L. Cambi and L. Szegö, Über die magnetische Susceptibilität der komplexen Verbindungen, Berichte d, D. Chem. Gesell, vol.64, pp.2591-2598, 1931.
DOI : 10.1002/cber.19310641002

R. M. Golding, W. C. Tennant, C. R. Kanekar, R. L. Martin, and A. H. White, NMR Studies of a Series of Iron (III) Dithiocarbamate Complexes, NMR Studies of a Series of Iron (III) Dithiocarbamate Complexes, pp.2688-2693, 1966.
DOI : 10.1063/1.1744459

P. Gütlich, A. Hauser, and H. Spiering, Thermal and Optical Switching of Iron(II) Complexes, Angewandte Chemie International Edition in English, vol.33, issue.20, pp.2024-2054, 1994.
DOI : 10.1002/anie.199420241

P. Gütlich, Spin crossover in iron(II)-complexes, Structure and Bonding, 1981.
DOI : 10.1007/BFb0111269

P. Gütlich, B. R. Mcgarvey, and W. Kläui, Temperature-dependent 5T2(Oh) .dblharw. 1A1(Oh) spin equilibrium in a six-coordinate cobalt(III) complex. Investigation by phosphorus-31 NMR in solution, Inorganic Chemistry, vol.19, issue.12, pp.3704-3706, 1980.
DOI : 10.1021/ic50214a026

M. E. Switzer, R. Wang, M. F. Rettig, and A. H. Maki, Electronic ground states of manganocene and 1,1'-dimethylmanganocene, Journal of the American Chemical Society, vol.96, issue.25, pp.7669-7674, 1974.
DOI : 10.1021/ja00832a012

R. H. Holm, G. W. Everett, and A. Chakravorty, Metal Complexes of Schiff Bases and ?-Ketoamines, Prog. Inorg. Chem, vol.7, pp.83-214, 1966.

Y. Tanabe and S. Sugano, On the Absorption Spectra of Complex Ions II, Journal of the Physical Society of Japan, vol.9, issue.5, pp.766-779, 1954.
DOI : 10.1143/JPSJ.9.766

A. Hauser, spin crossover system (ptz=1???propyltetrazole), The Journal of Chemical Physics, vol.1987, issue.4, pp.2741-2748, 1991.
DOI : 10.1021/ja00529a009

J. Kusz, M. Zubko, R. B. Neder, and P. Gutlich, spin-crossover compounds, Acta Crystallographica Section B Structural Science, vol.163, issue.1, pp.40-56, 2012.
DOI : 10.1107/S0108768111053298/pc5004LS-ord_r-3sup5.fcf

S. Lakhloufi, P. Guionneau, M. H. Lemée-cailleau, P. Rosa, and J. Létard, Structural phase transition in the spin-crossover complex [Fe(ptz)6](BF4)2 studied by x-ray diffraction Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study, Drickamer, Pressure-Induced Electronic Changes in Compounds of Iron, pp.54119-54133, 1972.

P. Guionneau, Crystallography and spin-crossover. A view of breathing materials, Dalton Trans., vol.27, issue.2, pp.382-393, 2014.
DOI : 10.1021/ar00046a004

URL : https://hal.archives-ouvertes.fr/hal-00923645

M. Sorai and S. Seki, Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals, Journal of Physics and Chemistry of Solids, vol.35, issue.4, pp.555-570, 1974.
DOI : 10.1016/S0022-3697(74)80010-7

R. Zimmermann and E. Konig, A Model for High-Spin/Low-Spin Transitions in Solids Including the Effect of Lattice Vibrations, J. Phys. Chem, vol.38, pp.779-788, 1977.

H. Spiering, E. Meissner, H. Köppen, E. W. Müller, and P. Gütlich, The effect of the lattice expansion on high spin ??? low spin transitions, Chemical Physics, vol.68, issue.1-2, pp.64-71, 1982.
DOI : 10.1016/0301-0104(82)85080-5

D. B. Chesnut, Simple Model for Some Dense Magnetic Exciton Systems, The Journal of Chemical Physics, vol.40, issue.2, pp.405-411, 1964.
DOI : 10.1063/1.1725127

R. Boca and W. Linert, Is There a Need for New Models of the Spin Crossover?, Monatshefte f???r Chemie / Chemical Monthly, vol.134, issue.2, pp.199-216, 2003.
DOI : 10.1007/s00706-002-0489-4

P. Guionneau and E. Collet, Piezo-and Photo-Crystallography Applied to Spin-Crossover Materials Ltd. 40 Spin-state relaxation dynamics in iron(II) complexes: solvent on the activation and reaction and volumes for the 1 A-5 T interconversion, Spin-Crossover Materials : Properties and Applications, pp.1575-1576, 1984.
DOI : 10.1002/9781118519301.ch20

S. Decurtins, P. Gütlich, C. P. Köhler, and H. Spiering, Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system, Chemical Physics Letters, vol.105, issue.1, pp.1-4, 1984.
DOI : 10.1016/0009-2614(84)80403-0

F. Renz, H. Spiering, H. A. Goodwin, and P. Gütlich, Light-perturbed hysteresis in an iron(II) spin-crossover compound observed by the Mössbauer effect, Hyperfine Interactions, vol.126, issue.1/4, pp.155-158, 2000.
DOI : 10.1023/A:1012609231853

J. Létard, ) spin crossover complexes???the T(LIESST) approach, J. Mater. Chem., vol.60, issue.221, pp.2550-2559, 2006.
DOI : 10.1107/S010827010402445X

J. Létard, G. Chastanet, P. Guionneau, C. Desplanches, J. Garcia et al., Optimizing the Stability of Trapped Metastable Spin States, Spin-Crossover Materials : Properties and Applications, pp.4992-5000, 2002.
DOI : 10.1021/ja0757632

N. Ould-moussa, D. Ostrovskii, V. M. Garcia, G. Molnar, K. Tanaka et al., Bidirectional photo-switching of the spin state of iron(II) ions in a triazol based spin crossover complex within the thermal hysteresis loop, Chemical Physics Letters, vol.477, issue.1-3, pp.156-159, 2009.
DOI : 10.1016/j.cplett.2009.06.065

O. Fouché, J. Degert, G. Jonusauskas, C. Baldé, C. Desplanche et al., Laser induced spin state transition: Spectral and temporal evolution, Chemical Physics Letters, vol.469, issue.4-6, pp.274-278, 2009.
DOI : 10.1016/j.cplett.2008.12.070

G. Gallé, D. Deldicque, J. Degert, T. Forestier, J. Letard et al., Room temperature study of the optical switching of a spin crossover compound inside its thermal hysteresis loop, Applied Physics Letters, vol.12, issue.4, pp.41907-41956, 2010.
DOI : 10.1103/PhysRevB.75.184425

O. Fouché, J. Degert, G. Jonusauskas, N. Daro, J. Letard et al., Mechanism for optical switching of the spin crossover [Fe(NH2-trz)3](Br)2??3H2O compound at room temperature, Physical Chemistry Chemical Physics, vol.26, issue.221, pp.3044-3052, 2010.
DOI : 10.1103/PhysRevB.75.184425

G. Gallé, C. Etrillard, J. Degert, F. Guillaume, J. Letard et al., Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop, Applied Physics Letters, vol.233, issue.6, pp.63302-063304, 2013.
DOI : 10.1002/ejic.201200562

F. Guillaume, Y. A. Tobon, S. Bonhommeau, J. Létard, L. Moulet et al., Photoswitching of the spin crossover polymeric material [Fe(Htrz)2(trz)](BF4) under continuous laser irradiation in a Raman scattering experiment, Chemical Physics Letters, vol.604, pp.105-109, 2014.
DOI : 10.1016/j.cplett.2014.04.024

URL : https://hal.archives-ouvertes.fr/hal-01009159

J. P. Koningsbruggen, Special Classes of Iron(II) Azole Spin Crossover Compounds, Top. Curr. Chem, vol.233, pp.123-149, 2004.
DOI : 10.1007/b13531

Y. Garcia, V. Niel, M. C. Muñoz, and J. A. , Spin Crossover in 1D, 2D and 3D Polymeric Fe(II) Networks, Spin Crossover in 1D, 2D and 3D Polymeric Fe(II) Networks, pp.229-257, 2004.
DOI : 10.1007/b95408

G. Aromí, L. A. Barrios, O. Roubeau, and P. Gamez, Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials, Coordination Chemistry Reviews, vol.255, issue.5-6, pp.485-546, 2011.
DOI : 10.1016/j.ccr.2010.10.038

L. G. Lavrenova and S. V. Larionov, Spin Transition in Iron(II) Complexes with 1,2,4-Triazoles and Tetrazoles, Koord. Khim, vol.24, pp.403-420, 1998.

L. G. Lavrenova and O. G. Shakirova, Spin Crossover and Thermochromism of Iron(II) Coordination Compounds with 1,2,4-Triazoles and Tris(pyrazol-1-yl)methanes, European Journal of Inorganic Chemistry, vol.62, issue.5-6, pp.670-682, 2013.
DOI : 10.1007/978-3-642-70733-9

A. J. Grosjean-60, G. Haasnoot, W. L. Vos, and . Groeneveld, Matériaux polymériques 1D à transition de spin : investigations structurales multiéchelles -Thèse n°4998, -triazole complexes, III Complexes of Transition Metal(II) Nitrates and Fluoroborates, Naturforsch, pp.1421-1430, 1977.

M. Inoue, M. Kishita, and M. Kubo, Magnetic Moments of Dichloro(1,2,4-triazole)copper(II) and Related Copper(II) Compounds, Inorganic Chemistry, vol.4, issue.5, pp.626-628, 1965.
DOI : 10.1021/ic50027a006

O. Roubeau, Triazole-Based One-Dimensional Spin-Crossover Coordination Polymers, Chemistry - A European Journal, vol.48, issue.140, pp.15230-15244, 2012.
DOI : 10.1039/c2cc18140a

L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva, and S. V. Larionov, Spin Transitions in Coordination Compounds of Iron(II) with Triazoles, Koord. Khim, vol.16, pp.654-661, 1990.

N. Daro, J. Polymères-de-fe, J. Krober, R. Audière, E. Claude et al., II) à transition de spin à base de triazole : synthèse, étude des propriétés et nouvelles potentialités -Thèse n°4994, Gonthier-Vassal, Spin Transitions and Thermal Hystereses in the Molecular -Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2.H20 (Htrz = 1, pp.4-4, 1994.

K. H. Sugiyarto and H. A. Goodwin, Cooperative Spin Transitions in Iron(II) Derivatives of 1, Aust. J. Chem, vol.2, issue.47, pp.4-263, 1994.

C. Cantin, J. Kliava, A. Marbeuf, and D. Mikailitchenko, Cooperativity in a spin transition ferrous polymer: Interacting domain model, thermodynamic, optical and EPR study, The European Physical Journal B, vol.12, issue.4, pp.525-540, 1999.
DOI : 10.1007/s100510051035

URL : https://hal.archives-ouvertes.fr/hal-01550434

L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva, and S. V. Larionov, High-Temperature Spin Transition in Coordination compounds of Iron(II) with Triazole, Koord. Khim, vol.12, pp.207-215, 1986.

O. Kahn, J. Kröber, and C. Jay, Spin Transition Molecular Materials for displays and data recording, Advanced Materials, vol.37, issue.11, pp.718-728, 1992.
DOI : 10.1107/S0567740881002628

V. A. Varnek and L. G. Lavrenova, M??ssbauer study of the influence of ligands and anions of the second coordination sphere in Fe(II) complexes with 1,2,4-triazole and 4-amino-1,2,4-triazole on the temperature of the 1A 1???5 T 2 spin transitions, Journal of Structural Chemistry, vol.34, issue.No. 5, pp.104-111, 1995.
DOI : 10.1007/BF02577756

M. M. Dirtu, A. Rotaru, D. Gillard, J. Linarès, E. Codjovi et al., One-Dimensional Coordination Polymers: an Anion Based Database, Inorganic Chemistry, vol.48, issue.16, pp.7838-7852, 2009.
DOI : 10.1021/ic900814b

M. M. Dirtu, C. Neuhausen, A. D. Naik, A. Rotaru, L. Spinu et al., O, NH2trz)3](NO3)2: the role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2.H2O, pp.5723-5736, 2010.
DOI : 10.1021/ic100667f

A. Sugahara, M. Enomoto, N. Kojima, P. J. Van-koningsbruggen, Y. Garcia et al., Isomerization effect of counter anion on the spin crossover transition in [Fe(4-NH2trz)3](CH3C6H4SO3)2·nH2O Non-classical FeII spin-crossover behaviour in polymeric iron(II ) compounds of formula, J. Phys. Conf. Ser. J. Mater. Chem, vol.2172, issue.7, pp.4-2069, 1997.

O. Roubeau, J. M. Gomez, E. Balskus, J. J. Kolnaar, J. G. Haasnoot et al., Spin-transition behaviour in chains of FeII bridged by 4-substituted 1,2,4-triazoles carrying alkyl tails, New Journal of Chemistry, vol.25, issue.1, pp.144-150, 2001.
DOI : 10.1039/b007094g

P. Grondin, D. Siretanu, O. Roubeau, M. F. Achard, and R. Clerac, Liquid-Crystalline Zinc(II) and Iron(II) Alkyltriazoles One-Dimensional Coordination Polymers, Inorganic Chemistry, vol.51, issue.9, pp.5417-5426, 2012.
DOI : 10.1021/ic300404r

URL : https://hal.archives-ouvertes.fr/hal-00697270

O. Roubeau, B. Agricole, R. Clérac, and S. Ravaine, Triazole-Based Magnetic Langmuir???Blodgett Films:?? Paramagnetic to Spin-Crossover Behavior, The Journal of Physical Chemistry B, vol.108, issue.39, pp.15110-15116, 2004.
DOI : 10.1021/jp048194i

G. A. Berezovskii, M. B. Bushuev, and L. G. Lavrenova, The thermodynamic Properties of the Fe(ptrz)3Br2, 4H2O and Fe(ptrz)3(CF3SO3)2.5H2O Complexes (ptrz = 4-Propyl-1, pp.4-1708, 2004.

Y. Garcia, P. J. Van-koningsbruggen, R. Lapouyade, L. Fournès, L. Rabardel et al., = 3-nitrophenylsulfonate), Chemistry of Materials, vol.10, issue.9, pp.2426-2433, 1998.
DOI : 10.1021/cm980107+

Y. Garcia, V. Ksenofontov, and P. Gütlich, Spin Transition Molecular Materials: New Sensors, Hyperfine Interact, vol.139140, pp.543-551, 2002.
DOI : 10.1007/978-94-010-0299-8_59

O. Roubeau, M. Castro, R. Burriel, J. G. Haasnoot, and J. Reedijk, Calorimetric Investigation of Triazole-Bridged Fe(II) Spin-Crossover One-Dimensional Materials: Measuring the Cooperativity, The Journal of Physical Chemistry B, vol.115, issue.12, pp.3003-3012, 2011.
DOI : 10.1021/jp109489g

O. Roubeau, J. G. Haasnoot, E. Codjovi, F. Varret, and J. Reedijk, Spin Transition Regime in New One-Dimensional Polymeric Iron(II) Compounds. Importance of the Water Content for the Thermal and Optical Properties, Chemistry of Materials, vol.14, issue.6, pp.2559-2566, 2002.
DOI : 10.1021/cm0116626

M. Seredyuk, A. B. Gaspar, M. C. Muñoz, M. Verdaguer, F. Villain et al., Cooperative Spin-Crossover Behaviour in Polymeric 1D Fe II Coordination Compounds: [{Fe(tba)3}X2]·nH2O, Eur. J. Inorg. Chem, pp.4481-4491, 2007.

S. Kume, K. Kuroiwa, and N. Kimizuka, Photoresponsive molecular wires of Fe II triazole complexes in organic media and light-induced morphological transformations, Chem. Commun, pp.2442-2444, 2006.

M. M. Dirtu, F. Schmit, A. D. Naik, I. Rusu, A. Rotaru et al., 1,2,4-Triazole Chain Compound, Chemistry - A European Journal, vol.117, issue.6, pp.5843-5855, 2015.
DOI : 10.1063/1.1493179

A. Michalowicz, J. Moscovici, B. Ducourant, D. Cracco, and O. Kahn, EXAFS and X-ray Powder Diffraction Studies of the Spin Transition Molecular Materials [Fe(Htrz)2(trz), BF4) and [Fe(Htrz)3](BF4)2.H20 (Htrz = 1, pp.4-4, 1995.

J. R. Galan-mascaros, E. Coronado, A. Forment-aliaga, M. Monrabal-capilla, E. Pinilla-cienfuegos et al., Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles, Inorganic Chemistry, vol.49, issue.12, pp.5706-5714, 2010.
DOI : 10.1021/ic100751a

E. Coronado, J. R. Galán-mascarós, M. Monrabal-capilla, J. Garcia-matinez, and P. Pardo-ibáñez, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Advanced Materials, vol.6, issue.10, pp.1359-1361, 2007.
DOI : 10.1007/b96897

C. M. Quintero, G. Felix, I. Suleimanov, J. Sanchez-costa, G. Molnar et al., Hybrid spin-crossover nanostructures, Beilstein Journal of Nanotechnology, vol.5, pp.2230-2239, 2014.
DOI : 10.3762/bjnano.5.232

URL : http://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-5-232.pdf

S. Titos-padilla, J. M. Herrera, X. Chen, J. J. Delgado, and E. Colacio, Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties, Angewandte Chemie International Edition, vol.48, issue.14, pp.3290-3293, 2011.
DOI : 10.1039/b310582b

A. Suzuki, M. Fujiwara, and M. Nishijima, High spin/low spin phase transitions of a spin-crossover complex in the emulsion polymerization of trifluoroethylmethacrylate (TFEMA) using PVA as a protective colloid, Colloid and Polymer Science, vol.43, issue.5, pp.525-534, 2008.
DOI : 10.1007/s00396-007-1796-4

A. Suzuki, M. Iguchi, T. Oku, and M. Fujiwara, Magnetic properties of the FeII spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol), Journal of Solid State Chemistry, vol.183, issue.4, pp.951-956, 2010.
DOI : 10.1016/j.jssc.2010.02.014

C. Faulmann, J. Chahine, I. Malfant, D. De-caro, B. Cormary et al., A facile route for the preparation of nanoparticles of the spin-crossover complex [Fe(Htrz)2(trz)](BF4) in xerogel transparent composite films, Dalton Transactions, vol.10, issue.329, pp.2480-2485, 2011.
DOI : 10.1021/cm970375s

P. Durand, S. Pillet, E. Bendeif, C. Carteret, M. Bouazaoui et al., Room temperature bistability with wide thermal hysteresis in a spin crossover silica nanocomposite, Journal of Materials Chemistry C, vol.132, issue.10, pp.1933-1942, 2013.
DOI : 10.1016/j.matchemphys.2011.11.050

URL : https://hal.archives-ouvertes.fr/hal-00880310

G. A. Berezovskii, V. G. Bessergenev, L. G. Lavrenova, and V. N. Ikorskii, The Thermodynamic Properties of Iron(II) Bromide and Perchlorate Complexes with 4-amino-1, Russ. J. Coord. Chem, vol.2, issue.76, pp.4-1246, 2002.

I. Partie, Méthodes et instruments : microscopie électronique et caractérisations complémentaires

I. 2. Chapitre and .. Microscopie-Électronique, II.2.1. Principe de la microscopie électronique, II.2.2. Microscope électronique en transmission

I. 3. Chapitre and .. Caractérisations-complémentaires, II.3.1. Mesures des propriétés de commutation par analyses magnétiques et optiques II.3.2. Mesures des propriétés structurales par diffraction de rayons X sur poudre

. P. Bibliographie-1, Y. Gütlich, H. A. Garcia, and . Goodwin, Spin crossover phenomena in Fe(II) complexes, Chem. Soc. Rev, vol.29, pp.419-427, 2000.

J. Thibault-desseaux, P. Guyot, F. Louchet, J. Verger-gaugry, M. Karlik et al., Microscopie électronique en transmission : Transmission conventionnelle et balayage en transmission, Technique de l'ingénieur Etude des métaux par microscopie électronique en transmission (MET) -Microscope, échantillon et diffraction, Technique de l'ingénieur Microscopie électronique à balayage -Principe et équipement, Technique de l'ingénieur, 2013, p865 7. S. George, N. Lamproye, Caractérisations des nano-objets, Technique de l'ingénieur, J. Phys. Chem. B, vol.104, pp.1153-1175, 1988.

B. Electronique, Guide d'utilisation du microscope électronique en transmission HITACHI H7650 10 Synthesis of spin crossover nano-objects with different morphologies and properties, New J. Chem, vol.35, pp.2081-2088, 2011.

C. M. Quintero, G. Felix, I. Suleimanov, J. Sanchez-costa, G. Molnar et al., Hybrid spin-crossover nanostructures, Beilstein Journal of Nanotechnology, vol.5, pp.2230-2239, 2014.
DOI : 10.3762/bjnano.5.232

URL : http://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-5-232.pdf

T. Forestier, A. Kaiba, S. Pechev, D. Denux, P. Guionneau et al., -trz=2-Amino-1,2,4-triazole) Prepared by the Reverse Micelle Technique: Influence of Particle and Coherent Domain Sizes on Spin-Crossover Properties, Chemistry - A European Journal, vol.378, issue.381, pp.6122-6130, 2009.
DOI : 10.1007/b13534

C. Etrillard, E. Coronado, J. R. Galán-mascarós, M. Monrabal-capilla, J. Garcia-matinez et al., Synthèse de nanoparticules à transition de spin et étude des propriétés -application en électronique moléculaire -Thèse n° 4421 14. N. Daro, Polymères de Fe(II) à transition de spin à base de triazole : synthèse, étude des propriétés et nouvelles potentialités -Thèse n°4994, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, pp.1359-1361, 2007.

A. Imagej, J. Rotaru, R. P. Dugay, I. A. Tan, L. Gural-'skiy et al., OriginLab. Graphing and Analysis http://www.originlab.com/ 18, Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices, pp.1745-1749, 2013.

V. Nagy, K. Halász, M. Carayon, I. A. Gural-'skiy, S. Tricard et al., Cellulose fiber nanocomposites displaying spin-crossover properties, Cellulose fiber nanocomposites displaying spin-crossover properties, pp.35-40, 2014.
DOI : 10.1016/j.colsurfa.2014.05.007

J. Ruste, H. Paqueton, J. Ruste, J. Krober, J. Audière et al., Caractérisation des polymères par microscopie électronique, Technique de l'ingénieur Microscopie électronique à balayage -Images, applications et développements, Technique de l'ingénieur, -Vassal, Spin Transitions and Thermal Hystereses in the Molecular -Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2.H20 (Htrz = 1, pp.3282-3305, 1994.

W. Morscheidt, J. Jeftic, E. Codjovi, J. Linarès, A. Bousseksou et al., Optical detection of the spin transition by reflectivity: application to, FexCo1-x(btr)2(NCS)2].H2O, pp.1311-1315, 1998.
DOI : 10.1088/0957-0233/9/8/025

J. Jeftic, N. Menéndez, A. Wack, E. Codjovi, J. Linarès et al., A helium-gas-pressure apparatus with optical-reflectivity detection tested with a spin-transition solid, Measurement Science and Technology, vol.10, issue.11, pp.1059-1064, 1999.
DOI : 10.1088/0957-0233/10/11/314

T. Forestier, Synthèse de nanoparticules à transition de spin en milieu confiné -Thèse n°3679 Introduction à la pratique de la diffraction de rayons X sur poudre, 2008.

J. Protas, Diffraction des rayonnements -Introduction aux concepts et méthodes Crystallography and spin-crossover. A view of breathing materials, Dalton Trans, vol.43, pp.382-393, 2014.

A. Grosjean-paradis and N. , Matériaux polymériques 1D à transition de spin : investigations structurales multiéchelles -Thèse n°4998 Transition de spin photo-induite : vers une synergie entre stabilité et metastabilité -Thèse n°4914, 2013.

.. C. Bibliographie-1, J. B. Destree, and . Nagy, Mechanism of formation of inorganic and organic nanoparticles from microemulsions, Adv. Colloid Interface Sci, pp.123-126, 2006.

V. Lamer and R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, Journal of the American Chemical Society, vol.72, issue.11, pp.4847-4848, 1950.
DOI : 10.1021/ja01167a001

M. A. Lopez-quintela and J. Rivas, Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles, Journal of Colloid and Interface Science, vol.158, issue.2, pp.446-451, 1993.
DOI : 10.1006/jcis.1993.1277

C. Dinh, T. Nguyen, F. Kleitz, and T. Do, Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals, ACS Nano, vol.3, issue.11, pp.3737-3743, 2009.
DOI : 10.1021/nn900940p

Y. Jun, Y. Jung, and J. Cheon, Architectural Control of Magnetic Semiconductor Nanocrystals, Journal of the American Chemical Society, vol.124, issue.4, pp.615-619, 2002.
DOI : 10.1021/ja016887w

L. Salmon, G. Molnár, D. Zitouni, C. Quintero, C. Bergaud et al., A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles, Journal of Materials Chemistry, vol.234, issue.26, pp.5499-5503, 2010.
DOI : 10.1007/b95416

E. Coronado, J. R. Galán-mascarós, M. Monrabal-capilla, J. Garcia-matinez, and P. Pardo-ibáñez, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Advanced Materials, vol.6, issue.10, pp.1359-1361, 2007.
DOI : 10.1007/b96897

M. P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nature Materials, vol.11, issue.3, pp.145-150, 2003.
DOI : 10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J

C. Tanford, Micelle shape and size, The Journal of Physical Chemistry, vol.76, issue.21, pp.3020-3024, 1972.
DOI : 10.1021/j100665a018

A. K. Ganguli, A. Ganguly, and S. Vaidya, Microemulsion-based synthesis of nanocrystalline materials, Chem. Soc. Rev., vol.105, issue.130, pp.474-485, 2010.
DOI : 10.1021/jp002127g

T. Dwars, E. Paetzold, and G. Oehme, Reactions in Micellar Systems, Angewandte Chemie International Edition, vol.18, issue.175, pp.7174-7199, 2005.
DOI : 10.1007/978-3-642-71584-6

B. K. Paul and S. P. Moulik, Uses and applications of microemulsions, Curr. Sci, vol.80, pp.990-1001, 2001.

C. Petit and M. P. Pileni, Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels, The Journal of Physical Chemistry, vol.92, issue.8, pp.2282-2286, 1988.
DOI : 10.1021/j100319a037

M. P. Pileni, Reverse micelles as microreactors, The Journal of Physical Chemistry, vol.97, issue.27, pp.6961-6973, 1993.
DOI : 10.1021/j100129a008

S. P. Moulik and B. K. Paul, Structure, dynamics and transport properties of microemulsions, Advances in Colloid and Interface Science, vol.78, issue.2, pp.99-195, 1998.
DOI : 10.1016/S0001-8686(98)00063-3

K. E. Price and D. T. Mcquade, A cross-linked reverse micelle-encapsulated palladium catalyst, Chem. Commun, pp.1714-1716, 2005.

A. Sanchez-ferrer and F. Garcia-carmona, Biocatalysis in reverse self-assembling structures: Reverse micelles and reverse vesicles, Enzyme and Microbial Technology, vol.16, issue.5, pp.409-415, 1994.
DOI : 10.1016/0141-0229(94)90156-2

M. P. Pileni, T. Zem, and C. Petit, Solubilization by reverse micelles: Solute localization and structure perturbation, Chemical Physics Letters, vol.118, issue.4, pp.414-420, 1985.
DOI : 10.1016/0009-2614(85)85402-6

M. P. Pileni, Nanosized Particles Made in Colloidal Assemblies, Langmuir, vol.13, issue.13, pp.3266-3276, 1997.
DOI : 10.1021/la960319q

M. P. Pileni, Mesostructured Fluids in Oil-Rich Regions:?? Structural and Templating Approaches, Langmuir, vol.17, issue.24, pp.414-420, 1985.
DOI : 10.1021/la010538y

I. Lisiecki and M. P. Pileni, Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals:?? The Limited Influence of Reverse Micelles, Langmuir, vol.19, issue.22, pp.9486-9489, 2003.
DOI : 10.1021/la0301386

T. Forestier, Synthèse de nanoparticules à transition de spin en milieu confiné -Thèse n°3679, 2008.

I. Chapitre and .. , IV.1.1. Généralités sur le spray-drying, IV.1.4. Paramètres expérimentaux influençant la synthèse et

I. 6. Chapitre and .. Encapsulation, IV.6.1. Essais préliminaires de mise en forme de PVP et de particules [Fe(Htrz)2(trz)](BF4), IV.6.3. Synthèse de particules coeur@écorce [Fe(NH2trz)3](BF4)

C. Jamin, H. Chang, and K. Okuyama, Optical properties of dense and porous sphéroids consisting of primary silica nanoparticles, Synthèse et étude du composé Li4Ti5O12 comme électrode négative dans les accumulateurs Li-ion, pp.1707-1720, 2002.

F. Iskandar, L. Gradon, and K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, Journal of Colloid and Interface Science, vol.265, issue.2, pp.296-303, 2003.
DOI : 10.1016/S0021-9797(03)00519-8

W. Widiyastuti, S. Y. Lee, F. Iskandar, and K. Okuyama, Sintering behavior of spherical aggregated nanoparticles prepared by spraying colloidal precursor in a heated flow, Advanced Powder Technology, vol.20, issue.4, pp.318-326, 2009.
DOI : 10.1016/j.apt.2008.12.003

F. Iskandar, H. Chang, and K. Okuyama, Preparation of microencapsulated powders by an aerosol spray method and their optical properties, Advanced Powder Technology, vol.14, issue.3, pp.349-367, 2003.
DOI : 10.1163/15685520360685983

F. Iskandar, A. B. Nandiyanto, W. Widiyastuti, L. S. Young, K. Okuyama et al., Production of morphology-controllable porous hyaluronic acid particles using a spray-drying method, Acta Biomaterialia, vol.5, issue.4, pp.1027-1034, 2009.
DOI : 10.1016/j.actbio.2008.11.016

A. B. Nandiyanto, O. Arutanti, T. Ogi, F. Iskandar, T. O. Kim et al., Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance, Chemical Engineering Science, vol.101, pp.523-532, 2013.
DOI : 10.1016/j.ces.2013.06.049

J. Meeus, D. J. Scurr, K. Amssoms, M. C. Davies, C. J. Roberts et al., Surface Characteristics of Spray-Dried Microspheres Consisting of PLGA and PVP: Relating the Influence of Heat and Humidity to the Thermal Characteristics of These Polymers, Molecular Pharmaceutics, vol.10, issue.8, pp.3213-3224, 2013.
DOI : 10.1021/mp400263d

Q. Wang, J. Zhang, B. Mu, L. Fan, and A. Wang, Facile preparation of magnetic 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes microspheres for the controlled release of ofloxacin, Carbohydrate Polymers, vol.102, pp.877-883, 2014.
DOI : 10.1016/j.carbpol.2013.10.071

A. A. Mcbride, N. D. Price, L. R. Lamoureux, A. A. Elmaoued, J. M. Vargas et al., Preparation and Characterization of Novel Magnetic Nano-in-Microparticles for Site-Specific Pulmonary Drug Delivery, Molecular Pharmaceutics, vol.10, issue.10, pp.3574-3581, 2013.
DOI : 10.1021/mp3007264

G. Zhou, J. Wang, P. Gao, X. Yang, Y. He et al., Nanoparticles for Lithium Ion Battery Anodes, Industrial & Engineering Chemistry Research, vol.52, issue.3, pp.1197-1204, 2013.
DOI : 10.1021/ie302469b

V. Tokárová, O. Ka?par, Z. Knejzlík, P. Ulbrich, and F. ?t?pánek, Development of spray-dried chitosan microcarriers for nanoparticle delivery, Powder Technology, vol.235, pp.797-805, 2013.
DOI : 10.1016/j.powtec.2012.12.005

N. Daro, M. J. Polymères-de-fe, J. H. Kim, H. Lee, S. J. Yoon et al., II) à transition de spin à base de triazole : synthèse, étude des propriétés et nouvelles potentialités -Thèse n°4994 Preparation, characterization and in vitro dissolution of aceclofenac-loaded PVP solid dispersions prepared by spray drying or rotary evaporation method, J. Pharma. Invest, vol.43, pp.107-113, 2013.

T. Kawamoto and S. Abe, Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model, Chemical Communications, vol.42, issue.235, pp.3933-3935, 2005.
DOI : 10.1016/S1631-0748(03)00042-0

A. Muraoka, K. Boukheddaden, J. Linarès, and F. Varret, Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study, Physical Review B, vol.15, issue.5, p.54119, 2011.
DOI : 10.1103/PhysRevB.15.4544

V. Partie, Greffage direct de nanoparticules d'or : [Fe(Htrz) 2 (trz)](BF 4 )@Au

V. Chapitre and .. Sur-les-nanoparticules-d-'or, V.3.2. Synthèses préliminaires des particules et mise en place d'un protocole expérimental pour le greffage V.3.3. Synthèse de particules [Fe(Htrz)2(trz)](BF4)(trz)](BF4)@Au : modulation de la concentration en nanoparticules d'or de 10 nm, Synthèse de particules [Fe(Htrz). V.3.5. Synthèse de particules [Fe(Htrz)2(trz)](BF4)@Au : modulation de la taille des nanoparticules d'or

S. K. Ghosh and T. , Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:?? From Theory to Applications, Chemical Reviews, vol.107, issue.11, pp.4797-4862, 2007.
DOI : 10.1021/cr0680282

U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, vol.513, issue.1-2, pp.1-24, 2006.
DOI : 10.1016/j.tsf.2006.03.033

S. M. George, Atomic Layer Deposition: An Overview, Chemical Reviews, vol.110, issue.1, pp.111-131, 2010.
DOI : 10.1021/cr900056b

L. F. Hakim, J. Blackson, S. M. George, and A. W. Weimer, Nanocoating Individual Silica Nanoparticles by Atomic Layer Deposition in a Fluidized Bed Reactor, Chemical Vapor Deposition, vol.45, issue.163, pp.420-425, 2005.
DOI : 10.1002/cvde.200506392

F. Caruso and H. Möhwald, Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids, Langmuir, vol.15, issue.23, pp.8276-8281, 1999.
DOI : 10.1021/la990426v

E. Bourgeat-lami and J. Lang, Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media, Journal of Colloid and Interface Science, vol.197, issue.2, pp.293-308, 1998.
DOI : 10.1006/jcis.1997.5265

E. Bourgeat-lami and J. Lang, Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media, Journal of Colloid and Interface Science, vol.210, issue.2, pp.281-289, 1999.
DOI : 10.1006/jcis.1998.5939

M. Ohmori and E. Matijevic, Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite, Journal of Colloid and Interface Science, vol.150, issue.2, pp.594-598, 1992.
DOI : 10.1016/0021-9797(92)90229-F

K. P. Velikov and A. Van-blaaderen, Synthesis and Characterization of Monodisperse Core???Shell Colloidal Spheres of Zinc Sulfide and Silica, Langmuir, vol.17, issue.16, pp.4779-4786, 2001.
DOI : 10.1021/la0101548

X. Fu and S. Qutubuddin, Polymer???clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer, vol.42, issue.2, pp.807-813, 2001.
DOI : 10.1016/S0032-3861(00)00385-2

Y. Kobayashi, V. Salgueirino-maceira, and L. M. Liz-marzan, Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating, Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating, pp.1630-1633, 2001.
DOI : 10.1021/cm001240g

C. Graf and A. Van-blaaderen, Metallodielectric Colloidal Core???Shell Particles for Photonic Applications, Langmuir, vol.18, issue.2, pp.524-534, 2002.
DOI : 10.1021/la011093g

T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers, Langmuir, vol.18, issue.12, pp.4915-4920, 2002.
DOI : 10.1021/la015561y

R. Azouani, C. J. Brinker, G. W. Scherer, S. Titos-padilla, J. M. Herrera et al., Sol-Gel Science The physics and chemistry of sol-gel processing ed, Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties, pp.3290-3293, 2009.

I. Suleimanov, J. S. Costa, G. Molnar, L. Salmon, and A. Bousseksou, The photo-thermal plasmonic effect in spin crossover@silica???gold nanocomposites, Chem. Commun., vol.103, issue.86, pp.13015-13018, 2014.
DOI : 10.1063/1.4824028

D. Qiu, L. Gu, X. Sun, D. Ren, Z. Gu et al., @Au core???shell nanomaterials: enhanced photo-thermal plasmonic effect and spin-crossover properties, RSC Adv., vol.47, issue.106, pp.61313-61319, 2014.
DOI : 10.1021/ic800803w

G. Félix, M. Mikolasek, G. Molnár, W. Nicolazzi, and A. Bousseksou, Tuning the spin crossover in nano-objects: From hollow to core???shell particles, Chemical Physics Letters, vol.607, pp.10-14, 2014.
DOI : 10.1016/j.cplett.2014.05.049

C. M. Quintero, G. Felix, I. Suleimanov, J. Sanchez-costa, G. Molnar et al., Hybrid spin-crossover nanostructures, Beilstein Journal of Nanotechnology, vol.5, pp.2230-2239, 2014.
DOI : 10.3762/bjnano.5.232

URL : http://www.beilstein-journals.org/bjnano/content/pdf/2190-4286-5-232.pdf

O. Pluchery, M. Carriere, K. L. Kelly, E. Coronado, L. L. Zhao et al., Nanoparticules d'or, Technique de l'ingénieur The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, vol.107, pp.900-925, 2003.

L. M. Liz-marzan, Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles, Langmuir, vol.22, issue.1, pp.32-41, 2006.
DOI : 10.1021/la0513353

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles, Langmuir, vol.24, issue.10, pp.5233-5237, 2008.
DOI : 10.1021/la800305j

R. Janot and D. Guérard, One-step synthesis of maghemite nanometric powders by ball-milling, Journal of Alloys and Compounds, vol.333, issue.1-2, pp.302-307, 2002.
DOI : 10.1016/S0925-8388(01)01737-6

R. Buckmaster, T. Hanada, Y. Kawazoe, M. Cho, T. Yao et al., Novel Method for Site-Controlled Surface Nanodot Fabrication by Ion Beam Synthesis, Nano Letters, vol.5, issue.4, pp.771-776, 2005.
DOI : 10.1021/nl048044j

H. Asoh, F. Arai, and S. Ono, Site-selective chemical etching of silicon using patterned silver catalyst, Electrochemistry Communications, vol.9, issue.4, pp.535-539, 2007.
DOI : 10.1016/j.elecom.2006.10.041

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan et al., Enhancement of optical nonlinearity in periodic gold nanoparticle arrays, Nanotechnology, vol.17, issue.16, pp.4274-4277, 2006.
DOI : 10.1088/0957-4484/17/16/045

R. Zanella, C. Louis, S. Giorgio, and R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism, Journal of Catalysis, vol.223, issue.2, pp.328-339, 2004.
DOI : 10.1016/j.jcat.2004.01.033

M. Chen and D. W. Goodman, Catalytically active gold on ordered titania supports, Chemical Society Reviews, vol.96, issue.9, pp.1860-1870, 2008.
DOI : 10.1142/S0218625X01000884

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, issue.0, pp.145-181, 1857.
DOI : 10.1098/rstl.1857.0011

J. Turkevich, P. C. Stevenson, and J. Hillier, A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold, Discussion of the Faraday Society, pp.55-75, 1951.

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.20-22, 1973.
DOI : 10.1038/physci241020a0

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Preparation and Characterization of Au Colloid Monolayers, Analytical Chemistry, vol.67, issue.4, pp.735-743, 1995.
DOI : 10.1021/ac00100a008

K. R. Brown, D. G. Walter, and M. J. Natan, Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape, Chemistry of Materials, vol.12, issue.2, pp.306-313, 2000.
DOI : 10.1021/cm980065p

T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri et al., Nanoparticles of iron(ii) spin-crossover, Chemical Communications, vol.127, issue.221, pp.4327-4329, 2008.
DOI : 10.1007/b13534

URL : https://hal.archives-ouvertes.fr/hal-00333792

N. R. Jana, L. Gearheart, and C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, The Journal of Physical Chemistry B, vol.105, issue.19, pp.4065-4067, 2001.
DOI : 10.1021/jp0107964

N. G. Bastus, J. Comenge, and V. Puntes, Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening, Langmuir, vol.27, issue.17, pp.11098-11105, 2011.
DOI : 10.1021/la201938u

A. Grosjean, N. Li, P. Zhao, M. E. Igartua, A. Rapakousiou et al., Matériaux polymériques 1D à transition de spin : investigations structurales multiéchelles -Thèse n°4998 Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis, Inorg. Chem, vol.53, pp.11802-11808, 2013.

A. Paquirissamy, A. R. Ruyack, A. Mondal, Y. Li, R. Lescouëzec et al., Versatile nano-platforms for hybrid systems: expressing spin-transition behavior on nanoparticles, Journal of Materials Chemistry C, vol.103, issue.192, pp.3350-3355, 2015.
DOI : 10.1021/ja00408a005

URL : https://hal.archives-ouvertes.fr/hal-01280924