.7, p.1530, 2007.
DOI : 10.1016/j.elecom.2007.02.015

S. Wu, H. , S. Tao, C. Wang, L. Zhang et al., Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing, Analytica Chimica Acta, vol.686, issue.1-2, p.81, 2011.
DOI : 10.1016/j.aca.2010.11.053

H. Li, J. He, Y. Hao, D. , Y. Cai et al., Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor, Electrochimica Acta, vol.56, issue.7, p.2960, 2011.
DOI : 10.1016/j.electacta.2010.12.098

L. Zhu, C. Tian, D. Zhu, and R. Yang, Ordered Mesoporous Carbon Paste Electrodes for Electrochemical Sensing and Biosensing, Electroanalysis, vol.140, issue.153, p.1128, 2008.
DOI : 10.1016/j.crci.2004.10.003

G. X. Ma, Y. G. Wang, C. X. Wang, T. H. Lu, and Y. Y. Xia, Hemoglobin immobilized on whisker-like carbon composites and its direct electrochemistry, Electrochimica Acta, vol.53, issue.14, p.4748, 2008.
DOI : 10.1016/j.electacta.2008.01.092

M. Lin, C. H. Uang, M. , and C. Ou, Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels:??? Application to Direct Methanol Fuel Cell, The Journal of Physical Chemistry C, vol.112, issue.3, p.867, 2008.
DOI : 10.1021/jp076748m

L. Wang, J. Bai, X. Bo, X. Hang, and L. Guo, A novel glucose sensor based on ordered mesoporous carbon???Au nanoparticles nanocomposites, Talanta, vol.83, issue.5, p.1386, 2011.
DOI : 10.1016/j.talanta.2010.11.022

C. You, X. Yan, J. Kong, D. Hao, and B. Iu, Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances, Talanta, vol.83, issue.5, p.1507, 2011.
DOI : 10.1016/j.talanta.2010.11.041

Y. Wang, X. Bian, L. Liao, J. Hu, K. Guo et al., Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres, Microchimica Acta, vol.56, issue.3-4, p.277, 2012.
DOI : 10.1016/j.electacta.2011.06.023

D. Wang and Y. Tan, Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors, Electrochimica Acta, vol.116, p.495, 2014.
DOI : 10.1016/j.electacta.2013.11.088

G. Bharath, R. Madhu, S. Chen, V. Veeramani, A. Balamurugan et al., Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide, Journal of Materials Chemistry B, vol.26, issue.7, p.1360, 2015.
DOI : 10.1021/la100886x

M. Etienne and A. , Electrochemistry within template nanosystems, Nanosystems Electrochemistry,T he Royal Society of Chemistry, vol.11, pp.124-197
DOI : 10.1039/9781849734820-00124

R. Ryoo, S. H. Oo, and S. Un, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, The Journal of Physical Chemistry B, vol.103, issue.37, p.7743, 1999.
DOI : 10.1021/jp991673a

A. Walcarius, E. Ibottier, M. Etienne, and J. Hanbaja, Electrochemically assisted self-assembly of mesoporous silica thin films, Nature Materials, vol.72, issue.4, p.602, 2007.
DOI : 10.1016/j.crci.2004.10.003

URL : https://hal.archives-ouvertes.fr/hal-01343998

A. Heller and B. Feldman, Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chemical Reviews, vol.108, issue.7, p.2482, 2008.
DOI : 10.1021/cr068069y

URL : http://pubs.acs.org/doi/pdf/10.1021/cr068069y

D. K. Sen and G. S. Sarin, Tear glucose levels in normal people and in diabetic patients., British Journal of Ophthalmology, vol.64, issue.9, p.693, 1980.
DOI : 10.1136/bjo.64.9.693

M. Faustini, M. Va-yer, B. Marmiroli, M. Hillmyer, H. Amenitsch et al., Bottom-up Approach toward Titanosilicate Mesoporous Pillared Planar Nanochannels for Nanofluidic Applications, Chemistry of Materials, vol.22, issue.20, p.5687, 2010.
DOI : 10.1021/cm101502n