A. Ashkenazi, Targeting death and decoy receptors of the tumour-necrosis factor superfamily, Nature Reviews Cancer, vol.194, issue.6, pp.420-430, 2002.
DOI : 10.1084/jem.194.10.1441

S. I. Bae, V. Cheriyath, B. S. Jacobs, F. J. Reu, and E. C. Borden, Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL, Oncogene, vol.63, issue.4, pp.490-498, 2008.
DOI : 10.1146/ANNUREV.BIOCHEM.67.1.227

. Ehrlich, Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes, Cytokine, vol.24, issue.6, pp.24-244, 2003.
DOI : 10.1016/S1043-4666(03)00094-2

. Falschlehner, Following TRAIL???s path in the immune system, Immunology, vol.199, issue.Suppl. 2, pp.145-154, 2009.
DOI : 10.4049/jimmunol.175.9.5586

. Fanger, Human Dendritic Cells Mediate Cellular Apoptosis via Tumor Necrosis Factor???Related Apoptosis-Inducing Ligand (Trail), The Journal of Experimental Medicine, vol.158, issue.8, pp.190-1155, 1999.
DOI : 10.1126/science.1352913

URL : http://jem.rupress.org/content/jem/190/8/1155.full.pdf

. Fisher, Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer, Clinical Cancer Research, vol.7, issue.6, pp.1688-1697, 2001.

S. Galbán and C. S. Duckett, XIAP as a ubiquitin ligase in cellular signaling, Cell Death and Differentiation, vol.131, issue.1, pp.54-60, 2010.
DOI : 10.1161/01.RES.88.3.282

. Halaas, Lipopolysaccharide Induces Expression of APO2 Ligand/TRAIL in Human Monocytes and Macrophages, Scandinavian Journal of Immunology, vol.7, issue.3, pp.51-244, 2000.
DOI : 10.1093/oxfordjournals.bmb.a011626

A. M. Jubb and D. S. Mendelson, Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer, The Journal of clinical Oncology, issue.17, pp.28-2839, 2010.

. Horak, Contribution of Epigenetic Silencing of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer, Molecular Cancer Research, vol.3, issue.6, pp.335-343, 2005.
DOI : 10.1158/1541-7786.MCR-04-0136

C. Kowal, G. Yang, A. Royo, M. Jensen, B. Dombrecht et al., Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction, pp.1560-1570, 2014.

. Hymowitz, A Unique Zinc-Binding Site Revealed by a High-Resolution X-ray Structure of Homotrimeric Apo2L/TRAIL, Biochemistry, vol.39, issue.4, pp.633-650, 2000.
DOI : 10.1021/bi992242l

. Fornstedt, Thermodynamic Study of an Unusual Chiral Separation, Propranolol Enantiomers on an Immobilized Cellulase. The Jounal of, A2.8 Références Bibliographiques, pp.1254-1264, 1997.

A. M. Girelli and E. Mattei, Application of immobilized enzyme reactor in on-line high performance liquid chromatography: A review, Journal of Chromatography B, vol.819, issue.1, pp.3-16, 2005.
DOI : 10.1016/j.jchromb.2005.01.031

D. Ritchie, Hexserver: An FFT-Based Protein Docking Server Powered by Graphics Processors, Nucleic Acids Research, vol.38, pp.445-449, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00522712

K. Miyabe, Characteristics and Mechanism of Surface Diffusion in Reversed-Phase Liquid Chromatography Using Various Alkyl Ligand Bonded Silica Gels, Analytical Chemistry, vol.74, issue.9, pp.2126-2132, 2002.
DOI : 10.1021/ac011184i

. Mongkolsapaya, Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation, Nature Structural & Molecular Biology, vol.6, pp.1048-1053, 1999.

. Phillips, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1515/9783110879476

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486339/pdf

D. W. Ritchie and V. Venkatraman, Ultra-fast FFT protein docking on graphics processors, Bioinformatics, vol.26, issue.19, pp.2398-2405, 2010.
DOI : 10.1093/bioinformatics/btq444

URL : https://hal.archives-ouvertes.fr/inria-00537988

. Sarr, A novel biochromatographic Oatp2 column to study the transmembrane transport of statins, Journal of Pharmaceutical and Biomedical Analysis, vol.52, issue.1, pp.93-98, 2010.
DOI : 10.1016/j.jpba.2009.11.029

*. *. Bonferonni-post-hoc-multiple-comparison-test, D. Fadd, and F. L. , 001, compared to TRAIL stimulation alone and NPT, ns (not statistically significant) Data are the mean ± SD (n=3) (D) Immunoprecipitation of caspase-8 and analysis of DISC formation in HCT116-WT cells stimulated with 2 µg/mL HishTRAIL or NPT for the indicated time periods (see Materials and Methods) After cell lysis in NP40- containing buffer, the DISC was immunoprecipitated (IP) using an anti-caspase-8 antibody and

J. Minjoz, The authors also wish to thank the Regional Council of Franche-Comte for financial support and the ARCEN center of microscopy OM team was supported by grants from the program " Investissements d'Avenir " with reference ANR-11-LABX

G. Se and E. Microscopy, for 21 min in the dark. Grids were next rinsed 5 times with distilled water and dried for 1 h before analysis under the microscope (JEOL JEM-2100F microscope operating at 200 kV and equipped with a ultra-high resolution pole piece achieving a point-to-point resolution of 0, nm) operating at 80 kV

. Min, then centrifuged for 15 minutes at 13 000 rpm at 4°C. Lysates were pre-cleared with

6. Sepharose, 1 h at 4°C with gentle shaking, and immunoprecipitated at 4°C overnight with G-protein Sepharose beads (Amersham Biosciences, Les Ullis, France) in the presence of 2 µg of anti-Caspase-8 antibody (Santa Cruz C-20) Beads were then washed three times, and immunoprecipitates were eluted in loading buffer (Tris-HCl 63 mM, DTT 100 mM, pH 6.8), boiled for 5 min and processed for immunoblotting

S. A. Sozykin and V. P. Beskachko, Structure of endohedral complexes of carbon nanotubes encapsulated with lithium and sodium, Molecular Physics, vol.11, issue.7, p.930, 2013.
DOI : 10.1016/j.physb.2004.05.023

S. D. Bergin, V. Nicolosi, P. V. Streich, S. Giordani, Z. Sun et al., Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents, Advanced Materials, vol.61, issue.10, p.1876, 2008.
DOI : 10.1002/adma.200702451

J. Judkins, H. H. Lee, S. Tung, and J. Kim, Diffusion of Single-Walled Carbon Nanotube Under Physiological Conditions, Journal of Biomedical Nanotechnology, vol.9, issue.6, p.1065, 2013.
DOI : 10.1166/jbn.2013.1527

J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley et al., Fullerene Pipes, Science, vol.280, issue.5367, p.1253, 1998.
DOI : 10.1126/science.280.5367.1253

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, V. K. Ksenevich et al., Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids, Nanotechnology, vol.23, issue.49, p.495714, 2012.
DOI : 10.1088/0957-4484/23/49/495714

S. Kraszewski, E. Duverger, C. Ramseyer, and F. Picaud, Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures, The Journal of Chemical Physics, vol.139, issue.17, p.174704, 2013.
DOI : 10.1351/pac200577101675

URL : https://hal.archives-ouvertes.fr/hal-00917982

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.119.1153

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.10, issue.15, p.1787, 2006.
DOI : 10.1007/s002140050244

R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Reviews of Modern Physics, vol.76, issue.77, p.689, 1989.
DOI : 10.1016/0304-8853(88)90307-1

M. Kohout, K. Pernal, F. R. Wagner, and Y. Grin, Electron localizability indicator for correlated wavefunctions. III: singlet and triplet pairs, Theoretical Chemistry Accounts, vol.99, issue.5-6, p.413, 2008.
DOI : 10.1007/s00214-007-0396-1

A. Ooi, L. Rairkar, J. Lindsley, and B. Adams, Electronic structure and bonding in hexagonal boron nitride, Journal of Physics: Condensed Matter, vol.18, issue.1, p.97, 2006.
DOI : 10.1088/0953-8984/18/1/007

V. A. Karachevtsev, S. G. Stepanian, A. Y. Glamazda, M. V. Karachevtsev, V. V. Eremenko et al., Noncovalent Interaction of Single-Walled Carbon Nanotubes with 1-Pyrenebutanoic Acid Succinimide Ester and Glucoseoxidase, The Journal of Physical Chemistry C, vol.115, issue.43, p.21072, 2011.
DOI : 10.1021/jp207916d

W. Fan, R. Zhang, and . Sci, Structural and electronic properties of single-walled carbon nanotubes adsorbed with 1-pyrenebutanoic acid, succinimidyl ester, Science in China Series B: Chemistry, vol.128, issue.15, p.1203, 2008.
DOI : 10.1007/s11426-008-0140-2

Y. Zhang, S. Yuan, W. Zhou, J. Xu, and Y. Li, Spectroscopic Evidence and Molecular Simulation Investigation of the <I>??</I> ??? <I>??</I> Interaction Between Pyrene Molecules and Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.7, issue.7, p.2366, 2007.
DOI : 10.1166/jnn.2007.412

J. E. Yang, Y. Gao, W. Zhang, P. Tang, J. Tan et al., Cobalt Phthalocyanine???Graphene Oxide Nanocomposite: Complicated Mutual Electronic Interaction, The Journal of Physical Chemistry C, vol.117, issue.8, p.3785, 2013.
DOI : 10.1021/jp311051g