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Abstract

This thesis is about the theory of open quantum many-body physics with a particular
focus on driven-dissipative photonic and spin lattices. After a review of the main physical
platforms and theoretical concepts, we describe our original results.

In Chapter 2, we present a theory of the single-mode Kerr model with a time-
dependent pump. This model describes a single-mode optical cavity with a third-order
optical nonlinearity. In the regime of parameters where the semiclassical analysis shows
bistability, we �nd that a dynamic hysteresis loop appears in the exact solution. The
hysteresis area as a function of the sweep time shows a double power-law decay where the
second exponent is independent of the system parameters. We show how these e�ects
are related to the emergence of a dissipative phase transition. We also describe concisely
the experimental results which have recently con�rmed such theoretical predictions.

In Chapter 3, we present the corner-space renormalization method. In order to obtain
the steady-state density matrix of the lattice, we solve the Lindblad master equation in
a subspace of the Hilbert space (the "corner"). The states spanning the corner space are
selected iteratively using eigenvectors of the density matrix of smaller lattice systems,
merging in real space two lattices at each iteration and selectingM pairs of states
by maximizing their joint probability. The accuracy of the results is then improved
by increasing the dimensionM of the corner space until convergence is reached. The
method has been benchmarked on a two-dimensional Bose-Hubbard model with coherent
driving. The strength and limitations of the method are critically discussed.

In Chapter 4, we investigate a dissipative phase transition in the two-dimensional
anisotropic Heisenberg XYZ model. Using the corner-space renormalization method we
present a �nite-size analysis of steady-state observables. In particular, we show the crit-
ical behaviour of the magnetic susceptibility, the entropy growth and the entanglement
witnesses, providing a �rst evaluation of the critical exponents characterizing the transi-
tion. A study of the dynamics of �nite-size systems is also consistent with a critical slow-
ing down. For comparison, we present the corresponding analysis for one-dimensional
arrays, showing the absence of criticality due to the reduced dimension.

In Chapter 5, we explore the non-equilibrium photonic phases of a dissipative Bose-
Hubbard model with incoherent pumping of coupled two-level systems. Within a Gutzwiller
mean-�eld approach, we determine the steady-state phase diagram of the system. We
predict a second-order phase transition between an incompressible Mott-like phase and
a coherent delocalized phase.
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Résumé

Les travaux théoriques présentés dans cette thèse portent sur la physique à N-corps
dans les systèmes quantiques ouverts. Nous nous intéressons en particulier aux réseaux
dissipatifs de spins ou de cavités optiques non-linéaires avec pompage extérieur.

Après une revue des principales plateformes physiques et concepts théoriques au
Chapitre 1, nous présentons dans le Chapitre 2 une théorie quantique du modèle de
Kerr à un mode avec une pompe modulée dans le temps. Ce modèle décrit une cavité
optique présentant une non-linéarité d'ordre trois. Dans le régime où la théorie semi-
classique prédit un comportement bistable, nous trouvons qu'une boucle d'hystérésis
apparaît dans la solution quantique exacte. L'aire de la boucle d'hystérésis en fonction
de la période de la modulation décroît en suivant une double loi de puissance. Nous
montrons que ces e�ets sont liés à l'émergence d'une transition de phase dissipative.
Nous décrivons brièvement des résultats expérimentaux qui con�rment nos prédictions.

Dans le Chapitre 3, nous introduisons la méthode "corner-space renormalization".
Pour obtenir la matrice densité du réseau, nous résolvons l'équation maîtresse dans
un sous-espace de l'espace de Hilbert. Les états qui engendrent ce sous-espace sont
sélectionnés de façon itérative à partir des états propres des matrices densité de plus
petits réseaux. Lors de la fusion de deux réseaux, nous sélectionnons les paires d'états
en maximisant leur probabilité combinée. L'exactitude de la méthode est testée sur un
réseau de Bose-Hubbard bidimensionnel pompé de façon cohérente.

Dans le Chapitre 4, nous examinons une transition de phase dissipative dans un
réseau de spin bidimensionnel implémentant le modèle XYZ anisotrope de Heisenberg.
En s'appuyant sur la méthode introduite dans le Chapitre 3, nous menons une analyse
de taille �nie des observables dans l'état stationnaire. En particulier, nous montrons
le comportement critique de la susceptibilité magnétique, de la croissance de l'entropie
et de marqueurs d'intrication, fournissant ainsi la première estimation des exposants
critiques caractérisant cette transition. Notre étude de la dynamique de ces systèmes
est également en accord avec l'hypothèse d'un ralentissement critique. Comme point de
comparaison, nous exposons des résultats analogues pour des réseaux unidimensionnels,
montrant ainsi l'absence de criticité en une dimension.

Dans le Chapitre 5, nous examinons les phases photoniques hors-équilibre d'un réseau
de Bose-Hubbard dissipatif couplé à un ensemble de systèmes à deux niveaux. Dans
le cadre d'une approximation de champ moyen à la Gutzwiller, nous déterminons le
diagramme des phases stationnaires du système. Nous prédisons une transition de phase
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du second ordre entre une phase incompressible semblable à un isolant de Mott et une
phase cohérente délocalisée.



Contents

Introduction 1

1 Introduction to open many-body quantum physics 7
1.1 Examples of physical systems . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Semiconductor microcavities . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Superconducting circuits . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Dynamics of open quantum systems . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Liouville-von Neumann equation . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equation for the system density matrix . . . . . . . . . . . . . . . 13
1.2.3 Lindblad master equation . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Properties of the Lindblad master equation . . . . . . . . . . . . . 17

1.3 State-of-the-art numerical methods . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Montecarlo wavefunction method . . . . . . . . . . . . . . . . . . 18
1.3.2 Matrix Product Operator (MPO) methods . . . . . . . . . . . . . 20

1.4 De�nition of dissipative quantum phase transitions . . . . . . . . . . . . 22
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Single-site critical phenomena: dynamical optical hysteresis in the Kerr
model 25
2.1 Semiclassical versus quantum theory of the steady state in the Kerr model 26

2.1.1 Mean-�eld equation for a single-mode Kerr cavity . . . . . . . . . 27
2.1.2 Analytical exact solution of the master equation . . . . . . . . . . 28

2.2 Time-dependent master equation . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Area of the dynamical hysteresis . . . . . . . . . . . . . . . . . . . 32
2.2.2 Analytical scaling behaviour in connection with the Kibble-Zurek

mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Truncated Wigner Approximation . . . . . . . . . . . . . . . . . . 39

2.3 Experimental observation in semiconductor micropillars . . . . . . . . . . 40
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Corner-space renormalization method for open quantum lattice sys-
tems 47
3.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



x Contents

3.1.1 Construction of the corner space . . . . . . . . . . . . . . . . . . . 48
3.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Applications of the algorithm to driven-dissipative Bose-Hubbard models 50
3.2.1 Convergence for the corner-space dimension . . . . . . . . . . . . 50
3.2.2 Application of the corner-space renormalization method to soft-

core bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Limitations of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Critical behaviour in the 2D XYZ model 59
4.1 Dissipative XYZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Experimental implementation . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Emergence of the phase transition at mean-�eld level . . . . . . . 61

4.2 Results with the corner-space renormalization method . . . . . . . . . . . 63
4.2.1 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Entropy of the system density matrix . . . . . . . . . . . . . . . . 65
4.2.3 Entanglement witnesses . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Liouvillian gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Comparison with one dimensional lattices . . . . . . . . . . . . . . . . . 70
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Dissipative phase transitions in incoherently pumped Bose-Hubbard
lattices 73
5.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Single-site physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Gutzwiller mean-�eld theory . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Gutzwiller ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Phase diagram for hard-core bosons . . . . . . . . . . . . . . . . . 78
5.2.3 J � U phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Beyond the Gutzwiller approximation . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Crossover in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Correlation length . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Conclusion and outlook 93

Bibliography 95



General Introduction

The �rst numerical approach to a complex mathematical problem can be traced back to
1777 when Bu�on proposed a way to estimate� using probabilities. In his proposal, he
considered a �oor with equidistant lines and needles. The needles are dropped randomly
and independently and when a large number of needles is used, it is possible to evaluate
the probability for a needle to cross a line. Furthermore, that probability is linked to
the number � which can therefore be evaluated from that procedure [1].

Even though a computer is not necessary to solve that early example, it can easily
be implemented and contains the main idea of what would be a major step in numeri-
cal physics: mapping a complicated or technical calculation into an ensemble of easier
operations using random numbers. Such types of algorithms go under the generic name
of Monte-Carlo methods. The �rst modern example of such methods was implemented
in the framework of the Manhattan Project in Los Alamos. Using the ENIAC, the �rst
fully electronic computer at the University of Pennsylvania, Stanislaw Ulam and John
von Neumann were able to simulate the behaviour of neutron di�usion across materials.
The algorithm was based on a statistical sampling on both the initial position and speed
of the particles as well as on the possible interactions with the material [2].

The next fundamental step for the establishment of numerical methods in physics
was accomplished by Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou [3,
4]. This very �rst "numerical experiment" aimed at investigating an ensemble of 62
oscillators with small non-linear couplings. The goal of this simulation was to test the
ergodicity hypothesis for non-integrable systems: the results revealed that the hypothesis
failed in this case as the system became quasi-periodic. Hence, this experiment was a
breakthrough showing that numerical simulations were a powerful tool to explore new
physical phenomena.

Since then, the use of computers to solve new physical problems has become a
widespread method in physics. If we focus now on quantum mechanics, the scarcity
of analytical solutions calls for the development of numerous numerical apporaches.
Apart from the di�erent Monte-Carlo techniques that were developed over the years
to address a growing number of problems, a signi�cant improvement was given by the
renormalization group introduced by Wilson [5]. Wilson's approach was developed to
solve the Kondo problem. In that case, solving means giving a good approximation of
the many-body eigenstates with the lowest energies. To do so, Wilson �rst considered
all the energy states that are coupled with the impurity. This continuum of states is dis-
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2 General Introduction

cretized and mapped into a one-dimensional chain: the �rst site of the chain represents
the impurity and it is coupled to the second site representing the most relevant state,
which is coupled to a site representing the second most important one and so on and
so forth. Formally, that means that the Hamiltonian of the system is obtained as the
limit of a sequence of HamiltoniansĤN considering theN �rst states. By construction,
the (N + 1)-th term is obtained from the N -th term. When the sites are added to the
chain, the number of degrees of freedom increases exponentially making a brute-force
computation impossible. In order to evaluate the eigenstates, the exponential growth of
the Hilbert space has to be bypassed. To do so, when one constructs the Hamiltonian
for the (N +1)-th step, the elements fromĤN are limited to the lowest lying eigenstates.
As a result, the number of states considered is kept �xed under a given limit. This crude
method proved most successful for the Kondo model and other impurity systems [6].
The key point here is that the coupling to the impurity is decreasing quickly when the
chain is extended. Hence, the new sites induce only a perturbation to the many-body
state, producing marginal truncation errors.

In fact, if one tries to apply real-space renormalization methods similar to Wilson's to
many-body Hamiltonians on a lattice, it can lead to a dramatic failure due to problems
related to boundary conditions [7]. This discovery lead to the development of the density
matrix renormalization group (DMRG) [8]. This method is based on the selection of the
most probable states of the reduced density matrix of a block, obtained by computing
the ground state of the Hamiltonian of a larger block. Furthermore, it was shown in
Refs. [9, 10] that the states constructed by the density matrix renormalization group
were of a particular form: Matrix Product States [11] (MPS) allowing for variational
computations. This formulation allowed to apply the DMRG formalism to a much wider
range of problems. In particular, it was used to compute the excitation spectrum of one
dimensional spin chains [12], as well as time integration [13, 14, 15, 16] and simulation of
in�nite systems [17]. This improvement made the DMRG-based methods very important
for the study of quantum many-body systems at equilibrium. However, these algorithms
remain mostly limited to one-dimensional arrays. Indeed, the generalization of this
type of methods to two-dimensional lattices is quite challenging and requires the use
of the projected entangled pairs formalism [18, 19], the transposition of the second
spatial dimension into a one-dimensional system with long-range interactions [20, 21] or
a generalized version of matrix product states [22].

The theory of many-body physics at equilibrium has been quite successful in the
exploration of condensed matter physics (atomic systems and solid-state materials).
Among the numerous achievements, one of particular importance is the description of
quantum phase transitions [23, 24, 25]. A paradigmatic system undergoing a quantum
phase transition is given by the Bose-Hubbard model [26] describing bosons living on
a lattice with on-site interactions and nearest-neighbours hopping. The characteristic
feature of a phase transition is the singular behaviour of ground state observables at
the so-called critical point. In the case of the Bose-Hubbard model at equilibrium two
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distinct phases exist: for strong interactions, there is a strongly localized phase with
negligible number �uctuations (Mott Insulator); for large enough hopping, a delocalized
super�uid phase emerges.

The investigation of quantum phases of matter has also been extended to cases where
the system is driven far from equilibrium [27]. An example of such behaviour is the dy-
namics after a quench in closed quantum systems. As the system is instantaneously
driven to a state far from the ground state of the modi�ed Hamiltonian, the subse-
quent dynamics might be highly nontrivial. The investigation of the time-dependence
of quantum correlations [28] or other correlation functions [29] has been the goal of a
considerably large literature.

Lately, new physical platforms have emerged, being relevant for the study of out
of equilibrium quantum many-body systems. In particular, over the past two decades,
quantum �uids of light have been investigated both theoretically and experimentally in
photonic platforms [30]. The many-body physics of light has become accessible thanks
to sizeable and controllable photon-photon interactions mediated by electronic excita-
tions in suitable semiconducting or superconducting systems. This has been particularly
successful in systems in the so-called strong light-matter coupling regime. In this regime,
matter excitations and photons give rise to hybrid quasiparticles called polaritons [31].
The intrinsically dissipative nature of photons causes the polaritons to have a �nite life-
time. Hence, these systems cannot be described as closed systems, but have to be treated
as open systems. A driving pump is needed to inject new excitations in the system re-
sulting into a rich time evolution, which can lead to a steady-state. This time-evolution
can be described via a master equation that accounts for the Hamiltonian dynamics as
well as the dissipation and decoherence processes.

The strong coupling between matter degrees of freedom and photonic ones provides
strong enough interactions to make possible the emergence of collective behaviours. As
an early example of such collective phenomena, we can cite the realization of polariton
condensates [32] and super�uidity [33] in planar semiconductor microcavities. In such
microstructures, the light is con�ned using Bragg mirrors. The matter excitations are
excitons: electron-hole pairs bounded by Coulomb forces. They are con�ned in quan-
tum wells that are placed in between the two mirrors. These systems exhibit yet only a
moderate nonlinearity. Theoretically, lattice models with giant photon-photon interac-
tions have been pioneered in Refs. [34, 35, 36] even though these �rst theoretical studies
neglected completely photon losses. The realization of strong interaction can lead to the
so-called photon blockade [37]: the presence of one photon in the cavity can block the
absorption of a second photon. Photon blockade has been demonstrated in atomic [38]
and superconducting [39] systems. Superconducting lattices appear to be a particularly
promising platform for strong photon-photon interactions.

In order to take into account the competition between dissipation, driving, hopping
and interactions, novel theoretical methods have been introduced. Early on, the MPS
framework has been extended to density matrices leading to methods based on Matrix



4 General Introduction

Product Operators (MPO) [14, 15, 40]. These methods are based on the time evolu-
tion of the density matrix using an MPO representation. Using such methods, it was
possible to characterize novel steady-state phases such as geometrically fustrated polari-
tons [41] or fermionized photons [42]. This approach of solving the master equation has
recently been complemented by variational approaches [43, 44]. In these methods, the
determination of the steady-state of the system is mapped into a minimization problem.
Note that methods based on projected entangled pairs have also been developed for two
dimensional dissipative arrays [45].

A simpler theoretical approach is given by Gutzwiller mean-�eld theory, where the
density matrix is approximated as the product of single-site density matrices. In this
approximation, the lattice problem is reduced to the self-consistent description of a
single site. This method leads to substentially easier calculations making it a viable
tool for a �rst exploration of the phase diagram. However, there is no control over this
approximation: hence it is necessary to con�rm the results with those obtained with
other methods. This framework allowed to a �rst exploration of photonic and dissipative
spins lattices [46, 47, 48, 49, 50]. In order to include short range correlations that can
have a dramatic impact on the steady-state phases, an improvement is o�ered by a
cluster mean-�eld ansatz. Namely, instead of reducing the description to a single site,
a small cluster of sites is considered with self-consistent boundary conditions [51, 52].
In the same spirit, several expansions of the density matrix taking into account the
correlations in a perturbative manner have been introduced [53, 54]. Recently, also a
linked-cluster expansion has been explored [55].

Other approximations such as the so-called truncated-Wigner Montecarlo method [30,
56, 57] have been considered. In the limit of moderate interactions, the truncated Wigner
approximation has been rather successful [33, 57]. Indeed, mapping the complex driven-
dissipative quantum dynamics into a set of scalar stochastic di�erential equations leads
to a dramatic speed up of the integration time. This method was extensively used
in the early days of the investigation of quantum �uid of light [30], and is now used to
study driven-dissipative Bose-Hubbard lattices with relatively weak interactions [58, 59].
In order to include the on-site quantum aspects, a particular decoupling was recently
proposed. In this spirit, a Gutzwiller decoupling [60] has been considered in the frame-
work of the Montecarlo wavefunction method [61, 62, 63] leading to the evaluation of a
steady-state density matrix neglecting spatial quantum correlations.

It is also worth noting that methods from �eld theory such as the Keldysh functional
formalism have been applied to driven-dissipative systems (for a review see Ref. [64]).
In particular, it is a powerful tool to investigate the thermodynamic limit of driven open
quantum systems as it enables the use of renormalization methods [65]. Within this
formalism, it is possible to estimate critical exponents that characterize phase transi-
tions [66], as well as e�ective temperatures for the steady-state in the thermodynamic
limit [67]. However, so far quantum correlations cannot be properly evaluated using
these methods nor their �nite-size dependence.
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This thesis presents original theoretical contributions to the physics of driven-dissipative
strongly correlated lattice systems. The manuscript is organised as follows.

In Chapter 1, we present an introduction to open many-body quantum systems.
After describing the main physical systems, we introduce the master equation formalism
and the main state-of-the-art numerical methods. An introduction to the main concepts
of dissipative phase transitions is also presented.

In Chapter 2, we present our original results on dynamical optical hysteresis of a
driven-dissipative nonlinear quantum resonator.

Chapter 3 presents the original method for the investigation of driven-dissipative
many-body systems, which has been developed in our group: the corner-space renormal-
ization method.

Chapters 4 and 5 present studies of many-body systems using the corner-space
renormalization method and other techniques. In Chapter 4, we investigate the phase
transition from a paramagnetic to a ferromagnetic phase in the dissipative anisotropic
Heisenberg XYZ model. In Chapter 5, we predict a dissipative phase transition for the
Bose-Hubbard model in the presence of incoherent driving.

Final conclusions and perspectives are drawn in the �nal chapter.
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Chapter 1

Introduction to open many-body
quantum physics

In the general introduction we have pointed out that the presence of driving and losses
makes the study of open quantum systems rather di�erent from the study of systems
at equilibrium. This chapter aims at introducing the main physical systems, theoretical
concepts and methods.

In the �rst section, we will present two relevant experimental platforms for the study
of open many-body quantum systems, namely semiconductor microcavities and super-
conducting circuits. In section 1.2 we introduce the master equation formally describing
the dynamics of such systems in the case of a weak coupling between the system and
the environment. In section 1.3, we describe two important methods for the simulation
of the master equation. Firstly, the Montecarlo wavefunction algorithm [61, 62, 63] that
maps the master equation into the stochastic evolution of quantum states. Secondly,
the Matrix Product Operator [14, 15] method, which is a powerful technique to solve
one-dimensional systems. Finally in section 1.4, an introduction to dissipative phase
transitions is given.

1.1 Examples of physical systems

In this section, we detail two of the most important experimental platforms for the study
of open quantum many-body systems, namely, semiconductor microstructures and su-
perconducting circuits. These two platforms can be tailored to create lattices of photonic
cavities with e�ective photon-photon interaction. These systems are intrinsically open
because of the unavoidable photon losses. The presence of a pump is necessary to
compensate the dissipation by injecting photons. The photon-photon interactions are
mediated by electronic excitations [30]. In the case of semiconductor microcavities, the
nonlinear optical medium is given by quantum wells. As for superconductor quantum
circuits, the nonlinearity is provided by Josephson junctions.

7
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Valence Band

Conduction Band

growth

Energy

Figure 1.1: Band structure of a quantum well along the growth direction. The dashed
lines represent the energy levels of quantum con�ned subbands.

1.1.1 Semiconductor microcavities

In undoped semiconductors, the lowest energy excitations are excitons. When light
is shined on a semiconductor, an electron from the valence band is promoted to the
excitation band and a hole appears in the valence band. It is energetically favourable
for the electron and the hole to bind via Coulomb interaction and form an exciton.
In order to further con�ne the electron-hole pair and increase the binding energy, a
quantum well is used. This is a heterostructure that is obtained by growing a thin layer
of a semiconductor with an energy gapEg (between the valence and conduction bands)
between two layers of a semiconductor with a band gapE 0

g > E g, as represented in
Fig. 1.1.

In order to maximize the light-matter coupling in these systems, the photons are
con�ned using Bragg mirrors. In such microcavity systems, it is possible to reach the
strong light-matter coupling regime: the elementary excitations are the so-called polari-
tons, hybrid light-matter particles. These microcavity systems have been a prominent
platform for the exploration of the many-body physics of exciton-polaritons. Indeed,
phenomena such as the Bose-Einstein condensation of polariton gases [32] and polariton
super�uidity [33] have been demonstrated in semiconductor microcavities.

Lattice systems of coupled micropillars with arbitrary geometry can be created by
lithographic etching of planar cavities (see Ref. [68] for a review). In such micropillars,
the lateral con�nement of the polaritons is ensured by the di�erence of index between
the semiconductor and the air surrounding it (see the inset of Fig. 1.2).

For resonant excitation, the micropillar can be considered as a single-mode cavity
where the polariton-polariton interaction takes the form of a� (3) nonlinearity [69] leading
to the Hamiltonian (~ = 1):

Ĥ = ! câyâ +
U
2

âyâyââ; (1.1)

with ! c being the frequency of the polariton mode andU the strength of the non-linearity.
The operator â is here the polariton annihilation operator.

The micropillars can be coupled by a nearest-neighbour hopping, which is theoreti-
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Josephson Junction Capacitor Inductor

Figure 1.3: Left panel: schematic representation of a Josephson junction, a capacitor
and an inductor. Right Panel: realization of the Jaynes-Cummings model using a trans-
mission line resonator and a Josephson arti�cial atom. From Ref. [78].

There exist many di�erent ways to integrate these elements in a circuit leading to dif-
ferent types of arti�cial two-level systems (qubits) [75]. An example of such nonlinear
element is given on the right panel of Fig. 1.3: a transmon qubit [76, 77] composed of
two Josephson junctions connected to the cavity through two capacitors. This system
was used to implement the Jaynes-Cummings Hamiltonian [79]:

Ĥ = ! câyâ + ! at �̂ z + g(ây�̂ � + �̂ + â); (1.4)

where the operatorŝ� � , �̂ + and �̂ z are the Pauli matrices acting on the two-level system
Hilbert space and the operator̂a is the annihilation operator for the microwave photonic
mode. The frequencies! c and ! at are those for the bare cavity and the atomic resonance
of the Josephson junction, whileg is the vacuum Rabi coupling between the atom and
the cavity.

Interaction in these systems can be giant: indeed, the photon blockade e�ect has
been demonstrated in a spectacular way [37, 39]. Wheng= � 1 ( is the dissipation
rate), it is possible to inject an excitation resonantly. However, as shown in Fig. 1.4, due
to the anharmonic spectrum and narrow linewidths, the injection of a second excitation
is blocked, because o�-resonant. The ability to produce giant nonlinearities in super-
conducting circuits makes this platform a promising tool for the realization of strongly
correlated many-body states of light.

As in semiconductor microstructures, in superconducting platforms it is possible to
couple the di�erent resonators implementing a hopping coupling described by Eq. (1.2) in
the Hamiltonian. Figure 1.5 shows a superconducting lattice of 72LC resonators coupled
to transmon qubits. The sites are forming a one-dimensional chain that is pumped at one
end. Presently, the main limitation of circuit QED lattices is represented by disorder.
The parameters of a single-site cavity are not perfectly controlled because they are very
sensitive on nanometric details of the Josephson junction.
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1.2 Dynamics of open quantum systems

The realization of many-body photonic phases on lattices were �rst proposed by three
papers [34, 35, 36]. In these pioneering papers, the theory was at equilibrium and
neglected the photonic losses. However, in order to gain a proper understanding of
open many-body systems, it is necessary to take the dissipation processes into account.
The dissipation is a result of the coupling between the system under study and the
environment, typically represented by a bath consisting of an in�nite number of modes.
For example, in the case of photons, the bath is the ensemble of all electromagnetic
modes in free space.

When energy is dissipated from the system to the bath, it is very unlikely that the
reciprocal process takes place. As a result, the system undergoes a non-unitary evolution
while the bath remains approximately in the same state. Thus, even in the limit of weak
coupling, the dynamics of the system will be di�erent from the unitary evolution of its
equilibrium counterpart: the Hamiltonian of the system under study is not enough to
give an accurate description of the dynamics.

In order to account for the dissipation processes, we will use a Lindblad master
equation approach, that is derived in the following. The derivation detailed here is
a standard procedure [82, 83, 84], based on several approximations that we will be
discussed in the following. Firstly, we will perform theBorn approximation, in the limit
of weak coupling between the system and a large bath. Secondly, we will consider the
Markov approximation assuming that the dynamics of the bath is much faster than the
one of the system. Furthermore, we perform thesecular approximationwhere the terms
oscillating faster than the coupling strength are neglected. Following Ref. [82], we will
apply the general result to the case of a single-mode resonator.

1.2.1 Liouville-von Neumann equation

First of all, we consider the Liouville-von Neumann equation for the total system. We
consider a quantum systemS described by the HamiltonianĤS coupled to a bath B
described by a HamiltonianĤB with the interaction Hamiltonian Ĥ int . The total Hamil-
tonian ĤT reads:

ĤT = ĤS + Ĥ int + ĤB : (1.5)

The Liouville-von Neumann equation for the ensembleS + B reads:

@t �̂ = � i[ĤT ; �̂ ]; (1.6)

where �̂ is the total density matrix including the system and the bath. The reduced
density matrix of the system�̂ can be obtained from�̂ by tracing out the bath degrees
of freedom

�̂ = Tr B (�̂ ): (1.7)
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The aim of the derivation is to obtain an equation of motion for the reduced density
matrix of the system. A �rst step is to move into the interaction picture to focus on the
interaction of the systemS with the bath B

�̂ I (t) = ei( Ĥ S + Ĥ B )t �̂e � i( Ĥ S + Ĥ B )t : (1.8)

The density matrix in the interaction picture follows the evolution equation:

@t �̂ I = � i
h

~H int (t); �̂ I (t)
i

; (1.9)

with the time-dependent Hamiltonian

~H int (t) = e(i( Ĥ S + Ĥ B )t )Ĥ int e(� i( Ĥ S + Ĥ B )t ) : (1.10)

We can then write a formal integral solution for�̂ I (t), namely

�̂ I (t) = �̂ I (t = 0) � i
Z t

0
d�

h
~H int (� ); �̂ I (� )

i
: (1.11)

In order to obtain the Liouville-von Neumann equation in an integro-di�erential form,
we inject the solution (1.11) into the master equation in the interaction picture (1.9):

@t �̂ I = � i
h

~H int (t); �̂ (0)
i

�
Z t

0
d(� )

h
~H int (t);

h
~H int (� ); �̂ I (� )

ii
: (1.12)

This equation is very hard to solve as it is, because of its integro-di�erential form and
because it still contains all the degrees of freedom of the bath. In the following, we rely
on the approximations mentioned above in order to get a workable di�erential equation
for �̂ I (t) = Tr B (�̂ I (t)) .

1.2.2 Equation for the system density matrix

Let us assume that there is no interaction between the bath and the system fort � 0.
At time t = 0 the system and the bath will be uncorrelated. This means that the density
operator will be of the form:

�̂ I (0) = �̂ (0) = �̂ (0) 
 R̂; (1.13)

whereR̂ is the density matrix of the bath. This also implies that att = 0, we have:

Tr B (�̂ Ĥ int ) = 0 : (1.14)

We assumed that the coupling between the system and the bath is weak. This means
that the correlations between the system and the bath can be neglected, which leads to
the approximated density operator at timet:

�̂ I (t) � �̂ I (t) 
 R̂I (t); (1.15)
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whereR̂I (t) is the density matrix of the bath at time t in the interaction picture. This
approximation is commonly called theBorn approximation [82]. Note that this approxi-
mation can lead to a state signi�cantly di�erent from the real one for the ensembleS+ B
if a �nite number of modes is considered for the bath. However, other approaches based
on projective methods lead to a similar form [84].

Moreover, we assume that the bath is at thermal equilibrium, that is

R̂ =
e� Ĥ B =(kB T )

Tr( e� Ĥ B =(kB T ))
; (1.16)

with kB being the Boltzmann constant andT the temperature of the bath. SinceR̂
commutes with ĤB , we can simplify Eq. (1.15) and write�̂ I (t) � �̂ I (t) 
 R̂.

Injecting �̂ I (t) � �̂ I (t)
 R̂ in Eq. (1.12) allows us to �nd an equation for the dynamics
of the reduced density matrix:

@t �̂ I = �
Z t

0
d� Tr B

�h
~H int (t);

h
~H int (� ); �̂ I (� ) 
 R̂

ii�
: (1.17)

Furthermore, in the limit of weak coupling between the system and the bath, the
reduced density matrix in the interaction picture evolves very slowly. As a result, we
perform the Markov approximation mentioned above, i. e., the evolution of̂� I (t) does
not depend on its previous values [84]:

@t �̂ I = �
Z t

0
d� Tr B

�h
~H int (t);

h
~H int (� ); �̂ I (t) 
 R̂

ii�
: (1.18)

This equation is often called themaster equation in the Born-Markov form[82].

1.2.3 Lindblad master equation

Let us consider the general coupling Hamiltonian [84]:

Ĥ int =
X

u

ŝu 
 B̂u; (1.19)

where the operatorŝsu and B̂u act respectively on the system and the bath. Furthermore,
we also assume that the operatorŝsu can be decomposed as follow:

ŝu =
X

�

ŝu(� ); (1.20)

where [ĤS; ŝu(� )] = � � ŝu(� ) and [ĤS; ŝy
u(� )] = � ŝy

u(� ). As a result, in the interaction
picture, we can write:

~H int (t) =
X

u;�

e� i �t ŝu(� ) 
 B̂u(t) =
X

u;�

ei �t ŝy
u(� ) 
 B̂ y

u(t): (1.21)
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If we decompose the double commutator in Eq. (1.18), we obtain:

@t �̂ I = �
Z t

0
d� Tr B

�
~H int (t)Ĥ int (� )�̂ I (t) 
 R̂ � Ĥ int (t)�̂ I (t) 
 R̂Ĥ int (� ) + H:C:

�
;

(1.22)
whereH:C: is the Hermitian conjugate. We now substituteĤ int (t) =

P
u;� exp(i�t )ŝy

u(� )B̂ y
u(t)

and Ĥ int (� ) =
P

l;� 0 exp(� i� 0� )ŝl (� 0)B̂ l (� ):

@t �̂ I =
X

u;l

X

�;� 0

Z t

0
d�e i( �t � � 0� )Tr B

�
R̂B̂ y

u(t)B̂ l (� )
� �

ŝl (� 0)�̂ I (t); ŝy
u(� )

�
+ H:C: : (1.23)

It is convenient to introduce the correlation function of the bath [83]:

Gu;l (t; t 0) = Tr B

�
R̂B̂ y

u(t)B̂ l (t0)
�

;

= Tr B

�
R̂B̂ y

u(t � t0)B̂ l

�
;

= Gu;l (t � t0):

Performing the change of variable� 0 = t � � in Eq. (1.23), the equation for the reduced
density matrix reads:

@t �̂ I =
X

u;l

X

�;� 0

ei( � � � 0)t
Z t

0
d� 0ei � 0� 0

Gu;l (� 0)
�
ŝl (� 0)�̂ I (t); ŝy

u(� )
�

+ H:C: : (1.24)

In the limit of weak coupling to the bath, terms oscillating at a frequency much larger
than the coupling will be averaged to 0. This was introduced as thesecular approximation
in the beginning of the derivation. As a result, only the terms with� = � 0 in Eq. (1.24)
will have a signi�cant contribution, giving:

@̂� I =
X

�

X

u;l

� u;l (� )
�
ŝl (� )�̂ I (t); ŝy

u(� )
�

+ � �
l;u (� )

�
ŝl (� ); �̂ I (t)ŝy

u(� )
�

; (1.25)

where we introduced the quantity:

� u;l (� ) =
Z t

0
d�e i �� Tr B

�
R̂B̂ y

u(� )B̂ l

�
: (1.26)

Furthermore, another consequence of the weak coupling hypothesis is that the character-
istic time for the decay of bath correlations will be much smaller than the characteristic
timescale of the reduced density matrix evolution. Thus, we can taket ! 1 in the
upper bound of the previous integral.

Finally, if we introduce the following quantities [84]:

Su;l (� ) =
1
2i

(� u;l (� ) � � l;u (� )� ); (1.27)

 u;l (� ) = � u;l (� ) + � l;u (� )� =
Z 1

�1
d�e i �� Gu;l (� ); (1.28)
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we obtain the Lindblad master equation in the interaction picture

@t �̂ I = � i
h
ĤLS ; �̂ I

i
+ L[�̂ I ]; (1.29)

where the Lamb Shift HamiltonianĤLS reads

ĤLS =
X

�

X

u;l

Su;l (� )ŝy
u(� )ŝl (� ); (1.30)

and the Lindblad term reads

L[�̂ I ] =
X

�

X

u;l

 u;l (� )
�
ŝl (� )�̂ I ŝy

u(� ) �
1
2

�
ŝy

u(� )ŝl (� )�̂ I + �̂ I ŝy
u(� )ŝl (� )

�
�

: (1.31)

This leads to the Lindblad master equation:

@t �̂ = � i
h
ĤS + ĤLS ; �̂

i
+ L[�̂ ]: (1.32)

To give a concrete example, let us consider an optical cavity with a single decay
channel and a single mode with frequency� = ! 0 [82]. We have

~s(t) � âe� i! 0 t ; (1.33)

where â is the annihilation operator for the resonator. The coupling Hamiltonian then
reads:

Ĥ int (t) = âe� i! 0 t Ĉy(t) + âyei! 0 t Ĉ(t); (1.34)

where we introduced the operator̂C = B̂ y. In our case, the quantities u;l (! 0) read [82]:

 1 =
Z 1

�1
d�e i! 0 � Tr B (R̂Ĉy(� )Ĉ) = n th ; (1.35)

 2 =
Z 1

�1
d�e i! 0 � Tr B (R̂Ĉ(� )Ĉy) =  (nth + 1) ; (1.36)

where is the linewidth of the cavity andnth is the thermal occupation of the bath at fre-
quency! 0. Note that since the correlatorsTr B (R̂Ĉy(� )Ĉy) = 0 and Tr B (R̂Ĉ(� )Ĉ) = 0 ,
the terms with u 6= l in Eq. (1.31) are not contributing. Moreover, the shift Hamiltonian
ĤLS / � âyâ introduces a shift � in the frequencies of the system. It will be omitted in
the following.

In conclusion, the master equation reads:

@t �̂ = � i
h
ĤS; �̂

i

+
 (nth + 1)

2

�
â�̂ ây � âyâ�̂ � �̂ âyâ

�

+
n th

2

�
ây�̂ â � âây�̂ � �̂ âây

�
: (1.37)

For nonlinear systems, taking the annihilation operator of the resonator mode re-
mains a good approximation as long as the strength of the interaction remains smaller
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than the transition energy of the matter or cavity degrees of freedom [85]. In the ultra-
strong coupling regime, the master equation needs to be modi�ed [86]. In the following
of this thesis, we are not considering such cases. As a result, the general form of the
master equation will be:

@t �̂ = � i[ĤS; �̂ ] +
1
2

X

k

 k

�
2âk �̂ ây

k � ây
k âk �̂ � �̂ ây

k âk

�
; (1.38)

where the operator̂ak is the jump operator for thekth dissipation channel and k is the
associated loss rate.

1.2.4 Properties of the Lindblad master equation

The previous master equation (1.38) can be written in a more synthetic way:

@t �̂ = L �̂; (1.39)

where we introduced the Liouvillian super-operator:

L �̂ = � i[ĤS; �̂ ] +
1
2

X

k

�
2âk �̂ ây

k � ây
k âk �̂ � �̂ ây

k âk

�
: (1.40)

The Liouvillian superoperator is a linear map acting on operators. It implies also that
the Liouvillian superoperator can be recast as a matrix acting on the density operator
seen as a vector. As a result, we can write the eigenvalue equation:

L �̂ � = � �̂ � ; (1.41)

where the di�erent eigenvalues� are complex numbers. The eigenvalues� have to ful�l
the condition Re(� ) � 0, with the steady-state density matrix �̂ SS corresponding to
� = 0.

Contrary to unitary evolutions, which map a pure state into another pure state, the
master equation maps the initial state into a potentially mixed state. The density matrix
can be diagonalized to �nd its eigenstates and their respective probabilities:

�̂ =
X

n

pn j n ih n j: (1.42)

The normalisation condition is expressed as:

Tr( �̂ ) =
X

n

pn = 1: (1.43)

The trace of the density matrix is of course conserved by the unitary term of Eq. (1.38).
Moreover, sinceTr( L[�̂ ]) = 0 , the trace is also conserved by the Lindblad master equa-
tion.
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1.3 State-of-the-art numerical methods

Analytical solutions of the master equation (1.38) are limited to particular cases, so it is
important to have numerical methods to solve it. In order to be able to numerically deal
with Hilbert spaces of in�nite dimension, it is necessary to truncate the Hilbert space
conserving only the relevant states. For example, if we consider a single-mode optical
cavity, the dimension of the Hilbert space is in�nite. However, the losses will limit the
number of photons. In the Fock number basis, this is translated in a cuto�Nmax so that
the basis for the truncated Hilbert space is:

fj 0i ; j1i ; : : : ; jNmax ig : (1.44)

Of course, it is mandatory to test the convergence by checking that the results are not
changed if a larger value of the cuto�Nmax is considered.

When studying extended systems, the dimension of the Hilbert space grows expo-
nentially. If a site is accurately described in a Hilbert spaceH 1 of dimensiondim(H 1) =
Nmax + 1, then the dimension of the Hilbert space for a lattice ofm sites will be:

dim(H) = dim

 
mO

i =1

H (i )
1

!

= ( Nmax + 1) m : (1.45)

This exponentially increases the dimension of the Hilbert space representing an impor-
tant limitation on the number of sites that can be handled by brute-force calculations.

1.3.1 Montecarlo wavefunction method

When the dimension of the Hilbert space becomes large, it is not possible to store the
density matrix into the computer memory. A method which allows to improve a bit this
problem is the Montecarlo Wavefunction algorithm proposed by J. Dalibardet al. [61, 62]
and H. J. Carmichael [63]. First, note that the master equation given by Eq. (1.38) can
be written as

@t �̂ = � i
�

Ĥnh �̂ � �̂ Ĥ y
nh

�
+

X

k

 k âk �̂ ây
k ; (1.46)

where the operatorĤnh reads

Ĥnh = ĤS � i
X

k

 k

2
ây

k âk : (1.47)

The key point of the Montecarlo Wavefunction method is to consider the stochastic
evolution of statesj	 i i instead of the evolution of the density matrix, which is recovered
by averaging overN traj individual quantum trajectories:

�̂ = lim
N traj !1

1
N traj

N trajX

i =1

j	 i ih	 i j: (1.48)
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The time evolution of the statesj	 i i is the sum of two contributions. The �rst one is
a Schrödinger-like evolution associated with the non-Hermitian Hamiltonian̂Hnh . The
second contribution to the dynamics is due to quantum jumps accounting for the second
term of Eq. (1.46). In the next section, we will detail the algorithm for the evolution of
a state j	 i .

Algorithm for the evolution of a single quantum trajectory

Let us consider a trajectoryj	( t)i for the state of the system. In order to compute
the evolution from time t to t + �t , we start by generating a random number� with an
uniform distribution between 0 and 1. We then compute the probability for a jump to
occur betweent and t + �t as follows:

�p = �t h	 j
X

k

 k ây
k âk j	 i : (1.49)

If �p > � , we consider the non-unitary evolution:

j �	( t + �t )i =
1

1 � �p
(1 � i�t Ĥnh )j	( t)i : (1.50)

Note that since the norm is not conserved by thêHnh term, we have normalizedj �	( t+ �t )i
by 1 � �p .

If �p < � , instead, a quantum jump is enforced. To do so, one �rst computes the
probabilities associated with each channel:

�p k =
 k

�p
h	( t)jây

k âk j	( t)i : (1.51)

Then, one has to generate another random number� 0 and compute the cumulative
probabilities:

pi =
X

j � i

�p j : (1.52)

The next step is to compare� 0 with the di�erent pi and select the jump operator̂ai that
verify pi � � 0 < p i +1 . This is equivalent to generating a random integeri following the
probability distribution given by the probabilities �p i . The new state is calculated as

j	( t + �t )i =
âi j	( t)i

q
h	( t)jây

i âi j	( t)i
: (1.53)

Computation of the density matrix

We now show that the density matrix can be recovered from the trajectories computed
using the algorithm given in the previous section. Let us �rst consider the evolution of
the operator � (t) = j	( t)ih	( t)j:

� (t + �t ) = (1 � �p )
j �	( t)i

p
1 � �p

h�	( t)j
p

1 � �p
+ �p

X

i

�p i
âi j	( t)i

q
h	( t)jây

i âi j	( t)i

h	( t)jây
iq

h	( t)jây
i âi j	( t)i

:

(1.54)
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The �rst term of this expression represents the non-Hermitian evolution occurring with
a probability 1 � �p , whereas the second term takes the quantum jumps into account.
By including the expression of equation (1.50) in (1.54), and averaging over all the
trajectories, we get:

�̂ (t + �t ) = �̂ (t) � i�t [Ĥ; �̂ (t)] +
�t
2

X

i

 i

�
2âi �̂ (t)ây

i � ây
i âi �̂ (t) � �̂ (t)ây

i âi

�
: (1.55)

This shows that �̂ do solve the Lindblad master equation.
It is worth noting that within the quantum measurement formalism, the trajectories

j	 i (t)i have actually a physical meaning [87, 88]. Indeed, these trajectories can be seen
as the result of a photon counting process where photons escaping the cavity induce the
quantum jumps.

1.3.2 Matrix Product Operator (MPO) methods

In lattice systems, the exponential growth of the Hilbert space dimension is the main
limitation in the accessible simulations. Even when a Montecarlo wavefunction algorithm
is used, the manageable lattice sizes remain limited. For example, if we consider an
ensemble of 16 two-level systems, the Hilbert space dimension is already216 = 65536,
which is close to the computational limits of a desktop computer. As a result, it is
necessary to �nd methods to e�ciently truncate the Hilbert space.

For one-dimensional systems, a very powerful method is the density matrix renor-
malization group [8]. New sites are added to the lattice in an iterative way. The array is
divided into two equivalent blocks and their Hilbert space is truncated. This truncation
is based on the selection of the most probable states of the reduced density matrix,
obtained by tracing one of the blocks out of the ground state of the Hamiltonian for the
ensemble of the two blocks.

More formally, the DMRG algorithm is based on the following steps:

1. Construct the blocksB l and its mirror symmetric B R
l .

2. Add a site to B l and construct the Hamiltonian Ĥ l for B l � � B R
l .

3. DiagonalizeĤ l to get its ground state.

4. Trace out the right hand side of the system to obtain the reduced density matrix
�̂ L

l+1 for B l+1 = B l � .

5. Diagonalize �̂ L
l+1 . The m eigenstates with the largest probabilities are used to

construct a base forB l+1 .

6. Write all the operators for B l+1 in the truncated basis.

7. Repeat from step 2 until the desired number of sites is reached.
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Furthermore, it was shown that the states simulated using DMRG are Matrix Product
States [9, 10, 11] of the form:

j	 i =
n� 1X

i 1=0

� � �
n� 1X

i N

ci 1 ;i 2 ;:::;i N ji 1ij i 2i � � � j iN i : (1.56)

The particularity of these states is that the coe�cients ci 1 ;i 2 ;:::;i N can be written as
product of tensors:

ci 1 ;:::;i N = A [i 1 ]A [i 2 ] � � � A [i N � 1 ]A [i N ]; (1.57)

where the A [u] are non square matrices obtained using singular value decompositions
(SVD), whose dimension increases exponentially when approaching the center of the
lattice. The main interest of such formulation is that it allows a variational determination
of the coe�cient ci 1 ;i 2 ;:::;i N . In particular, this speeds up the time integration of dynamical
systems [16]. In order to have e�cient computations, the result of the SVD is truncated,
keeping only the � most signi�cant singular values, where� is called the bond link
dimension. More details can be found for example in Ref. [89].

It is possible to extend the Matrix Product State formalism to operators, giving the
so-called Matrix Product Operator (MPO) methods [14, 15]. They simulate open one-
dimensional systems as well as thermalization problems. The density operator is recast
as a vector (a so-called "super-ket") and the super-operatorL is seen as a linear map
acting on the super-kets. As for MPS, the super-ket representing the density operator
is decomposed as

j� ii =
n2 � 1X

i 1=0

� � �
n2 � 1X

i N =0

ci 1 ;i 2 ;:::;i N ji 1ii 
 j i 2ii 
 � � � 
 j iN ii ; (1.58)

where j� ii and the di�erent ji u ii are operators recast as kets forming a local base of
dimensionn2. The coe�cients c are decomposed on tensors using a succession of singular
value decompositions (SVD):

ci 1 ;:::;i N = A [i 1 ]A [i 2 ] � � � A [i N � 1 ]A [i N ]; (1.59)

The vectorized density operator is then evolved using the so-called time-evolution block-
decimation method until it reaches its steady state [15].

Lately this method has been improved thanks to two independent works [44, 43]
where the steady state is found by minimizingkLj � iik rather than by time evolution.
Note that whereasL was directly minimized in Ref. [44],L yL was used in Ref. [43]. The
minimization is then performed locally on each site successively in one direction and
then in the other direction. Convergence is reached after several of such optimization
sweeps.

The di�erent MPO based methods presented above are known to be e�cient for
one-dimensional systems with local interactions. There has been a recent proposal to
simulate two dimensional open lattices based on projected entanglement pairs [45]. This
formalism is an extension of the MPO description and implies to challenging implemen-
tations.
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Figure 1.6: Typical behaviour of the order parameterO(g)(left panel) and of the en-
ergy gap�( g) as a function of the parameterg for a second-order (continuous) phase
transition.

1.4 De�nition of dissipative quantum phase transitions

Among the di�erent type of phenomena that can be observed in correlated driven-
dissipative systems, we would like to concentrate on dissipative quantum phase transi-
tions. Due to the dissipative nature of the system, these transitions cannot be treated
like quantum phase transitions at equilibrium [23, 24]. In Chapters 2, 4 and 5, we will
explore several models exhibiting such dissipative phase transitions.

At zero temperature, a quantum phase transition is the non-analytic change of many-
body ground state properties when a parameterg of the system HamiltonianĤ (g) is
varied [23]. If we consider the gap�( g) between the ground state energy and the energy
of the �rst excited state, at the critical point g = gc we have�( gc) = 0 . At this point,
ground state observables have a singular behaviour. The typical behaviour of the gap
�( g) is represented as a function ofg in the right panel of Fig. 1.6. A transition breaking
a symmetry is described by an order parameter. For example, when studying the Mott
Insulator to super�uid phase transition in the Bose-Hubbard model at equilibrium [26],
the super�uid phase is characterized by a non-zero coherence. When the coherence is
studied across the transition, it vanishes in the Mott-Insulator phase. The behaviour of
order parameters is schematically represented for a second-order phase transition on the
left panel of Fig. 1.6.

As we have seen in section 1.2, the Hamiltonian alone is not enough to describe the
dynamics of open quantum systems: one needs to know the Liouvillian superoperator
L . We can write L (g) to express the fact that it depends on a parameterg. In a
dissipative system, the analogous of the ground state is the steady state described by
the density matrix �̂ SS(g) such that @t �̂ SS(g) = 0 = L (g)�̂ SS(g). At the critical point
g = gc, a dissipative phase transition is signalled by a non-analytic behaviour of the
steady-state observables. The eigenvalue� (g) of the Liouvillian with the smallest real
part (in absolute value) then plays a similar role to the energy gap�( g) in quantum
phase transitions [90]. When the real part of the �rst non-zero eigenvalue vanishes, then
the lifetime of the corresponding mode becomes in�nite. Furthermore, as the eigenvalue
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� (g) goes to zero, it becomes the most relevant one for the long term dynamics of the
master equation: the relaxation to the steady state is slowed down and dominated by
� (g). This e�ect is called critical slowing down, which has been recently studied in
driven-dissipative lattice systems [59].

1.5 Conclusion

In this chapter, we have introduced the physics of open quantum many-body systems.
We have discussed two relevant platforms, namely semiconductor microcavities and su-
perconductor quantum circuits, as well as their lattice implementations of Hubbard
models for photons. We have reviewed the general formalism of the master equation
for the density matrix and some state-of-the-art numerical methods. Finally, we have
introduced the main concepts for dissipative phase transitions.
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Chapter 2

Single-site critical phenomena:
dynamical optical hysteresis in the
Kerr model

Since its �rst observation in 1976 [91], optical bistability has been an intensively studied
subject (see Refs. [92, 93, 94, 95] for some recent examples). Experiments show the
existence of two stable solutions for the �eld inside a non-linear optical cavity. From the
theoretical point of view, this e�ect can be well described by a semiclassical analysis.
However, at �rst sight the simple semiclassical theory of bistability seemed to be in
contradiction with the exact steady-state solution found by Drummond and Walls in 1980
[96] for the Kerr model describing a single-mode cavity with a third order nonlinearity:
the Drummond-Walls solution of the master equation is unique.

The key point is that the inclusion of quantum �uctuations induces switching be-
tween the semiclassical solutions [97, 98, 99, 56] resulting in a unique mixed steady
state. Without �uctuations or for very weak nonlinearity, these lifetimes become very
large so that the semiclassical behaviour is recovered. Note that the �uctuation-induced
switching can be directly visualized by examining single quantum trajectories [100, 101].
Similar behaviour can be observed by adding classical �uctuations to the system, by
adding noise in the drive [102, 103] or thermal �uctuations [104]. In general, it is possi-
ble to de�ne a point where both semiclassical metastable solutions have equal lifetimes.
Away from this transition point, one branch becomes increasingly more stable compared
to the other. It is important to emphasize that this switching time can be extremely
long compared to all other timescales, in particular the cavity photon lifetime. This ex-
plains why the semiclassical mean-�eld approach is successful for explaining the observed
standard hysteresis of bistability.

In this chapter, we investigate the behaviour of the exact quantum solution when the
pump amplitude is modulated in time. In this case, we show that for a �nite modulation
time the system exhibits a dynamical hysteresis loop. When the modulation timescale is
increased, we observe that the hysteresis loop becomes smaller and eventually disappears

25
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in the limit of in�nitely slow modulations. Thus, our analysis shows the link between the
semiclassical bistability and the exact unique steady state. Furthermore, we show the
existence of a double power law in the hysteresis area as a function of the modulation
speed. We emphasize that the results of this chapter are for a single-mode cavity for
which exact numerical results can be obtained. The concepts presented here, however,
can be extended to the many-mode case.

The �rst section of this chapter is a review of Kerr bistability. The second section
contains the main results: the dynamical hysteresis is studied when a coherent drive
with time-dependent amplitude is applied to the system. The e�ect of the amplitude
sweep of the pump is investigated using di�erent theoretical approaches.

This work on optical bistability was initiated with Wim Casteels under the direction
of Cristiano Ciuti and led to a publication in Physical Review A[105]. The observation
of the double power-law presented in section 2.3 is the result of a collaboration with
the experimental group of Jacqueline Bloch and Alberto Amo at C2N. The experiments
were mainly done by Said Rodriguez, resulting in a paper published inPhysical Review
Letters [106].

2.1 Semiclassical versus quantum theory of the steady

state in the Kerr model

The Hamiltonian of a coherently driven Kerr non-linear cavity reads:

Ĥ = ! âyâ +
U
2

âyâyââ + F (âyei! L t + âe� i! L t ); (2.1)

where the operator̂a is the annihilation operator of the cavity mode,! is the frequency of
the optical mode andU quanti�es the Kerr non-linearity. The laser pump is characterized
by its amplitude F and its frequency! L . In order to eliminate the time dependence
from the previous Hamiltonian, we can write the Hamiltonian in the frame rotating at
the laser frequency! L :

Ĥ = � �^ayâ +
U
2

âyâyââ + F (ây + â); (2.2)

with � = ! L � ! .

The photon losses occurring at a rate are taken into account using the Lindblad
master equation:

@t �̂ = � i[Ĥ; �̂ ] +

2

�
2â�̂ ây � âyâ�̂ � �̂ âyâ

�
; (2.3)

where the density matrix �̂ describes the cavity mode. Note that this master equation
is valid for a bath at T = 0K , which is equivalent to a number of thermal excitations
nth = 0. In order to include thermal e�ect, we recall the master equation derived in the
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previous chapter:

@t �̂ = � i[Ĥ; �̂ ] +
 (nth + 1)

2

�
2â�̂ ây � �̂ âyâ � âyâ

�
+

n th

2

�
2ây�̂ â � �̂ âây � âây�̂

�
:

(2.4)

The Kerr model is rather general and can be obtained, e.g., in a system consisting of a
coherently driven linear cavity coupled to an ensemble of two-level atoms in the disper-
sive limit (large detuning between the atoms and the cavity resonance frequency with
respect to the coupling strength) [107]. In recent years, novel quantum optical systems
with large nonlinearities such as superconducting quantum circuits and semiconductor
microcavities have emerged (see Chapter 1). In semiconductor micropillars with em-
bedded quantum wells, a normalizedU= up to a few percent has been demonstrated.
For these systems the low temperatureT = 4K (liquid helium bath) together with the
cavity photon energy around1:5 eV results in a negligible number of thermal photons
nth � 0. In the context of circuit QED, much larger non-linearities can be achieved
jUj= � 1. A typical dilution fridge temperature of 50 mK and a resonator frequency of
5 GHz correspond to a thermal population ofnth ' 0:008 photons, which have a small
but non-negligible impact on the solution. In the following, unless explicitly speci�ed,
the results are presented in the zero temperature limit (nth = 0).

2.1.1 Mean-�eld equation for a single-mode Kerr cavity

To solve the Kerr model, the simplest approach is the mean-�eld one. Let us write the
equation of motion for the intracavity �eld ĥai = Tr( �̂ â):

@t ĥai =
�

� i� �

2

�
ĥai + i Uĥayââi � iF: (2.5)

The mean-�eld approximation is ĥayââi ' jh âij 2ĥai . Within this approximation, one
�nds a Gross-Pitaevskii-like equation for the �eld � = ĥai , namely

@t � = �
�

i� +

2

�
� + i Uj� j2� � iF: (2.6)

The cubic nonlinear equation (2.6) exhibits bistability. For some values of the pa-
rameters, it can admit two distincts stable steady-state solutions. In the steady state
(@t � = 0), the number of photonsn = j� j2 satis�es the following equation:

0 = U2n3 � 2� Un2 +
�

� 2 +
� 

2

� 2
�

n � F 2: (2.7)

Let us introduce the function:

f (n) = U2n3 � 2� Un2 +
�

� 2 +
� 

2

� 2
�

n � F 2: (2.8)

The solutions of Eq.(2.7) correspond to the zeros of functionf (n). If

� >

p
3

2
; (2.9)
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is veri�ed, then f (n) = 0 has three distinct solutions. Furthermore, if we consider the
derivative of the function (2.8), it is possible to analyse the stability of the di�erent
solutions: if f 0(n) > 0 the solution is stable, otherwise it is not.

Figure 2.1: Phase diagram obtained from Eq. (2.7) in the(� ; F ) plan for U = 0:1 .
The white area corresponds to the monostable phase and the coloured area corresponds
to the the bistable phase. Inset: number of photonsn = j� j2 as a function of the pump
strength F= obtained by solving Eq. (2.7) (continuous line). The two dashed lines
represent the frontier of the bistable region. In this region, there are three solutions,
however the one in the middle is not stable (see main text). For the inset,� = 1 :5 .

Figure 2.1 shows the phase diagram obtained from the analysis of the mean-�eld
equation. The region marked in blue corresponds to the bistable phase. The boundaries
of the bistable region correspond to the extremal values off . In this region, Eq. (2.7)
admits three solutions. However, the solution in the middle (yellow curve in the inset of
Fig. 2.1) is unstable (f 0(n) < 0).

2.1.2 Analytical exact solution of the master equation

Even though the semiclassical analysis provides already a good description of the ex-
perimental observations, the transposition of this phenomenology into a purely quan-
tum description raises many interesting questions. Indeed, a single quantum solution
is expected in the steady state instead of the two found in the previous section. The
exact solution was found by Drummond and Walls in their seminal work published in
1980 [96]. The solution was obtained using the complexP representation of the density
matrix [108, 109]. The density matrix �̂ can be mapped into a scalar function of two
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Figure 2.2: Number of photonn for a single quantum trajectory as a function of time
(blue line). The corresponding stable mean-�eld solutions are the horizontal dashed lines.
The quantum trajectory has been obtained with a Montecarlo wavefunction algorithm
in the Fock basis [62, 63]. Parameters are� = 1 :5 , U = 0:1 , F = 2:3 .

complex numbersP(�; � ) via the relation:

�̂ =
Z

D
P(�; � )

j� ih� � j
h� � j� i

d�; (2.10)

whereD is the integration domain in the complex plane,d� = d 2� d2� is the integration
measure andj� � i and j� i are coherent states. This mapping transforms the Lindblad
master equation into a Fokker-Planck equation which can be solved exactly for the Kerr
model (the details of the derivation can be found in Ref. [96]). As a result, it is possible
to compute exactly the various correlation functionsh(ây) i âj i in the unique steady state,
namely,

h(ây) i âj i =
�

� 2F
U

� i �
2F �

U

� j �( c)�( c� )
�( c + j )�( c� + i )

�
F (c + j; c � + i; 8jF=Uj2)

F (c; c� ; 8jF=Uj)
; (2.11)

with c = � 2(� + i = 2)=U, �( � ) being the gamma special function andF being the
hyperbolic function

F (c; d; z) =
1X

n=0

�( c)�( d)
�( c + n)�( d + n)

zn

n!
: (2.12)

To understand the exact steady-state solution, it is insightful to inspect single quantum
trajectories. Figure 2.2 shows the number of photons as a function of time for a single
quantum trajectory. The trajectory was obtained using a Montecarlo wavefunction
algorithm [62, 63] in the Fock number state basis. The black dashed lines represent the
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Figure 2.3: Number of photons as a function of the driving amplitudeF= . The contin-
uous line corresponds to exact quantum solution given in Eq. (2.11). The dashed line
depicts the mean-�eld value of the number of photonsj� j2. The branch plotted in red
is the unstable solution. Parameters:� = 1 :5 , U = 0:1 .

two stable semi classical solutions for the following parameters:� = 1 :5 , U = 0:1 ,
F = 2:3 . At random times the state of the cavity switches between the two mean-�eld
solutions and the time spent in each branch is much longer than the photon lifetime � 1.
When many trajectories are averaged, the resulting density matrix is a mixture of the
two semiclassical solutions with relative weight given by the relative time spent in each
branch.

Figure 2.3 shows the number of photons as a function of the pump intensityF . The
dashed line shows the multivalued solution obtained by solving the mean-�eld equation.
The black lines represent the two stable solutions whereas the red line represents the
unstable one. The continuous line is the exact solution of the master equation. It is
worth noting that the semiclassical solution shows small quantitative discrepancies with
the quantum solution outside of the bistable region.

2.2 Time-dependent master equation

The results given so far are the steady-state results for a time-independent master equa-
tion. In order to understand how the experimental observations and the semiclassical
analysis �t into the quantum description of bistability, we investigate the time-dependent
solution of the master equation considering a time-dependent pump. In order to study
dynamical hysteresis phenomena, we consider in particular a triangular modulation,
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Figure 2.4: (a) The photon populationn and (b) the g(2) second-order correlation func-
tion versus the driving amplitude F (units of  ) for a single-mode driven-dissipative
quantum resonator with a nonlinearity U = 0:1 and detuning � = 2  . In panel (a),
the steady-state mean-�eld (MF) result and the quantum steady-state solution (SS)
from Ref. [96] are presented. The other two curves are dynamic hysteresis cycles pre-
dicted by the time-dependent quantum master equation obtained by using two di�erent
sweep timests (ts=� F = 10= 2 for the curve with the largest hysteresis cycle and
ts=� F = 20= 2 for the smaller one). In panel (b) the steady-state solution is shown
together with the result for a time-dependent sweep withts=� F = 10= 2 (the arrows
indicate the direction of the sweep).
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consisting of one linear sweep fromF0 to F0 + � F and one fromF0 + � F back to F0:

F (t) = F0 +
t
ts

� F � (ts � t) �
t � 2ts

ts
� F � (t � ts) (2.13)

wherets is the sweep duration and� (� ) is the Heavyside step function.
In order to solve numerically the master equation (2.3), we have expressed the time-

dependent density matrix in the basis of Fock number statesjni . Convergence of the
results have been carefully checked by increasing the cuto� number of photons. Using
this numerical method, we can explore regimes with a number of photons of up to a few
tens. Figure 2.4 compares the steady-state results obtained from Eqs. (2.7) and (2.11)
(noted respectively MF and SS) with the results obtained by numerical integration of the
master equation (2.3) with a time-dependent drive amplitude (2.13). The top panel of
Fig. 2.4 reports the number of photons as a function of the drive amplitude. The yellow
and green curves represent the steady-state values respectively for the mean-�eld and
the exact solutions. The mean-�eld solution exhibits the characteristic "S" shape due to
the existence of three solutions of Eq.(2.7). The two other curves of this panel are the
numerical results of the time-dependent master equation (2.3), showing that when the
triangular modulation is applied a dynamical hysteresis appears. The largest hysteresis
loop is the result of a faster pump modulation (ts=� F = 10= 2) while the smaller one
is obtained with a slower pump sweep (ts=� F = 20= 2). This implies that the area of
the hysteresis loop decreases for increasingts. In the adiabatic limit of an in�nitely slow
sweep (ts ! + 1 ) the hysteresis disappears and the exact unique solution is recovered.
It is also interesting to study the equal-time second order correlation functiong(2) :

g(2) =
ĥayâyââi
ĥayâi 2

: (2.14)

In Fig. 2.4(b) the g(2) function is plotted as a function of the pump amplitude both for
the steady state and the modulated case. In the steady state, an important peak occurs
at the transition, with g(2) being signi�cantly larger than one. This feature cannot be
recovered from the mean-�eld equation for whichg(2) = 1. For a time-dependent sweep
of the pump, two peaks are observed when the number of photons goes from one branch
to the other. The peak is more (less) pronounced for decreasing (increasing)F .

2.2.1 Area of the dynamical hysteresis

As it is visible in the top panel of �gure 2.4, when the sweep is slower, the size of
the hysteresis loop is reduced. In order to be able to quantify such behaviour of the
dynamical hysteresis, we introduce the hysteresis areaA:

A =
Z F0+� F

F0

dF jn# � n" j; (2.15)

with n" (t) being the photon population when the pump is increased andn#(t) being the
photon population when the pump is decreased.
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Figure 2.5: The areaA of the hysteresis loop as a function of the sweep timets (units
of � F= 2) for di�erent temperatures (from bottom to top the thermal population nth is
0.2, 0.1, 0.05, and 0, corresponding respectively to�! c ' 1.8, 2.4, 3, and+ 1 ), together
with the result from the mean-�eld (MF) approximation for U = = 2 and � = 2  . The
solid lines are power-law �ts to the di�erent limiting regimes for which two separate
power laws are observed. For largets we �nd the behavior A / t � 1

s while for small
values ofts we �nd A / t � b

s with a coe�cient b that depends on the system parameters.
For the mean-�eld result we �nd an overall good agreement with(A � A0) / t � 2=3

s with
A0 > 0 the static hysteresis area.

Figure 2.5 shows the values ofA as a function of the speed of the modulationts 2=� F
for di�erent number of thermal photons. The hysteresis area of the time-dependent
mean-�eld theory result is also shown (noted MF). Our results show that for a relatively
fast sweep (smallts=� F limit), the hysteresis areas obtained with the exact and the
mean-�eld theory follow a similar behaviour. However, for slower sweeps, a signi�cant
di�erence appears: while the time-dependent mean-�eld result converges to a �nite area
A0 > 0, the quantum solution tends to 0. Note that the static areaA0 is the area between
the two stable branches obtained with the mean-�eld theory. In the quantum case, the
hysteresis area as a function of the sweep duration follows two distinct power-laws in
the slow and fast sweep limits. Moreover, the double power-law behaviour survives in
the presence of moderate thermal �uctuations. Notice that a slight decrease of the area
is observed with respect to the zero-temperature solution. This is expected because the
thermal �uctuations contribute to the switching between the two branches. In the slow
sweep limit, the power-law behaviour allows us to determine a characteristic timescale
� from the �t:

A =
�

ts

� � F

� � 1

: (2.16)

When the sweep timescale is similar to� (ts= � F � � ), the quantum �uctuations start
to play a signi�cant role and induce a deviation from the mean-�eld behaviour.

Figure 2.6 shows the dependence of the characteristic time� (from Eq. 2.16) as a
function of the nonlinearity U (top panel) and the detuning � (bottom panel). It is
worth noting that the characteristic time can be several orders of magnitude larger than
the lifetime 1= inside of the cavity for large detuning and/or small nonlinearity. The top
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Figure 2.6: The characteristic time scale� , as determined from the behaviourA =
(ts=(� � F )) � 1 for large ts, is shown (top panel) as a function of the nonlinearityU (units
of  ) for di�erent values of the detuning � and (bottom panel) as a function of the
detuning � (units of  ) for di�erent values of the nonlinearity U. Note the oscillating
behaviour with minima satisfying then-photon resonance conditions:Un(n� 1)=2 = n� .



Chapter 2. Dynamical optical hysteresis in the Kerr Model 35

panel shows that in the limit U ! 1 , the hysteresis survives and its characteristic time
converges to a �nite value. As a function of the detuning, an overall exponential increase
of the characteristic hysteresis time is observed. The bottom panel indicates that the
dynamical hysteresis survives for� <

p
3= 2 where the semiclassical prediction shows no

static hysteresis. In both panels, modulations in the behaviour of� appear due to photon
quantization. The minima correspond to the resonance condition� n = U=2(n � 1)n
with n a positive integer. These are obtained when the energy ofn pump photons is
equal to the energy ofn interacting photons in the resonator [110].

2.2.2 Analytical scaling behaviour in connection with the Kibble-
Zurek mechanism

In the previous section, we presented a comprehensive set of numerical results showing
the rich properties of the dynamical hysteresis of a Kerr nonlinear optical resonator with
a time-dependent pump. This section gives a semi-analytical derivation of the double
power-law behaviour. We �nd that the dynamical hysteresis is due to the non-adiabatic
response of the system when the pump is modulated around a critical point.

When changing in time one parameter of an Hamiltonian system, by de�nition the
response becomes non-adiabatic when the time scale of the change is much shorter than
the time scale of the system internal dynamics. Such a time is proportional to the inverse
of the energy gap between the ground state and the excited state manifold. In the case of
quantum phase transitions, the energy gap vanishes at a critical point (softening of the
excitation mode) leading to a divergence of the corresponding internal dynamics time
scale (critical slowing down). Therefore, when crossing a critical point, there is always a
non-adiabatic response region around the transition. This property is at the heart of the
Kibble-Zurek mechanism for the formation of topological defects in quenched quantum
phase transitions [111, 112, 113] (see for example Ref. [114] for a review).

As seen in Chapter 1, in driven-dissipative systems, the Hamiltonian gap is no longer
the quantity characterizing the adiabaticity of the change. The relevant quantity is the
spectrum of the Liouvillian super-operator. The eigenvalue equation for the Liouvillian
reads:

L �̂ � = � �̂ � ; (2.17)

where� is a complex eigenvalue ofL = � i[Ĥ; � ] + = 2(2â � ây + âyâ � + � âyâ) and �̂ � is
the corresponding eigen-density operator. The eigenvalues� are complex with negative
real parts (Re(� ) � 0) to ensure the evolution toward a steady state corresponding to
the eigenvalue� = 0. The real and imaginary parts of the eigenvalues� correspond
respectively to the damping rate and the frequency of the excitations. Here, we focus
on the Liouvillian gap, given by the eigenvalue with the smallest non-zero real part
(in absolute value). Figure 2.7 shows the real and imaginary parts of the �rst non-
zeros eigenvalues of the Liouvillan as a function of the drive amplitude for� = 2  and
U = 0:1 . Around the transition point F � 3 , the imaginary part of the �rst non-zeros
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Figure 2.7: The real (a) and the imaginary (b) part of the Liouvilian eigenvalue� (in
units of  ), corresponding, respectively, to the damping rate and the frequency of the
excitation mode. In particular, we consider the least damped mode (di�erent from the
steady state corresponding to� = 0) as a function of the drive amplitudeF (in units of
 ) for U = 0:1 and � = 2  . Around the transition point (at Fc � 3 ) the damping rate
(real part) is strongly suppressed, while the imaginary part is exactly zero, indicating
the presence of a soft di�usive mode. Away from the transition region there are two
symmetric least damped modes with equal damping rates but opposite frequencies (the
imaginary parts).

eigenvalues goes strictly to zero (right panel) and the real part is strongly suppressed
(left panel). As a result, the excitation mode around the transition is degenerate with the
steady state in frequency, i. e. it is a soft mode, while it has a small but �nite damping,
i.e. it has a di�usive behaviour. As a result of this energy degeneracy, it is expected that
the response of the system to a sweep will have a non-adiabatic contribution. From this
di�usive soft mode, we can de�ne the relaxation time� R = 1=jRe(� )j. It is important
to note that the so called tunneling time� T correspond to the value of the relaxation
time when jRe(� )j is minimal. This tunneling time sets the scale for the switching
between one semiclassical state to the other induced by quantum �uctuations at the
transition [98, 99, 56].

In order to be able to evaluate the non-adiabatic region leading to the hysteresis loop
quantitatively, we de�ne the distance to the value of the pump at the transitionFc:

� (t) = Fc � F (t): (2.18)

We consider a linear sweep betweenFc � � F=2 to Fc + � F=2 with a total duration ts.
Following Ref. [113], we de�ne the normalized sweep rate:

�
�
�
�
_� (t)
� (t)

�
�
�
� =

� F
ts

1
jFc � F (t)j

=
1
� s

: (2.19)

This equation de�nes the sweep timescale� s which is plotted on the top panel of Fig.
2.8 for two di�erent values of the sweep duration (ts 2=� F = 102 and 104). Note
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that this timescale is di�erent from the sweep durationts as it also takes the change of
amplitude into account. On the top panel of Fig. 2.8 we also plot the relaxation timescale
� R = 1=Re(� ). As mentioned above, it is possible, at equilibrium, to use the Kibble-
Zurek approach to estimate the region around the critical point when the system response
is not adiabatic by comparing the sweep rate with the gap of the Hamiltonian [114]. We
generalize this criterion to open quantum systems by comparing the sweep timescale� S

to the relaxation time � R de�ned from the spectrum of the Liouvillian: when� s > � R we
expect that the system enters the nonadiabatic regime. The hysteresis loop we observed
in the previous section is a result of the nonadabatic response of the system: the system
freezes in the nonadiabatic region and jumps to the other solution at the end of it. The
dotted lines on the top panel of Fig. 2.8 represent the boundaries of the nonadiabatic
region for ts 2=� F = 102.

In the slow sweep time limit,ts ! 0, the width of the non-adiabatic region vanishes
�F ! 0. In this limit, the relaxation time � R gets close to its maximum value� T

(the so-called tunneling time [98]).The change in the pump becomes non-adiabatic when
� s < � r ' � T , The boundaries of the non adiabatic region can be evaluated by imposing
� s = � T in Eq. (2.19), giving the expected� 1 exponent:

�F = 2� T

�
ts

� F

� � 1

: (2.20)

The panel (b) of Fig.2.8 shows the width of the non-adiabatic region�F presented as
a function of the sweep time durationts, showing the double power-law behaviour also
found for the area of the dynamic hysteresis. Furthermore, in the slow sweep limit, the
� 1 exponent (�F / t � 1

s ) is recovered. The hysteretic behaviour of the number of photons
is caused by nonadiabaticity as the system does not have time to relax to the steady state.
Hence, the area of the hysteresis loop is linked to the width�F of the nonadiabatic region
as con�rmed by our numerical results. In panel (c) the tunneling time� T is compared
with the characteristic time � (see previous section) as a function of the detuning�
for two values of the nonlinearity. This reveals qualitatively similar behavior with an
overall exponential increase as a function of the detuning and oscillations due to the
multiphotonic resonances.

For conservative systems with a �nite energy gap the Kibble-Zurek mechanism breaks
down for slow sweeps since the evolution becomes adiabatic [115, 116]. In this case an
e�ective description is provided by the Landau-Zener approximation for the evolution
of a system through an avoided energy crossing [117, 118]. Applying the Kibble-Zurek
approach results in a good agreement with the Landau-Zener result only for su�ciently
fast sweeps [115, 116]. Note that the Landau-Zener formula for a dissipative excited
state does not depend on the decay rate [119] and its applicability is connected to the
existence of a �nite gap for the frequency.

For the considered dissipative system on the other hand we �nd that the scaling
laws based on a Kibble-Zurek-like approach for the non-adiabatic regime agree with the
numerical results for the hysteresis area, also in the slow sweep limit. This shows that
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Figure 2.8: (a) The relaxation time� R as a function of the pumping strengthF= (the
blue curve that is peaked close toFc � 3). The two other curves represents the sweep
timescale� s. The width of the non-adiabatic region�F is marked by the two dashed
vertical lines aroundFc for the fastest sweep. (b) The width of the non-adiabatic region
�F as a function of the speed of the pump sweep. The two straight lines are the two
power laws. The one for slow sweep is obtained with the analytical formula (2.20). For
(a) and (b), � = 2  and U = :1 (c) The tunneling time � T (continuous line) and
the characteristic time � (dashed line)as a function of the cavity-pump detuning� for
U= = 1 (upper curves) andU= = 4 (lower curves).
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an adiabatic regime is never reached, no matter how slow the sweep. At �rst sight this
might seem in con�ict with the results for the Kibble-Zurek mechanism for conservative
systems since the real part of the Liouvillian gap remains �nite. However, for dissipative
systems it is the imaginary part of the Liouvillian eigenvalue that gives the analogous
of the excitation energy.

2.2.3 Truncated Wigner Approximation

So far the numerical results have been obtained by integrating the exact master equation
Eq. (2.3) or by diagonalizing the Liouvillian. However, in the case of smaller non-
linearities, convergence with respect to the photon cuto� might be impossible to reach.

In order to be able to deal with non-linearities much smaller than , we use the
stochastic method hased on the so-called truncated Wigner approximation. Mapping
the density matrix into the Wigner function W [56], the master equation is transformed
into the equation:

@tW = @�

h
i� � � iU(j� j2 � 1)� +


2

� + i F
i

W

+ @� �

h
� i� � � + i U(j� j2 � 1)� � +


2

� � � iF
i

W

+

2

(@� @� � W + @� � @� W)

+ i
U
4

@� @� � (@� � � � W � @� �W ) : (2.21)

The general solution of such an equation is unknown. However in the limit of small
nonlinearity U, the third-order derivative term can be neglected and a Fokker-Planck
equation for a well de�ned probability distribution is recovered [82]. This equation can
be solved using a Langevin approach based on a stochastic equation for the complex
�eld � (t):

@t � = �
�

i� +

2

�
� + i U(j� j2 � 1)� � iF + � (t): (2.22)

The stochastic term� (t) is a complex random Gaussian noise following the statistics:

� (t) = 0 ; (2.23)

� (t)� � (t0) =

2

� (t � t0); (2.24)

where� (� ) is the Dirac distribution and � is the statistical average. Within the Wigner
representation, averages ofsymmetrised observables are obtained from averages over
di�erent stochastic realisations of the �eld � (t): hfâyi ; âj gSi = � � i � j . For example, the
number of photonĥni is computed in the following way:

j� j2 = hfây; âgSi =
1
2

ĥayâ + ââyi = ĥni +
1
2

:

A time-dependent driving amplitude can also be included in the truncated Wigner
function approach. Figure 2.9 shows the number of photons as a function of the pump
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Figure 2.9: Number of photonsn as a function of the driving amplitude F (t). The
number of photons is obtained with the dynamical mean-�eld theory (dashed line), the
time-dependent master equation (continuous line) and the truncated Wigner approxi-
mation (dotted dashed line with error bars). Parameters:� =  and U = 0:1 and
ts = 20 � 1, 500 stochastic trajectories.

strength obtained with the truncated Wigner approximation, together with the results
given by the time-dependent mean-�eld equation and the exact master equation (2.3).
Note that, the Gaussian noise term induces switching from one branch to the other.

Figure 2.10 compares the result of the truncated Wigner stochastic method to the
exact one for the areaA of the hysteresis loop for di�erent durations of the pump sweep.
The continuous straight line is the result of a power-law �t for the area computed from
the integration of the Langevin equation (2.22) in the slow sweep limit. Since the
detuning and the nonlinearity are small, both curves super-impose. The power-law �t
of the hysteresis area as a function of the speed of the sweep is in very good agreement
with expected behaviour.

2.3 Experimental observation in semiconductor micropil-

lars

The previous predictions where observed experimentally by the team of Jacqueline Bloch
and Alberto Amo at the C2N laboratory in Marcoussis [106]. In this implementation,
the nonlinear cavity is a semiconductor micropillar: a single-mode cavity is obtained by
etching an heterostructure composed of two Bragg mirrors with quantum wells embedded
in between. The properties of the sample will not be discussed here but can be found in
Ref. [106]. The sample is maintained at 4K and driven by a frequency-tunable single-
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Figure 2.10: The areaA= as a function the speed of the sweepts 2=� F computed
with the master equation (2.3) (line with � symbols) and with the truncated Wigner
approximation (line with the + symbols) for U = 0:1 and � =  . The continuous
line is a power law �t of the hysteresis area in the longts limit. For the truncated
Wigner method, each point was obtained by averaging over 1000 trajectories. The
longest simulation (ts 2=� F = 103) took approximately 7 hours.

mode laser. The laser power is modulated by an electro-optic modulator (EOM on
Fig. 2.11). The waveform sent to the modulator contains a series of� 50 triangular
ramps with di�erent durations. The transmission through the cavity is measured with
a photodiode connected to an oscilloscope. The scanning timests span the 0.8� 50kHz
range. The di�erent trajectories are averaged in order to obtain the mean value of the
transmitted intensity. Note that the transmitted intensity measured by the photodiode
is proportional to the number of photons inside the cavity.

Panels (b) and (c) of Fig. 2.11 compare the transmitted intensity for one trajectory
with the averaged hysteresis loop for two di�erent speeds for a detuning� = = 1:09.
As a result of a slower sweep, panel (c) shows more switchings from one branch to the
other with respect to panel (b). Consequently, the hysteresis area is reduced in panel (c)
with respect to panel (b). Panel (d) shows measurements of the dynamical hysteresis for
� = 1 :01 at di�erent speeds (faster sweeps are in the bottom). In the case of a slow
sweep, the measured hysteresis strongly deviates from the mean-�eld solution (dashed
line). Panel (e) shows the dependence on the detuning (� = 1 :35 ) of the hysteresis for
the same sweep speeds. This dependence on� is conform to the behaviour showed in
�gure 2.6.

Here, we consider a di�erent de�nition of the hysteresis area

A =
Z P0+� P

P0

dPjn#(P) � n" (P)j; (2.25)
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Figure 2.11: (a) Experimental setup for the dynamical optical hysteresis experiments:
�= 2, MO, PD, and EOM+pol, stand for half-wave plate, microscope objective, pho-
todiode, and electro-optic modulator with a polarizer, respectively. The green (purple)
traces in the waveform generator and in the oscilloscope are measurements of the incident
(transmitted) signals. The hysteresis cycles in the oscilloscope are obtained by plotting
the transmitted versus the incident signal, overlaid for various scanning times. The
colored and black lines in (b)-(e) represent the transmission when the power is ramped
down and up, respectively. (b) and (c) show single shot (thin lines) and averages over
1000 realizations (thick lines) of dynamic hysteresis. The scanning time ists = 0:11 ms
in (b), and ts = 0:43 ms in (c). (d) and (e) show dynamic hysteresis averaged over 1500
realizations. The dashed line in (d) is the mean-�eld calculation corresponding to the
experiment.

with n" (P) (resp. n#(P)) being the transmitted number of photons averaged over many
realization of the experiments when the powerP is increased (resp. decreased). The
di�erent de�nition with respect to Eq. (2.15) is due to the fact that the triangular
modulation concerns the driving powerP = jF j2 instead of the amplitudeF . As seen
in Fig. 2.11, the hysteretic behaviour remains similar to what was found in the previous
section.

The hysteresis area, obtained experimentally, is plotted as a function of the speed
of the modulation on the left panel of Fig. 2.12. The di�erent curves correspond to
di�erent values of the detuning. As expected, the double power law and theA / (ts)� 1

(in the long sweep limit) are visible for small enough detuning. This is in good agreement
with the theoretical result of the panel (b) of Fig. 2.12 that represents the width of the
non-adiabatic region as a function of the duration of the power sweep. The width of the
non-adiabatic �I was obtained following the reasoning of section 2.2.2 (as shown in the
inset).

By changing the spatial size of the micropillars it is possible to modify the Kerr
nonlinearity U. In particular, the larger the size the smaller the value ofU. Figure 2.13
shows the area of the hysteresis loop as a function ofts for three cavities of di�erent
nonlinearitiesU= at a �xed detuning � = 1 :15 (top and bottom curves) and� = 1 :13
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Figure 2.12: (a) Measured hysteresis areaAav (de�ned in Eq. 2.25) as a function of
ts=Ps, where Ps is the scanned power range. Di�erent colors correspond to di�erent
values of� = . The gray lines are power law �ts with an exponent greater than -1. The
blue lines indicate power laws in the regime in�uenced by quantum �uctuations. The
experimentally retrieved exponents in this regime are shown with2� con�dence intervals
on the �ts. (b) Calculations of the non-adiabatic range�I of the driving intensity using
the scaling analysis described in the text. The power laws in (b) all have the same
exponents retrieved from the �ts in (a). The inset in (b) shows the system reaction time
� R in gray, and the sweep time scale� S in black, for U = 0:0075 and � = 1 :01  . The
dashed blue lines indicate the non-adiabatic range�I . The conversion of the theoretical
intensity units to the experimental power units is described in the Supplemental Material
of [106].

(middle curve). The double power-law behaviour is still visible for cavity 1 and the
in�ection in the curve corresponding to cavity 2 suggests it in this case whereas a single
power-law is visible for cavity 3. Furthermore, the size of the nonlinearity is larger for
cavity 1 than cavity 2 and the least nonlinear cavity is cavity 3. Hence the observation
of the increase of the time of the sweep to observe the� 1 exponent is in agreement
with the results of the previous section (see Fig. 2.6). The right panel of Fig. 2.13
shows the non-adiabatic region as a function of the duration of the sweep of the pump
computed using the results from 2.2.2. The nonlinearities are �tted and are consistent
with independent estimates. Note that as the nonlinearity is decreased, the number of
photons inside the cavity increases and the double power-law becomes a single power-
law. This is the signature of a thermodynamic limit for the photon populationn ! 1
in a single cavity [120].
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Figure 2.13: (a) Measurements of the hysteresis areaA for three cavities with di�erent
U= and approximately equal� = . U= decreases from cavity 1 to cavity 3. (b) Calcu-
lations of �I as explained in the text and in Fig. 2.12. For the highest and lowest curves
� = = 1:15 � 0:1, while for middle curve � = = 1:13 � 0:1, both in experiments and
calculations. In (a), the curve corresponding to cavity 3 was divided by 80. In (b), the
curve corresponding to the smallestU= was divided by 4, and the curve corresponding
to the largest U= was multiplied by 2. These multiplications (for improving visibility)
only shift the curves vertically and do not change the exponent.

2.4 Conclusion

In this chapter, we have investigated the time-dependent exact solutions of the quan-
tum master equation for driven-dissipative nonlinear quantum resonators described by
the Kerr model, thus including the role of quantum �uctuations and correlations. In
particular, we have focussed on the regime where the semiclassical mean-�eld approx-
imation predicts bistability and investigated temporal sweeps of the drive amplitude
revealing dynamic hysteresis loops. The time-dependent quantum solution, in contrast
to predictions of mean-�eld approaches, shows that the hysteresis area as a function of
the total sweep time tends to 0 following a double power-law decay. These results have
been shown to be robust with respect to thermal excitations for typical experimental
temperatures. We have determined a characteristic time associated to the power-law
decay of the dynamic hysteresis area, showing a rich behavior as a function of the non-
linearity and of the frequency detuning. Importantly, we have demonstrated that the
dynamic hysteresis is associated to a non-adiabatic response region with connections
to the Kibble-Zurek mechanism for quenched phase transitions. We have been able to
describe analytically the power-law behaviour with scaling arguments and shown the
role of a soft di�usive mode, i.e. having zero excitation energy, but a �nite damping.
The results were con�rmed using a truncated Wigner appproximation. Our theoretical
predictions were experimentally demonstrated in Kerr systems based on semiconductor
micropillars.
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The concepts presented here about dynamical hysteresis are not limited to single-
mode systems, but can be exported to lattice systems exhibiting a dissipative phase
transition. For example, driven-dissipative lattices of Kerr cavities (described by the
Bose-Hubbard model) are promising in this respect [59].
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Chapter 3

Corner-space renormalization method
for open quantum lattice systems

This chapter is devoted to the presentation of the corner-space renormalization method,
a novel numerical method used in most of the calculations discussed in the rest of
this thesis. The corner-space renormalization method has been successfully applied on
complex lattices exhibiting long range correlations and geometrical frustration [121],
non-equilibrium anisotropic spin-1=2 Heisenberg XYZ model [122] and Bose-Hubbard
model with coherent [123, 124] as well as incoherent [125] driving schemes and two-
photon pumping [126].

The main challenge encountered while simulating large quantum lattice systems is the
complexity growing exponentially with their size. Indeed, the dimension of the Hilbert
space for a multipartite system constituted ofm subsystems, each of them described
in a Hilbert space of dimensionN , is N m . Furthermore, the complete description of
open quantum systems requires the knowledge of the density matrix, hence the num-
ber of variables scales as the square of the Hilbert space dimension. In the case of
one-dimensional systems, Matrix Product Operator approaches have proven to be pow-
erful [15, 14]. Recent variational approaches could be a major step forward for the
simulation of one-dimensional dissipative arrays [43, 44]. In the case of two-dimensional
dissipative lattices, a recent proposal based on projected entanglement pairs [45] is an-
other example of the on going e�ort to address this type of problems.

In the �rst section, a general description of the corner-space renormalization method
is given with a particular focus on the most technical parts. In section 3.2, the method
is benchmarked to the driven-dissipative Bose-Hubbard model with coherent pumping.
In section 3.3, the main limitations of the method linked to the entropy of the system
density matrix are discussed.

This project directed by Cristiano Ciuti was initiated by Alexandre Le Boité and
Alexandre Baksic with the latter addition of Stefano Finazzi and myself. The method
was published inPhysical Review Letters[123].
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3.1 Description of the algorithm

The problem we want to solve is de�ned by the Lindblad master equation for the density
matrix �̂ of a driven-dissipative quantum lattice system:

@t �̂ = � i
h
Ĥ; �̂

i
+

X

j

�
ĉj �̂ ĉy

j �
1
2

(ĉy
j ĉj �̂ + �̂ ĉy

j ĉj )
�

; (3.1)

where Ĥ is the Hamiltonian of the system andĉj are jump operators. For simplicity,
we will consider a zero-temperature reservoir. In the case of optical cavities, the jump
operatorsĉj will take the form ĉj =

p
 j b̂j whereb̂j is the photon annihilation operator

and  j is the dissipation rate on thej th site of the lattice.
The method we propose is based on the selection of a subspace of the Hilbert space,

(that we call the "corner space") using the eigenvectors of the steady-state density
matrix of smaller lattices. At each step, two lattices are merged and theM pairs of
states maximizing their joint probabilities are selected to construct the basis of the
corner space. The accuracy of the method can be controlled by enlarging the dimension
of the corner space until convergence is reached.

More precisely, the algorithm can be decomposed into the following steps represented
in Fig. 3.1:

1. Determine the steady-state density matrix for two small lattices for which we can
solve the Lindblad Master equation (3.1) by brute-force integration.

2. Merge spatially two lattices for which the steady state is known and select theM
most probable product states to construct the basis of the corner space.

3. Determine the steady-state solution in the corner-space.

4. Increase the dimensionM of the corner space until convergence in the observables
is achieved.

5. Repeat from the second step in order to create a larger lattice.

Note that in order to solve the master equation (3.1) in steps 1 and 3, any method can
be used. In our calculations, if the dimension of the corner space (or the Hilbert space)
is small enough (M . 800) the master equation is integrated using a Runge-Kutta
algorithm, otherwise a Montecarlo wavefunction method is used [62, 63].

In the following, we will discuss in detail the two fundamental steps of the algorithm,
i. e., the construction of the corner space (step 2) and the check for the convergence
(step 4).

3.1.1 Construction of the corner space

Let us assume that we know the steady-state density matriceŝ� A and �̂ B of two lattices
A and B with respective Hilbert spacesH A and H B . Each density matrix can be
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The states in Eq. (3.2) are eigenstates of the density matrix̂� A 
 �̂ B . In the limit of
strong pumping and dissipation, correlations vanish and they become the exact eigen-
states of the system density matrix. Therefore they are a natural basis to describe
the driven-dissipative steady-state phases. Moreover, a generic state belonging to the
corner, of the formj	 i =

P
s csj 

(A )
r s ij  (B )

r 0
s

i , can describe correlations and quantum en-
tanglement betweenA and B while keeping correlations withinA and B. As a result,
the resolution of the master equation (3.1) can introduce correlations and entanglement
between the subsystemsA and B.

3.1.2 Convergence

The master equation (3.1) is solved in order to obtain the steady-state density matrix
in the corner space. We emphasize that by arbitrarily increasingM , the method be-
comes exact because the considered basis spans the entire Hilbert space. Note that the
convergence of the corner space is studied for observablesO(M ) = Tr( Ô�̂ C(M )). Hence,
the number of statesM to reach convergence depends on the considered observables.
Since for driven-dissipative systems the correlation lengths are reduced by the presence
of dissipation, convergence can be reached with a number of statesM much smaller than
the dimension of the Hilbert space, as it is shown below. This aspect will be detailed in
the following as an example is considered.

3.2 Applications of the algorithm to driven-dissipative

Bose-Hubbard models

In order to illustrate the proposed method, we consider the dissipative Bose-Hubbard
model under a coherent drive. The Hamiltonian in the frame rotating at the pump
frequency and for homogeneous pumping reads:

Ĥ =
X

j

�
� � b̂y

j b̂j +
U
2

b̂y
j b̂

y
j b̂j b̂j + F (b̂y

j + b̂j )
�

�
J
z

X

<j;l>

b̂y
j bl (3.4)

where� = ! p � ! c is the detuning between the pump and the bare boson frequency,U
is the on-site boson-boson interaction andF is the amplitude of the pump �eld. J is the
hopping coupling,z is the coordination number and

P
<i;j> denotes the sum over all the

pairs of nearest neighbours. For simplicity, we have �xed the phase of the pump in such
a way that F is real. Finally, each site is subject to losses with a dissipation rate .

3.2.1 Convergence for the corner-space dimension

In the following we focus on4� 4 lattices of hard-core bosons (U= ! 1 ) for which the
maximum number of boson per site isNmax = 1. The dimension of the full Hilbert space
for hard-core bosons on a4 � 4 lattice is 216 = 65536 which can still be treated exactly.
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Although it is computationally heavy, the master equation can be solved in the full
Hilbert space using a Montecarlo wavefunction algorithm using the Fock number state
basis and sparse matrices. This allows us to benchmark the corner-space renormalization
method.

In table 3.1 we show the results for a lattice with periodic boundary conditions. These
results have been obtained starting from a2 � 2 lattice, merging two 2 � 2 and then
doubling again, to get a4� 4 lattice. The table reports the results averaged over all the
lattice sites for the boson population per siten = ĥby

j b̂j i , the real part of the bosonic co-

herence< (hbj i ) and the nearest-neighbour correlation function:g(2)
hi;j i = ĥby

i b̂
y
j b̂i b̂j i =(ni nj ).

Note that for a factorized Gutzwiller-like density matrix �̂ G = 
 j �̂ j , g(2)
hi;j i = 1. Hence,

the di�erence g(2)
hi;j i � 1 quanti�es the degree of correlations between nearest-neighbours

beyond mean-�eld theory. Moreover, for hard-core bosons, the second-order correlation
function g(2) = ĥby

j b̂
y
j b̂j b̂j i =n2

j is always equal to 0 since two bosons cannot be on the same
site.

Remarkably, for the parametersJ= = 1, F= = 2, z = 4 and � = = 5 corresponding
to moderate correlations, table 3.1 shows that a very accurate result is obtained for a
corner-space dimension as small asM = 200. Indeed, we �nd negligible error forn,
namely 0:1% for the bosonic coherence and 0.3% forg(2)

hi;j i .

Similarly to table 3.1, in table 3.2, we gather the results for the number of photonsn,
the real part of the coherence< (ĥbi ) and the second-order nearest-neighbour correlation
function g(2)

hi;j i for the same parameters but with open boundary conditions instead of
periodic ones. The results presented here were obtained by merging two4 � 2 lattices.
Convergence is achieved with a corner-space dimensionM = 400: the estimation of the
number of photonsn and the real part of the coherence< (ĥbi ) are within the error bars
of the Montecarlo wavefunction for the4 � 4 lattice and there is a0:8% error for g(2)

hi;j i .

In Fig. 3.2 we present the value of the site-dependent boson population on each site
for open boundary conditions. The top panel has been obtained by solving the mas-
ter equation considering the full Hilbert space (of dimension 65536) using a Montecarlo
wavefunction algorithm. The statistical errors are due to the Montecarlo sampling pro-
cedure. The two bottom panels have been calculated with 400 (left) and 200 (right)
states in the corner space. Notice that for these corner-space dimensions the integration
of the master equation is done using a Runge-Kutta method. Hence, there are no sta-
tistical errors. Clearly, the boson population is intrinsically site-dependent in this case.
For the considered positive detuning� the fact that the sites on the boundary have
fewer neighbours than the ones in the bulk translate into a higher density of bosons.
The results of corner-space renormalization method (bottom panels) are in very good
agreement with the result in the full Hilbert space.

In the presence of driving, the in�uence of a speci�c boundary conditions is greatly
reduced with respect to the equilibrium case [7]. Indeed, the spatial symmetry is imposed
by the spatial shape of the driving �eld together with the dissipation and the correlations
are limited by the dissipation processes. We emphasize that when the lattice size is in-
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M n <(hbi ) g(2)
<j;l>

20 0.09443 0.2772 1.029
50 0.09469 0.2770 0.9693
100 0.09513 0.2768 0.9652
200 0.09541 0.2767 1.061
400 0.09544 0.2767 1.058
800 0.09549(3) 0.27671(5) 1.0644(1)
1600 0.09547(3) 0.27672(6) 1.0643(1)
65536 0.0954(1) 0.2764(2) 1.0643(3)

Table 3.1: Results of the corner-space renormalization method for the driven-dissipative
Bose-Hubbard model with periodic boundary conditions and the following parameters:
4 � 4 square lattice (z = 4), U = + 1 (Nmax = 1, hard-core bosons),J= = 1, F= =
2, � = = 5. The numbers in parenthesis indicate the statistical errors on the last
signi�cative digit due to �nite Monte Carlo sampling when applied. In this example,
the dimension of the full Hilbert space is216 = 65536. The case of65536states has
been solved by an independent Monte Carlo wavefunction code using a Fock basis for
the entire space and sparse matrix calculations.

M n < (hbi ) g(2)
<j;l>

20 0.1004 0.2840 1.035
50 0.1008 0.2838 0.940
100 0.1011 0.2833 0.938
200 0.1013 0.2829 1.058
400 0.1013 0.2829 1.055
800 0.1014(8) 0.2829(9) 1.063(3)
1600 0.1013(8) 0.2828(9) 1.0624(3)
65536 0.1012(9) 0.282(1) 1.064(2)

Table 3.2: Convergence of the observables for di�erent values of the corner-space dimen-
sion M for a 4 � 4 lattice with open boundary conditions (same parameters as in Fig.
3.2). The M = 65536 corresponds to the whole Hilbert space. Data with error bars
have been calculated by solving the master equation via the Montecarlo wavefunction
method. All the quantities are averaged over all the sites of the lattice.

creased through several spatial mergings, the convergence is ensured at each merging. In
Fig. 3.3, the convergence for increasing values of the corner-space dimensionM is illus-
trated for di�erent lattice sizes for hard-core bosons with periodic boundary conditions
(same parameters as in table 3.1). The results have been obtained by doubling the block
size at each iteration. For each lattice size, the curve shows a convergence parameter
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0.1070(1) 0.1015(1) 0.10153(3) 0.10756(6)

0.10138(4) 0.09484(4) 0.09540(3) 0.10144(3)

0.10123(5) 0.09532(6) 0.09531(8) 0.10101(3)

0.10735(3) 0.10177(7) 0.10130(5) 0.10717(9)

M = 65536 (open boundary conditions)

0.1073 0.1012 0.1012 0.1073

0.1012 0.0954 0.0954 0.1012

0.1012 0.0954 0.0954 0.1012

0.1073 0.1012 0.1012 0.1073

M = 400 (open boundary conditions)

0.1073 0.1011 0.1011 0.1073

0.1012 0.0954 0.0954 0.1012

0.1012 0.0954 0.0954 0.1012

0.1073 0.1011 0.1011 0.1073

M = 200 (open boundary conditions)

Figure 3.2: Site-dependent steady-state boson population for the driven-dissipative Bose-
Hubbard model for a4 � 4 square lattice (z = 4) with open boundary conditions. Pa-
rameters: J= = 1, � = = 5, U= = 1 (hard-core bosons). The results in the top
panel have been obtained by considering the full Hilbert space (65536states) via a
Montecarlo wavefunction calculation (5500 quantum trajectories for the case of open
boundary conditions). The bottom left panel is obtained with the corner-space renor-
malization method (obtained by merging two4 � 2 lattices) and a number of states
M = 400. The bottom right panel is obtained with only M = 200 basis states. The
gray scale shades are a guide for the eye.

for the boson population, namely the quantityun (M ) = n(M )=n(Mmax ) whereMmax is
the largest value ofM considered. This convergence parameter is convenient to see the
relative deviations and visualize the results for di�erent lattice sizes in the same graph.
The red dashed lines represent a deviation of� 1%.

When the lattice size is increased, convergence is achieved for larger values ofM .
However, while the size of the Hilbert space grows exponentially with the numberN of
lattice sizes, the growth ofM needed to obtain a given relative error is much milder.
Moreover, we can extract the scaling of the corner-space dimension as a function of
the number of sitesN from Fig. 3.3. For the parameters considered here, whenN is
doubled, M must be multiplied approximately by 5. Thus, the value ofM to obtain a
given accuracy for this observable and this model follows a power-law, namely it scales
as N � with � � 2:3.
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Figure 3.3: Convergence curves as a function of the corner space dimensionM for
di�erent lattice sizes (see the legend in the inbox). For each lattice size, the boson
population convergence parameterun (M ) (see de�nition in the text) is plotted. The
dashed lines represent a� 1% deviation. Parameters: J= = 1, � = = 5, U= = 1
(hard-core bosons),z = 4 and periodic boundary conditions.

3.2.2 Application of the corner-space renormalization method
to soft-core bosons

In order to explore the phase diagram for the coherently driven Bose-Hubbard model [47,
50], it is interesting to apply our method to the case of soft-core bosons (U= < + 1 ).
In this case, depending on the drive and the number of excited bosons, a brute-force
numerical integration of the master equation can become out of reach even for lattice
sizes as modest as3 � 3. Indeed, the local boson cuto�Nmax necessary to accurately
recover the single-site physics is larger than one. For a cuto�Nmax = 4 the Hilbert space
dimension is59 ' 2 � 106, which is too big for an exact treatment.

In table 3.3, we present the results for soft-core bosons and a larger hopping coupling
with respect to the previous section (U= = 20 and J= = 3). As shown by the
convergence progression presented in table 3.3, results with deviation below1% can be
obtained for a corner-space dimensionM = 3200, that is 6 orders of magnitude smaller
than the full Hilbert space for a systam with large spatial correlations (g(2)

hi;j i � 1 = 0:63).

An example of the temporal dynamics leading to steady-state solutions is reported
in Fig. 3.4, plotting n and g2 for di�erent lattice sizes. The corner method results are
compared with the non-equilibrium mean-�eld approach used in Refs. [47, 50, 110], based
on the exact analytical solution of the master equation for the one-site problem[96]. The
initial condition for the density-matrix dynamics for the 2 � 2 lattice is the mean-�eld
solution. After a transient, a steady-state solution is obtained. The initial condition for



Chapter 3. Corner-space renormalization method 55

M n <(hbi ) g2 g(2)
<j;l>

20 0.0902 0.1967 1.646 1.28
50 0.1006 0.1907 1.513 1.34
100 0.1044 0.1886 1.454 1.26
200 0.0968 0.1922 1.324 1.51
400 0.1006 0.1905 1.291 1.51
800 0.1009(2) 0.1903(3) 1.242(3) 1.57(2)
1600 0.1014(2) 0.1896(2) 1.226(3) 1.58(2)
3200 0.1002(2) 0.1897(2) 1.185(2) 1.63(2)
6400 0.0994(2) 0.1899(2) 1.179(3) 1.63(1)

Table 3.3: Parameters:4 � 4 square lattice (z = 4) with periodic boundary conditions,
U= = 20, J= = 3, F= = 2, � = = 5. A number Nmax = 3 of bosons per site has been
considered. In this case, the dimension of the full Hilbert space is416 ' 4:3 � 109.
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Figure 3.4: Evolution ofn and g2 versus timet (units of 1= ) for the driven-dissipative
Bose-Hubbard model with periodic boundary conditions on lattices of various size for
the following parameters:U= = 20, J= = 3, F= = 2, � = = 5 . Solid lines represents
evolutions performed by direct integration of the master equation, while points depict
Monte Carlo wavefunction calculations. When error bars are not shown, the statistical
error is smaller than the point size. The black-dotted lines represent the mean-�eld
values. The initial conditions for the2� 2 and 3� 3 are the mean-�eld solution whereas
the steady-state value for the2 � 2 is the initial state for the 4 � 2, the 3 � 3 for the
6 � 3 and the 4 � 2 for the 4 � 4.
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the 4 � 2 lattice is constructed from the steady-state solution of the2 � 2 lattice and so
on and so forth. We have also merged3� 1 clusters to get the3� 3 lattice and then the
6� 3 case by doubling. We see that the steady-state observables for the3� 3, 4� 4 and
6 � 3 lattices with periodic boundary conditions tend to converge to the same value, so
the results are already approaching those for a lattice with an in�nite number of sites.
The �nite spatial range of the correlations of the driven-dissipative system is responsible
for such relatively quick convergence. For the parameters in Fig. 3.4, the deviations
from the mean-�eld theory are around20%for n and g2.

Mean-�eld Corner method

U= n g2 N (M )
sites n g2 g(2)

<j;l>

1 0.0953 0
8 � 4(1600) 0.09527(2) 0 1.0436(3)
8 � 8(8000) 0.0948(2) 0 1.0237(6)

20 0.125 0.836
4 � 4(3200) 0.1281(4) 0.859(4) 1.172(5)
6 � 3(6400) 0.1282(9) 0.858(9) 1.173(4)

20� 0.0768 0.8879
4 � 4(6400) 0.0994(2) 1.179(3) 1.63(1)
6 � 3(6400) 0.0992(1) 1.202(4) 1.65(1)

10 0.9587 0.6088
4 � 2(6400) 0.9275(8) 0.631(1) 1.0127(8)
3 � 3(8000) 0.9281(9) 0.617(1) 1.0069 (6)

1 0.1156 1.265 16� 8(600) 0.1156 1.259 0.9897
0.5 0.1126 1.112 16� 16(400) 0.1126 1.1105 0.9941

Table 3.4: Parameters:J= = 1 (except the third line with the � sign, obtained with
J= = 3), F= = 2 and � != = 5. The maximum number of bosons per site isNmax = 1
for hard-core bosons,Nmax = 3 for U= = 20, Nmax = 5 for U= = 10, Nmax = 4 for
U= = 1 and 0:5.

Finally, in table 3.4, we gather results for di�erent lattices and compare them to
mean-�eld solutions [47, 110]. We checked the convergence of the results with respect to
M for errors below0:5%. It is apparent that in the considered case the deviation from
mean-�eld are rather small for hard-core bosons and a large8� 8 lattice, as quanti�ed by
a g(2)

hi;j i � 1 ' 0:02. Signi�cant deviations are instead present when the on-site interaction
U is competing with the hopping couplingJ (the cases withU= = 20 and J= = 1
and 3 in Table 3.4). For example, the value forU= = 10 and J= = 1 is close to a
two-photon resonance [110] and indeed the the population of bosons per site is much
higher (close to one boson per site) with the on-siteg2 correlation function quite close
to 0:5. For U= = 0:5, it is possible to simulate very large lattices (a16� 16 lattice is
reported) with a very small number of states (M = 400).
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Figure 3.5: Probabilitiespr (top panels, logarithmic scale) and expectation value of the
total boson population hntot i =

P
j hnj i for the orthonormal eigenvectorsj	 r i of the

steady-state density-matrix (̂� =
P

r pr j	 r ih	 r j and pr � pr +1 ). The state rank r is in
logarithmic scale. Lattice size:6 � 3. Driving parameters: F= = 2, � != = 5. Left:
U= = 20 and J= = 3. Right: hard-core bosons withJ= = 1.

3.3 Limitations of the method

Computationally, the main limitation comes from the memory usage. It can be estimated
as a function the number of sitesNsites asO(NsitesM 2) whereM is the dimension of the
corner-space, since there areNsites jump operators.

Physically, if we consider the diagonal decomposition of the steady-state density
matrix �̂ =

P
r pr j	 r ih	 r j where pr > p r +1 , convergence will be met more easily when

the probabilities pr decrease fast. Visually, this can be appreciated from the probability
spectra as the ones plotted in Fig. 3.5 in which we show an example of the probability
distribution pr (top panels, logarithmic scale). For the bottom panels, we show the
expectation value of the total number of bosons in the lattice versus the state rankr for
a 6� 3 lattice of soft-core bosons withU = 20 (left panels) and hard-core bosons (right
panels). In the hard-core boson case, a rather well de�nite shell structure is apparent.
The �rst state ( r = 1), which captures a large part of probability, is followed by shells
of states having close probabilities and densities. In the case of a homogeneous system,
a factorized Gutzwiller density-matrix with each site having the same reduced density-
matrix leads to a shell structure with exactly �at plateaux structures due to symmetry
reasons. In fact, a permutation of the role of the di�erent sites does not change the
probability of a state and observables likentot , which is a sum of the photon number
over all the sites. In the right panel of Fig. 3.5 (hard-core boson case), the situation is
qualitatively close to the Gutzwiller case, even though the plateaux are not exactly �at.
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In the case of soft-core bosons in the left panel of Fig. 3.5, a �rst shell is clearly visible,
while higher shells merge into a continuous curve where the di�erent quantities increase
gradually, denoting a large degree of correlations (indeedg(2)

<j;l> � 1 ' 0:6 in the case
considered).

Moreover, we observe that after the �rst plateau, the decrease in probability is
sharper in the hard-core bosons case (left panel) than in the soft-core one (right panel).
As a result, a much bigger dimension of the corner space is required to achieve conver-
gence in the strongly correlated case (M = 6400) with respect to the hard-core case
(M = 1600).

The main limitation of the method is linked to the von Neumann entropy of the
system:

S = � Tr [ �̂ ln( �̂ )] = �
X

r

pr ln(pr ): (3.5)

Indeed, lower entropy requires a lower dimension for the corner space. For example, in
the limit of �̂ being a quasi-pure state, we haveS ' 0 and the corner-space dimension
tends to one. In the opposite limit of a density matrix where all the states have the
same probability, the entropy is maximal, namelyS = N ln(N ) (N being the Hilbert
space dimension) and the corner-space renormalization method cannot converge until the
complete Hilbert space is considered. The link between the entropy and the convergence
of the corner-space renormalization method will be further discussed in Chapter 4.

In contrast, note that the limiting factor in MPO method is not the entropy of
the density matrix but long-range correlations, which can require too large bond-link
dimension to reach convergence (see Chapter 5).

3.4 Conclusion

In this chapter, we have presented a theoretical method for driven-dissipative correlated
lattice systems. The proposed numerical algorithm follows a hybrid real-space renor-
malization group approach: the states considered for the computations in large lattices
are selected as product-states of the eigenvectors of the steady-state density matrices
in smaller systems, in order to maximize their joint probability. We have successfully
benchmarked the method by applying it to the driven-dissipative Bose-Hubbard model
on two-dimensional square lattices. Unlike mean-�eld theories, where the decoupling
approximation is not controlled, the present numerical method allows us to get results
with controllable accuracy, depending on the dimension of the corner space.

In the following chapters, the proposed method will be applied to anisotropic Heisen-
berg spin lattices (Chapter 4) and to the incoherently pumped Bose-Hubbard model
(Chapter 5).



Chapter 4

Critical behaviour in the 2D XYZ
model

The emergence of phase transitions in extended driven-dissipative quantum systems
raises many question. In particular, the extent and the critical behaviour of quantum
correlations as a function of the system size is yet to be explored in conjunction with
the mixed nature of the steady-state. Moreover, the computation of the steady-state of
extended lattices is of an outstanding di�culty. As a result, the evaluation of critical ex-
ponents at the transition remains an open problem. The main advance in that direction
has been obtained using the Keldysh functional formalism in a renormalization group
approach. This has allowed to show some thermodynamic limit aspects of phase tran-
sitions for boson systems [127, 128, 129] or for spin systems [67]. However, up to now,
such formalism has not allowed to study the role of quantum correlations in dissipative
phase transitions.

In this chapter, we focus our study on a physical system undergoing a genuine dis-
sipative phase transition that has recently been under intense study [48, 52]: a non-
equilibrium anisotropic Heisenberg XYZ model for a lattice of 1/2-spins. A single-site
mean-�eld analysis shows that the system undergoes a transition (among others) be-
tween a phase where all the spins are aligned along thez-axis to a phase where a non-
zero magnetization in thexy-plane appears. Furthermore, a cluster mean-�eld study of
that transition shows that it survives in two dimensions, and MPO simulations showed
that there is no transition in one dimension [52].

The �rst section of this chapter introduces the XYZ model and reviews the mean-�eld
phase diagram obtained in previous studies [48, 52].

In section 4.2, we show results for two-dimensional lattices obtained with the corner-
space renormalization method being able to evaluate the critical exponents for the mag-
netic susceptibility and the quantum correlations. Furthermore, we studied the be-
haviour of the entropy across the critical region as a function of the system size, showing
that the transition shares properties from both thermal and quantum phase transitions.
Moreover, we also present calculations of the Liouvillian gap. For comparison, a �nite-
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size analysis in the one-dimensional case is performed in the last section.
This work was done in a collaboration with Riccardo Rota, Nicola Bartolo under the

direction of Rosario Fazio and Cristiano Ciuti. The main results of the second section
have been published inPhysical Review B[122].

4.1 Dissipative XYZ Model

We consider a two-dimensional lattice of1=2-spins governed by the Heisenberg XYZ
Hamiltonian:

Ĥ =
X

<i;j>

�
Jx �̂ x

i �̂ x
j + Jy �̂ y

i �̂ y
j + Jz �̂ z

i �̂ z
j

�
; (4.1)

with �̂ x
i , �̂ y

i and �̂ z
i being thex; y and z Pauli matrices for sitei . Losses enter the master

equation through on-site spin �ip operators�̂ �
i , occurring at a rate  :

@t � = � i[Ĥ; �̂ ] +

2

N sitesX

i =1

(2�̂ �
i �̂ �̂ +

i � �̂ +
i �̂ �

i �̂ � �̂ �̂ +
i �̂ �

i ): (4.2)

Even if at �rst glance in Eq. (4.2) no driving term seems to be present in the system,
the considered model is not at equilibrium. Indeed, since in the case of an anisotropic
coupling (Jx 6= Jy) the jump operators are not commuting with the Hamiltonian, dis-
sipation will not lead the system to the ground state ofĤ . Indeed, as we show in the
next section, this master equation can describe the dynamical behaviour of laser drives
on an atomic cloud creating dressed atomic states that will give Eq. (4.2).

4.1.1 Experimental implementation

We detail here an experimental proposal to realize the e�ective model given by the
Hamiltonian (4.1). Even though this model does not directly describe a physical system,
it is a relevant description of realistic experiments. In particular, this proposal is based
on Rydberg atoms that are pumped using a two-photon scheme [48]. The two-photon
pump is used to create and tailor e�ective interactions between the nearest-neighbouring
atoms.

For the sake of simplicity, we consider two two-level systems (we denote the ground
state of the atom jgi and the excited statejei ). The Hamiltonian describing the two
neighbouring atoms is:

Ĥ ryd = ! (�̂ z
1 + �̂ z

2) + V �̂ ee
1 �̂ ee

2 ; (4.3)

with, ! being the resonance frequency of the atom,V denoting the frequency shift
induced by the dipole-dipole interaction and̂� ee

j = jeihej j . The atoms are pumped using
four lasers of di�erent frequencies
 1, 
 2, 
 3 and 
 4. Moreover, the lasers are detuned
from the atom frequency by a detuning� . This excitation scheme is presented in Fig.
4.1. More details can be found in Ref. [48].
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Figure 4.3: Angularly averaged susceptibility (Eq. (4.11)) as a function ofJy, for di�erent
lattice sizes. The other parameters areJx = 0:9 and Jz =  . The inset shows the value
of � max

av as a function of the lattice sizeL. The dotted line is a power-law �t of the
�nite-size analysis. When not shown, the error bars are smaller than the symbols. All
the simulations were done with periodic boundary conditions.

size of the cluster under consideration (region noted inc? on the right panel of Fig. 4.2).

4.2 Results with the corner-space renormalization method

In the following, we study the phase transition from a paramagnetic to ferromagnetic
phase along the red dashed line of the right panel of Fig. 4.2. Applying the corner-space
renormalization method (see Chapter 3), we investigated the critical behaviour at the
transition.

In order to address criticality quantitatively, we have performed a �nite-size analy-
sis. In a phase transition, when the number of sites is increased some quantities should
diverge. In our case, we consider the magnetic susceptibility, the von Neumann entropy
and entanglement witnesses: the negativity [130] and the Quantum Fisher Informa-
tion [131, 132, 133, 134].

4.2.1 Magnetic susceptibility

In general, a crucial indicator for a paramagnetic to ferromagnetic phase transition is
the magnetic susceptibility�̂ : this quantity measures the response of the magnetization
of the system when a small magnetic �eld is applied.

Since the system under study is anisotropic, the response of the magnetization in
the xy plane depends on the direction of the magnetic �eld~h = h(cos(� ); sin(� ))T ( (� )T
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representing the transpose operation) producing the perturbation

Ĥext (h; � ) = Ĥ +
X

i

[h cos(� )�̂ x
i + h sin(� )�̂ y

i ] : (4.7)

The resulting magnetization ~M can be measured in thexy plane:

~M (h; � ) =
1

L2

 
h
P

j �̂ x
j i

h
P

j �̂ y
j i

!

=

 
� xx � xy

� yx � yy

!

�

 
h cos(� )
h sin(� )

!

; (4.8)

with L being the size of theL � L lattice. The induced magnetization depends on the
susceptibility tensor characterized by the matrix elements:

� �� =
@M�

@h�

�
�
�
�
h! 0

; (4.9)

where

M � =
1

L2

L 2X

i =1

Tr( �̂ �
i �̂ ): (4.10)

In order to evaluate the size dependence, it is more convenient to deal with a scalar
value. Hence, we take the angular average of the susceptibility tensor:

� av =
1

2�

Z 2�

0
d�

@j ~M (h; � )j
@h

�
�
�
�
�
h! 0

: (4.11)

The averaged susceptibility is plotted in Fig. 4.3 for di�erentL � L lattices with L
going from 2 to 6 and with the parametersJx = 0:9 and Jz =  . For all values ofL,
� av exhibits a peak close toJy � 1:05 . The peak value of� av, � max

av (L) obtained for
J max

y (L), increases following a power law:

� max
av (L) / L � ; (4.12)

with � being the critical exponent for the susceptibility. This power law behaviour is
shown in the inset of Fig. 4.3. The best �t with the available data gives:

� = 1:59� 0:10:

By doing a critical scaling ofJ max
y (L), we can also estimate the critical value of the

couplingJy, J (c)
y ' 1:07� 0:02. For comparison, in Ref. [52] via a4� 4 cluster mean-�eld

solution, it was found that the transition occurs forJy ' 1:03.
The computation of � av is rather demanding: for each value of the parametersJy

we compute the magnetization for four di�erent amplitudesh of the magnetic �eld both
applied on thex and the y components. This corresponds to� = � and � = �= 2 in Eq.
(4.7).

Note that for L � 3, the master equation was solved in the full Hilbert space by
integrating it exactly using a Runge-Kutta algorithm. For larger lattices than 4 � 4,
we used the corner-space renormalization method detailed in Chapter 3. The hardest
point, the 6 � 6 lattice with highest Jy required a week of computation time (5000 was
the dimension of the Hilbert space to reach convergence).



Chapter 4. Critical behaviour in the 2D XYZ model 65

0.9 1 1.1 1.2 1.3 1.4
0

2

4

6

8

10

J
y
/g

S

 

 

5x5
4x4
3x3
2x2

1.021.041.061.08

10

20

30

40

50

J
y
/g

g 
dS

/d
J y

Figure 4.4: Von Neumann entropyS as a function of the normalized coupling parameter
Jy= for di�erent values of the sizeL of the square lattice. Same parameters as in Fig.
4.3. Inset: the derivative of the entropy with respect to the coupling parameterJy .

4.2.2 Entropy of the system density matrix

In thermal phase transitions, the entropy shows signatures of the transition from an
ordered to a disordered phase. However, in a quantum phase transition at zero temper-
ature the ground state is a pure state, so its entropy is always zero.

Let us recall the von Neumann entropy associated with the system density matrix:

S = � Tr( �̂ ln �̂ ) = �
dim( H )X

i =1

pi ln pi ; (4.13)

where �̂ =
P

i pi j i ih i j and fj  i ig form the orthonormal basis of the eigenvectors of̂� .
The eigenvaluespi are the corresponding probabilities.

In Fig. 4.4, the entropyS is plotted as a function ofJy across the critical region. For
Jy ' Jx the entropy is small (zero in the isotropic coupling case). As the dissipation
dominates the system dynamics, the resulting steady-state is close to the trivial state:
�̂ � j ### � � � #ih# � � � ### j . For larger Jy, we observe an abrupt increase of the entropy
close to the critical point. As a result, there is peak in the derivative of the entropy
@S=@Jy close to the critical point. This can be seen in the inset of Fig. 4.4 that shows
the derivative of the entropy with respect toJy across the critical region. When the
size of the lattice increases the peak gets sharper and more pronounced. By �tting the
maximum of the @S=@Jy with a power law,

�
@S
@Jy

� max

/ L � ; (4.14)

we �nd the critical exponent � = 1:6 � 0:2.
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Figure 4.5: Entanglement negativityN vs. the normalized coupling parameterJy= for
small lattices. Same parametersJx= and Jz= as in Fig. 4.3. Inset : sketch of the
separation of the two subsystems in the2 � 6 case.

The behaviour of the von Neumann entropy whenJy is varied across the phase bound-
ary is reminiscent of the behaviour of the entropy during thermal phase transitions when
the temperature varies across the critical temperature. In this analogy, the derivative
@S=@Jy plays the role of the speci�c heat in classical phase transitions.

4.2.3 Entanglement witnesses

A key feature of quantum phase transitions is the critical behaviour of quantum correla-
tions. In that perspective, we studied two entanglement witnesses, the negativity [130]
and the Quantum Fisher Information [131, 132, 133, 134].

An entanglement witness is a quantity whose value ful�lling a given condition im-
plies the presence of entanglement. To sum up, if the entanglement witness shows
entanglement then it is present, but the the reciprocal is not necessarily true. As a
result, studying several entanglement witness can be necessary. Indeed, if the presence
of entanglement is not indicated by a witness it can be by another one.

In order to de�ne the negativity, we consider a lattice that can be divided in two
subsystemsA and B. The Hilbert space of the system can be writtenH = H A 
 H B .
It is convenient to use an orthonormal basis of product statesj� A

i ; � B
j i . Using this base,

we can compute the partial transpose of̂� with respect to A:

h� A
k ; � B

i j �̂ TA j� A
l ; � B

j i = h� A
l ; � B

i j �̂ j� A
k ; � B

j i : (4.15)

The key point in the computation of the negativity is that in the presence of entanglement
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Figure 4.6: Quantum Fisher InformationFQ=N (normalized by the numberN = L2 of
sites in the square lattice) as a function of the normalized coupling parameterJy= for
di�erent sizes L. Same parameters as in Fig. 4.3. The inequalityFQ=N > 1 witnesses
bipartite entanglement. Inset: maximum value ofFQ=N versus the lattice sizeL (log-log
scale) with a power-law �t (dashed line).

the partial-transposed matrix �̂ TA is not necessarily a density matrix. In particular, it
may have negative eigenvalues, a su�cient condition to witness entanglement. The
negativity is de�ned as

N =
k�̂ TA k1 � 1

2
; (4.16)

wherek �k1 denotes the trace norm,kÂk1 = Tr(
p

ÂyÂ). When Â is Hermitian, the trace
norm is the sum of the absolute values of the eigenvalues. Hence, a �niteN measures
entanglement.

The computation of the negativity N requires the diagonalization of a non-hermitian
matrix obtained by partial transpose of the density operator. These operations are very
sensitive the truncation errors in the corner space, so that the corner-space renormal-
ization method is not e�cient to compute this quantity and we are limited to small
lattices.

The negativity N is represented across the critical region for di�erent lattice sizes in
Fig. 4.5. Close to the critical point, a peak appears and becomes more pronounced as
the size of the lattice increases, suggesting a critical behaviour of quantum correlations.
Furthermore, the negativity indicates that entanglement is present on the ferromagnetic
side of the transition for couplingsJy & 1:15. This is a good indicator of the quantum
nature of the ferromagnetic phase.

The di�culty to compute the negativity for larger lattices motivated us to study
another entanglement witness: the Quantum Fisher Information. For a mixed quantum
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state �̂ =
P

r pr j r ih r j, the Quantum Fisher Information is de�ned as:

FQ = 2
X

r;r 0

(pr � pr 0)2

pr + pr 0
jh r jÔj r 0ij 2 ; (4.17)

where we include only terms withpr + pr 0 > 0 and the operator Ô is a sum of on-
site operators (Ô =

P N sites
i =1 Ôi ) with a spectrum width of 1 (the spectrum width is

the di�erence between the maximum and the minimum eigenvalues). The Quantum
Fisher Information has been used to witness multipartite entanglement in quantum phase
transitions and at thermal equilibrium [131, 132, 133, 134, 135]. Indeed ifFQ=N > m
then there is m + 1-partite entanglement. Hence,FQ > 1 is a su�cient condition for
bipartite entanglement [135].

Since the order parameter of the phase transition is the magnetization in thexy
plane, we consideredO = 1

2

P
i [cos(� )�̂ x

i + sin( � )�̂ y
i ] where� is chosen to maximizeFQ.

Furthermore, the value ofFQ can be computed using the corner-space renormalization
method in a convenient and straightforward way. Indeed, the eigenvaluespr and local
observables are directly calculated. As a result, we have been able to computeFQ for
lattice sizes up to5 � 5 sites.

In Fig. 4.6, the value ofFQ=N is shown as a function ofJy across the critical region.
Close to the critical value Jc, we can observe thatFQ=N > 1, which is a signature
of bipartite entanglement. Moreover, the peak close to the critical point gets more
pronounced when the size of the lattice is increased. In the inset of Fig. 4.6 we plotted
the maximal value ofFQ=N as a function of the lattice sizeL in logarithmic scale. The
dotted line is a power law �t that is matching the data very well for L � 3:

�
FQ

N

� max

/ L � ; � = 0:18� 0:03: (4.18)

This is a signature of the critical behaviour of entanglement at the transition. However
the growth is much slower than the one of the susceptibility.

The critical behaviour of the Quantum Fisher Information and of the derivative of
the entropy is a key result in the understanding of dissipative phase transitions. Indeed,
they show properties of both quantum and thermal phase transitions.

4.2.4 Liouvillian gap

As mentioned in the �rst chapter, in a dissipative phase transition the gap between the
two �rst eigenvalues of the Liouvillian super operatorL plays a similar role to the gap
between the two �rst eigenvalues of the Hamiltonian in a quantum phase transition.

In order to evaluate the Liouvillian gap, we investigate the dynamics of the magneti-
zation along thex component: ĥ� x (t)i = 1=L2

P
i ĥ�

x
i (t)i = 1=L2

P
i Tr( �̂ x

i �̂ (t)) . Figure
4.7 shows the dynamics ofĥ� x (t)i for a 4� 4 lattice and di�erent values of Jy close to the
transition. The curves, presented in logarithmic scale, show a clear exponential decay



Chapter 4. Critical behaviour in the 2D XYZ model 69

Figure 4.7: Time evolution ofĥ� x i (t) � h �̂ x i SS for a 4 � 4 lattice with Jz =  , Jx = 0:9
and Jy =  (red � ), Jy = 1:1 (blue � ), Jy = 1:3 (green � ) and Jy = 1:6 (black N).
In the steady state,ĥ� x i SS = 0. From Ref. [136].

Figure 4.8: Liouvillian gap � normalized by  as a function of the normalized coupling
Jy= across the critical region. The other parameters are the same as in Fig. 4.3.
The calculations were done in the full Hilbert space with spatial periodic boundary
conditions. From Ref. [136].

to 0 in the long time limit. Note that, since no external �eld is applied to the system,
ĥ� x i = 0 in the steady state for both phases. Hence, the Liouvillian gap� corresponding
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Figure 4.9: Angularly averaged susceptibility� av(Eq. (4.11)) as a function ofJy, for
di�erent lattice sizes, the other parameters are areJx = 1:8 and Jz = 2 . When not
shown, the error bars are smaller than the symbols. All the simulations were done with
periodic boundary conditions.

to the decay can be extracted by �tting the dynamics with:

ĥ� x (t)i = ĥ� x i SS + Ae� �t ; (4.19)

whereA is a constant depending on the parameters.
In Fig. 4.8, we represent the values of Liouvillian gap across the critical region for

di�erent lattice sizes. The results show an important dip around the critical point (Jy '
1:07). When the size of the lattice is increased, the dip is getting more pronounced. This
is consistent with a critical behaviour. Since we were unable to evaluate the dynamics
for lattices bigger than4 � 4, it is not yet possible to estimate the critical exponent of
the Liouvillian gap at the transition [136].

4.3 Comparison with one dimensional lattices

A previous study [52] found that the phase transition does not survive in one dimensional
arrays and that it is replaced by a crossover. Instead of a power-law divergence, the peaks
at the transition should saturate. This is con�rmed by the numerical results presented
in Figs. 4.9 and 4.10 representing respectively the averaged magnetic susceptibility and
the Liouvillian gap [136].

In Fig. 4.9, the averaged susceptibility� av is shown as a function ofJy close to the
critical point, for lattice sizes going from4 � 1 to 16 � 1. Even though we see that a
peak appears and get more pronounced for small lattice sizes (up to12� 1) it saturates
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Figure 4.10: Liouvillian gap� normalized by as a function of the normalized coupling
Jy= across the critical region, for di�erent 1D lattice sizes and in�nite lattices (obtained
with an iMPO algorithm). The other parameters areJx = 1:8 and Jz = 2 . The
simulations were done in the full Hilbert space with periodic boundary conditions except
for the in�nite lattice. From Ref. [136]

between12� 1 and 16� 1. This is a signature of the absence of criticality in the averaged
susceptibility for 1D lattices.

Figure 4.10 shows the Liouvillian gap� as a function Jy for di�erent lattice sizes
(from 4 � 1 to 16 � 1) and for in�nite lattices using an iMPO method [137]. As for
Fig. 4.9, we observe that the dip is increasing for small lattice sizes but saturates to the
values obtained for an in�nite lattice when the number of cavitiesN > 12. This means
that the Liouvillian gap is not closing in the thermodynamic limit. Hence, there is no
phase transition in one dimension for the XYZ model, just a crossover.

4.4 Conclusion

In this chapter, we have theoretically explored a genuine disspative phase transition in a
two-dimensional spin lattice system described by an anisotropic XYZ model. In section
4.2, we have demonstrated that a critical behaviour emerges in two-dimensional lattices
by using the corner-space renormalization method. The �nite-size scaling analysis of the
magnetic susceptibility provided an evaluation of the corresponding critical exponent.

This work also shows that dissipative phase transition share properties of both ther-
mal and quantum phase transitions. Indeed, we have demonstrated that the von Neu-
mann entropy sharply increases across the transition, as it happens in thermal phase
transitions. Furthermore, the crucial role of quantum correlations, as witnessed by the
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negativity and the Quantum Fisher information, is a signature of the quantum nature
of the system.

In the section 4.3, we con�rmed the role of dimensionality in the dissipative phase
transition under study. Indeed, we have shown that in one dimension, the characteristic
power-law divergence is replaced by a saturation.

An interesting development is the study of di�erent entanglement witnesses to see
how their critical properties may change. Moreover, the study of other physical models
with di�erent symmetries is an intriguing perspective.



Chapter 5

Dissipative phase transitions in
incoherently pumped Bose-Hubbard
lattices

Interacting many-body systems can exhibit interesting collective behaviours whose pe-
culiar features di�er from what is usually observed in equilibrium situations. In order
to explore these new phases, the high level of control provided by photonic-based quan-
tum simulators [30, 138] is a powerful tool. The complex dynamics of such systems is
governed by the competition between the Hamiltonian evolution, the (coherent or inco-
herent) drive and the unavoidable photon losses. As a result, the scenario is considerably
enriched and the nonequilibrium nature of these platform emerges in di�erent aspects,
ranging from their dynamical response [139] and transport properties [140, 141] to their
steady-state behaviour [142, 47, 50].

In this chapter, we study the steady-state phases of incoherently pumped Bose-
Hubbard lattices. After introducing the model, we will recall some of the main results
obtained for a single site [143]. In particular, we show that the photon injection mediated
by the two-level system is equivalent to a non-Markovian pump able to stabilize n-photon
Fock states in the cavity.

After the single-site treatment, we will present our results on the steady-state phase
diagram for a lattice of coupled cavities via a Gutzwiller ansatz for the system density
matrix. This analysis shows that for a hopping rate above a critical value, the system
undergoes a second-order phase transition associated with the breaking of theU(1)
symmetry.

Next to the mean-�eld predictions, we will show a �nite-size analysis of one-dimensional
lattices obtained with both the Matrix Product Operators and the corner-space renor-
malization method.

This work hove been done in collaboration with Alberto Biella and José Lebreuilly
under the direction of Davide Rossini, Rozario Fazio, Iacopo Carusotto and Cristiano
Ciuti. The main results have been published inPhysical Review A[125]. Within that
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collaboration, another study of a slightly di�erent system exploiting a non-Markovian
bath was done, whose results can be found in Ref. [144]. In particular, we found
that using a tailored square emission spectrum it is possible to cool down the photonic
many-body system into a ground-state-like steady state with a tunable e�ective chemical
potential. This allowed us to exhibit and characterize numerically a phase transition
between n-photon Mott-Insulator-like phases and a super�uid-like phase.

5.1 Description of the model

We consider here the following single-site Hamiltonian [143]:

Ĥ site
i = ! câ

y
i âi + Uây

i â
y
i âi âi + 
 R(âi �̂ +

i + �̂ �
i ây

i ) + ! at �̂ +
i �̂ �

i ; (5.1)

where âi is the annihilation operator of the photonic mode on thei th site, �̂ �
i are the

Pauli ladder operators of the two-level system of frequency! at . The photonic cavity
has a bare frequency! c and U quanti�es the Kerr nonlinearity. The two-level system
and the photonic modes are interacting through a Rabi coupling of frequency
 R . The
coupling with the environment is described by three Lindblad superoperators taking into
account for the losses of the photonic mode:

L i
phot [�̂ ] =

� l

2

�
2âi �̂ ây

i � �̂ ây
i âi � ây

i âi �̂
�

; (5.2)

the losses of the two level system,

L i
losses[�̂ ] =


2

�
2�̂ �

i �̂ �̂ +
i � �̂ �̂ +

i �̂ �
i � �̂ +

i �̂ �
i �̂

�
; (5.3)

and the two-level system incoherent pumping,

L i
pump [�̂ ] =

� p

2

�
2�̂ +

i �̂ �̂ �
i � �̂ �̂ �

i �̂ +
i � �̂ �

i �̂ +
i �̂

�
: (5.4)

As a result, the single-site master equation:

@t �̂ i = � i
h
Ĥ site

i ; �̂ i

i
+ L i

phot [�̂ i ] + L i
losses[�̂ i ] + L i

pump [�̂ i ] (5.5)

is invariant under the transformation:

âi ! âi ei � ; (5.6)

�̂ �
i ! �̂ �

i ei � : (5.7)

The U(1) symmetry of the Hamiltonian is preserved by the incoherent drive. In order
to have a better understanding of the steady-state physics resulting from the interplay
of the incoherent pump scheme with the non-linear photonic resonator, the next section
is dedicated to a brief review of the single-site phenomenology.
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Figure 5.1: Steady-state observables for a single-cavity system. The steady-state value
of the photon numbern, photon number �uctuations � n, purity P and one-photon Fock
state population � 1 are plotted as a function of the nonlinearityU=� p for di�erent values
of the cavity dissipation rate � l=� p, as indicated in the legend. The other parameters
are ! at = ! c, 
 R=� p = 10� 1 and = � p = 10� 4.
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5.1.1 Single-site physics

In this section we analyze the physics of a single resonator. In particular, we will show
that, by properly exploiting the incoherent driving scheme, it is possible to stabilize
single-photon states in the steady state with arbitrary accuracy.

The eigenvalues of the single-site Hamiltonian are

! N = N! c + N (N � 1)U; (5.8)

with N being the number of photons in the cavity. This implies that the transition
frequency between theN photon state and theN +1 photon state is! N;N +1 = ! c+2NU.
By tuning the atomic frequency, we can selectively drive theN ! N + 1 transition.
Moreover, no coherence between the Fock number statesjni is introduced by the drive.
Hence, the steady state will be a mixture of Fock number states dominated by the
jN + 1i state. To do so, we impose parameters so that the emission rate inside the
cavity is important but only one photonic transition is pumped, namely:

� em

�
� 1;

� em� 2
p

� lU
� 1 (5.9)

with � em = 4
 2
R=� p. In this limit, the pumped transition is dominated by the drive

and the other transitions are dominated by the dissipation processes. That way, by
tuning the parameters, we can selectively populate the Fock statej1i . The details on
the computation of the di�erent state populations are not discussed here but can be
found in Ref. [143].

In the case of hard-core bosons (U=� l ! 1 ), we can solve the master equation (5.5)
analytically and �nd the exact steady state. This allows us to compute the number of
photons on resonance (! at = ! c):

n =
4� p
 2

r

(� l +  + � p)(� l (� p +  ) + 4
 2
r )

: (5.10)

Expanding Eq.(5.10) for a small e�ective loss/gain ratio� = � l=� em we obtain

n =
� p

� p +  + � l
�

� p + 
� p + � l + 

� + O(� 2): (5.11)

We numerically checked the 1-photon Fock state selection by solving the single-cavity
master equation via diagonalization of the corresponding Liouvillian. In the following we
will work in units of � p. In Fig. 5.1 we show the steady-state value of the photon density
n = ĥayâi (where hÔi = Tr[ � SSÔ] and Tr[ � SS] = 1) and its variance � n as a function
of U=� p for di�erent values of the cavity dissipation rate � l=� p. Moreover, we also show
the purity of the density matrix P = Tr[( � SS)2] and the population � 1 = h1; " j � SSj1; "i ,
where j1; "i denotes the state with one photon in the cavity mode and the two-level
system into its excited state. As highlighted in the right bottom panel of Fig. 5.1, it
is possible to prepare the desired Fock state with arbitrary precision for large enough
nonlinearity and small photon leakage rate.
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Figure 5.2: A sketch of the considered photonic system, consisting of a lattice of coupled
nonlinear cavities. Each lattice site is a cavity coupled to a two-level system, which
is incoherently pumped at a rate� p. 
 R is the coherent coupling rate (vacuum Rabi
frequency) between the cavity mode and the two-level emitter, whileU is the photon-
photon Kerr on-site interaction. The coupling with the environment produces incoherent
photon leakage and atomic relaxation at a rate� l and  respectively. Photons can hop
between neighbouring sites at a rateJ .

5.2 Gutzwiller mean-�eld theory

In the following, we focus on the physics in a lattice where nearest-neighbour sites are
coupled via a hopping interaction

Ĥhop = � J
X

<i;j>

ây
i âj ; (5.12)

whereJ is the hopping rate between. The system is described by the master equation:

@t �̂ = � i[Ĥ; �̂ ] +
N sitesX

i =1

�
L i

ph + L i
losses + L i

pump

�
; (5.13)

where Ĥ =
P N sites

i =1 Ĥ i � J
P

<i;j> ây
i âj and Ĥ i is the single-site Hamiltonian given in

Eq. (5.1). As we have seen in the previous section, the single-site Hamiltonian and the
di�erent Lindblad super-operators can stabilize a Fock state with one photon in each
cavity. We are interested in the e�ects of the competition between the photon hopping
and the on-site interactions. The full system is summarized in Fig. 5.2.

Note that the hopping Hamiltonian (5.12) is invariant with respect to the global
gauge transformation (5.6). As a result, the master equation of the complete system
(5.13) preserves theU(1) symmetry.

The �rst step of our study is to perform a Gutzwiller mean-�eld analysis of the
steady-state phase diagram. In this framework, the exact lattice dynamics is reduced to
the self-consistent evolution of local density matrices.
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5.2.1 Gutzwiller ansatz

The Gutzwiller mean-�eld approximation assumes a factorized ansatz for the global
density matrix

�̂ '
N sitesO

i =1

�̂ i ; (5.14)

where�̂ i is the density matrix of the i th site. If we plug the ansatz (5.14) into the master
equation (5.13) and trace out all sites but thei th, the coupling term can be written as:

� J
X

<i;j>

ây
i âj �! � J

X

j 2 N:N:

(ây
i ĥaj i + ĥay

j i âi ); (5.15)

where we sum only on the nearest neighbours site of thei th ( j 2 N:N) and ĥoj i =
Tr( ôj �̂ j ). If we are interested in spatially homogeneous phases, we assume that8i; �̂ i =
�̂ MF . Under that assumption, the coupling term becomes:

� zJ(âyĥai + âĥai � ); (5.16)

where we dropped the site indexes as they are no longer relevant. The coordination
number z is the number of nearest neighbours. Therefore, we can write a master-
equation for the local mean-�eld density matrix, namely

@t �̂ MF = � i[Ĥsite � zJ(âyĥai + âĥai � ); �̂ MF ]

+ Lphot [�̂ MF ] + L losses [�̂ MF ] + Lpump [�̂ MF ] ; (5.17)

where the Lindblad super-operators are de�ned in Eqs. (5.2), (5.3) and (5.4). It is im-
portant to note that the term propotional to ĥai = Tr( â�̂ MF ) makes the master equation
non-linear with respect to the density operator. The traceTr( â�̂ MF ) has to be computed
at each time step and reintroduced in the master equation to solve it self-consistently in
time.

5.2.2 Phase diagram for hard-core bosons

Firstly, we applied the Gutzwiller theory of the previous section for the hard-core boson
case (U=� l ! 1 ). In this regime, each site can be populated with at most one photon. In
particular, the dynamic of the coherencejĥaij plotted in Fig. 5.3 shows the emergence of a
limit cycle at long times for the parameters! at � ! c = � zJ, zJ = 2:5� p, � l =  = 10� 3� p.
Starting from an initial state where jĥaij 6= 0, the coherence evolves in the long time
limit as jĥaij exp(i! L t), with jĥaij 6= 0 where! L depends on the system parameters. This
means that theU(1) symmetry is broken by the nearest-neighbour coupling.

In the left panel of Fig. 5.4, we plotted the amplitude of the limit cycles in the
steady-state jĥaij as a function of the nearest-neighbour hopping rate. As before, we
start the integration of the master equation (5.5) with an initial state wherejĥaij 6= 0.
When the hopping rate is below a critical valueJc, jĥaij = 0 in the steady-state. At
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Figure 5.3: Time evolution of the coherencejĥaij within the Gutzwiller mean-�eld ap-
proximation. Starting from a non-zero value, the system converges to a state with
jĥaij 6= 0. The inset shows the imaginary part ofĥai as a function of its real part.
We do not obtain a steady-state but a limit cycle whereĥai = jĥaij exp(� i! L t), with
! L depending on the parameters. Parameters:! at � ! c = � zJ, zJ = 2:5� p, U = 1 ,
� l =  = 10� 3� p.

J = Jc, a second order phase transition takes place and forJ > J c the system enters a
coherent delocalized phase characterized by the emergence of limit cycles.

The right panel of Fig. 5.4 shows the number of photonsn, the variance � n and
the compressibility K = � n2=n in the steady state as a function ofzJ. For J < J c,
the number of photons is close to 1 and the variance is close to 0. By construction,
a vanishing value of the mean-�eld order parameter implies that̂� SS is the steady-
state solution of the master equation for a single cavity. However, in the exact model,
the short-range coupling induced by the photon hopping may play an important role
that is neglected sincejĥaij = 0 is equivalent to J = 0 within the Gutzwiller ansatz.
Consequently, in order to characterize the phase with the unbroken symmetry it is
necessary to go beyond the mean-�eld theory. This will be done in section 5.3 where we
show that in a range ofzJ=� p compatible with the Gutzwiller prediction the number of
photons remains very close to one with very small �uctuations.

This Mott-like phase, is also characterized by an (almost) vanishing compressibility
K, analogously to what happens in the equilibrium situations. This indicates that the
phase is incompressible, the density matrix being close toj1ih1j. This is con�rmed by
Fig. 5.5 that shows the purity Tr(�̂ 2

MF ) of the steady-state density matrix as a function
of the couplingzJ. The purity is a measure of the distance of the density operator to a
pure state. If the density operator is a pure state, Tr(�̂ 2

MF ) = 1 , otherwise Tr(�̂ 2
MF ) < 1.

In the incompressible phase, the state is almost pure, on the contrary in the symmetry-
broken phase, the purity decreases showing that the state becomes much more mixed.
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