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ABSTRACT 

Deep tunnels are often built in the sedimentary and metamorphic foliated rocks which exhibit 

usually the anisotropic properties due to the presence of the discontinuities. The analysis of 

rock and liner stresses due to tunnel construction with the assumption of homogeneous and 

isotropic rock would be incorrect. The present thesis aims to deal with the deep tunnel in 

anisotropic rock with a particular emphasis on the effects of hydraulic phenomenon on the 

mechanical responses or reciprocal effects of hydraulic and mechanical phenomena by 

combining analytical and numerical approach. On that point of view, a closed-formed solution 

for tunnel excavated in saturated anisotropic ground is developed taking into account the 

hydro-mechanical behavior in steady-state. Based on the analytical solution obtained, 

parametric studies are conducted to evaluate the effects of different parameters of the 

anisotropic material on the tunnel behavior. The thesis considers also to extend the analytical 

solution with a time-dependent behavior which takes into account the impact of the pore 

pressure distribution on mechanical response over time, i.e., one way coupling modeling. In 

addition, some numerical analysis based on fully-coupled modeling, i.e., two ways coupling, 

are conducted which are considered as the complete solution for the analytical solution. An 

application of the closed-form solution on convergence-confinement method is as well 

referred which can take into account the influence of the tunnel face on the work of the 

support as well as the massif. 

The obtained solution could be used as a quick tool to calibrate tunnels in porous media by 

combining with design approaches such as convergence-confinement method. 

Keywords: deep tunnels, hydro-mechanical behaviour, elastic anisotropic rock, analytical 
solution, numerical solution, calibrate tunnels. 
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RESUME 

Les tunnels profonds sont souvent construits dans les roches sédimentaires et métamorphiques 

stratifiées qui présentent habituellement des propriétés anisotropes en raison de leur structure 

et des propriétés des constituants. Le présent travail vise à étudier les tunnels profonds dans 

un massif rocheux anisotrope élastique en portant une attention particulière sur les effets des 

couplages hydromécaniques par des approches analytiques et numériques. Une solution 

analytique pour un tunnel creusé dans un massif rocheux anisotrope saturé est développée en 

tenant compte du couplage hydro-mécanique dans le régime permanent. Cette solution 

analytique est utilisée pour réaliser une série d’études paramétriques afin d'évaluer les effets 

des différents paramètres du matériau anisotrope sur le comportement du tunnel.  

Dans un deuxième temps la solution analytique est élargie pour décrire le comportement du 

tunnel pendant la phase transitoire hydraulique.  Afin de compléter ces études analytiques qui 

prennent en compte seulement un couplage unilatéral (dans le sens que seul le comportement 

hydraulique influence le comportement mécanique et pas l’inverse) de l’analyse numérique 

avec un couplage complet, ont été réalisés. Une application de la solution analytique sur la 

méthode de convergence-confinement est aussi bien abordée qui peut prendre en compte 

l'influence du front de taille du tunnel sur le travail du soutènement ainsi que sur le massif. 

La solution obtenue peut servir comme un outil de dimensionnement rapide des tunnels en 

milieux poreux en le combinant avec des approches de dimensionnement comme celle de 

convergence-confinement.  

Mots clés: tunnels profonds, comportement hydro-mécanique, roche anisotrope élastique, 

solution analytique, solution numérique, dimensionnement des tunnels. 
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GENERAL INTRODUCTION 

Deep tunnels are widely used in practice such as in the mining industry, petroleum industry, 

underground transport, nuclear waste storage, etc. A tunnel is called deep if its diameter (or 

equivalent diameter if the cross section is not circular) is small compared to the depth of its 

axis, i.e., if H/D>10 where H is the depth of the tunnel axis and D its diameter. This means 

that the vertical initial stress variation between the upper and lower parts of the tunnel section 

(before excavation) is negligible compared to the initial vertical stress due to the weight of the 

ground to the average depth of the tunnel. 

Nowadays, with the development of techniques and technologies in the deep storage, 

especially in the nuclear waste storage, more and more, deep underground constructions are 

built. A problem often encountered in the construction the tunnels is that they are usually 

placed in sedimentary and metamorphic foliated rocks where the presence of the 

discontinuities makes them anisotropic.  

The analysis of the tunnels is often made with the assumption of homogeneous and isotropic 

rock. However, several research results indicate that, stresses and deformations in the rock as 

well as in the liner of the tunnel in elastic medium differ from those obtained in assuming 

isotropic properties of materials and strongly depend on the orientation of bedding or foliation 

with the tunnel axis (Hefny and Lo, 1999; Tonon and Amadei, 2002). This shows the 

importance of taking into account the anisotropic behavior of the medium. 

The rock is a porous medium whose behavior is governed by reciprocal influence of 

mechanical and hydraulic phenomena. The first theory of poroelasticity which considers the 

coupled diffusion-deformation phenomenon was proposed by Biot (Biot, 1941). Since then, 

Biot’s isotropic theory has been extended for general anisotropic materials (Biot, 1955; 

Thompson and Willis, 1991). Several authors have made important contributions in 

identifying and relating the associated material constants to well-known engineering constants 

(Amadei, 1983; Cheng, 1997; Abousleiman and Cui, 2000). Thereafter, a number of 

fundamental analytical solutions were developed which solved the problems of an excavation 

in anisotropic poroelasticity taking into account coupled behavior of the material 

(Abousleiman and Ekbote, 2005; Abousleiman and Cui, 1998; Bobet, 2011). 

As a continuity of the aforementioned works, the present work devotes to study the behavior 

of tunnels excavated in saturated, mechanically and hydraulically transversely anisotropic 

rock mass accounting for hydro-mechanical coupling. Based on complex variable method and 

on the technique of conformal mapping, closed-form hydro-mechanical solutions for stresses 

and displacements around the deep tunnels are developed. The Lekhnitskii complex potential 

approach of anisotropic elasticity is used to include the hydraulic effect. It should be noted 

that, this solution is based on an one-way-coupling model, i.e., the only effect of hydraulic 

phenomena on the mechanical response are considered. Therefore, in parallel, numerical 

analysis also are conducted to evaluate the complete the effects of full-coupled behavior on 
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the tunnel response. This numerical solution is considered as a complete solution for the 

analytical solution. 

The study objectives of the dissertation are to study the work of a lined deep tunnel with 

circular cross-section in a saturated poroelastic anisotropic medium. Concretely, there are four 

objectives defined for this thesis and will be presented in chapters 2, 3 and 4: 

1. Develop an analytical solution in condition of steady state of groundwater flow. Thus, the 

solution is based on a behavior model of one way coupling by taking into account the effect of 

pore pressure distribution on the mechanical responses. 

2. Develop a transient analytical solution based also on the behavior model of one-way-

coupling which considers the evolution of the pore pressure with time and its effect on the 

mechanical responses. 

3. Evaluate the pertinence of one-way-coupling models by comparison with full coupled 

analyses. For that, several numerical analyses are performed and compared with analytical 

one-way-coupling results. Furthermore, the numerical solution also considers the effect of 

very low permeability of the rock mass on its hydro-mechanical responses.  

4. For the purpose of application in tunnel design, an extension of the closed-form solution on 

convergence-confinement method is referred, which can take into account the influence of the 

tunnel face on the work of the support as well as the massif. The obtained solution could be 

used as a quick tool to calibrate tunnels in porous media based on the approach of 

convergence-confinement method 

This dissertation is organized as follows: 

Chapter 1 devotes to present the motivation, the basic theoretical concepts of the poroelastic 

medium and the fundamental assumptions. Constitutive equations for poroelastic that will be 

used later, are presented. The anisotropic inherence of rock is discussed in the next part that 

highlights the importance of taking into account anisotropic behavior of the rock being 

analyzed. Finally, the works that relate to the subject of the thesis are outlined for an overview 

on study topic and the determination of the objectives of the thesis. 

Chapter 2 develops an analytical solution for a lined deep tunnel in saturated anisotropic rock. 

The analytical solution is developed on the basis of a complex variable method, a powerful 

method for solving two dimensional elasticity problem. The Lekhnitskii complex potential 

approach of anisotropic elasticity is used to include the hydraulic effect, i.e., the solution takes 

into account the effect of pore pressure distribution on the mechanical response. The solution 

is based on the one way coupling model when the fluid flow attempts a steady state. The 

closed-form solution also accounts for the liner-rock mass interaction and two drainage 

conditions of the fluid flow at the liner-rock mass interface: no drainage and full drainage. 

After that, employing the analytical solution, a series of parametric investigations are carried 

out to elucidate effects of different parameters on the tunnel response. The closed-form 
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solution is thought to be a useful tool to quickly evaluate the stresses and displacements of the 

tunnel for design purposes. 

Chapter 3 consists of two parts. The first one is devoted to develop an analytical solution for 

hydro-mechanical problem in transient state on the basis of the one way coupling model. The 

transient solution can be considered as successive steady-state snapshots using a time 

dependent influence radius, and therefore, the complex potential approach used in chapter 2 

could be applied to each instant of the computational processes. It should be noted that, the 

one way coupling model cannot fully reflex the hydro-mechanical coupling behavior; 

however, it could help to observe the impact of the pore pressure distribution on the 

mechanical response over time. Consequently, the second part of this chapter is devoted for 

numerical simulations of the tunnels in saturated anisotropic rock based on a fully-coupled 

hydro-mechanical model. The numerical analyses are performed with the FEM code – 

ASTER. The parametric estimations are also carried out to evaluate completely the reciprocal 

effects between mechanical and hydraulic phenomena. 

Chapter 4 extends the solution obtained in chapter 2 based on the approach of the 

convergence-confinement method to study the interaction between the rock mass and the 

support/liner for a deep tunnel in anisotropic poro-elastic medium. This solution can take into 

account the distance from the section of support installation to the tunnel face that depends on 

the instant of support installation, i.e., influence of the tunnel face on the work of the support 

as well as the massif. 

Finally, the general conclusions of the thesis point out the achievements as well as the further 

perspectives of this work. 
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 INTRODUCTION GENERALE  

Les tunnels profonds sont largement utilisés dans la pratique comme dans l'industrie minière, 

l'industrie pétrolière, le transport souterrain ou le stockage des déchets nucléaires, etc. Un 

tunnel est estimé profond si son diamètre (ou son diamètre équivalent, au cas où la section 

transversale n’est pas circulaire) est significativement plus petit que la profondeur de son axe, 

c’est-à-dire, si H/D>10 avec H la profondeur de l'axe du tunnel et D son diamètre. Cela 

signifie que la variation de la contrainte entre les bords supérieur et inférieur de la section 

transversale du tunnel (avant de l'excavation) est négligée par rapport la contrainte initiale 

verticale (généralement conséquence du poids de sol) à la profondeur moyenne du tunnel. 

De nos jours, en accompagnement le développement des techniques et technologies dans le 

domaine de stockage profond notamment dans le contexte de stockage des déchets radioactifs, 

les constructions souterraines profondes sont un sujet d’actualité. Un problème souvent 

rencontré dans la construction de tels tunnels est leur placement dans des milieux poreux 

sédimentaires stratifiés qui manifestent un comportement mécanique et hydrique plus ou 

moins anisotrope. 

L'analyse des tunnels et leur dimensionnement sont souvent effectués avec l’hypothèse que la 

roche est homogène et isotrope. Cependant, plusieurs résultats dans la littérature indiquent 

que le champ de contraintes et de déformations autour d’un tunnel dans un milieu anisotrope 

ainsi que ces champs dans le revêtement du tunnel diffèrent significativement de ceux obtenus 

sous l’hypothèse des propriétés isotropes et fortement dépendants de l'orientation de la 

stratification par rapport l'axe du tunnel (Hefny et Lo, 1999; Tonon et Amadei, 2002). Cela 

souligne l'importance de la prise en compte du comportement anisotrope du massif dans 

l’analyse les tunnels. 

Une roche est un milieu poreux dont le comportement est régi par une influence réciproque 

entre les phénomènes mécaniques et hydrauliques. La première théorie du poro-élasticité qui 

traite du phénomène de diffusion-déformation couplé a été proposée par Biot (Biot, 1941). 

Depuis lors, la théorie isotrope de Biot a été élargie pour les matériaux anisotropes (Biot, 

1955; Thompson et Willis, 1991). Plusieurs auteurs ont également eu des contributions 

importantes dans l'identification et la mise en rapport des constantes poroélastiques des 

matériaux avec des constantes d'ingénierie connues (Amadei, 1983; Cheng, 1997; 

Abousleiman et Cui, 2000). Par la suite, certaines solutions analytiques fondamentales ont été 

développées. Elles ont résolu les problèmes d'une excavation dans milieu poro-élasticité 

anisotrope en prenant en compte le comportement couplé des matériaux (Abousleiman et 

Ekbote, 2005; Abousleiman et Cui, 1998; Bobet, 2011).  

En continuité des travaux cités ci-dessus, le présent travail est consacré à l’étude du 

comportement des tunnels profonds creusés dans les massifs d’anisotropie transverse, saturés 

en tenant compte du couplage hydro-mécanique. Basée sur la méthode des variables 

complexes et sur la technique de « conformal mapping », des solutions analytiques des 
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contraintes et des déplacements autour des tunnels profonds sont développées. L’approche du 

potentiel complexe de Lekhnitskii pour l’élasticité anisotrope est utilisée afin d’inclure l'effet 

hydraulique. Notons, que ces solutions sont fondées sur un modèle de couplage unilatéral 

(one-way-coupling), c’est-à-dire, le seul effet des phénomènes hydrauliques sur la réponse 

mécanique est considéré, et pas l’inverse. Par conséquent, des analyses numériques sont 

réalisées en parallèle pour évaluer complètement les effets du comportement entièrement 

couplé sur la réponse du tunnel. Ces analyses numériques complèteront la solution analytique. 

Ce travail vise à étudier le comportement d'un tunnel profond de section transversale 

circulaire dans un milieu poro-élastique anisotrope saturé. Concrètement, il y a quatre 

objectifs définis pour cette thèse, ils seront présentés dans les chapitres 2, 3 et 4: 

1. Développer une solution analytique en régime permanent de l'écoulement interstitiel. De 

par le choix de la stratégie de l’approche analytique, la solution est obtenue par un modèle de 

couplage unilatéral, (one-way-coupling), en prenant en compte l'effet de la répartition de la 

pression des pores sur les réponses mécaniques. 

2. Elargir la solution analytique, pour le cas de la transitoire hydraulique en utilisant le même 

schéma unilatéral de couplage se limitant à l’impact de l'évolution de la pression interstitielle 

en fonction du temps sur les réponses mécaniques. 

3. Évaluer la pertinence des modèles à couplage unilatéral en comparaison avec des analyses 

réalisées avec un couplage complète. Pour ce faire, plusieurs analyses numériques sont 

effectuées et comparées avec les résultats obtenus par le couplage à sens unique. Evaluer les 

solutions proposées dans la situation de dimensionnement des tunnels. 

4. Pour des applications dans la conception des tunnels, une extension de la solution 

analytique sur la méthode convergence-confinement est aussi bien abordée. Avec cette 

méthode on peut prendre en compte l'influence du front de taille du tunnel sur le travail du 

soutènement ainsi que sur le massif. La solution obtenue pourrait être utilisée comme un outil 

rapide pour dimensionnement des tunnels en milieu poreux sur la base de l'approche de la 

méthode de convergence-confinement. 

Ce travail de recherche est organisé comme suit : 

Le chapitre 1 est dédié à présenter la motivation, les concepts théoriques de base du milieu 

poro-élastique et les hypothèses fondamentales. Des équations constitutives pour le milieu 

poro-élastique utilisées plus tard seront présentées. L’anisotrope inhérente des roches sera 

examinée en mettant en évidence l'importance de sa prise en compte dans l’analyse des 

tunnels. Les principaux travaux de recherche issus de la bibliographie en rapport avec les 

thèmes les objectifs de la thèse sont analysés et résumés. 

Le chapitre 2 développe une solution analytique pour un tunnel profond soutenu dans un 

massif rocheux saturé anisotrope. La solution analytique est développée en se basant sur la 

méthode des variables complexes, méthode efficace pour résoudre les problèmes de l'élasticité 
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plane. L’approche du potentiel complexe de Lekhnitskii est utilisé pour résoudre le problème 

élastique anisotrope en prenant compte une distribution stationnaire de pressions de pores. La 

solution est basée sur un couplage à sens unique et pour un état hydraulique stationnaire. La 

solution analytique obtenue, décrit également l’interaction entre le massif et le revêtement en 

deux conditions extrêmes de drainage à l'interface massif-revêtement: non drainé et drainé 

stationnaire. Ensuite, la solution analytique est utilisée pour réaliser une série d'études 

paramétriques pour élucider les effets de différents paramètres sur la réponse du tunnel. La 

solution analytique est considérée comme un outil rapide à évaluer les contraintes et les 

déplacements autour des tunnels. 

Le chapitre 3 se compose de deux parties. La première est consacrée à développer une 

solution analytique pour le problème hydro-mécanique en régime transitoire basée sur le un 

couplage unilatéral. La solution transitoire hydraulique peut être considérée comme un 

ensemble d’états d’équilibre successifs en utilisant un rayon de l’influence en fonction du 

temps. L'approche du potentiel complexe utilisé dans le chapitre 2 pourrait donc être 

appliquée à chaque instant du processus de calcul. Notons que le modèle de couplage à sens 

unique ne peut pas décrire le comportement hydro-mécanique complétement couplé; 

néanmoins, il pourrait aider à observer l'impact de la répartition de la pression interstitielle sur 

la réponse mécanique en fonction du temps. Par conséquent, la deuxième partie de ce chapitre 

est consacrée aux simulations numériques des tunnels dans massifs rocheux saturés 

anisotropes réalisées avec un couplage hydro-mécanique complet. Les analyses numériques 

sont réalisées avec le code aux éléments finis Code-ASTER. Les estimations paramétriques 

seront également réalisées afin d'évaluer complètement les effets réciproques entre les 

phénomènes mécaniques et hydrauliques. 

Le chapitre 4 élargie la solution obtenue au chapitre 2 en s'appuyant sur l'approche de la 

méthode convergence-confinement pour étudier l'interaction entre le massif rocheux et le 

soutènement/revêtement pour un tunnel profond en milieu poro-élastique anisotrope. Cette 

solution peut prendre en compte l'influence de la distance de la section d’installation du 

soutènement au front de taille du tunnel sur le travail du soutènement ainsi que sur le massif, 

c'est-à-dire, considérer l’instant d’installer le soutènement. 

Enfin, la conclusion générale de la thèse soulignera les résultats acquis ainsi que les 

perspectives de recherche. 
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CHAPTER 1: BIBLIOGRAPHIC STUDY ON HYDRO –MECHANICAL 
BEHAVIOR OF ANISOTROPIC POROUS MEDIA 

1.1 Introduction 

The determination of stresses and displacements around a deep tunnel is a primary topic in the 

design and evaluation of stability and safety of underground openings. The engineering 

practice on this topic is mainly based on the known solutions of deep tunnels on elastic 

isotropic medium. When the anisotropic behavior of rock masses is considered many of 

existing works in the literature are limited on the anisotropy of mechanical behavior while the 

anisotropic poromechanic behavior is often judge quite complex.  

This complexity explains why almost always the analyses of stresses and displacements in the 

liner as well as in the rock surrounding a deep tunnel, are based on simplified assumptions of 

homogeneous and isotropic rock or/and isotropic initial stresses. The solutions obtained on 

these assumptions become much simpler. Following that, the responses of the rock and the 

liner are the same in all directions; moreover, the liner is not bended. However results 

obtained after these assumptions could be somewhat qualitative for estimation of the stability 

of tunnels in anisotropic media.  

Many analytical solutions for analysis of shallow or deep lined tunnels, which are based on 

the isotropic assumptions, can be listed here such as: in dry ground or below the water table 

(Bobet, 2001, 2003, 2007; Bobet et al., 2006, 2007; Carranza-Torres and Zhao, 2009), for 

elastic problems (Verruijt and Booker 1996; Verruijt 1997, 1998; Exadaktylos and 

Stavropoulou 2002), for poroelastic problems (Carter and Booker, 1984; Wang, 1996, 2000; 

Abousleiman, 1997; Chen and Yu, 2015), for plastic problems (Carranza-Torres and Fairhurst 

2000, 2004), and poro-plastic rock (Hoxha et al., 2004; Bobet, 2009a). 

The tunnels, however, are often built in heterogeneous and anisotropic medium due to the 

inherent anisotropy of sedimentary rock masses and their stratified structure. Duncan and 

Goodman (1968), Amadei and Goodman (1981a, 1981b), Wittke (2014) have indicated that, 

the existence of a stratified structure of rock leads to an anisotropic response of the rock 

masses under loading and unloading. It is also the case for the response of rock masses 

traversed by oriented discontinuities even if the intact rock (without discontinuities) is 

isotropic. In both cases modeling of rock mass as isotropic, could be considered as an 

approximation more or less accurate depending on the degree of anisotropy of rock masses. 

A type of rock encountered usually in tunnel construction, the sedimentary rocks, has 

stratified structure with directional properties due to the depositional medium. These rocks 

could be described as transversely isotropic one with the axe of symmetry coinciding with the 

direction of deposition. Rahn (1984) indicated that, if measured normally and parallel to the 

bedding plane, the Young modulus of a foliated rock varies by about 50%.  Chenevert (1964) 

measured four different types of stratified rocks and showed that the degrees of anisotropy 

varied from 1.02 to 1.5. Recently, in constructing the underground rock laboratory (URL) in 



 

26 
 

the context of the underground storage of nuclear waste, one measured the degree of 

anisotropy of Callovo-Oxfordian clay, Opalinus clay and Boom clay stones in the range of 

1.2-2.5 (Armand, 2013; Millard et al., 2013; Charlier et al., 2013). Lama and Vutukuri (1978) 

presented data records showing the relative frequency of anisotropy in sedimentary rocks as 

illustrated in Fig. (1.1). It is observed that, the degree of anisotropy for most sedimentary rock 

estimated is in range of 1.0-1.5.  

 

Fig. 1-1: Distribution of degree of anisotropy in sedimentary rocks according to Lama and Vutukuri, 1978 

In-situ records and characterization of EDZ in URL in Bure (Fig. 1.2) show that the 

convergence on the wall of an observation tunnel, which is oriented in the direction of major 

principle stress, is almost 2 times greater in the horizontal direction than in vertical one while 

the EDZ extensions in the horizontal direction is almost 8 times greater (Armand et al., 2013, 

2014; Carrillo et al., 2015). These manifest clearly an anisotropic response of rock masses 

since the cross section stress in situ is nearly isotropic. However the role of mechanical and 

hydraulical anisotropies is not clear.  

 

Fig. 1-2: EDZ in GCS (Galerie de conception souple), Bure URL, France (Armand et al., 2014) 

For the past two decades, several authors considered the behavior of deep tunnels in elastic 

anisotropic rocks. For example, Hefny and Lo (1999), Bobet (2011) mentioned the tunnel in 

dry rock or under the water table; Vu et al. took into account a nonlinear elastic behavior of 

the material; Tran et al. (2015a) and Zhang and Sun (2011) focused on the tunnel with the 

arbitrary cross section in dry rock.  
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Relatively few works deal with behavior of deep tunnels when anisotropic hydro-mechanical 

coupling is considered. For example, Abousleiman and Cui (1998) investigated the behavior 

of a borehole in a transversely poroelastic media but they only considered the case that the 

cross section of the borehole is parallel to the isotropic plane of media whose compatibility 

equation and fluid diffusion of transversely isotropy are the same as that of isotropy case. 

In a recent contribution of Bobet (Bobet and Yu 2015), the authors determine the stress field 

near the crack tip in the poroelastic transversely isotropic saturated rock. In order to deduce 

the analytical solution for this problem, Bobet (2015) use the well-known complex potential 

approach firstly presented by Lekhnitskii (Lekhnitskii 1963) and later adopted and applied for 

many rock engineering problems by Amadei (1983) in the context of the anisotropic 

poroelastic medium.  

At our best knowledge, a complete study about the behavior of a deep lined tunnel taking into 

account the hydro-mechanical behavior model is not still well documented, and constitutes in 

the same time a challenge and an interesting topic research whose application would be 

interesting in many fields of human activity. A desire to clarify the mechanisms governing the 

behavior of a lined deep tunnel in saturated anisotropic porous medium as well as the effect of 

hydro-mechanical parameters on the responses of the tunnel have largely promoted the 

present work.  

This dissertation is oriented towards the development of an analytical solution for the 

considered problem and it may be used on design of tunnels. As we know, however, the 

inherent complexity in developing a complete analytical solution taking into account the 

reciprocal impact mechanism of hydro-mechanical coupling, further numerical analyses are 

performed to validate and then to complete this analytical solution. 

It is envisaged that the hydro-mechanical solution for the deep tunnel in anisotropic rock in 

the present dissertation will provide an initial view, a quick analysis tool for design and 

evaluation of the stability of the tunnels. In addition, this could also give the 

recommendations as basis to orient next studies in the same subject. 

1.2 Poroelastic theory 

1.2.1 Introduction 

Poroelasticity can be sweepingly described as a science, a branch of physics, whose study 

object is a porous medium subjected to internal and/or external forces. The porous medium 

consists of a solid matrix and a simply connected pore space which is filled by one or more 

freely moving fluids or gases (Detounay and Cheng, 1993; Coussy, 1995). 

Due to the existence of the mixture filling the pores, the behavior of porous medium is always 

characterized by a coupling between the deformation of the solid matrix and the diffusion of 

the interstitial pore fluid pressure. The poromechanical and physical characteristics of the 

porous medium and the fluid decide the nature of the deformation, rate of diffusion and 



 

28 
 

intensity of the coupling. The coupled response is a result of at least two actions which occur 

concurrently and influence each other. On the one hand, the applied stress induces a change in 

pore volume, thereby, influences the fluid pressure or fluid mass. This phenomenon may be 

considered as the solid-to-fluid coupling. On the other hands, the change in the fluid pressure 

or fluid mass also produces a change in the volume of the porous material which is referred to 

as the fluid-to-solid coupling (Wang, 2000). According to Rice and Cleary (1976), and Cleary 

(1977), the porosity of the medium, the compressibility of the matrix and pores, and the pore 

fluid affect the intensity of the coupling. The change of the pore pressure field produces a 

hydraulic gradient which could lead to a diffusive fluid mass transport. This fluid diffusion 

also progressively influences the deformation which results in a time-dependent response 

(Detournay and Cheng, 1993; Coussy, 1995). There is a great deal of factors which can 

influence the poromechanical behavior of geomaterials. Regarding to the stress-deformation 

relation, many porous material models are proposed such as, the linear elastic, non-linear 

elastic, viscoelastic and/or plastic models (Coussy, 1995). In addition, the porous medium is 

considered as either fully or partially saturated and the pore fluids can be modeled as 

Newtonian or non-Newtonian fluids. 

The earliest theory taking into account the influence of pore fluid on the quasi-static 

deformation of soils was proposed by Terzaghi (1923) who developed a model of one-

dimensional consolidation. This theory nowadays is still widely used in soils mechanics. After 

that, the theory was generalized to three-dimension problem by Rendulic (1936). However, 

Biot is the pioneer who developed a linear theory of poroelasticity that is fit for the two basic 

phenomena, i.e., solid-to-fluid coupling and fluid-to-solid coupling as mentioned above (Biot, 

1935, 1941). In an attempt to generalize consolidation theory, the theory of anisotropic 

poroelasticity was formulated by Biot (1955). Rice and Cleary (1976) reformulated Biot 

theory by expressing the linear elastic behavior law based on other parameters that are well-

known in soil mechanics and rock mechanics such as the coefficient of Skempton and 

undrained Poisson ratio. This theory developed initially for linear elastic behavior of an 

isotropic material was later generalized to anisotropic poroelastic media and viscosity 

behavior. Recently, Coussy (2004) proposed a general theory of poroelastoplasticity for 

saturated porous materials by introducing the concepts of plastic effective stress and plastic 

porosity. 

1.2.2 Description of the porous medium 

In porous medium, one distinguishes the closed pores which do not share with their neighbors 

and connected pores in which exchanges are numerous.  

A physical quantity of porous medium used in study is its porosity which is defined as the 

ratio of the volume of the connected porous space to the total volume (Coussy, 1995, 2004). 

Henceforth, the porosity is referred to the entire connected porosity. The connected porous 

space is either fully or partially filled with a number of fluids which are optionally present in 

several phases (liquid, gas or vapor). It has been shown by several authors that this porosity 
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may have a primarily effect on some rock properties such as permeability (Murky and 

Zinszner 1985), compressibility (Walsh and Grosenbaugh 1979; Walsh and Brace, 1984). The 

matrix component is, therefore, assumed to constitute of a solid part and a possible closed 

porous one, whether saturated or not, but through which no permeation occurs. The solid 

phase of rock can vary significantly from a rock to another one by its mineralogical 

composition and structure. It consists of an assembly of grains, often polycrystalline, whose 

contacts are more or less coherent after sedimentation by forming a cement of various origins. 

This solid phase is characterized by a strong cohesion in comparison with the soil. The solid 

phase can be characterized by its mineralogical composition and by its elastic properties 

which can be measured or estimated on the basis of elastic constants of its components (Brace 

1965). 

 

Fig. 1-3: A schematic of the porous media idealization (Coussy 2004) 

1.2.3 Assumptions 

In the following we present several common assumptions adopted and may be considered as 

the basic framework for development of the poroelastic models. 

 The porous media is considered as a continuous and homogeneous solid-fluid mixture 

which consists of the matrix and the porous space fully or partially filled by fluids and the 

fluids can freely move through the connected pores. 

 The strain-displacement relations obey the small deformation theory 

 The constitutive relations rely on the linear, elastic and reversible Hooke law 

 The anisotropy of the medium is a consequence of the structural arrangement of the grains 

or pores 

 The interstitial fluid flow is assumed to be laminar and can be described using Darcy's law 

 The sign convention used in mechanics, i.e., the tension is taken as positive and 

compression as negative 
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1.2.4 Deformation Restrictions 

1.2.4.1 Strain-Displacement Relations: 

Under applied loading, the elastic body will change the shape or deform. If we know the 

displacement field within the elastic body, we can quantify these deformations based on   the 

continuum mechanics approach. The finite strain of the body can be expressed as follows 

(Sadd, 2009): 

  , , , ,

1

2
ij i j j i k i k ju u u u     (1.1) 

Where  ij  is the strain tensor and iu  is the displacement vector. In Eq. (1.1), the Einstein 

index convention has been used where a repeated index denotes summation while a comma 

followed by an index indicates differentiation. According to small deformation theory, the 

higher order term , ,k i k ju u  can be eliminated, and thus, one has the simplified strain-

displacement relation as: 

  , ,

1

2
ij i j j iu u    (1.2) 

It should be noted that the strain is a symmetric second-order tensor, i.e.  

 ij ji   (1.3) 

1.2.4.2 Strain Compatibility: 

With the assumption of continuum porous medium and that the medium is bounded by simply 

connected region, one has some additional relations necessary to ensure continuous, single-

valued displacement field solutions. This means that each element of the medium has been 

exhaustively deformed; taking into consideration neighboring elements so that the system fits 

together thus yielding continuous, single-valued displacements. Under the assumption of 

small displacements and by eliminating the displacements from the strain-displacement 

relations in Eq. (1.1) one obtains the following relations:  

 , , , , 0ij kl kl ji ik jl jl ik        (1.4) 

These relations are referred as the Saint-Venant compatibility equations.  

1.2.5 Conduction Laws: 

In the porous medium, if there is a difference in potentials, it will induce a flow from higher 

potential position to lower potential one. For example, a difference in the hydraulic potential 

causes a fluid flow in the porous medium. This phenomenon also occurrs with the thermal 

conductivity. The resulting flux is explained by the phenomenological coefficients theory of 

Onsager which is expressed as follows (De Groot, 1952): 
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 ,i ij jJ L X  (1.5) 

In which iJ is the flux, X is potential gradient and ijL are phenomenological coefficients. 

These coefficients are permeability or heat conductivity, etc. One characteristic of the 

phenomenological coefficients ijL is symmetric property, i.e., ij jiL L . 

Darcy’s Laws: 

The flow of a fluid through a porous medium can be described by the well-known Darcy’s 

law. The law was proposed in 1856 by Henry Darcy based on the results of experiments on 

the water flow through sand layers. Darcy’s law also can be derived from Navier-Stokes 

equations by dropping the inertial terms. Darcy’s law is defined by the relation between the 

fluid flux and the pressure gradient in fluid saturated porous material. Therefore, one can 

replace the matrix of phenomenological coefficients ijL  in E.q (1.5) by the anisotropic 

permeability matrix. The general expression of Darcy’s with eliminating the body forces is 

given in following form (Cheng, 2016): 

 ,
f

i ij jq p  (1.6) 

where 
f

iq is the specific discharge vector, ij  is the anisotropic permeability coefficient tensor 

and , jp  denotes the pore pressure gradient. The permeability coefficient tensor is related to 

the anisotropic intrinsic permeability tensor, ijk  by /ij ijk  , where  is the fluid viscosity. 

In general, the intrinsic permeability ijk  is dependent on pore geometry. In particular, it is 

strongly dependent on the porosity  of the porous material. For instant, the Carman-Kozeny 

law indicates a power relation as: 
3 2/ (1 )ijk   (Detoumay and Cheng, 1993). For an 

isotropic case, E.q. (1.6) reduces to: 

 ,
f

i iq p  (1.7) 

In which   is the isotropic permeability coefficient. 

1.2.6 Conservation Laws 

1.2.6.1 Mass Conservation 

The conservation principle of mass is valid for any system. For the solid, since small 

movements were observed, it can be considered that the density of the solid is constant. 

However, for fluids, these equations are very important. The expression of mass balance of 

fluid in a saturated medium considering input/output mass amounts across an element is given 

by (Bear, 1972): 
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, 0i iq

t


 


 (1.8) 

Where   is the change in fluid content and iq  is the relative flux.  

1.2.6.2 Momentum conservation – mechanical equilibrium 

The mechanical balance is satisfied in static or quasi-static state by the nullity of the sum of 

the forces applied to the system, i.e., volume forces and surface forces: 

 , 0ij j if    (1.9) 

where ij is stress tensor and if is body force vector. 

1.2.7 Constitutive Equations: 

Under the impact of perturbations, there are changes in dynamic and kinematic quantities of 

the porous medium. The material constants and constitutive relations of each poromechanics 

model will determine the changes in these dynamic and kinematic variables of the porous 

medium. In a porous system, the stresses, pore pressure and temperature are the dynamic 

variables whereas the strain and the variation of the fluid content are the kinematic variables. 

The constitutive equations express the relations between the dynamic variables (stress, pore 

pressure, temperature) with the kinematic variables (strain, variation of fluid content) through 

the material coefficients. 

In the following part, we will present the constitutive equation for hydro-mechanical model 

commonly used in studying the porous medium. 

1.2.7.1 Concept of effective stress 

The role of fluid is usually considered by using the concept of effective stress which is 

developed by Karl Terzaghi in 1923 (Terzaghi, 1943) in the context of the classical theory of 

one-dimensional consolidation of saturated soils. The effective stress is defined as the only 

constraint variable that governs the response of stress and deformation of a porous material, 

independently on the value of the pore pressure. Although the effective stress model of 

Terzaghi is based initially on the one-dimensional consolidation problem, it is still valid in 

three-dimensional one. This concept is expressed by the following relation: 

 ij ij ijp      (1.10) 

where ij  is the effective stress tensor, ij is the total stress tensor, p is pore pressure and ij is 

the Kronecker product tensor. This concept of effective stress is based on the following 

assumptions: the medium is saturated with a single fluid; the grains constituting the solid 

matrix and the saturated fluid are incompressible; the fluid flow through the pores is laminar 

and obeys the Darcy’s law.  
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Later on, Biot proposed the model of poroelasticity which accounts for the coupled diffusion-

deformation phenomenon (Biot, 1935, 1941). Therefore, the relation between the effective 

stress and the pore pressure is adjusted as follows: 

 ij ij ij p      (1.11) 

where ij is the Biot’s effective stress coefficient tensor. Thus, it is seen that, the Terzaghi 

effective stress model is one special case of the Biot’s effective stress model when the Biot’s 

effective stress coefficients are equal to 1. 

As presented previously, the Biot’s poroelasticity theory is concerned as fundamental 

framework of soil and rock mechanics and used widely in the study.  

1.2.7.2 Constitutive equations of Poroelasticity 

Taking into account the relation between the effective stress and the strain through material 

parameters, i.e., Hooke’s law, the general expressions of constitutive equations of the 

poroelastic medium are given as (Thompson and Willis, 1991; Abousleiman and Cui, 1998): 

 
,

( )

ij ijkl kl ij

ij ij

M

p

p

M

  

  

 

 
 (1.12) 

where ij  is the strain tensor,   indicates the change of fluid volume (per unit volume of 

porous material), ijklM  is the drained elastic modulus tensor, and M  is Biot’s modulus.  

It is noted that, Eq. (1.121) expresses the stress-strain relation, i.e., the relation of the 

generalized Hooke law, whereas E.q (1.122) indicates the relation between the pore pressure, 

the change of fluid volume and the volumetric strain of the medium ij ij  . The Biot’s 

coefficients ij in E.q (1.12) is the coupling term. The material constants include the drained 

elastic modulus tensor ijklM , the Biot’s effective stress tensor ij and the Biot’s modulus M .  

1.3 Inherent Anisotropy in Rocks 

The main difference between anisotropic elasticity and isotropic elasticity is that deformation 

depends on orientations. In other words, the stress-strain response of a material in one 

direction is different compared to the others. The rock in which we construct tunnels are 

usually not isotropic: perfect isotropy of a rock is rarely encountered because of the 

orientation of minerals and discontinuities. Common examples on underground construction 

include sedimentary and metamorphic foliated rocks (Amadei, 1983; Cheng, 1997). 

Therefore, in order to study the work of the tunnels in anisotropic medium, we firstly study 

the basic physical properties of anisotropic materials. In this part, we mention generally the 

nature of anisotropic material regarding the (hydro)-mechanical aspect. Several special cases 

of anisotropic material will be discussed in this section. It should be noted that, we limit the 

object of this section in the elastic anisotropic material. 
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1.3.1  Material Symmetry 

For the general anisotropic case (also called as triclinic material), one has 21 needed 

independent elastic constants for characterization of the material response (Lekhnitskii, 1963; 

Saad, 2009). The drained elastic modulus tensor is given by: 
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 (1.13) 

where ijM are components of the drained elastic modulus tensor. 

Many real materials, however, have some types of symmetry, which could reduce further the 

required number of independent elastic constants (Lekhnitskii, 1963; Saad, 2009).  

1.3.1.1 Monoclinic Material 

If through each point within a body there is an across plane of symmetry which divides the 

medium into sides equivalent to each other regarding the elastic properties, this is referred to 

as a plane of elastic symmetry of the material. As shown in Figure 1-4, the plane of symmetry 

is x-y plane, the direction (z-axis) normal to the plane of symmetry is called the principal 

direction of elasticity. This material is commonly called as a monoclinic material.  

 

Fig. 1-4: Plane of symmetry for a monoclinic material 

The drained elastic modulus is tensor given as follows (Lekhnitskii, 1963; Saad, 2009): 
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 (1.14) 
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Therefore, it can be observed that, for characterization of the monoclinic materials, one must 

have 13 independent drained elastic moduli. 

1.3.1.2 Orthotropy 

If through each point in the medium one has three mutually perpendicular planes of 

symmetry, thereby, the material properties are independent of direction within each plane. 

The material is referred to as orthotropic material. (see Figure 1-5). 

 

Fig. 1-5: Three planes of symmetry for an orthotropic material. 

The drained elastic modulus tensor is given by (Amadei, 1983; Cui, 1995; and Cheng, 1997): 
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It is seen from Eq. (1.15) that, to describe an orthotropic material behavior; the number of 

independent elastic constants is reduced to 9. Let us consider ( 1,2,3)iE i   which are the 

drained Young’s moduli in directions i , and ( , 1, 2,3)ijG i j   which are the shear moduli for 

planes parallel to the coordinate planes i j and ij which are the drained Poisson’s ratio. 

These ratios are characterized by the compressive strain in j - direction induced by a tensile 

stress in the i -direction. For the anisotropic material, the following relations between the 

moduli and the Poisson ratios must be satisfied to the compatibility of the material parameters 

(Lekhnitski, 1963; Amadei, 1983): 

 1 21 2 12 2 32 3 23 3 13 1 31; ;E E E E E E         (1.16) 

One can find the expressions of the components of the drained elastic modulus tensor for the 

orthotropic material in Lekhnitskii (1963), Amadei (1983), or Abousleiman et al. (1996a): 
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(1.17) 

where d is defined as follows: 

 21 12 31 13 23 32 12 23 31 13 32 21 1d                   (1.18) 

As we know, the compliance tensor is in inverse to the drained elastic modulus tensor. Thus, 

based on the drained elastic modulus tensor with the components given above, one deduces 

the compliance tensor ijklC in the following: 
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in which: 
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(1.20) 

As mentioned previously, the Biot law is commonly used in poromechanics. For orthotropic 

porous medium, the Biot’s effective stress coefficients are given in three principle directions. 

Thus, the Biot’s effective stress coefficients tensor takes the form (Thompson and Willis, 

1991; Abousleiman and Cheng, 1993): 

    1 2 3 0 0 0
T

     (1.21) 

With the same form, one has the Skempton’s pore pressure coefficient tensor as follows 

(Thompson and Willis, 1991; Abousleiman and Cheng, 1993): 

    1 2 3 0 0 0
T

B B B B  (1.22) 
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Abousleiman (1996) indicated that, it is difficult to measure the anisotropic 

coefficients ( 1, 2,3)i i  . However, one enables to determine them under a special assumption 

of micro-isotropy and micro-homogeneity. Concretely, the solid grains are individually 

homogeneous and isotropic, and the macroscopic anisotropy is a consequence of the structural 

arrangement of the grains or pores. The components of Biot’s effective stress coefficient 

tensor are related to the components of the drained elastic moduli in the following (Cheng, 

1996; Abousleiman, 1996): 
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(1.23) 

where sK  is the solid grain bulk modulus. Therefore, the Biot’s effective stress coefficients 

can be evaluated through one measurement of sK  and with the knowledge of the drained 

elastic moduli. In the hydrogeology literature, one can determine the Biot's modulus (Biot & 

Willis, 1957) M as the inverse of the storage coefficient (Green and Wang, 1990), and can be 

presented as follows (Abousleiman, 1996): 
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where   is the porosity, fK  is the pore fluid compressibility and M is determined by: 

 11 22 33 12 23 132( )M M M M M M M       (1.25) 

The other important parameters in poromechanics, Skempton’s pore pressure coefficient 

tensor, are given in the similar form (Cheng, 1997): 
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(1.26) 

in which C is determined by: 

  11 22 33 12 23 132C C C C C C C       (1.27) 

   



 

38 
 

1.3.1.3 Transverse Isotropy 

In fact, one encounters many materials that have the same properties in one plane (e.g. the x-y 

plane, also known as the isotropic plane) whereas they have different properties in the 

direction normal to this plane, and so, they are named as transversely isotropic materials. 

These materials have an axis of rotational elastic symmetry. The drained elastic modulus 

tensor is given by Eq. (1.17) of orthotropic materials with  

 22 11 23 13 66 55; ;M M M M M M    (1.28) 

Therefore, only 5 independent elastic constants are required to describe material behavior, 

instead of 9 for fully orthotropy. They are denoted by: , , ,E E    and G where E is the 

Young’s modulus in the isotropic plane, E is the Young’s modulus in the transverse 

direction,  is the Poisson’s ratio which characterizes the transverse strain reduction in the 

isotropic plane due to a tensile stress in the same plane,   is the Poisson’s ratio which gives 

the transverse strain reduction due to a tensile stress in the direction normal to the isotropic 

plane, and the shear modulus of a plane normal to the isotropic plane G . Under the drained 

condition, the components of the elastic modulus tensor are given by (Cheng, 1997): 
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(1.29) 

The compliance tensor ijkiC  is given by Eq. (1.20) of orthotropic material with 

22 11 23 12 66 55; ;C C C C C C   for transverse isotropic materials. The components of 

compliance tensor relate to the elastic constants as follows (Cheng, 1997): 
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 (1.30) 

The elements of Biot’s effective stress coefficient tensor (1.23) are given by (Cheng, 1997): 
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(1.31) 

and Skempton’s coefficients: 
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(1.32) 

where  

 11 33 12 132 2 4C C C C C     (1.33) 

1.3.1.4 Isotropy 

The isotropic material has the property being invariant under translation and rotation. Thus, 

only 2 elastic constants are required to characterize this material. The drained elastic 

parameters for the isotropic material are given as: 
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(1.34) 

and the elements of the compliance matrix are: 
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The Biot’s effective stress coefficients and the Skempton’s coefficients given as: 
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1.3.2 Joint Rock 

In rock mechanics, the term “discontinuity” is used as a common term for all planes of 

weakness where the coherence of intact rock is interrupted. It seems that, one more often uses 

the term discontinuity instead of the term “fracture” (Wittke, 2014). 
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In order to classify discontinuities of rock mass, one can estimate the magnitude of shear 

displacement that the surfaces of the discontinuity have suffered. Furthermore, the term 

“joints” is used to name the discontinuities whose shear displacement is zero or too small to 

be visible. In contrary, the “faults” are discontinuities on which larger shear displacements 

have taken place (Wittke, 2014).  

In the geological structure, the joints are by far the most common type. They usually occur in 

sets that are more or less parallel and regularly spaced. However, there are also several sets 

which orient in different directions, and thus, the rock mass is broken up into a blocky 

structure. Therefore, the joints divide a rock mass into different parts, and sliding can occur 

along the joint surfaces. This explains why studies on joints play an important role in rock 

mechanics. Moreover, the fluids can flow through the rock mass by the paths that these joints 

provide (Jaeger et al., 2007). 

In general, the joints intersect primary surfaces such as bedding, cleavage and schistosity. In 

geology, a joint set is defined as a series of parallel joints; a joint system includes two or more 

intersecting sets; two sets of joints approximately at right angles to one another are called to 

be orthogonal (Duncan, 1999). 

In fact, a structural model of a rock mass is usually obtained by a superposition of models of 

the grain structure of the intact rock and the discontinuity system. In a certain scope, based on 

combinations of the grain structure of the intact rock and the discontinuity system, one can 

know the structural models, and thereby, estimate whether the deformability of a rock mass is 

isotropic or anisotropic (Wittke, 2014). 

Joint rocks are the rock masses which contains one or several sets of discontinuities. The 

existence of these discontinuities produces anisotropic response of the rock mass to loading 

and unloading. In comparison to intact rock, the joint rock shows a decreased shear strength, 

and thereby, an increased deformity along the plane of discontinuity as well as a negligible 

tensile strength in direction normal to these plane (Amadei and Savage, 1993). 

Amadei and Savage also recommended that it be necessary to take into account the presence 

of discontinuity when modeling rock mass responses to loading and unloading. 

For engineering purposes, a comfortable way to model joint rock response is to consider the 

rock mass as an equivalent anisotropic continuum. Duncan and Goodman (1968) introduced 

the concept of equivalent anisotropy continuum which was then adopted by Amadei and 

Goodman (1981a) and Amadei and Goodman (1981b). Following this concept, the joint rock 

is modeled as an equivalent anisotropic rock which possesses the characteristic reflecting the 

properties of the intact rock, the directional deformities as well as the shear properties and 

those of jointed sets, i.e., orientations, normal, shear stiffness, and spacing.  

Let us consider a rock mass specimen produced by three mutually perpendicular joint sets, 

each one is parallel to a symmetry axis. Each joint set i ( 1,2,3)i  is characterized by its 
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spacing, iS  and its normal stiffness, nik  and shear stiffness, sik . Generally, the intact rock 

between the joints is assumed to be linearly elastic and orthotropic with respect to the 

direction defined by coordinate x, y, z. In this system, Amadei and Goodman (1981a) 

indicated that the regularly jointed rock can be replaced by an equivalent orthotropic 

continuum whose constitutive relation is defined by Hooke law as follows: 

 ij ijkl klC    (1.38) 

in which ijklC is determined by Eqs. (1.19) and (1.20) with  

 * *

1 11 1 1 1
;

1

i i ni i ij ij si i sj jE E k S G G k S k S
      (1.39) 

where , 1,2,3i j  respectively (no summation in intended for Eq. (1.39)). The non-zero off 

diagonal terms in Eq. (1.19) takes the following values (Amadei and Goodman 1981a; 

Stephen, 1995): 

 12 21 23 32

* **
23 311

31 13* * *
1 2 3

2 ; ; ;C C C C C C
E E E

 
          (1.40) 

One can decompose instructively the compliance matrix  C of equivalent anisotropic 

continuum into two sub-matrixes as follows: 

      1 2C C C   (1.41) 

with  
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1 1 1
11 12 13

1 1 1
21 22 23
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31 32 33

1 1
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0 0 0
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 
 
 
 

  
 
 
 
 
 

 (1.42) 

in which 

 

1 1 1 1 1 1
11 22 33 44 55 66

1 2 3 23 13 12

1 1 1 1 1 1
; ; ; ; ;C C C C C C

E E E G G G
      ; 

1 1 1 1 1 131 3221
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2 3 3

; ;C C C C C C
E E E

 
          

(1.43) 

and 
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with 

 

2 2 2
11 22 33

1 1 2 2 3 3

2 2 2
44 55 66

2 2 3 3 1 1 3 3 1 1 2 2

1 1 1
; ; ;

1 1 1 1 1 1
; ;

n n n

s s s s s s

C C C
k S k S k S

C C C
k S k S k S k S k S k S

  

     

 (1.45) 

According to Amadei and Goodman (1981a), the stiffness nik  and sik  can vary with the 

normal stress acting on each joint set. Therefore, in two compliance matrix above, 1C  is a 

constant matrix and represents the contribution of the intact rock in deformation of the rock 

mass, whereas  2C is not constant and represents the contribution of the joint sets. The 

dependency of stiffness on the normal stress renders the problem a nonlinear one and the 

application of a linear stress analysis provides only an approximation.  

Assuming constant stiffness values and applying the linear theory of elasticity of an 

anisotropic body, Amadei and Goodman (1981b) studied displacements and stresses around a 

drilled hole. 

One considers now a rock mass specimen cut by a single joint set of spacing S, the normal 

and shear stiffness nk  and sk  are perpendicular to the 1-direction. The spacing and stiffness 

of joint sets 2 and 3 in this case can be taken the infinity value in Eq. (1.39). Thus, the 

elements of equivalent compliance matrix (Eq. (1.41)) take the form: 

 

11 22 33 44 55 66

1 2 3 23 13 12

31 3221
12 21 13 31 23 32

2 3 3

1 1 1 1 1 1 1 1 1
; ; ; ; ; ;

; ;

n s s

C C C C C C
E k S E E G G k S G k S

C C C C C C
E E E

 

        

        

 (1.46) 

In the case of assumption including negligible thickness of the joint in comparison with the 

spacing, S, the joint does not make any Poisson’s effect. In other words, the joint and the 

intact rock were assumed to undergo equal strains in the plane parallel to the contact planes. 

Moreover, the intact rock is also isotropic. It is seen that, in this particular case, the rock mass 

is transversely isotropic in planes parallel to joint set 1 with the components given as below: 

 

11 22 33 44 55 66

12 21 13 31 23 32

1 1 1 1 1 1 1 1 1
; ; ; ; ; ;

;

n s s

C C C C C C
E k S E E G G k S G k S

C C C C C C
E



        

      

 (1.47) 

We have presented above in brief several basic concepts of discontinuity and joint rock in the 

view point of rock mechanics. This aims to support the standpoint which highlights the 

importance of taking into account the anisotropic behavior of rock mass in tunnel analysis. 

Indeed, the presence of discontinuity in almost of rocks makes them become not isotropic 

even if the intact rock shows the isotropic property, i.e., it is the discontinuities which cause 

the anisotropy of the rock mass. 
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1.4 Tunnels in anisotropic media : A literature review 

1.4.1 Introduction 

In literature, a number of works have been presented on deep tunnels in rocks. In general, 

these contributions can be classified in two approaches: the first approach is based on the 

analytical solution whereas the second approach uses the solution obtained from the 

numerical simulation. Using computer codes, the latter approach allows providing more 

realistic results thanks to its ability to account for different conditions in the simulation. On 

the contrary, the analytical solution, usually based on the different simplified hypothesis, is 

only available in some simple cases and, hence, its application is more limited. However, this 

approach has always received the attention of the scientific community owing to different 

reasons below. It provides a quick solution which is very useful, for example in the parametric 

study; it can be used as the first step in design or as the referenced solution to validate the 

numerical simulation; it elucidates the nature of the solution and, hence, could help the design 

engineer to assess the correctness of the numerical analysis.     

One of the first analytical solutions is the celebrated Kirsch’s solution (Kirsch 1898) which 

was developed in the framework of a circular tunnel excavated in an isotropic rock. Since 

then, different contributions have been presented taking into account some extensions. We 

summarize some study directions below. 

Works have been devoted to analyzing more realistic cross-section of the tunnel such as 

Exadaktylos and Stavropoulou (2002), Zhang and Sun (2011), and Tran et al. (2015a). 

According to these studies, the shape of the cross section of the tunnel may be semi-circular, 

double-arch or rectangular. The obtained solutions are based on the complex potential 

functions and conformal mapping representation. Following that, the realistic cross-sections 

are transformed into unit circle section in transformation plane by conformal mapping 

technique. Exadaktylos and Stavropoulou (2002) developed the solutions for an isotropic 

medium while Zhang and Sun (2011) and Tran et al. (2015a) accounted for the anisotropic 

behavior of medium. Zhang and Sun (2011) analyzed the tunnel with the axis perpendicular to 

the isotropic plane whereas Tran et al. (2015a) considered the axis of the tunnel parallel to the 

isotropic plane. 

Concerning the hydro-mechanical coupling in which the reciprocal influence between the 

hydraulic phenomenon and the mechanical phenomenon are included, one has the solutions of 

Bobet (2003, 2010), Carranza-Torres and Zhao (2009), and Wang and Wang (2013) for 

steady state of groundwater flow; Carter and Booker (1982, 1984), Detournay and Cheng 

(1988), Abousleiman and Cui (1998), and Chen and Yu (2015) for transient one. In the steady 

state condition of fluid flow, only the influence of pore pressure on the mechanical response is 

taken into account, i.e., one way coupling, while in the transient state condition, the pore 

pressure influences on mechanical response and, in turn, the mechanics impacts on the pore 

pressure, i.e., two ways coupling. The latter accounts for progressive behavior over time 
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whereas this is not the case with steady state condition. With regard to the transient state, one 

uses the Laplace transform to eliminate the time variable in the Laplace’s space. The problem 

is solved in this transformed space, and hence, the final solution of the problem is derived by 

inverse transform. Almost all aforementioned contributions focus on the tunnels in isotropic 

rock; except for Abousleiman and Cui (1998) who considered the opening in transversely 

isotropic rock where the axis of the opening is normal to the isotropic plane, thus, the problem 

is addressed as the isotropic one. Even though all these studies are limited in the isotropic 

cases, it showed, however, the essential role of the hydro-mechanical coupling on the tunnel 

behavior where the distribution of stresses and displacements can be significantly different 

from ones obtained in the case of purely mechanical response. 

The other ones account for the anisotropic characteristic of the surrounding medium behavior. 

For example, the trend of taking into account the anisotropic effect has been extensively 

considered in the last two decades but limited primarily to the mechanical response of the 

tunnel. Hefny and Lo (1999) used the complex variable method that was reduced by Green 

and Zerna (1968) to determine the stresses and displacements of unlined circular tunnels 

excavated in an elastic transversely isotropic medium. Based also on the approach of Green 

and Zerna (1968), Vu et al. (2013) developed a semi-analytical solution for a circular tunnel 

excavated in a transversely isotropic formation with non-linear elastic behavior. Kolymbas et 

al. (2012) back analyzed the material constants of rock by an approximate solution for the 

displacements and stresses adjacent to the cavity wall for a cavity expansion in transversely 

isotropic rock. Based on the Lekhnitskii formalism, Bobet (2011) developed a closed-form 

solution for lined circular tunnels in dry rock or under the water table. Bobet (2011) 

considered also the work of the tunnel below the water table subjected to the seismic loading 

that was approximated by a quasi-static one. 

It should be also noted that, two sources of anisotropic response of tunnels are distinguished: 

the first one is due to the origin of rock (orientation of minerals and discontinuities like 

bedding, foliation in the media) and the second one presents the difference of the principal 

initial stresses (Hefny and Lo, 1999; Chen and Yu, 2015). By decomposing the anisotropic 

load into mean stress and deviatory stress, Chen and Yu use the approach of Carter and 

Booker (1984) to resolve the problem as an isotropic one. It was highlighted that each 

anisotropic source could affect significantly the tunnel behavior where stresses and 

deformations in the surrounding rock mass differ from those obtained in assuming the 

isotropic properties of materials or initial stresses. Indeed, the works based on assumption of 

anisotropic rock or/and anisotropic initial stresses indicated that, stresses and displacements in 

rock as well as the loads transferring into the liner are strongly dependent on the orientation of 

bedding or foliation with the tunnel axis (Hefny and Lo 1999; and Tonon and Amadei 2002). 

This is not the case of assumption of isotropic properties. 

Beside the analytical solution, some numerical analysis codes based on the finite element 

method, discrete element method or finite-difference methods were developed and used to 
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expand the analysis of the tunnels in anisotropic medium. With the benefits of numerical 

methods, one can consider the problem in many different complex boundary conditions and 

behavior model of material. Among them, typical studies may be included Tonon and Amadei 

(2002), Millard (2013), Wang and Huang (2013), Lisjak et al. (2012), Tran et al. (2015b), 

Pardoen et al. (2015). 

Tonon and Amadei (2002) used the finite element method (FEM) and boundary element 

method (BEM) to evaluate the effect of elastic anisotropy (transverse isotropy) on the 

convergence behind a tunnel face by a series of parametric studies. The authors considered 

two cases of isotropy plane that is parallel to the tunnel axis or not. As a results, the 

displacement of the rock, and thus, the stresses in the rock around the tunnel strongly depend 

on the direction of the isotropic plane with respect to the tunnel axis. 

Lisjak et al (2013) have developed a numerical code to analyze a tunnel in the anisotropic 

rock mass based on a combination of FEM and DEM (discrete element method) – 

FEM/DEM. Following this approach, the rock mass is composed of the solid matrix and the 

joints/cracks, whereby the elastic deformation of the rock mass is described using continuum 

mechanics principles while DEM technique and non-linear fracture mechanics theory are used 

to take into account fracture mechanisms. The presence of joints/cracks makes the rock 

anisotropic, thus, by modeling the joints/cracks in the rock, the authors can account for the 

anisotropy of the rock. The results obtained by FEM/DEM approach are employed to evaluate 

the EDZ around the tunnel. The authors also indicated that, the proposed approach is capable 

to capture both the deformation and strength anisotropy which are typical of joint rock mass. 

Meanwhile, Wang and Huang (2013) and Tran et al. (2015b) use the finite difference method 

(FDM) code (FLAC3D) to model a tunnel in an anisotropic rock. The authors propose a new 

anisotropic time-dependent model which includes weak planes of specific orientation and the 

intact rock with a visco-plastic behavior (Figure 1-6). Following this approach, the rock mass 

is also considered as a combination of two components, the solid matrix and the joints. The 

anisotropy of rock is due to the presence of joints. The solid matrix is considered by an 

isotropic visco-elasto-plastic model (Burger model), whereas the joints is modeled by 

ubiquitous joints with elasto-plastic behavior under Morh-Colomb criterion. It should be 

noted that, the “ubiquitous joint” means that the joints could be present at any point in the 

rock mass. Employing this approach, the authors can back-analyze the anisotropic closure of 

the tunnel. It is noted also that, the time-dependent behavior of solid matrix in Tran et al. 

(2015b) is explicitly described while it is taken into account by degrading the strength of rock 

with time in Wang (2013). 
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Fig. 1-6: Ubiquitous joint modeling a viscoplastic matrix 

The aforementioned works consider the rock mass with the (visco) elasto-plastic behavior 

while Millard et al. (2013) devotes the particular attention to the hydro-mechanical behavior 

of anisotropic rock in unsaturated state. Employing FEM code, the authors evaluated the 

effect of in-situ stress, permeability and mechanical anisotropy on the hydro-mechanical 

responses of the tunnel. The results obtained are compared to the in-situ measurements such 

as pore water pressure, relative displacements, etc. Millard et al. (2013) showed that the 

anisotropy of permeability, in-situ stress and mechanical parameters influence the pore 

pressure and displacement non-axisymmetric distribution around the tunnel. The authors 

highlighted also that these hydro-mechanical couplings have important role in describing the 

experimental observation, and should be taken into account in further investigation. 

Pardoen et al. (2015) studied the behavior of excavation fractured zone (EDZ), which 

develops around a gallery, based on a cross-anisotropic model including anisotropy of the 

elastic and plastic behaviors. With respect to the plastic part of the model, the anisotropy of a 

strength parameter is introduced with a microstructure fabric tensor. Then, the fractures are 

modelled with finite element methods by considering the development of shear strain 

localisation bands and an enriched model is used to properly reproduce the shear banding. The 

influence of cross-anisotropy on the shear strain localisation was investigated in this work by 

numerical simulations. The authors indicated that, the material strength varies with the 

loading direction and the development and the shape of the EDZ are strongly influenced by 

the material anisotropy. 

We will introduce hereafter several analytical approaches that are commonly used to solve the 

problems of elastic anisotropy. They are regarded as the canon solutions based on which 

many analytical solutions are developed and extended to various engineering problems. These 

approaches are based on the complex variable method which is very useful and powerful in 

solving the problems of elasticity.  

Due to the complexity of analytical solutions to three-dimensional problems, many solutions 

are developed for reduced problems that typically include plane stress and plane strain ones. 

Once one considers a 2-D problem, the complex variable method proves very useful and 

powerful to resolve it. The method is based on the reduction of the elasticity boundary value 

problem to a formulation in the complex domain. This method is used firstly by Kolosov 

(1909), and then it was expanded and further developed by Muskhelisvili (1953) to resolve 
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several boundary value problems. Employing this method can also be found in Milne-

Thomson (1960), Stroh (1962), Lekhnitskii (1963, 1968), Green and Zerna (1968). 

Between the approaches aforementioned, those of Stroh, Lekhnitskii and Green and Zerna are 

well-known and commonly used to develop many solutions for engineering problems in 

anisotropic elastic. All three approaches are for the analysis of two-dimensional deformation 

of an anisotropic linear elastic. While Lekhnitskii (1963) and Green and Zerna (1968) 

consider the two-dimensional stresses as the unknowns, Stroh (1962) (Hwu, 2010) begins 

with the two-dimensional displacements. Owing to the convenience in utilizing, the 

approaches of Leknitskii and Green and Zerna are more employed in practice. 

We will present below the Lekhnitskii (1963) and Green and Zerna (1968) approaches. 

Particularly, we will present the Lekhnitskii formalism in more detail for the purpose of 

employing in the next chapters where the analytical solutions will be developed based on this 

formalism. 

1.4.2 Lekhnitskii approach 

1.4.2.1 Assumptions and geometry of the problem 

Let us consider a two-dimensional problem of a linear elastic, continuous and homogeneous 

anisotropic body bounded by a finite or infinite cylindrical surface. The region of the cross 

section may be simply connected or multiply connected; the length of the body can be finite 

or infinite. The body shows rectilinear anisotropy nature, subjected to body forces and 

tractions distributed along the lateral surface. For the satisfaction of conditions of plane 

problem, the body forces and surface tractions are assumed to act in planes normal to the 

generator of the cylindrical surface and do not vary along the generator. Let the body in the 

Cartesian coordinate system x, y, z in which the z-axis is parallel to the generators and the xy-

plane be perpendicular to the generators. 

The projections of the forces distributed over the cylindrical surface per unit area are ,n nX Y in 

which n  denotes the normal to the cylindrical surface and the components of the body forces 

per unit volume acting within the body are ,x yf f . 

The problem is to determine the distribution of stresses, strains and displacements within the 

body that are induced by the surface and body forces. One often knows this problem as the 

first fundamental problem of the statics of an elastic body that is presented in Muskhelishvili 

(1953). 

In the case of a body of finite length and finite cross section, the stresses are assumed to 

reduce to an equivalent axial force and moment which act on the ends of the body. 
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Fig. 1-7: Geometry of the problem described by Lekhnitskii (1963) 

 

1.4.2.2 General formulas 

a. Governing differential equations 

The solution of any elasticity problem must satisfy the following conditions: equilibrium 

equations for static loading conditions, the strain–displacement relations for small 

deformations, as well as constitutive model (and boundary conditions).  

Equilibrium equations for the elasticity body with body forces: 

 0, 0, 0,xy xy y yzx xzU U

x y x x y y x y

         
       

       
 (1.48) 

where U is the potential of the body forces ,x yf f , i.e., 

 , .x y

U U
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x y
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 
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 (1.49) 

The relation of strain - displacement: 
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 (1.50) 

The constitutive equations: 
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In which ija are the compliance coefficients of elastic rigid-body. 

Lekhnitskii (1963) introduces the notation: 

 13 23 33 34 35 36( , ) ,x y z yz zx xyD x y a a a a a a            (1.52) 

From (1.52) one obtains:  
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With the relations given in the third, fourth, and fifth equations of (1.50), integrating the third, 

fourth, and fifth equations of (1.51) with respect to z variable one obtains the following 

relations: 
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(1.54) 

in which
0 0 0, ,U V W  are arbitrary functions of x and y coordinate which occur as a result of 

integration with respect to z. 

Substituting the Eq. (1.54) into the first, second, and sixth equations of Eq. (1.50) and then 

into the (1.51), and equating the coefficients of  2,z z  terms on the left-hand sides and right-

hand sides, one obtains three equations for D and two systems of equations for 
0W and 

0 0,U V  as 

follows: 
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and 
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 (1.57) 

It follows from (1.55) that D is a linear function of x and y and it takes the form as: 

 33( ),D a Ax By C    (1.58) 

where A, B, and C are the arbitrary constants. Hence, the normal stress at cross section, 

deduced from (1.53), is: 
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Integrating the first two equations of (1.56) and substituting into the third one we obtain the 

equations for 
0W : 

 

0
15 25 35 45 55 56 2

0
14 24 34 44 45 46 1

,x y z yz xz xy

x y z yz xz xy

W
a a a a a a y

x

W
a a a a a a x

y

       

       


       




       



 (1.60) 

where 
1 2, ,    are the new arbitrary constants. Substituting the equations (1.60) and (1.58) 

into (1.54) one can obtain the general expressions of displacements as follows: 

 

233
2 3 0

233
3 1 0

33 1 2 0

( , ) ,
2

( , ) ,
2

( ) ( , )

Aa
u z yz U x y z y u

Ba
v z xz V x y x z v

w Ax By C a z W x y y x w

  

  

 

     

     

      

 
(1.61) 

where the new functions U, V, W are related to U0, V0, W0 by following relations: 

 

0 3 0

0 3 0

0 1 2 0

,

,

.

U U y u

V V x v

W W y x w





 

  

  

   

 (1.62) 

In the general equation (1.61), the constants 0 0 0, ,u v w are the rigid-body displacements and 

1 2 3, ,    are the rotations with respect to the x, y, and z axes; α is the relative angle of 

rotation about the z-axis which relates the torsion problems, i.e., the angle of twist per unit 

length; A and B characterize the bending of the body in the x–z and y–z planes.  

In order to determine ,U V and W , substituting Eq. (1.59) into Eqs. (1.57) and (1.60) one 

obtains the following expressions: 
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11 12 13 14 15 16 13

12 22 23 24 25 26 23

16 26 36 46 56 66 36

( ( ),

( ( ),

( ( ).

x y z yz xz xy

x y z yz xz xy

x y z yz xz xy

U
s s s s s s a Ax By C

x

V
s s s s s s a Ax By C

y

U V
s s s s s s a Ax By C

y x

     

     

     


        




        



 
         

 

 (1.63) 

and 

 

15 25 35 45 55 56 35

14 24 34 44 45 46 34

( ( ) ,

( ( ) ,

x y z yz xz xy

x y z yz xz xy

W
s s s s s s a Ax By C y

x

W
s s s s s s a Ax By C x

y

      

      


         




         



 (1.64) 

 

 

where:  

 
3 3

33

i j

ij ij

a a
s a

a
   (1.65) 

are the reduced elastic compliances. 

It is noted that, both plane stress and plane strain problems are resolved by the same equations 

presented above. When one concerns the plane stress problems, the compliance is used and 

the reduced compliance for the plane strain problem. 

It should be highlighted that, for the plane problem in elasticity using the Airy stress function 

approach is very convenient. Following that, it reduces the field equations to a single partial 

differential equation. According to Lekhnitskii (1963), the stress components can be identified 

from the functions called Airy stress functions, which satisfies the equilibrium equation 

presented in Eq. (1.48): 

 
2

2x

F
U

y



 


, 

2

2y

F
U

x



 


, 

2

xy

F

x y



 

 
, 

2

xz
y








, 

2

yz
x





 


 (1.66) 

By differentiating, addition and subtraction the equations in (1.63) and (1.64), one can 

eliminate U , V and W . Thereafter, by substituting stress components in (1.66), one obtains 

the following equations that called Beltrami-Michell equation of compatibility for an 

anisotropic body: 

 

2 2 2

4 3 12 22 16 26 11 122 2

3 2 34 35 14 24 15 25

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) 2 ( ) ( ) ,

U U U
L F L s s s s s s

x x y y

U U
L F L As Bs s s s s

x y



 

  
       

   

 
        

 

 (1.67) 
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where the linear differential operators of the fourth, third and second orders 4 3,L L and 2L  are 

defined as: 

 

4 4 4 4 4

4 22 26 12 66 16 114 3 2 2 3 4

3 3 3 3

3 24 25 46 14 56 153 2 2 3

2 2 2

2 44 45 552 2

2 2( ) 2 ,

( ) ( ) ,

2

L s s s s s s
x x y x y x y y

L s s s s s s
x x y x y y

L s s s
x x y y

    
     

       

   
      

     

  
  

   

 (1.68) 

It can be seen that, the system of differential equations obtained in (1.67) is the combined 

result of the 15 basic equations shown in (1.48), (1.50) and (1.51). 

Briefly, determining the stress functions in the Eq. (1.67), one can find the stresses from Eqs. 

(1.66) and (1.59), the strains and displacements from Eqs. (1.51), (1.63), (1.64), (1.62) and 

(1.61). The solution of the problem must satisfy the condition of the unique solution of the 

elasticity problem. Therefore, the boundary conditions and the requirement of the single-

valued displacement should be satisfied.  

b. General Solutions 

In this section, we will present the method to find the general solution of the problem as 

mentioned in previously.  

It can be seen that, the general solution of Eq. (1.67) includes a homogeneous solution 

corresponding the homogeneous equations without right-hand side and a particular solution 

that corresponds the nonhomogeneous equations with right-hand side. Hence, it can be written 

in the form: 

 h pF F F  , h p     (1.69) 

in wich:  

 
4 3

3 2

( ) ( ) 0,

( ) ( ) 0

h h

h h

L F L

L F L





 

 
 (1.70) 

The form of the known functions of the right-hand sides of the nonhomogeneous equations 

will decide the form of the particular solutions. If the right-hand sides are simple, the 

particular solutions are usually not difficult to find. Consequently, we only focus on the 

method to determine the general solutions of the homogeneous system (1.70) hereafter. 

Concerning determination the particular solution of the equation system, we will present in 

details in the next part that devotes to resolve one hydro-mechanical coupling problem. 

Solving the system of (1.70) simultaneously gives the expression in term of the stress 

functions ,h hF  , respectively: 
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2
4 2 3

2
3 4 2

( ) 0,

( ) 0,

h

h

L L L F

L L L 

 

 
 (1.71) 

These are linear partial differential equations of the sixth-order with constant coefficients 

which can be solved by the method of characteristics (Milne-Thomson, 1960). The first 

equation of the (1.71) will be satisfied if:  

 2
4 2 3( ) ( ) ( ) ( ) 0f l l l       (1.72) 

where 

 

4 3 2
4 11 16 12 66 26 22

3 2 2
3 15 14 56 25 46 24

2
2 55 45 44

( ) 2 (2 ) 2

( ) ( ) ( )

( ) 2

l s s s s s s

l s s s s s s

l s s s

    

   

  

     

     

  

 (1.73) 

The function in Eq. (1.72) is called the characteristic function, and the equation ( ) 0f    the 

characteristic equation and   the root of the characteristic equation. Let 
1 2 3 4 5 6, , , , ,      be 

the six roots of the characteristic equation, one can rewrite Eq. (1.72) in the following form: 

 
2

11 55 15 1 2 3 4 5 6( ) ( )( )( )( )( )( )( ) 0f s s s                      (1.74) 

In general, 2
11 55 15( ) 0s s s  and inferring Eq.(1.72) the first equation of (1.71) can be written 

in the form:  

 6 5 4 3 2 1( ) 0,hD D D D D D F   (1.75) 

where      

 k kD
y x


 

 
 

 (1.76) 

The equation (1.74) has the roots k  that are distinct, thus Eq. (1.75) can be solved by 

considering the following six equations of the first order: 

 
6 5 5 6 4 4 5 6 3

3 4 5 6 2 2 3 4 5 6 1

, , ,

,

h h h

h h

D F D D F D D D F

D D D D F D D D D D F

  

 

  

 
 (1.77) 

so that  

 
1 1 2 2 1 3 3 2

4 4 3 5 5 4 6 6 5

0, , ,

, ,

D D D

D D D

    

     

  

  
 (1.78) 

Solving (1.78) respectively in the order of 6 5 4 3 2, , , , , hF     one obtains the general 

expression for the stress function, F , and with the same manner the general expression of the 

stress function  is inferred. These expressions and the relation between 
kF and 

k as follows: 
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6

1

6

1

3

2

( ),

( ),

( )
( ) ( ),

( )

h k k
k

h k k
k

k
k k k k

k

F F z

z

l
z F z

l

 














 



  (1.79) 

where ( )k kF z and ( )k kz are analytic functions of complex variables k kz x y   and prime 

denotes differentiation  with respect to kz . 

Lekhnitskii (1963) proved that, the roots of characteristic equation (1.74) are either complex, 

or purely imaginary and it cannot have real roots in the case of any ideal elastic body with real 

constants 
11 11 66 22,2 ,s s s s not equal to zero. Lekhnitskii proved also that three of them are being 

the conjugate of the other three. 

 Let 1 2 3, ,   be these roots and 1 2 3, ,   their conjugates; one has the expression of the 

stress function F from the first equation of (1.79) as: 

 1 1 2 2 3 3 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )hF F z F z F z F z F z F z       (1.80) 

In addition, one has the following relation in the complex variable theory: 

  2 Re A A A   (1.81) 

in which A is a complex number and Re stands for the its real part. 

Therefore, one obtains also: 

 1 1 2 2 3 32Re{ ( ) ( ) ( )}hF F z F z F z    (1.82) 

One has also the analogous general expression for the stress function  as: 

 1 1 2 2 3 32Re{ ( ) ( ) ( )}h z z z       (1.83) 

The relations between ( )k kF z and ( )k kz showed in the third equation of (1.79) can be 

expanded under explicit forms as follows: 

 

3 1 3 21 2
1 2

2 1 1 2 2 2

3 3 3 4 3 3
3

2 3 3 3 3 3

( ) ( )
, ,

( ) ( )

( ) ( )

( ) ( )

l lF F

l z l z

l F l F

l z l z

 
 

 

 


 

 
   

 

 
   

 

 (1.84) 

Introducing three complex number that are defined in the forms: 

 
3 1 3 2 3 3

1 2 3

2 1 2 2 4 3

( ) ( ) ( )
, ,

( ) ( ) ( )

l l l

l l l

  
  

  
       (1.85) 

and substituting (1.85) along with (1.84) into (1.83) one has the general expression of the 

stress function  : 
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 1 1 1 2 2 2 3 3

3

1
2Re{ ( ) ( ) ( )}h F z F z F z  


      (1.86) 

Therefore, one can obtain now the general solution of Eq. (1.67) that takes the following 

form: 

 

1 1 2 2 3 3

1 1 1 2 2 2 3 3

3

2Re{ ( ) ( ) ( )} ,

1
2Re{ ( ) ( ) ( )}

p

p

F F z F z F z F

F z F z F z   


   

    
 (1.87) 

Lekhnitskii introduced three analytic functions so-called complex potentials that are defined 

as follows: 

 
3 31 1 2 2

1 1 1 1 2 2 2 2 3 3 3 3

1 2 3

( )( ) ( )
( ) ( ), ( ) ( ), ( ) ( )

F zF z F z
z F z z F z z F z

z z z

           
  

 (1.88) 

From the definition of complex variable k kz x y  , one has following relations: 

 

,k k k k k k k k
k

k k k k

G G z G G G z G

x z x z y z y z


       
   

       
 

2 2 2 2 2 2 2
2

2 2 2 2 2 2 2 2
,k k k k k k k k

k

k k k k

G G z G G G z G

x z x z y z y z


       
   

       
 

(1.89) 

in which 
kG is an arbitrary function which can either be 

kF or 
k for the present case. By 

replacing 
kG with 

kF  and 
k , substituting Eq. (1.88) into Eq. (1.89) and using Eq. (1.87) one 

can obtain the expression for the first derivatives of the stress function F with respect the 

coordinates x and y and the expression for : 

 

1 1 2 2 3 3 3

1 1 1 2 2 2 3 3 3 3

1 1 1 2 2 2 3 3

2Re[ ( ) ( ) ( )]

2Re[ ( ) ( ) ( )]

2Re[ ( ) ( ) )]( +

p

p

p

FF
z z z

x x

FF
z z z

y y

z z z



   

  


     

 


      

 

    

 (1.90) 

Based on the basis of Eq. (1.90) and the relations between the stress components and the 

stress functions in Eq. (1.66) one has the general expression of the stresses as follows: 
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2 2 2
1 1 1 2 2 2 3 3 3 3 2

2

1 1 2 2 3 3 3 2
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1 1 1 2 2 2 3 3 3 3

1 1 1 1 2 2 2 2 3 3 3
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 

    


     




         




        




         

 


        



  1 1 1 2 2 2 3 3e{ ( ) ( ) ( )} pz z z
x


 


      



 (1.91) 

It can be seen that once the derivatives of the analytic functions ( )k kz are obtained, the 

solutions of the stress distributions is analytically derived. 

Substituting Eq. (1.91) into (1.63) and (1.64) and integrating the resulting equations, one 

obtains the expressions of the functions U, V, and W as: 

 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

2Re[ ( ) ( ) ( )] ,

2Re[ ( ) ( ) ( )] ,

2Re[ ( ) ( ) ( )]

p

p

p

U p z p z p z U

V q z q z q z V

W r z r z r z W

      

      

      

 (1.92) 

in which 

 

2
11 12 16 15 14

22 24
12 26 25

24 44
14 46 45
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( )

k k k k k

k k k

k k

k k k

k k

p s s s s s

s s
q s s s

s s
r s s s

   

 
 

 
 

    

    

    

1,2,3k   (1.93) 

and 

 

2
3 3 11 3 12 16 3 15 3 14

22 24
3 3 12 3 26 25

3 3

24 44
3 3 14 3 46 45

3 3

( ) ,

( ) ,

( )

p s s s s s

s s
q s s s

s s
r s s s

   

 
 

 
 

    

    

    

 
(1.94) 

In Eq. (1.92), , ,p p pU V W are the solutions of (1.63) and (1.64) corresponding to the functions 

, ,p pF U and to the linear functions aij (Ax + By + C), αy, αx which contain the constants α, 

A, B, C. 

The equation (1.92) shows that, the functions U, V, and W and hence the displacements in Eq. 

(1.61) are also obtained through the analytic functions ( )k kz . 
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In brief, in order to determine the fields of stresses and displacements in the body one has to 

first determine the analytic functions so-called complex potentials, i.e., three potential 

functions ( )k kz of three different complex variables k kz x y  in the region S of the cross 

section. These functions must satisfy the single-valued conditions with respect to the 

coordinates x and y, and continuous condition on the contour of the body for the stresses and 

displacements. 

c. Boundary conditions 

The stresses and displacements expressed in (1.91), (1.92), and (1.61) depend on the arbitrary 

complex analytic functions ( ).k kz For the purpose of determination of these functions one 

has to impose the boundary conditions on the lateral surface. There are two types of boundary 

conditions. The first one mentions the prescribed tractions (that is often known the Newmann 

condition) and the other describes prescribed displacements (that is often called Dirichlet 

condition). It is known that the general expressions for the stresses and displacements are 

expressed in terms of the complex analytic functions ( ).k kz Therefore, it is now more 

convenient to express the boundary conditions in terms of ( ).k kz  

 
Fig. 1-8: Tangential and normal directions of boundary surfaces (Boresi, 1965 ) 

 First fundamental problem: 

The first fundamental problem mentions determination the stresses and displacements within 

the elastic body in statics induced by surface and body forces. If the external forces 

0, ,n n nZ X Y prescribed on the contour of the body cross section are functions of the 

coordinates x and y, the boundary conditions along the contour of the body are given by: 

 

cos( , ) cos( , ) cos( , ) ,

cos( , ) cos( , ) cos( , ) ,

cos( , ) cos( , ) cos( , ) 0

x xy xz n

yx y yz n

zx zy z n

n x n y n z X

n x n y n z Y

n x n y n z Z

  

  

  

  

  

   

  

  

  
 (1.95) 

where n


 is the outward unit vector normal to the contour (see Figure. 1.8).  

For a plane problem, the direction cosine, cos( , )n z


, is equal to zero whereas the others 

direction cosines cos( , )n x


and cos( , )n y


can be expressed in terms of the arc length, s . The 
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equation of s  can be written under parametric form as: ( )x x s , ( )y y s .The length of arc, s , 

is often taken from the arbitrary starting point on the contour ( 0s  ) and in the positive 

direction. The positive direction of the length of arc obeys counterclockwise convention. 

One has the expression of the direction cosines as follows: 

 cos( , ) , cos( , )
dy dx

n x n y
ds ds

  
 

 (1.96) 

Substituting Eq. (1.96) and Eq. (1.66) into the Eq. (1.95) and integrating the resulting 

equations with respect to the length of arc s yields a differential form of boundary conditions 

below: 

 ,

n

n

n

F y F x
X U

y y s x y s

F y F x
Y U

y x s x x s

y x
Z

y s x s

 

        
      

        

        
     

        

   
  

   

 (1.97) 

Multiplying two sides of Eq. (1.97) with ds and by using the exact differential notation for the 

functions ,
F F

y x

 

 
and  one can rewrite Eq. (1.97) as follows: 

 

( )

( ) ,

( )

n

n

n

F dx
d X U ds

y ds

F dy
d Y U ds

x ds

d Z ds

 
   

 

 
  

 

  

 
(1.98) 

Thence, integrating Eq. (1.98) with respect to the length of arc s and taking the limits from 

the certain point ( 0s  ), one obtains: 

 

1

0

2

0

3

0

s

n

s

n

s

n

F dx
X U ds C

y ds

F dy
Y U ds C

x ds

Z ds C

  
    

  

  
   

  

  







 (1.99) 

where 1 2,C C and 3C are the integration constants. 

Using Eqs. (1.87) and (1.88) into Eq. (1.99) one obtains the general expressions of boundary 

conditions in terms the complex potentials as follows: 
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1 1 1 2 2 2 3 3 3 3 1

0

1 1 2 2 3 3 3 2

0

1 1 1 2 2 2 3 3 3

0

2Re[ ( ) ( ) ( )]

2Re[ ( ) ( ) ( )]

2Re[ ( ) ( ]( )  ) =

s
p

n

s
p

n

s

n

Fdx
z z z X U ds C

ds y

Fdy
z z z Y U ds C

ds x

z z z Z ds C

   



 

 
          

 

 
        

 

     







 (1.100) 

For a finite simply connected region, because linear terms in F  and   do not distribute to 

the stress components, one can set the integration constants equal to zero. 

 Second fundamental problem: 

The second fundamental problem devotes to determine the stresses and displacements in the 

elastic body in statics induced by prescribed displacements. 

Let ˆ ˆ ˆ, ,u v w  be the prescribed displacements on the lateral surface of the cross section contour. 

One has the boundary condition (Dirichlet condition) as below: 

 ˆ ˆ ˆ, ,u u v v w w    (1.101) 

Substituting Eq. (1.61), Eq. (1.92) into Eq. (1.101) one obtains: 

 

1 1 1 2 2 2 3 3 3 3 0

1 1 1 2 2 2 3 3 3 3 0

1 1 1 2 2 2 3 3 3 0

ˆ2Re[ ( ) ( ) ( )] ,

ˆ2Re[ ( ) ( ) ( )] ,

ˆ2Re[ ]=( ) ( ) ( )

p

p

p

p z p z p z U U y u

q z q z q z V V x v

r z r z r z W W w





         

         

       

 (1.102) 

in which ˆ ˆ ˆ, ,U V W are given as: 

 

233
2

233
1

33 1 2

ˆ ˆ ,
2

ˆ ˆ ,
2

ˆ ˆ ( )

Aa
U u z yz z

Ba
V v z xz z

W w Ax By C a z y x

 

 

 

   

   

     

 
(1.103) 

d. Conformal mapping technique and the potentials 

As presented above, the present problem of the equilibrium of a body bounded by the 

cylindrical surface is reduced to that of determination the complex potentials, i.e., three 

potential functions ( )k kz in the region S  of the cross section. The stresses and displacements 

due to these potential functions must satisfy the single-valued conditions at any point in the 

body, and, moreover, the boundary conditions on the contour of the cross section. In other 

words, three potential functions and their conjugates functions are given on the contour. 
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The potential functions ( )k kz  of three complex variables k kz x y  ( 1,2,3k  ) may be 

considered in the ordinary complex plane, k k kz x iy  . According to Lekhnitskii (1963) 

k is either complex or imaginary, thus one can write the affine transformation as: 

 ( )k k k k k kz x y x i y x iy          (1.104) 

in which  

 k kx x y  , k ky y , 1,2,3k   (1.105) 

Lekhniskii (1963) indicated that, if based on this standpoint, the complex potentials 

( )k kz must be determined not in the region of the cross-section S , but in the regions 

1 2 3, ,S S S obtained from S by the affine transformation (1.105). 

 

 

 

Fig. 1-9: Geometric representation of an affine transformation (Lekhnitskii, 1963) 

Figure 1-9 shows how the regions kS ( 1,2,3k  ) are obtained from the region S. The 

determination of potential functions ( )k kz on the regions ( 1,2,3)kS k   usually encounters 

many difficulties because the shape of the regions may be complicated. One method 

employed to overcome these difficulties is to use an affine transformation, i.e., instead of 

determination the potential functions of the regions kS , one determines potential functions on 

the regions which are the mapping images of kS  by an affine transformation. The complete 

solution of the potential functions in the domain of interest is accomplished by a reverse 

transformation. 

In many elasticity problems, such as plane problems (plane strain or plane stress problems), 

the potential functions are complex and harmonic. The affine transformation for the defined 

set of complex harmonic functions is known as the conformal mapping. 

This affine transformation provides a useful tool to find elasticity solutions for interior and 

exterior problems of complicated shape. Many plane elasticity problems based on solutions 

which relate to the unit circle, and thus the conformal mapping of the regions kS  in the plane 

of interest into a unit circle in the conformed plane is commonly used. 
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The critical problem now is to find the complex potentials. Lekhnitskii proposed these 

potentials for problem of a cavity of elliptical shape cross section. In order to search for the 

potentials, Lekhnitskii used conformal mapping technique which transforms the region 

outside the ellipse in original plane onto the region outside unit circle in the transformed 

plane. The conformal mapping is performed by relation below: 

 1( )
2 2

k k
k k k k

a i b a i b
z w

 
    

    (1.106) 

or reciprocal form: 

 
2 2( )k k k

k

k

z z a b

a i b






  



 (1.107) 

where a  and b  are respectively the major and minor axis of the ellipse. 

For the elliptical cavity, Lekhnitskii proposed two potentials as follows: 

 

2
1 1 1 1 1

1 1 2

( ) ln mm m

m

b a
z A


 

 







  


 ; 

1
2 2 2 2 2

1 1 2

( ) ln mm m

m

b a
z A


 

 







  


  

(1.108) 

where ,m ma b are complex constants which are determined from the stresses applied on the wall 

of the cavity, the constants mA  depend on the boundary condition and the condition for 

single-valuedness of displacement. Lekhnitskii (1963) indicated that, for normal cavity 

problems, the constants mA take the value of zero. 

It is noted that, these complex potentials in Eqs. (1.108) satisfy automatically the condition of 

zero stresses at infinity.  

Lekhnitskii presented the values of ,m ma b for three special cases of loading condition as 

follows (Fig.1-10): 

 Normal pressure distributed uniformly over the surface of cavity (Fig.1-10 a): 

 
1 1,

2 2

qa qib
a b    ; 

0m ma b   for 2,3,4,...m   

(1.109) 

where q is pressure per unit area. 

 Tangential forces distributed uniformly over the surface of cavity and acting in the 

planes parallel to x-y plane (Fig.1-10 b): 
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1 1,

2 2

tbi ta
a b   ; 

0m ma b   for 2,3,4,...m   

(1.110) 

where t is force per unit area. 

 Tension. At a large distance from the cavity there are tensile forces acting at an angle 

  to the axis 2a of the ellipse (Fig.1-10c): 

 

1 sin ( sin cos )
2

p
a a b     ; 

1 cos ( sin cos )
2

p
b a ib     ; 

0m ma b   for 2,3,4,...m   

(1.111) 

in which p is tensile force per unit area. 

 

(a) 

 

(b) 

 

(c) 

Fig. 1-10: Elliptical cavity considered by Lekhnitskii 

In the chapter 2, we will present applications of the Lekhnitskii approach to find the solution 

of a specific problem, i.e., the solution of a deep tunnel in poroelastic medium. 
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1.4.3 Solution of Green et Zerna 

 

Fig. 1-11: The excavation in the anisotropic medium- Green and Zerna’s solution 

Considering a cavity with circular cross-section in the elastic anisotropy medium (Fig.1-11), 

assuming the cavity satisfies the plane strain condition; one has the simplification constitutive 

equations as follows: 

 

11 12

21 22

33

0

0

0 0

x x

y y

xy xy

s s

s s

s

 

 

 

    
    

    
    

    

 (1.112) 

in which 11 12 21 22 33, , , ,s s s s s are the compliance constants and defined by Eq. (1.65) and 

relate to the material constants as below: 

 

2

11 12 21 22 33

(1 ) 11 1
, , , ,

xy xz xy yx xy yxz
yx

x x y xy x

E
s s s s s

E E E G E

    


 
      

 

(1.113) 

With the stress function as defined in Eq. (1.66), the equilibrium equations are automatically 

satisfied. For the compatibility deformation equations, the Airy function must be verified by 

the following bi-harmonic equation: 

 

4 4 4

11 12 33 224 2 2 4
(2 ) 0

F F F
s s s s

y y x x

  
   

   
 (1.114) 

The bi-harmonic (1.114) equation is transformed into the form: 

 

2 2 2 2

1 22 2 2 2
0F

x y x y
 

     
    

     
 (1.115) 

where 

 
33 1211

1 2 1 2

22 22

2
,

s ss

s s
   


    (1.116) 
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One introduces two new complex variables ( 1,2)kz k  : 

  
1

,
1

k
k k k

k

z z z


 



  


 (1.117) 

Green and Zerna assumed that the real function F is the sum of two functions 1 1( )z and 

2 2( )z which are the unique functions of the complex variables 1z and 2z , and their 

conjugated functions: 

  
2

1

( ) ( )k k k k
k

F z z


    (1.118) 

where ( )k kz  are conjugate functions of ( )k kz . 

The displacement is written in complex form: 

  
2

1

( ) ( )k k k k k k
k

D u iv z z 


        (1.119) 

where u  and v  are displacements in the horizontal and vertical directions respectively. The 

constants ,k k   in (…) are determined as follows: 

 
1 1 2 1 1 2 2 1 2 2

1 1 2 1 1 1 2 1 2 2

(1 ) (1 ) ; (1 ) (1 ) ;

(1 ) (1 ) ; (1 ) (1 )

         

         

       

       
 (1.120) 

in which: 

 1 12 22 1 2 12 22 2;S S S S        (1.121) 

Green and Zerna also showed that all the functions ln kz and 2n
kz  satisfy automatically the 

conditions of compatibility deformations and they are sufficient to verify the boundary 

conditions. In the case of a circular cavity in an infinite medium, Green and Zerna proposed 

the following formulas for the stresses functions: 

 

1 1 2
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2 2
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H
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



 
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 

 
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 (1.122) 

where 
2

1

k

O
z

 
 
 

are functions of 
2

1

kz
which tends to zero at infinity. The coefficients B, C, B’, 

C’, H, K are then determined by the boundary conditions at infinity for the problem of the 

cavity with radius R.  
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According to Green and Zerna, the hoop stress at the perimeter of the cavity is given by: 

 in the case of an uniform tension T at infinity: 

 
1 2 1 2 1 2

2 2
1 1 2 2

(1 )(1 )(1 2cos 2 )

(1 2 cos 2 )(1 2 cos 2 )

T

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

     

     


   
; (1.123) 

 in the case of a shear stress S at infinity: 

 
1 2

2 2
1 1 2 2

4 ( 1)sin 2

(1 2 cos 2 )(1 2 cos 2 )

S


  


     




   
; (1.124) 

 in the case of a moment M at infinity: 

 
 3

1 2 1 2

2 2
1 1 2 2
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b
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

     

     

    


   
; (1.125) 

In the formulas above,  denotes the anticlockwise angle from the horizontal direction to the 

considered point. 

Based on the work of Green and Zerna, Hefny and Lo (1999) proposed a solution to a circular 

unlined deep tunnel with radius R in a transverse isotropic medium with an anisotropic initial 

stress state. Hefny and Lo (1999) obtained the expression of hoop stress at the tunnel wall as 

follows: 
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 (1.126) 

and the radial and ortho-radial displacements respectively: 
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; (1.127) 

where 0P  and 0Q are the hydrostatic and deviatory stresses of the initial stresses respectively. 

Some works based also on this solution of Green and Zerna to develop and extend for 

different tunnel problems such as Zhang and Sun (2011), Vu et al. (2013), Tran et al. (2015a). 
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1.5 Summary 

This chapter presents the necessity of taking into account the anisotropic properties of the 

medium in the analysis of the tunnel, the motivation of the thesis. Chapter 1 also revisited the 

description as well as some fundamental concepts of poroelastic. The constitutive equations of 

the poroelastic model which will be employed thereafter in this work have been presented. 

The inherent anisotropy of rocks has been discussed on the basis of rock mechanics. Finally, a 

literature review has been presented by synthetizing the works in literature that relate to the 

study objective of the thesis. 

 

Résumé: 

Ce chapitre, résolument bibliographique a présenté quelques notions de bases de la 

poroélasticité dans le contexte anisotrope en justifiant la nécessité de la prise en compte de 

cette anisotropie dans le dimensionnement des tunnels. Le chapitre résume les concepts 

fondamentaux des milieux poroélastique, les équations constitutives du comportement du 

solide, du fluide et de leur couplage qui seront utilisées par la suite dans ce travail. 

L'anisotropie inhérente de roches a été discutée sur la base de la mécanique des roches. Enfin, 

une revue de la littérature décrivant les tunnels dans les milieux anisotropes a été présentée. 
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CHAPTER 2: DEEP TUNNEL IN ANISTROPIC POROELASTIC 

ROCK: ANALYTICAL SOLUTION USING THE COMPLEX 

POTENTIALS APPROACH 

2.1. Introduction 

As mentioned in Chapter 1, in many cases, the rock mass exhibits usually an anisotropic 

behavior and the transversely isotropic rock is frequently encountered in the practice.  

The existent analytical solutions for deep tunnels in anisotropic medium refer primarily to the 

elastic behavior with the circular or non-circular cross section shapes of the tunnels. 

A hydro-mechanical closed-form solution for the deep tunnels in anisotropic porous medium 

is still not mentioned in the literature, and hence, in this chapter we devote to develop an 

analytical solution which takes into account the effect of the pore pressure distribution on the 

mechanical responses. In this study, we account also for the liner in the interaction with the 

surrounding rock, whereby, to clarify the reciprocal impact of them. 

Once the solution derived, we conduct parametric estimations to elucidate the effect of the 

hydro-mechanical parameters of the anisotropic material on the behavior of the tunnel, 

thereby, understanding the nature of work of the tunnel in anisotropic rock. On these basis, 

some comments and initial conclusions are given. 

The study could provide a quick analysis tool for design and evaluation of the stresses and 

displacements of the tunnels as well as the recommendations as basis for studies in the same 

subject. 

2.2. Problem statement 

Let us consider a deep tunnel with circular cross section of radius 0r  excavated in a 

transversely isotropic porous elastic medium which is saturated with an initial pore 

pressure ffp . The longitudinal axis of tunnel is parallel to the z- axis in the cartesian 

coordinates and the cross section lies on the vertical plane (x-y plane) which corresponds to 

the anisotropic plane of the medium. Otherwise, the axes of the elastic symmetry can be 

inclined an angle   with respect to the axes of principal stresses applied at far-field which 

consists of the vertical and horizontal stressed ,ff ff
v h   as illustrated in Fig. 2.4a. The adopted 

hypothesis of deep tunnel allows considering that these stresses are uniform. Then by taking a 

rotation of angle   the considered problem can be studied in the coordinate system of elastic 

symmetry with the following stresses imposed at far-field (see Fig.2.4b):  
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 (2.1) 

The excavation will induce a redistribution of pore pressure, stresses and displacements 

around the tunnel. Particularly, depending on the hydraulic conditions behind the liner of 

tunnel, the pore pressure can be uniform if the liner is impermeable or it can decrease to the 

ambient pressure if the system of drainage is put on the extrados of liner. Thus, in a general 

manner we consider that the pore pressure behind the liner is p0. Therefore, the tunnel 

excavated in dry rock is a particular case with the pore pressure being uniform and equal to 

zero in all the medium. 

 

                                      (a)                                                 (b) 

Fig. 2-1: The initial problem of deep tunnel excavated in a transversely anisotropic ground whose axes of elastic 
symmetry make an angle   with the principle stress axis at far-field (a). The equivalent problem after a rotation 

of angle   (b). 

Solving this problem consists of the determination of stresses, strains and displacement 

distribution in the surrounding rock mass as well as in the liner of tunnel. As usual, the 

analytical solution is only obtained under some degree of simplification represented in 

different hypothesis. For the sake of clarity, the following assumptions are considered 

throughout this study: the tunnel with circular section is deep which allows neglecting the 

gravity effect (1); the anisotropic elastic behavior of rock mass belongs to the transversely 

isotropic class (2); the homogeneous elastic liner is installed simultaneously with the 

excavation and its thickness is small with respect to the radius of tunnel (3); contact between 

the liner and surrounding rock mass is perfect. i.e., no slip and no detachment at the contact 

between the rock and the liner, (4); and plane strain conditions are adopted along the tunnel 

axis (5).    

The results obtained from these assumptions may be limited in the realistic application; 

however, this study does not aim to find a general solution which is unworkable due to the 
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complexity of tunnel problems but rather to develop an explicit formulation for the 

preliminary calculations and may be useful for the further analysis or even to clarify the work 

mechanism of the tunnel by obtained computational tool. 

Under these hypotheses and in the framework of the hydro-mechanical coupling, the solution 

of the considered problem must satisfy the following well-known equations for plane strain 

problem (Detournay and Cheng, 1993; Cheng, 1998). It should be noted that, the general 

expression of these equations were outlined in Chapter 1, however, we present them again in 

detail for the purpose of employing for plane strain problem:  

 the equilibrium equation: 
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(2.2) 

 the elastic constitutive equation:  
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 (2.3) 

 the strain compatibility equation: 
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(2.4) 

 the fluid flow equation (by combining the Darcy law and the mass conservation):  
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(2.5) 

In Eq. (2.2) ,x y  are the total stress in the x and y directions. Respectively in Eq. (2.3) 

,x y    are the effective stresses which are related to the total stresses and pore pressure 

through the well-known Biot’s theory: 

 
x x x

y y y

b p

b p

 

 

  

  
 (2.6) 

where bx, by indicate the Biot coefficients in two directions x and y. Note that, in this study, 

the mechanical sign convention is used where the tension is taken as positive.    

In addition to the two Biot coefficients (bx,by), the hydro-mechanical properties of the medium 

consist of two different values of permeability (kx, ky) and five elastic parameters which are 

respectively the horizontal and vertical Young’s modulus ( xE , yE ), the Poisson’s ratios in the 
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isotropic plane and anisotropic plane of the medium ( xz , xy ) and the shear modulus xyG . 

These five elastic parameters are related to the compliance coefficients appeared in Eq. (2.3) 

through the following relationships (Lekhnitskii, 1963): 
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(2.7) 

Moreover, in Eq. (2.5) w  is the unit weight of the pore fluid and   indicates the change of 

fluid volume (per unit volume of material) which is related to the pore pressure and 

volumetric strain of the medium as follows: 

 ( )x x y yp M b b    
 

(2.8) 

with M the Biot’s modulus.  

2.3. Analytical solution for deep tunnel excavated in anisotropic poroelastic 

medium with steady-state groundwater flow 

In this section we consider the behavior of the tunnel excavated in the anisotropic and 

saturated medium and focus on the influence of groundwater flow at steady-state. Precisely, 

by limiting our study to a long period of time, when the groundwater flow attains the steady-

state with a pore pressure p0 on the extrados of liner, we will show that a closed-form solution 

can be deduced. For this purpose, at the first stage, the analytical solution of pore pressure at 

the steady flow will be introduced and at the second stage, we will detail the obtained closed-

form solution of stresses and displacements distributions around the tunnel in the framework 

of hydro-mechanical coupling. The resolution of this last problem is done by using the 

complex potential approach. 

2.3.1. Analytical solution for the steady-state pore pressure  

 A steady state of pore pressure will be obtained for long time, when the excess pore pressures 

dissipate. The pore pressure distribution around a tunnel in steady fluid flow must verify the 

fluid flow equation (see Eq. (2.5)) without right-hand side: 
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Multiplying two sides of this equation with
y

x

k

k
, we have: 
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(2.12) 

in wich e x yk k k  

Introducing , /x yX x Y y k k   and substituting in Eq. (2.9) yields the Laplace equation 

written in the new coordinate system (X, Y) as: 
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It should be noted that, the diffusion equation in anisotropic medium Eq. (2.9) is transformed 

into Eq. (2.13) in the equivalent isotropic medium. 

In this new coordinate system, the cross section of the tunnel degenerates to an ellipse with 

two semi-axes 0a r  and 0 /x yb r k k . To solve the Eq. (2.13), we can use the conformal 

mapping technique to transform the outside region of the ellipse in the Zw plane (the complex 

variable Zw is defined as Zw=X+iY) onto the outside region of unit circle in w  plane. 

Mathematically, the conformal mapping can be written (Lekhnitskii, 1963):   
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or reciprocally one has: 
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In the plane w  the solution of the Eq. (2.13) is the radial flow and can be expressed as 

function of the radius   (Fitts, 2006): 

 1 2 logp C C    (2.16) 

where the constants 1C and 2C are determined from the boundary conditions: the pore pressure 

is equal to 0p  at the tunnel wall (corresponding to the circle with radius 1   on the w  

plane) and equal to ffp  at infinity.  
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Fig. 2-2: The distribution of pore pressure in the original plane and in the transformation plane 

However, beyond a distance far enough from the tunnel wall we could consider that pore 

pressure does not change (Fig.2-2), i.e, it is restored like initial pressure ( ffp p ) as 

discussed in different contributions (Carranza-Torres and Zhao, 2009; Wang and Wang, 2013; 

Bobet and Yu, 2015). In the w -plane one considers that this distance is represented by a 

circle with radius 1R   . Therefore, from these boundary conditions, one can obtain 

straightforwardly the two constants 1C and 2C  as follows: 
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Because the complex variable can be written in the form i
w e   , we obtain the final 

expression of pore pressure distribution in the rock mass in the following:  
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(2.18) 

2.3.2. Closed-form solution of stress and displacement of deep tunnel  

As previously presented, we limit our study in this part to a long period of time when the fluid 

flow toward the opening attains the steady-state. The interest is focused not only on the 

influence of the initial stresses but also on the effect of pore pressure distribution in the rock 

mass on the tunnel behavior which is characterized through the redistribution of stresses and 

displacements of the surrounding medium as well as the liner behavior. In comparison with 

different contributions in the literature (e.g. Carranza-Torres and Zhao, 2009; Wang and 

Wang, 2013; Bobet, 2011), the solution developed in this part can be considered as an 

extension by taking into account the anisotropic aspect of poroelastic rock. This solution is 

also regarded as an extension of the solution presented in Tran et al. (2016) which address a 

tunnel without liner in anisotropic poro-elastic ground. 
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(a) (b) (c) 

Fig. 2-3: Decomposition of the equivalent problem into two sub-problems. 

As illustrated in Fig. 2-3, one can decompose the considered problem into two sub-problems 

called respectively as problem I and problem II because of its linear elasticity characteristic. 

In the problem I (Fig. 2-3b) one considers that the tunnel is excavated in the saturated porous 

medium with a uniform distribution of pore pressure ( ffp p ) and the total stress ( , ,v h vh   ) 

imposed at far-field. In the second problem (Fig 2.3c) one will study the tunnel behavior 

under the steady fluid flow of groundwater but the pore pressure distributes now from zero at 

infinity to 0 ffp p p  at the tunnel wall. Once the solutions of problem I and problem II 

obtained, one has the complete solution for the original problem based on the principles of 

superposition of linear elasticity. 

2.3.2.1. Solving the problem I:  

As pointed out in the contribution of Bobet (2011), this problem corresponds to the case of 

the tunnel excavated in the porous medium below the water table with impermeable liner. The 

author showed that the solutions of the displacement and total stress in the rock mass as well 

as in the liner are the same as the ones obtained in case where the tunnel is excavated in the 

dry rock as long as the far-field total stresses are the same. Thus, if the problem of excavation 

in dry rock is solved, the solutions (displacements and total stresses) of the problem of the 

tunnel below the water table are straightforward while the effective stresses can be calculated 

from the total stresses and pore pressure using the Biot’s theory as presented in Eq. (2.6).  

Note that the closed-form solution of the tunnel excavated in an anisotropic and dry rock was 

detailed by Bobet (2011) in which the author used the complex potential approach firstly 

presented by Lekhnitskii (1963). In fact, in order to solve this problem, Bobet (2011) 

proposed to decompose it into four sub-problems noted respectively problems Ia, Ib, Ic and Id 

as illustrated in Fig. 2-4. In the problem Ia, the medium, as before the excavation, is 

homogeneous and is subjected to the total stress ( , ,v h vh   ) at far-field. The problem Ib 

corresponds to the case of a borehole without liner which is excavated in the infinite medium 

and subjected only to the radial and shear stresses (
0 0
,r r  ) on its circumference. These radial 

and shear stresses are equivalent to ones determined on the tunnel wall of the problem Ia but 

with opposite sign: 
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 (2.19) 

 

Fig. 2-4:  Deep tunnel in anisotropic dry rock and its decomposition into four sub-problems (Bobet, 2011). 

The problem Ic takes into account the interaction of the liner on the surrounding rock mass 

represented by the interactive radial and shear stresses ( ,r   ) applied to the tunnel wall. 

These same stresses (but with opposite sign), are applied to the liner from the rock mass 

(problem Id) as consequence of the perfect contact hypothesis between the liner and rock. The 

symmetry of the problem and the loading, and, the even and odd characteristic of the 

functions of ,r    respectively, allow writing theses stresses in Fourier series forms 

(Bobet, 2011):  
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where the constants 0 , , , ,a b a b
n n n n     are determined from the compatibility of displacements 

(hypothesis of perfect contact) between the rock and the liner: 
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and  is the rotation angle from the springline to the considered point on the circumference of 

the tunnel wall with the anticlockwise positive direction. 

In Eq. (2.21) the right-hand side terms present the displacements of rock mass at the perimeter 

of tunnel wall (sum of the solutions of problems Ia, Ib and Ic) whereas the left-hand side 
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terms are the displacements of the liner evaluated at the contact surface with the ground 

(solution of the problem Id). It should be noted that, this tied contact condition is only 

achieved when the radial total stress on the interface between the liner and the rock mass is 

compressive. If the radial total stress is tensile, it would violate the assumption of perfect 

contact. 

It should also be noted that, because of the assumption of perfect contact, the equation (2.21) 

must be validated to any point on the liner-rock mass interface. Therefore, in order to solve 

this equation, one has to impose the identical condition of term-by-term in two sides of the 

equation, i.e., for the constant term and for the factors of cos , sin , cos2 , sin 2  and so 

forth. 

The solutions of the stresses and displacements in the homogeneous medium in the problem 

Ia are trivial where: 
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It can be observe that solving the problem Ib is similar to that of the problem Ic because both 

problems correspond to the case of a circular borehole subjected to the radial and shear 

stresses on its circumference. This last problem has been widely discussed in the literature 

since the pioneered work of Lekhnitskii (1963) in which the stresses and displacements 

around the excavation can be determined analytically by using the complex potentials. 

According to Lekhnitskii (1963), the stress components can be identified from the function 

so-called Airy stress function, ( , )F x y which satisfies the equilibrium equation presented in 

Eq. (2.2): 
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Note that by substituting the Eqs. (2.6), (2.2) and (2.23) in Eq. (2.3) we obtain the following 

expression of the compatibility equation that the stress function must verify: 
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(2.24) 

Eq. (2.24) is the compatibility equation written in terms of Airy function. In the framework of 

the pure mechanical problem (as the problem Ib and Ic) where the right-hand side of Eq. 

(2.24) is equal to zero, Lekhnitskii (1963) proposed a solution by introducing two complex 

functions, namely complex potentials that are defined as follows: 
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In Eq. (2.25) two complex variables k kz x y   were used where k  (k=1,2) are roots with 

positive imaginary parts of the following characteristic equation: 
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(2.26) 

Lekhnitskii (1963) proved also that the roots of the characteristic equation (2.26) are either 

complex, or pure imaginary and they consist of two pairs of complex conjugates since the 

characteristic equation is a fourth order algebraic equation with real coefficients. From the 

two potential functions, the author showed that stresses and displacements around the cavity 

can be determined through the following relationships: 
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where the coefficients 1 2 1 2, , ,p p q q are defined as: 
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(2.28) 

and ‘Re’ stands for the real part. 

In fact, to determine these two complex potentials, the conformal mapping technique which 

transforms the infinite domain outside the tunnel (of radius 0r ) in the kz  planes to the infinite 

domain outside the unit circle in the k  planes was used. Mathematically, this transformation 

is written as Eq. (1.106) with 0a b r   (Lekhnitskii, 1963, 1968): 

 10 0(1 ) (1 )
( ) , ( 1,2)

2 2
k k

k k k k

r i r i
z w k

 
    

     (2.29) 

or reciprocally, one has: 
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For the circular opening subjected to the distributed forces on its circumference, Lekhnitskii 

(1963) proposed the general form of the two complex potentials as in Eqs. (1.108) with the 

constants 1 2 0A A  , and so, one has: 
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(2.31) 

These complex potentials satisfy the condition of vanished stresses at infinity (in fact their 

derivatives tend to zero as kz  ). The constants na and nb  are the conjugates of the 

complex number na and nb which are calculated from the boundary conditions at the tunnel 

wall.  

Imposing the boundary condition on the tunnel circumference (the interface between the rock 

mass and the liner) as presented in Eq. (1.100) with eliminating the body forces we have 

following relation: 
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where the angle is defined in the Fig. 2-5. It should be noted that, on the tunnel 

circumference, i.e., 0r r , cos sin i
k i e       and 0 ( 2,3,4,...)nna b n   . 

  
Fig. 2-5: Stresses at the rock-liner interface 

Applying these boundary conditions, therefore, one obtains the two complex functions 1 1( )z  

and 2 2( )z  (see Bobet, 2011) as follows:  
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(2.33) 

for the problem Ib and:  
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for the problem Ic.  

Concerning the problem Id, the displacement in the liner can be calculated from the following 

relationship (Flügge, 1966; Bobet, 2011): 
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where sU and s
rU are the radial and tangential displacements of the liner, s

r  and s  are the 

radial and shear stresses acting on the liner. It should be noted that here s IdU U  and 

s Id
r rU U , s   and s

r r   mentioned in Eqs. (2.20) and (2.21) because of the perfect 

rock mass-liner contact condition. ,s sE   are the elastic modulus and Poisson coefficient; ,s sA I  

are the cross-section area and moment of inertia of the liner which are calculated from the 

thickness st  ( 3, /12s s s sA t I t  ). These relations are established based on the assumption that 

the liner is thin in comparison with the radius of tunnel and, thereby, the cylindrical shell 

theory is applied. Thus, this Eq. (2.35) allows determining the radial and tangential 

displacements ,s s
rU U  from the radial and shear stresses ( ,s s

r  ) that applied to the liner. 

To simplify the presentation, the expressions of displacements on the interface, i.e., the 

displacement solutions of the problem Ib, Ic and Id at 0r r as mentioned in Eq. (2.21), are not 

detailed here but are given in appendix A (see also in appendix II of Bobet, 2011).  

One has relations between the thrust force ,s IdT and the moment distribution ,s IdM  in the liner 

with the stresses applied to the liner as following expressions (Bobet 2011): 
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Substituting Eq. (2.20) into (2.36) and then integrating the resulting equations one obtains the 

general expression for the thrust load ,s IdT and the moment distribution ,s IdM as follows 

(Bobet 2011): 
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Thenceforth, one has the tangential stresses in the interior and exterior fibers as well as the 

strains in the liner respectively as: 
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 (2.38) 

2.3.2.2. Solving the problem II:  

We consider now the problem II that focuses on the influence of the steady fluid flow on the 

mechanical response of the tunnel. This problem was discussed in different works (Carranza-

Torres and Zhao, 2009; Bobet, 2003) but limited only in case of the isotropic behavior of the 

porous medium.  

Like the previous problem, to solve this problem we will use the complex potential approach 

but in this case, it needs both the hydraulic and hydro-mechanical potentials. Note that this 

approach was successfully applied by Bobet and Yu (2015) to determine the stress field near 

the tip of a crack in the transversely isotropic saturated rock. More precisely, knowing the 

distribution of pore pressure around the crack at the steady-state and, hence, the hydraulic 

potential, these authors proposed the hydro-mechanical potentials owing to the same form as 

ones of the hydraulics. After some developments, these authors showed that the displacements 

as well as the stress around the crack tip can be deduced. In the present study, sharing the 

same idea, this method is used to study the deep tunnel taking into account the interaction 

between the liner and the rock mass. Concretely, to solve the problem II, one decomposes it in 

three sub-problems as shown in Fig. 2-6. In the problem IIa, one determines the stresses and 

displacements in the surrounding rock mass due to the steady-state groundwater flow. Thus, 

in this problem, the liner of tunnel is not accounted for and the tunnel behavior is controlled 

by the steady-flow of the groundwater with pore pressure ranging from (p0-pff) at the surface 

of tunnel to zero at infinity. The presence of liner is considered through its interaction with the 

surrounding rock mass in the problem IIb and IIc. Similarly to the problem Ic and Id, this 

interaction is represented by the radial and shear stresses ( ,p p
r r   ) applied respectively to 

the tunnel wall or the liner (with opposite sign) as illustrated in Fig. 2-6:  
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Fig. 2-6:  Decomposition of the problem II into three sub-problems 

Considering firstly the problem IIa, in order to search its solution one has to resolve the 

compatibility equation Eq. (2.24) with right-hand side for determination the Airy stress 

function F. The general solution of this equation consists of two components, a homogeneous 

solution ( *
hF ) and a particular solution ( *

pF ) corresponding respectively to the mechanical and 

hydro-mechanical effects. 

For this purpose, as the first step, one will determine the particular solution *
pF  by substituting 

the solution of pore pressure distribution into the compatibility equation (Eq. 2.23). Note that 

the distribution of pore pressure in this problem II can be deduced directly from Eq. (2.18) 

with a small modification because of the fact that the pore pressure ranges now from (p0-pff) at 

the tunnel wall (corresponds to 1   on the w  plane) to zero at far-field (corresponds 

to 1R   on the w  plane as discussed previously). Therefore without difficulty, one 

obtains the following expression: 
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Owing to the fact that the hydraulic and hydro-mechanical potentials have the same order of 

effect on the displacements and stresses of tunnel, thus one can propose, in the second step, 

two hydro-mechanical potentials * *
1 1 2 2( ), ( )p pz z   whose derivatives take the same form as the 

hydraulic potential: 
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(2.41) 

where 1N  and 2N are two complex constants that one has to determine.  
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From these hydraulic and hydro-mechanical potentials, the stresses and displacements can be 

computed according to the following relations: 
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in which:  
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Substituting Eqs. (2.39) and (2.41) into Eq. (2.42) yields the expressions of stress 

components: 
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as well as the expressions of displacement components: 
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(2.45) 

These expressions show that the displacements and stresses are calculated from the 

logarithmic functions of the complex variables 1 2, , w   . However, it is important to note that 

the logarithmic functions of the complex variables are multi-valued in angle   (periodic 

functions of angle ) which is expressed as (Churchill, 1960; Kreyszig, 1999): 
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 ( 2 )log log( ) log ( 2 )i ne i n         (2.46) 

in wich is complex number and n  is integer number. Therefore, the requirement of single-

valuedness of the displacements in Eq. (2.45), i.e., the sum of factors of imaginary numbers 

equal to zero, provides the following system of equations: 
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where “Im” stands for the imaginary parts.  

It should be noted that, the single-valuedness condition of displacements infers also the 

single-valuedness condition of the stresses. 

Furthermore, by writing the complex numbers in the form: 1 2i i ii    , for example 

1 2i    , we can express the Eq. (2.47) as follows: 
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This last system of four linear equations allows calculating the real and imaginary parts of two 

complex constants 1 2,N N (which are 11 12,N N and 21 22,N N  respectively). It is worth noting 

that, this system of equation is still validated in the general case of an elliptical tunnel. 

Particularly, as a special case when one semi-axis of ellipse is equal to zero, Eq. (2.48) is 

degenerated to one presented in the previous work of Bobet and Yu (see Eq. (39) in Bobet and 

Yu, 2015). However, in this later contribution, to derive the system of equations, Bobet and 

Yu (2015) used the compatibility condition of displacements and stresses at the common 

boundary of crack.  

Once the two complex constants 1 2,N N are calculated, it is straightforward to determine the 

derivatives of complex potentials in Eq. (2.41) as well as the stresses and displacements from 

Eq. (2.44) and (2.45). The stresses given by Eq. (2.44) satisfy the boundary conditions of zero 

total stresses far from the tunnel, i.e., at  e ( 1,2, )i
k R k w   but introduce non-zero total 

normal and shear stresses on the surface of the tunnel wall. Thus, to satisfy the condition of 

vanished stresses on the perimeter surface of the tunnel, at this place one imposes the same 
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normal and shear stresses but with opposite sign. Expressions of these imposed stresses on the 

surface of the tunnel wall are:  
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(2.49) 

where ,,x y xy   are stress components on the tunnel wall obtained from Eq.(2.44): 
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(2.50) 

This case, as mentioned above, belongs to one of the well-known problem solved in the work 

of Lekhnitskii (1963) and can be also found in Amadei (1983), and is analogical to the 

problem Ib. Therefore, the solution of the problem Ib, previously presented can be used here. 

For example one can directly deduce the two complex potential functions from the Eq. (2.33) 

but replacing the stresses ( ,,h v vh   ) by ( ,,x y xy   ): 
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(2.51) 

Consequently, the complete solution of stresses and displacements of the problem IIa is:  
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 (2.52) 

where the stresses , , ,, ,IIa h IIa h IIa h
x y xy   and displacement , ,,IIa h IIa h

x yU U  are calculated from the 

complex potentials in Eq. (2.51) by using the Eq. (2.27). 

Let us treat now the two other problems IIb and IIc in which the interaction between the liner 

and the rock mass is taken into account. As mentioned above, these two problems are similar 

to the problem Ic and Id where the interaction between the liner and the rock mass can be 

represented through the radial and shear stresse ( ,p p
r r   ) acting on the tunnel wall and 

liner. Using the similar process as in case of the dry rock (problem Ic and Id) one can write 

these radial and shear stresses in form of the Fourier series:  
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where the constants , , , ,
0 , , , ,p a p b p a p b p

n n n n      are determined from the compatibility of 

displacements at the liner–rock mass contact (assumption of no slip and no detachment). 

Concretely, these parameters can be found from the following conditions: 
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Consequently, the same procedure as used in problem Ic and Id can be used here to solve the 

problem IIb and IIc. Note that the expressions of the displacements
IIaU ,

IIbU and 
IIcU at the 

liner-rock mass contact are detailed in appendix A in which the displacements of problem IIa 

are reduced by using the single-valuedness condition. 

The general expression for thrust load ,s IIcT and moment distribution ,s IIcM in the liner for the 

problem IIc which are analogous with the problem Id as: 
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 (2.55) 

One has also the tangential stresses in the interior and exterior fibers and the strains in the 

liner respectively as: 

 

,

,
2

,
,

,

2
,

1

s IIcs IIc
s IIc s

s s

s IIc s IIc

s

s

M tT

A I

E



 



 


 



 (2.56) 

2.3.2.3. Final results:  

The final results of the original problem are then calculated from the solutions of the problem 

I and problem II by using the superposition principle.  

More precisely, in rock mass we can calculate the displacements:  

 
;

;

Ia Ib Ic IIa IIb
x x x x x x

Ia Ib Ic IIa IIb
y y y y y y

U U U U U U

U U U U U U





   

   
 

(2.57) 

and the total stresses: 
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;

;
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(2.58) 

while the effective stresses can be determined from the total stresses in Eq. (2.58) and the 

pore pressure in Eq. (2.18) by using the Biot’s theory Eq. (2.6).  

In the liner, we can compute the tangential stress and the strain as follows:  
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, ,
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  

 

 
 (2.59) 

2.4. Numerical applications 

Some numerical applications are presented in this section. In the first stage, we will validate 

the analytical solution by comparing with one obtained from the numerical simulation based 

on the finite element method (FEM). In the second stage, the validated analytical solution will 

be employed to elucidate the anisotropic effect on the hydro-mechanical behavior of tunnel 

through a parametric study.  

2.4.1. Validation of the analytical solution  

For the validation purpose, the numerical simulation using FEM is carried out and compared 

with the analytical results. For that, a 2D model is built in the Aster_Code using the plane 

strain elements with 4 nodes for displacement and 4 nodes corresponding to middle points of 

4 edges for pore pressure. Owing to the symmetry of the considered problem, only one quarter 

of the tunnel is used in the simulation as illustrated in Fig. 2-7. The dimension of the model is 

taken equal to 60m from the center of the circular hole of radius 0 1r m . The hydro-

mechanical properties of the Callovo-Oxfordian clay-stone at depth of 500m are chosen as 

follows (Charlier et al., 2013; Armand et al., 2013): 5600xE MPa , 4000yE MPa , 0.3xz  , 

0.142yx  , 1600xyG MPa , 134 10 /xk m s  , 131.33 10 /yk m s   and 0.6x yb b  . 

Concerning the liner (with thickness 0.05st m ), the mechanical properties are chosen  

20sE GPa  and 0.3s   (Carranza-Torres and Zhao, 2009). The boundary conditions consist 

of imposing the initial horizontal, vertical stresses ( 12.5 , 12.5h vMPa MPa   ) following the 

elastic symmetry of medium ( 0  ) and pore pressure 4.7ffp MPa  on the right lateral and 

top boundary while on the two other boundaries no normal displacement and flux are allowed. 

Furthermore, the pore pressure 0p  is imposed at the interface of liner and ground while 

beyond an elliptical zone around the tunnel, pore pressure is kept constant 

at 4.7ffp p MPa  . This elliptical zone with two semi-axes of 45a m  and 

/ 25x yb a k k m   corresponds to the chosen distance 30R m  from the center of unit 

circle in the w  plane of the analytical solution at which the pore pressure is considered not to 
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be influenced by groundwater flow toward opening. It was confirmed from our results that 

these dimensions are far enough that beyond which no significant improvement in the 

solution of the stresses and displacements near the tunnel can be stated. Depending on the 

study purpose, the pore pressure on the circumference of tunnel can be equal to the ambient 

pressure 0 0p   (case of tunnel excavated in drained rock due to the implementation of 

drainage system at extrados of liner and we note hereafter as case 1) or equal to the initial 

pressure 0 ffp p (known as case of tunnel excavated in saturated rock with impermeable liner 

and is noted as case 2). From physical point of view, the behavior of the tunnel in the former 

case is controlled by the purely mechanical mechanism while in the latter case the hydro-

mechanical coupling is considered.  

 

Fig. 2-7:  2D plane strain model used in the numerical simulation by FEM 

The numerical simulation process is described by two steps below: 

 The first step: 

The entire medium is discretized by the elements described above. In this step, the elements 

corresponding to the excavation and liner are active with the same material parameters as the 

rock mass, i.e. the tunnel has not been excavated yet. The initial stresses and pore pressure are 

created and they dominate all the medium, whereas the displacements of the medium are 

equal to zero. This procedure is ensured by a feature of ASTER which allows zeroing all 

displacements while maintaining the initial stresses. In this step, all the elements of the 

medium have a same effective horizontal stress, effective vertical stress, and pore pressure 

equal to the initial stresses applied. Imposing the zero displacements ensures also that, the 

elements corresponding to the liner do not deform in this step, i.e., the liner should deform 

only when the tunnel is excavated. 

 The second step: 

This step is for the excavation of the tunnel and installation of the liner. Therefore, the 

elements corresponding to the excavation are not active and the material parameters of the 
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elements corresponding to the liner are changed by those of concrete. The pore pressure at the 

liner-rock mass interface is imposed according to the study case of drainage condition. This 

means that, for the case 1, the pore pressure at this place is equals to zero while it takes the 

initial value for the case 2.  

Fig. 2-8 presents the numerical results obtained at the final equilibrium state (steady-state of 

groundwater flow) in comparison with the analytical ones.  

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

 
Fig. 2-8: Effective radial stress, effective tangential stress, pore pressure and radial displacements determined on 

the horizontal and vertical axes of symmetry of tunnel: comparison between the analytical and numerical 
solutions. These results are calculated for the case of excavation: in drained rock (a,b,c) and in saturated rock 

with uniform pore pressure (d,e,f). 
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In both cases, a very good agreement is noted for all results of the pore pressure, effective 

radial or tangential stresses and displacement. A tiny difference with a relative error is inferior 

to 3%. Different calculations highlight that the error increases with respect to the higher 

thickness of the liner. This could be explained by the fact that the increase of thickness of 

liner at a certain value can violate the hypothesis of thin liner at which the cylindrical shell 

theory is no longer validated.  

Through these results, the anisotropic behavior of tunnel is well captured by the difference of 

effective hoop stress and particularly the convergence determined on the horizontal and 

vertical axes of symmetry of tunnel (Fig. 2.8c). 

2.4.2. Extreme conditions of drainage behind the tunnel liner 

If a deep tunnel is placed under the ground water table, the surrounding medium is fully 

saturated. In the topic of tunnel studies, two extreme conditions at the rock–liner interface are 

usually considered: full drainage, or no-drainage (Fig. 2-9). For the full drainage case, the 

pore pressures, p, at the contact are equal to zero and fluid flow towards the opening occurs; 

for the no-drainage case, the pore pressures in all the medium around the tunnel are uniform 

and equal to the far-field pore pressures, pff, so, there is no flow. The permeabilities of rock 

mass and the liner decide the condition of full drainage or no-drainage at the contact. In fact, 

the lining system for a deep tunnel is designed either impermeable or permeable. In the case 

of impermeable liner, water cannot flow through the liner and, thus, the liner has to support 

the pressure transferred from the ground as well as the water pressure at the liner-ground 

interface. Hence, one has the no-drainage condition at the ground-liner interface. When a 

drain is installed on the extrados of the liner to collect and remove water from the ground, one 

has the full drainage condition at the ground-liner contact. For the case of permeable liner, 

partial drainage may occur.  

One considers only the two extreme conditions in the following evaluations. Differences in 

the displacement and rock tangential stress at the ground-liner interface as well as the liner 

stresses in each of the two drainage conditions are investigated. Fig. 2-9 shows a tunnel with 

full drainage or no drainage at the ground–liner interface.  

 
a) Full-drainage case 

 
b) No-drainage case 

Fig. 2-9: Two cases of drainage conditions considered for the tunnel problem 

Several results below for several quantities with hydro-mechanical properties given as 

previous section indicate the differences between two cases. 
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The iso-value contours of radial displacement presented in Fig. 2-10 help to give insight to the 

anisotropic effect on the tunnel behavior in which a more pronounced displacement in 

magnitude can be stated with the highest convergence at the crown.  

It is also worth noting here that the radial displacement on the perimeter of tunnel is different 

in the two cases of study (see, for example, the displacement at the springline and at the 

crown of the tunnel in Fig. 2-8c,f corresponding to the position r=r0). Discussions in the 

literature (for instance, Bobet, 2003; Carranza-Torres and Zhao, 2009) showed that in the 

isotropic poroelastic medium framework the stresses and displacement in the liner and, hence, 

the radial displacement at the ground-liner interface are independent on drainage condition; 

instead they depend only on the total stress at far-field.  

In order to show that whether the radial displacement and stresses of the liner depend on the 

drainage condition at the ground-liner contact or not, henceforth one will evaluate theses 

quantities in all the study cases. 
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Fig. 2-10: Isovalue contours of radial displacement, mean stress and deviatory stress respectively in rock mass 
for the case of drained rock (a,b,c) and for the case of uniform pore pressure (d, e, f). 
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2.4.3. Parametric study  

The goal of this part is to elucidate the influence of the different poroelastic properties on the 

anisotropic hydro-mechanical behavior of tunnel. Concretely, the studies will be conducted 

with respect to the Poisson’s ratio, the shear modulus, the ratio of Young’s modulus, the 

permeabilities and Biot coefficient and the far-field pore pressure of the porous medium. This 

could be done by changing the value of the interested parameter while the other parameters 

are kept constants. Moreover, it is known in the literature (Chen and Yu, 2015) that the tunnel 

behavior depends on the initial stresses, particularly on its anisotropy as well as its inclination 

with respect to the axes of elastic symmetry of medium. These effects will be also considered 

in this part. In order to analyze reciprocal impact between the liner and the rock mass, some 

studies are carried out by using different values of liner thickness and stiffness.  

The obtained results are detailed as belows. 

2.4.3.1. Influence of Poisson ratios 

The first results that we will detail here allow elucidating the effect of Poisson’s ratio on the 

tunnel behavior. In Fig. 2.11a, b, c, e, f, g are presented the distribution of rock effective 

tangential stress, the interior fiber tangential stress of the liner and radial displacement on the 

circumference of tunnel calculated with different values of the Poisson’s ratio yx for two 

cases of drainage condition. Because of the same variation tendency of the tangential stresses 

in the interior and exterior fibers of the liner from the springline to the crown of the tunnel, 

henceforward in the figures we present only the interior fiber tangential stresses. 

In these figures, angle   is measured from the springline to the crown of the tunnel. More 

precisely, by changing the Poisson’s ratio yx  of the vertical plane, which is also the 

anisotropic plane of the medium, we can observe that its effect is quite significant on the rock 

tangential stress, the liner tangential stress (Fig. 2.11a, b, e, f) and on the radial displacement 

(Fig. 2.11c, g). For the case 1 (drained rock case), the rock tangential stress changes more 

importantly at the middle point between the springline and the crown of the tunnel while it 

changes more importantly at the crown for the case 2 (uniform pore pressure case).  

In general, the decrease of the vertical Poisson’s ratio yx will decrease the liner tangential 

stress at the crown and change slightly liner tangential stress at the springline of the tunnel 

whereas it will decrease the radial displacement at the springline (noted hereafter as Ux) and 

increase slightly the radial displacement at the crown of the tunnel (noted as Uy). These 

tendencies are reciprocal because of the mechanism: the more deformation, the less take the 

load and vice versa. Consequently, the anisotropic behavior of the tunnel represented by the 

ratio of radial displacements evaluated at the crown and at the springline respectively (Uy/Ux) 

is higher if the Poisson’s ratio yx  is smaller and they are highly sensitive to the change of the 

Poisson ratio yx (Fig. 2.11d, h). Otherwise, by comparing the results obtained from both cases 
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of study in Fig. 2.11b,c and in Fig. 2.11f, g we can observe the same tendency but the 

influence seems more pronounced in case 1 illustrated by the higher differences of liner 

tangential stress and radial displacement between the srpingline and the crown as well as a 

higher magnitude of rock tangential stress at both the springline and the crown. 

This can be explained by the fact that in case 2, only the mechanical mechanism determines 

the behavior of tunnel (purely mechanical response) while in case 1, the contribution of the 

hydraulic mechanism, consequence of the steady flow of groundwater, is also taken into 

accounted (hydro-mechanical response).  
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Fig. 2-11: Influence of the Poisson’s ratio yx  on the rock effective tangential stress, the liner tangential stress, 

the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel which is 
excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e,f,g,h) 
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Fig. 2-12: Influence of the Poisson’s ratio 
xz on the rock effective tangential stress, the liner tangential stress, 

the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel which is 
excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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Concerning the influence of the other Poisson’s ratio which lies on the isotropic plane of the 

medium ( xz ), the results are showed in the Fig. 2-12. 

It can be seen from Fig.2-12 that the effect of xz on the rock tangential stress, the liner 

tangential stress, the radial displacement as well as the ratio of radial displacement is small, 

i.e., the Poisson’s ratio in the isotropic plane has a negligible effect on the tunnel behavior. 

2.4.3.2. Influence of the shear modulus 

The effect of the shear modulus xyG , highlighted in Fig. 2-13, is done by changing the ratio 

/x xyE G  while xE is kept constant. It shows that the decrease of shear modulus, represented by 

the higher ratio /x xyE G , affects strongly the distribution of stress and displacement around the 

tunnel. For example, smaller shear modulus induces a higher compressive rock tangential 

stress at the springline as well as at the crown of the tunnel while it can decrease this stress at 

the middle portion between the springline and the crown (Fig. 2-13a, e). Furthermore, the 

decrease of shear modulus results in an increase of the liner tangential stress on the perimeter 

of the tunnel. In the same trend, there is an increase of radial displacement on the perimeter of 

the tunnel but the rate is more pronounced at the springline illustrated by a slightly decrease 

of the ratio Uy/Ux (Fig. 2-13c,f). In addition, the larger magnitude of the liner tangential stress 

corresponds the smaller magnitude of radial displacement at the springline and vice versa at 

the crown. It can be seen from Fig. 2-13 that the magnitude variations of the stresses and the 

radial displacement are highly sensitive to the value of xyG .Therefore, /x xyE G is an important 

deformation parameter to consider in predicting displacements. Similarly to the previous 

parametric study case, the variation of the rock effective tangential stress, the liner tangential 

stress and the radial displacement as well as the ratio of radial displacement along the 

perimeter of the tunnel is more important for the tunnel excavation in drained rock.  
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Fig. 2-13: Influence of the shear modulus 
xyG on the rock effective tangential stress, the liner tangential stress, 

the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel which is 
excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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2.4.3.3. Influence of the Young’s modulus ratio     

Fig. 2-14 presents the rock effective tangential stress, the liner tangential stress and radial 

displacement evaluated on the tunnel wall with different values of Young’s modulus 

ratio /x yE E . The results show that the ratio /x yE E  could contribute to a significant effect on 

the distribution of the tangential stresses in both the rock mass and the liner notably near the 

crown when the increase of this ratio yields a greater compressive rock tangential stress and a 

smaller liner tangential stress (Fig. 2.14a, b, e, f). Otherwise, as expected, an increase of 

Young’s modulus in the horizontal direction xE  with respect to one in the vertical 

direction yE , will induce a decrease of the radial displacement at the springline and an 

increase at the crown (Fig. 2-14c, g). As a result, the higher the Young’s modulus ratio /x yE E  

the greater the radial displacement ratio Uy/Ux (Fig. 2-14d, h). On the contrary, the variation 

of liner tangential stress is inverse with respect to one of radial displacement. This is because, 

in the uniform far-field stresses condition, the larger radial deformations (in the smaller 

stiffness direction) the smaller radial stresses (the stress applies to the liner), i.e., larger 

unloading, occur at the crown than at the springline. The rock mass in the smaller deformation 

direction, i.e., here the horizontal direction, takes more load. The tendencies are similar in 

both cases of study but a more significant variation in magnitude is also marked in case 1. 
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Fig. 2-14: Influence of the Young’s modulus ratio ( /x yE E ) on the rock effective tangential stress, liner 

tangential stress, radial displacement, and the ratio of radial displacement respectively at the circumference of 
tunnel which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h). 
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2.4.3.4. Influence of the anisotropic permeability and Biot coefficient 

To better understand the hydraulic effect on the tunnel behavior, this parametric study case 

addresses the influence of the permeability and the Biot coefficient. The corresponding results 

with respect to each effect of parameter are illustrated respectively in Fig. 2-15, Fig. 2-17. As 

expected, the excavation in saturated medium with uniform pore pressure (case 2) does not 

change the tunnel displacement if we change the hydraulic properties of the medium (the 

permeabilities and Biot coefficients). As being discussed previously, in the case of no 

drainage, the purely mechanical responses of the tunnel are similar to those of the tunnel 

excavated in the dry rock in terms of total stress and displacement. Consequently, changing 

of, for example, the Biot coefficient can change only the effective stress but it does not impact 

on the radial displacement (Fig 2-17g, h). In contrast, the influence of the anisotropic 

permeability and Biot coefficient in combination with mechanical anisotropy is well 

illustrated in case 1 where the excavation is conducted in the drained rock. More precisely, if 

the anisotropy of permeability increases, which is represented by a higher ratio kx/ ky, we can 

state that the magnitudes of the rock effective tangential stress and the liner tangential stress 

increase at the springline and decrease at the the crown (Fig. 2-15a). The permeabilities can 

also affect the radial displacement. Indeed the higher anisotropic degree of permeability 

produces a higher convergence at the crown and a smaller one at the the springline (Fig. 2-

15c) which is well illustrated by a more pronounced displacement ratio Uy/Ux as shown in 

Fig. 2-15d. This is explained as follows. When the ratio of permeabilities kx/ ky increases, the 

zone of isovalue of pore pressure around the opening tunnel, with an elliptical shape, extends 

toward the horizontal axe as illustrated in Fig. 2-16. Therefore, gradient of pore pressure 

increases in the vertical direction while it decreases in the horizontal one, i.e., the larger 

seepage force occurs at the crown than at the springline. The higher seepage force induces the 

higher radial displacement at the crown than at the springline. It should be also noted that, in 

the steady state condition of fluid flow, the zone of pore pressure distribution surrounding the 

opening depends only on the ratio of permeabilities but does not depend on the magnitude of 

them. 

The same remarks can be noted by regarding the influence of the Biot coefficients 

(concurrently in two directions) on the radial displacement in drained rock. Following that, 

the increase of Biot coefficients corresponding to the decrease of effective stress (Fig. 2-17 a) 

results in a higher radial displacement at the crown and a smaller radial displacement at the 

springline (Fig. 2-17 c) and, hence, an increase radial displacement ratio Uy/Ux (Fig. 2-17 d). 

On the other hand, by comparing the results of case 1 and case 2, it is confirmed that a more 

pronounced radial displacement ratio is produced in case 1. The results discussed here 

demonstrate the essential role of pore pressure distribution on the tunnel’s responses and 

particularly the importance to account for the anisotropic hydro-mechanical coupling on the 

analysis of tunnel behavior. 
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Fig. 2-15: Influence of the anisotropic permeability ( /x yk k ) on the rock effective tangential stress, liner 

tangential stress, radial displacement, and the ratio of radial displacement respectively at the circumference of 
tunnel which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h). 
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(a) 

 
(b) 

 
(c) 

Fig. 2-16: Contours of the pore pressure around the opening tunnel in the cases: / 1x yk k  (a), / 3x yk k  (b), 

/ 10x yk k  (c) 

On the other hand, Fig. 2-15 b, c and Fig. 2-15 f, g indicate also that, when the ratio of 

permeabilities is equal to 1, i.e., the hydraulic property is isotropic, the tangential stress and 

radial displacement of the liner in two conditions of drainage at the rock-liner contact are 

exactly the same. Therefore, it is hydraulic anisotropy that induces the difference of the radial 

displacement and tangential stress of the liner between two conditions of drainage. This will 

be still evaluated in the study cases following. 
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Fig. 2-17: Influence of of the Biot coefficients (
x yb b ) on the rock effective tangential stress, the liner tangential 

stress, the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel 
which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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For the purpose of elucidating the effects of anisotropic Biot coefficients, one keeps the Biot 

coefficient constant in isotropic plane, i.e., in the horizontal direction while changing it in 

anisotropic plane, i.e, in the vertical direction. The results of the estimated quantities are 

presented in Fig. 2-18. The figure shows that, in combination with the mechanical anisotropy, 

for the case 1, the anisotropy of Biot coefficient influences the rock effective tangential stress 

at both the springline and the crown and more importantly at the springline that lies on the 

direction kept the Biot coefficient constant whereas the rock effective tangential stress only 

changes at the springline but keeps unchanged at the crown. 

With regard to the radial displacement, for the case 1, it can be seen that, there is a slightly 

decrease at the crown while it does not vary at the springline. The liner tangential stress 

decreases slightly at the springline and increases slightly at the crown corresponding to the 

diminution of Biot coefficient in the vertical direction. In the previous study case, there is not 

any impact on the radial displacement as well as the liner tangential stress in the case of 

uniform pore pressure distribution. 

In summary, the anisotropy of Biot coefficient affects primarily on the tangential stress in the 

rock whereas it has a negligible effect on the displacement and liner tangential stress. 
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Fig. 2-18: Influence of the Biot coefficients (
x yb b ) on the rock effective tangential stress, the liner tangential 

stress, the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel 
which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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2.4.3.5. Influence of the far-field pore pressure   

In an attempt to acquire additional insight into the influence of pore pressure field around the 

tunnel, we analyze the tangential stress and radial displacement in the rock as well as in the 

liner under different pore pressure magnitudes. The results are investigated with three values 

far-field pore presures: pff = 1 MPa, pff = 3 MPa and pff = 4.7 MPa while the total far-field 

stresses remain constant at 12.5 MPa. The results are plotted in the following Fig. 2-19. 

It is observed in the Fig. 2-19 (a, e) that, when the far-field pore pressure increases the rock 

effective tangential stress decreases at the entire circumference of the tunnel wall. It is 

interesting that, moreover, in comparison between two cases, full-drainage and no-drainage 

cases, at the same magnitude of far-field pore pressure, the change of the rock tangential 

stress occurs primarily at the springline while it keeps almost constant at the crown. This 

shows that, the fluid flow influences almost at the springline where belongs to the greater 

stiffness direction, i.e., the rock carries more the seepage forces in the larger stiffness 

direction.   

The Fig. 2-19 (f, g) shows also that, when there is no fluid flow, no-drainage cases, there is no 

change in displacement and tangential stress in the liner. This may be explained that, the 

displacement and tangential stress of the liner depend only on the total stresses at the contact 

between the liner and the rock mass (interaction stresses) which depend only the total far-field 

stresses not on the far-field pore pressure. 

For the case with the fluid flow, the liner tangential stress increases slightly at the springline 

and decreases slightly at the crown, i.e., there is an increase of the liner tangential stress in the 

greater stiffness direction and a decrease of it in the smaller stiffness direction (Fig. 2-19b). In 

this case, the total stresses at the contact are equal to the effective stresses because of the zero 

pore pressure at this place.  

The variation of radial displacement has an invert tendency with respect to liner tangential 

stress; as a consequence, the ratio of radial displacement on the tunnel wall increases together 

with the far-field pore pressure (Fig. 2-19c, d). 
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Fig. 2-19: Influence of the far-field pore pressure (
ffp ) on the rock effective tangential stress, the liner tangential 

stress, the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel 
which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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2.4.3.6. Influence of the anisotropy and inclination of initial stress 

Our next parametric study case aims to investigate the effect of anisotropic of initial stresses 

which is represented through the parameter 0 /ff ff
h vK   . As shown in Fig. 2-20 (a, d) even 

if the initial stresses are isotropic ( 0 1K  ) the tangential stress and radial displacement on the 

tunnel wall are not uniformed, as a result of the anisotropic behavior of the poroelastic rock 

mass. The additional anisotropic effect of initial stress contributes to a significant role on the 

tunnel behavior illustrated by a strong variation of tangential stresses and displacement 

around the tunnel as highlighted in Fig. 2-20 (a, b, d, e). Concretely, when one increases the 

horizontal stress ff
h  with respect to the vertical stress ff

v , both the compressive tangential 

stress of the rock and of the liner increase strongly at the crown of the tunnel whereas they 

decrease slightly at the springline (Fig. 2-20a, e). Concerning the radial displacement, an 

inverse tendency can be stated following the mechanism mentioned in the previous studies. 

The increase of horizontal initial stress ff
h  induces an increase of radial displacement at the 

springline and makes it decrease at the crown (Fig. 2-20c, g). Consequently, the anisotropic 

response of the tunnel, represented by the ratio Uy/Ux, decreases strongly with respect to the 

anisotropic degree of initial stress 0K  (see Fig. 2-20d, h).   

These phenomena could be explained as follows. When the initial horizontal stress increases, 

the rock deforms more and takes less load in the horizontal direction. Therefore, the load 

transmitted to the liner is smaller which induces the smaller liner tangential stress at the 

springline. Meanwhile, the invert process occurs at the crown. This mechanism can be 

observed in Fig. 2-20 (b, c, f, g). 
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Fig. 2-20: Influence of the initial stresses (
0 /ff ff

h vK    ) on the rock effective tangential stress, liner tangential 

stress, radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel which 
is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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Fig. 2-21: Influence of the inclination of initial stresses (β) on the rock effective tangential stress, liner tangential 
stress, radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel which 

is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  

To clarify the impact of the foliation direction of the rock on the tunnel behavior, we 

investigated the influence of the inclination of discontinuous plane with respect to horizontal 

direction on the displacement and stresses distributions of the tunnel. As shown in Fig. 2-21 
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(a, b, c, e, f, g) the rock effective tangential stress, the liner tangential stress and radial 

displacement on the tunnel wall change significantly if the inclined angle β varies. Fig. 2-21 

(a, b, e, f) shows that when β=45°the tangential stresses and radial displacement at the 

sprinline and the crown take the magnitude of those at the middle point between the springline 

and the crown (the point creates an angle θ=45° with respect to the springline) in case of 

β=0°. This is because of the symmetry of them through discontinuous plane. At that point, the 

compressive rock tangential stresses are smallest in case of inclined angle β=0° while they are 

highest in case of β=45° (Fig. 2-21 a, e). 

On the other hand, one can observe that, the tangential stresses and radial displacement at the 

springline in the case β=90° take the magnitude of those at the crown in the case β=0° and 

vice versa. This is explained that, when the elastic symmetric axes of the rock rotate an angle 

90°, the larger stiffness direction turns over the smaller stiffness direction and inversely. 

In comparison with the convergence at the springline, a higher convergence at the crown is 

observed in case β=0° but a smaller value is stated in case β=90° (Fig. 2-21 c, f). Therefore, 

the radial displacement ratio Uy/Ux which represents the anisotropic behavior of the tunnel can 

vary in the large range from a superior value in the case of β=0° to an inferior value in the 

case β=90°.      

2.4.3.7. Influence of the liner  

Knowing the impact of the liner on the tunnel behavior is an important issue, particularly in 

engineering design framework where the conception of liner’s thickness and stiffness to 

ensure the stability of tunnel is important. Hence, in the followings, we will highlight the 

influence of these parameters on the behavior of tunnel. As expected the higher thickness or 

stiffness of the liner will decrease the radial displacement on the tunnel wall (see Fig. 2-22c, f 

and Fig. 2-23 c, f). It is also the case of the rock effective compressive tangential stress (Fig. 

2.22 a, e and Fig. 2.23a, e). These results also confirm that the rock tangential stresses in the 

case of full-drainage at the ground-liner contact are always superior to those in the case of no 

drainage at the contact. However, the difference is very small at the crown and larger at the 

springline which lies on the larger stiffness direction of the rock mass.  

On the other hand, it is interesting to note that the displacement ratio Uy/Ux decreases with 

regard to the increase of thickness and/or stiffness (modulus) of the liner in case 2 (tunnel in 

saturated rock with uniform pore pressure) but it tends to increase in case 1 (tunnel in drained 

rock).  
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Fig. 2-22: Influence of the liner thickness (
0/st r ) on the rock effective tangential stress, the liner tangential 

stress, the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel 
which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h). 
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Fig. 2-23: Influence of the liner stiffness ( /s xE E ) on the rock effective tangential stress, the liner tangential 

stress, the radial displacement, and the ratio of radial displacement respectively at the circumference of tunnel 
which is excavated: in drained rock (a, b, c, d) or in saturated rock with uniform pore pressure (e, f, g, h).  
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In addition, when the thickness of the liner increases, the tangential stress in the liner are 

reduced. However, an increase of liner stiffness may result in an increase of liner stress. This 

is explained by the mechanical mechanism, the large stiffness liner carries more load. 

To further elucidate the impact of the liner to the distribution of stresses and displacement in 

the rock, we compare several results in the case of full drainage at the rock–liner interface 

whether there is liner or not. The results given in figure 2-24. 
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Fig. 2-24: Rock effective tangential stress and radial displacement on the rock-liner contact whether there is liner 
or not 

The figure indicates that, the liner redistributes the radial displacement and the rock tangential 

stresses on the contact rock-liner. Concretely, the liner reduces more the rock tangential stress 

at the springline than at the crown and vice versa for radial displacement. 

It is important to note that, as all the studies before, the radial displacement and tangential 

stress of the liner in the full drainage condition are always different from those in the no 

drainage condition at the rock-liner contact. Concretely, in the case of full-drainage the radial 

displacement is always smaller at the springline and greater at the crown than those of the no 

drainage condition. For the liner stress, the tendency is invert. This can be explained as 

follows. Provided the same total initial stresses, the work of the liner in the case of no-

drainage equilibrates that in the dry rock, i.e., the total stresses applied to the liner take the 

same values in two cases. In the full-drainage condition, the liner is not only subjected to far-

field total stresses but also the fluid flow in the rock. 
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It is also highlighted that, this is not the case for tunnels excavated in isotropic rock. 

According to Bobet (2003), the drainage conditions at the rock–liner interface do not affect 

the displacement and stresses in the liner, i.e., the displacement and stresses in the liner are 

exactly the same whether there is drainage or not at the ground–liner interface. This is 

because the total stresses at the ground–liner interface (interaction stress) do not depend on 

the drainage conditions. 

2.5. Conclusions 

In this chapter, we developed an analytical solution to determine stresses and displacements 

around the lined tunnel excavated in an anisotropic saturated rock. The fully anisotropic 

aspect is considered which consists of not only the anisotropic effect of initial stress but also 

the anisotropic characteristic of the surrounding poroelastic medium. The complex potential 

approach which has been successfully used in the literature to study the tunnel behavior in dry 

rock is utilized and extended in the context of anisotropic hydro-mechanical coupling. Our 

closed-form solution is then validated by comparing with the numerical solution based on the 

finite element method. A very good agreement was stated for two study cases corresponding 

respectively to the case of excavation in saturated rock with uniform pore pressure and in 

drained rock.  

A parametric study is then carried out, allowing us to elucidate impact of each parameter on 

the distribution of stresses and displacements around the tunnel as well as in the liner. It 

showed that the decrease of shear modulus in isotropic plane can increase significantly the 

magnitude of radial displacement at the circumference of the tunnel. The radial displacement 

at the springline is sensitive to the variation of the Poisson ratio in anisotropic plane yx  and 

the ratio of Young’s modulus /x yE E while the influence of Poisson ratio in the isotropic plane 

xz  could be negligeable. In case of the excavation in full drainage condition at the rock-liner 

interface, the variations of the permeabilities and Biot coefficients do not change much the 

radial displacement, the rock effective tangential stress, the liner tangential stress and only a 

moderate increase of the displacement ratio Uy/Ux is observed. However, in comparison with 

the other case (excavation in uniform pore pressure rock), a significant difference is stated 

which demonstrates the important role of the pore pressure distribution on the anisotropic 

hydro-mechanical behavior of the tunnel. The investigation also highlighted a strong 

dependence of the stress and displacement on the anisotropy and inclination of initial stresses. 

The anisotropic degree of tunnel behavior represented by the displacement ratio Uy/Ux can 

vary largely when one increases the ratio K0 or the inclined angle β. Thereafter the impact of 

the liner’s thickness and stiffness is elucidated. The increase of these parameters will decrease 

the compressive rock hoop stress as well as radial displacement but it increase the ratio Uy/Ux 

at the perimeter of the tunnel. In addition, one evaluated the effects of far-field pore pressure 

on the distribution of displacement and the stresses. The results show that, the fluid flow 

induced by far-field pore pressure influences primarily on rock tangential stress at the 
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springline which belongs to the larger stiffness direction. A common observation from all 

parametric study cases is that the hydro-mechanical coupling induces a higher anisotropy of 

convergence of the tunnel wall in comparison with one obtained in the purely mechanical case 

(case of uniform pore pressure) whereas they are always the same when the tunnel is in 

isotropic medium. It confirms the necessity to account for effect of the distribution of pore 

pressure on the study and design of tunnel. It should be also emphasized that, when the fluid 

flow exhibits an isotropic property, i.e., the permeabilities are the same in two direction, this 

characteristic is recovered. It proves that, it is hydraulic anisotropy which controle the 

difference of radial displacement and liner tangential stress in two condition of drainage at the 

rock-liner interface. There is a noteworthy point that, in all the study cases, the radial 

displacement is always more important in the direction where the rock stiffness is smaller. 

 

Conclusions 

Dans ce chapitre, nous avons développé une solution analytique pour déterminer les 

contraintes et les déplacements autour d’un tunnel soutenu creusé dans une roche saturée 

anisotrope. Nous avons considéré, à la fois les effets de l’anisotropie du mileu poroélastique 

et celle de la contrainte initiale. L'approche par potentiel complexe qui a été utilisé avec 

succès dans la littérature pour étudier le comportement du tunnel dans la roche sèche a été 

utilisée et étendu dans le cadre du couplage hydro-mécanique anisotrope. La solution 

analytique est ensuite validée en comparant les résultats obtenus analytiquement avec les 

résultats numériques basés sur la méthode des éléments finis. Un très bon accord a été 

remarqué pour les deux cas d'étude correspondant respectivement aux cas d'excavation dans 

une roche saturée avec une pression de pore uniforme (cas non-drainé) et dans le cas du 

régime stationnaire et une roche drainée (la condition de drainage entière au niveau du contact 

le massif et le revêtement). 

Une série d’étude paramétrique a été ensuite réalisée, afin d'élucider l'impact de chaque 

paramètre sur la distribution des contraintes et des déplacements autour du tunnel et dans le 

revêtement. Elle a montré que la diminution du module de cisaillement dans le plan d’isotrope 

peut augmenter de manière significative l'ampleur du déplacement radial en paroi du tunnel. 

Le déplacement radial au à la paroi est sensible à la variation du coefficient de 

Poisson yx dans le plan anisotrope et le rapport du module de Young /x yE E tandis que 

l'influence du coefficient de Poisson xz  dans le plan isotrope pourrait être négligeable. Dans 

le cas d'excavation en condition de drainage complet à l'interface roche-revêtement, les 

variations des perméabilités et de coefficient de Biot ne conduisent que très peu de variations 

du déplacement radial, de la contrainte tangentielle effective de la roche et de la contrainte 

tangentielle du revêtement, et seulement une augmentation modérée du rapport de 

déplacement Uy/Ux a été observée. Cependant, en comparaison avec l'autre cas (excavation 

dans une roche à pression interstitielle uniforme), une différence significative a été remarquée 
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qui démontre le rôle important de la distribution de la pression interstitielle sur le 

comportement anisotrope hydro-mécanique du tunnel. 

L'étude a été également mise en évidence une forte dépendance des champs de contrainte et 

de déplacement à l'anisotropie et à l'inclinaison des contraintes initiales. Le degré 

d’anisotropie de la réponse de tunnel, représenté par le rapport de déplacement Uy/Ux, peut 

varier largement lorsque on augmente le rapport  K0 ou l'angle d'inclinaison β. Par la suite 

l'impact de l'épaisseur du revêtement et de sa rigidité a été étudié. L'augmentation de ces 

paramètres va diminuer la contrainte tangentielle àl’interface avec la roche ainsi que le 

déplacement radial mais augmente le rapport Uy/Ux en la paroi du tunnel. En plus, nous 

avons évalué les effets de la pression interstitielle initiale sur la distribution des déplacements 

et des contraintes. Les résultats montrent que, l’écoulement induit par la pression interstitielle 

initiale influe sur la contrainte tangentielle à l'ensemble des directions. Une observation 

commune de tous les cas d'étude paramétrique est que le couplage hydromécanique induit une 

anisotropie de convergence plus élevé de la paroi du tunnel par rapport à celui obtenu dans le 

cas purement mécanique (cas de pression de pore uniforme. Il confirme la nécessité à tenir 

compte de l'effet de la répartition de la pression interstitielle sur l'étude et la conception du 

tunnel. Il convient également de souligner que, lorsque l'écoulement de fluide est isotrope, 

cette différence diminue. Cela prouve que, l’anisotropie hydraulique est le mécanisme qui 

contrôle la différence des déplacements radiaux et de la contrainte tangentielle de revêtement 

à l'interface roche-revêtement. Il y a un point à noter que, dans tous les cas d'étude, le 

déplacement radial est toujours plus important dans le sens où la rigidité de la roche est plus 

petite. 
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CHAPTER 3: DEEP TUNNEL BEHAVIOUR IN ANISTROPIC 
POROELASTIC ROCK WITH TRANSIENT GROUNDWATER FLOW 

 

3.1. Introduction 

The study conducted in the previous chapter revealed the important effect of the anisotropic 

poroelastic rock mass on the response of tunnel. Due to the fact that the problem is considered 

in the context of steady flow of groundwater, only some particular (or extreme) cases are 

investigated such that the uniform pore pressure case and the steady distribution of pore 

pressure (at the very long period of time). Thus it seems necessary to complete the study by 

extending the problem in the context of the transient flow which could contribute a crucial 

role on the behavior of tunnel. The challenge of this new problem lies on the time effect 

which appears in the diffusion equation. Very often, to solve this type of problem, the Laplace 

transform will be used which contribute however the drawback of this approach because in 

time domain, only numerical results can be obtained through a numerically inverted 

procedure. To overcome this difficulty, in this work we will use a simplified method 

introduced in the literature by approximating the transient solution with ones of a successive 

equivalent steady flow. Based on this obtained analytical expression of pore pressure, we will 

propose the complex hydraulic and hydro-mechanical potentials through which the 

mechanical response (stress, displacement) of tunnel can be determined. This closed form 

solution is limited however in the one way hydro-mechanical coupling (HM coupling). To 

take into account the fully coupled (HM) on the behavior of tunnel, the numerical 

simulations using FEM are chosen. Different numerical applications will be presented during 

this work with aim to validate the closed form solution in the one way hydro-mechanical 

coupling case and to highlight the contribution of each method of coupling on the final hydro-

mechanical behavior of deep tunnel.          

3.2. Deep tunnel behavior in saturated rock with transient groundwater 

flow: analytical solution of the one way poroelastic coupling 

In this part, the influence of transient pore pressure on the mechanical behavior of tunnel will 

be considered throughout the one way coupling (HM coupling). For this purpose, in the first 

step, we will detail the analytical solution of the groundwater flow in the transient state of the 

saturated medium with isotropic hydraulic properties based on a simplified method. Knowing 

the distribution of pore pressure, in the second step, we will apply the complex potential 

approach to deduce the mechanical response of the deep tunnel. An extension of this 

analytical solution in the general case of anisotropic behavior will be introduced in the final 

step.    

 



 

118 
 

3.2.1. Distribution of transient pore pressure in saturated rock with isotropic hydraulic 

properties: analytical solution using the simplified method  

The horizontal flow towards a tunnel or well discharge under constant drawdown is the well 

known classical problem that was studied analytically in the first time by Jacob and Lohman 

(1952). Since then this solution has been used as the reference formula to evaluate the 

transient discharge at well or tunnels. However, based on the Green’s function and integral 

transforms, this analytical solution is expressed as function of the first and second kind zero-

order Bassel functions which makes it complicated and difficult for the practical and 

mathematical manipulation. To overcome these drawbacks, recently, Perrrochet (2005) 

presented an alternative approach which is simpler in nature but yields essentially the same 

results as ones of Jacob and Lohman (1952). The principal idea of this approach is that, since 

at a given time, the pore pressure at a distance is almost unperturbed, then the transient 

solution of the radial diffusion equation can be computed as successive steady-state snapshots 

using a time dependent radius Rw(t). More precisely, it means that at each instant the 

perturbation of pore pressure induced by the opening is only occurred in the interior region of 

the circle with radius Rw(t) from the center of opening and beyond this distance, the pore 

pressure equals to the initial water pore pressure. As a function of time, this influenced radius 

Rw(t) will expand from zero (case of the tunnel instantaneously excavated) to the value 

R=Rw(t=). This latter corresponds to the influenced radius at the steady state, a distance far 

enough from the tunnel wall as indicated in the previous chapter.  

This simplified method introduced by Perrochet (2005) presents a powerful tool, particularly 

useful for the practical and mathematical manipulation and will be utilized in this study.  

As illustrated in Figure (3.1), our purely hydraulic problem consists in studying the transient 

distribution of pore pressure p which decreases suddenly to 0p  on the perimeter of the tunnel 

while it is equal to initial pore pressure ffp  at the infinity. The considered problem can be 

solved by decomposing it into two sub-problems: the first problem (problem Ip) corresponds 

to the case that the tunnel is excavated instantaneously in the saturated porous medium with a 

uniform distribution of pore pressure ( ffp p ) while in the second problem (problem IIp), 

the transient flow induces a variation of pore pressure ranging from ( 0 ffp p ) at the tunnel 

wall to zero at infinity. The solution of the problem Ip is trivial where distribution of pore 

pressure is uniform in surrounding rock mass, so we concentrate only on the problem IIp 

whose solution has to verify the mentioned boundary conditions for all instant of time. 

Thereby, based on the principles of superposition, we have the complete solution of the 

original hydraulic diffusion in the transient state. 
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Fig. 3-1: Decomposition the original purely hydraulic diffusion in the transient state into two sub-problems 

The transient fluid flow equation of the problem IIp as shown in Eq. (2.5) is rewritten now in 

the context of the isotropic medium as follows: 

 
2 2

w2 2

s s
k k

x y t




  
 
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 (3.1) 

In Eq. (3.1), k is the isotropic permeability of the medium while the pore pressure is noted 

as s to distinguish with the total pore pressure p. The boundary conditions of the problem 

consist of the constants pore pressures ( 0ffs  ) at infinity and ( 0 0 ffs p p  ) at the tunnel 

wall while the pressure at initial state is equal to zero: 

 0 0( , 0) 0, ( , ) , ( , ) 0ffs r s r t s s t s      (3.2) 

 Otherwise, in the one way coupling context, the change of fluid volume (per unit volume of 

material)   is related to the pore pressure and the Biot modulus M as follows: 

 s M  (3.3) 

Substituting Eq. (3.3) into Eq. (3.1) we have: 
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Under the hypothesis of isotropic medium, the fluid flow is radial and hence in the polar 

coordinate system the diffusion equation can be rewritten in form: 

 
*1 s s

rk S
r r r t

   
 

   
 (3.5) 

where 

 * wS
M


  and 0 , 0r r t       (3.6) 

By multiplying two sides of Eq. (3.5) with 2 , this last equation can be developed as follows: 
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  *2 2
s

rk rsS r
r t

 
  

   
  

 (3.8) 

Moreover, according to Darcy’s law, we have the discharge of fluid flow across the perimeter 

of the tunnel as below: 

 0 0( ) 2 ( , )
s

Q t r k r t
r




 


 (3.9) 

As proposed by Perrochet (2005), the transient solution of Eq. (3.5) can be solved as 

successive steady state snapshots of the function ( , )s r t  over a time dependent distance ( )wR t . 

This distance is known as the no-flow moving boundary beyond which the specified pore 

pressure strictly vanishes. So the interested domain in which the perturbation of pore pressure 

can take place is restricted in the range 0 ( )wr r R t   and the boundary conditions of the 

problem II are can be modified as follows: 

 0 0( , ) , ( ( ), ) 0, ( ( ), ) 0w w

s
s r t s R t t s R t t

r


  


 (3.10) 

By integrating Eq. (3.8) over this domain, it yields the following relationship: 

 
0

( )

*
0 02 ( , ) 2

wR t

r

s
r k r t rsS dr

r t
 

 
 

    (3.11) 

Therefore, by taking into account Eq. (3.9) we have: 

 
0

( )

* ( )
( ) 2

wR t

r

V t
Q t rsS dr

t t


 
 
   (3.12) 

where ( )V t is the cumulative volume of extracted water. 

According to the simplified approach of Perrochet (2005), one can replace the right-hand side 

of Eq. (3.5) by a uniform source term that depends on time. Hence, the diffusion equation 

(3.5) to resolve is written in the following form: 

 0

1
( ), ( )w

s
rk I t r r R t

r r r

  
   

  
 (3.13) 

The Eq. (3.13) can be solved now by taking into account the boundary conditions (3.10) and 

the conditions in Eq. (3.12), we can obtain the uniform time dependent source term I(t): 

 
0

2 2 2
0

0

4
( )

( )
2 ( ) ln ( )w

w w

ks
I t

R t
R t R t r

r



 

 
(3.14) 

as well as the distribution of the pore pressure in following form: 
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2 2 2
0

0
0

2 2 2
0

0

2 ( ) ln

( , ) 1
( )

2 ( ) ln ( )

w

w
w w

r
R t r r

r
s r t s

R t
R t R t r

r

 
  

  
   
 

 (3.15) 

Substituting this solution in Eqs. (3.9) and (3.11) the global quantities Q(t) and V(t) can be 

expressed as (see also Perrochet, 2005): 

 

2

2

1

1
0

1
( ) 2 ln

2
Q t ks



 




  
   

    

 (3.16) 

and  

 

2 2

2 2

1

* 2 1 1
0 0( ) 4 ln 1 4 ln 2V t r S s

 

    



 
      
         

            

 (3.17) 

where 0( ) /wR t r  . 

Considering Eq. (3.12) and the variation of V(t) with respect to ( )wR t , one can write: 

 
w

w

RV
Q

R t



 

 (3.18) 

After some manipulations, we can obtain the following relation (see Perrochet, 2005): 
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2

2

2

1

1

* 2
0 1

1

ln 1

4 ln 2

u

u

u

u

u
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udu
S s

u









 
  
 
 
 
  
 
 

  (3.19) 

The complexity of the term under the integral sign in Eq. (3.19) makes it not to be fully 

integrated. To overcome this problem, Perrochet (2005) used the following approximation 

based on the polynomial analysis: 

 

2

2

2

1
* 2

0

1kt
e

S s e







 
  
 
 

 (3.20) 

where e (mathematical constant) is Euler's number 

Without difficulty one can determine the ratio : 

 

2

2 1
* 2

0

1
kt

e
S r






 
 

   
 

 (3.21) 

through which the radius ( )wR t can be evaluated: 
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 0( )wR t r  (3.22) 

Thus, at each instant, the transient fluid flow of the isotropic saturated medium can be solved 

analytically where the solution of pore pressure (Eq. 3.15) varies from ( 0 0 ffs p p  ) at the 

tunnel wall (r=r0) to ( 0ffs  ) at (r=Rw(t)) with Rw(t) is determined from Eqs. (3.21) and 

(3.22). 

3.2.2. Mechanical  behavior of deep tunnel under the transient fluid flow 

We investigate now the mechanical behavior of the tunnel taking into account the effect of 

transient flow of groundwater (so only the one way H->M is considered). The same procedure 

as mentioned in chapter 2 is used to solve analytically this problem. More precisely, the 

problem is also decomposed into two problems: problem I and problem II as illustrated in Fig. 

3.2 which is similar as Fig. 2.6. However, it is important to emphasize that the problem II in 

this chapter is studied in the context of transient fluid flow yielding a variation of pore 

pressure as a function of time. The solution of the problem I which corresponds to the case of 

the tunnel excavated in the saturated rock with uniform pore pressure (p=pff) was detailed in 

the chapter 2. As consequence, in this sub-section the detail is focused only on the problem II.  

 

 

(a) (b) (c) 

Fig. 3-2: Decomposition of the equivalent problem into two sub-problems (which is similar as one presented in 
chapter 2, see Fig. 2.6): problem I and problem II. In this latter problem the transient flow of groundwater is 

considered.  

To solve the problem II, the complex potential approach, presented previously in chapter 2 is 

used. Concretely, at each instant t, the same procedure is applied and the problem is treated 

similarly as one in the steady state. To recall, in the complex potential approach (see section 

2.3 of chapter 2), it is essential to determine the complex hydraulic and hydro-mechanical 

potentials from which the stress and displacement around the tunnel can be calculated. For 

this purpose, the conformal mapping technique is used which transforms the region outside 

the tunnel of radius 0r  in z-plane ( k kz x y  ) into the region outside the unit circle in the 

k -plane ( k k ki    ) ( 1, 2,k w ) (see Eq. (2.29) in section 2.3 of chapter 2).  
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Now one will study the problem IIa with the pore pressure distribution in transient state. 

In the particular case of the isotropic hydraulic behavior of the saturated rock, one has: 

 w i  , and so wz x iy   (3.23) 

and hence, the conformal mapping generates into: 

 0( )w w wz w r    (3.24) 

Thus in the conformal mapping (3.24), any circle with radius r  that is concentric with the 

tunnel in wz -plane is transformed into a circle of radius 0/r r  that is also concentric with 

the unit circle in w - plane. In this latter plane, the diffusion equation (3.4) can be rewritten 

with respect to the coordinate 0 0/ , /w wx r y r   as follows:  

 
2 2

w
2 2
w w e

s s s
k k

M t



 

  
 

  
 (3.25) 

where the variable et is defined: 

 2
0/et t r  (3.26) 

It can be seen here that, there is a change of time variable, i.e., if we have a certain instant t  

in wz -plane, it will correspond to the instant 2
0/et t r in w - plane. 

Otherwise, in the polar coordinate system of the w - plane, the diffusion equation (3.25) can 

be expressed in form:  

 
2

2

1
( )e e

s s
k k I t

  

 
 

 
 (3.27) 

where  is polar radius. 

And the boundary conditions that the water pore pressure field ( , )es t  must satisfy are: 

 0 0

( , )
( 1, 0) ; 0; ( , ) 0e e

e e e

s R t
s t s s R t




    


 (3.28) 

where ( )e eR t is the time dependent radius in w - plane beyond which no flow can occur. 

From the solution of pore pressure obtained in wz -plane (Eq. (3.15), it is straightforward to 

write the solution ( , )es t  in w - plane as follows: 

 
2 2

0 2 2

2 ( ) ln 1
( , ) 1

2 ( ) ln ( ) ( ) 1
e e

e

e e e e e e

R t
s t s

R t R t R t

 


  
  

  
 (3.29) 

and:  
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0

2 2

4
( )

2 ( ) ln ( ) ( ) 1
e e

e e e e e e

ks
I t

R t R t R t


 
 (3.30) 

After some developments, one can deduce the final expression of pore pressure in the problem 

II:  

 
0 2( )

log
log 4

ff e e
ff

e e

u u I t
s u

R R k




  
   

 
 (3.31) 

with: 

 

2
0 0 0 0

2 2

( ) ( )

4 4

( ) ( )
( ) ( )

4 4

e e e e
ff

e e e e
ff ff e e e e

I t I t
u s p p

k k

I t I t
u s R t R t

k k




    

    


 (3.32) 

Hence the total solution of pore pressure in the original problem is:  

 
0 2( )

log
log 4

ff e e
ff ff ff

e e

u u I t
p p s p u

R R k




  
      

 
 (3.33) 

Concerning the influence radius ( )e eR t , it can be deduced directly from the equation (3.21) 

accounting for the fact that the radius of the borehole in the transformation plane w  is equal 

to unit ( 0 1  ), one obtains: 

 

2

2 1

*
1

e

e

R

R e
e

kt
R e

S


 

   
 

 (3.34) 

Therefore, corresponding to each instant t, the influence radius ( )e eR t  can be evaluated from 

Eq. (3.34) and the distribution of total pore pressure is determined from Eq. (3.33). 

Now for the aim of determination the complex potentials, we can express the transient 

solution of pore pressure (3.31) in a general form with respect to the complex variable 
i

w e   : 

 

2

0 ( )
Re log Re

log 4

ff w e e w
ff i

e e

u u I t
s u

R R k e 

       
        

        
 (3.35) 

Knowing the solution of the purely hydraulic problem, we aim to solve the hydro-mechanical 

problem. It should be noted that, the first component in the right hand side of Eq. (3.35) 

induces a uniform distribution of pore pressure (s=uff) in the studied region around the tunnel 

( 0 1 eR    ), so it does not change of total stresses as well as displacement (as the 

problem I with uniform pore pressure p=pff) but it influences the effective stresses. 

Meanwhile, only the other terms in the right hand side of Eq. (3.35) can result in a variation of 
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total stresses and displacement in the interested region ( 0 1 eR    ) around the tunnel. 

Consequently, the interest lies only on the effect of these terms on the mechanical behavior of 

tunnel. As mentioned above, the procedure is similar as one presented of chapter 2 in which 

the problem II is also decomposed into the three sub-problems as illustrated in Fig. 3.3. The 

main difference is that in the present study case, we treat the problem in the transient state of 

fluid flow while in chapter 2 the influence of the pore pressure on the mechanical behavior of 

tunnel (problem II of chapter 2) is only investigated in the steady state. Thus here to simplify 

the presentation, we capture only the principal results of each sub-problems of the problem II 

and the detail of the procedure will not be repeated.  

 

Fig. 3-3: Decomposition of the problem II into three sub-problems as ones detailed in chapter 2.  

For example, by substituting the expression of pore pressure in Eq. (3.35) without the first 

term in the compatibility equation (2.24), the particular solution ''( )p wF z can be determined as 

follows: 

  
2
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 (3.36) 

or the derivate of the hydraulic potential can be found as: 
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 (3.37) 

where the complex coefficient  is defined in Eq. (2.40). 

The same order of effect on the displacements and stresses around the tunnel of the hydraulic 

and hydro-mechanical potentials allows us to propose the two following hydro-mechanical 

potentials whose derivatives take the same form as one of the hydraulic potential: 
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 (3.38) 
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In Eq. (3.38) 1 2,N N and 1 2,P P are the complex constants to be determined. 

The complex potentials are inferred from their derivatives by the following integrations: 

 1 1 1 1 1 1
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 (3.39) 

in which the transformation functions 1 2( ), ( )w w  are defined in Eq. (2.29).  

Thus, the expressions of the complex potentials are deduced as below: 
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(3.40) 

Respectively, the stresses and displacements corresponding to the particular solution can be 

computed from these hydraulic and hydro-mechanical potentials by using the relations 

expressed in Eq. (2.42): 
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(3.42) 

It can be seen that, the expressions of the displacements and stresses include the polynomial 

functions and the logarithmic functions of the complex variables 1 2, , w   . As discussed in 

chapter 2, one important characteristic of the logarithmic function with respect to the complex 

variables is its multi-value, i.e., periodic functions of angle (Kreyszig, 1999). Hence the 

imposed condition of single-valued displacement yields the same system of equation as 

written in Eq. (2.48) through which we can determine two complex constants 1 2,N N . 
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Concerning the two others constants 1 2,P P , they can be calculated from the condition of zero 

stresses at ( )e eR t  . In effect, as discussed previously, beyond this latter distance, no flow 

occurs meaning that the pore pressure is not disturbed and hence it does not affect the 

mechanical behavior of tunnel in the region with ( )e eR t  . More precisely, by using the 

condition of zero stresses at ( )e eR t  , we obtain the other system of equations (Eq. 3.43) 

through which the real ( 11 21,P P ) and imaginary ( 12 22,P P ) parts of two complex numbers 

1 2,P P can be evaluated. 
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 (3.43) 

It is worth noting that the stresses given by Eq. (3.41) satisfy the boundary conditions of zero 

total stresses at the distance ( )e eR t  but result the non-zero total normal and shear stresses 

on the surface of the tunnel wall. Therefore, the same normal and shear stresses but with 

opposite sign are applied on the perimeter of the tunnel to satisfy the condition of zero 

stresses at this place. The expression of these normal and shear stresses was expressed in Eq. 

(2.49) as function of ,,x y xy   , the stress components on the tunnel calculated from Eq.(3.44): 
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 (3.44) 

The solution of stresses , , ,, ,IIa h IIa h IIa h
x y xy   and displacement , ,,IIa h IIa h

x yU U  of this latter problem 

are calculated from the complex potentials * *
1 2,h h  expressed in Eq. (2.51) by using the Eq. 

(2.27). So on, the final solution of the problem IIa can be evaluated from Eq. (2.52).  

Concerning the problem IIb and IIc, the procedure is strictly similar as ones in chapter 2 and 

hence all formula developed in chapter 2 will be applied straightforwardly here. For example, 

to account for the interaction between the liner and rock mass, the compatibility condition of 

displacement at the liner-rock mass contact as written in Eq. (2.54) is used directly here. Note 

that to simplify the presentation, the expression of displacement of the problem IIa, IIb, and 

IIc are detailed in appendix B.  

The final results of the original problem are calculated from the solutions of the problem I and 

problem II based on the superposition principle as expressed from Eq. (2.57) to Eq. (2.59).   
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3.2.3. Extension in case of saturated rock with anisotropic hydraulic properties 

The solution as presented in the previous section 3.2.2 will be extended now in a more general 

context in which the hydraulic behavior of saturated rock is anisotropic.  

Specifically, in the hydrological field, accounting for the anisotropic aspect in the analytical 

solution of the transient diffusion problem is an interesting topic and a lot of contributions 

were dedicated the last two decades. For example, by using the Laplace transform, Mathias 

and Butler (2007) deduced the analytical solution for the problem of flow to a finite diameter 

well in a horizontally anisotropic aquifer. The analytical solution is written in the Laplace 

domain in terms of Mathieu functions and then a numerically inverted procedure is used to 

evaluate the time response. Otherwise, these authors showed that for large times, the problem 

can be approximated as ones in an equivalent isotropic domain by coordinate transformations. 

The approximation agrees well with the exact solution for moderately anisotropic systems 

(with the anisotropic ratio / 25x yk k  ). This observation was also confirmed in the 

contribution of Cihan et al. (2014) who studied the problem of flow in horizontally 

anisotropic multilayered aquifer systems. In addition, Cihan et al. (2014) highlighted that the 

equivalent isotropic solution can give satisfactory results at observation points away from the 

injection/pumping wells even for highly anisotropic aquifer systems (with the ansitropic 

degree can reach to / 1000)x yk k  . 

Returning to our problem, our idea coming from this brief literature is that we aim to replace 

the initial anisotropic diffusion of groundwater by one in the equivalent isotropic medium. 

Hence the hydro-mechanical solution as developed in section 3.2.2 will be applied directly.  

Considering the problem of transient flow of groundwater in the problem IIp as described in 

section 3.2.1 which is now extended in the general context of anisotropic permeable medium: 
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 (3.45) 

The pore pressure s, solution of this diffusion equation, must satisfy the initial and boundary 

conditions as noted in Eq. (3.2).  

By introducing the transformation coordinate (Mathias and Butler, 2007): 

 , x

y

k
X x Y y

k
   (3.46) 

the diffusion equation (3.45) can be written in the new coordinate system X-Y as follows: 
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where * /wS M and e x yk k k is the equivalent isotropic permeability. 
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Therefore, the initially anisotropic diffusion problem is now degenerated to the equivalent 

isotropic problem in the transformed domain. It is important to note that, as pointed out by 

Fitts (2006), Mathias and Butler (2007) and Cihan et al. (2014), with coordinate 

transformation, the circular tunnel of radius r0 becomes an ellipse and in the transformed 

domain, the pore pressure contours in the immediate vicinity of the tunnel have also elliptical 

shapes.  

Using the conformal mapping technique as introduced in section 2.3, the diffusion equation 

(3.47) is written in the w plane, which is related to the complex variable zw through the 

expression noted in Eq. (2.15), as follows:  
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 (3.48) 

Mathematically, Eq. (3.48) owns the same form as ones written in Eq.(3.25) which means that 

we can directly apply the solution of the isotropic diffusion problem whose permeability is 

now k=ke. However, it is essential to point out that the solution of the isotropic diffusion in 

the transient state as detailed in section 3.2.1 based on the assumption of uniform source term, 

the right hand side of the diffusion equation depends only on time and is uniform in space. 

This assumption is not verified in the present problem where the term /w wd dz  in Eq. (3.48) 

is function of the spatial variables ( ,w w  ) meaning that the right hand side of the diffusion 

equation (Eq. 3.48) is not uniform. To overcome this problem, we use the following 

approximation:   
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where the parameter 0r  is defined as: 
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It is interesting to note that, this latter parameter is similar as one introduced by Kucuk and 

Brigham (1979) as well as by Mathias and Butler (2007). In fact, these authors called this 

parameter the effective radius of the equivalent circular opening to approximate the elliptical 

tunnel in the (X, Y) coordinate. And in their contribution, Mathias and Butler (2007) showed 

that this approximation is good for large times but it can work well for small times as long as 

the anisotropic degree is moderate, i.e., ka=kx/ky<25. 

With this approximation, our diffusion problem in Eq. (3.49) represents the radial fluid flow 

in the conformal mapping plane of an equivalent isotropic medium with permeability ke. 

Thus, the solution of transient flow obtained from the simplified approach presented in 
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section 3.2.1 can be straightforwardly applied. For example, the total solution of pore pressure 

in the original problem as shown in Eq. (3.33) is now calculated with respect to the time-

dependent influence radius Re(te) and ( )e eI t  which are defined in w -plane as follow:   
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 (3.51) 

while two parameters **S and et  are respectively equal to ** * /y xS S k k  and 2
0/ ( )et t r .  

3.2.4. Numerical validation 

In this sub-section, the closed form solution of deep tunnel’s behavior under the one way 

hydro-mechanical coupling will be validated by comparing with the ones obtained from the 

numerical modeling which were also conducted by using the Aster_Code. The geometry of 

the numerical model is exactly similar as ones used in chapter 2 in the context of the steady 

flow of groundwater. Otherwise, the boundary conditions as used in this latter context are 

retained in the present simulations meaning that we impose the horizontal and vertical initial 

stresses ( 12.5 , 12.5h vMPa MPa   ), the initial pore pressure ( 4.7ffp MPa ) on the 

right–hand lateral and top boundary of the model while on the two other boundaries no 

normal displacement and flux are allowed. Otherwise, at the interface of liner and ground the 

pore pressure is kept constant at atmospheric pressure (p0=0). In Fig. 3.4 is illustrated the 

numerical model used in our numerical simulations. Concerning the mechanical properties of 

of materials, all parameters used in chapter 2 are hold in the present studies which are 

5600xE MPa , 4000yE MPa , 0.3xz  , 0.142yx  , 1600xyG MPa for the rock mass and 

20sE GPa  and 0.3s   for the liner.     

Technically, to simulate the one way hydro-mechanical coupling in Code_Aster, a specific 

procedure is used. More precisely, in the first stage the transient distribution of pore pressure 

in the rock mass will be evaluated by activating the purely hydraulic model. Then, in the 

second stage, the pore pressure field at each interested instant of time will be extracted to 

inject into the mechanical model as a body force field. Through this procedure the 

distributions of stress and displacement can be determined as consequence of the change of 

pore pressure. 
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Fig.3-4: 2D plane strain model used in the numerical simulations by FEM 

3.2.4.1. Case of saturated rock with isotropic hydraulic properties 

As the first case of study, figures (Fig. 3-5 to Fig. 3-8) present the analytical results of pore 

pressure, radial displacement, effective radial and tangential stresses in comparison with the 

numerical ones in the context of the transient flow in the saturated rock with isotropic 

hydraulic properties. The isotropic permeability of saturated rock used in these calculations is 

k=4×10-13(m/s).  In general the comparison shows a very good agreement of the analytical 

and numerical results for different instants of time. For example in Fig. 3-5, one can state that 

the closed form solution of pore pressure fits quite well the curves obtained from the 

numerical simulations with the maximum relative error smaller than 5% at the very early 

instant of time (t=1h). With respect to the evolution of time, the relative error reduces 

representing a good agreement of the analytical and numerical simulation. The same remark 

can be noted for the displacement as well as effective radial and tangential stresses (Fig. 3-6 

to Fig. 3-8). Otherwise, the results show that with respect to the evolution of time, 

displacement around the tunnel increases as consequence of the extension of the disturbed 

zone of pore pressure in the transient state (Fig. 3-6). This increase is significant at the 

distance far from the tunnel while the displacement is stable on the surface of tunnel. We can 

also observe that transient flow at small time can induce a drop in magnitude of effective 

radial stress in the zone near the tunnel (Fig. 3-7) which however retains in the compressional 

stress. This phenomenon will be considered in more details in the last subsection.  
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Fig. 3-5: Distribution of pore pressure in the radial direction (case of saturated rock with isotropic hydraulic 
properties ka=kx/ky=1). 
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a) Radial displacement in the horizontal 

direction 
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(b) Radial displacement in the horizontal direction 

(zoom around the tunnel) 
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(c) Radial displacement in the vertical direction 
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(d) Radial displacement in the vertical direction (zoom 

around the tunnel) 

Fig.3-6: Radial displacement in the horizontal and vertical axes of symmetry of tunnel: comparison between the 
analytical and numerical solutions (case of saturated rock with isotropic hydraulic properties ka=kx/ky=1). 
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a) Effective radial stress in the horizontal direction 
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b) Effective radial stress in the horizontal direction 

(zoom around the tunnel) 
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(c) Effective radial stress in the vertical direction 
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(c) Effective radial stress in the vertical direction  

(zoom around the tunnel) 

Fig.3.7: Effective radial stress determined in the horizontal and vertical axes of symmetry of tunnel: comparison 
between the analytical and numerical solutions (case of saturated rock with isotropic hydraulic properties 

ka=kx/ky=1). 
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(a) Effective tangential stress in the horizontal 

direction 
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(b) Effective tangential stress in the horizontal 

direction (zoom around the tunnel) 
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(c) Effective tangential stress in the vertical 

direction 
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(d) Effective tangential stress in the vertical 

direction (zoom around the tunnel) 

Fig.3.8: Effective tangential stress determined in the horizontal and vertical axes of symmetry of tunnel: 
comparison between the analytical and numerical solutions (case of saturated rock with isotropic hydraulic 

properties ka=kx/ky=1). 

3.2.4.2. Case of saturated rock with anisotropic hydraulic properties 

The validation of the previous study case (saturated rock with isotropic hydraulic properties) 

allows us to investigate in this part the general case in which the anisotropic aspect of the 

hydraulic behavior of rock mass is accounted for. As detailed in subsection 3.2.3, the results 

of this latter case base principally on ones of the former case using the equivalent isotropic 

hydraulic medium.  

Fig.3-9 are presented the results of the transient groundwater flow in saturated rock whose 

anisotropic hydraulic behavior is represented by two parameters 134 10 /xk m s  , 

131.33 10 /yk x m s corresponding to an anisotropic degree ka=kx/ky=3. For all instants, it 

shows that the analytical results of pore pressure match well with the numerical results. As 

consequence, no significant discrepancy is observed in term of displacement and stresses on 

the rock mass as illustrated in Fig.3-10 to Fig. 3-12. Similar to the previous case, it shows that 

the transient fluid flow will induce an increase of displacement in the surrounding rock, 
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particular for the points far from the tunnel. However, following the horizontal symmetric 

axis, it exists a small zone near the tunnel (r/r0<1.5) at which the displacement decreases 

slightly in time. In this zone, we also observe the drop in magnitude of effective radial stress 

for the first instants of time, the phenomenon noted in the previous study case. Concerning the 

effective tangential stress, a slight increase with time is observed. Thus, the variation of pore 

pressure due to transient flow induces primarily change of effective radial stress. 
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(b) 
Fig. 3-9: Distribution of pore pressure: (a) in the horizontal direction, (b) in the vertical direction (case of 

saturated rock with anisotropic hydraulic properties ka=kx/ky=3). 
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b) Radial displacement in the horizontal 

direction (zoom around the tunnel) 
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c) Radial displacement in the vertical direction 
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 d) Radial displacement in the vertical direction (zoom 

around the tunnel) 
Fig.3-10: Radial displacement in the horizontal and vertical axes of symmetry of tunnel: comparison between the 

analytical and numerical solutions (case of saturated rock with anisotropic hydraulic properties ka=kx/ky=3). 
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b) Effective radial stress in the vertical direction 
(zoom around the tunnel) 
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around the tunnel) 

Fig.3-11: Effective radial stress determined in the horizontal and vertical axes of symmetry of tunnel: 
comparison between the analytical and numerical solutions (case of saturated rock with anisotropic hydraulic 

properties ka=kx/ky=3). 

 

 

 

 

 

 

 

 



 

140 
 

1 2 3 4 5 6 7 8 9 10

-22.5

-20

-17.5

-15

-12.5

-10

-7.5

r/r
0

E
ff
e

c
tiv

e
 t
a

n
g

e
n

tia
l s

tr
e

s
s
 [
M

P
a

]

 

 

numeric: t=1 hour

numeric: t=1 day

numeric: t=5 days

numeric: t=1 month

numeric: t=1 year

analytic: t=1 hour

analytic: t=1 day

analytic: t=5 days

analytic: t=1 month

analytic: t=1 year

 
a) Effective tangential stress in the horizontal direction 

1 2 3

-22.5

-20

-17.5

-15

-12.5

-10

r/r
0

E
ff
e

c
tiv

e
 t
a

n
g

e
n

tia
l s

tr
e

s
s
 [
M

P
a

]

 

 

numeric: t=1 hour

numeric: t=1 day

numeric: t=5 days

numeric: t=1 month

numeric: t=1 year

analytic: t=1 hour

analytic: t=1 day

analytic: t=5 days

analytic: t=1 month

analytic: t=1 year

 
b) Effective tangential stress in the horizontal direction 

(zoom around the tunnel) 
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c) Effective tangential stress in the vertical direction 
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d) Effective tangential stress in the vertical direction 

(zoom around the tunnel) 

Fig.3.12: Effective tangential stress determined in the horizontal and vertical axes of symmetry of tunnel: 
comparison between the analytical and numerical solutions (case of saturated rock with anisotropic hydraulic 

properties ka=kx/ky=3). 

As discussed by Mathias and Butler (2007) and Cihan et al. (2014), the approximation of  the 

anisotropic diffusion problem by an equivalent isotropic ones matches well in case of 

moderate anisotropic ( / 25x yk k  ) while discrepancy can become significant (particular for 

the observed points near the bore well) with the increase of the anisotropic degree. Hence in 

what follow, this observation will be verified and we focus also on the mechanical response of 

tunnel as result of the hydro-mechanical coupling.   

Figures (from Fig. 3-13 to Fig. 3-16) are illustrated the evolution of relative error (of pore 

pressure, effective radial and tangential stress and radial displacement) between the analytical 

and numerical with respect to time, to the anisotropic degree of the hydraulic properties and to 

the radius of tunnel. They were calculated at a point chosen near the surface of tunnel 

(r/r0=1.06) at which we observe that the error is usually the most significant. The results 

show that, as a function of time, the relative error increases and attaints the maximum at an 

instant about t=1h before decreasing. Otherwise, as expected, for all instants, the stronger 

anisotropic degree of the hydraulic properties will induce an increase of the relative error. It is 
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also the case when the larger radius of tunnel will increase the error. As an example, at time 

t=1h, the relative error of pore pressure in case of radius r0=0.5m increases from 3.2% with 

anisotropic degree ka= 1 to 13.5% when the anisotropy attaints ka=50. The corresponding 

values for a larger radius of r0=1.5m are respectively 5% and 22%. Note that, at the same 

instant t=1h, the maximum relative error of pore pressure, radial displacement, effective 

radial and tangential stresses calculated with the smaller anisotropic degree ka=kx/ky=3, as it is 

the case of Collovo Oxfordian rock, and with the radius r0=1m are respectively 7.4%, 6%, 

7.4% and 4%. In addition, at the moderate anisotropy ka=kx/ky=25 the relative error of all 

parameters (pore pressure, radial displacement, effective stresses) present the values inferior 

to 10%.  

In our other investigations, the results show however that these relative errors will decrease 

importantly when the observed point goes far from the surface of tunnel. For instance, at the 

point r/r0=5 the relative error can decrease two times with respect to the point shown above at 

r/r0=1.06. For the sake of simplifying the presentation, the results calculated with this former 

point will not be detailed here.   
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a) Relative error of pore pressure (case r0=0.5m) 
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b) Relative error of pore pressure (case r0=1.0m) 
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c) Relative error of pore pressure (case r0=1.5m) 
Fig.3-13: Relative error (%) between the analytical and numerical results of pore pressure in the horizontal 

direction as function of degree of hydraulic anisotropy (ka=kx/ky) at different instants of time and with different 
radius r0 of tunnel.  
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a) Relative error of effective radial stress 

(case r0=0.5 m) 
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b) Relative error of effective radial stress 
(case r0=1.0 m) 
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c) Relative error of effective radial stress (case r0=1.5 m) 

Fig.3-14: Relative error (%) between the analytical and numerical results of effective radial stress in the 
horizontal direction as function of degree of hydraulic anisotropy (ka=kx/ky) at different instants of time and with 

different radius r0 of tunnel.  
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a) Relative error of effective tangential stress 

(case r0=0.5 m) 
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b) Relative error of effective tangential stress (case 

r0=1.0 m) 
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c) Relative error of effective tangential stress (case r0=1.5 m) 

Fig.3-15: Relative error (%) between the analytical and numerical results of effective tangential stress in the 
horizontal direction as function of degree of hydraulic anisotropy (ka=kx/ky) at different instants of time and with 

different radius r0 of tunnel.  
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a) Relative error of radial displacement (case 

r0=0.5 m) 
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b) Relative error of radial displacement (case 

r0=1.0 m) 
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c) Relative error of radial displacement (case r0=1.5 m) 

Fig.3.16: Relative error (%) between the analytical and numerical results of radial displacement in the horizontal 
direction as function of degree of hydraulic anisotropy (ka=kx/ky) at different instants of time and with different 

radius r0 of tunnel.  

3.2.4.3. Behavior of tunnel without liner 

In all previous numerical validations, we observe that the transient flow of groundwater in 

small time can induce a drop in magnitude of the effective radial stress. The other studies 

show that this phenomenon can become significant particularly in case of unlined tunnel when 

a tensile stress can be observed near the surface of tunnel. The results highlighted in Fig. 3.17 

show that the effective tensile radial stress appears all around the tunnel (not only in the 

horizontal but also in the vertical direction) at small time (t=100s and t=1h). Finally to 

demonstrate the effect of liner on the distribution of stress (particularly the effective radial 

stress) in Fig. 3.18 we compare the results obtained from two cases of unlined and lined 

tunnel. We state that the difference is remarkable in the zone near the tunnel and in case of 

unlined tunnel the transient fluid flow at small time can induce an effective tensile radial 

stress.  
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Pore pressure in the horizontal direction 
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Pore pressure in the vertical direction 
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Effective radial stress in the horizontal direction 
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Effective radial stress in the vertical direction 
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Effective radial stress in the horizontal direction (zoom 

in the range near the tunnel) 
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Effective radial stress in the vertical direction (zoom in 

the range near the tunnel) 
Fig.3.17: Pore pressure and effective radial stress in the horizontal and vertical direction of unlined tunnel. The 

results calculated at different instants.   
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Effective radial stress in the horizontal direction 
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Effective radial stress in the vertical direction 

(a) Instant t=100s 
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Effective radial stress in the horizontal direction 
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Effective radial stress in the vertical direction 

(b) Instant t=1h 
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(b) Instant t=1day 
Fig.3.18: Comparison of effective radial stress in the horizontal and vertical directions between the unlined and 

lined tunnel.  

 

3.3. Deep tunnel behaviour in saturated rock with transient groundwater 

flow: numerical solution in the context of two ways poroelastic coupling 

One considered in the previous part the influence of the transient fluid flow as well as the 

anisotropic effect on the mechanical response of tunnel. A closed form solution was presented 

and validated but it is limited only in case of the one way hydro-mechanical coupling (HM). 

In this latter context, it is known that only changes in the pore pressure field can induce 

changes in stresses and strains. This one way coupling is appropriable and particularly useful 

in case where the mass balance is mainly controlled by the pressure rather than by the stresses 
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of the solid. However its application on studying the behavior of deep tunnel can be seen as a 

strong hypothesis due to the fact that for this kind of problem, changes of stress can have a 

significant effect on the changes of pore pressure and so on. Thus in this part, with aim to 

verify the importance of this latter effect (MH), we will investigate the response of deep 

tunnel in the context of a fully (or two ways) hydro-mechanical coupling (HM). This could 

be done through the numerical simulations using the FEM Aster_Code. Note that the 

geometric model, the boundary and initial conditions as well as the hydro-mechanical 

properties of the materials are similar to the ones used in section 3.2.4 to validate the 

analytical solution. The only difference is that the fully hydro-mechanical coupling is chosen 

instead of one way coupling.   

Figs. 3-19 and 3-20 illustrate the isovalues of pore pressures and effective radial stresses 

around the tunnel which are captured at first instants of time. As exhibited in Fig. 3.19, at the 

vicinity of tunnel, an overpressure zone appears with a maximum pore pressure observed at 

instant about 1hour. The overpressure takes place in both cases of unlined and lined tunnel 

while the presence of liner seems to reduce the magnitude of the overpressure. This 

phenomenon demonstrates the important effect of the MH coupling where changes of stress 

will induce changes of pore pressure which cannot be observed in our previous study case of 

one way hydro-mechanical coupling.  

Another noteworthy point as shown in Fig. 3.20 is that we can observe a domain of effective 

tensile radial stress which occurs in the vicinity of the unlined tunnel. This zone appears 

immediately after the simultaneous excavation. With regard to the considered material 

parameters and modeling hypothesis used here, the tensile stress takes the maximum 

magnitude about of 4.74 MPa (case of unlined tunnel) and 0.85 MPa (case of lined tunnel) in 

small time t=100s. This is because, in the vicinity of the tunnel, due to the instantaneous 

excavation, the total radial stress decreases strongly (and equal to zero on the tunnel’s wall), 

whereas the pore pressure remains almost its initial value. Therefore, according to the Biot’s 

effective stress theory, the radial effective stress can take the positive value in this region. 

Although the fact that this tensile stress is quite small, it can induce, in the surrounding rock 

mass (particularly in case of unlined tunnel) owning a low tensile resistance, a nucleation of 

crack. The contribution of the mechanical effect on the distribution of pore pressure and hence 

on the final response of tunnel is elucidated in figures (from Fig. 3.21 to Fig. 3.23) by 

comparing the numerical results conducted on the unlined tunnel using the one way and two 

ways coupling. Indeed, we can state an important gap in the distribution of pore pressure, 

stress and displacement mostly in the first days marked by an important overpressure and 

more significant effective tensile radial stress in the case of two ways coupling. As a function 

of time, gap reduces and at an instant about one month, the difference between the two 

methods of coupling becomes negligible.     
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Fig.3-19: Distribution of pore pressure around the tunnel (with and without liner) at different instants. The 
results highlight the appearance of the overpressure zone near the tunnel when the two ways hydro-mechanical 

coupling is accounted for. 
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Fig.3-20: Distribution of effective radial stress around the tunnel (case with and without liner) at different 
instants. The results highlight the appearance of the tensile stress near the tunnel without liner at small times. 
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Fig.3-21: Distribution of pore pressure around the tunnel: comparison between the one way and two ways 
coupling at different instants. 
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Fig.3-22: Distribution of effective radial stress around the tunnel: comparison between the one way and two 
ways coupling at different instants. 
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Fig.3-23: Distribution of radial displacement around the tunnel: comparison between the one way and two ways 

coupling at different instants. 
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The results presented above demonstrate the important role of the fully hydro-mechanical 

coupling on the distribution of pore pressure and mechanical response in the surrounding rock 

mass. More precisely, in case of the tunnel without liner, it exist a small zone near the surface 

of tunnel at which we observed the overpressure and the effective tensile radial stress in the 

first instants of transient flow of groundwater. To go insight, in the following study, our goal 

consists in investigating the influence of different hydro-mechanical properties on this 

phenomenon. Thanks to the previous parametric study conducted in chapter 2, it shows that 

the principal parameters like the hydraulic anisotropic degree, the Poisson ratio yz, the shear 

modulus (Gxy) and the ratio of Young’s modulus (Ey/ Ex) could have an important effect on 

the response of tunnel and hence here our interest focuses only on these parameters.          

In figures (from Fig. 3.24 to 3.27) are illustrated the influence of these parameters on the 

distribution of pore pressure and effective radial stress evaluated at instant t=1hour. From the 

results illustrated in Fig. 3.24 and Fig. 3.25, it seems that the changes in magnitude of the 

overpressure and the effective tensile radial stress do not depend on the anisotropic degree of 

permeability while the influence of the Poisson’s ratio yz is really moderate. Attention is 

dedicated to the two other parameters: the shear modulus (Gxy) and the ratio of Young’s 

modulus (Ey/ Ex) whose influence are respectively elucidated in Fig. 3.26 and 3.27. The 

results show that a decrease of the shear modulus (Gxy) can amplify the overpressure in the 

pore space as well as the tensile stress in the vicinity of the tunnel. For a quite small value of 

shear modulus, overpressure can appear all around the surface of the tunnel, not only in the 

horizontal but also in the vertical symmetric axis of tunnel as captured in Fig. 3.26. 

Quantitatively, a decrease of shear modulus from 1600MPa to 560MPa induces an increase of 

pore pressure from 7.8MPa to 12.2MPa, this latter is about 2.6 times the initial pore pressure, 

while tensile stress increases from 3.9MPa to 6.3MPa respectively. The variation in 

magnitude of overpressure as well as effective tensile radial stress is also remarkable with 

respect to the ratio of Young’s modulus. More precisely, by fixing the Young modulus Ex and 

decreasing the other Young’s modulus Ey, we can state a significant increase in magnitude of 

overpressure and tensile radial stress in the horizontal direction as exhibited in Fig. 3.27. As 

an example, we will compare the results calculated at the point near the surface of tunnel 

(r/r0=1.06) with two ratios Ey/Ex=1 and Ey/Ex=0.5 who show that: the pore pressure changes 

from 6.2MPa to 9.9MPa in the horizontal direction (6.4MPa to 0.1MPa in the vertical 

direction) while the effective radial stress changes from 3.1MPa to 5MPa in the horizontal 

direction (3.1MPa to -0.3MPa in the vertical direction).  
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c) Effective radial stress in the horizontal direction 
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d) Effective radial stress in the vertical direction 

Fig.3-24: Influence of the hydraulic anisotropic degree on the distribution of pore pressure and effective radial 
stress. The results calculated at instant t=1h.  
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d) Effective radial stress in the vertical direction 

Fig.3-25: Influence of the Poison’s ratio yz on the distribution of pore pressure and effective radial stress. The 
results calculated at instant t=1h.  
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c) Effective radial stress in the horizontal direction 

1 1.25 1.5 1.75 2

-10

-8

-6

-4

-2

0

2

4

6

8

r/r
0

E
ff
e

c
tiv

e
 r

a
d

ia
l s

tr
e

s
s
 [
M

P
a

]
 

 

E
x
/G

xy
=10

E
x
/G

xy
=6

E
x
/G

xy
=3.5

 
d) Effective radial stress in the vertical direction 

Fig.3-26: Influence of shear modulus (Gxy) on the distribution of pore pressure and effective radial stress. The 
results calculated at instant t=1h.  
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c) Effective radial stress in the horizontal direction 
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d) Effective radial stress in the vertical direction 

Fig.3-27: Influence of the ratio of Young’s modulus (Ey/ Ex) on the distribution of pore pressure and effective 
radial stress. The results calculated at instant t=1h.  
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3.4. Conclusions 

Behavior of deep tunnel excavated in anisotropic saturated rock is investigated in this chapter 

in a general context by accounting for the water flow in the transient state. Firstly, our 

attention is focused on the effect of pore pressure during the transient fluid flow on the 

mechanical response of tunnel and the problem was solved by using the one-way hydro-

mechanical coupling. For this purpose, the closed-form solution based on the complex 

potential approach, which was detailed in previous chapter in the context of steady flow, is 

now extended to take into account the time effect on the hydraulic diffusion equation. The 

principal idea relies on the way to treat this last equation by considering the transient solution 

as a successive steady state snapshots represented by a time dependent radius beyond which 

no flow can be occurred. Once the analytical solution of the pore pressure’s distribution is 

obtained, the mechanical response of tunnel can be evaluated analytically thanks to using the 

complex potential approach whose procedure is similar as ones presented in the previous 

chapter. By comparing with the results obtained from the numerical simulations, a good 

agreement was noted when the anisotropic degree of the hydraulic properties of rock mass is 

moderate. The difference becomes significant, particularly for points near the surface of 

tunnel when this anisotropic degree of the hydraulic properties increases and/or the radius of 

tunnel is taken larger. In the second part, the interest relies on the behavior of tunnel in the 

framework of the fully hydro-mechanical coupling in which impact of the mechanical 

response on the distribution of pore pressured is accounted for. This study totally based on the 

numerical simulations highlighted that changes of stress can induce in the vicinity of tunnel 

an overpressure zone at short time, the phenomenon that is not observed when the one-way 

coupling is considered. By comparing the results obtained from two coupling methods (one 

way HM and two ways HM), it is observed that the difference is essentially noted in short 

times (and ranging to about several days) represented by the overpressure phenomenon and a 

higher effective tensile radial stress in the case of two ways hydro-mechanical coupling. 

Particularly, in this latter context, the effective tensile radial stress appearing in the vicinity of 

the unlined tunnel exhibits a quite significant value which could induce a nucleation of crack 

in the rock mass due to a low tensile resistance.   
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Conclusions: 

Comportement du tunnel profond creusé dans un massif rocheux saturé a été étudié dans ce 

chapitre dans un contexte général du couplage hydromécanique en tenant compte du régime 

hydraulique transitoire. Dans le premier temps, on porte une  attention particulière à 

l’évolution de la distribution de pression de pores  au cours de l'écoulement progressif. En 

suite le problème de l’effet de cette distribution sur la réponse mécanique du tunnel a été 

résolu en utilisant le couplage à sens unique. Dans ce but, la solution analytique basée sur 

l'approche du potentiel complexe, détaillée dans le chapitre précédent dans le contexte de 

l’écoulement en régime permanent, est maintenant étendue pour prendre en compte l'effet du 

temps sur l'équation de diffusion hydraulique. L'idée de base du traitement de l’équation 

d’écoulement est de considérer le régime transitoire comme une succession d’équilibres 

successifs de régimes permanents dont la zone perturbée hydrauliquement est représentée par 

un rayon qui évolue en fonction du temps. Pour un moment donné, au-delà de ce rayon aucun 

flux hydrique n’existe. 

Une fois la solution analytique de la répartition de la pression interstitielle pour un temps 

donné est obtenue, la réponse mécanique du tunnel peut être évaluée analytiquement grâce à 

l'utilisation de l'approche du potentiel complexe dont la procédure est similaire à celle du 

chapitre précédent. En comparant les résultats obtenus par la solution analytique avec ceux 

des simulations numériques aux éléments finis, un bon accord a été noté lorsque le degré 

d’anisotropie des propriétés hydrauliques du massif rocheux est modéré. La différence devient 

importante, surtout pour les points proches de la paroi du tunnel lorsque ce degré 

d’anisotropie des propriétés hydrauliques augmente et/ou le rayon du tunnel est de plus en 

plus grand.  

Dans un second temps, nous avons étudié plus en détails la différence entre couplage 

unilatérale et un couplage complet. Cette étude basée sur les simulations numériques a mis en 

évidence que les variations du stresses dans le voisinage de la paroi du tunnel peut induire, 

pendant la phase de creusement une zone de surpression aux premier instants et ce 

phénomène n’est pas observé lorsque le couplage à sens unique est considéré. En comparant 

les résultats obtenus des deux méthodes de couplage (à sens unique HM et complete 

HM), on constate que les différences sont essentiellement observées dans les temps courts 

(à quelques jours) conduisant à des phénomènes de surpression et une contrainte radiale 

effective en traction plus élevée dans le cas du couplage hydro-mécanique complet. En 

particulier, dans ce dernier contexte, la contrainte radiale effective en traction apparaissant 

dans le voisinage du tunnel non soutenu présente une valeur significative qui pourrait induire 

une zone de fissuration initiale dans le massif rocheux en raison d'une résistance en traction 

faible de ce dernier. 
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CHAPTER 4: APPLICATION OF THE CLOSED FORM SOLUTION ON 

CONVERGENCE – CONFINEMENT METHOD  

4.1. Introduction  

The excavation of a tunnel taking into account the effect of the tunnel face is a three-

dimensional problem. One of the methods to study the tunnel excavation by two-dimensional 

plane strain problem which can account for three-dimensional effect of the tunnel face to the 

sections behind and ahead of the face is convergence-confinement method (Panet and Guenot, 

1982). Following that, the effect of the movement of the tunnel face is then equivalent to the 

reduction of an inner fictive pressure on the tunnel wall, from the initial pressure dominating 

the excavation to a zero pressure when the tunnel face advances far enough from the 

considered section. This method also takes into account the interaction between the rock mass 

and support. 

This method applies to symmetric problem of deep, uniformly supported, circular tunnels 

embedded in an isotropic rock mass subjected to uniform in-situ stresses. 

Extensions of the conventional convergence-confinement method have been tried for the case 

where the initial pre-stress is anisotropic by Einstein and Schwartz (1979) and then by Gill 

and Leite (1995) for an elastic material. 

In this chapter, a solution based on the approach of the convergence-confinement method to 

study the interaction between the rock mass and the support for a deep tunnel in anisotropic 

poro-elastic medium will be presented. This solution is considered as an extension of the 

solution presented in chapter two which can take into account the influence of the tunnel face 

on the work of the support as well as the massif. 

4.2. Principles of the convergence-confinement method 

The theoretical study of a lined tunnel is usually complex because of the interaction ground-

structure between the rock mass and the support. Among different methods, the convergence-

confinement method is considered as a performance method thanks to its simplicity as well as 

its capacity to take into account fully ground-support interaction and conditions of installation 

the support behind the tunnel face. 

Considering a section of tunnel near the tunnel face, its installed support will not take the 

entire load that redistributes around the tunnel due to the excavation. In fact, one part of this 

load induces deformation around the excavation and the tunnel face takes the other as 

consequence of the three dimensional effect. (Carranza-Torres and Fairhurst, 2000). By the 

time when the tunnel face advances, i.e., the tunnel is prolonged, the support carries more 

load that had been carried by the tunnel face earlier; the phenomenon finishes when  the 

tunnel face has advanced at the far enough distant from the considered section (Carranza-

Torres and Fairhurst, 2000). 
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Let us consider a circular tunnel of radius R excavated in an isotropic rock mass that is subject 

to the isotropic initial stresses, i.e., hydrostatic. Assuming that, at certain distance L behind 

the tunnel face (section A-A') one installs an annular support of unit length in the direction of 

the tunnel axis. One will determine interactive stresses at the rock mass-support interface 

from the instant of support installation until the moment when the face has advanced far 

enough so that the “face effect” vanishes. Once the stresses on the rock mass-support interface 

obtained, one can calculate the stresses and deformations in the support (Panet, 1995). 

Figure 1.b shows a cross section of excavation at the position A-A' (the support has been 

'removed' for clarity in this figure) in which the stress 0  represents the hydrostatic far field 

stress acting on the rock-mass, the radial displacement ru and the reaction of the support on 

the rock mass ip .  

Figure 1.c illustrates a cross-section of the support in which st is the thickness of the support 

and the stress sp that is transmit from the rock mass to the support.  

  

 

Fig. 4-1: a) Circular tunnel of radius R driven in the rock-mass; b) Cross-section of the rock-mass at section A-
A'; c) Cross-section of the circular support installed at section A-A' (Carranza-Torres and Fairhurst, 2000). 

To simplify the problem, the plane strain conditions can be adopted along the tunnel axis, i.e., 

all deformations occur in a plane perpendicular to the axis of the tunnel. This transformation 

from the 3D problem to the 2D problem is one of the principal ideas of the convergence-

confinement method as illustrated in Figure 2. Following that, at the initial time 0t , the support 

is installed at the section A-A' (Fig. 2a) which is located at distance L from the tunnel face. 
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Corresponding to this latter instant, the tunnel surface at this section had converged radically 

by the amount du . The stresses from the rock mass have released partly while the tunnel face 

carries the other. Assuming that, the tunnel face does not advance ahead, so the support takes 

no load from the rock mass. i.e., 0 0sp   at this stage. 

When the tunnel face advances ahead, the support takes more and more the load from the 

ground that has taken by the tunnel face previously. From this moment, the ground and the 

support deform together. Figure 2b shows the situation at time instant t  when the section is 

located at the distance tL from the tunnel face; at that moment, the ground has converged the 

amount t du u  and the pressure transmited to the support is
s
tp . 

Once the face of the tunnel has moved ahead far enough (Fig. 4-2c), the support takes final (or 

design) load 
D
tp and the ground-support system at the section A-A' is in equilibrium. At the 

corresponding instant Dt , the effect of the face has disappeared and the support and ground 

have converged together by the final amount
D
ru . 

 

Fig. 4-2: Loading of the support at section A-A' due to progressive advance of the tunnel face (Carranza-Torres 
and Fairhurst, 2000) 

Graphically, the Convergence-Confinement method can be represented by three curves 

obtained from three basic components, i.e., the Longitudinal Deformation Profile (LDP), the 
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Ground Reaction Curve (GRC) and the Support Characteristic Curve (SCC). In practice, the 

LDP is usually called as the curve of the deconfinement rate; and the GRC and SCC are 

known as the convergence and confinement curves respectively. 

4.2.1. Construction of the Longitudinal Deformation Profile 

Let us consider a plane section of a rock mass in which one wants to excavate a circular 

tunnel. This massif is subject to a natural stress corresponding to an isotropic initial state. To 

model the excavation of the tunnel, one first assumes that the cavity is subject to a pressure 

so-called fictive pressure corresponding to the isotropic initial state (Fig. 4-3). Thereafter, by 

reducing the fictive pressure, it causes a radial displacement corresponding to the 

decompression of the massif. This pressure decreases from the value of the initial hydrostatic 

pressure until the zero pressure. Once it takes the value of zero, the tunnel face has moved far 

enough so that the “face effect” has disappeared (Panet, 1995). 

It is an artifice that permits to pass from the three-dimensional problem of the excavation to 

an equivalent plane strain problem based on the point of view of equality of tunnel wall 

convergences. 

The deconfinement rate characterizing the reduction of the fictive pressure is determined as 

follows: 

 
0

1
fp




   (4.1) 

where 0  is the initial isotropic pre-stress of the massif. When the fictive pressure decreases 

from 0  to zero, the deconfinement rate increases from zero to 1 (Fig. 4-3). 

 

Fig. 4-3: Principle of deconfinement rate (Panet, 1995). 

With respect to a given section of the tunnel, the parameter   depends on the distance x to the 

tunnel face as well as the behavior law of the massif.  

The deconfinement rate curve ( )x is usually constructed by numerical simulation which is 

described by following stages: 
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 The analytical calculation establishes a relationship between the fictive pressure 

applied to the tunnel wall fp and the convergence ru : ( )r r fu u p  

 Based on a 3D or 2D axisymmetric geometric model, a numerical calculation for the 

unsupported tunnel gives the convergence ru as a function of the distance x to tunnel 

face: ( )r ru u x  

From the above procedures one can obtain ( )f fp p x , and thereby, determine ( )x by using 

Eq. (4.1). On the contrary, the fictive pressure is deduced from deconfinement rate by: 

   01 ( )fp x    (4.2) 

The LDP is the graphical representation of the radial displacement that occurs along the axis 

of an unsupported circular tunnel for sections located ahead and behind of the face. 

As illustrated in Figure 4-4, at a distance x  from behind of the tunnel face the radial 

displacement is ru . At certain far enough distance x  from behind of the tunnel face, the 

convergence of the tunnel wall attends the maximum value M
ru . For sections ahead of the face, 

the distance x  takes negative value. The displacement becomes essentially zero at some finite 

distance ahead of the face.  

On the basis of the elastic models of the problem as represented in Figure 4-4a, Panet (1995) 

proposed following relationship between the radial displacements (convergence) and the 

distance to the tunnel face: 
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u x R

  
    

   
 (4.3) 

The plot of this relationship is presented in Figure 4-4b by the dashed curve. The horizontal 

axis of the diagram represents the ratio /x R and the vertical axis represents the rate of 

convergence / M
r ru u .  

Observing the convergence of the tunnel wall in the vicinity of the tunnel face for a tunnel in 

the Mingtam Power Cavern project, Chern et al. (1998) obtained some data as illustrated in 

Figure 4b by the dots. Thereafter, based on this data, Hoek (1999) proposed the following 

empirical best-fit relationship between the convergence of the tunnel and the distance to the 

face: 
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
  
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 (4.4) 

The relationship (4.4) is also illustrated in Figure 4-4b by the continue curve. 

It is observed in Figure 4-4b that, the maximum convergence attends at approximately 8 

tunnel radii behind the face of the tunnel and the radial deformation is zero at approximately 4 
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tunnel radii ahead of the face. The relationships (4.3) and (4.4) indicate also that the 

convergence of the tunnel wall is approximately 30% of the maximum value at the tunnel face 

itself. 

 

Fig. 4-4: Schematic representation of the Longitudinal Deformation Profile (LDP), Ground Reaction Curve 
(GRC) and Support Characteristic Curve (SCC) (Carranza-Torres and Fairhurst, 2000). 

4.2.2. Ground Reaction Curve (GRC)-Convergence Curve 

The Ground Reaction Curve (GRC) or Convergence Curve shows the relationship between 

the fictive pressure and the radial deformation on the tunnel wall. When the tunnel face 

moved sufficiently far from the interest cross-section, i.e., the fictive pressure decreases to 

zero value, the convergence reaches the maximum value. 

The convergence curve is often constructed based on the elasto-plastic solutions of a circular 

opening subject to uniform (i.e., hydrostatic) far field stresses and uniform internal pressure. 

Some plasticity models are used, for example, Mohr-Coulomb and Hoek-Brown criterions 

(Carranza-Torres and Fairhurst, 2000; François, 2012). 
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Fig. 4-5: Schematic representation of the Longitudinal Deformation Profile (LDP), Ground Reaction Curve 
(GRC) and Support Characteristic Curve (SCC) (Carrazane-Torres and Fairhurst, 2000) 

As described in the lower of Figure 4-5, the GRC composes two portions OE and EM. The 

first one expresses an elastic behavior of the massif, so the pressure-displacement curve is 

linear from point O to point M. The second one corresponds to the second phase when the 

criterion of resistance of the material is reached on the wall of the cavity, and hence, a 

decompressed zone appears around the tunnel. It extends towards the interior of the massif 

when the internal pressure decreases. The curve OEM is called the characteristic curve of the 

excavation massif-Ground Reaction Curve (GRC) or the Convergence Curve.  

4.2.3. Construction of Support Characteristic Curves 

The confinement curve or Support Characteristic Curve (SCC) exhibits the relation between 

the applied stress sp and the resulting closure su  of a section of the support of unit length in 

the direction of the tunnel. Assuming that the support is composed by linear elastic material, 

so one has the relationship between the applied stress and the displacement of the support as 

follows: 
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 s s
sp K u  (4.5) 

where sK is  the elastic stiffness of the support. 

The support can be collapsed when the criterion of resistance of its material is reached, and 

the critical value of applied pressure corresponding to this state is
max
sp . The perfect plastic 

part of the SCC is represented by the horizontal segment starting at point R. 

It should be noted that, in the same coordinate system with the GRC, the SCC begin at its 

origin point corresponding the displacement du  to account for the convergence that has 

already occurred before the installation of the support (at the instant t0), i.e., the tunnel wall 

has converged by amount of du  corresponding the rate of dis-confinement d when one 

installs the support.  

4.2.4. Application domain 

The method is mainly used to calibrate the supports. The basic assumptions are rarely all 

verified in the reality; the ideal case being the deep circular tunnel in isotropic medium. 

Nevertheless, the approach is valid to calibrate the support/liner in the following cases (Panet, 

1995; François, 2012): 

 The rock mass must be represented as a homogeneous, isotropic and continuous 

medium. This satisfies the conditions of calculation in the framework of the 

continuum mechanics.  

 The tunnel must satisfy the condition of the deep tunnel, i.e., the vertical initial stress 

variation between the upper and lower parts of the tunnel section (before excavation) 

is negligible compared to the initial vertical stress due to the weight of the ground to 

the average depth of the tunnel. 

 The cross section of the tunnel is assumed to be circular in the method. In the case of a 

quasi-circular section, one will use an equivalent radius. The perfect circularity 

condition allows eliminating bending moments in the support. 

 The initial stress state is isotropic. 

4.3. Interaction ground-support in anisotropic case 

4.3.1. Analytical solution for ground-support interaction 

The purpose of this section is to develop an explicit solution for the ground-support 

interaction for an anisotropic medium tunnel. This problem was referred in chapter 2; 

however, this solution does not take into account the convergence of the tunnel wall which 

occurred before the installation of support, i.e., the liner is installed simultaneously with the 

excavation. In practice, the excavation is a successive process and the tunnel is prolonged in 
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function of movement of tunnel face. At the instant of installation of the support (t0), the 

interest section is located at a certain distance from the face, as presented previously. 

Therefore, the tunnel wall had converged by an amount (ud) before the installation of the 

support. Thus, the interactive problem of rock-support considering the tunnel face effect 

(represented in 3D by the distance from the support cross-section to the tunnel face as well as 

the movement speed of this face) is an important issue not only to design the appropriate 

support but also to evaluate the work of rock mass before and after the installation of support. 

It should be noted that the convergence-confinement method as detailed above is principally 

based on assumptions of the homogeneous, isotropic medium and isotropic in-situ stresses, 

i.e., hydrostatic pressure. With these assumptions, the interactive problem degenerates to the 

one-dimensional problem accounting for the symmetric conditions. In this case, the support 

works only in the pure compression and no bending moment is generated. However, this is 

not the case when the medium around the tunnel and/or the in-situ stresses are anisotropic. In 

this latter case, the behaviour of structures depends on the considered direction. The stresses 

applying on the extrados of the support include two components, the normal stress and shear 

stress, which vary with respect to the studied position. Therefore, the support is not only 

compressed but also bended and in this case the classical convergence-confinement method is 

not applied directly to the anisotropic problem. This could be done through some extensions 

as detailed below. Concretely during this work: 

 The influence of three dimensional effect and the excavation process are considered  

through the fictive pressure on the tunnel wall that decreases progressively over time. 

The evolution of this fictive pressure is characterized by the deconfinement rate () 

which is constant on the tunnel wall at each instant. This parameter as mentioned above 

depend on the distance between the considered section and the tunnel face (x) which is 

proportional to the excavation speed (x=V.t).  

 In the context of the poroelastic behaviour of the massif, one assumes that if there is any 

change of pore pressure (depending on the hydraulic condition at the extrados of 

support) on the perimeter of tunnel, it is happening instantaneous when the tunnel face 

coincides with the studied section meaning that at the distance x=0.  Figure 4-6 

illustrates the evolution law of the pore pressure on the tunnel wall. 

 The solution developed here considers only the condition of continuity at the interface 

between the rock mass and the support, i.e., perfect adhesion as adopted in chapter 2. 



 

168 
 

 

Fig. 4-6: Evolution of the pore pressure in function of distance from the study section to the tunnel face 

In the convergence-confinement method, it is necessary to establish the convergence law of 

the ground that shows the relationship between the convergence of the tunnel wall and the 

stresses imposed, and the response of the support described by a relationship between the 

stresses applied to its extrados and the corresponding displacement (Fig. 4-7). For the clarity 

purpose, keep in mind that the elastic behavior of surrounding rock mass is transversely 

isotropic while the behavior of the support is isotropic. 

 

Fig.4-7: Relation between the stress on the tunnel wall and the stress applied to the extrados of the support after 
the support installation 

Characteristic of the rock: 

Let us consider a circular tunnel of radius R excavated in a transversely isotropic infinite 

medium characterized by five mechanical parameters , , , ,x y xz yz xyE E G   and the axis of the 

tunnel is parallel to discontinuity plane. 

For the hydro-mechanical problem, normal and shear stresses on the tunnel wall consist of 

two components, the first one is induced by mechanical phenomenon and the other is due to 

the hydraulic phenomenon.  
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Because of the symmetry of the geometry and the loading of the problem, and thereby, the 

functions of normal and shear stresses on the tunnel wall exhibit the even and odd 

characteristic respectively. Therefore, one can expand them in Fourier series forms as follows 

(see equations 2.20 and 2.53): 

 

, ,
0 0

2,4,6 2,4,6

, ,

2,4,6 2,4,6

( ) ( cos ( si) )

)

n ;

( + sin ( c .) os

p a a p b b p
r n n n n

n n

a a p b b p
n n n n

n n

n n

n n

        

      

 

 

 

 

  



   

  

 

 
 (4.6) 

in which the coefficients 0 ,, , ,a b a b
n n n n     are related to the mechanical problem and the 

coefficients , , , ,
0 ,, , ,p a p b p a p b p

n n n n      are related to hydraulic one. These coefficients are 

determined by using the boundary conditions and compatibility conditions of displacement at 

the rock mass – support contact (see equations 2.21 and 2.54). 

Similarly, the displacements on the tunnel wall are written in the form (see Tran MH, 2014): 
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 (4.7) 

The coefficients of Eq. (4.7) can be determined by imposing the compatibility condition of 

displacement at the rock mass-support interface or can be found in Tran MH (2014). 

From a practical point of view, it is not necessary to solve for all the terms of Eqs. (4.6) and 

(4.7), as the contributions from the higher terms will be negligible. By truncating the series 

expansion to the order of m , the relationship between the displacement and the variation of 

stress on the tunnel wall is written in matrix form (Tran MH, 2014): 
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in which: 
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(4.9) 

and G is the square matrix of order of 4 1m  which characterizes the behavior of the ground. 

The relationship in Eq. (4.8) descripts the convergence curve. 

 

 



 

170 
 

Characteristic of the support: 

The support is constituted by a circular annual of extrados radius R and of small thickness st . 

One assumes that the support material is characterized by a linear isotropic elastic model 

whose parameters are the Young modulus sE  and the Poisson coefficient s . The relationship 

between the stresses that apply to the extrados and the displacement of the support is written 

(Flugge, 1967): 
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where s
rp  and sp  are respectively the radial stress and shear stress applied to the extrados of  

the support; s
ru  and su  are the radial displacement and ortho-radial displacement of the 

support; nK  and fK  are the normal stiffness and flexible stiffness moduli and they are given 

by the following expressions: 
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In the same way for the stresses applied to the tunnel wall, one has the Fourier expansions of 

the stresses applied to the extrados of the support as follows (Tran MH, 2014): 
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and with the same form, we have the following relations for displacements: 
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where , , ,a b a b
n n n np p q q and 0 0, , , , ,a b a b

n n n nc c c d d d are the coefficients of the series that are determined 

by the compatibility of stresses and displacement at the massif-support contact (see 

expressions in Tran MH, 2014). 

The relationship between the displacements and the stresses on the support can be also written 

in the matrix form as: 
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in which 
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(4.15) 

and sK is the square matrix of order of 4 1m  which characterizes the behavior of the support. 

The relationship in Eq. (4.13) descripts the confinement curve. 

Analytical solution for ground-support interaction: 

As presented, in the convergence-confinement method (see section 4.1), the influence of 

tunnel face on the considered section is taken into account by the fictive pressure fp whose 

evolution is governed by the deconfinement rate ( )x . In the case where the initial stress state 

is anisotropic, this fictive stress applying on the tunnel wall includes a normal stress and a 

shear stress as follows (Tran MH, 2014): 
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where , ,h v vh   are the far field initial stresses as defined in chapter 2 and 3. It assumes that, 

the deconfinement rate is ( )d d  , with d the distance from the tunnel face corresponding 

to the instant of installation of support (t0), so one has stress variation on tunnel wall as 

follows: 

 

1 1
( ) 2 ( ) 2 ;

2 2

1
( ) 2 2

2

d
r d v h h v

d
d

vh

h v vh

scos in

sin oc s

        

      

 
       

 
     

 (4.17) 

Therefore, the corresponding displacements of the tunnel wall at this stage are determined by 

following relationship: 
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After installation of the support, the relationship between the stresses on the tunnel wall and 

the stresses applied to the extrados of the tunnel is written (Fig 4-7): 
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where ,g g
r σ σ are the stresses applied to the tunnel wall. 

The final equilibrium state reaches when 0f p and hence: 



 

172 
 

 

0

0

s
r r r

s
  

     
                

σ σ p

σ σ p
 (4.20) 

The perfect contact condition:  

This condition implies the continuity of the radial and the tangential displacements between 

the ground and the support, so one has the relationship: 
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Hence, one can infer the stresses applied on the extrados of the support: 
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and 
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4.3.2. Application for GCS 

In this section, one considers a specific example of the deep tunnel in anisotropic poro-elastic 

medium with the special attention on the interaction of rock-support. An example for this case 

is the tunnel so-called GCS in constructing the underground rock laboratory (URL) in the 

context of the underground storage of nuclear waste in Bure-France. 

Digging and supporting of the GCS tunnel: 

The GCS known as the gallery of flexible design, has been excavated in the direction of the 

major horizontal stress in the clay stone of Callovo-Oxfordien in Bure-France. The GCS drift 

has circular section with a 2.6m radius and the length of 63.32m with a concrete support of 

18cm thickness in incorporating compressible wedges and trellis welded and completed by an 

aureole of radial bolts anchored in the ground. The average digging speed of the GCS for the 

reference section is 2.05 m/week (Armand et al., 2013). 

One will carry out below some evaluations for GCS tunnel with its size given above. The 

material parameters of the clay stone and loading are the same as ones presented in chapters 2 

and 3. 

In an attempt to perform the relationship between the pressure acting on the tunnel wall and 

its convergence and the relationship between the stresses applying to the support and support 

displacement relied on the scheme of convergence – confinement method, one has some 

results illustrated in the Figures 4-8 and 4-9. 

In order to estimate the influence of the digging speed on the interaction of rock mass-

support, one will firstly consider two extreme cases. In the first case (noted as undrained case) 
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one supposes that the tunnel is excavated with a very fast digging speed; hence, with low 

permeability of the rock, the pore fluid could not diffuse at the moment that the liner is 

installed. Therefore, the pore pressure in the rock mass is uniform and equal to the initial pore 

pressure. In this case, as already mentioned in chapter 2, the stresses applying to the support 

and its displacement as well as the total stresses and displacement of the rock are the same as 

those of the tunnel excavated in dry rock, solicited by the same initial far field total stresses. 

In the second extreme case (noted as drained case), the digging speed is so slow that at the 

installation moment of support, the fluid flow from the rock mass into the tunnel reaches its 

steady state. Consequently, the analysis is conducted based on the problem of the deep tunnel 

in the rock mass with the steady state groundwater flow. With the adopted hypothesis above, 

in this second case, the pore pressure at the tunnel wall is considered equal to the initial value 

when the tunnel face does not reach the considered section, and it falls immediately at 

atmospheric pressure (p0=0) when the face passes through the study section. Thus, for the 

deconfinement rate ranging from 0 to 0.25 (value corresponding to the deconfinement rate at 

x=0), the results of two extreme cases coincide and the difference can be observed only when 

the tunnel face passed the studied section.  

For the moderate excavation speed (case between the two extreme states), one could expect 

that the pressure-displacement relationships of the liner and the rock mass lie between the two 

extreme states. Technically, to construct the Convergence Curve in this latter, one can chose 

any constant deconfinement rate (which is beyond the value at x=0 thus λ>0.25). With the 

known value of λ, one calculates the distance d from the section to the tunnel face using Eq. 

(4.3) from which one determines the time interval (t=t-t0=d/V) using the known digging 

speed (V). This time interval will be used as input in the closed form solution in the transient 

state as detailed in chapter 3.  Hence, the second extreme case (corresponding to the very slow 

digging speed) is the particular case when one applies the closed form solution in the steady 

state as presented in chapter 2. 
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(a)  (b) 

 
(c) 

 (d) 

Fig. 4-8: Ground characteristic curve and support characteristic curve determined at two points in the tunnel wall 
a) at the springline of tunnel (θ=0), b) at the springline θ=0 with zoom around the equilibrium state, c) at the 

crown of tunnel ( θ= π/2), d) at the crown of tunnel ( θ= π/2) with zoom around the equilibrium state 

Figure 4-9 illustrates diagrams of convergence-confinement method for 3 points on the 

perimeter of tunnel, corresponding to three directions 0 , / 4 and / 2 with respect to the 

horizontal direction axis of tunnel, for the undrained case (Fig 4-9a, b) and the drained case 

with steady state fluid flow (Fig 4-9c, d). It is observed that, in the undrained case, the radial 

displacement of liner is larger at the crown than at the springline. For the drained case, i.e., 

the case of steady state fluid flow, the presence of anisotropic flow decreases the horizontal 

displacement while it increases vertical one. This is because of the distribution of pore 

pressure around the tunnel with greater hydraulic gradient in the vertical direction and smaller 

one in the horizontal direction (also indicated in chapter 2). It is the phenomenon that creates 

greater seepage forces in the vertical direction and smaller one in the horizontal direction, and 

hence, to induce an augmentation of vertical displacement and a diminution of horizontal 

displacement. For the stresses acting on the support, they have reverse trends. 
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(a) (b) 

  
(c) (d) 

Fig. 4-9: Ground characteristic curve and support characteristic curve for three points in the perimeters of tunnel 
(corresponding to directions θ=0, π/4 and π/2) for: a) un-drained case; b) un-drained case with zoomaround the 

equilibrium state; c) drained case; d) drained case  with zoomaround the equilibrium state 

Figures 4-10 and 4-11 show thrust, moment in the support as well as the displacement and 

stresses in the interior and exterior fibres for two cases: undrained condition and drained 

condition in steady state. In these analyses, the support/liner is installed at the distance to the 

tunnel face corresponding to λd=0.4. 
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(a) 

 
(b) 

 
(c) 

 (d) 

Fig. 4-10: The thrust, moment, stresses and the displacement of the liner in the case of λd=0.4 and un-drained 
condition 

 

(a) 

 

(b) 

(c)  (d) 
Fig. 4-11: The thrust, moment, stresses and the displacement of the liner in the case of λd=0.4 and drained 

condition in steady state 

It can be seen that, in the case of drained condition, the variations of thrust, moment, stresses 

and the displacement of the support are always higher than those of undrained case due to the 

presence of the anisotropic fluid flow. In addition, the moment in the liner is always observed 
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even the isotropic initial stresses. This suggests that, the anisotropic properties of the rock 

mass generates the moment and hence bend the support/liner. 

One investigates now the influence of the instant of support installation, by varying the 

distance d (or by varying the deconfinement rate λd) to evaluate the variation of displacements 

and stresses in the support. Some results are presented in the Figures 4-12: 

  

  

Fig. 4-12: The thrust (a), moment (b), stresses (c) and the displacement (d) of the liner corresponding to λd=0.4, 
λd=0.5 and λd=0.6 for the case of drained condition in steady state 

The results indicates that, when the distance d increase (corresponding to the increase of 

deconfinement rate λd at the moment of support installation), the stresses as well as the 

displacement in the support decrease. This expected result explained that if the distance from 

the support installation section to the tunnel face is greater, the surrounding rock mass of the 

tunnel converged more significantly before placing the support. In other words, the internal 

forces are realised much more before support installation, and thus, the support is subject to 

smaller pressures. 

Nevertheless, it is known that the principle role of the liner/support is to limit the convergence 

of the tunnel wall as well as plastic deformation zone generated around the tunnel. Therefore, 

determination the appropriate instant (or the distance d) to install the support is an important 

issue, which ensures at once the bearing capacity of the support and limiting the displacement 

of tunnel wall as well as limiting the plastic deformation zone around the tunnel. 
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Figures 4-10, 4-11 and 4-12 show that, the liner stresses is always larger at the springline 

where the stiffness of the rock is greater. Thus, in tunnel design, the results calculated at this 

last point will be utilized in the design of support/liner. 

4.4. Conclusions 

In this chapter, a solution is built for an interactive problem between the support and the 

massif of the deep tunnel in the hydro-mechanical anisotropic medium based on the approach 

of convergence-confinement method. The solution could be considered as a quick analysis 

tool for the preliminary support/liner tunnel design. 

Some analysis pointed out that the cases of very fast and very slow digging speed, which 

correspond respectively the undrained and steady state flow conditions in the medium, are the 

extreme cases of the interactive problem of rock mass-support. Moreover, the stresses and 

deformations of the support/liner are always greater in the drained case. Some numerical 

results indicated also that, the greater stress of the support/liner occurs always in the larger 

stiffness direction, i.e., horizontal direction in this study. In addition, the instant of 

support/liner installation, i.e., the distance from the support installation section to tunnel face, 

influences strongly on the work of the support/liner in equilibrant state.  

Therefore, the calibration of the tunnel support should be considered in the conditions of 

steady state flow in the massif with the stress state in larger stiffness direction as well as the 

instant of support installation so that the support/liner meets at once requirements of bearing 

and limiting the convergence and the plastic deformation zone around the tunnel. 

The solution build on a convergence-confinement diagram for the deep tunnel in anisotropic 

medium could provide design engineers with a tool to analyse quickly the stress-strain state of 

the support/liner, and thereby, to calibrate preliminary the tunnel support/liner as well as its 

appropriate installation instant. 

The solution is limited on the basis of the linear elastic model of the massif and; however, this 

study does not aim to find a solution which can take into account the plastic/visco-plastic 

material model but rather to provide a tool for determination the preliminary size of the 

support in tunnel design. 
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Conclusions : 

Dans ce chapitre, une solution est construite pour un problème interactif entre le soutènement 

et le massif du tunnel profond dans le milieu anisotrope hydro-mécanique basé sur l'approche 

de la méthode convergence-confinement. La solution pourrait être considérée comme un outil 

d'analyse rapide pour la conception préliminaire le soutènement/revêtement des tunnels. 

Certaines analyses ont souligné que les cas de vitesse de creusement très rapide et très lente, 

qui correspondent respectivement aux conditions non drainées et d'écoulement stable dans le 

milieu, sont les cas extrêmes du problème interactif des massif rocheux et soutènement. De 

plus, les contraintes et les déformations du soutènement/revêtement sont toujours plus grandes 

dans le cas de régime permanent d'écoulement. Certains résultats numériques indiquent 

également que, la plus grande contrainte du soutènement/revêtement se produit toujours dans 

la direction de rigidité plus grande, c'est-à-dire, la direction horizontale dans cette étude. Par 

ailleurs, l'instant d'installation soutènement/revêtement, c'est-à-dire, la distance entre la 

section d'installation de support et le front de taille, influence fortement le travail du 

soutènement/revêtement en état d'équilibre. 

Par conséquent, le pré-dimensionnement du soutènement/revêtement du tunnel devrais être 

considéré dans les conditions d'écoulement stationnaire dans le massif avec l'état de contrainte 

dans la plus grande direction de rigidité aussi bien que l'instant de l'installation de 

soutènement afin que le soutènement/revêtement satisfasse à la fois aux exigences de la 

capacité de charge et de limitation la convergence et la zone de déformation plastique autour 

du tunnel. 

La solution construite sur un diagramme de convergence-confinement pour le tunnel profond 

en milieu anisotrope pourrait fournir aux ingénieurs de conception un outil pour analyser 

rapidement et précisément l'état de contrainte-déformation du soutènement/revêtement et pour 

le pré-dimensionnement le soutènement/revêtement ainsi que son installation instantanée 

appropriée. 

La solution est limitée sur la base du modèle élastique linéaire de la massif rocheux; 

cependant, cette étude n'a pas pour objectif de trouver une solution qui puisse prendre en 

compte le modèle de matière plastique/viscoplastique mais plutôt de fournir un outil pour le 

pré-dimensionnement le soutènement/revêtement dans la conception de tunnel. 
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CONCLUSIONS AND PERSPECTIVES 

This work is an attempt to conduct a study of the behavior of a deep tunnel in anisotropic 

poroelastic medium with special attention on coupling between hydraulic and mechanical 

processes in fluid saturated porous media. The behavior of the tunnel is evaluated by 

determination of stresses, displacements and pore pressure distributions around tunnel.  

The basic concepts in poroelasticity relevant to this work have been reviewed. The 

conservation principles of the continuum as well as the constitutive equations and relations 

between the material constants for poroelasticity, have been presented in their isotropic and 

anisotropic forms. The inherent anisotropy of rocks in which the tunnels built has been 

discussed on the basis of rock mechanics. The analytical solution was developed based on the 

complex potential approach of Lekhnitskii. Following that, a circular deep tunnel in 

anisotropic rock is resolved by the complex variable method, i.e., the solution of the problem 

is obtained through the complex potentials. Precisely, the original problem is sub-divided into 

simpler problems for which solutions are either known or can easily be obtained, i.e., the 

mechanical and hydraulic problems. With respect to mechanical problem, through the 

conformal mapping technique, the region outside the tunnel in original plane is transformed 

into the region outside the unit circle in transformed plane. The complex potential functions is 

determined in the transformed plane by using the solution of the boundary value problem with 

the specific boundary conditions. Thereafter, the actual solution of the mechanical problem is 

obtained by inverse transformation. The steady state hydraulic problem, is solved by finding 

the distribution of pore pressure, after that, it is expressed in term of hydraulic complex 

potential. The effect of pore pressure distribution on the mechanical response is considered by 

hydro-mechanical potentials.  

The interaction between the rock mass and the liner is addressed by an interactive problem. 

Stress interaction between the liner and the rock mass is expanded under Fourier series. The 

constants of these series are determined by imposing the compatibility condition of 

displacement. It is noted that here, the condition of perfect contact between the rocks mass 

and the liner is applied, i.e., there is no slip and no detachment at the contact. Once the 

interaction stresses are determined, one can calculate the stresses and strains of the liner based 

on the elastic thin shell theory. 

The results obtained by proposed analytical solution were compared with those obtained by 

the FEM code ASTER. 

Based on the advantages of the analytical solution, i.e., quick and accurate analysis tool, the 

parametric studies are conducted. The parametric studies were done with all the parameters of 

anisotropic hydro-mechanical model. The results indicated that, the anisotropic behavior of 

the tunnel significantly depends on the degree of anisotropy of the medium. Contrary to 

widespread ideas, the convergence on the tunnel wall as well as the whole stress-strain state 

around the tunnel depend not only on the degree of anisotropy of Young moduli and 
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permeability, but also (and sometimes as much as on these ones) on the Poisson coefficient 

and shear modulus in the isotropic plane and the degree of anisotropy of Biot’s coefficient. In 

addition, the results showed that, the influence of stiffness and thickness of the liner on the 

anisotropic behavior of the rock mass is of nature to highly modify the behavior of the tunnel. 

In the parametric studies, the effect of the drainage condition at the liner-rock mass interface 

was evaluated. The results indicated that, when full drainage condition applied at the contact, 

a more pronounced anisotropic behavior is observed in comparison with the no-drainage case. 

Particularly, when the hydraulic is isotropic, i.e., the permeabilities are equal in two principle 

directions, the stresses and radial displacement of the liner is independent on the condition of 

drainage at the liner-rock mass contact. This recovers the case of isotropic rock. 

The present work focused also on the transient hydro-mechanical problem. To take into 

account the distribution of the pore pressure over time, the transient solution can be computed 

as successive steady-state snapshots using a time dependent radius of influence. Hence, one 

can expand the solution of steady-state problem for transient one. It should be noted that, with 

this solution, only effects of hydraulics on the mechanics were considered which is known as 

one way coupling model. 

Once the transient solution obtained, the relative errors in comparison with numerical solution 

were evaluated with the time and the radius of the tunnel. Applying the analytical solution for 

a tunnel without the liner, a phenomenon is observed with appearing of a tensile zone of 

effective radial stress at early instants and in the vicinity of tunnel wall. This could result in a 

nucleation zone of cracks or zone of plastic deformation. This is because the larger pore 

pressure whereas the total radial stress is small at the early instants and in the vicinity of the 

tunnel wall. For the one-way coupling model, this value of pore pressure is closed to the 

initial one.  

The excess pore pressure is usually encountered in the case of low permeability or/and the 

high excavation velocity.  The pore pressure increases due to volumetric deformation could 

not diffuse over time. This occurs only when one considers the mechanism of mechanical 

impact on the hydraulics. Thus, the analysis based on a fully-coupled model have been 

conducted which is considered as complete solution for analytical one. These numerical 

analysis confirmed that, with the very low permeability rock, the zone of excess pore pressure 

occurs always at the early instants and result in the tensile effective radial stress in the vicinity 

of the tunnel wall. Particularly, for the anisotropic rock, the excess pore pressure distribution 

is more important in the direction which has the higher stiffness. Several parameters have 

been also evaluated on the influence on the excess pore pressure. 

An extension of the closed-form solution based on the approach of convergence-confinement 

method was also addressed for the purpose of application in tunnel design. Following that, 

this solution took into account the influence of the distance from the section of support 

installation to the tunnel face on the work of the support as well as the massif.  
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The analytical solutions on tunnel excavation on anisotropic porous rocks in steady and 

transient flow conditions could be used as a design tool for tunneling engineers. In fact, by 

combining these solutions with a convergence-confining approach it is possible to obtain 

quick decisions about the design of liner considering the rate of excavation. 

As a first perspective an extension of the obtained solutions for the direction of the axis of the 

tunnel seems useful and necessary. The two-dimensional problem in plane strain is resolved 

by analytical solutions which assumes that the tunnel axis is parallel to the isotropic plane. An 

extension of these solutions can be proposed for the case of a tunnel with the axis in any 

direction from the isotropic plane. 

Likewise, the analytical solutions developed for a circular tunnel can be extended to non-

circular tunnel such as semi-circular, double-arc or rectangular cross-sections which are often 

used in practice. This can be conducted by using the conformal mapping technique. 

In a longer time the extension of the approach for instantaneous and time-dependent non-

linear behavior of rock masses is a perspective that could significantly improve the prediction 

capacities of analytic solution tool. As a first approach, the case of fractured rock masses with 

visco-elastic/visco-plastic fractures could be considered. In fact, it should be recalled that, the 

distribution of excess pore pressure field in the vicinity of the tunnel wall is more important in 

the direction where the rock has greater stiffness. This could be related to characteristic of 

EDZ on anisotropic rocks (for example, with observed features of EDZ around the tunnels in 

Bure URL in context of nuclear storage, where the convergence of the tunnel wall and the 

development of EDZ are more important in the direction where the rock has larger stiffness). 

A possible explanation is that, the tensile effective radial stress zone induced by the over pore 

pressure results in a plastic deformation/fracture zone in the vicinity of the tunnel wall 

preferentially in the stiffer direction. This leads at developing under a certain mechanism to an 

anisotropic EDZ. This kind of behavior could be described by the proposed approach 

including a time-dependent viscoelastic crack behavior. This requires to be proved by a 

numerical simulation based on visco-plastic/fracture model as mentioned above. 
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CONCLUSIONS ET PERSPECTIVES 

 

Ce travail de recherche a été consacré à la modélisation du comportement d'un tunnel profond 

dans un milieu poreux saturé, élastique anisotrope avec une attention particulière sur le 

couplage entre les phénomènes hydrauliques et mécaniques.  

Les concepts de base des milieux  poreux élastiques ont été initialement décrits ainsi que les 

équations consécutives sous leurs formes isotropes et anisotropes. L'anisotropie inhérente de 

roches, hôte des ouvrages souterrains, est mise en relation avec la structure de la roche et les 

applications de la mécanique des roches. La solution analytique des champs de déplacements 

et de contraintes autour d’un tunnel dans un milieu élastique anisotrope, développée par 

Lekhnitskii, en utilisant l'approche du potentiel complexe a été présentée. Selon cette 

approche, le problème est divisé en plusieurs problèmes plus simples avec des solutions 

connues ou qui peuvent être facilement obtenues. Le problème mécanique est résolu en 

adoptant la technique de « conformal mapping » qui permet la projection du domaine à 

l'extérieur du tunnel du plan à celui à l'extérieur du cercle unité dans le plan transformé. Les 

fonctions potentielles complexes sont déterminées dans le plan transformé en utilisant la 

solution du problème aux valeurs limites avec des conditions aux limites spécifiques. Ensuite, 

la solution réelle du problème mécanique est obtenue par une transformation inverse. Le 

problème hydraulique dans le régime permanent est résolu en cherchant la répartition de la 

pression interstitielle, exprimée en termes du potentiel complexe hydraulique. L'impact de la 

répartition de pression sur les réponses mécaniques est considéré par les potentiels hydro-

mécaniques. 

L'interaction entre le massif rocheux et le revêtement est traitée par un problème d’interaction. 

Des contraintes interactives entre eux sont développées en forme de séries de Fourier. Les 

constantes de ces séries sont déterminées en imposant la condition de compatibilité de 

déplacement au niveau de l’interface entre le massif et le revêtement. Il faut noter que, la 

condition de contact parfait entre le massif et le revêtement est appliquée dans ce travail (alors 

que d’autres choix sont possibles). Une fois les contraintes d'interaction sont déterminées, il 

est possible de calculer les contraintes les déformations et les déplacements du revêtement en 

adoptant la théorie élastique des coques minces. 

Les résultats obtenus par la solution analytique ont été comparés avec ceux obtenus par le 

code d’éléments finis ASTER. 

Prenant l’avantage de la solution analytique, un ensemble d’études paramétriques a été réalisé 

sur tous les paramètres du modèle anisotrope hydro-mécanique. Les résultats de cette étude 

montré que le comportement anisotrope du tunnel dépend fortement du degré d’anisotropie du 

milieu. Contrairement aux idées répandues, la convergence en la paroi du tunnel ainsi que 

l'état de contrainte-déformation autour du tunnel dépendent non seulement de l’degré 

d'anisotropie des modules de Young et des perméabilités, mais également (et parfois autant 
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que sur ceux-ci) du coefficient de Poisson, du module de cisaillement dans le plan isotrope, et 

du degré d'anisotropie du coefficient de Biot. Par ailleurs, les résultats montrent que la rigidité 

et de l'épaisseur du revêtement peut modifier fortement la réponse du tunnel. Dans les études 

paramétriques, l'effet de la condition de drainage au niveau de l'interface des massif-

revêtement a été évalué. Les résultats démontrent que, lorsque la condition de drainage 

complète est appliquée au niveau du contact, un comportement anisotrope plus important est 

observé en comparaison avec le cas sans drainage. En particulier, lorsque l'hydraulique est 

isotrope, les contraintes et le déplacement radial du revêtement est indépendante de l'état de 

drainage au niveau du contact des massif-revêtement, similaire au cas d’une roche isotrope 

mécaniquement et hydrauliquement. 

La réponse d’un tunnel dans un milieu anisotrope au cours de la transitoire hydraulique a été 

considérée dans la deuxième partie de cette thèse. La solution transitoire hydraulique donnant 

la distribution de la pression interstitielle en fonction de temps, a été calculée comme une 

succession d'état d'équilibre en utilisant un rayon de l’influence en fonction de temps. Au-delà 

de ce rayon d’influence l’état hydrique est non perturbé. Par conséquent, le problème peut être 

traité par les mêmes outils que celles développés pour le cas permanent. Soulignons le fait 

que, de par l’approche choisie seuls les effets de l'hydraulique sur la mécanique ont été 

considérés (et pas l’inverse) ce qui est connu comme un couplage unilatéral.  

La solution analytique transitoire obtenue pour un tunnel sans revêtement fait apparaitre une 

zone de contrainte radiale effective en traction aux premiers instants de calcul, et au voisinage 

de la paroi du tunnel. L’intensité de cette contrainte effective peut souvent dépasser la 

résistance en traction des roches et provoquer une zone de fissures initiales ou une zone de 

déformations plastiques (selon l’approche de modélisation choisie). Ce phénomène, non 

observable pour un milieu élastique isotrope, est dû au fait que la pression de pore devient 

plus grande que la contrainte radiale totale (qui devient faible après creusement et proche de 

la paroi). Pour le modèle de couplage à sens unique, cette valeur de la pression interstitielle 

est approximativement égale à sa valeur initiale. 

La surpression interstitielle est habituellement rencontré dans le cas d'un massif rocheux avec 

une faible perméabilité et / ou une grande vitesse de creusement. Dans le cas des milieux 

anisotropes, contrairement au cas isotrope, le creusement ne se fait pas à déformation 

volumique nulle. Dans le cas d’un couplage unilatéral ce fait n’est pas pris en compte car dans 

le cadre de ce couplage il n’y a pas d'impact de la mécanique sur l’hydraulique. Par 

conséquence, une étude numérique à couplage complet a été effectuée. Les analyses 

numériques ont confirmé que, pour un massif rocheux à très faible perméabilité, la zone de 

surpression de pores qui apparait dans les premiers instants de creusement provoque une 

contrainte radiale effective en traction au voisinage de la paroi du tunnel. En particulier, pour 

les milieux poreux anisotropes, la répartition de la surpression interstitielle est toujours plus 

importante dans la direction à plus grande rigidité. Certains paramètres ont été également 

évalués pour étudier leur influence sur la pression des pores. 
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Une extension de la solution analytique obtenue basant sur l'approche de la méthode 

convergence-confinement a également été abordée pour des applications dans la conception 

des tunnels. D'après cela, cette solution a tenu compte de l'influence de la distance de la 

section d'installation de soutènement au front de taille du tunnel sur le travail du soutènement 

ainsi que sur le massif. 

Les solutions analytiques obtenues dans le cadre de cette thèse pourraient être utilisées 

comme des outils de conception et de dimensionnement par les ingénieurs. En effet, en 

combinant ces solutions avec la méthode de convergence-confinement, il est possible 

d’obtenir rapidement une décision sur la conception du revêtement en considérant le taux de 

déconfinement. 

Comme la première perspective de ce travail, une extension des solutions obtenues pour tenir 

compte une orientation arbitraire de l'axe de creusement semblerait utile et nécessaire. En fait 

le cas de déformations planes traité dans ce travail englobe une grande partie des cas 

rencontrés en pratique où l'axe du tunnel est dans le plan d’isotrope. Dans plusieurs cas, 

n néanmoins cette direction est arbitraire et l’extension de ces solutions pourrait s’avérer 

important et utile. 

De même, les solutions analytiques développés pour un tunnel de section circulaire peuvent 

être étendues pour des tunnels de sections non circulaires (semi-circulaire, double arc ou 

rectangulaires) qui sont encore utilisés dans la pratique. Cela peut être réalisé à l’aide de la 

technique de « conformal mapping ». 

Dans une perspective plus lointaine, l'extension de l'approche pour le comportement non-

linéaire instantané et différé des massifs rocheux est une voie qui pourrait améliorer 

considérablement les capacités de prédiction de l'outil développé ici. Comme une première 

approche, le cas des massifs rocheux fracturés avec des fractures viscoélastiques/visco-

plastique pourrait être envisagé. Ces fractures/discontinuités pourrait être soit structurelles 

(schistosité, stratification) soit induites par l’excavation elle-même. Nous avons vu 

l’apparition des zones à surpression et contrainte effective de traction surtout dans la direction 

de la rigidité maximale. Cela peut expliquer dans une certaine mesure, certains 

caractéristiques EDZ observées autour des tunnels (par exemple, les observations de l’EDZ 

autour des tunnels à Bure dans le contexte de stockage déchets radioactifs, montre une 

convergence de la paroi du tunnel et un développement d’EDZ plus importante dans la 

direction où la roche a une plus grande rigidité). Le développement d’une zone de surpression 

et d’une fissuration initiée par une contrainte effective de traction peut être une explication 

possible. La description de cette fracturation induite pourrait être réalisée par l'approche 

proposée, comprenant un comportement viscoélastique des fissures en fonction du temps. La 

mise en place de cette approche demanderait un développement préalable d’un modèle 

visoplastique du massif/fractures validé par des essais de laboratoire et des observations in 

situ. 
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APPENDIX: DISPLACEMENTS IN ROCK MASS AND IN THE LINER 
AT THE ROCK MASS-LINER INTERFACE  

In this appendix, we detail the expressions of displacements in rock mass as well as in the 
liner at the rock mass-liner interface (r=r0).  

- Displacements in rock mass obtained from the solution of the problem Ib: 
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- Displacements in rock mass obtained from the solution of the problem Ic: 
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- Displacements in liner obtained from the solution of the problem Id: 



 

196 
 

0

2 2
4 2 2

, 0 0 0 2 2 0 22
0

2
2 2 0 2

21 1 1 1 1
02 2 2 2

1 11 1
[(2 ) 3 ]

( ) 2 12

1
[(2 ) 3 ]

12

( 1) ( 1)

( 1) ( 2) ( 1) ( 2)

a a as s s
x r

s s s s s s

b b bs

s

a a a a a
n n n

I

n s n

s

d I
U r cos Csin r r cos

E I r A E I A

I
r sin

A

n n I
r

n n n n n n A

 
      

   

        

 
    



  

    
   

   




 



1
2 2

3,5,7

21 1 1 1 1 1
02 2 2 2 2 2

3,5,7

( 1) ( 1)

( 1) ( 1)

( 1) ( 2) ( 1) ( 2
 

) ( 1) ( 1)
;

a
n

n

b b b b b b
n n n n s n n

n s

cosn
n n

n n I
r sinn

n n n n n n A n n




     








     



  
  

   

        
        

           





(A.3a) 

 

0

2 2
4 2 2

, 0 0 0 2 2 0 22
0

2
2 2 0 2

21 1 1 1 1
02 2 2 2

1 11 1
[(2 ) 3 ]

( ) 2 12

1
[(2 ) 3 ]

12

( 1) ( 1)

( 1) ( 2) ( 1) ( 2)

a a as s s
y r

s s s s s s

b b bs

s

a a a a
n n n n s n

d

s

I I
U r sin Ccos r r sin

E I r A E I A

I
r cos

A

n n I
r

n n n n n n A

 
      

   

        

 
     



  

    
   

    





1
2 2

3,5,7

21 1 1 1 1 1
02 2 2 2 2 2

3,5,7

( 1) ( 1)

( 1) ( 1)

( 1) ( 2) ( 1) ( 2) ( 1) ( 1)

a a
n

n

b b b b b b
n n n n s n n

n s

sinn
n n

n n I
r cosn

n n n n n n A n n




     








     



  
  

   

        
        

           





(A.3b) 

- Expression of displacements in rock mass at the tunnel perimeter obtained from the solution 
of the problem IIa, chapter 2: 

 
  





0, 1 1 2 1

1 1 2 1

20
1 11

0

12 2 2

0 2

1 2

2

1 2 2

122 11 1 1

) cos(

) sin

( ) ) ( )

( ) ) ( )

) R (

;

e

(

IIa
x ff

w

x y xy

x

r

y

w

x

w

y

p N p N p

p N p N p

r
s s cos i sin

u

s s cos i si

U p p

i n

r

i

 

  

  

    


    

 



        

    

   





 



 

   (A.4a) 

0

2
, 1 1 2

2
1 1 2

0
2 12 1 1

1 2 2

1 12 2

0 0 2

1

2

1

2 2

22

22

cos

) sin

( ) (1 )

(

( )

(1 ) ( )

) Re

(

IIa
y ff

w

w

w

xy y x

x

w

y y x

r wU r p p

q q q

q N q N q

N N

r s
s i cos i sin

u

s
i cos i sins


 


 

    
 



  

  




 

 
 

 

  
   

  


           

 
        



 

   



;


  


    (A.4b) 

- Expression for the displacements in rock mass and in the liner at the tunnel perimeter 
obtained from the solution of the problem IIb and IIc are the same forms of those of the 
problem Ic and Id respectively as presented previously by replacing the constants 
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- Expression of displacements in rock mass at the tunnel perimeter obtained from the solution 
of the problem IIa, chapter 3: 
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Nam Hung TRAN 
 

COMPORTEMENT HYDRO-MECANIQUE DES TUNNELS PROFONDS 
DANS MILIEUX POREUX ANISOTROPE ELASTIQUE 

 
Résumé: 

Les tunnels profonds sont souvent construits dans les roches sédimentaires et métamorphiques 
stratifiées qui présentent habituellement des propriétés anisotropes en raison de leur structure et des 
propriétés des constituants. Le présent travail vise à étudier les tunnels profonds dans un massif rocheux 
anisotrope élastique en portant une attention particulière sur les effets des couplages hydromécaniques 
par des approches analytiques et numériques. Une solution analytique pour un tunnel creusé dans un 
massif rocheux anisotrope saturé est développée en tenant compte du couplage hydro-mécanique dans 
le régime permanent. Cette solution analytique est utilisée pour réaliser une série d’études paramétriques 
afin d'évaluer les effets des différents paramètres du matériau anisotrope sur le comportement du tunnel.  

Dans un deuxième temps la solution analytique est élargie pour décrire le comportement du tunnel 
pendant la phase transitoire hydraulique.  Afin de compléter ces études analytiques qui prennent en 
compte seulement un couplage unilatéral (dans le sens que seul le comportement hydraulique influence 
le comportement mécanique et pas l’inverse) de l’analyse numérique avec un couplage complet, ont été 
réalisés. Une application de la solution analytique sur la méthode de convergence-confinement est aussi 
bien abordée qui peut prendre en compte l'influence du front de taille du tunnel sur le travail du 
soutènement ainsi que sur le massif. 

La solution obtenue peut servir comme un outil de dimensionnement rapide des tunnels en milieux 
poreux en le combinant avec des approches de dimensionnement comme celle de convergence-
confinement.  

Mots clés: tunnels profonds, comportement hydro-mécanique, roche anisotrope élastique, solution 
analytique, solution numérique, dimensionnement des tunnels. 

 
HYDRO-MECHANICAL BEHAVIOR OF DEEP TUNNELS IN 

ANISOTROPIC PORO-ELASTIC MEDIUM 
 

Summary: 

Deep tunnels are often built in the sedimentary and metamorphic foliated rocks which exhibits usually the 
anisotropic properties due to the presence of the discontinuity. The analysis of rock and liner stresses due 
to tunnel construction with the assumption of homogeneous and isotropic rock would be incorrect. The 
present thesis aims to deal with the deep tunnel in anisotropic rock with a particular emphasis on the effects 
of hydraulic phenomenon on the mechanical responses or reciprocal effects of hydraulic and mechanical 
phenomena by combining analytical and numerical approach. On that point of view, a closed-formed 
solution for tunnel excavated in saturated anisotropic ground is developed taking into account the hydro-
mechanical coupling in steady-state. Based on the analytical solution obtained, parametric studies are 
conducted to evaluate the effects of different parameters of the anisotropic material on the tunnel behavior. 
The thesis considers also to extend the analytical solution with a time-dependent behavior which takes into 
account the impact of the pore pressure distribution on mechanical response over time, i.e., one way 
coupling modeling. In addition, some numerical analysis based on fully-coupled modeling, i.e., two ways 
coupling, are conducted which are considered as the complete solution for the analytical solution. An 
application of the closed-form solution on convergence-confinement method is as well referred which can 
take into account the influence of the tunnel face on the work of the support as well as the massif. 

The obtained solution could be used as a quick tool to calibrate tunnels in porous media by combining with 
design approaches such as convergence-confinement method. 

Keywords: deep tunnels, hydro-mechanical behaviour, elastic anisotropic rock, analytical solution, 
numerical solution, calibrate tunnels. 
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