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General Introduction 

 

ABC transporters belong to a large family of ATP hydrolyzing proteins involved in the 

transport of a wide variety of compounds in mammals. Among these transporters, the multi-

drug resistance (MDR) ABC transporters are more specifically dedicated to the transport of 

xenotoxics and they have been clearly involved in resistance to drugs in all living kingdoms 

(Jones and George, 2005). In mammals, MDR ABC transporters such as P-glycoprotein 

(MDR1/ABCB1/Pgp) can efflux various, structurally unrelated drugs, and Pgp is responsible 

for resistance to chemotherapy in mammalian tumor cells (Eckford and Sharom, 2009; Leonard 

et al., 2003). Noticeably, mammalian Pgp also transports various AHs, including ML and IVM, 

which contributes to modulating its efficacy in the host (Lespine et al., 2007; Roulet et al., 2003; 

Schinkel et al., 1994). 

Many ABC transporters are present in various kingdoms, including different infectious 

agents (Koenderink et al., 2010; Lage, 2003). In nematodes, many homologs of ABC 

transporters are expressed in each organism. C. elegans is the model organism for studying 

resistance of parasitic nematodes to AHs, as it is genetically very close to all roundworms and 

presents the advantage to harbor a free-living life-cycle. Plus, it was the first animal to have its 

genome totally sequenced. In total, 60 ABC transporters, among which 14 full Pgp homologs, 

were found to be expressed in different organs and at various stages of development of this 

nematode (Zhao et al., 2004). There is little information on their respective functions, except 

that ML can interact with some of these Pgps. Indeed, induction of expression of individual 

genes after selection under IVM pressure is associated with increased IVM resistance, and IVM 

susceptibility can be improved by using mammalian Pgp inhibitors on C. elegans (James and 

Davey, 2009; Lespine et al., 2012). As a more direct observation, the loss of each of the 14 

Pgps has been shown to increase susceptibility of C. elegans to IVM or MOX to various degrees 

(Ardelli and Prichard, 2013; Janssen et al., 2013). Otherwise, Jin et al. (2012) established on 

purified Cel-Pgp-1 that some mammalian Pgp substrate drugs of various chemical structures 

could stimulate its ATPase activity, providing the most compelling evidence of a multidrug 

transport function for a nematode Pgp. However, AH drugs have not been tested on this 

experimental system. Finally, IVM or MOX-selected strains of C. elegans showed an increased 

susceptibility to the three ML IVM, MOX and EPR after exposure with the ABC transporter 

substrate verapamil (Menez et al., 2016). 
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In many parasitic nematodes, the precise number of Pgps is not well defined, excepted 

for Haemonchus contortus, whose genome has recently been sequenced and annotated (ftp:// 

ftp.sanger.ac.uk/pub/pathogens/Haemonchus/contortus) (Laing et al., 2011; Laing et al., 2013). 

In this species, 10 homologs of Pgps were identified, and a few of them have been localized 

and their function studied individually. Indeed, in heterologous recombinant systems 

overexpressing the protein Hco-Pgp-2, Hco-Pgp-16 or Hco-Pgp-9.1, ML were shown to inhibit 

Pgp-mediated drug transport (Godoy et al., 2015a, 2016; Godoy et al., 2015b). This was also 

shown for some Pgps of other parasitic ABC transporters : Cylicocylus elongatus Pgp-9 and 

Dirofilaria immitis Pgp-11 (Kaschny et al., 2015; Mani et al., 2016). Plus, the role of Pgp in 

IVM transport in parasites has been indicated by the capacity of well-described Pgp inhibitors 

to increase IVM sensitivity or reverse resistance to IVM in susceptible and resistant strains, 

respectively. Valspodar, verapamil and pluronic acid indeed increased the susceptibility to 

ivermectin of sensitive and resistant strains of Teladorsagia circumcincta and H. contortus 

(Bartley et al., 2009). 

H. contortus is a parasite of critical importance in veterinary medicine. Because of the 

putative implication of Pgps in AH resistance, it is important to know more about the function 

of Pgp-like proteins in H. contortus. In order to gain insight into the characteristics of Pgps of 

parasitic nematodes, we focused our interest on Hco-pgp-13. Indeed, its closest ortholog in C. 

elegans, Cel-pgp-13, was found to be located in the amphids, which are chemo-sensitive 

neurons shown to play a role in ML sensitivity (Dent et al., 2000; Freeman et al., 2003; Menez 

et al., 2016; Urdaneta-Marquez et al., 2014). Although Cel-pgp-6 is also expressed in this organ, 

no ortholog was found for this gene in H. contortus.  

The gene and protein identity, as well as the function of Hco-Pgp-13 and its localization in 

the nematode were thus investigated.  

We first tested the strength of an in silico docking strategy of ligands on an ABC transporter 

by studying the interaction with Cel-Pgp-1 of compounds previously described experimentally 

as Cel-Pgp-1 substrates. We thus aimed at shedding light on the binding properties of a 

multispecific substrate protein. Furthermore, our next goal was to describe for the first time the 

binding of AH drugs, including ML, to a nematode ABC transporter, Cel-Pgp-1. 

To characterize Hco-Pgp-13, we then checked experimentally the cDNA sequence of Hco-

pgp-13 predicted by large scale sequencing (ftp://ftp.sanger.ac.uk/pub/pathogens/ 

Haemonchus/contortus) (Laing et al., 2013) starting from whole worm RNA. We predicted the 

ftp://ftp.sanger.ac.uk/pub/pathogens/ Haemonchus/contortus
ftp://ftp.sanger.ac.uk/pub/pathogens/ Haemonchus/contortus
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protein sequence and 3D structure of Hco-Pgp-13 and investigated its homology to Cel-Pgp-1 

protein characterized as a multidrug transporter. We looked for the capacity of Hco-Pgp-13 to 

bind various substrates, including AH drugs. This was first performed in silico by docking of 

several compounds on 3D models of Hco-Pgp-13 built by homology with Cel-Pgp-1. The 

interaction of the same compounds was tested when possible in vitro by transport and ATPase 

activity measurements of Hco-Pgp-13 in two heterologous expression systems. We finally 

localized its expression in L3 and adult H. contortus to better characterize its importance in the 

living parasite.  
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Literature Review 

 

I. HAEMONCHUS CONTORTUS AND CAENORHABDITIS ELEGANS 

1. Haemonchus contortus, a parasitic gastro-intestinal nematode 

According to the most recent phylogenetic classification (Blaxter and Koutsovoulos, 

2015), Haemonchus contortus belongs to the rhabditomorpha family of nematodes of the clade 

V: Rhabditina, together with Caenorhabditis elegans (Fig. 1). This clade belongs to the sub-

class C of nematodes: Chromadoria, where the clade III Spirurina and clade IV: Tylenchina are 

also found. Two other sub-classes exist in the phylum Nematoda: Sub-class I: Dorylaima and 

sub-class II: Enoplia. All these families contain free-living or parasitic, marine or terrestrial 

moulting animals, ranging in size from 0.2mm to over 6m (Blaxter and Denver, 2012). 

Although about 23000 species have been described in this phylum, the real species-level 

diversity is estimated around 1 million (Lambshead, 1993). 

 

 

 

Figure 1. The phylogenetic structure of the Nematoda. A phylogeny derived from 181 

protein coding genes from 23 nematode species, and four ecdysozoan taxa as outgroup. The 

alignment was subjected to analysis with PhyloBayes (Lartillot et al., 2009), and all nodes had 

posterior probability of 1·00. The major clades in Rhabditida are resolved, and Enoplia is 

recovered at the base of Nematoda. Clades I, II, C, III, IV and V were first defined in (Blaxter 

et al., 1998), and are indicated by their number. The figure is adapted from (Blaxter and 

Koutsovoulos, 2015). 



LITERATURE REVIEW  

 

  16  

 

a) Life cycle of Haemonchus contortus 

The life cycle of H. contortus is direct, as it only requires one host (Fig. 2A). It 

comprises two phases:  

 The free phase starts when the eggs are laid by the female worm in the host 

gastro-intestinal tract and are subsequently eliminated in the feces (Fig. 2; 1). Eggs are 

approximately 45x80µm long (Fig. 2B) and once scattered in the pasture field, they develop to 

the first larval stage (L1) (Fig. 2C) in seven days with an optimal temperature of 27°C, while 

hatching takes longer at lower temperatures (Chermette, 1982) (Fig. 2; 2). L1 need a high 

moisture level and feed on bacteria to become L2 (Fig. 2; 3) (Fig 2D), which continue to feed 

on bacteria and molt to become filiariform L3 larvae (Fig. 2; 4). The latter keeps the cuticle of 

the L2 stage, allowing it to survive between 6 to 12 months on the pasture, and is non-feeding 

(Fig 2E).  

 The parasitic phase starts when infective L3 larvae are ingested by small 

ruminants when they graze (Fig. 2; 5). Larvae quickly migrate to the fourth stomach to become 

L4 within 48 hours and then rapidly reach the juvenile adult stage. However, if L3 were ingested 

just before winter period, L4 can stay several weeks in a dormant state, i.e. hypobiosis, and live 

within the epithelium of the abomasum before continuing the life cycle, in order to avoid harsh 

climate conditions for future larvae that cannot survive winter. Once at the adult stage, the 

nematodes are about 15-35 mm long. After mating, each female worm releases about 5000 - 

7000 eggs per day and the cycle restarts (Coyne et al., 1991) (Fig. 2; 1). 

b) Anatomy of Haemonchus contortus male and female adult 

The general organization of the male and female adult is shown in Fig. 3, with males 

(A) being overall shorter (10-20mm long) than females (18-30mm long) (B). As generally in 

roundworms, a flexible but tough cuticle covers the body of adults. More specifically in H. 

contortus, the cuticle is transparent and shows longitudinal striations (not visible in Fig. 3). The 

whole bodies of worms are occupied by a tubular digestive system that opens on the anterior 

and posterior endings: at the tip of the pharynx, the mouth presents a unique dorsal lancet for 

perforating the abomasum tissue of the host to feed from its blood, and at the posterior end, the 

anus ends the long intestine. However, they are not composed of a circulatory system, i.e. 

neither a heart nor blood vessels. The females have two large gonads 
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Figure 2. Haemonchus contortus life cycle. A. Different steps of the life cycle are represented 

as numbered dark red arrows: adults in the stomach of a host mate and females lay eggs that 

are released with faeces on the pasture (1); eggs hatch in L1 larvae (2); L1 develop to L2 (3); 

L2 become L3 larvae protected by a cuticle (4); a host ingests L3 that migrate to the abomasum 

and rapidly develop to L4 and adults (5). B-E. Zoom on various stages: eggs x200 (B), L1 x 

100 (C) L2 x100 (D), L3 x100 (E).  

 

starting with ovaries at around 1/3 of the intestine, and uteri that end in an opening called the 

vulva, which has a characteristic flap in H. contortus. In this parasite, female gonads 

characteristically wind around the intestine. Since the gut is filled with blood after a meal, it 

takes a reddish color that is easily visible around the white uteri, so that female worms look like 

small barber's poles. On the other hand, males have a single gonad that ends with a copulatory 

bursa presenting two barbed spicules, which allow its attachment to the female during 

copulation. 
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Figure 3.  Anatomy of adult Haemonchus contortus. Schematic representation of a male 

adult. (A) and a female adult (B) from (Neveu-Lemaire, 1936). 

 

The neuroanatomy of H. contortus is poorly described, except for amphids that have 

been studied in detail in order to better understand the role of these neurons in thermotaxis. 

Indeed, amphids are known in C. elegans to be thermo- and chemo-sensory neurons that are 

connected to the whole nervous system of the worm and reach the external environment on each 

side of the mouth (Fig. 4). In the L3 larval stage, this organ detects environmental signals such 

as light and warmth to find the best position to be ingested by its host (Ashton et al., 1999). 

Plus, once ingested by a host, the environmental conditions of H. contortus change greatly 

in the rumen, which stimulate development to the L4 stage. However, in some instances, 

development can be arrested in the L4 stage, rather than the L4 developing within a few 

days to the young adult stage. As these processes have been hypothesized to be controlled 

by stimuli detected by the amphids at the L3 stage, subcellular studies of their structure 

in various stages have been performed (Li et al., 2000a; Li et al., 2001; Li et al., 2000b). 

Electron microscopy and three-dimensional reconstructions from electron micrographs 

allowed the identification of twelve amphidial neurons in L1 stage larvae of H. contortus (Li et 

al., 2000a). The same number of neurons was found in the amphids of infective L3, with slight 

differences in the pattern of some sensory cilia (Li et al., 2001). These neurons were named 

according to C. elegans nomenclature using three letters: A for amphids, followed by  
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Figure 4. Amphidial neurons of Haemonchus contortus. A. Schematic representation of the 

location of amphids in the head of the worm (http://www.csi.uoregon.edu/ 

projects/celegans/talks/ nips1996poster.html). B. Stereo image of a reconstruction made with 

the SYNU surface-rendering program of the bundle of right-side amphidial dendrites before 

tight junction in longitudinal view. Anterior is up, dorsal is to the right, and the lateral side faces 

the viewer. At the base of the amphidial channel, the cilia extend posteriorly as dendrites and 

become thick and fan out. C. Gallery of the individual amphidial dendritic processes from the 

SYNU reconstruction shown in B. A = ASA, B = ADB, C = AWC, D = AFD, E = ASE, F = 

ADF, G = ASG, H = ASH, I = ASI, J = ASJ, K = ASK, L = ADL. Scale bar = 1 µm. Adapted 

from (Li et al., 2000a). 

 

S or D for single or double dendritic processes in the channel, W for wing cell or F for finger 

cell (White et al., 1986). The third letter is assigned from A to L (Ward et al., 1975). As the 

arrangement of the cell bodies of the amphidial neurons in H. contortus was found to be similar 

to that of their counterparts in C. elegans, they were assigned letter names according to the 

positions of their apparent homologs in the free-living nematode: ASA, ADB, AWC, AFD, 

ASE, ADF, ASG, ASH, ASI, ASJ, ASK and ADL. Different cell bodies of neurons were ablated 

at the L1 stage and L3 stage and behavior was studied to understand the importance of these 

neurons in thermosensory control (Li et al., 2000b). This study showed that amphidial neurons 

AFD, and interneurons RIA, were the thermoreceptor and thermosensory integrative neurons. 

These neurons, as well as others composing the amphids, are critical in the pathogenicity of H. 

contortus. 
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c) Veterinary importance of the parasite 

H. contortus was first identified as a tropical pathogen, but it has since spread worldwide 

(Jabbar et al., 2006) due to livestock movement and its high adaptive capacities. The L3 larvae 

are in fact covered by a protective sheath and the L3 stage can survive for many months 

provided they do not dessicate. In winter they can survive under snow, but freezing and thawing 

conditions damage the larvae. In addition, hypobiosis allows L4 to survive cold temperatures, 

within the host, during the hot dry summer season in tropical and Mediterranean climates, and 

the winter period in cool-temperate countries. Moreover, the vast mortality of L1 and L2 larvae 

is largely compensated by the mass production of eggs by females (Jacquiet et al., 1995). This 

is permitted by the life span of adult worms in the abomasum of their host for many months. 

However, infected animals can develop immunity and spontaneously eliminate the parasitic 

population. Some level of age-dependent immunity develops, but it is not a strong immunity 

and animals can become reinfected. 

These gastrointestinal nematodes infect goats and sheep, and feed on the blood of their 

host through the stomach wall at the adult stage. In addition, the lacerations the worm causes to 

blood capillaries results in micro-hemorrhages. Haemonchosis thus causes anaemia, mostly 

characterized by pale mucous membrane visible in the lower eye lid, which is the basis of the 

Famacha anemia chart to determine the level of treatment required (Fig. 5A). Other clinical 

signs of the infection are bottle jaw due to swelling of fluid (Fig. 5B), metabolic troubles 

preventing weight gain, wool loss and decreased milk production. In the extreme form of 

anaemia, red blood cells are depleted to such a rate that oxygen cannot be transported around 

the body. This leads to collapse and death of the animal and, thus, can result in dramatic loss of 

livestock production (Saddiqi et al., 2011). This, added to the cost of drugs to fight the parasite, 

makes it one of the most expensive diseases for the livestock industry (Miller et al., 1998).  

However, although the search for haemonchosis treatment requires the study of 

H. contortus response to drugs, this nematode is very hard to study directly in the laboratory, 

mainly due to its parasitic life cycle, which requires conditions that cannot be reconstructed, so 

far, in vitro. Molecular and biochemical techniques routinely used to study various processes 

occurring at the cellular level are thus mainly not applicable to this parasite. C. elegans, having 

a free-living life cycle, has then been studied for decades as a model organism of this parasite. 
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Figure 5. Main characteristics of haemonchosis. A. Famacha Anaemia chart showing a pale 

mucous membrane in the eye lid. (http://hoeggerfarmyard.com/wp-content/uploads/ 

2012/08/famacha-21.jpg). B. Bottle jaw in a sheep with a severe barber's pole worm infection 

(http://www.floridameatgoats.com/Anemia.htm). 

 

2. Caenorhabditis elegans, a model nematode 

C. elegans is a free-living soil roundworm found worldwide that feeds on microbes, 

mainly bacteria. It displays a very close genome to H. contortus in the nematode phylum 

(Fig. 1). Indeed, Laing et al. (2011) found homologues and orthologues in C. elegans for 97.5% 

and 60% of H. contortus genes, respectively. This results in high similarities for the phenotypes 

of these two species in terms of morphology, physiology, but also molecular processes and 

biochemistry.  

a) Life cycle of Caenorhabditis elegans 

One of the main advantages of C. elegans over H. contortus for research studies is that 

this nematode has a free-living life cycle (Fig. 6) (www.wormatlas.org). The adult C. elegans 

exists as two sexual forms: hermaphrodites and males, which result from spontaneous non-

disjunction occurring at very low frequency: 0.5% in the hermaphrodite germ line, and up to 

50% through mating. One adult hermaphrodite produces about 300 – 350 eggs that develop in 

utero until the stage of the second cleavage, before eggs are laid and continue developing during 

about 9 hours. Eggs then hatch to free the L1 stage larvae, which develop to L2 in 12 hours, L3 

in 8 hours, L4 in 8 more hours and become adult again in 10 hours. Eight hours later, adult are 

able to lay eggs. The total duration of its life cycle is thus short, about 3.5 days. A latent larval 

stage, the dauer stage, exists after L1 stage under stress conditions, and allows C. elegans to 

wait for more favorable conditions to restart its normal life cycle from the L4 stage. 
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Figure 6.  Life cycle of Caenorhabditis elegans at 22°C. 0 min is fertilization. Numbers in 

blue along the arrows indicate the length of time the animal spends at a certain stage. First 

cleavage occurs at about 40 min post-fertilization. Eggs are laid outside at about 150 min post-

fertilization and during the gastrula stage. The length of the animal at each stage is marked next 

to the stage name in micrometers (µm). Image from http://www.wormatlas.org/ 

ver1/handbook/anatomyintro/anatomyintro.html 

 

b) Anatomy of Caenorhabditis elegans hermaphrodite adult  

The anatomy of C. elegans has been extensively studied at the electron microscopy level, 

and its complete cell lineage has been made available (www.wormatlas.org). The 

hermaphrodite adult C. elegans is about 1mm long and presents an unsegmented, cylindrical 

shape that becomes narrower on the extremities (Fig. 7A). Similarly to H. contortus presented 

before, its whole body is covered by a striated cuticle secreted by epithelial cells such as 

hypodermis and seam cells on the two lateral regions of the worm, over which the alae forms 

at all stages except L2 – L3. A new cuticle is secreted at each stage with a molt at the end of 

the previous stage. 
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Figure 7.  Caenorhabditis elegans hermaphrodite adult anatomy. A. Major anatomical 

features. The cuticle and nervous systems are not shown for better visibility of other organs. 

Two of the four quadrants of body wall muscles are represented. B. Zoom on the head of the 

nematode for simplified representation of the nervous system: the nerve ring and only the 

amphidial neurons of the head are shown for better visibility, as well as the start of the dorsal 

and ventral nerve cords that run along the entire body. C. Cross-section through the mid-body 

region of the C. elegans hermaphrodite (location marked with a dotted line in B.) showing the 

intestine and gonad at the centre of the pseudocoelomic cavity. D. Cross-section through the 

pharyngeal region of the C. elegans hermaphrodite (location marked with a dotted line in A.) 

showing the four muscle quadrants surrounded by the epidermis and cuticle. Only the nerve 

processes of the amphids on the two sides of the pharynx and the six labial nerves are shown 

for simplification. DC = Dorsal cord, VNC = ventral nerve cord, CANL = left CAN neuron 

with unknown function, LDSC = left dorsal sublateral cord, RVSC = right ventral sublateral 

cord, DLLN = dorsal lateral labial nerve, PN = pharyngeal neuron, AN = amphidial neuron. 

Schematic representation constructed from images found at www.wormatlas.org. 

 

The nervous system organization has been described at the individual neuron level in 

C. elegans adults. The somatic nervous system is structured by 282 neurons with cell bodies 

clustered in ganglia in the tail, and the head where they form the nerve ring around the 

metacorpus part of the pharynx (Fig. 7B). The 4 main classes of neurons are motorneurons 

connecting muscle cells, sensory neurons that sense many stimuli such as temperature, 

chemicals, ambient osmolarity, oxygen level, pH, light and mechanical stimuli, interneurons 

connecting them and polymodal neurons performing at least two of these three possible 

functions. Most of these neurons travel longitudinally along the worm from the nerve ring, 
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either towards the tip of the head, or throughout the entire body. These are essentially located 

within the ventral and dorsal nerve cords, with processes located between the hypodermis and 

body wall muscles (Fig. 7C) and linked by commissures (Fig. 7B). In contrast, the 20 

pharyngeal neurons are located directly among pharyngeal muscles (Fig. 7D). 

The digestive system is similar to that of H. contortus, starting with the mouth that opens 

on the anterior end, followed by the pharynx and intestine structures linked by the pharyngeal-

intestinal valve (Fig. 7A). These structures occupy the centre of the worm and open through the 

anus on the ventral side, just before the tail whip. The intestine is found either on the left or on 

the right side of the reproductive system of the hermaphrodite, with a switch in the middle. 

Indeed, the self-fertilization is made possible by the presence of two, bilaterally symmetric, U-

shaped somatic gonad arms (oviducts), each followed by a spermatheaca, ending with a central 

uterus that opens on the ventral side of the midbody with the vulva (Fig. 7A).  

The muscle system contains two types of muscles. Body wall muscles, that run along the 

body (Fig. 7A), are obliquely striated and arranged into four quadrants, two dorsal and two 

ventral (Fig. 7C and 7D). They receive neuronal input from motor neuron processes located in 

nerve cords or in the nerve ring to permit locomotion (Fig. 7B, 7C and 7D). Other muscles, 

found in the pharynx and around the intestine, rectum and vulva, are nonstriated and allow the 

functions of feeding, defecation and egg laying, respectively. 

The excretory system allows osmoregulation and waste disposal. It consists of two canals 

running along the body on the two lateral sides of the worms (Fig. 7A), linked on the ventral 

side of the posterior head with an opening close to the nerve ring on this side. Finally, the 

coelomocyte system is composed of the pseudocoelomic cavity and three pairs of coelomocytes 

that endocytose fluid from the pseudocoelom, which probably plays the role of a primitive 

immune system (Fig. 7C and 7D). 

Thus, this very precise knowledge of the anatomy of C. elegans is a major asset in the 

understanding of the biology of nematodes.  

c) A model nematode in the laboratory 

Many other advantages are found in C. elegans for in vitro and in vivo studies. Its short 

life cycle and high number of eggs produced by a single adult makes it possible to quickly 

generate genetically identical progeny by self-fertilization of the hermaphrodite, which can, for 

example, be used for generation of resistance lineages to increasing doses of a drug. On the 
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other hand, isolation, maintenance or spreading of mutations across strains can be done with 

male mating. Mutations can also be easily obtained by homology recombination, with many 

deletion strains for various genes made available on the Caenorhabditis Genetics Center 

(http://cbs.umn.edu/cgc/home), and gene rescue with the homolog from another species is 

routinely performed by microinjection. 

Plus, C. elegans is transparent throughout its life cycle, which simplifies the record of 

visible phenotypic evolutions. Moreover, it easily feeds on Escherichia coli bacteria on agar 

plates or in liquid cultures. Its genome being short, about 100 millions of base pairs found across 

5 autosomes and 1 X chromosome, C. elegans was the first animal to have its entire genome 

totally sequenced, in 1998. This, added to its stereotypical development and simple body plan 

composed of about 1000 somatic cells, made it a model of choice in many fields of life sciences 

such as genomics, embryogenesis, cell biology, neurosciences and aging. Its large palette of 

behavior also allows the study of many complex processes such as locomotion, feeding, mating, 

egg laying, memory, and sensory responses to various stimuli like touch, temperature and 

chemicals. 

However, the difference in the free-living versus parasitic life cycles of C. elegans and 

H. contortus, respectively, must require the expression of different genes between these two 

species. Especially from L3 to adult stage, the H.contortus transcription changes for life within 

a host, e.g. by increasing peptidases production for blood-feeding activity (Schwarz et al., 

2013), while C.elegans stays free and feeds from its environment. Nevertheless, the common 

pharmacology found across species of anti-parasitic drugs commonly used has allowed, over 

many years, the successful study and application of findings in C. elegans to various parasites 

(for a review: Holden-Dye and Walker, 2007). 

II. ANTHELMINTICS AND MECHANISMS OF RESISTANCE  

In order to reduce haemonchosis and its deleterious impact on livestock, efficient drugs 

against H. contortus have been sought. However, due to the selection of resistant parasites by 

each specific anthelmintic (AH) class, there is an ongoing demand for new AHs that overcome 

existing resistance (Holden-Dye and Walker, 2007). The main classes of anthelmintics efficient 

against roundworms, including H. contortus, are presented below, ordered by date of their 

discovery. Some anthelmintics initially used against other pathogens are also listed, because 

they later became a possibility for combination with commonly used parasiticides to regain 

control after resistance had arisen. 
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1. Main classes of anthelmintic drugs 

a) Imidazothiazoles 

Imidazothiazoles, also called tetrahydropyrimidines, are the oldest anti-parasitic agents 

used to treat cattle. They are agonists of the acetylcholine receptors (AChR) present at the 

surface of muscle cells. Tetramisole and pyrantel were the first two AHs of this family to be 

described in 1970 (Aceves et al., 1970; Aubry et al., 1970). These drugs cause prolonged 

activation of the AChR at neuromuscular junctions leading to sustained contraction of the 

somatic muscle, which results in paralysis of nematodes without causing their death. 

Pharmacological studies in Ascaris suum have shown that different AChR subtypes exist: N-

AChR, B-AChR and L-AChR, each having various subunit compositions and being 

preferentially activated by nicotine, bephenium and levamisole respectively (Qian et al., 2006). 

C. elegans L-AChR is composed of five subunits and three proteins are essential to its function, 

allowing its assembly and targeting to the membrane (Boulin et al., 2008). It is also activated 

by pyrantel, though to a lower extent than levamisole, and while nicotine cannot activate this 

receptor it is a potent allosteric inhibitor. 

b) Benzimidazoles 

Benzimidazoles (BZ) were the first class of broad-spectrum anthelmintics established 

with the discovery of thiabendazole in 1961 (Gordon, 1961). They remained the mainly used 

anti-parasitic agents until the 1980s. The success of these AHs, that also comprise albendazole, 

febendazole, mebendazole and oxfendazole, is mainly due to their selective toxicity for 

helminths (Lacey, 1990). These drugs prevent microtubule polymerization by binding to β-

tubulin (Lacey, 1988). Capping of the associating end of the microtubule, which constantly 

dissociates on the other extremity, results in its depolymerization (Lacey, 1990). The 

disintegration of the microtubule matrix, first observed in Ascaris suum, impairs many critical 

cellular processes such as cell division and transport, causing cell death, and eventually leading 

to the death of the parasite (Borgers and De Nollin, 1975). The variability in efficacy of each 

drug in vivo was correlated to their affinity for β-tubulin, except for oxfendazole and 

albendazole sulfone (Lubega and Prichard, 1991). Triclabendazole, on the other hand, is not 

effective against nematodes and cestodes, but controls all larval and adult stages of the parasitic 

trematode Fasciola hepatica (Boray et al., 1983). 

http://parasitipedia.net/index.php?option=com_content&view=article&id=2519&Itemid=2792
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c) Salicylanilides and Cyclodepsi-peptides 

Salicylanilides represent a wide range of compounds initially developed as antifungal 

agents (Kraushaar, 1954). Among this class of anthelmintics, closantel and rafoxanide are 

mostly used, which are highly efficient against the adult stage of the trematode F. hepatica and 

blood sucking nematodes such as H. contortus (Swan et al., 1999; Van Den Bossche et al., 

1979). Their molecular mode of action, however, is not completely elucidated. By uncoupling 

oxidative phosphorylation in the cell mitochondria, they disturb ATP production critical for 

energy metabolism, but this could also be due to initial impairment of glycolysis (Fairweather 

and Boray, 1999). The consequence is spastic paralysis of the parasite that dies from starvation 

after detachment. 

The first compound of the cyclodepsi-peptides anthelmintic class, discovered in 1992, 

was PF1022A, a natural product of the fungus Mycelia sterilia that grows on the leaves of 

Camellia japonica (Sasaki et al., 1992). Emodepside (EMD) is a derivative of this compound 

and is licensed for treating roundworms and hookworms in cats. PF1022A and EMD are also 

known to be efficient against H. contortus strains resistant to IVM, BZ and LEV (Harder et al., 

2005). The mode of action of EMD has been extensively studied and starts with the activation 

of a presynaptic latrotophilin receptor. This induces a complex signaling cascade that leads to 

a flaccid paralysis of pharyngeal and somatic muscles in nematodes. 

d) Macrocyclic lactones 

Since Ivermectin (IVM), the first registered macrocyclic lactone (ML) anthelmintic, was 

introduced on the market in 1980, other ML showing the same type of activity have been 

extensively developed. Abamectin, eprinomectin, doramectin and selamectin belong to the 

class of avermectins and moxidectin (MOX) and mylbemycin oxime are of the mylbemycin 

class (Haber et al., 1991). These two sub-families all share a macrocyclic lactone nucleus, but 

the mylbemycins lack the sugar group(s) present at the C13 of the macrocyclic lactone ring in 

avermectins, thus being more lipophilic (Fig. 8).  

http://parasitipedia.net/index.php?option=com_content&view=article&id=2447&Itemid=2714
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Figure 8. Chemical structures of the mostly used macrocyclic lactone anthelmintics. 

A. Main avermectins. B. Selamectin. C. Moxidectin. (Structures found at: https://www.rsc. 

org/Merck-Index/). 

 

IVM is the product of Streptomyces avermitilis fermentation. It binds to and activates a 

wide range of receptors, such as the gamma-aminobutyric acid (GABA)-gated chloride channel 

(Robertson, 1989). In nematodes, IVM shows the highest affinity for glutamate-gated chloride 
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channels (GluCls) whose irreversible activation leads to pharynx and body muscle paralysis 

(Cully et al., 1994; Forrester et al., 2003). These receptors can be formed by two distinct types 

of subunits: α subunits respond to IVM when expressed in Xenopus oocytes, whereas β subunits 

only respond to glutamate. Association of five subunits composed of the two types α and β 

produces a glutamate-gated channel that can be activated by IVM. Several subtypes for each 

subunit have been identified: GluClα1, 2A, 2B, 3A, 3B, 4 and GluClβ in C. elegans,  HcGluClα, 

α3A, α3B and β in H. contortus (Yates et al., 2003). Each subunit is composed of a four α 

helices transmembrane domain where IVM binds, whereas Glutamate binds to the extracellular 

β leaflet domain (Fig. 9) (Hibbs and Gouaux, 2011). 

Even though GluCl channels are not expressed in muscle cells of the body, paralysis 

appears to be due to the presence of these receptors on the motoneurons that synapse onto 

muscles (Portillo et al., 2003). Similarly, GluClα subunits in C. elegans, and HcGluClα3B 

subunits in H. contortus have been found to be expressed in the motor neurons that innervate 

pharyngeal muscle cells (Yates et al., 2003). IVM is thought to cause disruption of neuronal 

signaling to this organ, leading to pharyngeal pumping inhibition that provokes death of the 

worms by starvation (Geary et al., 1993). 

ML are used to treat gastro-intestinal nematodes and ectoparasitic infections in the 

veterinary industry as well as filarial worms such as Onchocerca volvulus in humans 

(Wolstenholme and Rogers, 2005). The modes of action of avermectins in this last parasite are 

killing of the microfilarial stage and inhibition of reproduction in the adult worms. Ivermectin 

(Mectizan®) has been the drug of choice to treat onchocerciasis for more than 30 years and has 

been supplied free of charge by Merck & CO, Inc. in developing countries with the Community-

directed treatment with ivermectin (CDTI) program. For this reason, the discoverers of 

Ivermectin, William C. Campbell and Satoshi Omura, have received the Nobel Prize in 

Physiology or Medicine in 2015, together with Youyou Tu who discovered a novel therapy 

against Malaria. 

The success of ML in veterinary medicine can be attributed to their high potency at low 

dose, as compared to other anthelmintics previously used. Indeed, about 0.2 mg of 

ivermectin/kg of body weight are required to treat animals instead of about 7.5 mg/kg for 

imidazothiazoles and up to 15 mg/kg for benzimidazoles and the salicilanilide closantel 

(Thomaz-Soccol et al., 2004). ML present other interesting properties such as a broad-spectrum 

activity and ease of administration, orally, sub-cutaneously or topically. Even though the latter 

method leads to decreased bioavailability in cattle (Lespine et al., 2009), it  
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Figure 9.  Interaction of Glutamate and Ivermectin with GluCl channel. Each of the five 

subunits of the GluCl channel is represented as its secondary structure with a single color, 

purple, green, red, orange or blue. The ligands ivermectin and glutamate are represented as 

spheres with carbon atoms in yellow, oxygen in red and nitrogen in blue. Adapted from (Hibbs 

and Gouaux, 2011). 

 

allows the compound to be distributed throughout de body via the blood and lymph (Lespine et 

al., 2006a). Entering the cells is then facilitated by the high hydrophobicity of these molecules 

which can readily go through the cell membrane by passive transport. ML then persist inside 

the hosts over a moderately long period of time, thus protecting the ruminants against re-

infection (Kerboeuf et al., 1995). 

e) Amino-acetonitrile derivatives 

Amino-Acetonitrile Derivatives (AADs) are the most recent chemically synthesized 

compounds used to fight various parasites. They were found, in 2008, to have a higher 

efficiency against most parasitic nematodes resistant to imidazothiazoles and ML (Kaminsky 

et al., 2008a). Due to the nematode-specificity of their target, the ACR23 subunit of the N-

AchR, they show low toxicity to the host. AADs cause the paralysis of both the body wall and 

pharynx muscles leading to the death of H. contortus and other parasites at the L4 and adult 

stages. Monepantel was the first drug of this class described as a candidate for development in 

2008 (Kaminsky et al., 2008b). Various mutations were found in two genes coding for N-AChR 

subunits in a population of H. contortus selected for reduced sensitivity to monepantel (Rufener 
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et al., 2009). The direct binding of monepantel to the DEG-3 subfamily of N-AChR was then 

demonstrated, and this AAD was found to be an allosteric modulator of the DEG-3 channels 

(Rufener et al., 2010). However, resistance to these compounds has already been described and 

compromises parasite control in farm animals (Van den Brom et al., 2015). 

2. Mechanisms of resistance to anthelmintics 

The emergence of resistance to anthelmintics over the last 50 years has been due to 

different factors: frequent use of a single drug, under-dosing and mass treatment that 

contributed to the selection of resistant strains (Jabbar et al., 2006). To reduce this, several 

measures have been taken, such as the combination of different drugs. Despite this, resistance 

to nearly all classes of AHs previously described is now widespread worldwide in sheep and 

goats, but also in cattle and horses (Kaplan, 2004). Various mechanisms are observed in 

parasites that allow them to overcome the negative effects of different drugs. 

a) Modifying the drug target 

Changes in the gene sequence of the targeted proteins can prevent its interaction with 

the drug. For BZ, several mutations on β-tubulin genes have been observed in resistant strains 

of H. contortus which lead to a decrease of the high-affinity binding of BZ to tubulin (Lubega 

and Prichard, 1991). To identify such a mechanism in BZ resistance, a candidate gene approach 

was set up on the isotype 1 β-tubulin gene. A single nucleotide mutation was identified in 

resistant C. elegans and H. contortus (Roos et al., 1993). Transgenic analyses were performed 

in order to study the modulation of the susceptibility of C. elegans strains by the identified 

mutation. The Phe-Tyr substitution at codon 200 was thus confirmed to be responsible for 

resistance to BZ (Kwa et al., 1995). Further studies showed that this polymorphism is associated 

with a resistant phenotype to this class of AHs in a wide number of species (Gilleard, 2006). 

More recently, two other point mutations, F167Y and E198A, were detected in resistant strains 

of several species (Ghisi et al., 2007; Silvestre and Cabaret, 2002), F167Y and F200Y appear 

to be mutually exclusive (Beech et al., 2011; Mottier and Prichard, 2008). 

Levamisole resistance is not yet fully elucidated and knowledge regarding it depends on 

the species studied. In C. elegans, a loss of susceptibility has been linked with the expression 

of 21 genes. Some of them code for L-AChR subunits, others for proteins involved in assembly 

and processing of these subunits or regulation of the channel, and some for proteins involved 

in the calcium signaling cascade (Martin et al., 2012). In H. contortus, a truncated form of Hco-
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UNC-63, a subunit of L-AChR, was detected only in resistant strains and inhibited the function 

of the receptor when co-expressed with the wild-type in Xenopus oocytes (Boulin et al., 2011). 

A novel approach, the cDNA-AFLP (Amplified Fragment Length Polymorphism) allowed the 

comparison of transcript profiles between susceptible and resistant strains of the parasite 

(Neveu et al., 2007). This led to the identification of the Hco- acr-8b gene, a truncated form of 

the Hco-acr-8 gene  encoding an N-AchR subunit, that was found by RT-qPCR (Reverse 

Transcriptase – semi-quantitative PCR) to be expressed only in resistant strains, and thus 

potentially involved in levamisole resistance (Fauvin et al., 2010). This was later confirmed and 

an insertion/deletion of 63bp was identified in the Hco-acr-8 gene, just downstream from the 

splice acceptor site for the alternative third exon (Barrere et al., 2014). The absence of the 63bp 

indel is indeed responsible for a difference in the open reading frame, with the presence of an 

early stop codon that leads to the expression of Hco-acr-8b transcript, which was linked with 

resistance status. The identification of this indel was then developed as a tool for levamisole 

resistance detection. 

Changes in the sequence of one of the avermectin and mylbemycin target receptors, the 

GluCl receptor, may also modify the susceptibility of worms towards this drug. A functional 

analysis in Cooperia oncophora suggested that a L256F substitution in this subunit was 

responsible for only a slight decrease in IVM sensitivity, but the quantitative variation relative 

to the susceptible strain was low (Njue et al., 2004). A similar L256F mutation also caused a 

loss of sensitivity in the H. contortus GluClα3B receptor (McCavera et al., 2009). Overall, the 

sensitivity to IVM was dramatically compromised in a synthetic triple GluCl knockout strain 

of C. elegans (DA1316), which caused loss of receptors for IVM. IVM-sensitivity could be 

restored to susceptible parental strain level by expressing subunits of H. contortus or C. elegans, 

Hco-AVR-14B or Cel-AVR-14B respectively, under the control of the avr-14 promoter, thus 

indicating a theoretical role of this region in resistance to IVM (Glendinning et al., 2011). 

Mutations in the GABA type-A receptor, subunit HG1 of H. contortus was also shown to have 

a potent involvement in IVM resistance (Feng et al., 2002). Indeed, two different alleles of the 

gene encoding this subunit, linked either with sensitivity or resistance of the parasites to IVM, 

showed different IVM modulatory responses to GABA when expressed in Xenopus oocytes. 

The link between this gene and another one, glc-5 or HcGluClα, and ML resistance has been 

also confirmed in vivo. In fact, these alleles have been found to protect the worms against the 

inhibition of adult feeding and larval movement caused by drugs (Beech et al., 2010). In C. 

elegans, a link was found between a four amino-acid deletion in the ligand binding domain of 
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the GluClα subunit GLC-1 and resistance to avermectins (Ghosh et al., 2012). But one of the 

first mutagenesis studies, conducted on this drug target showed that a single nucleotide 

modification does not produce an important change in IVM sensitivity (Starich et al., 1995). 

Moreover, it was found that simultaneous mutations in three GluCl receptor subunits (GluClα1, 

2 and 3) were associated with a high level synthetic resistance whereas mutations in only two 

of these three genes were not (Dent et al., 2000). Thus, the various subunits of this receptor 

seem to have a redundant function. In addition, changes in GluCl genes do not appear to be the 

main cause for ML resistance in parasitic nematode (Gilleard, 2006), and it is not found in the 

field. 

b) Modifying drug biotransformation 

Increasing the rate of modification of the drug to a non-toxic compound, or reducing the 

activation of pro-drugs can also alter their efficacy, so that such mechanisms may spread in the 

population by selection pressure (Cvilink et al., 2009). A biotransformation study performed ex 

vivo on microsomal fractions of Fasciola hepatica showed that the rate of triclabendazole 

metabolism into triclabendazole sulphoxide was significantly higher in triclabendazole-

resistant flukes compared to susceptible ones (Alvarez et al., 2005). Metabolism of BZs was 

shown to possibly play a role in their resistance to this class of anthelmintics in various 

organisms. For example, H. contortus was shown to be more resistant to thiabendazole after 

glutathione S-transferase (GST) expression was induced by a cambendazole treatment 

(Kawalek et al., 1984). Plus, another team later found that inhibiting glutathione synthesis led 

to an increase in thiabendazole sensitivity in H. contortus resistant strains (Kerboeuf and 

Aycardi, 1999). However, these studies are indirect and the effect observed could be due to 

other induced mechanisms such as modification of transport.  

On the other hand, ML resistance does not appear to be linked to the biotransformation 

of these molecules (Lespine, 2013). In fact, IVM and MOX were shown to have high chemical 

stability in sheep ruminal and abomasal content as they are only poorly metabolized by 

biotransformation enzymes usually detoxifiying xenobiotics (Lifschitz et al., 2005). Plus, the 

enzymes involved in this process, mainly cytochromes, differ between host species and drugs 

(Zeng et al., 1998; Zeng et al., 1996; Zeng et al., 1997). 60 to 80% of macrocyclic lactones are 

then found as the parental form in the plasma of the host (Gonzalez-Canga et al., 2009). 

Elimination of these compounds is thus thought to be mainly due to their transport. 
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c) Modifying drug transport 

An increased efflux or decreased influx of the drug can also reduce its action inside the 

cell. This can, for example, be due to the overexpression of ATP-binding cassette (ABC) 

transporters from the multidrug resistance (MDR) family.  As these transporters are able to 

expel ML out of mammalian cells, their overexpression in parasites could also be a mechanism 

of resistance to these drugs (Pouliot et al., 1997). 

III.  ABC MDR TRANSPORTERS AND ANTHELMINTICS RESISTANCE 

1. ABC transporters: structures and functions 

a) ABC transporters structures and classification  

Proteins of the ABC transporters family all share a common structure: they contain at 

least one nucleotide binding domain (NBD) also called ATP binding cassette (ABC), which 

gives its name to the protein family (Hyde et al., 1990). To be active, ABC transporters need 

two such domains to bind to and hydrolyze ATP, thus supplying the protein with energy 

necessary for transport. ABC transporters are mostly membrane transporters, and contain 

transmembrane domains (TMDs) most often composed of 6 transmembrane helices (TMs) 

each. These TMDs are formed by a majority of hydrophobic amino-acids that allow the 

anchoring of the protein within the leaflets of the plasma membrane. Substrates bind within the 

funnel-shaped intertwining TMDs. Functional ABC transporters are either full-transporters that 

contain 2 NBDs and 2 TMDs, forming a typical “tandem” structure, or half-transporters that 

only contain one TMD and one NBD, and need to homo- or hetero-dimerize to be active (Table 

1). Exceptions are soluble ABC transporters that are mainly expressed in the nucleus to act as 

gene regulators. 

In all living kingdoms, ABC transporters contribute to cell homeostasis. In bacteria, 

ABC transporters can import compounds essential for cell viability and pathogenicity, or export 

endogenous molecules out of the cell (Table 1) (Davidson et al., 2008; Sarkadi et al., 2006). 

They can also promote the translocation of lipids from the inner to the outer leaflet of the cell 

membrane. In eukaryotes, most of ABC pumps extrude molecules from the plasma membrane, 

leading them to the extracellular compartment, but some ABC transporters can also be found 

in organelles such as the mitochondria, the endoplasmic reticulum, the peroxisomes, or 
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vacuoles in plant cells. In mammals, seven sub-families of ABC transporters are expressed in 

various tissues, and are responsible for the transport of a wide variety of compounds, as 

indicated in Table 1. They are composed of different combinations of NBD and TMD domains 

(Sarkadi et al., 2006; Szakacs et al., 2006): 

 The ABCA sub-family contains 13 full transporters, ABCA1 to A13, with the 

same domain arrangement shown in Table 1. They are all mainly involved in lipid transport in 

different tissues.  

 The ABCB sub-family contains 11 proteins. Three of them are full transporters 

(ABCB1, B4 and B11) and display remarkable multispecific properties. The eight other ABCB 

transporters are half-transporters and are expressed in internal membranes where they handle 

specific endogenous substrates.  

 The ABCC family is composed of 13 full transporters. Seven of them, ABCC1 

to C3 and C6 to C9, contain an additional TMD of 5 helices at the N-term of the protein 

(“TMD0” in Table 1), linked to the first TMD1 by the loop “L0” (Bryan et al., 2004; Deeley et 

al., 2006). ABCC7 harbors a supplementary cytosolic regulatory domain (R) that plays a critical 

role in the regulation of its function. Indeed, it is a specific ion channel that passively conducts 

chloride ions in epithelial cells. The R subunit must be phosphorylated in order to facilitate the 

channel gating (Gadsby and Nairn, 1999). During the transport of Cl-, ATP binding on the 

NBDs only has a regulatory effect on the ionic conduction and ATP hydrolysis remains very 

slow. Various mutations in this protein, also called cystic fibrosis conductance regulator 

(CFTR), make it not functional, so that the ensuing default of Cl- transport causes damages in 

various tissues of patients suffering from cystic fibrosis. The sulfonylurea receptors 

SUR1/ABCC8 and SUR2-ABCC9 are not transporters but form the ATP-binding subunit 

regulating the ATP-dependent potassium channels in pancreatic and heart cells respectively 

(Bryan et al., 2004). However, they also form the receptors of various compounds acting as 

blockers and openers of the K+ channel, thereby presenting an unusual capacity of multispecific 

recognition of various drugs (Bessadok et al., 2011). 

 All four ABCD members are half-transporters and transport various fatty acids. 

 The unique ABCE, a regulator of protein synthesis, and the three ABCF proteins 

believed to play a role in inflammatory processes, lack TMD domains.  

 All five ABCG transporters are half-proteins (ABCG1 to G4 and G8) with an 

inverted NBD-TMD arrangement. They form homodimers except for ABCG5 and G8. 
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Table 1. Localisation and function of different human ABC transporters of each family.  

 

TAP = transporter associated with antigen processing; IR = immune response; CFTR = cystic 

fibrosis transmembrane conductance regulator; SUR = sulfonylurea receptor; MRP = multidrug 

resistance protein ; BCRP = breast cancer resistance protein; HDL = high density lipoprotein ; 

(hom) = homodimer ; (het) = heterodimer. Adapted from (Dean et al., 2001; Szakacs et al., 

2008; Vasiliou et al., 2009). 

Protein 
Tissue distribution - polarized cell 
localization  

Function / disease when 
mutated 

Topology 

ABCA1 Ubiquitous 
Cholesterol and lipid transfer onto 
HDL / Tangier disease 

TMD1-NBD1-TMD2-
NBD2 

ABCA4 Rod photoreceptors  
Transport of N-retinylidiene  - 
phosphatidylethanolamine / various 
retinal  diseases 

TMD1-NBD1-TMD2-
NBD2 

ABCB1 / MDR1 
/ Pgp 

Blood-brain barrier, liver, intestine, 
kidney, placenta, stem cells - apical   

cholesterol and various 
phospholipids , Multi-drug 
resistance 

TMD1-NBD1-TMD2-
NBD2 

ABCB2-3 / 
TAP1-TAP2 

All cells 
Transport of peptides into the 
endoplasmic reticulum for antigen 
presentation during IR 

TMD-NBD (het) 

ABCB4 ; B11/ 
BSEP 

Liver - apical 
Transport of phosphatidyl-choline ; 
bile salt / progressive 
familial intrahepatic cholestasis 

TMD1-NBD1-TMD2-
NBD2 

ABCB5-10 mitochondria 

Iron, heme export from mito-
chondria / X-linked sideroblastic 
anemia and cerebellar ataxia 
(XLSA/A) (ABCB7) 

TMD-NBD 

ABCC1 / MRP1 
Lung, testes, kidney, peripheral blood 
mononuclear cells, cardiac and skeletal 
muscle, placenta -  basolateral 

Drug resistance 
TMD0-L0-TMD1-
NBD1-TMD2-NBD2 

ABCC2 / MRP2 
Blood-brain barrier, liver, intestine, 
kidney, placenta, lung -  apical 

Efflux of organic anion 
TMD0-L0-TMD1-
NBD1-TMD2-NBD2 

ABCC4 / MRP4 
Ovary, testes, kidney, lung, prostate -  
apical & basolateral 

Nucleoside transport 
TMD1-NBD1-TMD2-
NBD2 

ABCC7 / CFTR Exocrine tissues Cl- ion channel  / cystic fibrosis 
TMD1-NBD1-R-
TMD2-NBD2 

ABCC8 / SUR1 Pancreas 
Regulatory subunit of  K+(ATP) 
channel, insulin secretion / 
Neonatal diabetes mellitus 

TMD-NBD  

ABCC9 / SUR2 Heart, muscle  
Regulatory subunit of cardiac and 
vascular K+(ATP) channel 

TMD-NBD  

ABCD1-4 Peroxisomes   
Long chain fatty acid transport /    
X-linked Adrenoleukodystrophy 
(ABCD2) 

TMD-NBD (hom) 

ABCE1 ; F1-3 Ovary, testes, spleen ; ubiquitous 
Oligoadenylate binding protein. 
Regulation of protein synthesis 

NBD 

ABCG2 / 
BCRP/MXR 

Blood-brain barrier, placenta, liver, 
intestine, breast, stem cells -  Apical 

Multi-drug resistance NBD-TMD (hom) 

ABCG1-4 Macrophages Cholesterol transfer onto HDL NBD-TMD (hom) 

ABCG5 ; G8 Intestine, liver - Apical Transport of sterols/ sitosterolaemia NBD-TMD (het) 

https://en.wikipedia.org/wiki/Neonatal_diabetes_mellitus
https://en.wikipedia.org/wiki/Adrenoleukodystrophy
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b) MDR ABC transporters in mammals 

Among ABC transporters, those called “MDR” are functionally similar to Pgp, that was 

first identified in the 1970’s on cultured tumor cells to be responsible for cross-resistance to 

various cytotoxic compounds, often used in anticancer chemotherapy, and thus coined  

“multidrug resistance” (Dano, 1973; Juliano and Ling, 1976). Subsequently, Pgp has been 

shown to be involved in clinical multidrug resistance in patients bearing tumors, leading to 

chemotherapy failures. Although this MDR phenotype was found to be also due to either 

alterations of drug metabolism or apoptosis mechanisms, the overexpression of some ABC 

transporters at the cell surface remains the major cause, and have thus been widely studied 

(Gottesman et al., 1996). 

These transporters are expressed on apical cell membranes in various tissues (Table 1), 

such as intestinal cell brush border limiting digestive absorption, hepatocytes biliary pole and 

kidney tubular cells mediating excretion. They then prevent transported drugs and potent toxic 

compounds from entering the systemic circulation and propagating throughout the body 

(Sarkadi et al., 2006). Among the 48 mammalian ABC transporters, three main members have 

been extensively studied as they were proven to belong to the MDR class: ABCB1, C1 and G2 

(Fig. 10). They show various physiological functions depending on their site of expression 

(Lespine et al., 2009): 

 The P-glycoprotein (Pgp/MDR1/ABCB1) is the most extensively characterized 

MDR ABC transporter. It was named after its identification in chinese hamster ovary (CHO) 

MDR cells that showed a decreased drug permeability linked with the overexpression of this 

170 kDa glycoprotein (Juliano and Ling, 1976). Its role is critical at the blood-brain barrier 

where it prevents neurotoxicity in mammals (Roulet et al., 2003; Schinkel et al., 1994). It is 

also present at the apical membrane of enterocytes, where it expels compounds into the 

intestinal lumen, and in hepatocytes, where various drugs and toxic xenobiotics are eliminated 

via biliary excretion (Thiebaut et al., 1987). This wide tissue distribution prevents many 

exogenous compounds from remaining in the systemic circulation and causing toxicity to cells 

in the whole body. Its substrates are chemically diverse, ranging from anticancer drugs 

(paclitaxel, actinomycin D, doxorubicin, vincristine, etc) to HIV protease inhibitors such as  

ritonavir, and also include other cytotoxic agents, like colchicine, and cyclic or linear peptides 

such as valinomycin (Ambudkar et al., 1999). All these compounds are hydrophobic or 

amphipatic, so that they enter cells by passive diffusion (Gottesman and Pastan, 1993).  
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Figure 10. Function of the multidrug/xenobiotic ABC transporters. Multidrug/xenobiotic 

ABC transporters reside in the plasma membrane and extrude various hydrophobic and/or 

amphipatic xenobiotics and metabolic products. MDR1/Pgp transports hydrophobic 

compounds (X), while MRP1 and ABCG2 can extrude both hydrophobic drugs and 

intracellularly formed metabolites, e.g., glutathione or glucuronide  conjugates (C-X). Figure 

from (Sarkadi et al., 2006). 

  

 The multidrug resistance proteins (MRPs/ABCC1 to C6 and C10 to C12) are 

efflux pumps that have a great pharmacological importance because they display multi-

specificity against many drugs. Plus, they are present at either apical or basolateral membranes 

of many epithelia (Borst et al., 1999). However, only ABCC1 is unambigously involved in 

MDR phenotype in tumor cells. 

 The breast cancer resistance protein (BCRP/MXR/ABCP/ABCG2) is a half-

transporter described as having a multidrug resistance capacity (Doyle and Ross, 2003). It is 

expressed on the apical membrane of many tissues, such as the intestine and the brain, but also 

in many stem cells, constituting the “side population”. Plus, it is found on the placenta 

membrane where it protects the fetus from xenobiotics by expelling them (Chen et al., 2003), 

and in mammary glands where exogenous compounds are eliminated in the milk (Jonker et al., 

2005). 

c) Molecular structure and mechanism of ABC transporters 

Structural studies have been critical for the elucidation of the 3D conformations of ABC 

transporters. In silico ligand-based modelling, as well as crystallography studies that have 
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allowed protein-based modelling of ligand binding via docking, together with homology 

modelling of unresolved ABC transporters have been powerful tools when combined to in vitro 

studies. They have allowed gaining insight into the processes of NBD dimerization and thus 

nucleotide hydrolysis, as well as substrates binding and transport, leading to a more and more 

precise understanding of the whole translocation mechanism of ABC transporters. 

In first approaches, several isolated NBDs have been crystallized, belonging to ABC 

transporter of various bacteria. The crystal of the Salmonella typhimurium histidine permease 

HisP (Hung et al., 1998), followed by many more (Chen et al., 2003; Hopfner et al., 2000; 

Lewis et al., 2004; Schmitt et al., 2003; Smith et al., 2002; Verdon et al., 2003a; Verdon et al., 

2003b; Zaitseva et al., 2005), brought insight into the mechanism of binding and hydrolysis of 

ATP by these domains.  

NBDs are highly conserved and contain hallmark sequences of the ABC family across 

species (Higgins, 1992). The Walker A / P-loop motif binds to the γ-phosphate of ATP and the 

Walker B motif binds Mg2+ to hydrolyze ATP in all ATP hydrolyzing proteins. The A-loop 

consists of an aromatic residue located 25 amino acids upstream of the Walker A, and stabilizes 

bound ATP, as well as the H-loop / His-switch that interacts with the γ-phosphate of ATP 

(Zaitseva et al., 2005). The D-loop is an aspartate residue allowing cross-communication 

between the two ATP binding sites once NBDs have dimerized. The Q-loop is a γ-phosphate 

linker glutamine responsible for molecular communication with TMDs. They are all shared by 

many ATP-binding proteins, whereas the C-loop is an ABC signature LSGGQ motif, also called 

linker peptide, which sandwiches the ATP molecule bound to the opposite NBD (Ambudkar et 

al., 2003; Sauna and Ambudkar, 2007; Walker et al., 1982). 

A functional ATP site is formed by the interaction of residues of both halves in a head-

to-tail arrangement, thus sandwiching 2 ATP molecules. Specific residues critical for NBDs 

function were identified by co-crystallization with non-hydrolyzable ATP analogue and 

complementary in vitro experiments, mainly mutagenesis followed by ATP binding and 

hydrolysis assays. For example, the crystal of HlyB (Zaitseva et al., 2005), an element of the 

secretion machinery of E.coli, helped identifying the H662 residue of this protein as essential 

for its ATPase activity, by forming a catalytic dyad with E631. Many more were then mapped 

and found to be highly conserved among species, those involved in critical functions in 

mammalian Pgps were reviewed by (Ambudkar et al., 2006). Overall, these residues were found 

for each ATP-binding site at the interface of the two NBDs, on the Walker A and B motifs, H 

and Q-loop of one subunit and the C- and D-loop of the facing one (Hopfner et al., 2000; Sauna 
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and Ambudkar, 2007; Smith et al., 2002). ATP was also found to interact with the A-loop (Fig. 

11) (Hung et al., 1998; Smith et al., 2002; Zaitseva et al., 2005). Dimerization of NBDs is 

thought to be mediated by ATP binding itself, as NBDs connect each other through ATP (Jones 

and George, 2004). The C-loop appeared critical for ATP hydrolysis and communication with 

the drug-substrate sites, probably by facilitating the formation of the nucleotide sandwich dimer 

(Tombline et al., 2004a; Tombline et al., 2004b). The latter process became increasingly 

considered over the years as the core of the catalytic cycle of ABC transporters (Higgins and 

Linton, 2004; Smith et al., 2002; Tombline et al., 2004a; Tombline et al., 2004b; Tombline et 

al., 2005).  

Across the lipid bilayer, TMDs formed of 12 helices in total combine to form a funnel-

like shape and delineate an inner chamber. The latter is either open to the cytoplasmic side of 

the membrane, in which case substrates can bind with high affinity to the transmembrane 

domains, or to the extracellular medium, with lower affinity of the TMDs to the substrates that 

allow their release (Ambudkar et al., 2006). The combination of substrate binding and export 

on the one hand with ATP binding and hydrolysis on the other hand  is thought to be made 

possible by the presence of critical sequences such as the Q-loop that link the NBDs and TMDs 

in the 3D conformation of exporters. 

The molecular 3D structure of the drug-binding site of ABC transporters started to be 

elucidated with the first successful crystallizations of entire ABC proteins, either half-

transporters in homo- or hetero-dimers or full transporters. The first crystal of an ABC importer 

to be resolved was that of the bacterial importer of vitamin B12, BtuCD (Locher et al., 2002). 

Its structure contains two times 10 TM helices, in a configuration perpendicular to the 

membrane plane, and thus structurally diverges from ABC exporters. Another bacterial ABC 

importer was later crystallized, ModBC, which harbors a more classical configuration with 2 

times 6 TM helices forming an open inward-facing conformation (Hollenstein et al., 2007). 

These two examples illustrate the classification of ABC importers in two main types reviewed 

in (Rice et al., 2014). 

In mammals, Pgp has become a paradigm for ABC exporters due to its discovery a long 

time ago and its involvement in resistance to anticancer chemotherapy. Garrigues et al., (2002) 

combined ligand-based modelling approach on Chinese hamster (Cricetulus griseus) Pgp (Cgr-

Pgp) with in vitro ATPase measurements. They evidenced mutual relationships between a set 

of selected transported drugs, and revealed a bi-pharmacophoric binding pocket. On the one 

hand, actinomycin D (ACD), cyclosporin A (CSA) and verapamil (VRP) superimposed on the 

so-called pharmacophore 1 that accommodated the largest molecules.  
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Figure 11. Crystal structure of the HlyB-NBD H662A dimer with bound ATP/Mg2+. ATP 

in stick representation and Mg2+ (green spheres) are sandwiched at the interface of the two 

HlyB-NBD monomers (shown in light tan and light yellow). N- and C-termini of the individual 

monomers are labeled. Conserved motifs are colored in red (Walker A motif; Walker et al., 

1982), brown (Qloop), blue (C-loop or ABC signature motif), magenta (Walker B), black (D-

loop), and green (H-loop) and labeled accordingly. The figure was prepared using PyMol 

(www.pymol.org). Figure from Zaitseva et al. (2005). 

 

On the other hand, tentoxin (TTX) and vinblastine (VBL) bound to pharmacophore 2 that bound 

smaller molecules (Garrigues et al., 2002). These two pharmacophores were found to present 

an interacting point, with VBL partly overlapping on pharmacophore 1. This is the first 

published work that simultaneously presents a multisite model and a pharmacophoric analysis 

of the drug binding site of Pgp. However, such a model is not sufficient alone to understand the 

precise molecular mechanisms involved in multidrug recognition and transport capacities, as 

this requires additional structural data.  

Historically, the first image of Pgp has been revealed in 1997 from single particles 

electron microscopy imaging and analysis, with a very low resolution of 25 Å (Rosenberg et 

al., 1997). This showed a lateral communication between the interior of the protein and the 

surrounding membrane phase. Then, from 2D crystals imaging with a medium resolution of 

8 Å, it became possible to discern a pseudo-symmetrical structure for the twelve helices of the 

whole protein (Rosenberg et al., 2005). Later, the first entire ABC exporter 3D-crystallized was 
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Staphylococcus aureus vancomycin intermediate resistance 1866 transporter (Sav 1866). This 

protein was crystallized in an outward-facing conformation, either ADP bound (Protein data 

bank code: 2HYD) (Fig. 12) (Dawson and Locher, 2006), or AMP-PNP (a non- hydrolysable 

ATP analogue) bound (PDB: 2ONJ) (Dawson and Locher, 2007). Its structure was resolved by 

X-ray diffraction at fair resolutions: 3.0 Å and 3.4Å, respectively. This allowed the description 

of the conformation of this exporter after release of a substrate. At this stage, the cavity was 

lined with mainly polar and charged amino acids. It was accessible from the outer leaflet of the 

membrane but not from the inner leaflet, although the bottom of the cavity was found to reach 

beyond the intracellular membrane boundary. Substrates were deduced to be able to escape 

either in the outer leaflet of the membrane, if hydrophobic, or in the aqueous extracellular 

compartment, for polar substrates. The NBDs, on the other hand, were shown to be interacting 

with each other during the ATP-bound state coupled to the outward-facing conformation. The 

major novelty was the description of intricately associated TM domains of an ABC transporter. 

Indeed, the TMDs were shown to swap 2 helices between each other, rather than being aligned 

side by side, as previously thought. Also, intracellular loops of one TMD were shown to interact 

with the opposite NBD, again showing higher interaction than expected. These features 

explained the limited maximum separation of the TMDs during the outward-facing stage, which 

flexibility is facilitated by their interaction with NBDs that get closer to each other when 

binding ATP. Thus, these data were in favor of a transconformation caused by the binding of 

ATP rather than the binding of substrates, which allows ABC exporters to alternate chelation 

and release of ligands. 

Later, the multicopy suppressor of htrB, MsbA, an ABC lipid flippase (for LPS in 

particular) of Salmonella typhimurium, was also crystallized as an outward-facing structure, in 

complex with AMPPNP, at a resolution of 3.7 Å (Fig. 12) (PDB: 3B60) (Ward et al., 2007). 

This structure was found to be very close to Sav1866, confirming the 3D conformation of an 

ABC transporter after ATP hydrolysis. Further, the researchers also showed the correction of 

two earlier structures of orthologs of the same protein, E. coli MsbA in an open-inward 

conformation (PDB: 3B5W), and Vibrio cholerae MsbA in a closed-inward conformation 

(PDB: 3B5X), both without bound nucleotide. These data showed different distances between 

the NBDs of the two inward-facing MsbA proteins, and thus helped understanding the 

flexibility of various domains involved in the translocation process (Fig. 13). Indeed, these 

three structures are proposed to be part of the successive intermediates of the transconformation 

steps required for the active transport cycle. ABC exporters have been since then envisioned as 

alternating cytosolic accessibility combined with high affinity for the  
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Figure 12. Comparison of the crystal structures of ABC transporters. Shown is alignment 

of overall structures (A and B) and NBDs (C) of CmABCB1 (Kodan et al., 2014), C. elegans 

P-gp (Jin et al., 2012), mouse P-gp (Li et al., 2013), ABCB10 (Shintre et al., 2013), TM287/288 

(Hohl et al., 2012), StMsbA (Ward et al., 2007), and Sav1866 (Dawson and Locher, 2007), 

viewed parallel to the plane of the membrane (A and B) and from the extracellular side (C). 

The PDB code is indicated above the name of the protein and resolutions of each crystal 

structure are indicated in parentheses. The distances (Å) between the Cα atom of the first Ser 

(Ser480 in CmABCB1; Thr368/ Thr390 in TM287/288) in the P-loop/WalkerA motif and that 

of the Ser (Ser586 in CmABCB1) in the ABC signature motif of the adjacent NBD are indicated 

by bold numbers with the black lines. These Ser or Thr residues are shown as red spheres. The 

nucleotides bound to StMsbA and Sav1866 are shown as green spheres. Horizontal black bars 

represent the expected positions of the hydrophilic surfaces of the lipid membrane; gray bars 

represent the expected positions of the hydrophobic surfaces. Thick dashed lines represent the 

middle of the membrane bilayer. Adapted from (Kodan et al., 2014). 

 

transported substrate, and exoplasmic accessibility during which a decreased affinity for the 

substrate allows its release. 

Thus, the large cavity formed by TMDs during the open inward-facing conformation 

correlates well with the known LPS transport from the inner to the outer leaflet of the  
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Figure 13. Summary of conformational changes in MsbA. (A) Conformational changes 

within the MsbA dimer alter the accessibility to the internal chamber from inward to outward 

facing. For clarity, only TM helices (labeled 1–6) of one monomer (cyan) are shown inside a 

surface rendering of the dimer. The open and closed apo conformations form an inward-facing 

V between TM4/TM5 and TM3/TM6 (red asterisk). The nucleotide-bound conformation 

(MsbA-AMPPNP) forms an outward-facing V between TM3/TM6 and TM1/TM2, just above 

the elbow helix (black asterisk). Upon nucleotide binding, TM4/TM5/IH2 moves, causing 

TM3/TM6 to split away from TM1/TM2, which results in an outward-facing conformation. 

Both inward- and outward-facing conformations are mediated by intramolecular interactions 

within a single monomer, but by different sets of helices. (B) Simplified cartoon model 

illustrating the points above. The relative position of each TM helix is labeled with a number 

(one monomer in white and the other in gray). The arrows illustrate the motions required to go 

to the next state. (C) Top-down view of NBDs (one monomer shown in white and the other in 

gray). IH1 (green) and IH2 (yellow) from both monomers are shown. In the absence of 

nucleotide (apo), the NBDs are in similar orientations with the ATP-binding half-sites (LSGGQ 

and P-loop) facing each other; the P-loops (red) are roughly aligned (dashed lines) with one 

another across the dimer interface. Upon nucleotide binding (AMPPNP - magenta), the 

canonical ATP sandwich is formed, aligning the nucleotide between the LSGGQ and P-loop. 

IH1 tracks with the cis-monomer, whereas IH2 tracks with the trans-monomer. The motion of 

the NBDs from closed-apo- to nucleotide-bound transmits a structural change (described above) 

to the TMs via IH1 and IH2, resulting in an outward-facing conformation. From (Ward et al., 

2007). 
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bacterial membrane, which could not be explained by the outward-facing conformation alone. 

In addition, the crossover of TM4-TM5-IL2 and TM10-TM11-IL4 interacting with the opposite 

TMD, also found in these two inward-facing conformations, reinforces the stability and the 

symmetry of the dimerized protein all along the transconformation process. 

 The mouse ABCB1a structure crystallized by Aller and colleagues (Aller et al., 2009) 

was the first structure of a mammalian ABC transporter released in the PDB (3G5U), with a 

resolution of 3.8 Å (Table 2). Its conformation was open inward-facing and without nucleotide 

bound, thus most probably corresponding to the step before ligand binding. At this stage, NBDs 

of Mmu-ABCB1a were found to be about 20 Å apart, against about 50 Å for the open-inward 

structure of Escherichia coli (Eco-)MsbA. This revealed differences in inward-facing 

conformations, either between species or over time if the opening found for Mmu-ABCB1a was 

an intermediate of a likely dynamic process of “opening-closing of NBDs”. In the inward-facing 

conformation, the cavity was found to open both to the cytoplasm for polar/charged ligands and 

to the inner leaflet of the membrane on two sides: between TM4-TM6 and TM10-TM12 for 

hydrophobic ligands. Residues lining the cavities were found to be mainly hydrophobic and 

aromatic, contrary to what was found for the outward-facing conformation of Sav1866. The 

very large volume, about 6000 Å3, found for the cavity revealed a possibility of binding either 

a (very) large substrate or two smaller substrates simultaneously. 

This drug binding site location was confirmed by the co-crystallisation of this protein 

with two stereoisomers of cyclic hexapeptide inhibitors: cyclic-tris-(R)-valineselenazole 

(QZ59-RRR) that bound to the middle of the inner cavity (PDB: 3G60), and cyclic-tris-(S)-

valineselenazole (QZ59-SSS), which showed two binding sites across the previous one (PDB: 

3G61). Several of the residues of interaction of verapamil previously identified on human (Hsa-

) Pgp (Loo et al., 2006a, b; Loo and Clarke, 1997), correlated with the residues lining the two 

binding sites identified on Mmu-ABCB1a. They also showed a high degree of conservation 

between mammalian species, suggesting a common mechanism of multi-specific drug 

recognition. 

Later, the first crystal structure of a nematode Pgp, C. elegans Pgp-1 (Cel-Pgp-1), was 

released with a resolution of 3.4 Å (Fig. 12) (PDB: 4F4C) (Jin et al., 2012). In vitro 

measurements of ATPase activity stimulation of Cel-Pgp-1 by various compounds known to be 

substrates of Hsa-Pgp showed a multispecific recognition capacity also for the nematode  

Table 2. Overview of crystal structures of ABC exporters from various species. 
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Protein PDB code 
Resolution 

(Ǻ) 

Full / Half 

(hom/het) 

Lgd / Nt / 

Unbound / 
Conformation Reference 

Sav1866  2HYD/ 20NJ  3.0/3.4 Half (hom) Nt bound Outwards open  Dawson and Locher, 2007  

Sty-MsbA  3B60  3.7  Half (hom) Nt bound Outwards open Ward  et al., 2007 

Eco/Vch-MsbA  3B5W/X  5.3 / 5.5 Half (hom) Unbound 
Inwards open / 

closed 
Ward  et al., 2007 

Mmu-ABCB-1  3G5U  3.8  Full Unbound Inwards open Aller et al., 2009  

Mmu-ABCB-1 3G60/1 4.4/4.35 Full Lgd bound Inwards open Aller et al., 2009 

Cel-ABCB-1  4F4C  3.4  Full Unbound Inwards open Jin et al., 2012  

TM287/288  
3QF4 

4Q4A/H/J 
2.9  Half (het) 

Un/Nt 

bound 
Inwards open Hohl et al., 2012 ; 2014 

Mmu- ABCB-1  4KSB/C  3.8/4.0  Full Unbound Inwards open Ward et al., 2013  

Hsa- ABCB-10  3ZDQ  2.85  Half (hom) Unbound Inwards open Shintre et al., 2013  

Hsa- ABCB-10 4AYX/ T/W 3.3 Half (hom) Nt bound Inwards open Shintre et al., 2013 

CmABCB1   3WME/F  2.75/2.6  Half (hom) Unbound Inwards open Kodan et al., 2014  

CmABCB1 3WMG 2.4 Half (hom) Lgd bound Inwards open Kodan et al., 2014  

Mmu- ABCB-1 4M1M  3.8  Full Unbound Inwards open Li et al., 2013  

Eco-McjD  4PL0  2.7  Half (hom) Nt bound Outwards closed  Choudhury et al., 2014  

NaAtm1 4MRN 2.5 Half (hom) Unbound Inwards open Lee et al., 2014 

NaAtm1 4MRP/R/S/V 2.35-2.97 Half (hom) Lgd bound Inwards open Lee et al., 2014 

Sce-Atm1  4MYC 3.06 Half (hom) Unbound Inwards open Srinivasan et al, 2014  

Sce-Atm1 4MYH 3.38 Half (hom) Lgd bound Inwards open Srinivasan et al, 2014 

Mmu- ABCB-1 
4Q9H/ 

I/J/K/L 
4.0-3.6 Full 

Un/Lgd 

bound 
Inwards open Szewczyk et al., 2015 

Cth- PCAT1 4RY2 3.6 Half (hom) Unbound Inwards closed Lin et al., 2015 

Cth- PCAT1 4S0F 4.1 Half (hom) Nt bound Outwards closed Lin et al., 2015 

Cje-PglK 5C78/6 2.9/3.94 Half (hom) Unbound Inwards open Perez et al., 2015 

Cje-PglK 5C73 5.9 Half (hom) Nt bound 
Outwards semi-

closed 
Perez et al., 2015 

Hsa-ABCG5/8 5DO7 3.93 Half (het) Unbound Inwards open Lee et al., 2016 

The protein names are indicated in the first column with their previous nomenclature or with 

the code: 3 letters for the name of the species - Name of the protein - number. The PDB entry 

code in the second column is then followed by the resolution (Resol) in the third column, and 

the indication of full or half-transporter and homodimer (hom) or heterodimer (het) in the fourth 

column. The fifth column indicates if the protein was found unbound, ligand (Lgd) bound or 

nucleotide (Nt) bound. The sixth column indicates in which conformation it was found, and the 

references are listed in the last column. 
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transporter. However, several differencies were found between the structure of Cel-Pgp-1 and 

the unique mammalian structure previously released 3G5U of Mmu-ABCB1a. The NBDs of 

4F4C were separated by about 10 more Å than in 3G5U. Two semi-helices, named TMa and 

TMb, were found on the N-term extremity previously found to be cytosolic in other structures, 

closing the space between TM4 and TM6 of Cel-Pgp-1. On the opposite side, TM10 and TM12 

were found to be discontinuous, either forming a bigger entrance on this side for substrates to 

reach the inner pocket through the inner leaflet of the membrane, or facilitating the flexibility 

necessary for the transconformation of the protein. Finally, residues attribution showed a 

frameshift of 1 residue on TM3 and TM5, and 4 residues on TM4, as compared to 3G5U.  

The 3G5U structure was then corrected several times, by different authors. The first 

correction in 2013 shifted 1 residue on each of the TM5, 6 and 8, and 4 residues on TM4, to 

obtain the new PDB structure 4LSG released without publication. In addition, 2 novel structures 

of mouse Pgp were later published: 4KSB and 4KSC released from new crystals, at resolutions 

of 3.8 Å and 4.0 Å respectively (Ward et al., 2013). On these structures, the distance between 

NBDs was wider than previously, about 30 Å, the TM12 was continuous, and the attribution of 

residues on TM3-4-5 was modified.  

Then, Li et al. (2013) published another Mmu-ABCB1 crystal structure with a new 

irradiation technique, released at 3.8 Å resolution (Fig. 12) (PDB: 4M1M). Many helices were 

shifted for all (TM3-4-5-12) or part of (TM8-9) their residues when compared to 3G5U, with 

new residues lining the inner pocket better matching with experimentally identified residues 

involved in ligand binding in Hsa-Pgp (Loo et al., 2003, 2006a, b; Loo and Clarke, 1997, 2001). 

Finally, another unbound crystal (4Q9H), together with 4 structures of co-crystals of Pgp, 

in open inward-facing conformation, were released at resolutions of 3.4 Å to 3.8 Å. The latter 

bound to 4 different rationally-designed homotrimeric ligands: QZ-Ala (4Q9I), QZ-Val (= 

QZ59-SSS from Aller et al. (2009)) (4Q9J), QZ-Leu (4Q9K) and QZ-Phe (4Q9L) (Szewczyk 

et al., 2015). Because the previous co-crystals released were of lower resolutions: 4.4 Å for 

3G60 and 4.35 Å for 3G61 (Aller et al., 2009), these new structures allowed more precise 

interpretations of ligand-Pgp interactions. Interestingly, two subsets of ligands were 

distinguished, differing by size and hydrophobicity. The subset A contained the small ligands 

QZ-Ala and QZ-Val that shared an upper and lower binding site, while the subset B containing 

the bigger hydrophobic ligands QZ-Leu and QZ-Phe essentially bound to a second upper site. 

The most striking feature of these co-crystals was the kinking of TM4 in response to the subset 

A of bound ligands, compared to the rather straight structure of this TM found in co-crystals 
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with the subset B of ligands. This helix appears as critical for ligand entry and binding, as it 

forms an access portal form the inner leaflet of the membrane, and mutations in this region of 

a Pgp of a different specie disrupted substrate transport (Kodan et al., 2014). It has been 

suggested that ligand binding could induce closure of NBDs, in the presence of ATP, to increase 

catalysis (Doshi and van Veen, 2013; Szabo et al., 1998), so that TM4 could be involved in 

TMD-NBD coupling. This is consistent with ATPase good activators (subset A) kinking TM4 

while ATPase poor activators (subset B) maintained TM4 straight, as observed in Pgp structure 

in the absence of ligands. 

Several ABC exporters from other species were crystallized in the meantime, confirming 

rather similar 3D conformations for these proteins across species (Table 2). Some interesting 

variations of structures and mechanisms between species were nevertheless revealed (Fig. 12). 

The heterodimeric transporter Thermotoga maritima TM287-TM288 (TM287/288) was 

crystallized with a resolution of 2.9 Å in its open inward-facing conformation (Fig. 12) 

(PDB: 3QF4) (Hohl et al., 2012). In contrast to other crystallized ABC transporters, NBDs were 

still in contact even without nucleotide bound. Furthermore, the inner cavity appeared 

accessible from the cytoplasm, but not from the inner leaflet of the membrane. Finally, only 

one ATP needs to be hydrolyzed by NBDs to allow transport by this protein. At variance, the 

human mitochondrial homodimer ABCB10 showed around 20 Å separating its two NBDs in 

the open inward-facing conformation, which was found in the absence (PDB: 3ZDQ) as well 

as in the presence of 2 nucleotide analogs (AMPPCP and AMPPNP) bound (PDB: 4AYX/T/W) 

(Fig. 12) (Shintre et al., 2013). Otherwise, the homodimer Cyanidioschyzon merolae ABCB1 

was crystallized both unbound at 2.6 Å resolution (PDB: 3WMF) and bound to a unique 

allosteric inhibitor at 2.4 Å resolution (PDB: 3WMG), revealing an open-inward conformation 

in both cases, with a disordered TM4 in each subunit (Fig. 12) (Kodan et al., 2014). NBDs were 

apart from 25 Å in this inward-facing conformation of the protein. The transporter of 

antibacterial peptide microcin McjD of E. coli was crystallized at 2.7 Å resolution (4PL0) in a 

new nucleotide-bound closed outward-facing state (Choudhury et al., 2014). Its structure highly 

resembles that of outward-open MsbA and outward-open Sav1866, but without spanning of two 

TM helices on the opposite side of TMDs. This structure, closed to both sides of the membrane, 

was thus proposed as a transition state between the previous outward-facing state, after release 

of the substrate outside of the cell, and before release of ADP + Pi and subsequent return to the 

inward-facing conformation, that will allow binding of new substrates. 
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The Saccharomyces cerevisiae Atm1 mitochondrial transporter is the ortholog of human 

ABCB7 causing sideroblastic anemia XLSA/A when mutated. It was crystallized in inward 

open conformation either unbound (PDB: 4MYC) or glutathione-bound (PDB: 4MYH), at 

resolutions of 3.1 and 3.4 Å, respectively (Srinivasan et al., 2014). The two conformations were 

found to be almost identical, and showed a 6900 Å3 positively charged internal cavity close to 

the interface between the inner membrane and the cytosol. GSH bound within this cavity, 

similar to the 2 binding sites just previously found for GSSG, in the bacterial homolog 

Novosphingobium aromaticivorans NaAtm1 (Lee et al., 2014). Indeed, this protein had been 

crystallized either unbound (PDB: 4MRN) or bound to various ligands (PDB: 4MRP-V). Thus, 

the binding site of GSH and GSSG appears close to the expected cytosolic entry of polar 

ligands, in contrast with the hydrophobic Pgp inhibitors QZ59-RRR and QZ59-SSS that bound 

much deeply in the inner pocket of Mmu-ABCB1 in the 3G5U crystal (Aller et al., 2009) (Fig. 

14). Although this structure had been later corrected, the binding sites of such ligands showed 

to be similar in the co-crystals of Szewczyk et al. and match well with their supposed access 

through the opening of ABCB transporters to the inner leaflet of the plasma membrane 

(Szewczyk et al., 2015). Interestingly, one of the corresponding residues to those mutated in 

the human ABCB7 causing XLSA/A disease was found on the GSH binding site. Furthermore, 

the structure of the C-termini of each of the 2 monomers of this proteins were resolved for the 

first time, revealing a 24 amino-acid long alpha helix that tightly interact with one another, and 

appear to block the NBDs in open-inward conformations by connecting them at the level of the 

Walker A motif. The start of the unique C-terminal end of the full-transporter Cel-Pgp-1 was 

interestingly superimposed to one of these helices, in contrast to C-term ends of other proteins 

(Fig. 15). 

Clostridium thermocellum PCAT1, a polypetide processing and secretion transporter, 

consists of a homodimer containing two peptidase domains, and was crystallized in two 

conformations (Lin et al., 2015). One crystal, without nucleotide, was found with a closed 

inward-facing conformation with the two accesses towards the inner leaflet of the membrane 

and the cytoplasm open, but NBDs in contact with each other (PDB: 4RY2). The other crystal 

bound to non-hydrolyzing ATP-gammaS was found in a closed outward-facing conformation, 

with the accesses towards the membrane and cytoplasm closed, as well as the access to the 

extracellular compartment, similar to E. coli McjD (PDB: 4S0F). 
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Figure 14. Different binding sites for GSH to Atm1 and for inhibitors to mouse Pgp. The 

superimposed structures of Sce-Atm1 with bound GSH (light orange ribbon) and mouse Pgp 

with its inhibitors (light green ribbon; (Aller et al., 2009)) show the strikingly different binding 

sites of the ligands. The Pgp inhibitors are located in the plane of the hydrophobic phase of the 

membrane, whereas GSH is close to the hydrophilic phase. From (Srinivasan et al., 2014). 

 

Campylobacter jejuni PglK is a homodimeric active lipid-linked oligosaccharide (LLO) 

flippase, and was crystallized in three different conformations (Perez et al., 2015). Two 

unbound structures were found in an open inward-facing conformation. The space between 

NBDs was 44 Å (PDB: 5C78) or 30 Å (PDB: 5C76), similar to previous findings for         Cel-

Pgp-1 (Jin et al., 2012), and might be due to their obtention using two different detergents, 

rather than intrinsic properties of the protein. Furthermore, one nucleotide-bound conformation 

was found to be outward-facing (PDB: 5C73), in an intermediate occluded state between the 

totally closed E. coli McjD and Clostridium thermocellum PCAT1, and the fully open Sav1866. 

A similar inner cavity to what was previously shown for other ABC exporters was described.  

The very last crystal of ABC protein released is that of human ABCG5/G8, a heterodimer 

that exports sterols (cholesterol and phytosterols) in enterocytes and hepatocytes (Lee et al., 

2016). It was found as an unbound open-inward facing conformation without nucleotide bound, 

but probably cholesterol bound between TMDs, however in a too low resolution to be resolved. 

In this model, remarkably, no swapping of TM helices was found, and NBDs were in contact 

with each other at their extremities, thus forming a general  



LITERATURE REVIEW  

 

  51  

 

 

Figure 15. Superposition of the nucleotide binding domains of known bacterial and 

eukaryotic ABC exporters. The NBDs of the crystal structures of Atm1, C. elegans Pgp (Ce; 

PDB ID code 4F4C), mouse Pgp (Mm; 3G5U), bacterial Sav1866 (2HYD) and human 

mitochondrial ABCB10 (3ZDQ) were superimposed. The extra-long, C-terminal helix that 

confers stability to the Atm1 dimer in the open conformation can be clearly seen. Note that the 

C-terminal helix of C. elegans Pgp is resolved in only one half of this ABC transporter. From 

(Srinivasan et al., 2014). 

 

structure of inward-facing conformation differing from the majority of exporters previously 

described. This appears consistent with a bioinformatic analysis based on homologies between 

the TMDs that led to a classification of the ABC exporters among two classes (Wang et al., 

2009). 

In addition to provide insights into different steps of the translocation of substrates across 

the membrane, these crystals have contributed to the better description of precise individual 

amino acids critical for ligand binding in the TMDs (review : (Shilling et al., 2006)). Indeed, in 

vitro data such as mutagenesis, ATP hydrolysis, ligand binding, or cysteine cross-linking 

studies, were done either in parallel to the crystal structure released (Aller et al., 2009; 

Choudhury et al., 2014; Li et al., 2013) or in separate studies of ABC exporters of the same or 

different species (Bessadok et al., 2011; Loo et al., 2006a, b; Loo and Clarke, 2001, 2002).  

Plus, in silico docking calculations helped gaining insight into the binding properties of 

ligands on released crystal structures. The latter were also very useful to model other ABC 

transporters not crystallized so far. Then, the different types of in vitro or in silico studies 

previously mentioned could be perform in parallel to or based on the model to better 

characterize the properties of still poorly described transporters. To date, the structures of 

highest homology with human Pgp are human ABCB10, mouse ABCB1 and Cel-Pgp-1. 
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However, ABCB10 is homodimeric, and only mouse Pgp and Cel-Pgp-1, as well as sometimes 

the bacterial homologs, were used as templates for various homology modelling approaches of 

the Hsa-Pgp transporter. 

It is important to note that in silico docking calculations performed on such structural 

bases were highly dependent on the reliability of the considered structural models. Chufan et 

al. (2013) based their flexible in silico docking calculations on the structure of mouse Pgp 4KSB 

(Ward et al., 2013). In their strategy, they left flexible the residues of this protein previously 

found to interact with QZ59 peptides. By docking tariquidar, cyclosporin A, valinomycin and 

FSBA, they confirmed that a majority of flexible residues showed an involvement rate > 50% 

for binding to these ligands. Plus, they showed that wide molecules could only bind close to the 

cytoplasmic opening of Hsa-Pgp whereas smaller ligands could fit in the inner cavity. In vitro 

transport and ATP hydrolysis studies showed that these ligands can bind to Hsa-Pgp on different 

sites, as mutations perturbing their binding to one site did not totally stop the transport of each 

molecule (Chufan et al., 2013). This was consistent with previous in vitro studies that had 

suggested the presence of several, at least two overlapping binding sites in Hsa-Pgp (review: 

(Ambudkar et al., 2006)). 

In the study of Jin et al. (2012), the structure of Cel-Pgp-1, 4F4C, was used for modelling 

of Hsa-Pgp, and residues previously identified as involved in substrate binding in Hsa-Pgp were 

successfully checked to be facing the inner pocket of the obtained model. This indicated a high 

conservation of 3D conformation of ABC transporters across eukaryotic species. Three more 

studies were recently based on Cel-Pgp-1 structure of Jin et al. (2012) for modelling Hsa-Pgp 

(Jara et al., 2013; Prajapati and Sangamwar, 2014; Prajapati et al., 2013), and various 

compounds were tested for binding to Hsa-Pgp using docking calculations on these models (for 

a review : (Domicevica and Biggin, 2015)). This template could also be very useful and 

probably more accurate to model nematode full ABCB transporters showing closer homology 

to Cel-Pgp-1 than what Hsa-Pgp does. 

Molecular dynamics were used as well to better characterize the function of these 

transporters, taking into account the large flexibility of this protein (review: (Domicevica and 

Biggin, 2015)). Some of them integrated the lipid bilayer in their simulations to obtain dynamics 

that reflect the functional motion of Pgp. However, these types of techniques require taking into 

account a time-scale larger than the currently simulated hundreds of nanoseconds for being 

representative of the time needed for the ligand translocation. Especially, the investigation of 

Hsa-Pgp transporter transconformation mechanism is critical for rationally overcoming 
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resistance to chemotherapy. Several models have been proposed along the years for the 

transport cycle of Pgps, as illustrated in Ambudkar et al., (2006). Despite recent advancements 

that were made using more and more precise techniques such as single particle electron 

microscopy (Moeller et al., 2015) or single-molecule Förster resonance energy transfer (FRET) 

(Husada et al., 2015), the successive steps of this complex mechanism still lack a fine 

description. Plus, the full transconformation mechanism might be unique to each Pgp given the 

differences already found for each of the crystals in their structure (Beis, 2015).  

In spite of this lack of understanding of the entire mechanism of ligand translocation by 

Pgps, in vitro experiments have allowed for many decades the characterization of a wide variety 

of compounds as being able to interact with Pgp, and possibly reverse MDR resistance in 

mammals (review: (Ambudkar et al., 1999)). These were mainly identified in transport studies 

where Pgp was expressed in heterologous systems. In the presence of Pgp fluorescent 

substrates, such as calcein-AM, Hoechst 33342 or rhodamine 123, the incubation of compounds 

that led to accumulation of their fluorescence within cells gives indications on the nature of 

Pgp-mediated MDR-reversing agents. For a long time, the most potent competitor for Pgp 

binding used for these assays was the calcium channel blocker verapamil (VRP) (Tsuruo et al., 

1981). But cyclosporine A was further found (Eneroth et al., 2001) to be 10 times more potent 

than VRP, i.e. in the same range as IVM. Loperamide and ketoconazole were also identified as 

4 and 2 times more potent than verapamil, respectively. Dozens of other compounds have then 

been added to the extensive list of Pgp-interacting agents, thus describing the multispecific 

binding properties of this transporter. Jin et al., (2012) showed that several of the multiple 

substrates of Hsa-Pgp were able to stimulate the ATPase activity of Cel-Pgp-1, thus indicating 

that at least one nematode Pgp also shows the capacity to recognize multiple substrates. 

2. ABC MDR transporters and resistance to anthelmintics 

a) Anthelmintics transport by ABC MDR transporters in mammals 

Pgp was the first MDR ABC transporter described as being involved in IVM 

detoxification in mice in 1994 (Schinkel et al., 1994). Indeed, after IVM treatment, knock-out 

homozygous mice for the Pgp genes died from an increased level of toxicity mainly in the brain, 

demonstrating the important role of this protein as a barrier against neurotoxic compounds. A 

similar hypersensitivity towards IVM was reported in a population of Collie dogs naturally 

lacking Pgp protein translation due to gene mutation (Roulet et al., 2003). In vivo disposition 
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not only of IVM but also of EPR were later shown to mainly depend on Pgp, particularly in the 

brain and intestine, when mdr1ab(-/-) mice were compared to WT mice (Kiki-Mvouaka et al., 

2010). In contrast, moxidectin concentration in these tissues appeared mostly Pgp independent.  

In vitro experiments have also permitted to gain insight into the transport of 

anthelmintics by Pgps. IVM was first characterized as a Pgp inhibitor and MDR-reversing agent 

that can directly bind to Pgp (Didier and Loor, 1996; Pouliot et al., 1997). In vitro transport 

experiments of various anthelmintics across the plasma membrane of cells expressing mdr1 was 

also monitored by following the intracellular accumulation of fluorescent substrates of Pgp 

(Griffin et al., 2005). IVM and SEL thus appeared as potent Pgp inhibitors whereas MOX was 

100 times weaker. DOR was similarly shown to reverse human Pgp-mediated MDR (Gao et al., 

2010). The modulation of verapamil-stimulated murine Pgp ATPase activity by ML revealed a 

similar potency for most avermectins: IVM, DOR, EPR and ABA. SEL and MOX were about 

five and ten times less efficient than others, respectively (Lespine et al., 2007). This suggested 

that the presence of one or more sugar moieties in the structure of ML can influence the affinity 

to Pgp (see Suppl. Fig. S1, Manuscript n°2: David et al., 2016).  

Among other anthelmintics, some were also shown to interact with Pgp, but with less 

potency than IVM. Amino-BZ was found to interact with Hsa-Pgp (Nare et al., 1994), and TCZ 

was widely proven to be transported by F. hepatica Pgps, in addition to Ovis aries (Oar)-Pgps 

(Lifschitz et al., 2009; Meaney et al., 2013; Mottier et al., 2006; Savage et al., 2013a, b, 2014; 

Wilkinson et al., 2012). TCZ and CLO also decreased RHO transport activity of Mmu-MDR1a 

with an Emax 8 and 4 times higher than IVM respectively (Dupuy et al., 2010). In this study 

however, TBZ, LEV and most of other anthemintics tested did not modify RHO transport. LEV 

however increased the bioavailibilty of IVM, without changing its efficacy, in Humans treated 

against O. volvulus (Awadzi et al., 2004). In contrast, CLO used in combination with IVM did 

not modify its pharmacokinetics compared to its administration alone in cattle (Cromie et al., 

2006). Finally, EMD was shown during its synthesis to interact with Pgp, and its penetration in 

brain was recently shown to be increased in ABCB1a deficient mice compared to control mice 

(Elmshauser et al., 2014). 

Interestingly, IVM can also interact with MRPs and BCRP in human, although with 

lower affinities than with Pgp (Jani et al., 2010; Lespine et al., 2006b). IVM and MOX were 

also described as substrates of sheep and mice BCRPs, respectively (Perez et al., 2009; Real et 

al., 2011). Although BCRP is critical at the breast level in elimination of ML through milk, it 

cannot compensate for Pgp deficiency at the blood-brain barrier, and MRP function appears 
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limited in the brain (Borst et al., 1999; Cisternino et al., 2004). Thus, Pgp plays a major role at 

this level in mammals and its overall presence in various tissues is critical for detoxification, 

due to the higher affinity of ML for this protein compared to other MDR transporters. 

b) Anthelmintics transport by C. elegans ABC MDR transporters 

The first Pgp identified in C. elegans was Pgp2 in 1992 (Lincke et al., 1992). 15 

homologues of the single Pgp protein expressed in humans have been found in this nematode, 

whose encoding genes appear tandemly duplicated in clusters of two or four closely related 

genes (Zhao et al., 2004). Including MRPs and BCRPs, 60 ABC transporters have now been 

described in C. elegans. As for the human ABC transporters, they have been classified into 

different subfamilies: ABCA to ABCH, depending on the structure of the protein (Sheps et al., 

2004). Each ABCB/Pgp protein is expressed in C. elegans at different developmental stages 

and in specific tissues in the adult worm (Fig. 16) (Zhao et al., 2004). By analyzing their 

expression pattern, the authors showed that throughout the development cycle of C. elegans, 

Pgps are found almost in every tissue of the worm. For instance, excretory cells express Pgp4 

and Pgp12, whereas Pgp2 and Pgp14 are mainly found in the pharynx. At the adult stage, each 

transporter protects C. elegans against specific toxic compounds with redundant functions for 

some proteins (Lespine et al., 2012). For example, a deletion experiment showed that both 

MDR1 and Pgp1, expressed in different tissues in C.elegans, are involved in resistance to heavy 

metals (Broeks et al., 1996). Indeed, nematodes who had both of these genes deleted were found 

to be hypersensitive to cadmium and arsenite. 

The overexpression of several ABC transporters has been found to be linked to 

resistance to ML in this model organism. In a study, IVM resistant worms were selected by 

stepwise exposure to this drug, leading to cross- resistance with MOX, LEV and pyrantel, and 

the overexpression of the mrp-1 and pgp-1 genes was detected in the resistant strains (James 

and Davey, 2009). The effect of the inhibition of transcription of various ABC transporter genes 

by RNAi was studied in IVM susceptible and resistant C. elegans (Yan et al., 2012). They found 

that transcription inhibition of no single gene could efficiently increase IVM  
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Figure 16. Expression pattern of C. elegans Pgps in the hermaphrodite adult. The only 

exception expressed in the male is indicated in parentheses. Schematic representation 

constructed from (Zhao et al., 2004). 

 

susceptibility in these worms. However, depending on which genes were down-regulated 

simultaneously, motility, pharyngeal pumping and/or egg production were differently impaired, 

mrp-1 and haf-2 having the most important effects. 

Lespine et al. (2007) also showed that the transporter activity of Pgps is inhibited by 

IVM and ML by competition, thus confirming their substrate status that explains the importance 

of Pgps in ML resistance. Very recently, both the expression of various pgp genes and 

phenotypes (motility and pharyngeal pumping) were compared between IVM or MOX sensitive 

and resistant strains of C. elegans (Ardelli and Prichard, 2013; Bygarski et al., 2014). This 

assessment has highlighted the importance of several Pgps in the protection of this organism 

against IVM and MOX, each of them expressed in different tissues. The loss of function of 

different Pgps in C. elegans was also shown to result in an increasing impairment of 

development of these nematodes exposed to rising concentrations of IVM, in comparison to 

wild-type worms (Janssen et al., 2013). Finally, IVM or MOX-selected strains of C. elegans 

showed an increased susceptibility to the three ML IVM, MOX and EPR after exposure with 

the ABC transporter substrate verapamil (Menez et al., 2016). This accounted for the critical 

role of Pgps for detoxification of ML in C. elegans. 
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c) Anthelmintics transport by Pgps of H.contortus 

The first gene coding for H. contortus Pgps, called hcpgp-1 on the one hand and pgp-a 

on the other hand was simultaneously identified in 1998 by two teams (Kwa et al., 1998; Xu et 

al., 1998).  The latter showed that this gene was expressed more in IVM resistant H. contortus 

than in the susceptible worms. The same year, the selection of specific Pgp alleles was 

suggested in strains showing IVM and MOX resistance (Blackhall et al., 1998). 

Then, other studies indicated that resistance to ML is tightly linked to the expression of 

P-glycoproteins in this organism using various techniques such as southern blots (Sangster et 

al., 1999) or tests of MDR-reversing agents (Molento and Prichard, 1999). These results were 

then confirmed by detecting overexpression of several Pgps in vivo after exposure of H. 

contortus to IVM or MOX (Prichard and Roulet, 2007). More recently, the expression of 

different genes was assessed in an H. contortus strain resistant to BZs, levamisole and IVM. 

Pgp-2 and Pgp-9 mRNA expression was increased compared to susceptible worms as 

previously shown; however, Pgp1 was expressed to a lesser extent than in the control 

(Williamson et al., 2011). The interaction of various anthelmintics with Hco-Pgps was also 

tested by monitoring Rho123 efflux from eggs, previously to the identification of each of the 

homologs expressed in the parasite. In this study, all ML except IVM were shown to increase 

Rho efflux from eggs, as well as LEV (Kerboeuf and Guegnard, 2011). TBZ however failed to 

have any effect. 

In vivo, a pharmacokinetic study in lambs infected with resistant H. contortus has 

allowed the determination of the effect of three ML (IVM, MOX, abamectin) several days post-

administration (Lloberas et al., 2013). This study showed that two days after exposure, all three 

drugs are found at the same concentration in plasma, but MOX persists longer (up to 13 days) 

than the two other drugs (8 days). The abomasal concentration of IVM was found to be greater 

if administered by the enteral route than subcutaneously. Moreover, three days post-treatment, 

IVM concentration was higher in H. contortus recovered from infected lambs compared to the 

other drugs. However, the mass of H. contortus recovered was the lowest, and the efficacy of 

treatment determined by fecal egg count reduction test (FECRT) was the highest after MOX 

administration. Pgp2 expression levels were higher after IVM treatment in the resistant strain 

compared to the wild-type. In conclusion, this study found that MOX was the most efficient 

drug (86%) against IVM resistant H. contortus, compared to abamectin (39.7%) and IVM 

(20.1%), showing the important role of Pgps in vivo against the effects of ML in this worm.  
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The localization of the Pgps in H.contortus was unknown until 2002, when researchers 

analyzed the RNA distribution of the pgp genes previously sequenced by in situ hybridization 

(Smith and Prichard, 2002). They could detect a high RNA level in the pharynx of the worm, 

in the intestine region close to the pharynx and along its luminal edge. There was no staining 

in the muscles, nor in the hypodermis or the cuticle. However, another study detected the 

presence of Pgp by using an antibody in the cuticle of the adult worm as well as in the larvae 

and in the egg shells (Riou et al., 2005). Today, the exact localization of P-pgs in H. contortus 

is still unclear, except for Hco-Pgp-2 expressed in the pharynx and intestine, and Hco-Pgp9.1 

found in the uterus (Godoy et al., 2016; Godoy et al., 2015b). 

Indeed, until recently, the genome of H. contortus was not completely assembled and 

annotated, so that the exact number and sequence of pgp genes in this organism was not known. 

However, identifying homologies between the genome of H. contortus and the sequence of C. 

elegans mRNA transcripts can give indications about the pgps of the parasite as these worms 

are closely related. Such analyses have indicated that some of the pgp genes present in C. 

elegans have duplicated, while others have been lost in H. contortus (Laing et al., 2013). A 

recent study had thus identified nine pgps by bioinformatic analysis, but the level of expression 

of their transcripts did not show any significant differences between IVM sensitive and resistant 

strains, possibly because their selection had been rapid, happening only over three generations 

in this study (Williamson and Wolstenholme, 2012). Finally, the completely assembled genome 

of  H. contortus, published in 2013, shows that pgp-5, 6, 7 and 8 of C. elegans are not found in 

the parasitic species (Laing et al., 2013). On the other hand, C. elegans pgp-3 and 4 have arisen 

after duplication events and correspond to the single gene Hco-pgp-3. Similarly, Cel-pgp-12, 

13 and 14 correspond to Hco-pgp-13 only. On the opposite, the single copy pgp-9 in C. elegans 

matches two copies in H. contortus.  

These data then allowed further identification of the mechanisms of resistance 

associated to specific Pgp expression in this nematode. Indeed, in vitro techniques implemented 

on mammalian Pgps have allowed in the last two years the functional characterization of 

specific Pgps of H. contortus: Pgp2, Pgp9.1 and Pgp16 (Godoy et al., 2015a, 2016; Godoy et 

al., 2015b). All were shown to transport the anthelmintic drugs IVM and MOX.  

These new types of studies made possible by the recent annotations of H. contortus 

genome will pave the way for new treatments and allow overcoming the issue of the decreasing 

response to currently used ML. 
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3. Overcoming ML resistance in parasitic nematodes 

a) Different possible strategies 

Glutamate was found to be an allosteric modulator of IVM and moxidectin that increases 

their activity by potentiating their binding to HcGluClα receptors (Forrester et al., 2002). A 

GluCl agonist, ibotenate, was then shown to increase the efficacy of IVM by measuring the 

worm number in infected gerbils (Forrester et al., 2004). Thus, it may be possible to increase 

an anthelmintic treatment efficacy by co-injecting an allosteric modulator of ML. 

Several studies have shown that the overexpression of ABC MDR transporters in 

parasites seem to be inducible by ML (Lespine et al., 2012). This effect might be decreased by 

down-regulating the transporters by gene knock-out or siRNAs (Fig. 16). But, since various 

Pgps and other ABC transporters have been found to be involved in ML resistance, it would be 

difficult to target them all simultaneously. The task would be easier if a single regulator was 

activated by the ML and was responsible for the upregulation of different Pgps, but such 

molecule has not yet been identified. It is known, however, that Pgp expression can be induced 

in mammals by nuclear receptors when activated by their ligand (Staudinger et al., 2003). If 

similar mechanisms exist in nematodes, as suggested by the discovery of xenosensors in C. 

elegans that are involved in resistance to colchicine and chloroquine, antagonists of these 

nuclear hormone receptors could be useful tools to fight AH resistance. Targeting this 

regulatory pathway however, requires the identification of such regulators in parasitic species, 

as they are still unknown in H. contortus. 

Non-specific inhibitors have also been proposed as a method to reduce ML resistance. 

For instance, disturbing the membrane integrity around MDR transporters with lipid excipients 

or modulating the amount of cholesterol present in the membrane and forming rafts have been 

investigated (Fig. 17) (Riou et al., 2003; Seelig and Gerebtzoff, 2006). These different 

possibilities have proven to modify the activity of ABC transporters in nematodes, but in the 

case of cholesterol, its overloading decreased resistance, contrary to what was expected. 

Multidrug resistant tumor cells have also been shown to be more sensitive to oxidative stress 

than drug-sensitive cells (Fig. 17) (Karwatsky et al., 2003). The higher ATP requirement of 

overexpressed Pgps is responsible for drug resistance in these cells, which leads to apoptosis 

more easily than in control cells. Similarly, resistant strains of parasites can  
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Figure 17. Putative targets for reversing multidrug transporter-mediated resistance. 

Different strategies could be considered to increase drug concentration in the target cell in the 

case of MDR transporter-mediated resistance and to overcome this resistance. (i) Inhibition of 

MDR transporter-mediated efflux by using MDR inhibitors. (ii) Modulation of MDR 

transporter gene expression at transcriptional level through an inhibition of transcriptional 

regulator activity (iia); or at post-transcriptional level through a decrease of the MDR mRNA 

stability in the cell (iib). (iii) Modulation of lipid composition of the cell membrane harbouring 

the MDR transporters with surfactants or cholesterol depletion to decrease the basal activity of 

MDR transporters. (iv) Another side mechanism associated with the presence of MDR 

substrates is the modulation of oxidative stress with an increase of reactive oxygen species 

(ROS) production and cell damage resulting in apoptosis induction. From (Lespine et al., 2012). 

 

be more easily affected by apoptosis-inducing agents than sensitive parasites, but the compound 

would have to be specific enough to nematodes, not to be deleterious for the host. 

A particularly promising strategy to overcome ML resistance is the use of ABC 

transporter inhibitors (Fig. 17). Reducing the drug efflux by these transporters would lengthen 

the exposure time of the targeted cells to toxic compounds, thus increasing their efficacy 

(Lespine et al., 2008). However, the inhibitors need, again, to be as specific as possible to the 

parasite transporters in order to avoid cytotoxicity in mammalian cells. Firstly, avermectins 

themselves have been investigated as MDR-reversing agents, due to their ability to 

competitively inhibit the transport of other compounds by Pgps, but their possible neurotoxic 

effect in the host prevents their extensive use (Pouliot et al., 1997). Since then, a wide number 
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of compounds have been tested, such as verapamil or quercetin, first in vitro, to assess their 

ability to decrease Pgp transport in cultured cells (Dupuy et al., 2001), and then, in vivo, by 

determining the bio availability of co-administered ML (Dupuy et al., 2003; Molento et al., 

2004). Loperamide and ketoconazole were thus shown to impact the pharmacokinetics of IVM 

or MOX in different animal species (Alvinerie et al., 2008; Hugnet et al., 2007; Lifschitz et al., 

2002; Lifschitz et al., 2004). Verapamil was also found to increase the efficiency of ML in jirds 

infected with resistant H. contortus (Molento and Prichard, 1999). Other studies have shown 

the possibility of restoring drug efficacy in H. contortus using verapamil or other inhibitors of 

Pgp function (Ardelli and Prichard, 2013). For example, H. contortus selected with IVM in jirds 

showed an increased susceptibility to IVM and MOX after verapamil treatment. The FECRT 

result of lambs infected with a strain of H. contortus resistant to IVM was higher after treatment 

with IVM and loperamide than after administration of IVM alone (Lifschitz et al., 2010). 

Another team also demonstrated the increased susceptibility to IVM of both sensitive and 

resistant L1 larvae of H. contortus when co-administered with the previously cited inhibitors, 

valspodar, ketoconazole or pluronic P85 (Bartley et al., 2009); however, this capacity has not 

yet been investigated for all the inhibitors that have been successfully tested so far, like 

ketoconazole, itraconazole, or other structurally unrelated compounds (Lespine et al., 2008). 

Moreover, the first clinical trials of such MDR inhibitors in cancer therapy remain unsuccessful, 

mainly due to their secondary effects (Nobili et al., 2006). Indeed, if the reversing agents also 

show affinity for host transporters, they will inhibit the export of endogenous compounds and 

impair cell homeostasis causing toxicity in the host. As a result, the critical requirement for an 

inhibitor is to target the parasite transporter as strongly as possible without blocking the host 

transporter in order to avoid toxic effects in mammals. 

b) Specific resistance reversal in C. elegans and H. contortus 

To reach high-specificity with a given compound, it is necessary to study the affinity of 

interaction between this drug and the transporter at a molecular level, as already done with 

mammalian Pgps, MRPs and BCRPs (Lespine et al., 2009).  

However, these studies, which usually assess the level of transport, the ATPase activity 

of the targeted protein, and cellular cytotoxicity, are only beginning on Pgps of nematodes. 

Indeed, because of the difficult constitutive expression of worm transporters in cells 

endogenously expressing only a few of these proteins, this type of experiment is still at its 

nascent stage with C. elegans Pgps. Moreover, due to its life cycle requiring a host to develop 
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to the adult stage, proteins of parasitic species are even harder to study. The genome of H. 

contortus being only recently fully annotated (Laing et al., 2013), no drug-target interaction 

research has yet been published on the proteins of this worm. 

As many more Pgps are expressed in nematodes compared to humans, it is only possible 

to identify the molecular interactions and pharmacological properties of a compound relative to 

each transporter individually. Each protein being expressed in different tissues of the 

nematodes, some of them may have more important roles in resistance to AHs than others. 

Thus, it would be interesting to identify Pgps having the most critical roles in resistance and 

study these one in priority. A recent study analyzed the physiological effect of IVM on 

C. elegans strains knocked out for different pgp genes. By following the velocity of these strains 

with or without exposure to IVM, the authors showed that pgp-2, 5, 6, 13, 7 and 12 knock outs 

were the most sensitive to IVM. Indeed, treatment with this drug led to an increase of velocity 

followed by an inhibition of the movement of these strains more rapidly than in the sensitive 

wild-type (Ardelli and Prichard, 2013). Interestingly, two of them, pgp-6 and pgp-13, are 

expressed in the amphids (Zhao et al., 2004), where HcGluClα3A subunit of the GluCl receptor 

might be expressed (Portillo et al., 2003). HcGluClα3B subunit, on the other hand, has been 

detected in pharyngeal neurons, and the lateral and ventral nerve cords. Both subunits where 

also found expressed in motor neurons commissures (Portillo et al., 2003).  A regulation of the 

exposure of GluCl receptors to ML in the neighboring neuronal and pharyngeal regions might 

thus be important to avoid paralysis and death of the parasite by starvation. 

Freeman et al. (2003) have suggested the importance of amphids in IVM sensitivity. 

They investigated the hypothesis that these neurons might be another point of entry of the drug, 

as C. elegans larvae had been found to be paralyzed after IVM treatment even when their 

pharyngeal pumping function was inhibited (Smith and Campbell, 1996). They found that in a 

resistant worm, the neurons were shorter and did not approach the external environment as 

closely as they did in two different susceptible strains, indicating the possible importance of the 

amphids in the susceptibility or resistance to ML. Furthermore, Dent et al., (2000) showed that 

C. elegans worms with mutation of the Dyf (dye filling defective) gene osm-1 were more 

resistant to IVM than wild-type C. elegans. Dyf mutants are phenotypically deficient in the 

uptake of fluorescent dyes from the environment by the amphids (Dent et al., 2000). In their 

paper, the authors hypothesize that the resistance to IVM conferred by mutations of Dyf genes 

is explained by a reduced permeability to the drug in C. elegans. There are more than 20 genes 

that give a dye filling defect when mutated in C. elegans. DYF-7 is a factor secreted by 



LITERATURE REVIEW  

 

  63  

 

amphidial neurons to anchor dendritic tips during cell migration, thus ensuring that these 

sensory neurons reach the external environment (Heiman and Shaham, 2009). Urdaneta-

Marquez et al. (2014) showed that a loss-of-function allele of Cel-dyf-7 causes amphid neuron 

morphology and dye filling defects together with increased IVM resistance. Moreover, in their 

study, Hco-dyf-7 was also genetically linked to ML resistance and dye-filling defects in strains 

of H. contortus resistant to IVM and MOX. However, in C. elegans, not all Dyf mutants that 

are resistant to IVM show an impaired dye filling phenotype, for example in the case of osm-5 

mutant (Dent et al., 2000). This indicates that another mechanism, such as the transport of IVM 

out of amphidial neurons through Pgps, could play a role in the importance of this organ in ML 

resistance in nematodes. 
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Hypothesis and objectives 

 

 

Very little is known on the role of individual Pgps in the parasitic nematode. Gaining 

insights into the function of Pgps in H. contortus relies essentially on the determination of their 

substrate profile. As several studies indicated the importance of amphidial neurons in protection 

of the nervous system of H. contortus from AH drugs (Dent et al., 2000; Freeman et al., 2003; 

Menez et al., 2016; Urdaneta-Marquez et al., 2014), a particular interest will be given to Pgps 

potentially expressed in these structures. In C. elegans, two pgp genes were found expressed in 

the amphids, pgp-6 and pgp-13 (Zhao et al., 2004). As pgp-6 has no ortholog in H. contortus, 

we focus on the pgp-13 ortholog in this parasite and we study the function of its product Hco-

Pgp-13. 

 Our first objective was to study the binding properties of various substrates onto 

a nematode Pgp, Cel-Pgp-1, as a model. Cel-Pgp-1 crystal (PDB : 4F4C) was indeed the first 

structure of a nematode Pgp available (Jin et al., 2012) and can be used as a template to model 

by homology the 3D structure of Hco-Pgp-13, in order to study the substrate profile of this 

transporter, using in silico docking calculations. In a first step, several compounds with the 

capacity to stimulate the basal ATPase activity of Cel-Pgp-1 in vitro were studied in silico, and 

results of docking calculations were compared to these experimental data. This validation of 

the strength of the in silico approach on a 3D structure found experimentally is described in 

Part I, A. Then, based on the high prediction capacity for drug affinity of such docking model, 

we investigated for the first time the direct interaction of ML with a nematode Pgp, which is 

exposed in Part I, B. 

 The second objective was to determine the nature of Hco-Pgp-13 substrates, in 

order to gain insight to its role in vivo and investigate the possibility of its interaction with ML, 

as the first step required for their transport. First, the cDNA sequence of Hco-Pgp-13 was 

experimentally validated from reverse transcribed H. contortus mRNA, based on the sequence 

predicted from large-scale sequencing (Laing et al., 2013), and phylogenetic analyses were 

performed to better characterize this sequence, in Part II, A. Because the sequence of Cel-Pgp-

1 shows close homology to Hco-Pgp-13, 3D models were constructed based on the PDB 

template 4F4C. The computational analysis of drug docking was then performed on Hco-Pgp-

13 models. This was combined with in vitro assays, mainly ATPase activity assays in a Pichia 
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pastoris heterologous expression system, to further characterize the function of Hco-Pgp-13. 

This data is reported in the Part II, A and C. We have finally localized the protein product of 

closest ortholog of C. elegans pgp-13 in various stages of H. contortus life cycle, in order to 

better characterize its importance in the living parasite in Part II, A and B. 

This work provides new information on the function of Cel-Pgp-1 as a mutlidrug 

transporter and a relevant and predictive tool to study the function of Pgp orthologs in parasitic 

nematode species. In addition, specific information on Hco-pgp-13 on localization in H. 

contortus adults and larvae are presented together with the transport function of Pgp-13 that 

will contribute to unravel the potential involvement of Hco-Pgps in drug transport. 
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PART I  

In silico functional characterization of Cel-Pgp-1 

 

The first main objective was to check that in silico docking calculations performed with 

Cel-Pgp-1 crystal (PDB: 4F4C) would be a reliable strategy for the study of the interaction of 

a nematode ABC transporter with putative ligands. As this 3.4 Ǻ resolution crystal was the first 

of a nematode Pgp to be released, it could then be used as a template to construct a 3D homology 

model of Hco-Pgp-13 and perform similar docking calculations on this structure. 

We thus started our in sillico docking approach with the docking of compounds 

characterized as substrates of Cel-Pgp-1 by their activation of basal ATPase activity in vitro by 

Jin et al. (2012). This allowed correlating our in silico prediction of energy binding, 

representative for the affinity of each tested compound to Cel-Pgp-1 binding pocket, with 

experimental data reavealing or not their interaction with Cel-Pgp-1, and thus giving indications 

about their possible affinity in vitro. This revealed a very good correlation between the two 

approaches and help shedding light on the molecular properties leading to the substrate 

multispecificity of such transporter. It also allowed the description for the first time of the wide 

binding pocket of a nematode Pgp, divided in two sub-domains linked by a constriction zone. 

We then used Cel-Pgp-1 crystal structure to test the interaction by in silico docking of 

various anthelmintics, including a series of seven ML and seven AH of different classes. 

Strikingly, all ML drugs bound to the same sub-domain of Cel-Pgp-1, with similar high 

affinities. All ML presenting a disaccharide bound with higher affinity than those that harbor 

only one saccharide or none. Other AH bound to various locations, revealing several of them 

as being potential competitors of ML for binding to Cel-Pgp-1.  

In addition, this data showed that the docking experiments on the template 4F4C gave 

precise and reproducible results. Thus, a model of Hco-Pgp-13 based on the crystal of C. 

elegans could be used for docking calculations in order to investigate its substrate profile.
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Abstract  

 Some ABC transporters present multispecific recognition capacities, which allows them 

to be involved in multidrug resistance in cancer cells and in phase III cell detoxication in 

mammals. In other organisms, these proteins also participate in pleiotropic antibiotic resistances 

in bacteria, and in multiple resistance, against anthelmintics in nematodes, and against other 

antiparasitic drugs in various pathogenic parasites. In spite of this pharmacological importance, 

the molecular mechanisms of such multispecific drug recognition are still poorly understood. 

In this study, we took benefit from the crystal structure of the membrane ABC protein, P-

glycoprotein 1 of Caenorhabditis elegans (Cel-Pgp-1, PDB 4F4C), recently resolved to a good 

resolution (3.4 Å). We undertook an in silico study for modelling multiple drug binding to this 

full-size ABCB sub-family member of a model nematode that presents fair homology to human 

Pgp (ABC B1). Using a semi-flexible docking strategy, we first determined the binding modes 

of a series of molecules that have been previously assayed for their effects on Cel-Pgp-1 ATPase 

activity. We found an excellent correlation between these in vitro enzymological data and our 

in silico calculated binding energies (Eb), which fully validated our in silico approach. These 

first data collected on the validation set composed of 7 drugs allowed pointing out the central 

role of the large “inner chamber” of the protein, in its open inward-facing conformation, for 

ligand recognition. Further analysis of the in vitro/in silico correlation showed the necessity to 

consider the initial step of membrane partition of the tested ligands before they directly interact 

with the protein. Finally, for a total of 18 in silico tested molecules presenting broad chemical 

structures, we found that 14 were “good” ligands (Eb in the range -7 to -17 kcal/mol), 1 was a 

“weak” ligand and 3 were non-ligands, demonstrating the multidrug property of this ABC 

transporter. Its multispecific capacity relies on a rich palette of putative interacting residues. By 

lining the inner chamber, these amino-acids offer a large number of possible combinations for 

the binding of various structurally unrelated molecules (of size ranging from 300 to 1250 Da) 

to Cel-Pgp-1. Such a continuum of specific sub-sites within this large multispecific binding 

domain gives the opportunity to the smaller ligands to display two relevant binding sites, either 

partially overlapping and hence “dual”, or separated and hence leading to a stoichiometry of 2. 

The binding sites of small ligands then show a propensity to be altered when submitted to slight 

chemical modifications. Alternatively, the larger ligands are more constrained by the shape of 

the inner chamber walls: the more flexible ones can well accommodate the largest part of the 

chamber; whereas the more rigid ones can fit the chamber walls either very well or not at all. 

Finally, our multidrug binding model provides a new vision of ligand/protein interactions that 
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is different from the classical “key-in-the-lock” dogma prevailing for specific ligand-receptor 

interactions. This model is expected to improve strategies for rational drug design aimed at 

overcoming various multidrug resistance phenotypes in which Pgp homologs are involved. 

 

Keywords 

ABC transporters; P-glycoprotein; in silico docking; multispecific recognition; multidrug 

resistance; Caenorhabditis elegans. 

 

Abbreviations 

ABC = ATP-binding cassette; ACD = actinomycin D; CAM = calcein-AM; CCH = colchicine; 

Cel = Caenorhabditis elegans; Cgr = Cicretulusgriseus; CLS = cholesterol ; CSP = cyclosporin 

A; DNR = daunorubicin; DPM = dipyridamole; DXR = doxorubicin; Hco = Haemonchus 

contortus; Hsa = Homo sapiens; HST = hoechst 33342; KTC = ketoconazole; MDR = multidrug 

resistance; ML = macrocyclic lactone(s); Mmu = Mus musculus; NBD = nucleotide binding 

domain; PCT = paclitaxel; PDB = Protein Data Bank; Pgp = P-glycoprotein; PRG = 

progesterone; RHO = rhodamine 123; RMSD = root mean square deviation; TMD = 

transmembrane domain; VBL = vinblastine; VCR = vincristine; VLN = valinomycin; VRP = 

verapamil; VSP = valspodar. 

I. INTRODUCTION  

The superfamily of ATP-binding cassette (ABC) proteins comprises a huge number of 

members, which are expressed in prokaryotes as well as eukaryotes, in all living kingdoms from 

plants to yeasts, parasites and animals, including mammals (Higgins, 1992). Most of them are 

membrane proteins working as active transporters, with few exceptions, which use ATP 

hydrolysis at their nucleotide binding domains (NBD) to energize the transmembrane 

translocation of various substrates. Their respective physiological roles are thus dependent both 

on the nature of their handled substrates: peptides, sugars, ions, lipids, etc, and on the transport 

direction, importers being found only in bacteria. Among all of them, a rather small class is 

particularly interesting due to its remarkable property of multispecific substrate recognition, 

and eventual transport. This is indeed a very rare capability exhibited by enzymes or 

transporters that contradicts the classical dogma of ligand-receptor recognition (“the key in the 

lock”), and which makes them especially adapted for the efflux of various exogenous 
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compounds. In humans and mammals, they belong essentially to the sub-families B and C, and 

the three ones that are currently acknowledged to play a crucial role in cellular detoxification 

processes, constituting to the so-called phase III system, are ABCB1, C1 and G2 (Eckford and 

Sharom, 2009). Due to its oldest discovery and the mass of experimental data accumulated 

about it, ABCB1, or P-glycoprotein (P-gp), appears paradigmatic for multispecific ABC drug 

transporters (Ambudkar et al., 1999). Actually, these three multidrug ABC transporters have an 

important pharmacological impact because they are responsible for transmembrane transport of 

a very broad spectrum of drugs of various pharmacological interests, contributing to their 

pharmacokinetic characteristics: intestinal absorption, biliary and urinary elimination, and 

disposition at the level of blood-tissue barriers, typically leading to medicine interactions 

(Sarkadi et al., 2006). Due to their (over)expression, either innate or acquired, by some tumor 

cells, they are also often responsible for multidrug resistance (MDR) phenotypes against 

anticancer chemotherapy by a number of cytotoxic drugs, leading to treatment failures (Szakacs 

et al., 2006). 

 Such an obvious toxico-pharmacological importance requires a fine understanding of 

the underlying molecular mechanisms harbored by these multidrug ABC transporters, in order 

to be in position to rationally control their activity during drug (or toxic) expositions of patients, 

for example by predicting, short-circuiting, and/or inhibiting their transport function. However, 

these precise molecular mechanisms still remain rather obscure, ill-described and sometimes 

under debate. A number of enzymological studies have nevertheless addressed for Pgp this 

unique property of multispecific recognition, and they essentially led to three alternative 

functional models: (i) a unique but fully adaptable binding site; (ii) several binding sites, 

selective for each of the various chemical families of handled substrates; (iii) a large binding 

pocket or domain comprising various pluri-potent sub-sites that more or less overlap (Sharom, 

2006). Some reports, supported by various experimental approaches, have indicated the fairly 

likelihood of multiple binding sites, but they remain in discordance about their number and 

selectivity (Boer et al., 1996; Shapiro and Ling, 1997; Orlowski and Garrigos, 1999; Martin et 

al., 2000; Wang et al., 2000). With this background, our team has established arguments 

favoring the third possibility by building a double pharmacophoric model of chinese hamster, 

Cicretulusgriseus (Cgr-) Pgp based on the analysis of the mutual relationships between a set of 

Pgp substrates modulating its ATPase activity, and correlating them with the 3D alignments of 

the hydrophilic and hydrophobic recognitions elements of these substrates. Furthermore, a size 

effect for large ligands recognizing one pharmacophore and competing with ligands of the other 
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one strongly indicated the closeness of the two corresponding binding sites (Garrigues et al., 

2002). However, it is difficult to further progress toward a refined binding model of Hsa-Pgp 

for several reasons. In one hand, a ligand-based approach is hampered by the fact that a classical 

quantitative structure-activity relationships (QSAR) analysis is not applicable since there can 

be different binding sites available for ligands of related chemical structures. In the other hand, 

a structure-based approach suffers from the paucity of reliable high resolution crystal structures 

since the few presently available structures of murine Pgp reveal some discrepancies (Aller et 

al., 2009; Li et al., 2013; Ward et al., 2013). 

 Recently, Cel-Pgp-1 crystal structure has been released at the resolution of 3.4 Å (PDB 

4F4C), in the absence of nucleotides (Jin et al., 2012) and hence in the open inward-facing 

conformation supposed to be capable of chelating substrates with high affinity in the donor 

compartment (i.e. cytosol or cytosolic membrane leaflet) for their translocation. This nematode 

ABC protein presents a high sequence similarity with Human (Hsa-) Pgp, of about 63 % (58% 

if restricted to TMDs) and an identity of 46% (37% TMD-restricted), according to BlastP. Plus, 

Cel-Pgp-1 has previously been reported for being involved in anthelmintics resistance, mainly 

regarding macrocyclic lactones (Janssen et al., 2013), and the functional characterization of the 

purified protein, based on ATPase activity modulation assays accompanying its structural 

study, further showed that it appeared to display some traits of multispecific recognition for a 

set of molecules of diverse chemical structures (Jin et al., 2012). This similarity with Hsa-Pgp 

was then interesting for gaining insight into the molecular mechanisms of multidrug recognition 

by Pgp in general. This crystal structure gave the opportunity to launch an in silico study of 

docking of various potential ligands, chosen among the known mammalian Pgp transport 

substrates, in order to test their respective binding modes. This also allowed comparing the 

residues of Cel-Pgp-1 found to interact with substrates to what is known for mammalian Pgp, 

as some residues have already been reported to be involved in (multi)drug recognition, in 

particular considering the so-called “hotspot residues for drug binding” (Shilling et al., 2006). 

Finally, this study was aimed at shedding some light on the various molecular characteristics 

of multidrug recognition by a multispecific full-size ABC transporter of the B sub-family. We 

could thus investigate the binding site location(s) in the protein, multiplicity of these sites 

(indicating the binding stoichiometry) and the mutual relationships between them. We could 

also calculate the binding energies of ligands (taken as the evaluation of their apparent affinities, 

without taking into account the initial membrane partition step), evaluate the influence of the 
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ligand molecular size, and investigate the effects of slight chemical structure modifications on 

the binding. 

 As a first, obviously necessary step, we checked for docking calculations a “validation 

set” of 7 molecules tested by Jin et al., (2012) for their Cel-Pgp-1 ATPase response (6 positive 

ones and a negative one), in order to correlate our in silico data with in vitro enzymological 

published data. After full satisfaction of this validation step, we performed further in silico 

docking analyses of 11 other molecules, and found that they all bind within the “inner chamber” 

of the protein with a large range of calculated binding energies, encompassing various 

continuously connected sub-sites to take benefit of a large palette of anchoring residues offered 

by the protein. This allows a great number of molecules of large chemical diversity to find a 

solution for binding, hence explaining the capacity of multispecific recognition without 

requiring an inherent large flexibility of the receptor protein. 

II. COMPUTATIONAL METHODS 

1. Structure of Cel-Pgp-1 

The Cel-Pgp-1 X-ray structure, determined at a resolution of 3.4 Å (PDB code 4F4C) 

(Jin et al., 2012), was used in all docking calculations. The whole chain A was taken into 

account, with the exception of two detergent molecules (undecyl 4-O-alpha-D-glucopyranosyl-

1-thio-beta-D-glucopyranoside, PDB entry name 0SA), bound in the inner chamber, and that 

have been removed for grid maps calculations. The 4F4C structure includes the full 

glycosylated Cel-Pgp-1 sequence (1321 amino acids), but N-terminal (M1-R3) and C-terminal 

(E1307-K1321) segments are missing in the structure, as well as a short segment (A52-E54) 

located in an extended loop of the first TMD domain, and a 49-residues segment (K666-E715) 

belonging to the linker region. Interestingly, an additional helix-turn-helix motif (Q9-V32) is 

present in the N-terminal domain, a structural feature that has not been observed in other Pgp 

structures released in the PDB.  

The atomic coordinates PDB file was then converted into a PDBQT file by AutoDock 

Tools 4 (Morris et al., 2009) for docking calculations. PyMOL (The PyMOL Molecular 

Graphics System, Version 1.3, Schrödinger, LLC) was used as visualization tools for various 

tasks (3D alignments, ligands and hotspots location, grid box positioning for AutoGrid 4) and 

for structure rendering in figures. 
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2. Preparation and conformational analysis of ligands 

 The molecular structures of ligands were extracted from chemspider, drugbank (DB) or 

pubchem (CID) (Suppl. Fig. S1, S4 and S8), depending on the availability of structures. Each 

molecular structure was carefully scrutinized for chirality, and sometimes corrected when 

inconsistencies were found in the literature.  

In the semi-flexible mode, the ligand is handled as flexible around all the rotatable 

bonds. However, the conformational space of the ligand can be poorly explored when it contains 

ring structures as in avermectins, since AutoDock does not consider single bonds in non-

aromatic cycles as rotatable bonds. To overcome this limitation, in order to better sample the 

initial conformational space accessible to the ligand, we generated for each ring-containing 

compound 10 different low energy conformations. For this, we used Marvin Sketch and the 

minimization under the MMFF94 force field provided in Marvin Suite 

(https://www.chemaxon.com/products/marvin/marvinsketch/). The diversity of the 10 lowest 

energy conformers was evaluated by their pairwise root mean square deviations (RMSD) after 

superimposition under PyMOL. For each obtained cluster of close conformers, a representative 

one, defined as the center of the group according to the calculated RMSDs, was selected. One 

to five different conformers were thus selected as starting points for further docking procedures. 

In all cases, the selected conformers presented rather close energies, corresponding to rapidly 

interconverting forms of the molecule, and the docking results were generally comparable 

between each conformer. Thus, the most representative conformer for docking results was 

chosen for data presentation. 

3. Docking calculations 

Molecular docking experiments were performed using AutoDock 4 (release 4.2.6) in the 

semi-flexible mode with the Cel-Pgp-1 4F4C PDB structure kept rigid, and prepared with 

AutoDock Tools (Morris et al., 2009). AutoDock, which is the most cited docking software 

(Sousa et al., 2006; Sousa et al., 2013), has a free-energy scoring function, based on AMBER 

force field and a large set of diverse protein-ligand complexes with known inhibition constants. 

Few residues of the protein could have been declared as flexible in the PDBQT file, but the 

program restrains the total number of torsional degrees of freedom to 32, shared between the 

ligand and the receptor. This is a drawback in the case of the Pgp structure, since the inner 

chamber is large, and in the absence of consistent indications about the exact location of the 

binding sites of the various drugs, different cavities have to be taken into account in the 
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calculation. Thus, we privileged an approach based on better coverage of ligand flexibility and 

a grid box extended to the whole membrane part of the receptor protein. Indeed, for all ligands 

tested, the docking box, in which grid maps were computed using program AutoGrid 4, 

encompassed all the TM helices and the whole internal cavity, including lateral access channels 

and protein surface, to allow a large sampling of potential poses. The grid built by AutoGrid 

included 100, 124, and 126 points in x, y, and z directions, with a grid spacing of 0.375 Å to 

allow a good compromise between resolution of the explored volume and the size of the binding 

area (box dimensions 37.5 x 46.5 x 47.3 Å, centered in the inner cavity of Pgp, at the point 

x=22.2 Å; y=77.6 Å; z=-1.4 Å). For each ligand conformer, 100 independent calculations were 

performed using the Lamarckian genetic algorithm. All the other parameters were set at the 

default value.  

The 100 generated poses were assigned a score calculated by AutoDock that can be 

considered as an estimated free energy of ligand binding (indicative of binding affinity). They 

were then clustered as a function of the closeness of their positions and conformations with 

RMSD set at 2.0 Å, and finally ranked by their binding score (for the best pose in the cluster). 

The results are displayed in an energy scores histogram, which reproducibility could be assessed 

by comparing docking calculations performed on close ligand conformers, or on a truly 

duplicated calculation. As a result, binding energies (positions of the best pose in each cluster 

of the histogram) were found to fall within a range of 0.25 kcal/mol, and the number of poses 

in a cluster within 10%. This gives an indication of the accuracy of the histogram parameters 

in our series of runs, i.e. the binding energies and the overall distribution of clusters. In some 

cases, an isolated cluster of very good affinity (lowest binding energy) and containing a small 

number of conformations (typically 1 to 2 poses) was observed; this actually always 

corresponded to a physically relevant docking position.    

4. Data analysis 

Different parameters and observables can be used in the interpretation of docking data 

issued by AutoDock: binding energies (i.e. docking scores), histogram bars energy range, 

profile of the histogram, and location of calculated positions in the protein structure. The 

position of clusters in figures and tables corresponds to the binding energy value of the lowest 

energy pose in the cluster. The spreading of clusters in the energy scores histogram was 

considered as a general indication for ligand docking calculation reliability: the less scattered 

the energies, the higher specificity of binding can be expected. Conversely, a pseudo-Gaussian 
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profile for a group of histogram bars may suggest a non-specific docking. However, in some 

cases such as that of the complex molecule ACD, very negative binding energies (i.e. very good 

docking scores) were found in poorly populated clusters whereas the general aspect of the 

histogram was scattered. We considered these poses as relevant, despite the lack of sampling, 

in view of the gap energy with the next clusters, revealing high binding site specificity. In 

addition, we launched a 500 poses calculation on ACD for larger sampling and reproducibility 

testing, which confirmed the existence of the 2 lowest energy poses, and their overall ratio (15 

conformations over 500, i.e. 3% of poses). 

The question arose as to whether the lowest energy cluster or the most populated cluster 

(highest histogram bar) had to be considered. The AutoDock docking score is based on an 

empirical free-energy force field which has been parameterized using a large number of protein-

inhibitor complexes for which both structure and inhibition constants were known, and thus 

should reliably reflect the affinity of the ligand for the receptor, and the stability of the ligand-

protein complex. In contrast, the number of poses found in a cluster reflects the number of times 

that conformers are found in very close (within RMSD) binding sites, without any anticipation 

of their stability. Thus considering the highest cluster in the energy histogram may be not 

relevant per se for identifying the most probable docking site of the considered ligand. 

Practically, for each ligand, when the difference in the energies between the two best-scored 

clusters was more than 2 kcal/mol, the lowest energy one was considered as the most 

representative, since the other ones correspond to ligand-protein complexes associated to 

negligible lifetime. Alternatively, when the energy gap was narrower, we manually analyzed 

all the clusters within 2 kcal/mol below the lowest one for the localization of the included poses 

in the protein 3D structure. Finally, one or two main clusters were selected as representative, 

and they corresponded most often to the first and second minimum energy clusters, except when 

clusters corresponding to non-relevant positions in the protein were found interleaved in the 

ranking. In some cases, this protocol of validation led us to consider a double binding site on 

the protein, leading to a stoichiometry of one or two depending on whether these two docking 

positions were partially overlapping or not. Such a possibility simply reflects the large size of 

the multispecific binding domain, which likely encompasses the whole "inner chamber". 

Lastly, criteria for discriminating relevant from non-relevant docking poses had to be 

defined. This delineation was made necessary by the fact that we enlarged the zone of docking 

search to the whole membrane part of the protein. The large size of the grid box ensured an 

exhaustive conformational exploration not biased by preliminary beliefs, although it 



EXPERIMENTAL WORK: PART I - A  

 

 

  79  

 

participated to the scattering of the docking results. Poses that were outside of the expected 

ligand binding pocket (see Discussion §4.1) were not considered for further analysis. These 

were essentially poses located either "outside" of the Pgp structure, i.e., at the protein/lipid 

interface, or lowermost in the transmembrane domain, i.e., at the level of interface with the 

cytosolic medium ("cytosolic antechamber"), where the phospholipids polar headgroups are 

likely to be invaginated into the cavity between the transmembrane helices in the inward-facing 

Pgp conformation (Haubertin et al., 2006). These poses can have a functional relevance, for 

example as allosteric modulator sites, or not, but likely not as binding sites for transport. Finally, 

a search of the possible access channels allowing ligands to reach the inner pocket was 

performed using Mole 2.0. (http://mole.upol.cz/). In addition to the wide opening of the protein 

towards the cytosolic interface, the result showed two lateral tunnels located between TM10 

and TM12, communicating with the cytosolic leaflet of the membrane (data not shown). 

For each lowest energy pose of selected clusters, the number and nature of interacting 

residues were analyzed within the protein. Among these, particular interest was given to 

residues belonging to the "hotspots for drug binding”, described hereafter. 

5. Determination of the residues constituting the "hotspots for drug 

binding" 

A number of experimental works have been conducted for the purpose of determining 

the key residues responsible for multidrug recognition by mammalian Pgp (human and rodent 

isoforms). They initially included various directed-mutagenesis analyses that allowed 

identification of residues whose mutation led to alterations of the MDR profile, in contrast to 

numerous mutations that led to unspecific global decrease of Pgp function. The significance of 

these mutations was shown by cytotoxicity assays, which were a good indication of their 

involvement in the multi-specific drug recognition and binding. Furthermore, some additional 

data were collected with a chemical cross-linking approach, using a few drug derivatives 

bearing a moiety that could be activated, and ensuring specificity by testing protection by the 

native drug. All these data have been compiled in a review by Shilling et al., (2006), and were 

completed by including some references by Loo & Clarke (Loo and Clarke, 2001, 2002; Loo et 

al., 2006a, b; Bessadok et al., 2011). Finally, the release of the crystal structures of murine Pgp, 

co-crystallized with hydrophobic cyclic peptide inhibitors than can be considered as 

functionally relevant ligands, pointed to a set of contact residues; however, two versions of the 

interpretation of the experimental X-ray diffraction data have been published (Aller et al., 2009; 
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Li et al., 2013) that differed in the orientation of some transmembrane helices and side chains, 

which led us to consider both lists of contact residues equally. All these identified residues form 

a collection of 62 residues, as displayed in Suppl. Table S1, coming from 4 mammalian proteins 

(Hsa-ABCB1, Mmu-ABCB1a & b, Cgr-ABCB1). Moreover, 14 of these 62 residues are 

common between at least two different techniques. They are all situated in the transmembrane 

part of the protein. Altogether, they provide a frame in the inner chamber that offers a set of 

anchoring points for multispecific recognition and binding, and eventual translocation, of 

various transport ligands. 

Multiple protein sequence alignments have been performed on Cel-Pgp-1, human 

ABCB1, murine ABCB1a and ABCB1b, and Chinese hamster ABCB1, using Muscle software 

(Edgar, 2004). We checked that the transmembrane segments were satisfactorily aligned. 

Among the 62 human ABCB1 hotspot residues, 16 (26%) were found identical and 12 

homologous with the corresponding residues in Cel-Pgp-1, representing a global conservation 

ratio of 45%. As a comparison, human ABCB1 and Cel-Pgp-1 display a global similarity of 

63% (BLASTP positive matches), and still 58% when considering the TMDs only. This 

indicates that hotspots are subjected to more genetic variation than the overall sequence. More 

precisely, this set of residues is mainly hydrophobic, but less markedly for Cel-Pgp-1: the 

hydrophobic (F-Y-A-L-I-V-M) / hydrophilic (S-T-N-Q-H) ratio is 44/14 for Hsa-Pgp and 37/20 

for Cel-Pgp-1, respectively. 

III. RESULTS 

1.  Docking experiments on compounds stimulating or not the ATPase 

activity of Cel-Pgp-1 

To study drug interactions with Cel-Pgp-1, we have performed in silico docking 

calculations using AutoDock 4 in semi-flexible docking mode on the Cel-Pgp-1 crystal 

structure (PDB 4F4C) for a set of seven drugs belonging to a wide range of bioactive 

compounds and presenting various structures and molecular weights (MW) (Table 1 and Suppl. 

Fig. S1). Six of these drugs were chosen based on their previous biochemical characterization, 

showing ability to stimulate the ATPase activity of solubilized Cel-Pgp-1 from 3 to 10 times 

(Jin et al., 2012) (Table 1). Rhodamine 123 was chosen as a negative control, as it showed no 

stimulation of ATPase activity of Cel-Pgp-1. 
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a) Binding mode of known substrates of Cel-Pgp-1 

For valinomycin (VLN), the energy scoring histogram showed a single lowest energy 

cluster at -10.3 kcal/mol (VLN1) with a significant number of poses (42%) (Table 1 and Fig. 

1A). This strongly supports the good specificity and high affinity of VLN1 for one binding site. 

This docking position was similar to all other clusters, located in the “cytosolic part” of the 

inner chamber formed by the TMDs of Cel-Pgp-1, at the level of the interface between 

membrane and cytosol (Fig. 1B). It interacted with 14 residues of the transporter, including 3 

hotspot residues, and formed 3 H-bonds (Table 1 and Fig. 3A).  

For vinblastine (VBL), two lowest energy clusters, VBL1 and VBL2, were found at -

10.5 and -9.9 kcal/mol, consistent with a good affinity, and contained 15 and 14 poses 

respectively (Table 1 and Fig. 2A). Their binding positions were overlapping, with different 

orientations, deep in the inner chamber formed by the TMDs of Cel-Pgp-1 (Fig. 2B and 2C). 

VBL1 and VBL2 interacted respectively with 16 and 12 amino acids residues, including 10 and 

7 hotspot residues, and formed 2 and 1 H-bonds (Table 1). Their binding sites showed 9 

common interacting residues, including 6 hotspots (Table 2). They were both totally apart from 

that of VLN1, but shared 3 common interacting residues with VLN1: Q913, R916 and G1032, 

separating the binding sites of VBL and VLN (Table 2 and Fig. 3A). 

For actinomycin D (ACD), the clustering histogram showed a couple of lowest energy 

docking poses, ACD1 and ACD2, with binding energies of -17.0 kcal/mol and -14.9 kcal/mol, 

respectively, indicating a very high affinity of ACD for Cel-Pgp-1 (Table 1 and Suppl. Fig. 

S2A). The interaction of these two poses with Cel-Pgp-1 appeared in the inner chamber, from 

its cytosolic part to the middle of the TMDs (Suppl. Fig. S3A and S3B). ACD1 and ACD2 both 

interacted with 19 residues of Cel-Pgp-1, including 8 and 7 hotspot residues, and forming 2 and 

no H-bond(s), respectively (Table 1). They showed 15 common interacting residues, 

confirming the high specificity of the molecule to this binding site (Table 2). The two positions 

were indeed superimposed for most of the molecule, only slightly differing by the orientation 

of the peptidic moiety that was closer to the cytoplasmic opening of the inner chamber of Cel-

Pgp-1 (Suppl. Fig. S3A and S3B). ACD binding site shared several interacting residues with 

each of the well separated binding locations of VLN and VBL (Table 2). ACD indeed 

overlapped with each of these moelcules with respectively one or the other pseudo-peptidic 

moiety (Fig 4B and 4C, left panel), which formed a H-bond with either Q913 or R916, thus 

stabilizing the binding of ACD around its central polycycle (Fig. 3B). 



EXPERIMENTAL WORK: PART I - A  

 

 

  82  

 

For dipyridamole (DPM), the energy clustering was more scattered than for previous 

molecules, with the highest number of poses in a cluster of only 4, and binding energy ranging 

from -7 to -1 kcal/mol (Suppl. Fig. S2B). This reflected some diversity of the docking results. 

However, 2 clusters were found 1 kcal/mol away from all the others: at -7.1 kcal/mol (DPM1, 

3 poses) and at -7.0 kcal/mol (DPM2, 4 poses) (Table 1 and Suppl. Fig. S2B). For both clusters, 

binding to Cel-Pgp-1 appeared to be localized in the inner chamber, DPM1 being found more 

at its apex than DPM2 (Fig 4B and 4C, middle panel). DPM1 and DPM2 showed 13 and 12 

interacting residues, including 11 and 7 hotspot residues and forming 2 and 4 H-bonds, 

respectively, and shared only 3 common interacting residues (Table 1 and 2). DPM thus 

appeared to present a “dual” binding site composed of two partially overlapping sub-sites, 

localized across the VBL1 and VBL2 binding sites (Fig. 4C, middle panel). DPM2 binding site 

also overlapped with that of ACD.  

For progesterone (PRG), the energy histogram was very simple and showed two main 

clusters, very close in energy. These two minimum binding energy cluster PRG1 (13 poses) and 

PRG2 (85 poses) showed an energy of -7.23 kcal/mol and -7.17 kcal/mol, respectively (Table 

1 and Suppl. Fig. S2C). PRG1 and PRG2 interacted with 10 and 9 residues, all or 6 of them 

identified as hotspot residues, and formed 2 or no H-bond(s) with Cel-Pgp-1 (Table 1). PRG1 

was found more at the apex of the inner chamber in the transmembrane domains of Cel-Pgp-1, 

than PRG2 (Suppl. Fig. S3C and 3D), so that their interacting residues were totally different 

(Table 2). PRG thus presented two separated binding sites, consistent with a stoichiometry of 

2, which showed similar affinities with Cel-Pgp-1. The PRG1 binding site was mainly 

superimposed with DPM1, whereas the binding site of PRG2 overlapped with that of VBL, 

DPM2 and ACD (Table 2 and Fig. 4C, middle panel). 

For paclitaxel (PCT), the energy histogram presented a scattered clustering, with a 

minimum energy pose at -8.3 kcal/mol (PCT1) (Table 1 and Suppl. Fig. S2D). It was found at 

the cytosolic part of the inner chamber of Cel-Pgp-1 (Fig. 4B and 4C), similarly to the second 

and third lowest energy poses. Only the fourth lowest energy pose (PCT4) at -7.5 kcal/mol 

(Suppl. Fig. S2D), was more buried in the inner chamber of Cel-Pgp-1 (Fig. 4B and 4C, right 

panel). PCT1 and PCT4 contained 14 and 17 interacting residues, including 3 and 15 hotspot 

residues, and formed 2 or no H-bond(s), respectively (Table 2). They shared one common 

interacting hotspot residue, but their binding sites did not overlap, consistent with a 

stoichiometry of 2 (Table 2 and Fig. 4C, right panel). The binding site of PCT1, however, 
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overlapped with that of VLN and ACD, whereas the binding site of PCT4 superimposed those 

of VBL, DPM and PRG. 

Altogether, the in silico docking data showed high affinity interactions with Cel-Pgp-1 for 

a set of 6 validation drugs. This is in full agreement with the report of their in vitro functional 

characterization on Cel-Pgp-1, which showed that these 6 drugs clearly increased Cel-Pgp-1 

ATPase activity (Table 1) (Jin et al., 2012).    

b) Binding mode of a compound that did not stimulate Cel-Pgp-1 ATPase 

activity 

For rhodamine 123 (RHO), the energy histogram showed 3 lowest energy clusters 

ranging between -5.0 and -4.6 kcal/mol (Table 1 and Suppl. Fig. S2E). However, these 3 

clusters corresponded to a binding position situated low on the TMD of Cel-Pgp-1, outside of 

the membrane plane (Suppl. Fig. S3E): such an “ectopic” location outside the inner chamber 

should make it difficult for the ligand to undergo a protein transconformation-induced 

transmembrane translocation (according to the molecular mechanism suggested by Aller et al. 

(2009) ), and is actually consistent with the absence of Cel-Pgp-1 ATPase activation by RHO. 

Therefore, such a docking location of a ligand on the “cytosolic antechamber” should be 

considered as likely non-relevant for a transport function. 

In contrast, the 4th and 5th lowest energy clusters for RHO corresponded to a location 

within the inner chamber of Cel-Pgp-1, but they displayed energies around -3.8 kcal/mol (Table 

1 and Suppl. Fig. S3F). This small negative energy score clearly differed from those of the 

molecules activating Cel-Pgp-1 ATPase, which ranged between -7 to -17 kcal/mol (see above), 

and indicates a very low affinity of RHO for this binding site on Cel-Pgp-1. Hence, the whole 

validation set, including the 6 Cel-Pgp-1 ATPase activating molecules (VLN, VBL, ACD, 

DPM, PRG, PCT) and the non-activator RHO, showed an excellent correlation between in vitro 

data and in silico docking results. This provided a good support to the reliability of our 

computational modelling approach. 

From a technical point of view, the semi-flexible strategy was chosen here rather than a 

fully flexible docking calculation. Indeed, under AutoDock 4.2, a flexible protocol is much 

more machine time-consuming and the number of residues to be considered as flexible in the 

huge inner chamber would be too high for the maximum number of torsional degrees of 

freedom allowed in the program (32 including those of the flexible ligand). Also, declaring a 
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limited set of flexible residues would imply knowing in advance where the drug binds in the 12 

transmembrane helices chamber. This contradicts our strategy to exhaustively search all 

possible docking positions in the membrane part of the ABC protein. Thus, the semi-flexible 

searching mode is more suited for a first exploratory study when considering the validation 

ligand set composed of 7 compounds, under a total of 14 different conformers, initially 

considered. Including lateral chain flexibility of the interacting residues would a priori lead to 

improved binding energies, but owing to their large number (a mean of 13.7 interacting residues 

per ligand, only a fraction of them being merely flexible), it can be expected that the docking 

positions obtained are not significantly different. Thus, we consider that the semi-flexible 

docking strategy of AutoDock is suitable and sufficient for this screening study, aimed at 

describing the multispecific recognition capacity of Cel-Pgp-1. 

Another theoretical point that could be addressed is the possible influence of surrounding 

membrane lipids on the docking calculations, since the inner chamber is localized at the level 

of the transmembrane helices, with a lateral aperture in direct communication with the 

surrounding membrane lipid phase. However, the presence of lipids in the potential access 

channels to the inner chamber cannot be taken into account by the docking calculations due to 

the fluid character of the lipid phase. Nevertheless, determining the direct ligand-protein 

interactions remains a key goal since these interactions are likely responsible for activating the 

further steps of ligand translocation.  

c) Binding site characterization of known substrates of Cel-Pgp-1 

The general characteristics of the binding domain of Cel-Pgp-1 could be described 

following the docking results of the 6 known substrates : VLN, VBL, ACD, PRG, DPM and 

PCT, whereas the RHO lowest-energy binding site was clearly out of this binding chamber 

(Suppl. Fig. S3E). The high-affinity binding site spread from the cytoplasmic opening of the 

transporter to the core of the protein (Fig. 4A), buried between, and interacting with, all the 

TMDs, except TM2, TM4, TM8 and TM9 that did not reach the inner chamber. Its general 

shape appeared to be composed of 2 sub-domains (Fig. 4B). Its cytosolic part, open to the inner 

leaflet of the membrane (Binding Domain 1, BD1) accommodated the largest ligands (ACD, 

VLN), while the other, smaller ligands (PRG, DPM and VBL) bound a second pocket buried 

within the helices of the transporter (Binding Domain 2, BD2). PCT, of intermediate size, can 

bind alternatively to BD1 and to BD2. The largest tested ligand, ACD, overlapped with BD1 

and BD2, its polycyclic intermediate moiety interacting with the narrowing long chain residues 
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found between BD1 and BD2 (Fig. 3B). The interaction of ACD with the area separating BD1 

and BD2 revealed 8 residues of interest, including Q913 and R916 that formed H-bonds and 

M367 also interacting with VBL1 (Fig. 3B and Table 2). 

In the overall binding domain, 12 key residues involved in H-bonds with at least one of 

the ligands were identified (Table 2, Fig. 3A and 3B). Interestingly, 9 residues on TM12 were 

hotspot residues according to our alignment with mammalian Pgp (Suppl. Table S1). In 

addition, the two small half-helices, TMa and TMb at the N-terminal of Cel-Pgp-1, not 

described in mammalian Pgp, interacted with the 6 molecules tested. In particular, TMb 

contained 4 residues (E22, D23, K26 and K30) contributing to the formation of the area 

separating BD1 and BD2 (Fig. 3B). Two of them, as well as two residues of TMa, formed H-

bonds with 3 different substrates (Table 2). Therefore, these small helices, specific for Cel-Pgp-

1, participate in delineating the ligand binding sites, and may be critical for the affinity of many 

substrates to Cel-Pgp-1. 

2.   Binding mode of other substrates of mammalian Pgp previously 

tested on the ATPase activity of Cel-Pgp-1 

We have docked in silico 5 more compounds of interest, for which the effect on the 

ATPase activity of Cel-Pgp-1 has been previously reported by Jin et al. (2012): colchicine 

(CCH), vincristine (VCR), verapamil-S (VRP), doxorubicin (DXR) and daunorubicin (DNR) 

(structures presented in Suppl. Fig. S4). 

a) Docking of colchicine, vincristine and verapamil 

For CCH, the two lowest energy clusters CCH1 and CCH2 were found at -8.9 and -

8.5 kcal/mol with 12 and 70 poses, respectively (Fig. 5A). They were located at different 

positions of the inner chamber, both in BD2 (Fig. 5B&C). CCH1 and CCH2 both interacted 

with 14 residues, including 6 and 14 hotspot residues, and formed 1 H-bond on Q913 and N994, 

respectively (Table 3 and 4). They only shared 1 common interacting residues, L91, that they 

reach on its opposite sides, so as the two positions did not overlap, and were then consistent 

with a binding stoichiometry of 2 (Fig. 6B and 6C). 

For VCR, the positions of the two lowest energy clusters, VCR1 (19 poses at -

9.9 kcal/mol) and VCR2 (4 poses at -9.8 kcal/mol) (Table 3 and Suppl. Fig. S5A) were partially 

overlapping in BD2 (Fig. 6B&C), and representative of the few following clusters. VCR1 and 
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VCR2 interacted with 13 and 16 residues, respectively, including 10 hotspot residues and 

forming 3 H-bonds in both cases. They shared 4 common interacting residues, including 3 

hotspots (Table 4 and Suppl. Table S2), hence forming a dual binding site. Globally, VCR2 was 

found superimposed to the closely chemically related ligand VBL, with 12 common interacting 

residues between VCR2 and at least VBL1 or VBL2, including 7 hotspots, whereas VCR1 and 

VBL were less overlapping, with overall 5 common interacting residues, including 4 hotspots. 

For VRP, the clustering was more scattered than that of CCH or VCR (Suppl. Fig. S5B), 

but nevertheless two relevant lowest energy clusters were found at -6.5 kcal/mol (VRP1, 6 

poses) and -6.1 kcal/mol (VRP2, 5 poses) (Table 3). They both positioned in the deepest part 

of BD2, with the two different possible conformations: VPM1 being folded and VPM2 

stretched (Fig. 6B and 6C). The same situation was found whether starting from a folded or a 

stretched conformer for the docking calculations (not shown).  The few following clusters were 

all similar to VRP1 or VRP2. VRP1 and VRP2 partly overlapped by sharing 6 interacting 

residues (including 5 hotspot residues) among their respective 9 and 13 interacting residues 

(including 8 and 10 hotspot residues, respectively (Table 2 and Suppl. Table S2). VRP docking 

thus gave a dual binding site, locally integrating the conformational dynamics of this flexible 

ligand. 

As a first summary from these 3 tested molecules, these binding energies (Eb from -6.1 

to -9.9 kcal/mol) (Table 3) were comparable to the Eb values of the ligands from the set of 

validation (from -6.5 to -10.5 kcal/mol, except the particular case of ACD) (Table 1), suggesting 

that CCH, VCR and VRP can specifically bind to Cel-Pgp-1. Interestingly, these molecules had 

low to medium MW (400 to 830 Da, Table 3) as compared to the first molecules tested (315 to 

1250 Da, Table 1), and all were found to bind in the binding domain BD2. 

b) Docking of the structurally very close molecules doxorubicin and 

daunorubicin 

For DXR, the two lowest energy clusters were found at -9.3 kcal/mol (DXR1, 3 poses) 

and -8.3 kcal/mol (DXR2, 7 poses) (Table 3 and Suppl. Fig. S5C). They interacted with 14 and 

11 residues, including 12 and 7 hotspot residues, respectively, and they both formed 4 H-bonds 

(Table 3). DXR1 bound slightly deeper in BD2 than DXR2, and they partly overlapped with 5 

common residues, all hotspot residues (Table 4 and Fig. 6B and 6C, left panel), thus leading to 

a dual binding site. 
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For DNR, the lowest energy cluster (DNR1), found at -5.6 kcal/mol (2 poses), was 

followed by two clusters positioned out of the inner chamber (Table 3 and Suppl. Fig. S5D). 

DNR1 bound to the deepest part of BD2, with 12 interacting residues, including 10 hotspot 

residues and 4 H-bonds (Table 3 and Fig. 6B and 6C, middle panel). DNR4 and DNR6 bound 

around the same area but at slightly different positions and orientations. However, their rather 

high Eb values made them unlikely to be relevant specific binding sites. DNR1 and DXR1 

binding sites highly superimposed, as they shared 11 common interacting residues with 9 

hotspot residues, and formed 1 H-bond with the same residue, T1025 (Table 4 and Suppl. Fig. 

S7). Interestingly, the only structural difference between DXR and DNR is a supplementary 

OH group in DXR that brings the molecule from 528 to 544 Da. The comparison of the H-bond 

patterns established by DXR1 and DNR1 allowed pointing out a noticeable role for Q98. 

3.  Binding mode of other molecules of interest 

We performed further docking experiments on 6 other mammalian Pgp substrates, 

comprising the two fluorescent dyes, Hoechst 33342 (HST) and calcein-AM (CAM), the three 

drugs, ketoconazole (KTC), cyclosporin A (CSP) and valspodar (VSP), and finally the 

endogenous membrane component, cholesterol (CLS) (structures shown in Suppl. Fig. S8). 

For HST, the lowest energy cluster (HST1, 1 pose) appeared at -10.2 kcal/mol, and was 

positioned very similarly to HST2, while the only other main cluster, HST3 (45 poses), was 

found at -10.0 kcal/mol (Table 5 and Fig. 7A). Positions of HST1, with 15 interacting residues 

(8 hotspot residues, 0 H-bond), and HST3, with 9 interacting residues (8 hotspot residues, 1 H-

bond) presented two quite perpendicular orientations that crossed in the lower part of BD2 (Fig. 

7B&C). They shared 2 common interacting residues, with one hotspot (Table 6 and Fig. 9), 

hence showing a dual binding site. 

For CAM, the lowest energy cluster, at -5.4 kcal/mol, was found out of the inner 

chamber, but the second cluster (CAM2, 2 poses), at -5.3 kcal/mol, was found in BD1, near its 

cytosolic aperture (Table 5 and Suppl. Fig. S9A). CAM2 had to 13 interacting residues (2 

hotspot residues, 6 H-bonds). However, its rather high Eb values indicated very low affinity for 

this specific binding site, found similar for other clusters. 

For KTC, we found that the three lowest energy clusters positioned at 3 different 

relevant sites in BD2. KTC1 (1 pose), at -9.98 kcal/mol, and KTC3 (15 poses), at -

9.85 kcal/mol, both in a stretched conformation, displayed 17 interacting residues (15 hotspot 
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residues, 1 H-bond) and 13 interacting residues (10 hotspot residues, 1 H-bond), respectively 

(Table 5 and Suppl. Fig. S9B and 10B). They shared 7 interacting residues, all hotspots (Table 

6), leading to a partial overlap in the deepest part of BD2 (Fig. 9), thus showing a dual binding 

site. In contrast, KTC2 (1 pose), at -9.96 kcal/mol, displaying 16 interacting residues (6 hotspot 

residues, 3 H-bonds) (Table 5 and Suppl. Fig. S9B and 10C), was found to be positioned, in a 

highly folded conformation, low in BD2, and without any overlapping with KTC1 or KTC3, 

hence finally consistent with a binding stoichiometry of 2. 

For CSP, the lowest energy cluster CSP1 (2 poses), at -10.3 kcal/mol, was only 

considered as it was representative of the few following clusters in the energy histogram (Table 

5 and Suppl. Fig. S9C). The position of this cluster was in the lowest part of the inner chamber, 

in BD1 (Fig. 9) and showed 17 interacting residues (2 hotspot residues, 2 H-bonds) (Table 5 

and 6).   

For the very closely related molecule VSP, the two lowest energy clusters, VSP1 (6 

poses), at -9.5 kcal/mol, and VSP2 (25 poses), at -9.2 kcal/mol, were both positioned very close 

together, in BD1 (Table 5, Fig. 9 and Suppl. Fig. S9D).  VSP1 and VSP2 interacted with 18 and 

14 residues, including 5 and 3 hotspot residues and 2 and 1 H-bond, respectively (Table 5). 

They shared 8 common interacting residues, including 2 hotspot residues, and formed a 

common H-bond with K30. They partly overlapped with CSP binding sites, with which they 

shared 11 and 9 residues, respectively, including 1 hotspot residue in both cases, and all forming 

an H-bond on K30 (Table 6 and Fig. 9). Finally, from this last series of tested ligands, these 

two large cyclopeptidic molecules were the only ones to dock in BD1 with well negative Eb 

values, in a manner very comparable to that of VLN, another large cyclopeptidic molecule. 

For CLS, the lowest energy pose (CLS1) at -9.4 kcal/mol (Table 5 and Fig. 8A), was 

found at a very deep position in BD2 (Fig. 8B), similar to the other following clusters CLS3/4/5. 

CLS1 interacted with 13 residues (9 hotspot residues, 1 H-bond) (Table 5). Alternatively, the 

second cluster (CLS2, 6 poses), at -8.7 kcal/mol (Table 5 and Fig. 8A), was found lower in BD2 

(Fig. 8C). It showed 12 interacting residues (6 hotspot residues, 1 H-bond) (Table 5), and shared 

no common residues with CLS1 (Table 6), from which it was totally apart (Fig. 9), consistently 

with a binding stoichiometry of 2. 
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IV. DISCUSSION 

For the first time, a reliable crystal structure with a good resolution is available for an 

eukaryotic multidrug membrane full ABCB transporter. This is especially interesting because 

(i) it presents a fair sequence homology with the mammalian Pgp (ABCB1), in particular well-

described to be responsible for the MDR phenotype in cancer cells, and (ii) it presents an 

inward-facing open conformation supposed to be competent for ligand recognition and binding 

as the first step of its transport cycle. This structure provides the valuable basis for an in silico 

approach aimed at delineating the binding modes of a variety of chemically unrelated 

molecules, which can be compared to the classical situation of specific ligand/receptor or 

enzyme/substrate recognition (the "key-in-the-lock" dogma). Actually, in silico computation is 

the only reliable mean for addressing the structural arrangement of a large series of ligands on 

their cognate membrane protein receptor since it cannot be expected to collect all the 

corresponding co-crystal structures for the considered complexes. This work contributes to 

raise and elaborate the vision of a multispecific large domain, situated in the inner chamber of 

the protein. This also participate in the determination of potent interacting residues offering a 

rich palette of continuously connected sub-sites, which can accommodate a large variety of 

chemically unrelated molecules of sizes ranging from 300 to 1250 Da. 

1. Validation of in silico docking approach on Cel-Pgp-1 

 The general structure of the membrane ABC proteins has led to the generally-accepted 

dogma of energy coupling between ATP hydrolysis and substrate translocation (Sarkadi et al., 

2006). Binding of a ligand to an ABC transporter, the first essential step for being eventually 

transported, is thus expected to induce a stimulation of its ATPase activity. Reciprocally, when 

a molecule is observed in vitro to stimulate Cel-Pgp-1 ATPase activity, it can be considered as 

a specific ligand that will likely be actively transported. We thus modeled in silico the binding 

on Cel-Pgp-1 structure of the 6 structurally unrelated compounds: VLN, VBL, ACD, DPM, 

PRG and PCT, reported to be ATPase activators by (Jin et al., 2012). The low AutoDock4 

binding energies calculated for all of them ranged from -7 to -17 kcal/mol, in agreement with 

scoring values that are generally found for high affinity and specific binding of ligands to 

protein active sites using the AutoDock method (Morris et al., 1998). The binding energies of 

the best poses of these compounds proved to be consistent with their respective in vitro potency 

to stimulate ATPase activity of Cel-Pgp-1, giving confidence in the current docking protocol. 
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Furthermore, Jin et al., (2012) reported the half-activation concentration values, 

considered as their apparent affinity, of ACD and PCT on isolated membranes containing Cel-

Pgp-1, to be similar, in the 0.03-0.05 µM range. The apparent affinity of an 

amphiphilic/hydrophobic ligand, interacting with a protein from the membrane lipid phase, can 

be considered as the combination of its membrane partition coefficient, which can be evaluated 

by logP, and the “true affinity” of its interaction with its specific binding site on the protein 

once in the membrane. Taking into account the very different hydrophobicity of ACD and PCT, 

whose logP values are estimated at -1.2 and 3.3, respectively (MarvinSketch 15.5.4) 

(Viswanadhan et al., 1989), it can be inferred that ACD should have a much higher true affinity 

for the protein than PCT to exhibit comparable experimental affinities. This is actually what is 

shown by the in silico docking calculations, which gave binding energy values of respectively 

-17 and -8.3 kcal/mol. This “semi-quantitative correlation”, although based on only two drugs, 

contributes to the confidence in the in silico data obtained. 

Since RHO is a non-activator of Cel-Pgp-1 ATPase, further information on the 

relationships between drug binding and drug transport can be gained by docking RHO as low 

affinity control. The ectopic binding sites (e.g. in the cytosolic antechamber) found by in silico 

calculations for the three first clusters of RHO are considered as irrelevant for active transport. 

By inference, this is consistent with the inner chamber forming the binding domain for initiating 

the active translocation cycle. Also, the low binding energy (-3.8 kcal/mol) of RHO for the 

docking site located within the inner chamber (4th and 5th clusters) corresponds to a very low 

affinity, that can be expected to require a too high concentration of RHO to be observable in 

vitro. In addition, RHO docking experiments provides a reference level in the energy scale as 

being biochemically non-relevant, compared to the set of transported ligands whose binding 

energies range between -7 and -17 kcal/mol. 

Another validation of our in silico data comes from the comparison of the docking data 

with what is known for drug binding to mammalian Pgp (ABCB1), the most studied multidrug 

ABC transporter on which numerous data are available. In particular, the list of the 62 "hotspot 

residues", that we updated from the prior list established by (Shilling et al., 2006) (see 

Computational methods section), provides a global insight to the residues in the protein 

sequence that are involved in its multispecific recognition capacity. In the total of 11 relevant 

positions calculated for the docking of the 6 Cel-Pgp-1 ATPase activators, we have a total of 

155 contact residues, amongst which 87 (nearly 60%) are aligned with these hotspot residues. 

Such high ratio indicates that our in silico docking calculations give a fair convergence, 
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consistent with the structure/function relationship of these two proteins which appear to exhibit 

high similarity in the topology of their inner chambers. 

As a whole, for the validation set of ligands, our in silico data shows a good overall 

agreement with the few in vitro data available, regarding the enzymological properties of Cel-

Pgp-1 as well as the global drug recognition determinants in the homolog mammalian Pgp 

(hotspot residues). This gives to these in silico data the confidence required for applying the 

same strategy to other drugs, in order to reliably predict their binding characteristics on Cel-

Pgp-1. 

2.  Further analysis of the in silico/in vitro correlation 

We then included in our in silico docking series 5 more molecules chosen among those 

tested in Jin et al, (2012), which showed either an only marginal stimulation of Cel-Pgp-1 

ATPase activity : VCR, VRP, or did not show any ATPase stimulation : CCH, DXR, DNR. 

VCR showed its two lowest energy clusters, relevant for describing its binding mode, with 

Eb values very comparable to those found for VBL (VCR1 and VCR2 at -9.9 and -9.8 kcal/mol 

and VBL1 and VBL2 at -10.5 and -9.9 kcal/mol, respectively). Taking into account the very 

close chemical structures of these two molecules, and hence their close logP values, it can be 

considered that they display closely related behavior. Indeed, Jin et al. (2012) reported a small 

(about a factor 2 at 200 µM) Cel-Pgp-1 ATPase stimulation for VCR, although slightly more 

moderate than for VBL (about a factor 3). It can thus be concluded that they both significantly 

stimulate Cel-Pgp-1 ATPase, and hence are to be considered as “good” ligands for Cel-Pgp-1, 

according to in vitro as well as to in silico data. 

CCH and DXR each presented a well-negative Eb value (their two lowest energy clusters 

between -8.3 and -9.3 kcal/mol), along with a logP value (1.5) showing a more hydrophilic 

behavior than any of the other tested molecules in our series (except ACD). The fact than Jin et 

al. (2012) did not observe any ATPase stimulation for these two drugs, tested at not too high 

concentrations (200 and 500 µM, respectively), can be reconciled with the in silico data by the 

fact that they are supposed to partition into the membrane lipid phase before being recognized 

by the transporter. This pathway is actually consistent with the position of the aperture of its 

inner chamber at the level of the membrane plane, as typically described for efflux ABC 

transporters. These two molecules have thus to be considered as theoretical ligands, as shown 

by the in silico calculations that only take into account the various aspects of protein/ligand 

interactions without any integration of the surrounding membrane lipid phase. However, such 
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hydrophilic theoretical ligands are not biochemically relevant ligands because of their too low 

apparent affinity for this membrane transport system, due to a too low membrane partition, 

which is hardly compatible with practically reachable concentrations for in vitro experiments. 

At variance, VRP gave a much less negative Eb value (-6.5/-6.1 kcal/mol), which puts it 

within the gap range between very low-affinity ligands (> -5 kcal/mol) and good ligands (< -

7 kcal/mol) as deduced from the validation set. However, it has a logP value (5.0) showing its 

clearly hydrophobic character. As a result, its high membrane partition explains that Jin et al 

(2012) observed a small ATPase stimulation at the highest tested concentration of 5 mM. Thus, 

in silico as well as in vitro data both led to the conclusion that VRP is a weak ligand, probably 

of too low affinity to be pharmacologically relevant. 

DNR gave an even higher Eb value than VRP (lowest energy cluster at -5.6 kcal/mol), 

along with a logP value (2.3) showing a rather hydrophilic character. Both parameters are 

converging to be consistent with the absence of any detectable ATPase stimulation. It should 

be thus considered as a weak (below detectable level) or non-ligand of Cel-Pgp-1. 

In conclusion, thanks to these additional 5 tested molecules, we observed a very satisfying 

in silico/in vitro correlation when considering a total of 12 molecules tested by Jin et al, which 

encompassed a large range of theoretical and apparent affinities, at the only condition to take 

into account the quantitative parameter of membrane partition of the ligands of potential 

interest. 

In the very particular case of ACD, although it is clearly hydrophilic, it nevertheless 

efficiently binds Cel-Pgp-1 thanks to a remarkably high “theoretical binding” (Eb at least 

6 kcal/mol more negative than the best other ligands), and this will be specifically discussed 

below. 

3. Molecular properties of the multispecific binding domain of Cel-Pgp-1 

Our series of docking calculations, performed to determine the binding modes of a total 

of 18 tested ligands, comprised 11 molecules presenting miscellaneous chemical structures (the 

prediction set) that extended the initial validation set (7 molecules). This provided a valuable 

mean to investigate and finely delineate the binding site(s) of Cel-Pgp-1, which otherwise 

remains uncharacterized in the absence of ligand-bound structure of this protein receptor. 
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a) Cel-Pgp-1 is a multidrug transporter  

The first point to be mentioned is that some tested molecules appeared to be very weak 

affinity or non-ligands for Cel-Pgp-1: among our series, they are RHO, CAM and DNR. 

Actually, they were characterized by low negative Eb values, i.e. -3.8, -5.3 and -5.6 kcal/mol, 

respectively. They can be clearly distinguished from the high affinity ligands (Eb < -7 kcal/mol) 

and the medium affinity ligands (Eb in the range -7/-6 kcal/mol). This demonstrates that the 

binding domain of this drug transporter does not behave like a “sticking paper”, which would 

non-selectively bind any molecule hydrophobic enough to reach its transmembrane segments. 

In contrast, it actually presents some molecular characteristics that allow distinguishing 

between all its potential ligands. This justifies quoting it as endowed of a “multispecific” 

recognition capacity. 

As a matter of fact, this multispecific transporter shows a striking capacity to handle 

various unrelated chemical structures. Indeed, among the 18 tested molecules, 14 were found 

as high affinity ligands and one medium affinity ligand. If we also consider an additional series 

of 13 anthelmintic drugs that we recently tested for docking according to the same in silico 

procedure, including 7 macrocyclic lactones (related to ivermectin) and 6 drugs of other classes, 

we found 11 high affinity ligands (including the 7 macrocyclic lactones) and 2 medium affinity 

ligand (manuscript under review, Part I, B). This means a total of 25 high affinity ligands and 

3 medium affinity ligands out of 31 tested molecules. This strongly reinforces the vision 

initially given by Jin et al. (2012) (claiming 5 “positive drugs” for 30 compounds tested on 

ATPase) of Cel-Pgp-1 being a multidrug transporter. 

b) Importance of the inner chamber for ligand recognition 

In agreement, and actually confirmation, of the result coming from the validation set 

which established that the relevant drug binding domain is the inner chamber, the 

supplementary series of tested molecules showed that it indeed plays a central role in multidrug 

recognition because all the considered lowest energy clusters of poses are positioned within this 

inner chamber. Conversely, the two very weak or non-ligands, CAM and DNR, showed some 

of their lowest energy clusters (CAM1, and DNR2 and DNR3, at around -5.5 kcal/mol) located 

outside the chamber, in a similar fashion to that of the cluster RHO1. These ectopic docking 

positions were detected because we chose to consider an exploration box large enough to 

contain all the residues of the TM segments, thus leading to docking poses of molecules that 
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interact with some of these residues while protruding for most of their surface out of the inner 

pocket. As these external poses were found only for very weak or non-ligands, they give the 

illustration that the energy range ≥ -5.5/-5.0 kcal/mol corresponds to non-specific binding, 

while docking poses for Eb ≤ -6/-7 kcal/mol can be considered with confidence as specific. 

The first and pivotal property of the inner chamber constituting the multispecific binding 

domain is its large size. It can actually be envisioned by performing the superimposition of all 

the docked ligands, realizing its “internal moulding” (see Fig. 10). When we additionally 

superimposed the 13 anthelmintic drugs in silico tested elsewhere (David et al., 2016), the 

global superimposition was similar (not shown), showing that the structural diversity of the 15 

ligands here reported for their relevant docking is sufficient to describe the whole multispecific 

binding domain of Cel-Pgp-1. This image allows pointing out three molecular characteristics: 

(i) Small (< 500-550 Da) as well as larger (as compared to the chamber size) ligands can 

accommodate a set of anchoring points among all the offered interacting residues lining the 

chamber. Their interaction was actually done by different manners for each of them, sometimes 

giving the possibility of binding stoichiometry of 2. This multiplicity of binding solutions 

explains well the multispecific recognition capacity of the transporter. 

(ii) The wide chamber of Cel-Pgp-1 does not present any sign of symmetry with respect 

to TMD1/TMD2 that limit it. This is consistent with the few observed cases of double 

stoichiometry that do not result from a symmetrical binding onto each of the two halves of the 

pseudo-symmetrical tandem structure (typical of the full-size ABC transporters). 

(iii) Regarding its shape, the chamber appears constituted by two close sub-domains, BD1 

and BD2, separated by an intermediate constriction zone. These two sub-domains, situated at 

the level of the cytosolic leaflet and in the core of the membrane, accommodate large (≥ 

1000 Da) and smaller ligands, respectively. This 3D, “bi-lobulated” arrangement of the inner 

chamber is strikingly reminiscent of the double pharmacophoric model previously published 

(Garrigues et al., 2002). The latter was established from enzymological data on a mammalian 

Pgp and 3D ligand superimpositions, and revealed consensus recognition elements and mutual 

relationships of a set of specific ligands (although it was built without any structural information 

on the receptor multispecific binding domain). The possible relationships between nematode 

and mammalian Pgps will be discussed below. 

Taking into account the protein transconformation that leads from "open inward-facing" 

to "closed inward-facing" and then "outward-facing" during its enzymatic transport cycle, it can 

be hypothesized that, for steric reasons, the large ligands bound onto the BD1 sub-domain will 
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probably have to transfer to another binding site to allow the TMDs to get closer and eventually 

induce their release to the acceptor compartment (while the BD2 ligands will possibly be able 

to directly be released once their affinity will have dropped during this transconformation). This 

could be correlated with the observation by Jin et al of the highest ATPase stimulation ratios 

(factor 8-10) for the three largest ligands of the validation set, ACD, VLN and PCT (all three 

binding on BD1), meaning that they are the tested substrates that are translocated the most 

rapidly by the active transporter. 

c) Ligand access and binding 

A key point in the molecular mechanisms of multidrug recognition by Cel-Pgp-1 is the 

accessibility of its ligands to the putative multispecific drug binding domain, i.e. the inner 

chamber. In particular, the short N-terminal helices TMa and TMb form a helical hairpin in 

Cel-Pgp-1, that is not present in many Pgp homologs, including mammalian Pgp. They thus 

close one lateral opening between the membrane lipid phase and the inner chamber, between 

TM4 and TM6. Therefore, only the other lateral aperture, on the opposite side between TM10 

and TM12, remains available as an access pathway for the various hydrophobic ligands to their 

specific binding domain. Incidentally, this lateral aperture presents a rather favorable 

configuration for ligand entrance due to the bending of TM10. Indeed, to model ligand pathway, 

two possible access channels were computed by Mole 2.0 and found between TM10 and TM12, 

with a channel radius of about 3 Å (not shown). This can mediate the access of cumbersome 

ligands that display sufficient flexibilities, such as VLN, CSP and ACD. 

Our series of 18 tested ligands encompasses a large spectrum of molecular sizes, covering 

the range 314 to 1255 Da. The validation set first gave the indication of a fair correlation 

between binding energy Eb and molecular weight (Table 1), but this was not confirmed by the 

whole series. Indeed, some small ligands, such as CCH, CST and HST (all around 400 Da), 

displayed good Eb values (all around -9 kcal/mol), whereas CAM is a large molecule (≈ 

1000 Da) that was found to be a very weak affinity ligand to non-ligand (Table 3 and 5). In the 

same line, the two structurally close molecules, DXR and DNR, gave very different Eb values. 

This absence of a “size effect” confirms that the binding strength of a given ligand mainly 

depends on the nature of the interactions with the protein, and relatively very few on the number 

of interacting residues. In particular, H-bonds specifically contribute to the energy score 

calculation, but they all do not have the same weight depending on the distance between the 

donor and the acceptor of hydrogen found by AutoDock. 
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In contrast, there seems to be a ligand size effect when considering the location of ligand 

binding, in particular the distribution between the two sub-domains BD1 and BD2. Indeed, all 

the large ligands tested, i.e. ACD, VLN, CSP and VSP (all > 1000 Da), as well as the cluster 

PCT1 (850 Da) bound to BD1. Interestingly, all these five docking positions (and also KTC2) 

interacted with the residue K30 born by TMb, pointing out the structural importance of this 

small hairpin helix, supplementarily found in Cel-Pgp-1. In addition, among the 6 non-ML 

anthelmintic drugs in-silico tested elsewhere for docking, only the largest one, emodepside 

(1119 Da), bound on BD1 (manuscript under review, Part I, B). However, such agreement was 

not further confirmed when considering the docking of the series of 7 MLs tested, which all 

converged to bind in BD2 with good Eb values. It thus seems to be necessary to take into 

account ligand flexibility to discuss these data. 

d) Comparison with mammalian Pgp  

As far as primary sequence conservation is concerned, Cel-Pgp-1 shares high sequence 

identity with four human ABC proteins, namely ABCB1/Pgp (46%), ABCB4 (44%), ABCB5 

(40%) and ABCB11 (39%) which all are full transporters, whereas a lower identity was found 

with other members of the B sub-family that are not involved in drug transport (and are "half-

transporters"), such as ABCB2 (31% and 34% for the N- and C-term half of Cel-Pgp-1, 

respectively). Sequence identity is even lower with multidrug transporters of the C sub-family, 

such as ABCC2/Multidrug Resistance Protein 2 (MRP2) and ABCC5/MRP5 (26%). This is 

consistent with, at least partial, structural conservation of the multispecific binding domain 

restricted to the B sub-family (and most likely only considering the full transporters), and 

obviously not extended to other ABC sub-families. 

In a more detailed comparison of Cel-Pgp-1 with mammalian Pgp, we considered the 62 

hotspot residues that have been collected from various experimental approaches in order to 

describe the mammalian Pgp residues involved in multiple drug recognition (Shilling et al., 

2006; Bessadok et al., 2011). Among these residues aligned in Cel-Pgp-1, the conservation ratio 

with respect to human Pgp is 16/62 (=26%). However, it appears that the number of hotspot 

residues actually contributing in interactions with the protein that are conserved in their nature 

is even lower, and especially low (for the validation set: 18/87 ≈ 20% hotspot conservation) 

when compared to the global sequence identity of 46% (and even the TMD-restricted identity 

of 37%). This hotspot divergent evolution is not surprising for two transporters that had 

independently evolved to handle different drug diversity profiles. This could be illustrated 
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firstly by the different ratios found between the hydrophobic/polar residues among the 62 

human hotspot residues and their counterparts in Cel-Pgp-1: this ratio is clearly lower in Cel-

Pgp-1 (37/20 = 1.85) than in Has-Pgp (44/14 = 3.1), indicating that Cel-Pgp-1 is probably more 

suited to recognize and transport amphiphilic and globally less hydrophobic compounds than 

mammalian Pgp. Taking into account the relatively high fraction of interacting residues aligned 

on hotspot residues (87/155 for the validation set, 236/403=59% for the whole series of 15 

ligands), this indicates that the shape of the binding domain is preserved through evolution, but 

not the functional residues lining the internal cavity, resulting in a divergence of profiles for 

recognized drugs. 

More specifically, in the case of the 5 molecules, i.e. VBL, ACD, VRP, CCH and DNR, 

some residues have been determined on mammalian Pgp to participate in their specific 

recognition (“specific hotspot residues”, respectively quoted Mv, Ma, CV, Mc and Md in Table 

S1) (Shilling et al., 2006). We then determined which of the corresponding aligned residues in 

Cel-Pgp-1 were contributing to their docking. For VBL, among the 9 specific hotspot residues 

determined on mammalian Pgps, only 3 are found as interacting residues in Cel-Pgp-1, amongst 

which 2 are conserved in terms of the nature of the residue involved. For ACD, among the 6 

specific hotspot residues, none is found in Cel-Pgp-1. For VRP, the respective values are 9/3/0 

for determined hotspot residues in mammalian Pgp/found interacting in Cel-Pgp-1/conserved 

in terms of nature; for CCH, the respective values are 13/5/1; for DNR, the respective values 

are 19/1/0. These very low values of conservation of interacting residues between the two 

transporters clearly reveal that a given ligand can be differently recognized by both transporters 

in their related, but qualitatively different multispecific binding chambers. 

e) Versatility of ligand binding in the inner chamber, and application to 

rational design of an optimized ligand 

Another consequence of the large size of the multispecific inner chamber is that most of the 

tested ligands gave two pertinent energy clusters (among the lowest energy ones, analyzed as 

described in Computational methods section) corresponding to two different docking positions. 

Two notable exceptions were the two large ligands, VLN and CSP, which each showed only 

one binding site (in BD1). Indeed, in some cases of small ligands, such as PRG, CCH, KTC 

and CST, these pairs of docking positions corresponded to two distinct, separate binding sites 

(all in BD2), leading to a stoichiometry of 2. This was also the case for the larger molecule 

PCT, which in fact bound on two sites distributed between BD1 and BD2. Otherwise, the 
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somehow larger molecules, such as VBL, VCR, DPM, DXR, HST and VSP, are more prone to 

dock to two binding sites displaying partial overlaps. This situation leads to a dual binding site, 

with a stoichiometry of 1 but presenting the possibility of ligand oscillation between two 

approximately equiprobable (since the corresponding Eb values are close) positions. Such an 

ambivalent binding pattern is clearly at variance with a classical ligand/receptor relationship 

showing a restricted specific binding site, according to the “lock-and-key” mechanism. Here, 

our model provides an illustration of the wide palette of interactions offered by all the possible 

contact residues lining the inner chamber, together with the large size of the multidrug binding 

domain. This explains well the multispecific capacities offered by the inner pocket of this 

multidrug transporter, which can apply as well to various chemical structures of tested ligands. 

The number of tested ligands in our series allowed us to consider some pairs of molecules 

with close chemical structures, and to draw valuable insights. The couple of small ligands 

PRG/CST (~ 350 Da) showed well different Eb values (≈ 2 kcal/mol more negative for CST), 

in both cases with a stoichiometry of 2, but different binding sites. The couple DXR/DNR (≈ 

540 Da) showed an Eb value much less negative (> 3kcal/mol) by alteration of the H-bond 

pattern for DNR docking, accompanied by a clear change of their second docking positions (the 

clusters DXR1 and DNR1 having quite the same position). At variance, the couple of larger 

ligands VBL/VCR (≈ 820 Da) showed quite the same Eb value, with docking sites only slightly 

changed. Finally, the couple of very large ligands CSP/VSP (≈ 1210 Da) showed comparable 

Eb values with quite the same binding sites. Such a ligand size effect on these structure-binding 

relationships indicates the high difficulty to apply a classical QSAR approach, especially for 

the relatively small ligands (< 600 Da), in order to study chemical derivatives of a given ligand. 

Indeed, due to the richness of possible interactions with the various anchoring points within the 

inner chamber, a slight chemical modification may well lead to a marked alteration of the 

binding mode of the considered compound. This hence impedes the rational optimization of a 

the chemical structure of a ligand to improve its binding characteristics. 

Conversely, however, these data prompted us to pay more attention to the large (> 900-

1000 Da) ligands. First, their binding modes seem much less sensitive to small chemical 

variations. Furthermore, an important parameter appears to be their structural flexibility. 

Indeed, the large cyclic (pseudo)peptides, such as VLN, CSP and VSP, as well as emodepside 

(manuscript under review, Part I, B), known to be highly conformationally flexible, all display 

good Eb values (around -10 kcal/mol). In contrast, the large polycyclic, rather rigid, molecules 

tested display either remarkably bad, i.e. CAM, at -5.3 kcal/mol, or excellent binding properties, 
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such as ivermectin and derivatives, at around -12/-13 kcal/mol (manuscript under review, Part 

I, B) and ACD at about -16 kcal/mol. This striking observation can be interpreted by the fact 

that a large flexible molecule will always find, by fully exploring its conformational space, a 

suitable binding site, especially in BD1, whereas a large rigid molecule will encounter much 

more constraints to find a possible combination of a large number of suited interacting residues, 

at variance with smaller ligands that will most often find a binding solution. Thus, this will lead 

to a clearcut situation of either “frustrated” non-ligands or “excellent” ligands, particularly well-

fitting a large portion of the inner chamber walls (both considering its shape and its residue 

composition). As a consequence, we can propose that the prototype of an optimized ligand of 

highest affinity would be a large, rather rigid and polycyclic molecule (sufficiently hydrophobic 

to ensure a satisfying membrane partition), on which it could be expected to possibly perform 

slight chemical structure improvements. 

f) Biochemical/enzymological applications  

(i) Fluorescent substrates : In a perspective of in vitro biochemical/enzymological 

experiments, our data strongly indicate that for performing transport measurements of a 

fluorescent substrate mediated by Cel-Pgp-1, present either in cultured (heterogeneously 

transfected) cells or in membrane vesicles, one should prefer to use HST rather than CAM or 

RHO. For RHO, it is worth mentioning that, since it is a very broadly used fluorescent substrate 

for mammalian Pgp, it has also been proposed for testing transport function of some nematode 

Pgps. However, this should not apply for Cel-Pgp-1, because RHO was found both non-

activating ATPase in vitro and weak- to non-ligand in silico, and this could illustrate an aspect 

of functional difference with mammalian Pgp. By the way, RHO has been reported to stimulate 

ATPase activity of Cgr-Pgp with an apparent Km of about 40 µM (Eytan et al., 1997), with 

actually reflects a not so good affinity, especially considering its fair hydrophobicity. Thus, 

from a quantitative view, it could be speculated that such a low affinity site on mammalian Pgp 

could have easily evolved to a “degenerated”, non-specific site in Cel-Pgp-1. 

(ii) Interaction with cholesterol: Our data clearly identify a membrane lipid component, 

cholesterol, as a good ligand for Cel-Pgp-1. This lipid is not an obligatory endogenous 

constituent of the cell membranes in nematodes, which depend on its environmental conditions, 

as there are auxotrophic for sterols. Our result however brings the indication that, when it is 

present in the protein environment, it can interfere with drug handling by the transporter by a 

competitive mechanism. Indeed, for ligands binding on BD2 and presenting a less negative Eb 
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value (> -9/-8 kcal/mol), they will likely be sensitive to cholesterol presence in the membranes 

(the observed competition of course actually depending on their respective local 

concentrations). Alternatively, drugs binding either on BD1 or presenting a highly negative Eb 

value (< -10 kcal/mol) should be unsensitive to cholesterol presence. 

In conclusion, our model of multispecific drug recognition and binding provides valuable 

insights on the molecular mechanisms involved, which appear clearly different from the 

classical specific ligand-receptor dogma, and gives a new vision of the inner chamber of this 

multidrug ABC transporter of B sub-family. Actually, this model extends some previous reports 

addressing the structural bases for multispecific drug recognition by soluble proteins (Mariuzza, 

2006), which were mainly regulators of expression of multidrug transporters such as QacR 

(Schumacher et al., 2004), BmrR (Bachas et al., 2011) and PXR (Watkins et al., 2001; Chrencik 

et al., 2005). In all cases, this work is expected to contribute in the elaboration of a better 

approach for rational drug design strategies aimed at overcoming these transporters of great 

pharmacological importance. 
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Figures 

 

 

 

Figure 1. Valinomycin binding to Cel-Pgp-1. A. Energy clustering. B. Binding site of the 

lowest energy cluster generated using PyMol. Valinomycin is represented in dark green spheres, 

Cel-Pgp-1 in light blue (N-term) and yellow (C-term) ribbon. 
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Figure 2. Vinblastine binding to Cel-Pgp-1. A. Energy clustering. B. C. Binding sites of the 

1st (B) and 2nd (C) lowest energy clusters generated using PyMol. Vinblastine is represented in 

purple spheres, Cel-Pgp-1 in light blue (N-term) and yellow (C-term) ribbon. 
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Figure 3. Key residues of Cel-Pgp-1 for interaction with substrates. A. Residues forming 

H-bonds with VLN1 (green lines) and VBL1 (purple lines), in addition to Q913 and R916 

interacting with both molecules (G1032 cannot be visible as it does not have any secondary 

chain). B. Cel-Pgp-1 residues forming the narrow site around the polycyclic core of ACD (dark 

blue lines): E22, D23, K26, K30, M367; M371; Q913 and R916, the latter two forming H-

bonds. Cel-Pgp-1 is represented in light blue (N-term) and yellow (C-term) transparent ribbons 

for TM helices and sticks for specifically-interacting residues. Atoms of Cel-Pgp-1 residues 

and substrates are colored in blue for N, red for O and grey for H. H-bonds are represented in 

yellow dotted lines with red shadow. TM helices numbers are indicated as TM# on each helix 

in black for closest helices and in clearer grays as the distance increases. Images were generated 

with PyMol. 
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Figure 4. Binding domains characteristics of Cel-Pgp-1 substrates. A. Front view of Cel-

Pgp-1 represented in transparent light blue (N-term) and yellow (C-term) ribbon, with the 

binding sites of the first and second lowest energy clusters of actinomycin D (ACD1 and ACD2, 

dark blue), valinomycin ( VLN1, green), vinblastin (VBL1, purple and VBL2, pink), 

progesterone (PRG1, dark brown and PRG2, light brown), dipyridamole (DPM1, black and 

DPM2, grey), paclitaxel (PCT1 and PCT4, light red), all represented in sticks and transparent 

surfaces. TM helices numbers are indicated as their number only, on each helix, in gray 

characters. B. Zoom, without Cel-Pgp-1, on the front and lateral views of all substrates docking 

positions in the two binding sub-domains (BD1 and BD2). C. Overlaps between substrates: 

ACD1 (dark blue) represented in all panels to interact with VBL1 (purple), VBL2 (pink) and 

VLN1 (green) in the left panel; with PRG1 (dark brown), PRG2 (light brown), DPM1 (black) 

and DPM2 (grey) in the middle panel; and with PCT1 and PCT4 (light red) in the right panel. 

All molecules are represented in sticks. Images were generated with PyMol. 



EXPERIMENTAL WORK: PART I - A  

 

 

  109  

 

 

Figure 5. Colchicine binding to Cel-Pgp-1. A. Energy clustering. B. C. Binding sites of the 

1st (B) and 2nd (C) lowest energy clusters generated using PyMol. Colchicine is represented in 

orange spheres, Cel-Pgp-1 in light blue (N-term) and yellow (C-term) ribbon. 
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Figure 6. Binding domains characteristics of supplementary tested compounds for 

docking on Cel-Pgp-1. A. Front view of Cel-Pgp-1 represented in transparent light blue (N-

term) and yellow (C-term) ribbon, with the binding sites of the first and second lowest energy 

clusters of colchicine (CCH1, light orange and CCH2, bright orange), vincristine (VCR1, light 

pink and VCR2, bright pink), verapamil (VRP1, light yellow and VRP2, bright yellow), 

doxorubicin (DXR1, bright blue and DXR2, light blue) and  daunorubicin (DNR1, light brown), 

all represented in sticks and transparent surfaces. TM helices numbers are indicated as their 

number only, on each helix, in gray characters. B. Zoom, without Cel-Pgp-1,on the front and 

lateral views of all substrates docking positions in binding sub-domain 1 (BD1). C. Overlaps 

between substrates using the same colors as in panel A and B. All molecules are represented in 

sticks. Images were generated with PyMol.  
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Figure 7. Hoechst 33342 binding to Cel-Pgp-1. A. Energy clustering. B. C. Binding sites of 

the 1st (B) and 2nd (C) lowest energy clusters generated using PyMol. Hoechsst 33342 is 

represented in light green spheres, Cel-Pgp-1 in light blue (N-term) and yellow (C-term) ribbon. 
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Figure 8.  Cholesterol binding to Cel-Pgp-1. A. Energy clustering. B.C. Binding sites of the 

1st (B) and 2nd (C) lowest energy clusters generated using PyMol. Cholesterol is represented in 

dark green, Cel-Pgp-1 in light blue (N-term) and yellow (C-term) ribbon. 
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Figure 9. Binding domains characteristics of last tested compounds for docking on Cel-

Pgp-1. A. Front view of Cel-Pgp-1 represented in transparent light blue (N-term) and yellow 

(C-term) ribbon, with the binding sites of the first and second lowest energy clusters of hoechst 

33342 (HST1, green and HST2, light green), cholesterol (CLS1, dark turquoise and CLS2, light 

turquoise), calcein-AM (CAM2, grey), ketoconazole (KTC1, bright pink, KTC2, light pink and 

KTC3, purple), ciclosporin A (CSP1, yellow) and  valspodar (VSP1&2, light blue), all 

represented in sticks and transparent surfaces. TM helices numbers are indicated as their 

number only, on each helix, in gray characters. B. Zoom, without Cel-Pgp-1, on the front and 

lateral views of all substrates docking positions in the two binding sub-domains (BD1 and 

BD2). C. Overlaps between substrates with the same color as in panel A and B. All molecules 

are represented in sticks. Images were generated with PyMol. 
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Figure 10. All binding poses of tested substrates to Cel-Pgp-1. A. Front view of Cel-Pgp-1 

represented in transparent light blue (N-term) and yellow (C-term) ribbon, with the binding 

sites of the first and second lowest energy clusters of all compounds tested for docking, 

represented in sticks and transparent surfaces, with colors similar as in Figure 4, Figure 6 and 

Figure 9. B. Zoom, without Cel-Pgp-1, on the front and lateral views of all substrates docking 

positions in the two binding sub-domains (BD1 and BD2). All molecules are represented in 

sticks. Images were generated with PyMol. 
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Tables 

Table 1. Physico-chemical, enzymological properties and docking characterization of the set of molecules tested for the validation step of the in 

silico procedure on Cel-Pgp-1: valinomycin (VLN), vinblastine (VBL), actinomycin D (ACD), dipyridamole (DPM), progesterone (PRG) and 

paclitaxel (PCT).  

 

Molecule VLN VBL ACD DPM PRG PCT RHO 
MW (Da) 1111 811 1255 504 314 854 381 

logP 
a

 5.9 3.7 -1.2 1.9 4.6 3.3 3.3 
Fold activation of 

Cel-Pgp-1 ATPase 
b

 
8 3 10 4 4 8 1 

Cluster rank 1 1 2 1 2 1 2 1 2 1 4 1* 4 
Binding Energy 

(kcal/mol) 
-10.3 -10.5 -9.9 -17.0 -14.9 -7.1 -7.0 -7.2 -7.2 -8.3 -7.5 -5.0 -3.8 

Binding Domain 1 2 2 1 1 2 2 2 2 1 2 - 2 

Nb of poses 42 15 14 1 1 3 4 13 85 1 1 43 10 
Nb of inter-acting 

residues 
14 16 12 19 19 13 12 10 9 14 17 10 12 

Nb of hotspot 

residues 
3 10 7 8 7 11 7 10 6 3 15 1 11 

Nb of H-bonds 4 2 1 2 0 2 4 2 0 2 0 3 2 
 

(a) as calculated using Marvin Sketch with the consensus method (b) as reported in Jin et al, 2012. (*) cluster not positioned whithin the inner chamber.
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Table 2. List of interacting residues of each transmembrane helix of Cel-Pgp-1 with the 

indicated lowest energy clusters of valinomycin (VLN), vinblastine (VBL), actinomycin D 

(ACD), dipyridamole (DPM), progesterone (PRG) and paclitaxel (PCT).  

 

Molecule  VLN  VBL  ACD  DPM  PRG  PCT  
Cluster 

rank  
1st 1st 2nd  1st 2nd 1st 2nd 1st 2nd 1st 4th 

TMa-b  

L11           

R12         R12
 

 

   D15 D15     D15
 

 

         S18
 

 

     P21      

    E22 E22 E22  E22  E22 

 D23   D23  D23      D23
  

 K26  K26 K26  K26  K26 K26
 

 

K30    K30  K30      K30 
 

 

 
 

  E33  
 

 
 

 
 

 
 

 
 

    

TM1  

 L91 L91        L91 
       M94   M94 

     Q98  Q98   Q98 

TM3  
K213    

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

  Q219 
 

        

  Q223 
 

        

TM5         F334    

TM6  

          
 

F359  
 

    
          S360 
     M363  M363   M363 
 M364         M364 
 M367  M367 M367     M367 M367 
   G370 G370     G370  

 L371
 

L371
 

L371 L371     L371  

P374    P374 P374    
 

 
 

 
 

P374   

TM7  
     Y771  Y771    

       F775    

TM10  

  L906       
 

L906  
 

L906   L906 
 V909 V909 V909        

      A910     

Q913 Q913  Q913  Q913  Q913        
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Y914           

R916 R916 R916 R916 R916     R916 
 

 

G917    G917       

R918    
 

R918  
 

 
 

 
 

   
 

  

TM11  

 
 

A986  A986      
 

     
 

  
 L990 L990 L990 L990 L990  L990   L990 
  Y991          

        L993  L993 
     N994  N994   N994 

 
 

   
 

  Y998  
 

 
 

   
 

  

TM12  

     M1021      

     Y1022  Y1022   Y1022 
      I1024  I1024   

 T1025 T1025   T1025 T1025  T1025  T1025 
     I1026     I1026 
 T1028 T1028 T1028  T1028   T1028  T1028  T1028  
 S1029  S1029 S1029 S1029 S1029  S1029  S1029 
      T1030     

      L1031     

G1032 G1032 G1032 G1032 G1032  G1032  G1032   

F1033   F1033 F1033  F1033   F1033  

T1035   T1035       T1035   

S1036       S1036          S1036 
 

  

 

Bold:  hotspot residues. Underscored: residues establishing a H-bond. Green: common interacting 

residues to VLN. Red: common interacting residues to VBL. Blue: common interacting residues to 

ACD. Orange: common interacting residues to DPM. Purple: common interacting residues to PRG. 

Black: interacting residues never shared with any other substrate cluster. 
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Table 3. Physico-chemical, enzymological properties and docking characterization of the set of molecules tested for the validation step of the in 

silico procedure on Cel-Pgp-1: Vincristine (VCR), verapamil-S (VRP), colchicine (CCH), doxorubicin (DXR) and daunorubicin (DNR).  

 

Molecule  VCR VRP CCH DXR DNR 

MW (Da)  825 455 399 544 528 

logP 
a
 3.1 5.0 1.5 1.5 2.3 

Fold activation of Cel-

Pgp-1 ATPase 
b
  

2 2 1 1 1 

Cluster rank  1 2 1 2 1 2 1 2 1 

Binding Energy (kcal/mol)  -9.9  -9.8  -6.5  -6.1  -8.9  -8.5  -9.3  -8.3  -5.6 

Binding Domain 2 2 2 2 2 2 2 2 2 

Nb of poses  19 4 6 5 12 70 3 7 2 

Nb of inter-acting 

residues  
13 16 9 13 14 14 14 11 12 

Nb of hotspot residues  10 10 8 10 6 14 12 7 10 

Nb of H-bonds  3 3 2 2 1 1 4 4 4 

 

(a) as calculated using Marvin Sketch with the consensus method. (b) as reported in Jin et al, 2012. 
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Table 4. List of interacting residues of each transmembrane helix of Cel-Pgp-1 with the 

indicated lowest energy clusters of: vincristine (VCR), verapamil-S (VRP), colchicine (CCH), 

doxorubicin (DXR) and daunorubicin (DNR).  

 

Molecule  VCR VRP CCH DXR DNR 
Cluster rank  1 2 1 2 1 2 1 2 1 

Tma-b 

         

      P21  P21 
E22  E22 E22   E22  E22 

         

       K26  

         

         

TM1 

        T87         
    G88     

 L91   L91 L91    

M94     M94    

     S95    

Q98         Q98 Q98   Q98 
TM2     M149     

TM3 
  Q219     Q219         

 Y220   Y220     

        Q223         
TM5      F334    

TM6 

L356                 
   F359  F359    

S360  S360   S360    

M363  M363    M363  M363 
     M364    

 M367        

         

  L371               

TM7 
   Y771  Y771 Y771   

     F775    

TM10 

  L906   L906           
 V909  V909   V909 V909 V909 
   A910      

       G912  

Q913 Q913   Q913   Q913  

 R916   R916     
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TM11 

 Y983        

 A986   A986     

 S987   S987     

    V989   V989  

L990 L990  L990 L990  L990 L990 L990 
    Y991     

 L993 L993 L993   L993  L993 
  N994   N994   N994 
      Y998   

TM12 

Y1022   Y1022 Y1022   Y1022 Y1022     
T1025 T1025 T1025 T1025  T1025 T1025 T1025 T1025 
I1026   I1026  I1026 I1026  I1026 
T1028 T1028 T1028 T1028   T1028 T1028 T1028 
S1029  S1029 S1029   S1029 S1029 S1029 

       G1032  

       F1033  

                  
 

Bold:  hotspot residues. Underscored: residues establishing a H-bond. Green: common interacting 

residues to VCR1. Red: common interacting residues to VCR2. Blue: common interacting residues 

to VRP1. Orange: common interacting residues to VRP2. Purple: common interacting residues to 

CCH1. Brown: common interacting residues to DXR1. Pink: common interacting residues to DXR2. 

Black: interacting residues never shared with any other substrate cluster. 
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Table 5. Physico-chemical, enzymological properties and docking characterization of the set of molecules tested for the validation step of the in 

silico procedure on Cel-Pgp-1: Calcein-AM (CAM), hoechst 33342 (HST), cholesterol (CLS), ketoconazole (KTC), ciclosporin A (CSP) and 

valspodar (VSP).  

 

Molecule  CAM HST CLS KTC CSP VSP 

MW (Da)  995 453 387 531 1203 1215 

logP 
a
 1.5 4.8 7.1 4.2 3.6 4.7 

Cluster rank  1* 2 1 3 1 2 1 2 3 1 1 2 

Binding Energy 

(kcal/mol) 
-5.4  -5.3  -10.2 -10.0  -9.4  -8.7  -9.98  -9.96  -9.85  -10.3  -9.5  -9.2 

Binding Domain - 1 2 2 2 2 2 2 2 1 1 1 

Nb of poses  1 2 1 45 1 6 1 1 15 2 6 25 

Nb of inter-acting 

residues  
13 13 15 9 13 12 17 16 13 17 18 14 

Nb of hotspot 

residues  
2 2 8 8 9 6 15 6 10 2 5 3 

Nb of H-bonds  2 6 0 1 1 1 1 3 1 2 2 1 

 

(a) as calculated using Marvin Sketch with the consensus method. (*) cluster not positioned whithin the inner chamber.
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Table 6. List of interacting residues of each transmembrane helix of Cel-Pgp-1 with the 

indicated lowest energy clusters of: Calcein-AM (CAM), hoechst 33342 (HST), cholesterol 

(CLS), ketoconazole (KTC), ciclosporin A (CSP) and valspodar (VSP). Bold:  hotspot 

residues.  

 

Molecule  CAL HCT CTL KTZ CSP VSP 
Cluster rank  2 1 3 1 2 1 2 3 1 1 2 

N-term R8         R8  

Tma-b 

L11                     
R12        R12 R12  

      D15  D15 D15  

      S18     

   P21  P21      

   E22        

      D23     

      K26  K26 K26 K26 
K30      K30  K30 K30 K30 
E33         E33  

D34                     

TM1 

 T87   T87  T87     

    G88       

 L91   L91  L91     

       M94    

   Q98  Q98  Q98    

TM3 

K213               K213   K213 
M216           

 Q219   Q219       

    Y220  Y220     

        Q223   Q223         

TM5 
         N330  

         F331  

TM6 

    F359     F359           
     S360  S360    

     M363      

     M364      

      M367     

G370        G370   

L371      L371  L371   

        P374 P374  

Q375               Q375   Q375 

TM7 
  Y771   Y771      

  F775   F775      

TM9       I902               
TM10  L906      L906    
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 V909   V909       

 A910   A910   A910    

 G912          

 Q913   Q913  Q913  Q913 Q913 Q913 
        Y914   

R916      R916  R916 R916 R916 
        G917 G917 G917 

IL10-11 

                    R918 
        R919  R919 
          F920 

                    N924 

TM11 

 A986          

 S987   S987  S987     

 V989   V989       

 L990   L990  L990 L990    

 Y991     Y991     

   L993  L993      

   N994  N994  N994    

   A997  A997      

   Y998  Y998  Y998    

TM12 

      M1021   M1021   M1021       
   Y1022  Y1022  Y1022    

  T1025 T1025  T1025  T1025    

  I1026 I1026  I1026      

 T1028 T1028     T1028    

  S1029 S1029  S1029      

 L1031 L1031     L1031    

  G1032       G1032 G1032 
F1033         F1033 F1033 

        T1035 T1035 T1035 
                S1036 S1036   

C-term 
                P1039 P1039   
                  E1040   

 

Underscored: residues establishing a H-bond. Green: common interacting residues to CAM2. 

Red: common interacting residues to HST1. Blue: common interacting residues to HST3. 

Orange: common interacting residues to CLS1. Purple: common interacting residues to CLS2. 

Brown: common interacting residues to KTC1. Pink: common interacting residues to KTC2. 

Khaki  green: common interacting residues to CSP1. Black: interacting residues never shared 

with any other substrate cluster.   
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Supplementary Figures 

 

Supplementary Figure S1. Chemical structure of various substrates of Hsa-Pgp docked 

on Cel-Pgp-1. Valinomycin (CID 21493802) (A), vinblastine (DB00570) (B), actinomycin D 

(DB00970) (C), dipyridamole (DB00975) (D), progesterone (DB00396) (E), paclitaxel 

(DB01229) (F) and rhodamine 123  (CID65217) (G).  
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Supplementary Figure S2. Energy clustering histograms obtained for the docking of 

actinomycin D (A), dipyridamole (B), progesterone (C), paclitaxel (D) and rhodamine 123 

(E) on Cel-Pgp-1.  
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Supplementary Figure S3. Main binding sites of actinomycin D (A, B), progesterone (C, 

D) and rhodamine 123 (E, F) to Cel-Pgp-1. Binding sites of the 1st (A, C, E) and 2nd (B, D, 

F) lowest energy clusters generated using PyMol. Actinomycin D is represented in dark blue 

spheres, prgesterone in brown spheres and rhodamine in dark green spheres. Cel-Pgp-1 is 

represented in light blue (N-term) and yellow (C-term) ribbon. 
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Supplementary Figure S4. Chemical structure of various substrates of Hsa-Pgp docked 

on Cel-Pgp-1. Vincristine (CID5978) (A), verapamil-S (CID2520) (B), colchicine (CID6167) 

(C), doxorubicine (CID31703) (D) and daunorubicine (CID30323) (E). 
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Supplementary Figure S5. Energy clustering histograms obtained for the docking of 

vincristine (A), verapamil-S (B), doxorubicin (C), and daunorubicin (D) on Cel-Pgp-1. 
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Supplementary Figure S6. Main binding sites of verapamil-S (A, B) and doxorubicin (B, 

C) binding to Cel-Pgp-1. Binding sites of the 1st (A, C) and 2nd (B, D) lowest energy clusters 

generated using PyMol. Verapamil-S is represented in yellow spheres and doxorubicin in blue 

spheres. Cel-Pgp-1 is represented in light blue (N-term) and yellow (C-term) ribbon. 
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Supplementary Figure S7. Residues forming H-bonds with DXR1 (blue lines) (A) and 

DNR1 (brown lines) (B). Cel-Pgp-1 is represented in light blue (N-term) and yellow (C-term) 

transparent ribbons for TM helices and sticks for specifically-interacting residues. Atoms of 

Cel-Pgp-1 residues and substrates are colored in blue for N, red for O and grey for H. H-bonds 

are represented in yellow dotted lines with red shadow. TM helices numbers are indicated as 

TM# on each helix in dark gray for closest helices and in clearer grays as the distance increases. 

Images were generated with PyMol. 
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Supplementary Figure S8. Chemical structure of various substrates of Hsa-Pgp docked 

on Cel-Pgp-1. Hoechst 33342 (CID1464) (A), calcein-AM (CID4126474) (B), cholesterol 

(CID5997) (C), ketoconazole (DB01026) (D), cyclosporin A  (chemspider 4447449) (E) and 

valspodar (chemspider 4445174) (F). 
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Supplementary Figure S9. Energy clustering histograms obtained for the docking of 

calcein-AM (A), ketoconazole (B), cyclosporin A (C) and valspodar (D) on Cel-Pgp-1. 

  



EXPERIMENTAL WORK: PART I - A  

 

 

  133  

 

 

 

Supplementary figure S10. Main binding sites of ketoconazole (A, B, C) and calcein-AM 

(D) binding to Cel-Pgp-1. Binding sites of the lowest energy cluster generated using PyMol 

(A, D), 2nd lowest energy cluster (B) and 3rd lowest energy cluster (C).  Ketoconazole is 

represented in pink spheres and calcein-AM is represented in gray spheres, Cel-Pgp-1 is 

represented in light blue (N-term) and yellow (C-term) ribbon. 
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Supplementary Table 

 

Supplementary table S1. List of  "hotspot residues" that have been identified as being 

involved in multispecific substrate recognition in mammalian Pgp, and their aligned 

residues in Cel-Pgp-1. 

 

P-gp   Hsa-Pgp   Mmu-ABCB1a   Cgr-ABCB1   Mmu-ABCB1b   Origin   Cel-Pgp-1   

TM1 

H61   H60 H60 H60 Mv T87 

G64   A63 A63 L63 Mv G90 

L65   L64 L64 L64 Mv/CV/SL   L91 

M68 M67   M67 L67 SL M94 

M69 M68   M68 M68 S S95 

F72 F71   F71 F71 SL Q98 

TM2 Y118 Y114   Y115 Y117 SL Y142 

TM4 S222   S218 S219 S221 CV T246 

TM5 

I299 M295   M296 I298 SL F323 

F303 F299   F300 Y302 SL Q327 

L304 L300   L301 L303 SA A328 

I306   I302 I303 V305 M/SL   N330 

Y307 Y303   Y304 Y306 S F331 

Y310 Y306   Y307 Y309 SL F334 

TM6 

F335   F331 F332 F334 Mva F359 

F336 F332   F333 F335 S S360 

V338   V334 V335 I337 Mv V362 

L339   L335   L336 L338 CV/S   M363 

I340   I336   I337 L339 CR/S   M364 

G341   G337 G338 G340 M G365 

A342   A338 A339 T341 CV S366 

F343 F339   F340 F342 S M367 

S351 D347 D348 D350   M Q375 

TM7 

N721 N717   N718 N719 SL G764 

Q725 Q721   Q722 Q723 S Y768 

F728   F724   F725 F726 CV/S   Y771 

F732 F728   F729 F730 S F775 

TM8 
L762 L758   L759 M760 SA L803 

F770 F766   L767 Y768 SL S811 

TM9 

T837 F833   T834 T835 SA I878 

I840 I836 I837   V838 M L881 

A841   A837 A838 A839 CR V882 

N842 N838 N839   N840 M S883 

TM10 
I864 I860 I861 I862   M I905 

I867 I863 I864 L865   M I908 
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I868   I864 I865 I866 CV V909 

I870 I866 I867 L868   M F911 

TM11 

A935 A931 A932 A933   M A976 

F938 F934   F935 F936 M Q979 

F942   F938   F939 F940 M/CV   Y983 

S943 S939   S940 S941   Mva G984 

T945   T941   T942 T943 Mv/CV   A986 

Q946 Q942   Q943 Q944 M S987 

M949 M945   M946 M947 SL L990 

Y950 Y946   Y947 Y948 Mva Y991 

S952 S948   S949 S950 Ma L993 

Y953 Y949   Y950 Y951 Ma/S   N994 

F957 F953   F954 F955 Mva/SL   Y998 

TM12 

L975   L971 L972 M973 M/CR/SL   L1018 

F978   F974   F975 F976 M/S   M1021 

S979 S975   S976 S977 S Y1022 

V981   I977 I978 V979 M/CR   I1024 

V982   V978   V979 V980 CR/S   T1025 

F983   F979 F980 F981 M/SL   I1026 

G984   G980 G981 G982 CV S1027 

A985 A981   A982 A983 SA T1028 

M986 M982   M983 M984 S S1029 

A987 A983   A984 A985 SL T1030 

G989 G985   G986 G987 SA G1032 

Q990 Q986   Q987 N988 S F1033 

V991 V987   V988 T989 SL A1034 

S993 S989   S990 S991 SA S1036 

 

Hotspots are distributed among the various TM helices, as quoted in the first column. The 

orthologs: human (Hsa), mouse (Mmu) a and b isoforms and Chinese hamster (Cgr), in which 

the residue has been indicated, are shown in columns 2-5 by a bold residue symbol. Hotspots 

were determined, in the literature, by different experimental approaches (point mutagenesis, 

chemical labelling, co-crystallization, respectively denoted as M, C, S), as quoted in the sixth 

column; when the residue has been found by at least two different approaches, the symbols are 

highlighted in bold. M: cytotoxicity assay after Pgp site-directed mutagenesis using, among 

other drugs, VBL (v) or ACD (a); C : MTS-mediated chemical labelling by a MTS-derivative 

of verapamil (V) or rhodamine (R) of Cys-free Pgp specifically bearing Cys residues obtained 

by scanning mutagenesis; S: contact residues of the co-crystallized ligands QZ59RRR and 

QZ59SSS in the Pgp crystal structures published in Aller et al. (2009) and Li et al (2014), but 

presenting few differences (A: residues found in the 2009 structure alone, L: residues found in 

the 2014 structure alone). See Computational Methods section for the relevant references. Last 

column: corresponding residues found in Cel-Pgp-1 after sequence alignment with mammalian 

Pgp. 
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Supplementary Figures 

 

 

 

Supplementary Figure S1. Chemical structure and filiation of macrocyclic lactones. 

Abamectin (M1272), ivermectin (M6566), eprinomectin (M4959), doramectin (M4743), 

selamectin (M9831) and moxidectin (M7646). Circles indicate key substituents and functions. 

 



EXPERIMENTAL WORK: PART I - B  

 

 

  154  

 

  

 

Supplementary Figure S2. AutoDock 4.2 binding energy clustering of ML. Abamectin 

(ABA), eprinomectin (EPR), doramectin (DOR), selamectin (SEL) and ivermectin-aglycone 

(IVA). The first (1) and second (2) lowest energy clusters are framed with red and green dotted 

lines, respectively.   
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Supplementary Figure S3. Chemical structure of anthelmintics. Triclabendazole 

(CID50248) (A), thiabendazole (DB00730) (B), levamisole-R (DB00848) (C), closantel-R 

(CID42574) (D), monepantel-S (CID44449087) (E) and emodepside (CID6918632) (F).   
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Supplementary Figure S4. Binding energy clustering of AHs. Thiabendazole (TBZ), 

triclabendazole (TCZ), levamisole (LEV) monepantel (MNP) and emodepside (EMD). The first 

(1) and second (2) lowest energy clusters are framed with red and green dotted lines, 

respectively. 
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Supplementary Tables 

Supplementary Table S1. List of "hotspot residues" that have been identified as being 

involved in multispecific substrate recognition in mammalian Pgp.  

 

P-gp Hsa-Pgp Mmu-ABCB1a Cgr-ABCB1 Mmu-ABCB1b            Origin Cel-Pgp-1 

TM1 

H61 H60 H60 H60 M T87 

G64 A63 A63 L63 M G90 

L65 L64 L64 L64            M/C/SL L91 

M68 M67 M67 L67 SL M94 

M69 M68 M68 M68 S S95 

F72 F71 F71 F71 SL Q98 

TM2 Y118 Y114 Y115 Y117 SL Y142 

TM4 S222 S218 S219 S221 C T246 

TM5 

I299 M295 M296 I298 SL F323 

F303 F299 F300 Y302 SL Q327 

L304 L300 L301 L303 SA A328 

I306 I302 I303 V305 M/SL N330 

Y307 Y303 Y304 Y306 S F331 

Y310 Y306 Y307 Y309 SL F334 

TM6 

F335 F331 F332 F334 M F359 

F336 F332 F333 F335 S S360 

V338 V334 V335 I337 M V362 

L339 L335 L336 L338 C/S M363 

I340 I336 I337 L339 C/S M364 

G341 G337 G338 G340 M G365 

A342 A338 A339 T341 C S366 

F343 F339 F340 F342 S M367 

S351 D347 D348 D350 M Q375 

TM7 

N721 N717 N718 N719 SL G764 

Q725 Q721 Q722 Q723 S Y768 

F728 F724 F725 F726 C/S Y771 

F732 F728 F729 F730 S F775 

TM8 
L762 L758 L759 M760 SA L803 

F770 F766 L767 Y768 SL S811 

TM9 

T837 F833 T834 T835 SA I878 

I840 I836 I837 V838 M L881 

A841 A837 A838 A839 C V882 

N842 N838 N839 N840 M S883 

TM10 

I864 I860 I861 I862 M I905 

I867 I863 I864 L865 M I908 

I868 I864 I865 I866 C V909 

I870 I866 I867 L868 M F911 

TM11 

A935 A931 A932 A933 M A976 

F938 F934 F935 F936 M Q979 

F942 F938 F939 F940 M/C Y983 

S943 S939 S940 S941 M G984 

T945 T941 T942 T943 M/C A986 

Q946 Q942 Q943 Q944 M S987 

M949 M945 M946 M947 SL L990 

Y950 Y946 Y947 Y948 M Y991 

S952 S948 S949 S950 M L993 

Y953 Y949 Y950 Y951 M/S N994 

F957 F953 F954 F955 M/SL Y998 

TM12 
L975 L971 L972 M973 M/C/SL L1018 

F978 F974 F975 F976 M/S M1021 
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S979 S975 S976 S977 S Y1022 

V981 I977 I978 V979 M/C I1024 

V982 V978 V979 V980 C/S T1025 

F983 F979 F980 F981 M/SL I1026 

G984 G980 G981 G982 C S1027 

A985 A981 A982 A983 SA T1028 

M986 M982 M983 M984 S S1029 

A987 A983 A984 A985 SL T1030 

G989 G985 G986 G987 SA G1032 

Q990 Q986 Q987 N988 S F1033 

V991 V987 V988 T989 SL A1034 

S993 S989 S990 S991 SA S1036 

 

Hotspots are distributed among the various TM helices, as quoted in the first column. The 

orthologs: human (Hsa), mouse (Mmu) a and b isoforms and Chinese hamster (Cgr), in which 

the residue has been indicated, are shown in columns 2-5 by a bold residue symbol. Hotspots 

were determined, in the literature, by different experimental approaches (point mutagenesis, 

chemical labelling, co-crystallization, respectively denoted as M, C, S), as quoted in the sixth 

column; when the residue has been found by at least two different approaches, the symbols are 

highlighted in bold. M: cytotoxicity assay after Pgp site-directed mutagenesis; C: MTS-

mediated chemical labelling by a MTS-derivative of Cys-free mutated Pgp bearing Cys residues 

at specific sites for scanning mutagenesis; S: contact residues of the co-crystallized ligands 

QZ59RRR and QZ59SSS in the Pgp crystal structures published in Aller et al. (2009) and Li et 

al (2014), but presenting few differences (A: residues found in the 2009 structure alone, L: 

residues found in the 2014 structure alone). See Computational Methods section for the relevant 

references. Last column: corresponding residues found in Cel-Pgp-1 after sequence alignment 

with mammalian Pgp.   
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Supplementary Table S2. List of interacting residues of each transmembrane helix of Cel-

Pgp-1 with the first or second lowest energy clusters of ivermectin (IVM2), abamectin 

(ABA2), eprinomectin (EPR2), selamectin (SEL1), ivermectin-aglycone (IVA1), 

moxidectin (MOX1).  

 

Molecule IVM ABA EPR SEL IVA MOX 

Cluster 
Rank 

2nd 2nd 2nd 1st 1st 1st 

TMa-b 

 E22 E22  E22 E22 

D23     D23 

K26 K26 K26   K26 

K30      

TM1 

  L91 L91  L91 

 M94  M94  M94 

 Q98     

TM3 Y220      

TM6 

     S360 

   M363 M363  

  M364   M364 

M367 M367  M367   

G370      

L371 L371     

TM7 
   Y771   

   F775   

TM10 

    L906 L906 

V909  V909  V909 V909 

Q913 Q913 Q913 Q913 Q913 Q913 

 R916 R916    

TM11 

 A986 A986    

 S987 S987    

L990 L990 L990 L990 L990 L990 

L993  L993   L993 

 N994  N994  N994 

   Y998   

TM12 

   M1021   

   Y1022  Y1022 

     I1024 

T1025 T1025 T1025 T1025 T1025 T1025 

   I1026 I1026  

T1028  T1028  T1028 T1028 

 S1029 S1029  S1029 S1029 

  L1031    

 G1032 G1032   G1032 

  F1033    

 

Bold: hotspot residues. Underscored: residues establishing a H-bond. 
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PART II 

Identification, localization and functional 

characterization of H. contortus P-glycoprotein 13 

 

The second main objective was to elucidate the function of Hco-Pgp-13 in this parasite. 

For this purpose, we first wanted to check the cDNA sequence of the closest homolog of Cel-

pgp-13 in H. contortus. We designed primers on the sequence of Hco-pgp-13 predicted by high-

throughput sequencing by the Sanger Institute (Laing et al., 2013), and amplified its cDNA 

from a susceptible isolate of H. contortus. After precision of its full-length cDNA sequence and 

translation into protein sequence, we showed that Hco-Pgp-13 is a very close homolog to the 

three proteins Cel-Pgp-12, Cel-Pgp13 and Cel-Pgp-14.  

We also found a high degree of homology between the trans-membrane domains of Hco-

Pgp-13 and Cel-Pgp-1. As we had previously checked, in the first part of this work, that the 

crystal structure of C. elegans could be used for docking calculations in order to investigate its 

substrate profile, we modeled the 3D structure of Hco-Pgp-13 by homology with Cel-Pgp-1. 

We then docked several compounds of interest to screen for putative ligands of Hco-Pgp-13 

and found a predicted multispecific property for the binding domain of this parasitic transporter. 

Various in vitro techniques using heterologous systems allowed correlating some of these 

results, in particular for actinomycin D that was found to stimulate the ATPase activity of Hco-

Pgp-13, consistent with its high affinity found in silico. More data will be required to precise 

these results, and in particular to investigate the interaction possibility of ML with Hco-Pgp-

13. 

Finally, to better understand its role in the worm, we investigated the localization of Hco-

Pgp-13 in the L3 larvae and adults. The expression of Hco-Pgp-13 was found in the hypodermis 

and seam cells of both stages, in the epithelial gonad of at least L3 larvae, in the pharyngeal 

glands or neurons and in head neurons, possibly the amphids, of adult worms. This wide tissue 

distribution matching that of Cel-Pgp-12, 13 and 14, and the nature of stained organs, are 

consistent with an important function for Hco-Pgp-13 in the worm, which correlates well with 

the predicted multi-recognition capacity of this ABC transporter.
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Abstract 

Export of various compounds through ABC transporters has become an increasingly 

studied process due to the involvement of some of these proteins in drug resistance. P-



EXPERIMENTAL WORK: PART II - A  

 

163 

 

glycoproteins (Pgps) have been the main ABC transporters characterized as having 

multispecific binding capacities in all living kingdoms. In nematodes, several Pgps are found 

in various parasites and the role of each of them has rarely been studied individually. 

Haemonchus contortus is the most economically important parasite of small ruminants. 

Deciphering the role of the 10 Pgps expressed in this parasite is thus of major importance to 

overcoming resistance of this species to various anthelmintic drugs. Here we focused on Hco-

Pgp-13 due to the expression in the amphids of its closest ortholog in Caenorhabditis elegans. 

Indeed, the amphids represent a putative entry route of drugs to reach AH targets in the nervous 

system and have been shown to be linked to AH sensitivity in C. elegans and H. contortus. In 

our study, we corrected the previously predicted sequence of Hco-pgp-13 and found that its 

translation product was the closest ortholog of Cel-Pgp12, 13 and 14 in C. elegans. A 3D model 

of Hco-Pgp-13 was constructed by homology with the PDB structure 4F4C of Cel-Pgp-1 crystal 

and indicated a topology matching an ABC transporter. To investigate the drug binding 

capacities of Hco-Pgp-13, the in silico docking calculation of actinomycin D, a well described 

substrate of mammalian Pgps and Cel-Pgp-1, was performed on the 3D model of Hco-Pgp-13. 

A high affinity of actinomycin D was predicted for the transporter and was correlated with in 

vitro stimulation of the ATPase activity of Hco-Pgp-13 by this drug. Finally, the localization of 

Hco-Pgp-13 in the parasite was found in many tissues, including epithelial cells and pharyngeal 

neurons, corresponding to the location of Cel-Pgp-12, 13 and 14. Overall, these data are 

consistent with a possible role for Hco-Pgp-13 in drug transport, which could possibly 

contribute in drug resistance and survival of this parasite when exposed to toxic exogenous 

compounds. 

Keywords 

Nematodes; Haemonchus contortus; ABC transporters; P-glycoprotein. 

Abbreviations 

 ABC = ATP-binding cassette; ACD = actinomycin D; AH = anthelmintic; BLASTP = 

protein Basic Local Alignment Search Tool; Cel = Caenorhabditis elegans; Ceg = Cylicocylus 

elongatus; Hco = Haemonchus contortus; Hsa = Homo sapiens; IVM = ivermectin; MDR = 

multidrug resistance; ML = macrocyclic lactone(s); Mmu = Mus musculus; MOX = moxidectin; 

NBD = nucleotide binding domain; PDB = Protein data bank; Pgp = P-glycoprotein; QMEAN 
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= Qualitative Model Energy Analysis; RMSD = root mean square deviation; SNP = single 

nucleotide polymorphism; TMD = transmembrane domain. 

I. INTRODUCTION  

ATP-binding cassette (ABC) transporters belong to a large family of ATP hydrolyzing 

proteins involved in all living kingdoms in the transport of a wide variety of compounds. 

Among these transporters, the multi-drug resistance (MDR) ABC transporters are more 

specifically dedicated to the transport of xenotoxics and they have been clearly involved in 

resistance to drugs in mammals as well as in bacteria and parasites (Jones and George, 2005; 

Koenderink et al., 2010; Lage, 2003). In mammals, MDR ABC transporters such as P-

glycoprotein (MDR1/ABCB1/Pgp) can efflux various, structurally unrelated drugs, and Pgp is 

responsible for resistance to chemotherapy in mammalian tumor cells (Eckford and Sharom, 

2009; Leonard et al., 2003). Noticeably, mammalian Pgp transports macrocyclic lactones (ML), 

which are today the main anthelmintic medicines used against parasitic nematodes in humans 

and animals (Lespine et al., 2007; Roulet et al., 2003; Schinkel et al., 1994). 

The function of these transporters is tightly linked to their conserved structures. Active 

MDR exporters of the ABC B sub-family are composed of two nucleotide binding domains 

(NBDs) and two transmembrane domains (TMDs). NBDs are the most conserved domains, and 

contain sequences involved in the binding and hydrolysis of ATP, that are hallmarks for 

belonging to the ABC family across species (Higgins, 1992). Across the lipid bilayer, TMDs 

are formed of 6 helices, and they combine by two, either in a dimer or in a tandem-like 

monomer, to form a funnel-like shape that delineates an inner chamber. The latter is either open 

to the cytoplasmic side of the membrane, where substrates can bind with high affinity to the 

transmembrane domains, or to the extracellular medium, with lower affinity of the TMDs to 

the substrates, which allows their release. 

Many homologs of Pgps are expressed in nematodes as compared to the single ABCB1 

found in human. However, there are three other full-sized members of the B sub-family (B4, 

B5, B11) in human, which present close sequence homologies but handle different types of 

substrates. This raises the question of the substrate selectivity, and hence the biological 

functions, of these various nematode Pgps. The free-living nematode Caenorhabditis elegans, 

a model nematode, and genetically very close to other clade V nematodes such as Haemonchus 

contortus, expresses 60 ABC transporters, among which 14 full-size Pgp homologs are 

localized in different organs and expressed at various stages of development (Zhao et al., 2004). 
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H. contortus is among the most prevalent pathogen parasitic nematodes in small ruminant 

veterinary medicine, and its genome has recently been sequenced and annotated 

(ftp://ftp.sanger.ac.uk/pub/pathogens/Haemonchus/contortus) (Laing et al., 2011; Laing et al., 

2013). In this species, 10 homologs of Pgps were identified, and a few of them have been 

localized: Hco-Pgp-2 in the pharynx, anterior intestine and head neurons of H. contortus, and 

Hco-Pgp-9.1 in the uterus of females (Godoy et al., 2016; Godoy et al., 2015b). 

Today, increasing efforts are made to better understand the respective functions of 

nematode Pgps and MRPs. In particular, in C. elegans, Cel-Pgp-3 has been suggested to be 

involved in the resistance to chloroquine and colchicine (Broeks et al., 1995), while Cel-Pgp-1 

and Cel-MRP-1 were linked to heavy metal sensitivity in this free-living nematode (Broeks et 

al., 1996). Cel-Pgp-2 was found to be related to lysosome formation and lipid storage in the 

intestine of C. elegans (Nunes et al., 2005; Schroeder et al., 2007). Cel-Pgp-5 was found to be 

involved in resistance to bacterial infection and heavy metals (Kurz et al., 2007). 

In addition, there is clear evidence that some nematode Pgps can transport ML, both in 

C. elegans (Ardelli and Prichard, 2013; Janssen et al., 2013b) and in Parascaris equorum 

(Janssen et al., 2013a; Janssen et al., 2015). Some mammalian Pgp inhibitors alter the transport 

function of Pgps in C. elegans and in the parasitic nematodes H. contortus, Cylicocylus 

elongatus and Dirofilaria immitis (Godoy et al., 2015a, 2016; Godoy et al., 2015b; Kaschny et 

al., 2015; Mani et al., 2016). Such inhibitors can also improve ML susceptibility in nematodes 

(Bartley et al., 2009; James and Davey, 2009; Lespine et al., 2012; Menez et al., 2016), 

revealing that there could be some substrate selectivity overlapping among species. In addition, 

increased ML resistance is associated with induction of expression of individual Pgp genes 

(James and Davey, 2009; Lespine et al., 2012). Recently, the simultaneous release of the first 

crystal structure of a Pgp of nematode, Cel-Pgp-1, resolved at a resolution of 3.4 Å (Protein 

Data Bank code: 4F4C) and the demonstration of ATPase activation of purified Cel-Pgp-1 by 

various mammalian Pgp substrate drugs provide the most compelling evidence of a multidrug 

transport function for a nematode Pgp (Jin et al., 2012). Furthermore, the high affinity binding 

of several anthelmintic drugs on Cel-Pgp-1 has been predicted by in silico docking calculations 

performed on a 4F4C structure (manuscript under review, Part I, A).  

Because of their strategic tissue expression locations and their putative implication in 

drug resistance, it is important to gain insight into the characteristics of Pgps of parasitic 

nematodes. Here we focused on H. contortus Pgp-13 (Hco-Pgp-13). Indeed, the closest ortholog 

of its coding sequence in C. elegans, Cel-pgp-13, was found to be expressed in the amphids, 
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which contain chemo-sensitive neurons,  playing a role in ML sensitivity (Dent et al., 2000; 

Freeman et al., 2003; Menez et al., 2016; Urdaneta-Marquez et al., 2014). The Hco-pgp-13 

cDNA sequence and translation into protein sequence was investigated, and its transport 

capacity was addressed, as well as the localization of expression of Hco-Pgp-13 in the 

nematode. Based on the predicted cDNA sequence obtained from large scale sequencing (Laing 

et al., 2013), we synthesized Hco-pgp-13 cDNA from H. contortus RNA and deduced the 

protein sequence. The 3D conformation of the protein was also modeled in an open inward-

facing conformation based on the crystal structure of Cel-Pgp-1 (PDB: 4F4C) (Jin et al., 2012). 

This model was used for the in silico study of the binding on Hco-Pgp-13 of the well-known 

mammalian Pgp substrate, actinomycin D. Finally, using the nematode Pgp heterologously 

expressed in Pichia pastoris, the capacity of actinomycin D to stimulate the ATPase activity of 

Hco-Pgp-13 was evidenced in vitro. This suggests its possible involvement in the transport of 

exogenous compounds, even if the additional possibility of lipid handling cannot be excluded. 

II. MATERIAL AND METHODS 

1.  Parasites 

The PF23 strain of H. contortus used is susceptible to AHs (Ranjan et al., 2002). Worms 

were originally supplied by Fort Dodge Animal Health, Princeton, NJ, USA and are maintained 

by our laboratory. Animals and standardized operating procedures used in this research study 

were approved (Protocol 3845) and subjected to the guidelines from the Animal Care 

Committee of McGill University, Canada. Worms were obtained from passages consisting of 

an artificial infection with the larvae from the previous generation in naive lambs, without 

anthelmintic exposure. They were then collected from the abomasum of the host and incubated 

in PBS at 37°C before storage at -80°C. 

2. RNA extraction and reverse transcription. 

Total RNA was extracted from 20 adult H. contortus homogenized and extracted with 

Trizol® reagent according to the instruction of the manufacturer (ThermoFisher, Canada). The 

RNA was finally dried, and dissolved in 30µL of RNase-free water. RNA concentration was 

determined with a Nanodrop photometer IMPLEN® at a wavelength of 260nm. The quality of 

the RNA was assessed by running 2µL of each sample in a 0.8% agarose gel. Extracted RNA 

of good quality was stored at -80°C.  
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The reverse transcription to cDNA was performed using the SuperScript® III reverse 

transcriptase (ThermoFisher, Canada), starting with 1µg RNA and following the instructions of 

the manufacturer. The cDNA obtained was stored at -20°C for further use. 

3. Amplification of Hco-pgp-13 cDNA sequence 

A pair of primers, mda 4 – mda 1 (Suppl. Table S1), was constructed using the Geneious 

bioinformatics software, version 5.5.6., across the 3’ end of the predicted sequence contigs of 

Hco-pgp-13 obtained from the Sanger Institute (ftp://ftp.sanger.ac.uk/pub/ 

pathogens/Haemonchus/contortus) (Laing et al., 2013). A first PCR was run using these primers 

and the reverse transcribed cDNA of whole adult H. contortus as template. A fragment of 

3488bp was obtained and sequenced twice (Genome Quebec Innovation Centre, McGill 

University, QC, Canada) using 8 primers, mda 1 to mda 16 (Suppl. Table S1).  These had been 

designed along the gene so that they lead to overlapping fragments. In total, at least 2 different 

sequences were obtained for each amplification, with one primer along the gene. The full 

3488bp sequence obtained was checked to be identical for the majority of fragments obtained 

at each location.  

Four more primers were designed to identify the 5’-end of Hco-pgp-13 by nested PCR: 

the nematode spliced leader sequence SL1 (Blaxter and Liu, 1996), a specific forward primer 

mda 48 (Suppl. Table S1) designed between SL1 and the start codon, and two specific reverse 

primers mda 19 and mda 31 (Suppl. Table S1) designed on the 5’ end of the 3488 bp fragment 

previously amplified with mda4 - mda1. A nested PCR was performed, first using SL1 and mda 

31 on whole H. contortus cDNA. The PCR product thus obtained, and migrating at the expected 

length (around 1 kb), was extracted and subjected to a second PCR with the second inner 

forward primer mda 48 and one of the two inner reverse primers mda 19 or mda 31. The 887 

and 999 bp PCR products thus obtained were sequenced and found to be perfectly identical 

along their overlap. They were then aligned to the first 3488 bp product with MultAlin software 

(Corpet, 1988), and the identity of their overlap was confirmed.  

The mda 48 – mda 19 fragments as well as small fragments within the 3’ sequence 

amplified with mda 4 – mda 1 were cloned in TOPO 2.1+ vectors (Invitrogen). After 

transformation of these vectors in E. coli TOP10F’ competent cells,  the bacterial cells were 

incubated overnight at 37°C on LB agar plates with 50µg/mL ampicillin, 40 µg/mL X-gal and 

100mM IPTG. Colonies were screened by PCR and positive ones were sequenced (Genome 

Quebec Innovation Centre, McGill University, QC, Canada). Once the full-length sequence was 
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confirmed, it was aligned against the cDNA of the predicted sequence of Hco-pgp-13, to check 

for its identity using MultAlin (Suppl. Figure S1). 

4. Prediction of Hco-Pgp-13 protein sequence and phylogenic analysis  

The translation of Hco-pgp-13 cDNA into protein was predicted using ExPASy – 

Translate tool (http://web.expasy.org/translate/). The parameters of the predicted protein were 

analyzed with ExPASy – ProtParam. The presence of signature motifs, and N- and O-

glycosylation motifs were predicted using ExPASy - ScanProsite tool (http://prosite. 

expasy.org/) according to homology with proteins in the database. The Walker B motif specific 

for ABC transporters was not found by this program and was deduced from a Muscle (Edgar, 

2004) multiple alignment (Suppl. Figure S2) with Pgps of various organisms including Hsa-

Pgp in which all motifs have been previously identified. The prediction of amino-acids located 

within the transmembrane bilayer was performed with the Protter tool, (Omasits et al., 2014) 

and the TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/ TMHMM/) (Suppl. Table S5). 

The visualization of the topology of the full length protein sequence across the plasma 

membrane was represented using the Protter tool. The TM helices and eight N-glycosylation 

motifs were represented as predicted by this program, N518 being the only one not previously 

predicted by ExPASy - ScanProsite. 

A phylogenetic tree with all Hco-Pgps, Cel-Pgp-12, 13 and 14, Hsa-Pgp and Mmu-

ABCB1a protein sequences was constructed using Geneious software with the mammalian 

Pgps as outgroups, after exclusion of NBDs from all the considered protein sequences. For 

comparison of protein sequences, a multiple alignment was performed using Muscle (Edgar, 

2004) with all Hco-Pgps and Cel-Pgps and the mammalian Pgps: Hsa-Pgp and three Mmu-Pgps 

(ABCB1a, B1b and B4) (Suppl. Figure S2). The locations of the TMDs of all these proteins, 

except Mmu-ABCB1b and Mmu-ABCB4, were determined according to this alignment.  The 

first and last amino-acids of TMD1 and TMD2 of each Pgp were identified as those aligned to 

the first amino-acid of TM1, the last amino-acid of TM6, to the first amino-acid of TM7 and 

the last amino-acid of TM12 of Cel-Pgp-1, respectively, as given by the 4F4C 3D structure. 

The similarity and identity percentages of the TMDs of Cel-Pgp-1 with the TMDs of all other 

Pgps was then determined using BlastP (http://blast.ncbi.nlm. nih.gov/Blast.cgi). TMD1 and 

TMD2 were considered independently and the mean of the two values is shown in Table 1. 
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5. Construction of 3D models of Hco-Pgp-13 based on Cel-Pgp-1 4F4C 

PDB structure as template and in silico docking calculations 

All Modeller and Autodock calculations were performed using the computing facilities 

of the CEA-DSV (cluster Gabriel) at Saclay, and of INRA (Genotoul) in Toulouse. 

3D models of Hco-Pgp-13 were built using Modeller9v12 (Sali and Blundell, 1993; 

Webb and Sali, 2014) and the crystal structure of C. elegans Pgp (PDB:  4F4C), determined at 

a resolution of 3.4 Å, as template. As the Cel-Pgp-1 sequence was lacking the following AAs: 

M1-R3, A52-E54, K666-E715 and G1307-K1321, the full-length sequence of Hco-pgp-13 was 

modelled without the corresponding residues M1-S3, E668-L725, and G1304-T1317. A 

multiple alignment was performed with all Cel- and Hco-Pgps as well as 4 mammalian Pgps: 

Hsa-Pgp and Mmu-ABCB1a/1b/4 to obtain the highest possible precision (Suppl. Figure S2). 

The pairwise alignment was then deduced (Suppl. Figure S3) and subjected to Modeller to 

generate 100 models. The best DOPE (Discrete Optimized Protein Energy) score model n°4 

(Hco-Pgp-13_04) and the best molecular PDF model n°52 (Hco-Pgp-13_52) were submitted to 

various online metaservers to assess their quality (Suppl. Table S2). The QMEAN (Qualitative 

Model Energy Analysis) scoring function (Benkert et al., 2009; Benkert et al., 2008), the 

ProSA-web (Protein structure analysis) (Sippl, 1993; Wiederstein and Sippl, 2007) and the 

VADAR (Volume, Area, Dihedral Angle Reporter) (Willard et al., 2003) servers all indicated 

very close accuracies for the two models according to different parameters, so that both of them 

were chosen for docking calculations. 

The in silico docking calculation of actinomycin D (ACD) on Hco-Pgp-13 was 

performed as described in detail in (manuscript under review, Part I, A). The structure of ACD 

was extracted from Drugbank n° DB00970 and 10 minimum energy conformers were generated 

with Marvin Suite under the MMFF94 force field (https://www.chemaxon.com/ 

products/marvin/marvinsketch/). Four representative conformers were chosen as starting 

conformations for the docking after alignment and calculation of RMSD under PyMOL. 

Molecular docking experiments were performed using AutoDock 4 (release 4.2.6) in the semi-

flexible mode, with the Hco-Pgp13_04 and Hco-Pgp13_52 PDB structures kept rigid, and 

prepared with AutoDock Tools (Morris et al., 1998; Morris et al., 2009). The grid built by 

AutoGrid 4 included 95, 120, and 100 points in x, y, and z directions, with a grid spacing of 

0.375 Å, to allow a good compromise between resolution of the explored volume and the size 

of the binding area (box dimensions 35.6x 45 x 37.5 Å, centered in the inner cavity of Hco-

Pgp-13, at the point x=23 Å; y=78 Å; z=-2 Å). For each ligand conformer, 100 independent 
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calculations were performed using the Lamarckian genetic algorithm. All the other parameters 

were set at the default value. The 100 generated poses were assigned a score calculated by 

AutoDock that can be considered as an estimated free energy of ligand binding (indicative of 

binding affinity). They were then clustered as a function of the closeness of their positions and 

conformations, with RMSD set at 2.0 Å, and finally ranked by their binding score (for the best 

pose in the cluster). The results are displayed in an energy scores histogram. Different 

parameters and observables can be used in the interpretation of docking data issued by 

AutoDock: binding energies (i.e. docking scores), histogram bars energy range, profile of the 

histogram, and location of calculated positions in the protein structure. We considered only the 

lowest energy cluster since it contained the maximum of poses for each model of Hco-Pgp-13 

and thus was the most representative of all.  

For each lowest energy pose of selected clusters, the number and nature of interacting 

residues were analyzed within the protein. Among these, particular interest was given to 

residues belonging to the "hotspots for drug binding”, described in (manuscript under review, 

Part I, A). These are a collection of 62 residues, as displayed in (Suppl. Table S3), coming from 

different experimental approaches that have been conducted for the purpose of determining the 

key residues responsible for multidrug recognition by mammalian Pgp (Hsa-ABCB1, Mmu-

ABCB1a & B1b, Cgr-ABCB1) (Aller et al., 2009; Bessadok et al., 2011; Li et al., 2013; Loo et 

al., 2006a, b; Loo and Clarke, 2001, 2002; Shilling et al., 2006). All these residues are situated 

in the transmembrane part of the protein and 14 of these 62 residues are common between at 

least two different approaches. Altogether, they provide a frame in the inner chamber that offers 

a set of anchoring points for multi-specific recognition and binding, and eventual translocation, 

of various transport ligands. Multiple protein sequence alignments have been performed on 

Hco-Pgp-13, Cel-Pgp-1, human ABCB1, murine ABCB1a and B1b, and Chinese hamster 

ABCB1, using Muscle software (Edgar, 2004), to identify the corresponding residues in Hco-

Pgp-13. 

6. Cloning and transfection of Hco-pgp-13 gene in Pichia pastoris 

The full-length identified sequence of cDNA sequence of Hco-Pgp-13 was subjected to 

codon optimization by GenScript (USA). After transformation of the vector in E. coli TOP10F’ 

competent cells, Hco-pgp-13 codon optimized sequence was confirmed by sequencing 

(Genome Quebec Innovation Centre, McGill University, QC, Canada). Hco-pgp-13 coding 

sequence was modified at the 5’ end and the 3’ end by introducing BstBI and XbaI sites, 
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respectively, by PCR amplification with the following primers: BstBI-hco-pgp-13: 

5’AAAACAACTTAATTATTATTCGAAACGATGACATCAAAACCCGAT’3 (forward) 

and XbaI-hco-pgp-13: 5’TAGCTAGCTAGCTAGCTAGTGTTCTAGAGGCCCTGTG 

GTGAGGTCCTGC’3 (reverse). Modified PCR cDNA was digested using BstBI and XbaI 

enzymes and cloned in the pPICZ-HuMOR-cmyc-his-tag vector (Sarramegna et al., 2005) 

digested with the same enzymes leading to the creation of pPICZ-Hco-pgp13-cmyc-his-tag 

vector. 

Escherichia coli strain Top10F’ was used for the propagation of recombinant plasmids. E. 

coli transformants were selected on low salt LB plates pH 7.5 (0.5% w/v yeast extract, 1% w/v 

tryptone, 0.5% w/v NaCl, 1.5% w/v bacteriological agar) supplemented with 25 µg 

zeocin/ml. Pichia pastoris SMD1163 (his4, pep4, prB1) strain was used for receptor 

expression. P. pastoris transformants were selected on YPDS plates (1% w/v yeast extract, 2% 

w/v peptone, 2% w/v dextrose, 1 M sorbitol, and 1.5% w/v bacteriological agar) with 100 µg 

zeocin/ml. P. pastoris growth and induction media were BMGY (1% w/v yeast extract, 2% w/v 

peptone, 0.1 M phosphate buffer pH 7.5, 1% v/v glycerol) and BMMY (same as BMGY except 

that glycerol was replaced by 0.5% v/v methanol), respectively. For some experiments growth 

and recombinant protein expression were realized at the same time in BMMY. Cell cultures 

were realized at 30° C in shacked flasks. 

7. ATPase activity measurement of Hco-Pgp-13 stimulated by 

actinomycin D 

The ATPase activity in crude membranes was measured by the endpoint inorganic 

phosphate (Pi) release assay (Sarkadi et al., 1992). Briefly, membrane preparations (200 µg/ml) 

were incubated at 37°C in ATPase assay buffer (10 mM MgCl2, 50 mM Hepes (pH 7.5), 1 mM 

dithiothreitol, 0,1 mM EGTA, 10 mM sodium azide, 10 mM ouabain) with increasing 

concentrations of actinomycin D, in the presence or absence of 100 µM sodium orthovanadate. 

DMSO was used as solvent of the tested drug, and its final concentration was 1% in the assay, 

as in the control reaction without drug. The reaction was initiated by the addition of 5 mM ATP 

and terminated with SDS (5% final concentration): After 5 min, 15 min and 30 min of 

incubation, aliquots (50 µl) were removed and added to SDS-containing wells. The amount of 

Pi released in each aliquot was measured in triplicate by a modification of the sensitive 

colorimetric reaction described. The SDS-containing samples (0.1 ml) were supplemented with 

0.2 ml of reagent C prepared with 1 vol of reagent A containing  4% ammonium molybdate in 

2,5M H2SO4 and 4 vol of reagent B containing 10% ascorbic acid freshly prepared. In this way, 
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the rates of ATPase activity were identified as linear initial rates up to 30 min after incubation 

with ATP. The vanadate-sensitive ATPase activity was expressed in nmol Pi/min/mg of total 

protein.  

8. Design of specific antibodies against Hco-Pgp-13 

The specificity and suitability of various antigens for antibody production against Hco-

Pgp-13 were analyzed by GenScript (USA). Among the dozens of potential antigenic 

determinants identified, two peptides were chosen for their disordered structure and high 

accessibility in the predicted 3D conformation of the protein: GTADPQRSSETSKK (AA 12-

25) and SGRSTLTQSKRSGS (AA 681-694).  They were chemically synthesized and used by 

GenScript to immunize rabbits.  

9. Polyacrylamide gel electrophoresis and Western-blot 

All operations were carried out at 4°C. After induction of expression, yeast cells were 

harvested and broken during 30 min with glass beads in a breaking buffer (Tris/HCl 10 mM, 

pH 7.5) supplemented with protease inhibitors. The cell lysate was then centrifuged at 1000g 

for 15 min to remove unbroken cells and particulate matter. The supernatant was then 

centrifuged at 100,000g for 30 min. Resulting pellets were stored at -80°C in the breaking 

buffer. Membrane Protein contents were determined using the Bradford assay (Bio-Rad) using 

bovine serum albumin (BSA) as standard. Absorbance was read at 595nm with a 

spectrofluorometer (Infinite® 200 PRO, Tecan). 

An aliquot of 10 µg of membranes was run on 10% sodium dodecyl sulfate – 

polyacrylamide gel electrophoresis (SDS-PAGE)  in a Mini Protean® 3 Bio-Rad cell with the 

Laemmli method (Gallagher, 2006). The gel was then transferred to a nitrocellulose membrane 

that was blocked in PBS, 0.05% Tween, 5% skimmed milk powder, at 4°C overnight. The 

membrane was washed three times for 5min with PBS-Tween and incubated with the two 

primary antibodies designed against each epitope of Hco-Pgp-13 (GenScript, USA) at 1/1000 

dilution at 4°C overnight. The next day, the membrane was washed similarly and incubated 

with a secondary CFTM770 anti-rabbit antibody (Biotium, Canada) at RT for 1 hour. The 

membrane was again washed three times for 5 min with PBS-Tween and proteins were 

visualized using the Odyssey® CLx imaging system (LI-COR Biosciences, USA).  
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10. Immunohistochemistry on larvae and adult H. contortus sections 

The anti- Hco-Pgp-13 antibodies designed and validated in Western-blot were used for 

immunohistochemistry detection of Hco-Pgp-13 protein in L3 and adult H. contortus. An anti-

myosin antibody directed against C. elegans myosin heavy chain A was also used to localize 

muscles (DSHB Hybridoma product 5-6). Fresh worms were fixed in 4% PFA in PBS at 4°C 

for 16h. After three washes in PBS for 5 min, they were incubated in 30% sucrose in PBS at 

4°C for 16h under gentle rocking. Whole worms were then individually placed in a square 

container and embedded in an optimal cutting temperature compound (OCT) (Thermo Fisher 

Scientific, USA). They were then quickly frozen to -80°C and stored. Cryosections were 

performed by slicing 20-30 μm thick transverse sections with a Thermo Shandon cryotome 

(Thermo Fisher Scientific, USA) and slices collected onto poly-L-lysine coated glass coverslips 

(Sigma, USA), kept at -80°C before further processing.  

Sections were incubated in Antibody Diluent (AbD) (PBS, 0.2 % gelatin fish skin, 0.1% 

sodium azide, 0.1% (v/v) Triton X-100) at 4°C for 16h. This was followed by incubation with 

the two primary antibodies: anti-myosin and anti-Hco-Pgp-13 with 1/100 and 1/50 dilutions, 

respectively, in AbD at 4°C for 16h. Five washes for 5 min with AbD were performed to remove 

non-specific binding and the secondary fluorescent antibodies were incubated with a 1/500 

dilution at 4°C for 16h. The secondary antibodies were Alexa Fluor 488 (Fab) fragment of goat 

anti-rabbit IgG and Alexa Fluor 635 goat anti -mouse IgG (Invitrogen, USA). Three washes 

were then performed for 5 min with AbD and three washes for 5 min with PBS. Sections were 

finally mounted on slides using mounting medium (Sigma, USA) and observed under a 

fluorescent microscope. The most representative cross-sections were then 3D analyzed under a 

confocal microscope (Leica SP8 DMI6000, Wetzlar, Germany) at excitation and emission 

wavelength of 488nm – 520 nm respectively for Alexa Fluor 488, and 635nm – 650nm 

respectively for AlexaFluor 635. 

III. RESULTS 

1.  Amplification and sequencing of Hco-pgp-13 cDNA 

Hco-Pgp-13 was selected based on the strategic expression of its closest ortholog in C. 

elegans at the level of the amphids. RNA was extracted from adult H. contortus males and 

females, reverse transcribed into cDNA and amplified. Several primers (Suppl. Table S1) were 

designed along the predicted sequence of Hco-pgp13 (ftp://ftp.sanger.ac.uk/pub/ 
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pathogens/Haemonchus/contortus) (Laing et al., 2013). A first, partial 3’ end fragment of 3488 

bp was amplified using two primers encompassing the stop codon of Hco-pgp13 predicted 

sequence ending at nucleotide 3954. The forward primer started at position 504 and the reverse 

primer at position 3992. This fragment was sequenced using eight forward and reverse primers, 

designed along the corresponding predicted sequence of the H. contortus cDNA, the start 

position of each of them being indicated in (Suppl. Table S1). Amplicons obtained with 

different primers showed overlapping sequences which allowed alignment of all the PCR 

products and sequencing of the whole fragment. To amplify the 5’ end of Hco-pgp-13 cDNA, 

we used four more forward and reverse primers. A forward primer named SL1 was designed 

based on the conserved sequence of the nematode spliced leader sequence 1 present before the 

ATG codon of most of genes (Blaxter and Liu, 1996; Blumenthal, 1995). A first PCR was 

performed on reverse translated RNA with SL1 and a reverse primer starting at position 965. 

This was followed by a nested PCR on this product with the pair of primers composed of a 

forward primer starting at position -34 and a reverse primer starting at 853. This allowed 

amplification of an 887 bp fragment. Once sequenced, the last 349 bp of the 3’ end were 

overlapping and perfectly matching the first 349 bp of the 5’ end of the previously amplified 

fragment. The combination of the two sequences was named Hco-pgp-13 and corresponded to 

a 3954 bp coding cDNA from ATG to TGA stop codon (Suppl. Figure S1).  

By sequencing the cDNA directly obtained from reverse transcription of H. contortus 

RNA, we were able to obtain a cDNA fragment which is representative of the transcript RNA 

present in the parasitic worms, and we could compare it with the gene sequence previously 

published (Laing et al., 2013). Interestingly, the alignment data revealed a deletion of 30 

nucleotides in the amplified cDNA sequence strictly matching a 30-nucleotide repeat present 

on the Hco-pgp-13 predicted sequence (Figure 1). 90 SNPs were found along the whole 

amplified cDNA relative to the one predicted by large scale sequencing, which represents 2.3% 

of the nucleotide sequence (Suppl. Figure S1). 

2. Translation product amino-acid sequence and topology of amplified 

Hco-pgp-13 

Translation of Hco-pgp-13 cDNA from the first ATG to the next stop codon in the same 

reading frame yielded a 1317 amino-acid (AA) protein. Its expected molecular weight was 

145.9 kDa, without taking account of possible post-translational modifications. The 30 

nucleotide deletion in the cDNA sequence as compared to the predicted sequence translated 

into a 10 AA deletion in the protein sequence, thus correcting the sequence starting at Gly 804 
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until Phe 813. In addition, among the 90 SNPs found in the cDNA sequence between the 

predicted and amplified Hco-pgp-13, 8 translated into a different AA in the protein sequence, 

spread in the whole protein, as listed in Suppl. Table S4. This represents 0.6% of the protein 

sequence and no amino-acid change was located in the TM segments in a position or orientation 

that could modify the walls of the inner chamber, as compared to the predicted sequence. Eight 

N-glycosylation motifs were identified on Asn 191, 507, 518, 601, 704, 747, 984 and 1033 

(Figure 2), while no putative O-glycosylation site and no peptide signal found.  

The prediction of signature motifs, according to homology with proteins containing 

well-described domains, revealed the presence of 2 NBDs with the domain arrangement NBD1 

(AA 418-654) and NBD2 (AA 1076-1312), matching the conserved arrangement of ABC B 

full transporters (Figure 2). Consistently, a Walker A (/P-loop) motif: GHSGCGKS (AA 453 – 

460) and GPSGSGKS (AA 1111 – 1118) as well as a Walker B motif: VLLLDE (AA 577 – 

582) and ILLLDE (AA 1235 – 1240) were found in each of the NBDs. An ABC transporter 

family signature motif (Hewitt and Lehner, 2003) was also found in each of these domains: 

LSGGQKQRI (AA 557 – 565) in NBD1 and LSGGQKQRI (AA 1215 – 1223) in NBD2, as 

well as an aromatic residue (A-loop) located 25 AA upstream of each Walker A motif: Y427 

and Y1085. All these conserved motifs, involved in the binding and hydrolysis of ATP, are 

consistent with a functional primary active transporter able to export substrates.  

In addition, 2 TMDs were also identified based on homology with proteins containing 

such domains: TMD1 (AA 95 – 383) and TMD2 (AA 756 – 1043), that signed the 

transmembrane-type topology of this transporter protein. Within TMDs, a more detailed 

prediction of TM helices was found, as shown in Figure 2B. It was mainly identical when 

searched with two different servers (Suppl. Table S5) based on homology with well-known 

transmembrane proteins, and led to the prediction of 12 TM helices, starting and ending on the 

cytoplasmic side. 

3. Phylogenetic analysis of Hco-Pgp-13 

A phylogenetic tree was constructed after exclusion of NBDs of all Hco-Pgps, Cel-Pgp-

12, 13 and 14, Hsa-Pgp and Msm-ABCB1a and is represented in Figure 3.  It shows that Hco-

Pgp-13 has a similarly very high degree of homology to the three proteins: Cel-Pgp-12, Cel-

Pgp-13 and Cel-Pgp-14. They all appear to be orthologs of the Hco-Pgp-13 sequence, and have 

no closer ortholog in H. contortus than Hco-Pgp-13.  
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Then, a multiple alignment was performed with all Hco-Pgps and Cel-Pgps and the 

mammalian Pgps: Hsa-Pgp and three Mmu-Pgps (ABCB1a, B1b and B4). Interestingly, N-

terminal regions show a length between 30 and 50 AA in 24 proteins out of 32 aligned (until 

the first AA aligned to the start of TM1 in Cel-Pgp-1) whereas the N-terminal sequence of Hco-

Pgp-13 as well as Hco-Pgp-10, Cel-Pgp-1, 10, 11, 12, 13 and 14 extends to 70-90 AA (Suppl. 

Figure S2). In the crystal structure of Cel-Pgp-1, the first one of a nematode Pgp to be elucidated 

and released in the Protein Data Bank (4F4C) (Jin et al., 2012),  the N-terminal region of Cel-

Pgp-1 was found to form a hairpin in the TMDs formed by two supplementary helices called 

TMa and TMb. Thus, other Pgps harboring a long N-terminal region might also form this 

hairpin structure, especially if AAs in this region are in majority aromatic or hydrophobic, 

which is the case for Hco-Pgp-13 (Suppl. Figure S3). Short N-terminal regions, on the other 

hand, are expected to show a cytosolic location. 

The homologies of the TMDs of Cel-Pgp-1 with the TMDs of all Hco-Pgps, other Cel-

Pgps, and mammalian Pgps: Hsa-Pgp, Mmu-ABCB1a, were calculated to identify the most 

similar putative binding domains to Cel-Pgp-1 (Table 1). As expected, Hco-Pgp-1 presented 

the highest homology for TMDs to Cel-Pgp-1, with 63% of identity and 79% of similarity of 

AAs, followed by the Pgp-9 of the two nematodes. Surprisingly, the TMDs of the 3 mammalian 

Pgps were closer to the TMDs of Cel-Pgp-1, around 35% identity and 57% similarity of AAs, 

than all other nematode Pgps investigated. Of particular interest, Hco-Pgp-13 showed the 

highest degree of homology to Cel-Pgp-1 TMDs among Pgps showing a long N-terminal helix, 

with 33% identity and 54% similarity of AAs.  

4. Homology modelling of Hco-Pgp-13 on Cel-Pgp-1 

This high degree of homology of sequence and of predicted structure led us to use the 

Cel-Pgp-1 4F4C structure as a template for building a 3D homology model of Hco-Pgp13, 

according to the pairwise alignment shown in Suppl. Figure S3, deduced from the multiple 

alignments, partly shown in Suppl. Figure S2. Among the 100 possibilities of 3D structures 

calculated by Modeller, the structure n°04 (Hco-Pgp-13_04) showed the lowest Discrete 

Optimized Protein Energy (DOPE) score (-151276) (molecular PDF score: 5791) and the model 

n° 52 (Hco-Pgp-13_52) had the lowest molecular PDF score (5292) (DOPE score: -150298). 

The DOPE score relies on the measure of the energy of the protein model, which is widely 

considered as the best parameter for choosing the most accurate model, but it has a tendency to 

pick the most compactly packed model, whereas the molPDF score calculates the sum of 

restraint violations. The Qualitative Model Energy Analysis (QMEAN) score was also 



EXPERIMENTAL WORK: PART II - A  

 

177 

 

calculated as it takes into account four parameters: local geometry, long distance interactions, 

solvation energy and torsion, with the closer the score to 1 the better. A QMEAN score of 0.582 

was found for Hco-Pgp-13_04 and 0.592 for Hco-Pgp-13_52, against 0.566 for Cel-Pgp-1, and 

other parameters evaluating the quality of the models were also very close between the two 

models (Suppl. Table S2), so that both models were considered to show the highest accuracy 

possible by homology modelling.  

The two model proteins showed a mostly superimposable conformation consistent with 

an ABC transporter (Figure 4). The alignment matched well with a putative arrangement of 12 

alpha helices across a hydrophobic membrane forming the TMDs, and NBDs composed of 

alpha helices and beta leaflets (Figure 4A). When looking closer at TMDs of both models, TM 

helices aligned well with Cel-Pgp-1 helices, with a slight shift of their backbones, and their 

amino-acid composition was consistent with what was predicted by Protter and TMHMM 

softwares (Suppl. Table S5). The extracellular loop 1 (ECL1) linking TM1 and TM2, as well 

as TM1 extension towards the extracellular part of the protein, were found to be shorter in Hco-

Pgp-13 than in Cel-Pgp-1, as indicated by a black arrow in Figure 4B. This main difference 

between the two ABC transporters also appears in the pairwise alignment shown in Suppl. Fig. 

S3 and it is consistent with the absence of N-glycosylation motifs found on ECL1 of Hco-Pgp-

13. The tertiary structures of the two Hco-Pgp-13 models are very similar, with a single 

variation in the middle of TM11 where a rupture of the alpha helix is found in Hco-Pgp-13_04, 

as compared to Hco-Pgp-13_52 and Cel-pgp-1. This is due to this helix containing 1amino-acid 

less in Hco-pgp-13 than in Cel-Pgp-1, leading to a torsion constraint (Figure 4C).  

At a more precise level, the orientation of the side chains of amino acids composing the 

TMDs of Hco-Pgp-13 varied to different degrees between the two models, from being almost 

superimposed, to pointing towards opposite directions (Figure 4D).  Residues aligned to 

mammalian Pgp “hotspots”, i.e., residues found to interact with substrates experimentally 

(Suppl. Table S3) were found for the majority (50/62) of those recorded in the mammalian 

transporter, and point towards the inner pocket, formed by the 12 TM helices at the level of the 

drug binding site, being favorable for interaction with substrates.  

5. In silico docking of actinomycin D on Hco-Pgp-13 

Cel-Pgp-1 was proven to be a multispecific transporter of various human Pgp substrates 

both in vitro (Jin et al., 2012) and in silico, and in particular of AHs in silico (manuscripts under 

review, Part I, A and B). Actinomycin D (ACD) is a well-known mammalian Pgp substrate that 

was able to stimulate the ATPase activity of Cel-Pgp-1 to the highest extent in vitro and was 
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also found to interact with the Cel-Pgp-1 binding pocket in silico, with the highest affinity. To 

test the ability of Hco-Pgp-13 to bind drugs, we thus performed in silico docking of ACD on 

Hco-Pgp-13_04 and Hco-Pgp-13_52. 

The clustering histograms of poses resulting from each calculation had a similar profile, 

with a lowest energy cluster containing the majority of poses, 21 and 42 respectively, at a very 

low binding energy, -16.0 and -14.4 kcal/mol respectively for Hco-Pgp-13_04 and Hco-Pgp-

13_52 (Figure 5A and B and Table 2). The binding location of ACD was very close in the two 

models, occupying the inner pocket of Cel-Pgp-1 from its cytoplasmic opening to its inner core 

(Figure 5C). When looked at closely, one of the cycles of the molecule (cycle 1, Figure 5D) 

was almost superimposed between the two poses, deep in the core of the inner pocket, but with 

opposite orientations. The center of the molecule and the second cycle (cycle 2, Figure 5D) 

mainly occupied the same space while crossing each other, thus leading to locations of ACD 

on the two models, which overall were very similar, but oppositely oriented. These two 

possibilities of binding of ACD showed a similar number of interacting residues: 20 with Hco-

Pgp-13_04 (including 11 hotspots) and 19 with Hco-Pgp-13_52 (including 9 hotspots). Twelve 

predicted interacting residues, among which 7 hotspots, were common between the two models 

and were either similarly oriented (e.g. L919) or pointing towards very different orientations 

(e.g. Q108) (Figure 5E, 5F and Table 3). Two H-bonds were formed in both cases, and one of 

them, formed with N1033, was common between the two models (Figure 5E, 5F and Table 3). 

Another H-bond with Q108 was only found with Hco-Pgp-13_04, whereas an H-bond with 

Y369 was only found with Hco-pgp-13_52 (Figure 5E, 5F and Table 3). All these three residues 

were hotspots, underlining their importance in substrate binding across species. The role of the 

small hairpin formed by TMa-b was also significant as three residues lining TMb: E21, K25 

and L29 participated in the stability of ACD on this site in both models. These results indicate 

a very high affinity of ACD for Hco-Pgp-13 with a binding site not very dependent on the 

orientation of partially flexible AAs composing the TMDs; which increases the confidence in 

this model.  

6. Expression of Hco-Pgp-13 in Pichia pastoris cells and stimulation of its 

ATPase activity by actinomycin D 

Cells of Pichia pastoris were transfected with Hco-pgp-13. Pgp-13 could be readily 

detected by SDS-PAGE of crude membrane fractions followed by Coomassie blue staining, as 

well as Western-blot with an anti-His tag antibody (data not shown). 
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To confirm the possible interaction of Hco-Pgp-13 with ACD, we performed ATPase 

assays on membranes vesicles from P. pastoris and on Hco-Pgp-13 expressing P. pastoris cells. 

The vanadate-sensitive basal ATPase activity was around 110 nmol/min/mg in WT and 

transfected cells (Figure 6). It rose with increasing concentrations of ACD added to the P. 

pastoris membranes expressing Hco-Pgp-13, until approximately 180 nmol/min/mg protein 

under full stimulation with 10 µM of ACD. The concentration required for 50% stimulation 

was in the range 0.1 - 1 µM. This result indicated an interaction of ACD with Hco-Pgp-13, and 

combined with the predicted high affinity binding site of ACD within Hco-Pgp-13 binding site, 

it suggests that ACD could be a transport substrate for Hco-Pgp-13. 

7. Immunolocalization of Hco-Pgp-13 protein in larvae and adult 

parasites 

In order to identify the expression sites of Hco-Pgp-13 in different stages of 

H. contortus, immunofluorescence assays were performed on transverse cryosections of the 

larvae and adult parasites with a mixture of antibodies targeting two epitopes of Hco-Pgp-13.  

To design these antibodies, two regions of interest were identified on the protein sequence 

of Hco-Pgp-13 as being the least conserved between different Pgps: the N-terminal region of 

the protein, before TMD1, and the linker region between NBD1 and TMD2. Two antigenic 

peptides identified to be specific for Hco-Pgp-13 were chosen for antibody production on each 

of these regions. The antigenic peptide n°1: GTADPQRSSETSKK (AA 12-25) was localized 

in the N-terminal region and the antigenic peptide n°2: SGRSTLTQSKRSGS (AA 681-694) in 

the linker region (Figure 2). Thus, prediction tools indicated an intra-cytoplasmic location for 

both of them, where the structure of Pgps is generally disordered and where antibodies are 

expected to easily reach their target peptide. The antigenic peptides were chemically 

synthesized and used independently to immunize two rabbits by GenScript (USA Inc.). The two 

purified antibodies were then checked for their specificity.  

Membranes of P. pastoris were separately incubated with anti-epitope 1 (Figure 7A) or 

anti-epitope-2 (Figure 7B) antibody. A protein of about 130 kDa was detected in both cases, 

confirming the expected size of Hco-Pgp-13 protein, and showing that both of the predicted 

epitopes were successful antigenic peptides. As both antibodies appeared highly specific 

against Hco-Pgp-13 protein, a mixture of these two antibodies could then be used for immuno-

fluorescence assays. An antibody directed against an epitope present on C. elegans myosin, and 
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very conserved in H. contortus, was used in parallel as a positive control and as an indication 

of muscle location.  

. In larvae, the Hco-Pgp-13 expression was found in the seam cell between muscle 

quadrants and more generally in the hypodermis around muscles, including dense bodies 

between myosin filaments (grey and white arrows, Figure 8). Significant staining was also 

observed at the membrane of epithelial cells of the internal organs in development; 

corresponding to the gonad or intestine that cannot be readily distinguished at this stage (yellow 

arrow, Figure 8).  

. In the adult H. contortus, Hco-Pgp-13 signal was also found at the level of seam cells 

between muscle quadrants and in the hypodermis surrounding them (grey and white arrows, 

Figure 9), as well as at the surface of the male gonad (Figure 9D, yellow arrow). In this stage, 

some staining also appeared in the procorpus of the pharynx at the level of pharyngeal nerve 

cords which contain cell bodies of epithelial cells, longitudinal extensions of neurons and gland 

cell processes. The staining observed in the metacorpus and terminal bulb also matches the 

extensions or cells bodies of pharyngeal neurons and gland cells (purple arrows, Figure 9B and 

9C). Additional staining appeared in the head sections between the pharynx and seam cells 

(blue arrows, Figure 9B and 9C), and within the structure localized at the level of seam cells in 

other sections (Figure 9A). This corresponds to the location of neuronal structures and it likely 

matches with the amphidial neurons. Indeed, their dendrites run parallel to the pharynx from 

the nerve ring to the tip of the head, where seam cells end, and amphids are located at the 

corresponding place. 

III.  DISCUSSION 

Nematode Pgps need to be individually studied in order to better understand their 

respective functions and possible implication in xenobiotics export and AH resistance. We 

focused our interest on the P-glycoprotein 13 of H. contortus, one of the most economically 

important parasites in small ruminants. By combining molecular biology, biochemistry and in 

silico approaches, we more accurately identified the cDNA of Hco-pgp-13, and characterized 

the localization and function of its translation product. 
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1. The Hco-pgp-13 corrected cDNA sequence encodes a protein matching 

the topology of an ABC transporter 

We amplified a full length 3954 bp Hco-pgp-13 cDNA. When aligned with the Hco-

pgp-13 predicted cDNA sequence (Laing et al., 2013), the sequences were almost identical 

except for a 30 nucleotide repeat on the Hco-pgp-13 published cDNA sequence. We found that 

this was due to a misalignment of contigs in the large scale sequencing. In addition, 90 SNPs 

were found in our sequence, compared with the published genome (Laing et al., 2013), 

consistent with polymorphism expected between different H. contortus populations. 

The translated sequence, corrected for the 10 amino-acids duplication, showed a high 

degree of identity with the protein sequence previously published (Laing et al., 2013). Only 

eight isolated amino acids were found to vary between the Hco-Pgp-13 protein sequence 

predicted from the genome sequencing and that predicted from amplified cDNA (Suppl. Table 

S3). The 92 silent nucleotide changes between the predicted and amplified cDNA sequences 

suggest that the protein sequence is very conserved in order to maintain its function. Consistent 

with this, the 8 amino-acids that differed between the two translated sequences were either, not 

located in important domains for the function of the protein, or not in a critical location or 

orientation for the structure and supposed function of an ABC exporter, according to our 

homology models. In addition, for most of these residues the two possibilities given by the 

predicted and amplified sequence in the amino-acid were found in Pgps from other species at 

the corresponding location, according to our alignment (partly shown in Suppl. Fig S2). Thus, 

polymorphisms at these amino-acid locations are not expected to alter the function of the ABC 

exporter.  

The full-length amino-acid sequence translated from the amplified cDNA revealed a 

protein of 1317 amino-acids. This was consistent with the Western-blot showing a band around 

130 kDa, which matched the expected size of Hco-Pgp-13 without post-translational 

modification. Interestingly, no N-glycosylation motif was found on the first extra-cellular loop 

(ECL1) of Hco-Pgp-13. Hsa-Pgp shows 3 N-glycosylation motifs on this loop, and an absence 

of glycosylation of ECL1decreases its stability at the plasma membrane by making  it undergo 

degradation in the proteasome, but does not alter the transport capacity of Pgp when present at 

the plasma membrane (Schinkel et al., 1993). Cel-Pgp-1, whose crystal structure was recently 

released, also showed an N-glysosylation on ECL1 (PDB code: 4F4C) (Jin et al., 2012). Hco-

Pgp-13 is thus the first ABC B transporter to be described as showing no N-glycosylation motif 

on ECL1. 
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A transmembrane domain composed of 12 α-helices and two nucleotide-binding 

domains could be predicted by homology with other ABC transporters using topology 

prediction tools and homology modelling. At the level of the NBDs, all the motifs required for 

ATP binding and hydrolysis could be identified and indicate the possibility for these domains 

to provide the energy required for Hco-Pgp-13 to perform substrate translocation. Plus, 80% of 

residues aligned to hotspots, for drug binding identified in mammalian Pgps, were found located 

within TMDs and pointing towards the inner pocket of Hco-Pgp-13. However, only 19% of 

them were conserved in terms of nature in Hco-Pgp-13, which is less than the 26% that were 

found conserved in Cel-Pgp-1 (manuscript under review and writing, Part I, A and B). These 

data indicate that the general shape of the inner pocket might be critical for the function of these 

proteins, and thus very conserved across species, whereas the amino-acid composition of the 

pocket might vary to offer some specificities of binding for each transporter. 

2. Hco-Pgp-13 can interact with actinomycin D 

Since the modeled protein inherently presented the same conformation as the structural 

template, i.e. the so-called open inward-facing conformation, in the absence of bound 

nucleotide, it is well suited for substrate recognition and binding, as the first step of the eventual 

transmembrane transport catalytic cycle, and thus is amenable for in silico calculations of drug 

docking. To investigate the interaction profile of Hco-Pgp-13, a preliminary study of the in 

silico binding of ACD on the two homology models n°04 and n°52 of Hco-Pgp-13 was 

performed. In this context, a semi-flexible docking strategy for each model, i.e., flexible ligand 

and rigid protein, was similar to some extent to performing flexible docking, as the backbone 

of Hco-Pgp-13 only slightly varied between the two models. On the other hand, some residue 

side chains positions were found in very different orientations (Fig. 4D, 5E and F). ACD 

showed a predicted high affinity to Hco-Pgp-13, with a minimum binding energy below -

16 kcal/mol for one model and -14.4 kcal/mol for the other, which is commonly considered to 

indicate a very high affinity of binding (Morris et al., 1998; Morris et al., 2009). This is very 

similar to what we found previously with Cel-Pgp-1, for which the two lowest energy clusters 

appeared at -17.0 and -14.9 kcal/mol (David et al., 2016). Interestingly, the location of the 

lowest energy cluster of ACD on Cel-Pgp-1 mostly overlapped that of the pose found at -

14.4 kcal/mol on Hco-Pgp-13 (data not shown), with a similar shape elongating from the 

cytoplasmic entrance of the binding pocket until its core. On the two models of Hco-Pgp-13, 

about half of the putative interacting residues of the chosen poses of ACD were hotspot 

residues, revealing its binding within the large drug-binding domain of Pgps conserved between 
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nematodes and mammals. This proportion of hotspots among interacting residues was similar 

to what was found for ACD on Cel-Pgp-1. When examined more closely, 12 residues among 

those interacting with ACD, in each of the two models of Hco-Pgp-13, were found aligned with 

residues of Cel-Pgp-1 interacting with ACD1 or ACD2, among 19 and 20 in total, respectively. 

Seven hotspot residues were found in a total of 16 common interacting residues between the 

binding sites of ACD in Hco-Pgp-13 and Cel-Pgp-1. The 2 H-bonds formed by ACD with 

N1033 and either Q108 or Y369 of Hco-Pgp-13, depending on the model observed, were 

however very different from those formed with Q913 and R916 of Cel-Pgp-1. This is consistent 

with the medium level of conservation of residues in the TMDs of the respective proteins that 

leads to some specificity for the nature of interactions of compounds with each protein. Again, 

this correlates well with a conservation of the general binding domain of Pgps more in terms of 

shape and biochemical properties of various sub-domains than in terms of the nature of each 

residue composing it. In line with this, among the 6 hotspot residues that have been evidenced 

on mammalian Pgp to be specifically involved in ACD recognition (Tab. S3), only 1 (M995) 

was found to be involved in ACD binding on Hco-Pgp-13. 

We also studied the stimulation of the ATPase activity of Hco-Pgp-13 by ACD, and we 

found a maximum efficacy at 10 µM of ACD. The activation of the vanadate sensitive ATPase 

activity at this concentration was around 70 nmol Pi/min/mg of protein. This represented about 

1.6-fold activation as compared to the basal ATPase activity of membranes from Hco-Pgp-13-

expressing transfected cells measured in the absence of drug. The half-activating concentration 

(EC50) was around 0.1 – 1 µM, significantly higher than the EC50 found for ACD on Cel-Pgp-

1, previously determined of about 0.05 µM (Jin et al., 2012). This indicates a superior affinity 

for ACD to Cel-Pgp-1 than to Hco-Pgp-13, which is consistent with the slight difference of 

energy binding found in silico for ACD between Cel-Pgp-1 and Hco-Pgp-13. Otherwise, Jin et 

al. (2012) found a 2.5-fold stimulation of Cel-Pgp-1 ATPase activity by ACD as compared to 

its basal activity in the absence of drugs, and this suggests a faster rate of transport of ACD by 

Cel-Pgp-1 than by Hco-Pgp-13. The effect of ACD was also studied on the ATPase activity of 

chinese hamster (Cricetulus griseus) Pgp, showing an apparent affinity of about 1µM 

(Garrigues et al., 2002). This compound thus appears to be a substrate of several Pgps. 

However, the observation, in the absence of added exogenous drug, of a basal ATPase activity 

for Hco-Pgp-13 is an indication of the presence of an endogenous transport substrate in the 

membranes of this heterogenous protein expression system. This raises the question of the 

possible involvement of some lipids in the physiological function of Hco-Pgp-13 besides its 
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possible role of drug handling (which remains to be confirmed and extended for various other 

drugs: manuscript in preparation). 

3. Hco-Pgp-13 sequence and localization are very close to those of Cel-

Pgp-12, Cel-Pgp-13 and Cel-Pgp-14 

 The phylogenetic tree constructed with the protein sequence translated from the 

amplified cDNA of Hco-pgp-13 confirmed the high degree of homology of Hco-Pgp-13 with 

Cel-Pgp-13 after removal of the much conserved NBDs. Hco-Pgp-13 also showed a high 

homology of protein sequence with Cel-Pgp-14 and Cel-Pgp-12, which have no closer ortholog 

in H. contortus than Hco-Pgp-13. Interestingly, (Zhao et al., 2004) had shown that the three 

genes encoding these proteins, together with the pseudogene Cel-pgp-15, form a cluster of 

tandemly duplicated genes on chromosome X of C. elegans genome. Cel-pgp-12 is followed 

by Cel-pgp-13 in one orientation, with Cel-pgp-14 and Cel-pgp-15 following with the opposite 

orientation. Genes arranged in the same orientation are supposed to be recently duplicated 

paralogues and can be under a common regulatory control (Zhao et al., 2004). They have very 

close sequences compared to other genes of the same family and are thus expected to show very 

similar functions. Zhao et al. reported no significant phenotype for single RNAi for each of the 

clustered genes of C. elegans, consistent with a redundant function of the encoded proteins. 

Plus, little selection pressure is generally thought to occur on duplicated paralogs, which is 

supposed to lead these genes to be not functional over evolution, as appears to be the case for 

Cel-Pgp-15 (http://www.wormbase.org/species/ c_elegans/pseudogene/F22E10.4#0--10). 

However, in this cluster, all genes were found to be expressed in different tissues: Cel-

Pgp-12 in the excretory cell at all stages, Cel-Pgp-13 in the posterior intestine and amphids of 

adults, Cel-Pgp-14 in the anterior region and first bulb of pharynx in the adult and larvae and 

Cel-Pgp-15 in the adult head and tail neurons and in the embryo (Zhao et al., 2004). This 

suggests a specific function for each of them after the expansion of the cluster. In our study, the 

expression of Hco-Pgp-13 was localized in the hypodermis surrounding muscles and lining the 

body wall of L3 and adult H. contortus, as well as in the seam cells within which run the 

excretory canals. Plus, larvae showed expression in gonad epithelial cells and staining was 

observed in pharyngeal structures of the adult, which could be the pharyngeal glands, neurons, 

and/or epithelial cells, and in head neurons, possibly the amphids. Thus, Hco-Pgp13 expression 

appears to match the localization of several of its closest orthologs in C. elegans. It can be 

hypothesized that the function of all the three Pgps of C. elegans (Pgp-15 being a pseudogene) 

are very close and that Hco-Pgp-13 alone has a function corresponding to all of them due to its 
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wider tissue expression. Zhao et al. (2004) suggested that the presence of similar paralogs 

functionally very close, rather than one protein, could be useful for a more effective protection 

against xenobiotics by spatially and temporally differential expression, and possibly higher 

overall expression level. This might explain why the duplication of a common ancestor gene to 

Hco-Pgp-13 could have happened in C. elegans to optimize the efficiency of their close 

function. These hypotheses are consistent with the presence of a single ortholog in H. contortus 

corresponding to the cluster in C. elegans. 

Inactivation of each Cel-Pgp individually was shown to lead to an increased sensitivity 

to MLs, especially for several Pgps including Cel-pgp-12 and Cel-pgp-13 (Ardelli and Prichard, 

2013; Bygarski et al., 2014; Janssen et al., 2013b). Of interest, the global location of Hco-Pgp-

13 and its closest orthologs in C. elegans are mainly found in the digestive apparatus that can 

be a way of entry of xenobiotics, in the excretory cell that can be involved in their detoxication 

and the amphids which may play a role in the entry of ML; neurons matching the amphids were 

stained with anti-Hco-Pgp-13 antibodies. Moreover, the pharyngeal structures stained might be 

the neurons innervating them, and the major effect of MLs on worms is starvation by paralysis 

of the pharyngeal muscles, so that Pgps expressed in pharyngeal neurons might be critical to 

protecting the worm from this effect. The expression of Hco-Pgp-13 in the epithelial cells of 

the uterus resembled the finding of Hco-Pgp-9.1 expression in this tissue (Godoy et al., 2016), 

and an involvement of these proteins in xenobiotics detoxication could be a way of avoiding 

toxic compounds reaching the embryos, as was proven to occur in mammalian placental tissue 

(Kolwankar et al., 2005; Nakamura et al., 1997). Thus, the function of such proteins can be 

expected to be not only the transport of endogenous substrates but also of exogenous 

compounds, possibly toxic for the worms. 

Cel-Pgp-1 was shown to be a multispecific substrate transporter  (Jin et al., 2012), and 

was predicted to have high affinities for MLs (Manuscripts under review and writing, Part I, A 

and B). The high homology between the sequence and 3D structure of this Pgp and Hco-Ppg-

13 suggests that these two proteins might have related functions. In particular, the hairpin TMa-

b, never described in mammalian Pgp, appears to close the binding site of Cel-Pgp-1 and Hco-

Pgp-13 on one side, thus possibly playing a key role in their interaction with substrates, and 

making the putative structure of Hco-Pgp-13 closer to that of Cel-Pgp-1, than to other Pgps 

studied so far. Interestingly, the long N-terminal sequence that forms this hairpin was also found 

in the closest orthologs of Hco-Pgp-13 in C. elegans: Cel-Pgp-12, 13 and 14, which correlates 

well with a high homology between these proteins.  
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In conclusion, this work allowed the correction of a 3954 bp coding cDNA of Hco-pgp-

13 and the prediction of its translation into a protein of 1317 AA with very close homology to 

the multispecific active efflux transporter Cel-Pgp-1 both in terms of sequence and 3D 

conformation. In silico docking experiments showed a putative high affinity binding site for 

ACD on Hco-Pgp-13, and in vitro experiments indicated the possibility for this molecule to 

stimulate Hco-Pgp-13 activity. Antibodies detecting Hco-Pgp-13 were successfully designed 

and Hco-Pgp-13 expression was found in the worm in the digestive, excretory and neuronal 

systems, and matching the localizations of its three closest orthologs in C. elegans: Cel-Pgp-

12, 13 and 14. Altogether, these protein characteristics, similar to those of other multidrug 

transporters, and the wide location of its expression, indicate a possible important function for 

Hco-Pgp-13 in the transport of many substrates. This could be critical for the export of toxic 

compounds. Further experiments studying the interaction of AHs with Hco-Pgp-13 could 

indicate a possible role in AH resistance. 
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               1       10        20        30        40        50 

        |  |         |         |         |         | 

Amplified 2301 GGAACTTCCAGCCTTGTCACTTGTTTTTGCCTATGTCTTTGAAGCTTTTC 

Predicted 2301 GGAACTTCCAGCCTTGTCTCTTGTTTTTGCCTATGTCTTTGAAGCTTTTC 

 

Amplified 2351 AAATGGTCCCATGGGGAGCCGATATGATGCACAGATTATGCATGGCTGTC 

Predicted 2351 AAATGGTCCCATGGGGAGCCGATATGATGCACAGATTATGTATGGCTGTC 

 

Amplified 2401 ATCATTTTCGGTTCCATTGGTGTTGGTGTCGTCATCTTC----------- 

Predicted 2401 ATCATTTTCGGTTCCATTGGTGTTGGTGTCGTCATCTTCGGTTCCATTGG 

 

Amplified 2440 -------------------CAGCTCCTTATCAGTGTGTTCTTCGCAATTG 

Predicted 2451 TGTTGGTGTCGTCATCTTCCAGCTCCTTAGCAGTGTGTTCTTCGCAATCG 

 

Amplified 2501 TGTCATACAATTTGGCAATGCGATTTCGAGTGGAATCCTTCAAAAATCTA 

Predicted 2531 TGTCAGAGAATTTGGCGATGCGATTTCGAGTGGAATCCTTCAAAAATCTA 

 

Amplified 2551 CTCTACCAGGATGCTTCGTATTTTGACAATCCTGCCCATACACCTGGCAA 

Predicted 2581 CTCTACCAGGATGCTTCGTATTTCGACAATCCTGCCCATACACCTGGCAA 

 

Amplified 2601 GCTCATAACTCGCTTGGCTAGTGACGCACCAAATATCAAAGCAGTTGTCG 

Predicted 2631 GCTTATAACTCGTTTGGCTAGTGATGCACCGAATATTAAAGCAGTTGTCG 

 

Amplified 2651 ATGGTCGTGCACTTCAAGTTATCTACGCAATGACGGCCGTAATCGCATGT 

Predicted 2681 ATGGTCGTGCACTTCAAGTTATCTACGCAATGACGGCTGTAATCGCATGT 

 

Figure 1. Alignment of Hco-pgp-13 amplified cDNA sequence from AA 2301 to 2651 with 

predicted sequence of Laing et al. (2013) available at (ftp://ftp.sanger.ac.uk/pub/ 

pathogens/Haemonchus/contortus) from AA 2301 to 2681. Common sequences are 

represented as red characters. The 30 nucleotide repeat is highlighted in grey. SNPs are 

indicated as blue characters. 
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     300 RYSTELERGKSIAIWKGFWSGLLGGLFFFALFSFLGCGMLYGGYLLKVNIIKTPGDVFIVVMSLLLGAYFLGLISPHLMVLLNARVAAATIYQTIDRVPK 

     400 IDVYSEKGRKPDRIHGRVVFENVHFRYPSRKDVKVLNGLNLVIEPGQTVALVGHSGCGKSTSVGLLTRLYEPESGRVTIDGEDVRELNIDWLRNAVGIVQ 

     500 QEPCLFNDTVAGNLRMGNPTMSLEQMVYVCKMANAHDFIGKLPNAYETYIGDGGVQLSGGQKQRIAIARTLARDPKVLLLDEATSALDAQSESIVQSALN 
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    1100 AQRGQTVALVGPSGSGKSTIISMLERFYDTTGGYVRFDGKDIKTLSLNHLRTQMALVGQEPRLFSGTIKQNICFGLGVVPMEKIDRALELANAKGFLANL 

    1200 PAGIDTEVGEKGTQLSGGQKQRIAIARALVRDPKILLLDEATSALDSESERAVQKALDLAREGRTCITIAHRLSSIQNADLIVYVENGKVRESGTHSQLM 

    1300 QRRGCYYQLIKKQDLTT 
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Figure 2. Predicted protein amino acid sequence (ExPASy – Translate)  (A), and topology 

(ExPASy – ScanProsite, Protter) (B). The sequence of transmembrane domains (TMDs) and 

nucleotide binding domains (NBDs) are represented in red and blue characters, respectively 

(A), or as cellular topology as red and blue circles, respectively (B). Within each NBD, the 

Walker A domain sequence is highlighted in light blue and the Walker B motif in dark blue (A 

and B), in square characters (B). The tyrosine residue forming the A-loop of each domain is 

highlighted in black (A and B) and the C-loop/ABC transporter signature motif is highlighted 

in grey (A and B); both are circled in (B). Putative N-glycosylation motifs are highlighted in 

dark green (A and B) and squares (B). Protein regions chosen as antigenic determinant n°1 (N-

term region) and n°2 (between NBD1 and TMD2) are both highlighted in light green (A and B) 

and represented inside diamonds (B). The sequence within the black box (A) indicates the 

duplicated 10 AAs in the predicted sequence published by Laing et al. (2012). 
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Figure 3. Comparison of Hco-Pgp-13 protein sequence with Hco-Pgps and Cel-Pgps. The 

Neighbor-Joining phylogenetic tree was built using Geneious software after NBD sequence 

removal, Blosum 62 alignment, and selection of Hsa-Pgp and Mmu-ABCB1a as outgroups. 
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Figure 4. Alignment of Hco-Pgp-13 homology modeled structures with Cel-Pgp-1 crystal. 
A. Whole view of the aligned 3D structures of Cel-Pgp-1, Hco-Pgp-13-04 and Hco-Pgp-13-52. 

B. Zoom on the end of TM1 on the extracellular side of the membrane, indicated by a black 

arrow, and ECL1 linking TM1 and TM2. C. Zoom on the middle of TM11 of Hco-Pgp-13-04 

and Hco-Pgp-13-52. D. Zoom on the side chains of several amino acids composing the TMDs 

of Hco-Pgp-13-04 and Hco-Pgp-13-52 and identified as hotspots. Cel-Pgp-1 is represented as 

gold ribbon, Hco-Pgp-13-04 is represented as purple ribbon and Hco-Pgp-13-52 is represented 

as green ribbon. TM identities are indicated as white numbers. AA side chains are represented 

as sticks colored by element nature (backbone color for C, red for O, blue for N, yellow for S, 

white for H) and labeled accordingly. All images were generated using PyMol. 
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Figure 5.  Actinomycin D (ACD) binding to Hco-Pgp-13-04 (A, C, D and E) and -52 (B, C, 

D and F). A and B. Energy clustering histograms of ACD docked to Hco-Pgp-13-04 (A) and 

Hco-Pgp-13-52 (B). The lowest energy cluster (ACD1) of each docking is squared in dark blue 

(for HcoPgp13-04) or light blue (for HcoPgp13-52). C and D. binding sites of the 1st lowest 

energy clusters of ACD (ACD1) on each protein represented within the two superimposed 

models of Hco-Pgp-13 (C) or without the proteins, for better comparison of ACD locations (D). 

E and F. Zoom on the common interacting residues of ACD1 on Hco-Pgp-13-04 (E) and Hco-

Pgp-13-52 (F). Hco-Pgp-13-04 is represented in purple ribbon and Hco-Pgp-13-52 in green 

ribbon, using PyMol (C, E and F). ACD1 is represented in dark blue spheres for docking on 

Hco-Pgp-13-04 and in light blue spheres for docking on Hco-Pgp-13-52 (C). Alternatively, 

ACD1 is represented in sticks (D) or lines (E and F) with colored elements (red for O, blue for 

N, white for H). Interacting residues of Hco-Pgp-13 are represented in sticks with colored 

elements (C of the same color as the ribbon, red for O, blue for N, yellow for S, white for H). 

All images were generated using PyMol.  
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Figure 6. Stimulation of the ATPase activity of Hco-Pgp-13 expressed in Pichia pastoris 

membranes by actinomycin D. The vanadate-sensitive ATPase activity is represented in nmol 

of Pi /min /mg of protein in membranes from control, untransfected P. pastoris cells (white 

bars) or membranes expressing Hco-Pgp-13 (black bars), as a function of actinomycin D 

concentration in µM. Error bars have been calculated on triplicates within one experiment, 

which has been replicated three times, and one representative experiment is shown. 

  



EXPERIMENTAL WORK: PART II - A  

 

200 

 

 

Figure 7.  Expression of Hco-Pgp-13 in Pichia pastoris membranes. Gel electrophoresis of 

proteins was performed with P. pastoris membranes expressing Hco-Pgp-13 and Western blots 

were performed with the two antibodies raised against Hco-Pgp-13: anti-epitope 1 (A) and anti-

epitope 2 (B) incubated separately at 1/1000 dilution. A. Antibody anti-epitope 1 of Hco-Pgp-

13 was incubated with 1.5 µg (Lane 1), 1.0 µg (Lane 2) or 0.5 µg (Lane 3) of P. pastoris 

membranes expressing Hco-Pgp-13. As a comparison, the antibody anti-epitope 2 of Hco-Pgp-

13 was incubated with 2.5 µg (Lane 4) of P. pastoris membranes expressing Hco-Pgp-13. As a 

negative control, the antibody anti-epitope 1 of Hco-Pgp-13 was incubated with 10 µg of 

membranes from WT P. pastoris (Lane 5). B. Antibody anti-epitope 2 of Hco-Pgp-13 was 

incubated with 2.5 µg (Lane 1), 5 µg (Lane 2) or 10 µg (Lane 3) of P. pastoris membranes 

expressing Hco-Pgp-13, or with 10 µg of membranes from WT P. pastoris (Lane 4). Hco-Pgp-

13 protein was detected in all cases around 130 kDa. 

  



EXPERIMENTAL WORK: PART II - A  

 

201 

 

 

 

 

Figure 8. Immuno-localization of Hco-Pgp-13 in the L3 Haemonchus contortus larvae. Left 

panel: differential interference contrast (DIC) image and DAPI signal superimposed, right 

panel: myosin and Hco-Pgp-13 staining superimposed. A. and B. Different Z-stacks of one slice 

in the mid-body observed after incubation of primary and secondary antibodies. C. Slice in the 

mid-body observed with no primary antibody incubation. All slices were incubated with DAPI 

and numerous nuclei are observed in the gonad and intestine in development and not well 

distinguishable. sh = supplementary sheath of the L3 stage larvae, ct = cuticle, al = alae, in = 

intestine, go = gonad, mu = muscle. White arrow: hypodermis, grey arrow: seam cell, yellow 

arrow: epithelial cells of the gonad or intestine. Scale bar = 2 µm. 
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Figure 9. Immuno-localization of Hco-Pgp-13 in adult H. contortus. Left panel, DIC image; 

middle panel, myosin staining; right panel, Hco-Pgp-13 staining. A. Slice in the anterior region 

of the pharynx (procorpus). B. Section in the mid-region of the pharynx (metacorpus). C. 

Section in the posterior region of the pharynx (terminal bulb). D, E. Slices in the mid-body of 

a male parasite. A – D: incubation of primary and secondary antibodies.  E: no primary antibody 

incubation. ct = cuticle, ph = pharynx, go = gonad,  in = intestine. White arrow: hypodermis, 

grey arrow: seam cell, blue arrow: neuronal structures, purple arrow: pharyngeal glands, yellow 

arrow: gonad. Scale bar = 20 µm. 
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Tables 

Table 1.  Percentage of amino acid identity and similarity of mean (TMD1-TMD2) protein 

sequences, as determined by BlastP. TMDs were defined by the multiple sequence 

alignment with Muscle partly shown in (Suppl. Fig. S2).  

 

Cel-Pgp-1 % Identity % Similarity 

Hco-Pgp-1 63 79 

Hco-Pgp-9.1 50 69 

Cel-Pgp-9 48 67 

Hsa-Pgp 36 58 

Cel-Pgp-2 35 57 

Mmu-Abcb1a 35 56 

Hco-Pgp-2 34 56 

Hco-Pgp-13 33 54 

Hco-Pgp-16 32 52 

Cel-Pgp-3 30 52 

Hco-Pgp-3 31 51 

Cel-Pgp-4 30 51 

Cel-Pgp-8 29 51 

Cel-Pgp-12 28 51 

Hco-Pgp-17 25 51 

Cel-Pgp-5 30 50 

Cel-Pgp-14 29 50 

Cel-Pgp-13 27 50 

Cel-Pgp-7 29 49 

Cel-Pgp-6a 29 49 

Hco-Pgp-11 25 46 

Cel-Pgp-11 22 45 

Hco-Pgp-10 22 42 

Cel-Pgp-10 ND ND 

 

For each Pgp, TMD1 was considered as starting at the amino-acid aligned with the first helix 

of TM1 of Cel-Pgp-1 as given by the 4F4C crystal, without taking account for TMa-b, and 

ending at the amino-acid aligned with the last of TM6 of Cel-Pgp-1. The same was done with 

TMD2 starting at TM7 and ending at TM12 of Cel-Pgp-1 4F4C structure. Each TMD homology 

was calculated independently and the mean of the two values is indicated. Bold: Pgps showing 

a long N-terminal sequence (>70AAs). The list starts with the highest percentage of similarity 

until the lowest percentage of similarity.  ND: Cel-pgp-10 showed a longer TMD1 than other 

Pgps, which prevented the software from calculating homology percentages. 
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Table 2. Docking characteristics of actinomycin D on Hco-Pgp-13.  

Protein model Hco-Pgp-13_04 Hco-Pgp-13_52 

Binding energy (kcal/mol) -16.02 -14.42 

Number of poses 21 42 

Number of interacting 

residues 
20 19 

Number of hotspot residues 11 9 

Number of H-bonds 2 2 

 

Various characteristics listed in the 1st column are indicated for the lowest energy cluster of 

actinomycin D on Hco-Pgp-13-04 (2nd column) and Hco-Pgp-13-52 (3rd column). 
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Table 3. List of interacting residues of each transmembrane helix (listed in the 1st column) 

of Hco-Pgp-13-04 (2nd column) or Hco-pgp-13-52 (3rd column) with the lowest energy 

cluster of actinomycin D found for each of these models.  

 

Molecule ACD 
Hco-Pgp-13_ 04 52 
Cluster rank 1 1 

TMa-b 

R11  
S19  
E21 E21 
K25 K25 
L29 L29 

TM1 Q108 Q108 
TM3 

 
L217  

 R220 

TM6 

L365 L365 
 L366 

Y369 Y369 
 L373 

H377 H377 

TM10 
 

L912  
M916 M916 
L919 L919 

 A920 
ICL4 L921  

TM11 
Q989  
T992  
M995 M995 

TM12 
 

 V1029 
M1032 M1032 
N1033 N1033 

 S1035 
S1036  

Nter  P1039 
 

Bold: hotspot residues. Underscored: residues establishing a H-bond. 
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Supplementary Information 

Supplementary Figures  

 

                       10        20        30        40        50        60        70        80        90       100 

Amplified    1 ATGACTTCGAAACCAGATTTCTATCTTCAACGTGGAACGGCTGACCCACAACGGTCTTCAGAAACATCGAAAAAAAGCACGGTCCTAGCTGTTCCAGCAT   

Predicted    1 ATGACTCCGAAACCAGATTTCTATCTTCAACGTGGAACGGCTGACCCACAACGGTCTTCAGAAACATCGAAAAAAAGCACGGTCCTAGCTGTTCCAGCAT 

 

Amplified  101 TTGCAAGTCCAGTAGAAGATGATGACGATGATAGAAAATATACGTACACACCGTCAACAGTCGAAAAAGTCATCAATATTCTGCTATGCAGAGGTGATCT 

Predicted  101 TTGCAAGTCCAGTAGAAGATGATGACGATGATAGAAAATATACGTATACACCGTCAACAATCGAAAAAGTCATCAATATTCTGCTGTGCAGAGGTGATCT 

 

Amplified  201 CGCCAATCGGGTACTAGAAGTGAAACCGGTATCAATATTCGGATTGTTCCGTTATGCTACAAAATGGGATCGATTTTGCATTTTTATTGGCGTTATTTGT 

Predicted  201 CGCCAATCGGGTACTAGAAGTGAAACCGGTATCAATATTCGGATTGTTCCGTTATGCTACAAAATGGGATCGATTTTGCATTTTTATTGGCGTTATTTGT 

 

Amplified  301 TCAATTATCAGTGGAGTATCACAACCAATTATGGCACTTGTCAGTGGACGAGTTACGAATGTTCTGCTCGTTTATCCACCAAATTCAAAAGAATTCCGTA 

Predicted  301 TCAATTATCAGTGGAGTATCACAACCAATTATGGCACTTGTCAGTGGACGAGTTACGAATGTTCTGCTCGTTTATCCACCAAATTCAAAAGAATTCCGTA 

 

Amplified  401 ATGAAGCCTACGAAAATGTATATATTTTCCTCGGTATCGGCGTCTTCGTCCTCATCACAAACTTCATACAGTTTATGTGCTTTCACAGCTGCTGTACTCG 

Predicted  401 ATAAAGCCTACGAAAATGTATATATTTTCCTCGGTATCGGCGTCTTCGTCCTCATCACAAACTTCATACAGTTTATGTGCTTTCACAGCTGCTGTACTCG 

 

Amplified  501 TGTAATTTCGAAAATGCGTCACGAATATGTTCGAGCGATACTCCGTCAGAATGCAGGCTGGTTTGACAGGAATCACTCCGGGGCGCTGTCAACAAAATTG 

Predicted  501 TGTAATTTCGAAAATGCGTCACGAATATGTTCGAGCGATACTCCGTCAGAATGCAGGCTGGTTTGACAGGAATCACTCCGGGGCGCTGTCAACAAAATTG 

 

Amplified  601 AACGACAACATGGAGAGAATTCGTGAAGGAATCGGCGATAAACTTGGTCTATTGCTGAGAGGATGTGCCATGTTCACTGCAGCTGTGATTATTGCATTCA 

Predicted  601 AACGACAACATGGAGAGAATTCGTGAAGGAATCGGCGATAAACTTGGTCTATTGCTGAGAGGATGTGCCATGTTCACTGCAGCTGTGATTATTGCATTCA 

 

Amplified  701 TCTATGAATGGCGATTGGCATTGATGATGCTTGGGGTGACGCCAACCACGTGTGCCATTATGTCCATTATGGCCAGAAAAATGACGTCAACGACTATGCG 

Predicted  701 TCTATGAATGGCGATTGGCATTGATGATGCTTGGGGTGACGCCAACCACGTGTGCCATTATGTCCATTATGGCCAGAAAAATGACGTCAACGACTATGCG 

 

Amplified  801 TGAATTGGTTGGAGTAGGGAAAGCTGGATCGATTGCTGAAGAATCGCTTATGGGTGTTCGAACCGTCCAAGCTTTCAATGGACAACAGGAAATGGTTGAT 

Predicted  801 TGAATTGGTTGGAGTAGGGAAAGCTGGATCGATTGCTGAAGAATCGCTTATGGGTGTTCGAACCGTCCAAGCTTTCAATGGACAACAGGAAATGGTTGAT 

 

Amplified  901 CGCTATTCCACCGAACTAGAACGAGGAAAATCGATTGCGATTTGGAAAGGTTTCTGGAGCGGTCTTCTGGGTGGCCTATTCTTTTTTGCGCTATTCTCTT 

Predicted  901 CGCTATTCCACCGAACTAGAACGAGGAAAATCGATTGCGATTTGGAAAGGTTTCTGGAGCGGTCTTCTGGGTGGACTATTCTTTTTCGCACTATTCTCTT 

 

Amplified 1001 TCTTGGGATGCGGAATGCTATATGGTGGTTATTTGCTCAAAGTGAACATCATAAAAACACCTGGCGATGTGTTTATTGTTGTGATGTCTCTACTACTTGG 

Predicted 1001 TCTTGGGATGCGGAATGCTATATGGTGGTTATTTGCTCAAAGTGAACATCATAAAAACACCTGGCGATGTGTTTATTGTTGTGATGTCTCTACTACTTGG 

 

Amplified 1101 CGCCTATTTTCTGGGACTGATCTCTCCGCATTTAATGGTACTGCTCAATGCAAGAGTGGCAGCTGCTACCATCTACCAGACTATTGACCGGGTGCCAAAG 

Predicted 1101 CGCCTATTTTCTGGGACTGATCTCTCCGCATTTAATGGTACTGCTCAATGCAAGAGTGGCAGCTGCTACCATCTACCAGACTATTGACCGGGTGCCAAAG 

 

Amplified 1201 ATAGACGTCTACTCAGAAAAAGGACGTAAACCGGATCGAATTCATGGCCGTGTTGTATTTGAAAACGTGCACTTTCGATATCCTAGCAGGAAAGACGTAA 

Predicted 1201 ATAGACGTCTACTCAGAAAAAGGACGTAAACCGGATCGAATTCATGGCCGTGTTGTATTTGAAAACGTGCACTTTCGATATCCTAGCAGGAAAGACGTAA 

 

Amplified 1301 AGGTACTGAATGGTCTGAATCTCGTCATCGAACCAGGCCAAACAGTGGCATTGGTTGGTCATTCTGGATGTGGTAAATCGACATCAGTCGGCTTGCTTAC 

Predicted 1301 AGGTACTGAATGGTCTGAATCTCGTCATCGAACCAGGCCAAACAGTGGCATTGGTTGGTCATTCTGGATGTGGTAAATCGACATCAGTCGGCTTGCTTAC 

 

Amplified 1401 ACGCCTTTATGAACCTGAATCTGGACGAGTTACGATCGATGGGGAAGATGTACGAGAGTTGAACATAGACTGGCTGCGGAATGCCGTCGGGATTGTGCAG 

Predicted 1401 ACGCCTTTATGAACCTGAATCTGGACGAGTTACGATCGATGGGGAAGATGTACGAGAGTTGAACATAGACTGGCTGCGGAATGCCGTTGGGATTGTGCAG 

 

Amplified 1501 CAAGAGCCATGCCTTTTCAATGATACAGTGGCAGGTAATCTTCGTATGGGCAATCCAACTATGTCCTTGGAACAAATGGTGTACGTATGCAAAATGGCAA 

Predicted 1501 CAAGAGCCATGCCTTTTCAATGATACAGTGGCAGGTAATCTTCGTATGGGCAATCCAACTATGTCCTTGGAACAAATGGTGTACGTATGCAAAATGGCAA 

 

Amplified 1601 ATGCACACGATTTCATTGGCAAACTGCCGAATGCCTACGAGACCTACATTGGTGACGGGGGTGTGCAGCTGTCAGGCGGTCAGAAACAACGGATCGCCAT 

Predicted 1601 ATGCACACGATTTCATTGGCAAACTGCCGAATGCCTACGAGACCTACATTGGCGACGGGGGTGTGCAGCTGTCAGGCGGTCAGAAACAACGGATCGCCAT 

 

Amplified 1701 TGCACGTACATTGGCACGTGATCCAAAGGTTCTTCTACTGGACGAAGCAACAAGTGCTCTCGATGCTCAAAGTGAAAGCATTGTACAGTCCGCTCTGAAC 

Predicted 1701 TGCACGTACATTGGCACGTGATCCAAAGGTTCTTCTACTGGACGAAGCAACAAGTGCTCTCGATGCTCAAAGTGAAAGCATTGTACAGTCCGCTCTGAAC 

 

Amplified 1801 AATGCTTCCCGCGGCCGTACAACGATAGTGATCGCTCATCGCTTGTCAACCATTCGAGATGCCAATAAAATTGTGTTTTTCGAAAAAGGACAGATCGTAG 

Predicted 1801 AATGCTTCCCGCGGCCGTACAACGATAGTGATCGCTCATCGCTTGTCAACCATTCGAGATGCCAATAAAATTGTGTTTTTCGAAAAAGGACAGATCGTAG 

 

Amplified 1901 AACAAGGAACACACCAAGAACTGGTGGCTTCACGTGGAAGGTACTACGAGTTGGTAAAAGCACAACAGTTCGAACCTGAAGCTGAAGAAGTTGAAGAAGA 

Predicted 1901 AACAAGGAACACACCAAGAACTGGTGGCTTCACGTGGAAGGTACTACGAATTGGTAAAGGCACAACAGTTCGAACCTGAAGCTGAAGAAGTTGAAGAAGA 

 

Amplified 2001 GGAGGTCGATTTAGGTGACAACGACGGAGGTTCCCTATTATCAGGCCGCTCAACGCTAACCCAATCCAAAAGATCTGGCTCTGAAGCGTTTGTCCGTGGG 

Predicted 2001 AGAGGTCGACTTAGGTGACAACGACGGAGGTTCCCTATTATCTGGCCGCTCAACGCTGACCCAATCTAAAAGATCTGGCTCTGAAGCGTTTGTCCGTGGG 

 

Amplified 2101 CAGGCTCTTAATGACTCGTTTGGGCGACAATCATACAATGCTGAAGCAGACGCAGAAAATGAAGCCCTTGCTCTGGAGGTGAAAAGGATCATGGAGGAGG 

Predicted 2101 CAGGCTCTTAATGACTCGTTTGGGCGACAATCATATAATGCTGAAGCAGACGCAGAAAATGAAGCCCTTGCTCTGGAGGTGAAAAAAATCATGGAAGAGG 

  

Amplified 2201 ACGGTGTCATTAGTGCTGGATATATAGACATCTACAAAAACGCCACAGGAAATTACCACTGGATATTCCTTGGCTTTGTCACAGCGGTTTTCCGTGGCAT 

Predicted 2201 ATGGTGTCATTAGTGCTGGATACATCGACATCTACAAAAACGCCACAGGAAATTACCACTGGATATTCCTTGGCTTTGTCACAGCGGTTTTCCGTGGCAT 

 

Amplified 2301 GGAACTTCCAGCCTTGTCACTTGTTTTTGCCTATGTCTTTGAAGCTTTTCAAATGGTCCCATGGGGAGCCGATATGATGCACAGATTATGCATGGCTGTC 

Predicted 2301 GGAACTTCCAGCCTTGTCTCTTGTTTTTGCCTATGTCTTTGAAGCTTTTCAAATGGTCCCATGGGGAGCCGATATGATGCACAGATTATGTATGGCTGTC 

 

Amplified 2401 ATCATTTTCGGTTCCATTGGTGTTGGTGTCGTCATCTTC------------------------------CAGCTCCTTATCAGTGTGTTCTTCGCAATTG 

Predicted 2401 ATCATTTTCGGTTCCATTGGTGTTGGTGTCGTCATCTTCGGTTCCATTGGTGTTGGTGTCGTCATCTTCCAGCTCCTTAGCAGTGTGTTCTTCGCAATCG 

 

Amplified 2501 TGTCATACAATTTGGCAATGCGATTTCGAGTGGAATCCTTCAAAAATCTACTCTACCAGGATGCTTCGTATTTTGACAATCCTGCCCATACACCTGGCAA 

Predicted 2531 TGTCAGAGAATTTGGCGATGCGATTTCGAGTGGAATCCTTCAAAAATCTACTCTACCAGGATGCTTCGTATTTCGACAATCCTGCCCATACACCTGGCAA 

 

Amplified 2601 GCTCATAACTCGCTTGGCTAGTGACGCACCAAATATCAAAGCAGTTGTCGATGGTCGTGCACTTCAAGTTATCTACGCAATGACGGCCGTAATCGCATGT 

Predicted 2631 GCTTATAACTCGTTTGGCTAGTGATGCACCGAATATTAAAGCAGTTGTCGATGGTCGTGCACTTCAAGTTATCTACGCAATGACGGCTGTAATCGCATGT 

 

Amplified 2701 ATTATAATTGGATTTATATCCAGCTGGCAGGTAACTCTAATGGGTATAGGGATGTTAATTATCCTGGCTACGTCTATGATATGGTTAGCTTTAACGATCA 

Predicted 2731 ATAATAATTGGATTCATATCTAGCTGGCAGGTAACACTAATGGGTATAGGAATGTTAATTGTCCTGGCTACATCTATGATATGGTTGGCTCTGACGATCA 

 

Amplified 2801 TGAATAAAAACATCGAACTGGTCAAGGATGATGAAGCTGGACGAATTGCAATCGAAACGATTGAGAATGTTCGAACCATACAATTACTTACTCGAATGTC 

Predicted 2831 TGAACAAAAACATCGAACTGGTCAAGGATGATGAAGCTGGACGAATTGCAATCGAAACGATTGAGAATGTTCGAACCATACAATTACTTACTCGAATGTC 

 

Amplified 2901 TACTTTCTATGGACGATATAAAGCCGCCAGTAAACTCGGAAAACGATCTGAATCAATCAAAGGAATCTTCGAAGCCATAAACTTTACAATCTCCCAATCC 

Predicted 2931 TACTTTCTATGGACGATATAAAGCCGCCAGTAAACTCGGAAAACGATCTGAATCAATCAAAGGAATCTTCGAAGCCATAAACTTTACAATCTCTCAATCC 
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Amplified 3001 TTTACTTACCTCATGGTTTGCGTTTGTTATGCCGTAGGGATACATATTATCTATACCGAACAGAAGACACCCGACAACGTATTCAGAACGATCATAGCTA 

Predicted 3031 TTTACTTACCTCATGGTTTGCGTTTGTTATGCCGTAGGGATACATATTATCTATACCGAACAGAAGACACCCGACAACGTATTCAGAACGATCATAGCTA 

 

Amplified 3101 TGCTACTCGCGTCCGTGGCCGTGATGAATTCCTCTTCATATTTCCCCGAATTCGTCAAAGCACGGACAGCGGCAGGACTCCTATTTAGCGTGATTTACCG 

Predicted 3131 TGCTACTTGCGTCAGTGGCCGTGATGAATTCCTCTTCATATTTCCCCGAATTCGTCAAAGCACGGACAGCGGCAGGACTTCTATTTAGTGTAATTTACCG 

 

Amplified 3201 TAAGCCACGAACGGGAGATGCGAATGTTGGCGATAAAGTGACCATTCGTGGAAACATTCTGTTCGACGACGTCAAGTTCAGCTATCCGCAACGGCCTCGG 

Predicted 3231 TAAGCCACGAACAGGAGATGCGAATGTTGGTGAGAAAGTGACCATTCGTGGAAACATTCTGTTCGACGACGTCAAGTTCAGCTATCCGCAACGGCCTCGA 

 

Amplified 3301 CAACCTATAATGCGAGGTCTGCAATTCTCAGCTCAACGCGGTCAAACTGTTGCACTTGTCGGACCATCTGGTTCCGGAAAGTCTACCATTATCTCAATGC 

Predicted 3331 CAGCCGATAATGAGAGGGCTACAATTTTCAGCTCAACGCGGTCAAACCGTAGCACTTGTCGGACCATCTGGTTCCGGAAAGTCCACCATTATATCGATGC 

 

Amplified 3401 TTGAGCGTTTTTATGATACCACTGGCGGATATGTTCGATTCGATGGAAAGGATATTAAGACACTATCGCTCAACCATCTACGCACGCAAATGGCATTAGT 

Predicted 3431 TTGAACGTTTCTATGATACTACTGGCGGATATGTTCGATTCGATGGAAAGGATATTAAGACACTATCGCTCAACCATCTACGCACGCAAATGGCATTAGT 

 

Amplified 3501 TGGACAAGAGCCAAGGCTATTTTCGGGAACGATTAAACAGAACATTTGTTTCGGCTTAGGAGTGGTACCAATGGAGAAAATCGACCGGGCGCTTGAGTTA 

Predicted 3531 TGGACAAGAGCCAAGGCTGTTTTCGGGAACCATCAAACAGAACATTTGTTTCGGCTTAGGAGTGGTTCCAATGGAGAAAATCGACCGAGCTCTCGAGTTA 

 

Amplified 3601 GCCAACGCCAAAGGTTTCCTTGCTAATTTACCAGCCGGTATCGACACGGAGGTCGGTGAAAAAGGCACACAACTCTCGGGTGGACAGAAGCAGCGTATCG 

Predicted 3631 GCGAATGCCAAAAATTTTCTTGCTAATTTACCAGCCGGTATCGACACAGAGGTCGGTGAAAAAGGCACACAACTCTCGGGTGGACAGAAGCAGCGAATCG 

 

Amplified 3701 CCATTGCACGGGCGCTAGTTCGAGATCCCAAGATATTGCTGCTGGACGAAGCCACCAGTGCCTTGGATTCAGAAAGTGAAAGAGCAGTCCAAAAAGCCCT 

Predicted 3731 CCATTGCACGGGCGCTGGTTCGAGATCCCAAGATATTGCTGCTGGACGAAGCCACCAGCGCCTTGGATTCAGAAAGTGAAAGAGCAGTCCAAAAAGCCCT 

 

Amplified 3801 GGATTTGGCTCGAGAAGGTCGTACATGCATTACAATCGCCCATCGACTATCGTCAATTCAAAATGCTGACCTTATCGTCTATGTGGAAAACGGGAAGGTT 

Predicted 3831 GGATTTGGCTCGAGAAGGTCGCACATGCATTACAATCGCCCATCGACTATCGTCAATTCAAAATGCTGACCTTATCGTCTATGTGGAAAACGGGAAGGTT 

 

Amplified 3901 CGGGAATCTGGCACTCATTCCCAGTTGATGCAGCGACGTGGTTGCTACTATCAACTGATCAAGAAGCAAGATCTTACGACATGA 

Predicted 3931 CGGGAATCTGGCACTCATTCCCAGTTGATGCAGCGACGTGGTTGCTACTATCAACTGATCAAGAAGCAAGATCTTACGACATGA 

 

Supplementary Figure S1. Alignment of full length Hco-pgp-13 amplified cDNA sequence 

with full length predicted sequence of Laing et al. (2013). Common sequences are 

represented as red characters. The 30 nucleotide repeat is highlighted in grey. SNPs are 

indicated as blue or black characters. 
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Supplementary Figure S2. Comparison of Hco-Pgp-13 protein N-terminal sequence with all Hco-Pgps, Cel-Pgps and four mammalian 

Pgps: Hsa-Pgp, Mmu-ABCB1a, Mmu-ABCB1b and Mmu-ABCB4. Multiple sequence alignment with Muscle, representation using Clustal X 

Default Colouring. Amino-acid number and helices annotations of Cel-Pgp-1 are indicated according to 4F4C PDB structure (Jin et al., 2012). 
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Supplementary Figure S3. Alignment of Cel-Pgp-1 protein sequence from 4F4C PDB entry with Hco-Pgp-13 protein sequence translated 

from the amplified cDNA for homology modelling of its 3D structure. The sequence of the 4F4C crystal structure of Cel-Pgp-1 lacks AA M1-

R3, A52-E54, K666-E715 and G1307-K1321 and the sequence of Hco-Pgp-13 lacks M1-S3, E668-L725, and G1304-T1317. Helices annotations 

of Cel-Pgp-1 are indicated according to 4F4C PDB structure (Jin et al., 2012). Representation using Clustal X Default Colouring.
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Supplementary Tables 

Supplementary Table S1. Primers used for amplification or sequencing of Hco-pgp-13 

cDNA sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F/R Name Sequence Start 

R mda 1  AACTAGGATTCATTTCTCCACAAATACG 3992 

F mda 4 AATTTCGAAAATGCGTCACGAATATGTT 504 

F mda 5 TAAAAACACCTGGCGATGTGTTTATT 1055 

F mda 6 ACCATTCGAGATGCCAATAAAATTGTG 1851 

R mda 7 TCATTTTCGGTTCCATTGGTGTTGG 2405 

R mda 8 ATGGTGTACGTATGCAAAATGGCAAAT 1605 

F mda 15 TTCCATTGGTGTTGGTGTCG 2415 

R mda 16 AACAGAATGTTTCCACGAATGG 3215 

F SL1 GGTTTAATTACCCAAGTTTGAG   - ? 

R mda 31 AGAATCCTTTCCAAATCG 965 

F mda 48 GCGAAAAAAGTGATGGTG -34 

R mda 19 CCATAAGCGATTCTTCAGC 853 
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Supplementary Table S2. Parameters of evaluation of the best DOPE score (Hco-Pgp-13_04) and best molpdf score (Hco-Pgp-13_52) 

among the 100 Hco-Pgp-13 3D models generated by Modeller using Cel-Pgp-1 4F4C as template.  

 

 Hco-Pgp-13_04 Hco-Pgp-13_52 Cel-Pgp-1 4F4C 

Modeller    

DOPE score -151276 -150298  

molpdf score 5791 5292  

Qmean score 0.582 0.592 0.566 

C_beta interaction energy 60.80 (Z-score: -2.41) 69.12 (Z-score: -2.46) -208.94 (Z-score: -1.11) 

All-atom pairwise energy -12804.05 (Z-score: -2.09) -13154.19 (Z-score: -2.05) -22101.92 (Z-score: -1.00) 

Solvation energy -74.27 (Z-score: -0.99) -74.11 (Z-score: -0.99) -88.11 (Z-score: -0.64) 

Torsion angle energy -105.95 (Z-score: -3.00) -124.74 (Z-score: -2.76) -118.29 (Z-score: -2.85) 

Secondary structure agreement 86.8% (Z-score: 1.60) 86.1% (Z-score: 1.46) 83.6% (Z-score: 0.96) 

Solvent accessibility agreement 73.7% (Z-score: -1.36) 74.1% (Z-score: -1.28) 72.8% (Z-score: -1.52) 

ProSA-web    

Overall model quality Z-Score: -12.29 -12.33 -14.35 

VADAR Ramachandran plot (%)    

Most favored 92.8 93.1 91.3 

Allowed 6.0 6.2 7.4 

Generously allowed 0.8 0.5 1.2 

Disallowed 0.4 0.2 0.1 
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Supplementary Table S3. List of "hotspot residues" that have been identified as being 

involved in multispecific substrate recognition in mammalian Pgp, and aligned residues 

in Hco-Pgp-13.  

 

Hsa-Pgp 
Mmu-

ABCB1a 
Cgr-

ABCB1 
Mmu-

ABCB1b 
Origin Hco-Pgp-13 

H61 H60 H60 H60 Mv S104 

G64 A63 A63 L63 Mv S107 

L65 L64 L64 L64 Mv/CV/SL Q108 

M68 M67 M67 L67 SL M111 

M69 M68 M68 M68 S A112 

F72 F71 F71 F71 SL S115 

Y118 Y114 Y115 Y117 SL F143 

S222 S218 S219 S221 CV T247 

I299 M295 M296 I298 SL G324 

F303 F299 F300 Y302 SL F328 

L304 L300 L301 L303 SA F329 

I306 I302 I303 V305 M/SL L331 

Y307 Y303 Y304 Y306 S F332 

Y310 Y306 Y307 Y309 SL L335 

F335 F331 F332 F334 Mva V361 

F336 F332 F333 F335 S M362 

V338 V334 V335 I337 Mv L364 

L339 L335 L336 L338 CV/S L365 

I340 I336 I337 L339 CR/S L366 

G341 G337 G338 G340 M G367 

A342 A338 A339 T341 CV A368 

F343 F339 F340 F342 S Y369 

S351 D347 D348 D350 M H377 

N721 N717 N718 N719 SL L769 

Q725 Q721 Q722 Q723 S R765 

F728 F724 F725 F726 CV/S L772 

F732 F728 F729 F730 S F776 

L762 L758 L759 M760 SA I806 

F770 F766 L767 Y768 SL Q814 

T837 F833 T834 T835 SA I881 

I840 I836 I837 V838 M M884 

A841 A837 A838 A839 CR T885 

N842 N838 N839 N840 M A886 

I864 I860 I861 I862 M M908 

I867 I863 I864 L865 M I911 

I868 I864 I865 I866 CV L912 

I870 I866 I867 L868 M T914 

A935 A931 A932 A933 M G978 

F938 F934 F935 F936 M E981 

F942 F938 F939 F940 M/CV F985 



EXPERIMENTAL WORK: PART II - A  

 

213 

 

S943 S939 S940 S941 Mva T986 

T945 T941 T942 T943 Mv/CV S988 

Q946 Q942 Q943 Q944 M Q989 

M949 M945 M946 M947 SL T992 

Y950 Y946 Y947 Y948 Mva Y993 

S952 S948 S949 S950 Ma M995 

Y953 Y949 Y950 Y951 Ma/S V996 

F957 F953 F954 F955 Mva/SL Y1000 

L975 L971 L972 M973 M/CR/SL F1018 

F978 F974 F975 F976 M/S I1021 

S979 S975 S976 S977 S I1022 

V981 I977 I978 V979 M/CR M1024 

V982 V978 V979 V980 CR/S L1025 

F983 F979 F980 F981 M/SL L1026 

G984 G980 G981 G982 CV A1027 

A985 A981 A982 A983 SA S1028 

M986 M982 M983 M984 S V1029 

A987 A983 A984 A985 SL A1030 

G989 G985 G986 G987 SA M1032 

Q990 Q986 Q987 N988 S N1033 

V991 V987 V988 T989 SL S1034 

S993 S989 S990 S991 SA S1036 

 

Hotspots are distributed among the various TM helices, as quoted in the first column. The 

orthologs: human (Hsa), mouse (Mmu) a and b isoforms and Chinese hamster (Cgr), in which 

the residue has been indicated, are shown in columns 2-5 by a bold residue symbol. Hotspots 

were determined, in the literature, by different experimental approaches (point mutagenesis, 

chemical labelling, co-crystallization, respectively denoted as M, C, S), as quoted in the sixth 

column; when the residue has been found by at least two different approaches, the symbols are 

highlighted in bold. M: cytotoxicity assay after Pgp site-directed mutagenesis using, among 

other drugs, VBL (v) or ACD (a); C : MTS-mediated chemical labelling by a MTS-derivative 

of verapamil (V) or rhodamine (R) of Cys-free Pgp specifically bearing Cys residues obtained 

by scanning mutagenesis; S: contact residues of the co-crystallized ligands QZ59RRR and 

QZ59SSS in the Pgp crystal structures published in Aller et al. (2009) and Li et al (2014), but 

presenting few differences (A: residues found in the 2009 structure alone, L: residues found in 

the 2014 structure alone). See Computational Methods section for the relevant references. Last 

column: corresponding residues found in Hco-Pgp-13 after multiple sequence alignment with 

mammalian Pgps (partly shown in Suppl. Figure S2). 
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Supplementary Table S4. Amino acid differences between the predicted and amplified 

sequences of Hco-Pgp-13.  

 

Region Predicted  Hco-Pgp-13 Amplified Hco-Pgp-13 

N-terminal Pro 3 Ser 3 

TMD1 Lys 135 Glu 135 

linker Lys 729 Arg 729 

TMD2 Gly 814 -  Phe 823 Deletion 

TMD2 Ser 827 Ile 817 

TMD2 Glu 836 Tyr 826 

TMD2 Val 921 Ile 911 

Between TMD2 and 
NBD2 

Glu 1078 Asp 1068 

NBD2 Asn 1205 Gly 1195 

 

The region of the change is indicated in the first column, with the nature of each amino acid 

and its number in the sequence of predicted Hco-Pgp-13 in the second column, and of amplified 

Hco-Pgp-13 in the third column. 

 

 

  



EXPERIMENTAL WORK: PART II - A  

 

215 

 

Supplementary Table S5.  Location (indicated as first and last amino acid number) of TM 

helices, which number appear in the 1st column, as predicted by Protter (2nd column), 

TMHMM (3rd column) or as found in the homology model built on Cel-Pgp-1 4F4C PDB 

structure (4th column). 

 

 

TM Protter TMHMM Homology Model 

1 92-114 92-114 88-116 

2 140-164 140-162 139-162 

3 215-235 216-235 194-236 

4 241-258 239-258 237-261 

5 318-345 322-344 314-339 

6 357-375 359-381 358-378 

7 754-780 754-776 752-777 

8 800-829 801-823 800-824 

9 880-897 878-897 873-898 

10 903-923 901-923 899-920 

11 991-1008 985-1007 978-1002 

12 1020-1038 1017-1039 1018-1038 
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B. Supplementary experiments for the localization  

of Hco-pgp-13 mRNA in the parasite 

 

With the objective to localize the expression of the transcription product of Hco-pgp-13 

gene in H. contortus, we first attempted to detect its mRNA in larvae using fluorescence in situ 

hybridization on larvae permeabilized by the “freeze and crack” technique. The results are 

reported here, and show that this strategy proved to be inadapted for studying of the localization 

of putatively low expressed mRNAs. This led to our choice of detection of Hco-Pgp-13 protein  

by worms cryosectionning followed by immuno-histochemistry, as previously described in Part 

II, A. 

I. MATERIAL AND METHODS 

1. DNA Probes amplification  

The most specific region to Pgps is known to be the linker domain separating the 1st NBD 

and the 2nd TMD of the protein. That of HcoPgp13 was determined using ExPASy ProSite 

prediction tool as covering amino acids 655 – 756. Their corresponding nucleotides were 

identified as nt 1966 – 2268 using ExPASy Translate tool. Their specificity was checked by 

alignment with other Pgps and it was found to be maintained until nt 2400. Two Digoxigenin 

(Dig)-labeled probes were thus designed on two separate sequences within this region. For this 

purpose, a first PCR amplification of DNA probes was carried out on H. contortus adult cDNA 

using 2 sets of primers (sequences in Table 1) amplifying a 183bp and a 144 bp non-overlapping 

fragments, as illustrated in Fig. 1. In addition, a 290 bp region of the beta-tubulin gene of H. 

contortus was amplified with two other primers to design a positive control probe (sequence in 

Table 1).  

Each of the amplification products were run on a 1.5% agarose gel, and the expected size 

fragments were extracted and purified. They were then cloned in a TOPO-TA vector and 

cultured in TOP10 F’ Escherichia coli overnight. Positive clones with a blue/white screening 

were purified and vectors were sequenced to check for their identity. E. coli cultures containing 

the plasmids with confirmed sequences were stored at -80°C. The promoter for the T7 RNA 

polymerase was then inserted in the cDNA probes by amplification with one of the  
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F/R Name Sequence   

F mda20 AAGTTGAAGAAGAAGAGGTC   

R mda25 CAAACGAGTCATTAAGAGC  

F mda27 ACAGGAAATTACCACTGG  

R mda22 ATAATCTGTGCATCATATCG   

F Btub F GACGCATTCACTTGGAGGAG   

R Btub R CATAGGTTGGATTTGTGAGTT   

F T7mda20 TAATACGACTCACTATAGGGAAGTTGAAGAAGAAGAGGTC   

F T7mda25 TAATACGACTCACTATAGGGCAAACGAGTCATTAAGAGC  

R T7mda27 TAATACGACTCACTATAGGGACAGGAAATTACCACTGG  

F T7mda22 TAATACGACTCACTATAGGGATAATCTGTGCATCATATCG   

R sT7BtubF TAATACGACTCACTATAGGGATTCACTTGG  

F sT7BtubR TAATACGACTCACTATAGGGTTGGATTTGTGT   

R Lmda27 ACAGGAAATTACCACTGGATATTCCTTGGC   
 

Table 1. Primers used for amplification of DIG-labeled probes. The sequence of the T7 

promoter is indicated in bold and underlined 

 characters. F = forward; R = reverse. 

 

forward or reverse primers starting with the T7 sequence (TAATACGACTCACTATAGGG): 

the reverse primer to translate into the anti-sense RNA probe, and the forward primer to 

translate into the sense negative control probe (Table 1). For the second fragment, a longer 

forward primer Lmda27 was designed to amplify the anti-sense probe with T7mda22 for 

homogenization of the Tm of the set of primers. This was not required for the first fragment. 

The Beta-tubulin fragment was amplified using shorter T7 primers than others to keep a Tm 

close to previously designed primers. Their specificity was checked in every case using 

Nucleotide Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The PCR products were cloned and 

sequenced as previously to check for their identity. 

2. RNA probes amplification and validation 

The transcription reaction was performed following the instructions given by the 

manufacturer (DIG RNA labeling kit, Roche) with 100-200 ng of purified template DNA 

diluted into RNAse-free water up to 13 µL; 2 µL of NTP labeling mixture containing 10x 

10 mM each of ATP, CTP, GTP, 6.5 mM UTP and 3.5 mM DIG-11-UTP, pH 7.5; 2 µL of 10X 

Transcription buffer; and 2 µL of RNA polymerase T7. This mix was incubated at 37°C for 2h, 

2 µL of DNase I was added to remove the template DNA and incubated at 37°C for 15min. The 

reaction was then stopped with 2 µL of EDTA 0.2 M, pH 8. The concentration of  
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A. 

 

B. 

 

Figure 1. Schematic representation of the first two steps of amplification of DIG-labelled 

RNA probes. A. Amplification of cDNA probes. B. Amplification of T7promoter – cDNA 

probes.  

 

transcribed RNA was measured with a Nanodrop and its 260/280 ratio was checked to be above 

1.8 for good purity. 

The labeling efficiency of the probes was assessed by a series of dilutions of DIG-

labeled probes from 0.01 pg/µL to 10 ng/µL, as described in the DIG Northern starter kit 

(Roche). A positively-charged nylon membrane was loaded with 1 µL of each of these different 

concentrations of probe. Fixation of RNA to the membrane was done by crosslinking with UV 

light. The membrane was then successively incubated into 20 mL of washing buffer for 2min, 

in 10 mL blocking solution for 30min, in 10 mL antibody solution containing the anti-

digoxigenin antibody coupled to alkaline phosphatase (anti-DIG-AP) for 30min, in 20 mL 

washing buffer 2 x 15min, and in 10 mL detection buffer for 2-5min. CDP-Star was applied on 

the membrane incubated at room temperature (RT) for 5min in a development folder. Exposure 
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to the imaging device at room temperature for 5-25min revealed until which dilution some 

signal could be observed, thus indicating the labeling efficiency. 

3. Fluorescence in situ Hybridization 

The “freeze&crack” method was used to permeabilize L2 stage larvae. 20 µL of PBS 

containing concentrated fresh larvae were compressed between 2 slides and immediately 

incubated on dry ice for at least 30min. Alternatively, they were conserved at -80°C until the 

next step. Slides were cracked and 200 µL PFA 4% was immediately added on each slide. 

Larvae were then detached from slides, pooled in a 10mL glass tube and incubated for 30min 

at 4°C. They were subsequently pelleted by centrifugation at 2000 rpm for 1min at 4°C. Fixation 

was carried out by incubation of larvae in ice cold methanol for 1 min, centrifugation for 1min 

at 2000 rpm at 4°C and removal of the supernatant. Larvae were then incubated in ice cold 

acetone for 1 min, centrifugation for 1min at 2000 rpm at 4°C and removal of the supernatant. 

Finally, larvae were washed twice in PBS, by successive centrifugation and removal of the 

supernatant.  

For the FISH experiment, larvae were incubated in formamide hybridization buffer (KPL) 

+ 1/100 salmon sperm DNA and spread evenly in eppendorf tubes that would contain the 

different probes. These were incubated at hybridization temperature for 1h under agitation. 

Probes were denatured at 68°C for 10min and diluted in hybridization buffer containing larvae 

to 1 µg/mL final concentration. This mixture was incubated at 46°C hybridizing temperature 

O/N under agitation. Larvae were washed three times in maleic acid buffer (MAB) at RT for 

5min, and blocked in blocking buffer at RT for 1h. The anti-DIG FITC-conjugated antibody 

(Roche) was then incubated at 1/100 dilution for 4h at RT. Three washes were performed in 

MAB at RT for 5min. Larvae were mounted on slides in 1 drop of mounting medium + 0.2 µL 

DAPI 5 mg/mL. Visualization was performed by fluorescence microscopy. 

II. RESULTS 

1. Probes amplification and validation 

After amplification of probes and running of the PCR products on a 1.5% agarose gel, the 

obtained fragments appeared around the expected lengths for each probe: 183bp for mda20-

mda25, 144bp for mda27-mda22 and 290bp for β-tubulin (Fig. 2A). They were each  
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A. 

 

B. 

 

 

Figure 2. Result of the running on a 1.5% agarose gel of amplified cDNA probes before 

(A) and after (B) T7 promoter incorporation. 

 

cloned in TOP10 F’ E. coli (see M&M) and between 3 and 5 colonies were chosen for plasmid 

extraction and sequencing. The sequences obtained were aligned to the expected sequence with 

MultAlin (Corpet, 1988) and checked to be 100% identical. 

The T7 promoter incorporation led again to PCR products of the expected size with 

fragments of Hco-Pgp-13 between 100 and 200bp; and fragment of β-tubulin around 400bp 

(Fig. 2B). As before, 4 colonies transformed with each of these fragments were plasmid  

extracted and their sequence was checked with Multalin (Corpet, 1988) to be 100% identical to 

the expected sequence. 

 After transcription of these probes into RNA with the T7 RNA polymerase, according 

to the Northern Starter kit, the various fragments concentration and A260/A280 ratio were 

checked. All the concentrations were above 100ng/ µL, and A260/280 ratios were above 1.8 

(Table 2), indicating suitable quantity and purity of RNA fragments for performing in situ 

hybridization. 

Fragment [ ]  (ng/µL) A260/A280 
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+ 420 1.909 

LβF-βRsT7 328 1.952 

20-25T7 230 1.949 

T720-25 268 1.861 

sT7βF-LβR 179 1.956 

T727-22 177 1.991 

L27-22T7 159 1.847 

 

Table 2. Concentration of RNA fragments and purity ratio A260/A280. 

 

Finally, these probes were confirmed to label H. contortus adult mRNA after dilution 

up to 0.3 pg/µL or 0.1 pg/µL in Dot-Blot (Fig. 3). Each set of sense and anti-sense probes 

showed similar detection levels; which is a required condition for the control of specificity of 

the antisense probe during the in situ hybridization, by co-incubating the two probes. 

2. Fluorescence in situ hybridization 

Finally, each of the specific probes were used to perform fluorescent in situ hybridization 

using different conditions of washing and hybridization temperature.  A signal was found with 

the anti-sense probe targeted against β-tubulin with the minimum of washes (i.e. without the 

recommended SSC 2X washes) after hybridization at 46°C (Fig. 4). The signal was present in 

all the organs of the worm, as expected for this probe, and was significantly stronger than the 

signal found in larvae incubated with the sense probe. No signal could be detected, however, in 

worms that were not correctly permeabilized. Plus, the signal was constrained in other worms 

around the permeabilized zone. Consequently, stained worms had highly damage morphology, 

with organs that would hardly be recognizable using probes that target specifically a few of 

them. On the other hand, no significant staining was observed under these conditions in worms 

incubated with the probes recognizing various regions of the linker domain of hco-pgp-13. 

III.  DISCUSSION 

The major issue of the FISH technique is that the probe is labile, because sensitive to 

RNases, which brings many difficulties regarding the high number of steps in this experiment.  
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Figure 3. Dot-Blot with designed probes and internal controls (positive control of 

transcription, and DIG-labelled actin provided as positive control of the dot-blot). 

 

Indeed, all the incubations and washing must be done in a RNase-free environment that 

can easily lead to absence of signal if this is not the case. However, because we found a signal 

with the anti-β-tubulin probes, these conditions seem to have been respected and should not 

explain why no signal was found with probes targeting Hco-Pgp-13.  

The optimal hybridization temperature, found to be 46°C for the β-tubulin probe, could 

be different for Hco-pgp-13 probes. Indeed, these are of about half the length of the positive 

control probe, and the size is base pair is one of the determining factors of the hybridization 

temperature, so that other temperatures would need to be tested. On the other hand, probes 

longer than 250bp are recommended for optimal sensitivity and specificity of FISH experiment, 

but this length of probes could not be successfully amplified from Hco-pgp-13 cDNA sequence. 

This might explain why the anti-β-tubulin 290bp probe led to signal when anti-Hco-pgp-13 

probes did not. Plus, the labeling efficiency of regular FISH protocols can be insufficient in the 

case where the target is a low-expressed gene. The β-tubulin gene being a housekeeping gene 

present in all cells, the staining of its RNA could have been visible when that of the pgp-13 was 

present but too low. 

In this case, some techniques such as the Tyramide signal amplification allow amplifying 

the DIG signal. This method uses a HRP conjugated anti-DIG antibody that leads  
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Figure 4. Fluorescence in situ hybridization on L2 stage with anti- β-tubulin probe 

coupled to DIG and detected by anti- DIG antibody coupled to FITC. DIC image (left 

panel), staining of nuclei with DAPI (middle panel) and FITC staining of the probe (right panel) 

after incubation of the anti-sense probe (A) or the sense probe (B). 

 

to a peroxidase-tyramide reaction in presence of H2O2 and biotinylated tyramides (Speel et al., 

2006). The numerous activated tyramides deposit close to the antibody and can be detected by 

different methods, for example by fluorescence microscopy if they are labelled with a 

fluorochrome. This leads to a mean of 5-50 fold increase of sensitivity. On the other hand, the 

stellaris method uses around 50 different very short singly-labeled sequences of a single RNA 

to stain its whole length and thus lead to increased signal (Raj et al., 2008).  

However, the organs of the worms appeared much damaged when the permeabilization 

step was sufficient for probes to enter organs. Thus, we would probably not be able to visualize 

any precise staining in organs expressing Hco-pgp-13 even after optimizing the conditions of 

the method by testing other hybridization temperature or using techniques to amplify the signal. 

Plus, the low number of washes required to be able to visualize some signal even with the anti-

β-tubulin gene showed that the RNA probes could easily detach from the tissue and that even 

after implementation, the FISH method would still present many drawbacks. 

Thus, it was decided to design antibodies against specific regions of Hco-Pgp-13 protein 

to look for the localization of the protein rather than the mRNA, with an immuno-

histochemistry method technically more feasible than the FISH. The permeabilization 
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procedure was also changed from “freeze and crack” to cryosectioning in order to better 

maintain the morphology of the worm. Finally, this allowed looking for the expression of Hco-

Pgp-13 both in larvae and adult stages, whereas the “freeze and crack” technique was 

unsuccessful with the adult worms due to their larger size that did not allow proper 

permeabilization without breaking them into species. These results are presented in the 

manuscript under writing, in Part II, A. 
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C. Supplementary experiments for the characterization  

of Hco-Pgp-13 function 

 

In order to characterize the function of Hco-Pgp-13, we first optimized the codons of its 

cDNA coding sequence for heterologous expression in LLCPK1 mammalian cells, which 

express a low endogenous level of Pgps, and are commonly used for study of the function of 

nematode parasite Pgps (Godoy et al., 2015a, 2016; Godoy et al., 2015b; Mani et al., 2016). 

We performed several functional tests reported here and faced the limitation of the loss of 

expression of the protein at the membrane of cells along passages. This led us to transfect Hco-

pgp-13 cDNA in Pichia pastoris cells, which are known to generally lead to high level 

expression of proteins encoded by transgenes, and allow studying the ATPase activity of ABC 

transporters in order to test their substrate profile (Jin et al., 2012). Preliminary data show that 

PCT might be a ligand of Hco-Pgp-13, in addition to ACD, as shown in Part II, A. Before more 

in vitro experiments are performed, in silico docking calculations were run with compounds of 

interest on the two 3D models of this transporter, constructed as described in Part II, A, to screen 

for putative substrates of Hco-Pgp-13. These results indicate that the compounds previously 

predicted to bind with high affinity to Cel-Pgp-1 in Part I, A and B of this manuscript, could 

also bind with high affinity to Hco-Pgp-13, suggesting a putative multidrug binding capacity 

for this parasitic nematode transporter. These results will need to be completed by in vitro 

assays. 

I. MATERIAL AND METHODS 

1. Codon optimization and transfection of Hco-pgp-13 in LLCPK1 cells  

The full-length identified sequence of Hco-pgp-13 was subjected to codon optimization 

for pig cells by GenScript (USA). The codon adaptation index was thus changed from 60% to 

83%, with 80% the minimum required for high expression level. A Kozak sequence was 

introduced around the ATG for optimal translation in mammalian system (Kozak, 1987), 

together with a BamHI restriction site starting before the Kozak sequence and a Xba I restriction 

site after the stop codon. A histidine tag composed of six consecutive histidine codons was also 

added just before the stop codon following a Gly-Pro motif for better accessibility of anti- His 
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tag antibodies. The optimized sequence was then subcloned into the mammalian expression 

pcDNA3.1(+) vector by site-directed ligation using BamHI and XbaI restriction enzymes (New 

England Biolabs Inc.). After transformation of this vector in E. coli TOP10F’ competent cells, 

Hco-pgp-13 codon optimized sequence was confirmed by sequencing (Genome Quebec 

Innovation Centre, McGill University, QC, Canada). 

The pig kidney epithelial cell line LLCPK-1 was used as a heterologous system for over-

expression of Hco-pgp-13, as it shows a low endogenous level of multidrug ABC transporters 

(Lespine et al., 2007). These cells were grown on a 24-wells plate in 199 medium supplemented 

with 10% fetal bovine serum (FBS), 100 units/mL penicillin and 100 µg/mL streptomycin. 

Once the cells reached full confluence, they were cultured with 199 medium alone for 24 hours 

before being transfected with 37.5 µg of linearized plasmid DNA using Lipofectamine 2000® 

(Invitrogen). One day later, the cells were transferred back to supplemented medium for 24 

hours, after which they were be diluted and grown for 4 weeks in the supplemented medium 

with 400 µg/mL G418 (Geneticin, Gibco) for selection of the transfected cells. The vector 

pcDNA3.1(+)/cat containing the gene coding for the chloramphenicol acetyl transferase (CAT) 

was transfected in cells selected with G418, as a positive control. The parental untransfected 

cells also underwent selection, as a negative control. Resistant colonies were then transferred 

individually using cloning cylinders (Corning, Life Sciences) into a new flask and screened to 

select those that were the most resistant to G418, up to 1 mg/mL, that grew the fastest, had the 

best morphology, and expressed the highest level of Hco-pgp-13 transcript and protein.  

2. Characterization of mRNA expression  

Total RNA from cultured cells and tissues was extracted using Trizol Reagent according 

to the manufacturer's instructions. Total RNA was quantified using a nanodrop ND-1000 

spectrophotometer (Nanodrop Technologies Inc., USA). RNA purity was checked by 

measurement of the A260/280 nm ratio, which was routinely in the range of 1.8–2.0. cDNA 

was synthesized from 2 mg of total RNA using the High-Capacity cDNA Reverse Transcription 

kit (Applied Biosystems – Life Technologies, Courtaboeuf, France). Finally, the synthesized 

cDNA was used as template for real-time quantitative PCR (qRT-PCR) using ABI Prism 7300 

Sequence Detection System instrument and software (Applied Biosystems, Courtaboeuf, 

France). Gene-specific primers for SYBR Green assays are described in Supplementary Table 

1 for Hco-pgp-13, pig mdr1 (Ssc-pgp) (GenBank Accession number: XM_003130205.3) and 

pig GAPDH that was used as a housekeeping gene for normalisation (GenBank Accession 

number: NM_001206359.1). All primers were designed using Primer Express software version 
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2.0 (Applied Biosystems) and synthesized by Invitrogen (Cergy- Pontoise, France). All primers 

were entered into the NCBI Blast program to ensure specificity. Results were expressed using 

the comparative Ct method as described in User Bulletin 2 (AppliedBiosystem). Briefly, the 

ΔCt values were calculated in every sample for each gene of interest as following:  

ΔCt = Ct gene of interest - Ct reference gene,  

with GAPDH as the reference gene. The fold change in the level of target mRNA between 

treated and untreated samples was then expressed as 2-ΔCt with ΔCt  S.D. where S.D.is the 

standard deviation of the mean of the ΔCt value for the three replicates. A dissociation curve 

allowed us to verify the specificity of the amplification. 

3. Characterization of protein expression  

Membranes were prepared from transfected cells by collecting the cell culture on ice in 

a lysis buffer composed of PBS, 1 M DTT and protease inhibitors. The cell extract was then 

centrifuged at 1000 g at 4°C for 10 min, and the supernatant was discarded to remove debris. 

The pellet was resuspended in a volume 5 times its weight, and after 15 min of incubation on 

ice, cells were lysed with a potter and centrifuged at 1000 g at 4°C for 10min. This was done 

twice to discard the pellet containing debris and collect the supernatant containing the cell 

homogenate. The supernatant was subjected to an ultra-centrifugation at 100000 g for 40 min 

at 4°C. Pellets containing membranes were collected in around 200 µL lysis buffer. The 

quantity of proteins present in the samples was determined by the Bradford assay (Bio-Rad), 

with bovine serum albumin (BSA) as the standard, and absorbance at 595 nm was read with a 

spectrometer (Infinite® 200 Pro, Tecan). An aliquot of 10 µg of membranes was then run on a 

10% sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE)  in a Mini 

Protean® 3 Bio-Rad cell with the Laemmli method (Gallagher, 2006). The gel was then 

transferred to a nitrocellulose membrane that was blocked in PBS, 0.05% Tween, 5% milk, at 

4°C overnight. The membrane was washed three times for 5 min with PBS-Tween and 

incubated with the primary antibodies: either 6x-His epitope tag monoclonal mouse antibody 

(MA121315, Fisher Scientific, France) or rabbit polyclonal antibodies designed against two 

epitopes of Hco-Pgp-13 (GenScript, USA) (as described in the manuscript in Part II, A) at 

1/1000 dilution at 4°C overnight. The next day, the membrane was washed similarly and 

incubated with a secondary CFTM770 anti-rabbit antibody (Biotium) at RT for 1 hour. The 

membrane was again washed three times for 5min with PBS-Tween and proteins were 

visualized using the Odyssey® CLx imaging system (LI-COR Biosciences, USA).  
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4. Transport assays 

The transport activity of Hco-Pgp13 was studied by measuring in the transfected 

LLCPK1 the accumulation over time of rhodamine 123 (RHO) or doxorubicin (DXR), two 

fluorescent substrates of mammalian Pgps commonly used for cell transport assay (Lespine et 

al., 2006b). This was performed in the presence or absence of valspodar (VSP), a potent 

inhibitor of some ABC transporters, especially evidenced on mammalian Pgp. For these 

experiments, LLCPK1 cells expressing the protein of interest were cultured in 96-wells plates 

in supplemented 199 medium without G418, the positive control being a LLCPK1 cell line 

expressing a murine Pgp (LLCPK1-MDR1); whereas cells transfected with the cat gene and 

untransfected LLCPK1 cells were both used as negative controls. At time t=0, 10 µM RHO or 

10 µM DXR in HBSS/DMSO 50/50 v/v were added to the medium at 37°C, with or without 20 

µM VSP, expected to assess the maximum inhibition of the transporter. Within a time range of 

30 min, the cells were then washed in PBS and lysed in PBS 0.5% SDS. Intracellular 

fluorescence of Rho123 or DXR was measured in the cell lysates with a spectrofluorometer 

(Infinite® 200 Pro, Tecan) with excitation and emission wavelengths of 507 nm and 529 nm 

respectively for RHO, or 470 nm and 600 nm for DXR. Fluorescence emission intensity was 

normalized to the protein content of cells measured by the Bradford method, using bovine 

serum albumin as the protein standard (Bio-Rad Protein Assay). For each parameter, mean and 

standard error (S.E.M.) were calculated. 

5. Cytotoxicity assays 

Cell viability of the stable transformants were assayed with the CellTiter96® Aqueous 

One solution Cell Proliferation Assay (MTS) (Promega, France), that contains a tetrazolium 

compound: [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine ethosulfate; PES). 

The MTS tetrazolium compound is reduced by a mitochondrial enzyme and produces formazan 

in metabolically active cells, which production can be quantified by measurement of absorbance 

at 490 nm. Cells transfected with Hco-pgp-13 or cat gene were grown in 96-wells plates at 

37°C, 5% CO2 in 200 µL medium containing 0.005 µM to 0.5 µM ACD or no ACD. All ACD 

solutions were prepared to obtain 1% DMSO final, as well as in the control medium without 

ACD. The cultures were started from 5x 104 cells and 4x 104 cells, respectively, in each well, 

until the cells reach about 90% confluency. 48 hours later, MTS was added for 3 hours at 37°C. 

Reading of absorbance at 490 nm was performed with a spectrophotometer (Infinite® 200 Pro, 
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Tecan). This allowed the determination of the percentage of living cells. The cat-transfected 

LLCPK1 cells were used as negative control cells. 

6. ATPase activity assays 

The ATPase activity assay was performed as previously detailed in the manuscript in Part II, 

A. 

7. In silico docking of various molecules on the two Hco-Pgp-13 3D 

structural models 

The in silico docking calculations of paclitaxel (PCT), verapamil (VRP), rhodamine 123 

(RHO), doxorubicin (DXR), valspodar (VSP), cholesterol (CLS), ivermectin (IVM) and 

moxidectin (MOX) on Hco-Pgp-13 were performed as described in detail in the manuscript in 

Part II, A. 

II. RESULTS AND DISCUSSION 

1. Expression of Hco-Pgp-13 in LLCPK1 

Pig cells transfected with codon optimized Hco-pgp-13 cDNA showed a high Hco-pgp-

13 mRNA expression level, reflected in the more than three orders of magnitude higher of Hco-

pgp-13 transcript compared with endogenous pig mdr1 (Fig. 1A).  

The Western blot of the cytosol and membrane extracts from the Hco-Pgp-13 transfected 

LLCPK1 cells, following SDS–PAGE and incubation with the specific anti-His tag antibody 

(Fig. 1B), showed a band of around 130 kDa in the membrane extract. This corresponds to the 

expected form of the ABC transporter without post-translational modification, thus a MW 

smaller than Hsa-Pgp that is known to be glycosylated (about 30 kDa of glycosylation residues). 

We also used this expression system to check the specificity of our antibodies designed 

against two epitopes of Hco-Pgp-13. Cells transfected with Hco-Pgp-2 showed no signal with 

these antibodies (Fig. 2A), whereas the antibodies specific for Hco-Pgp-2 did not show any 

signal when incubated with membranes of LLCPK1 cells transfected with Hco-Pgp-13 (Fig. 

2B). Each of these antibodies thus appears specific for the protein they were raised against.  
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2. Functional characterization of Hco-Pgp-13 expressed in LLCPK1 cells 

LLCPK1 cells were then used to characterize the function of Hco-Pgp-13 with 

accumulation assays of intracellular rhodamine 123 (RHO) and doxorubicin (DXR) in the 

presence or absence of valspodar (VSP), an inhibitor of mammalian Pgp-mediated drug 

transport. The results are presented in Fig. 3 as accumulation of RHO or DXR fluorescence / 

mg of proteins. The accumulation kinetics showed a similar pattern in untransfected and 

transfected cells. The intracellular accumulation of fluorescent dyes depends both on passive 

transport across the cell membrane and on transport by endogenous influx and efflux proteins, 

as well as by Hco-Pgp-13 in cells transfected with its encoding gene. Thus, only the level of 

accumulation reached at the steady state, resulting from all these transport phenomena, were 

compared. Without VSP, cells expressing Hco-Pgp-13 showed a lower level of accumulation 

of RHO at the steady state than untransfected cells (or cells transfected with the control gene 

coding for the chloramphenicol acetyl transferase (CAT), data not shown) (Fig. 3A and 3B). In 

the presence of VSP, the steady state accumulation level of RHO was increased (about 4 times), 

as compared to that in the absence of VSP, only in cells expressing Hco-Pgp-13 at passage 6, 

but not in untransfected (or CAT-expressing cells, data not shown). Interestingly, the 

accumulation kinetics in the presence of VSP is very similar to the one observed on the 

untransfected cells. Similar results were obtained with the fluorescent drug doxorubicin (DXR) 

(Fig. 3C and 3D). The steady state accumulation level of DXR when VSP was added to 

LLCPK1 cells expressing Hco-Pgp-13 was also increased relative to that in the absence of VSP 

(about 1.5 times), but less than what was observed for RHO. Altogether, these results suggest 

that RHO and DXR interact with and are transported by Hco-Pgp-13. In addition, VSP appears 

to interact with Hco-Pgp-13 and inhibits the transport of RHO and DXR mediated by this efflux 

protein. 

Another strategy to test the function of Hco-Pgp-13, reflected by its capacity to efflux 

actinomycin D, is to determine if its expression can protect LLCPK1/HcoPgp13 transfected 

cells from ACD cytotoxic effect, as compared to the control cells transfected with the cat gene. 

Cell viability assays were thus also performed on LLCPK1 cells in the presence of actinomycin 

D at various concentrations. No increase of cell viability was observed in two different clones 

at passage 8 and 13 of cells transfected with Hco-pgp-13 relative to cat-transfected cells (Fig. 

4). This could be explained either by ACD not being a substrate of Hco-Pgp-13, or by a loss of 

the expression of Hco-Pgp-13 in LLCPK1 cells after several passages. Because the transport 
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assays of RHO also showed a decreasing effect of VSP on the transport of fluorescent dyes 

after several passages (data not shown), the second hypothesis was further investigated. 

3. Passage-dependent expression and function of Hco-Pgp-13 in LLCPK1 

cells 

To better determine the effect of passages on Hco-Pgp-13 expression, a Western-blot 

was performed with anti-Hco-Pgp-13 antibodies following SDS-PAGE of membranes extracted 

from LLCPK1 cells transfected with Hco-pgp-13 at passage 5 and passage 9. The result 

presented Fig. 5 showed a band of around 130 kDa in the membrane extract of passage 5, but 

not of passage 9, indicating that Hco-Pgp-13 is not expressed in the membrane of LLCPK1 at 

passage 9. This is consistent with the absence of observed function of Hco-Pgp-13 in LLCPK1 

after several passages. This loss of expression of Hco-Pgp-13 at the membrane of LLCPK1 

after passages can be explained by a decrease of the production of the protein or of its targeting 

to the cell membrane along passages. 

Here we found that RHO could be transported by Hco-Pgp-13 and that VSP could inhibit 

this transport, as previously shown for Hco-Pgp-2, 9.1 and 16 (Godoy et al., 2015a, 2016; 

Godoy et al., 2015b). However, the LLCPK1 expression system proved to be limited for the 

study of the transport function of Hco-Pgp-13 and of the protection from the cytotoxic effect of 

drugs by the ABC transporter. Indeed, despite the codon optimization of the sequence of Hco-

pgp-13 for mammalian cells, a loss of its expression along passages was observed. Thus, we 

could not test the inhibition of the transport of fluorescent substrates by ML to investigate the 

interaction of Hco-Pgp-13 with these anthelmintic drugs. 

Here, the pcDNA3.1 vector contains two independent promoters for the expression of 

Hco-pgp-13 and of neomycin, so that this resistance gene can be expressed without the Hco-

pgp-13 gene simultaneously expressed. To overcome this limitation, a bicistronic pIRES vector 

could be used, which will lead to the transcription of Hco-pgp-13 and of the resistance gene on 

the same mRNA, so that every resistant cell should express Hco-Pgp-13 protein. Also, a peptide 

signal could be added to ensure that the protein is expressed at the plasma membrane. 

4. Functional characterization of Hco-Pgp-13 expressed in Pichia pastoris 

Another possible strategy is a transfection in P. pastoris cells, which is known to yield 

high level expression of transgenes. The interaction between an ABC transporter and its 

putative substrates can then be studied by measuring the ATPase activity of the transporter in 
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presence of compounds of interest, as performed by Jin et al. (2012). This heterologous system 

was then chosen to express Hco-Pgp-13, as described in Part II, A. 

Preliminary ATPase activity assays were performed with paclitaxel (PCT) on 

P. pastoris cells expressing Hco-Pgp-13. The results presented in Figure 6 indicated a dose-

dependent stimulation of its basal ATPase activity by PCT. If reproducible, this would indicate 

that PCT can interact with Hco-Pgp-13. 

Before more molecules were tested for their interaction with Hco-Pgp-13 on this 

experimental model, those that were the most potent to stimulate the ATPase activity of Cel-

Pgp-1, which shows high homology with Hco-Pgp-13, were tested in silico for their affinity to 

Hco-Pgp-13. Other molecules of interests, such as valspodar and cholesterol, were also tested 

in order to screen the putative substrates of Hco-Pgp-13, before performing ATPase activity 

assays on P. pastoris cells expressing Hco-Pgp-13. 

5. In silico docking calculations on Hco-Pgp-13 3D structural models 

The in silico docking calculations of molecules of interest were run on the two 3D 

structural models of Hco-Pgp-13 constructed by homology with Cel-Pgp-1 4F4C. Molecules 

tested were 8 drugs known to be substrates of mammalian Pgp: paclitaxel (PCT), verapamil-S 

(VRP), doxorubicin (DXR) and valspodar (VSP), the fluorescent dye rhodamine 123 (RHO) 

(commonly used in mammalian Pgp transport assays), the endogenous substrate cholesterol 

(CLS), and finally the two ML mostly used in veterinary medicine, ivermectin (IVM) and 

moxidectin (MOX). Some of these tested molecules have been studied for in vitro experiments 

aimed at characterizing heterogenously expressed Hco-Pgp-13, among them ACD and PCT has 

been assayed for ATPase activity, and RHO, DXR and VSP for cell transport measurements. 

a) Docking of substrates of mammalian ABCB1 transporter 

For PCT, the clusters of the energy clustering histograms were either scattered, 

containing a few number of poses, between 1 and 4, for docking on Hco-Pgp-13_04, or poses 

were mainly grouped in two lowest energy clusters, for Hco-Pgp-13_52. On the model n°04, 

the lowest energy pose (PCT1) was found at -10.5 kcal/mol and the second cluster (PCT2, 2 

poses) at -9.3 kcal/mol, whereas on the model n°52, the two lowest energy clusters were found 

at -11.50 kcal/mol (PCT1, 2 poses) and -11.48 kcal/mol (PCT2, 13 poses), (Figure 7A and 7B 

and Table 1). The binding location of PCT was similar for PCT1 on Hco-Pgp-13_04 and PCT2 
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on Hco-Pgp-13_52, in the deepest part of the inner pocket of the transporter (Figure 7C). PCT1 

on Hco-Pgp-13_52 was found in the middle of the pocket, whereas PCT2 on Hco-Pgp-13_04 

was found in its lower part, close to the cytoplasmic opening of the pocket, as most of other 

poses of this clustering. These binding poses interacting with 14 to 17 residues, including 11 to 

14 hotspots and forms 2 H-bonds, except for PCT2 of model 04 that interacted with 4 hotspots 

and formed 2 H-bonds (Table 1 and Table 2). Consistent with their mostly overlapping binding 

site, 12 residues were found common between PCT1 of 04 and PCT2 of 52, including 10 

hotspots, and the two lowest energy clusters formed a H-bond with Q108 (Table 2). Overall, 

PCT was found to be able to bind to various sites of Hco-Pgp-13, partly depending on the 

orientation of amino-acids lining the binding pocket. However, the 3 lowest energy binding 

were between -10.5 and -11.5 kcal/mol indicating a high affinity binding, significantly 

(>2 kcal/mol) higher to what was found for Cel-Pgp-1 (-8.2 kcal/mol for the lowest energy 

pose, manuscript under writing, Part I, A). Their positions were all found deep in the pocket of 

Hco-Pgp-13, in contrast to what was found on Cel-Pgp-1, where PCT hardly reached the 

deepest part of the pocket (PCT4, 1 pose at -6.5 kcal/mol, manuscript under writing, Part I, A). 

For VRP, the energy clustering histograms presented scattered clusters of few poses, but 

for docking on both models, the localization of the first energy cluster (VRP1) matched that of 

other clusters found within 2 kcal/mol energy, with various orientations, so that only VRP1 was 

analyzed. VRP1 was found at -7.7 kcal/mol (2 poses) on the model n°04 and at -7.3 kcal/mol 

(10 poses) on the model n°52 (Figure 8A and 8B and Table 1). The binding location of VRP1 

was similar on Hco-Pgp-13_04 and Hco-Pgp-13_52, burried within the TMDs of the transporter 

in a much folded conformation (Figure 8C). VRP thus bound to model 04 and 52 by interacting 

with 17 and 15 residues, including 13 and 10 hotspots and forming 2 and 1 H-bonds, 

respectively (Table 1 and Table 2). As its binding sites on both models mostly superimposed, 

9 common residues were found, including 6 hotspots, although they formed H-bonds with 

different residues (Table 2). VRP was then found to bind to one major site of Hco-Pgp-13, 

regardless of the model considered, which increases the strength of this finding. This position 

is similar to what was found on Cel-Pgp-1, manuscript under writing, Part I, A). The binding 

energy found, around -7.5 kcal/mol, indicates a medium affinity of binding to Hco-Pgp-13, 

slightly higher to what was found for Cel-Pgp-1 (-6.5 kcal/mol energy bonding for VRP1, 

manuscript under writing, Part I, A).  

For RHO, a major cluster was found in each clustering, either presenting the lowest 

binding energy (RHO1), with 76 poses at -3.9 kcal/mol on model n°04 of Hco-Pgp-13, or the 
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third lowest energy (RHO3), with 61 poses at -3.6 kcal/mol on model n°52 (Figure 9A and 9B 

and Table 1). The lowest energy cluster (RHO1) on this model was almost identical to RHO3 

with 4 poses at -4.0 kcal/mol. These three clusters were found overlapping in the most inner 

part of the binding pocket of Hco-Pgp-13 (Figure 9C), interacting with 7 to 11 residues 

including 5 to 8 hotspots, and forming 1 or 2 H-bonds (Table 1 and Table 2). 10 residues were 

common to at least two of these poses, 5 being common to the three of them, 8 being hotspots 

and E21 of TMa-b forming a H-bond with the three poses (Table 2). This main binding position 

on Hco-Pgp-13 is similar to the 4th lowest energy cluster found on Cel-Pgp-1, although only 

one cluster was found at this location in Cel-Pgp-1 (manuscript under writing, Part I, A). On 

the two transporters, the almost identical binding energy of around -3.9 kcal/mol indicates a 

very low affinity of binding of RHO. 

For DXR, the two clusterings presented one or several clusters containing the majority 

of poses. On the model n°04, the lowest energy cluster (DXR1, 3 poses) was found at -8.8 

kcal/mol and the second cluster (DXR2, maximum of 25 poses) at -8.0 kcal/mol. On the model 

n°52, the lowest energy pose (DXR1) was found at -9.0 kcal/mol and DXR2 (2nd maximum of 

17 poses) at -8.7 kcal/mol (Figure 10A and 10B and Table 1). The binding location of DXR on 

Hco-Pgp-13_04 was different for most of the clusters, from the lowest part of the pocket, next 

to its cytoplasmic opening, for DXR2, to its inner core with DXR3 (not shown, similar to DXR1 

on model 52), and with most of clusters at various locations around the center of the pocket, 

such as DXR1 (Figure 10C). In contrast, all the clusters (in particular DXR3&4) found on 

model 52 were similar to either DXR1 or DXR2, at the inner core or in the middle of the protein 

binding pocket, respectively. Each of these poses interacted with 11 to 15 residues, including 3 

to 9 hotspots and formed 2 to 5 H-bonds (Table 1 and Table 2). As these binding poses of DXR 

overlapped to various degrees, 6 interacting residues were found common between at least 3 of 

them, including 3 residues forming an H-bond with one or two of these poses, and E21 of TMa-

b with the four of them (Table 2). Overall, DXR was thus able to bind to various sites of Hco-

Pgp-13, with the highest affinity corresponding to the pose docked in the deepest part of the 

binding pocket. This was found for DXR1 on model n°52 at -9.0 kcal/mol, indicating a high 

affinity binding, similar to what was found for Cel-Pgp-1 (-9.3 kcal/mol for the lowest energy 

pose, also located in the deepest part of the pocket (manuscript under writing, Part I, A). 

For VSP, the lowest energy cluster VSP1 (2 poses) found on Hco-Pgp-13_04 was at -

10.5 kcal/mol and the two lowest energy clusters VSP1 (20 poses) and VSP2 (24 poses) were 

found at -8.2 kcal/mol and -6.2 kcal/mol, respectively, on Hco-Pgp-13_52 (Figure 11A and 11B 
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and Table 1). The binding location of these poses of VSP, were similar and representative of 

all other clusters on both models, in the lowest part, next to the cytoplasmic opening of the 

binding pocket (Figure 11C). They interacted with 13 to 22 residues, including 2 to 4 hotspots 

without forming any H-bond (Table 1 and Table 2). As these 3 binding poses were almost 

superimposed, only varying in their orientations, 13 interacting residues were shared by at least 

2 of them, including 2 hotspots (Table 2). VSP then bound to a single location, with various 

possible orientations in the cytoplasmic opening of the binding pocket of Hco-Pgp-13, as on 

Cel-Pgp-1 (manuscript under writing, Part I, A). In contrast to other molecules, this binding site 

contained a few number of hotspots and VSP formed no H-bond. Its lowest binding energy of 

-10.5 kcal/mol however suggested a high affinity of binding, slightly higher to what was found 

for Cel-Pgp-1 (-9.5 kcal/mol for the lowest energy pose). 

For CLS, a major cluster was found in each clustering, either presenting the lowest 

binding energy (CLS1, 58 poses) at -11.1 kcal/mol on Hco-Pgp-13_04, or the second lowest 

energy (CLS2, 80 poses) at -10.46 kcal/mol on Hco-Pgp-13_52 (Figure 12A and 12B and 

Table 1). The lowest energy cluster (CLS1, 4 poses) at -10.50 kcal/mol on Hco-Pgp-13_52 was 

similar to the two previously presented cluster as well as all other clusters found on the two 

models, only slightly varying in their orientations. They overlapped in the most buried part of 

the binding pocket of Hco-Pgp-13 (Figure 12C), interacting with 14 or 15 residues including 

10 or 11 hotspots, and forming no H-bond, 1 or 2 H-bonds (Table 1 and Table 2). 13 interacting 

residues were common to at least two of these poses, including 10 hotspots, and H-bonds were 

formed with very close residues of TMa-b. This very specific binding position on Hco-Pgp-13 

contrasts with the predicted binding of CLS on Cel-Pgp-1 on various possible sites. CLS lowest 

energy cluster was also found in the inner core of Cel-Pgp-1, but with a binding energy (-9.4 

kcal/mol) indicating a lower affinity than the high one found for CLS on Hco-Pgp-13. 

Overall, these 6 molecules delineated a binding pocket showing a different shape in the 

two models of Hco-Pgp-13 (Fig. 13). The binding pocket of the model n°52 was very similar 

to the pocket previously described in Cel-Pgp-1 as containing two sub-binding domains. In 

contrast, the binding pocket of Hco-Pgp-13_04 looked more continuous from its cytosolic 

opening to its inner core, with the part corresponding to the narrow site between the two sub-

domains of Cel-Pgp-1 being only constrained on one side.  

When comparing the binding sites of the molecules between the two models, it appeared 

that VRP, CLS, RHO, ACD and VSP binding were similar whereas PCT and DXR binding 

locations were more model-dependent. However, these two molecules also bound to various 
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sites within each of the two models, so that the two models looked rather complementary in the 

higher number of possibilities they offer for molecules to bind due to the various positions of 

lateral chains of amino-acids lining the inner chamber.  

b) Docking of the ML ivermectin and moxidectin 

The two other molecules tested for their binding to Hco-Pgp-13 were the ML ivermectin 

(IVM) and moxidectin (MOX), which are of particular interest in the perspective of potential 

anthelmintic drug resistance phenomena in parasite nematodes. 

For IVM, the docking calculations, performed with two starting conformations on each 

model of Hco-Pgp-13, showed very close lowest energy clusters presenting different binding 

sites. They were thus all analyzed. On the model n°04, the lowest energy cluster (IVM1, 19 

poses) of one starting conformation was found at -11.2 kcal/mol whereas the other lowest 

energy cluster (IVM1’, 28 poses) obtained with a different starting conformation was at -11.3 

kcal/mol. On the model n°52, the two lowest energy clusters IVM1 (17 poses) and IVM1’ (8 

poses) were both found at -12.8 kcal/mol (Figure 14A, B, C, D and Table 3). The binding 

location of IVM1 and IVM1’ on Hco-Pgp-13_04 was similarly close to the cytoplasmic opening 

of the pocket, with different orientations, whereas the binding site of IVM1 and IVM1’ on Hco-

Pgp-13_52 was in the deepest part of the inner pocket of the transporter, also with two possible 

orientations (Figure 14E). These binding poses interacted with 14 to 17 residues on model n°04, 

and 21 residues on model n°52, including 4 or 5 hotspots and forming 2 to 3 H-bonds on Hco-

Pgp-13_04, and 14 or 15 hotspots and forming no or 2 H-bonds on Hco-Pgp-13_52 (Table 3 

and Table 4). As expected from their binding locations, 9 common interacting residues were 

found between IVM1 and IVM1’ of model n°04, including 3 hotspots, while 16 interacting 

residues were shared by IVM1 and IVM1’ of model n°52, including 11 hotspots (Table 4). The 

binding locations found on the two models were almost separated, with only 5 residues found 

common between the positions found in the different models. The binding site of IVM on Hco-

Pgp-13 was thus mostly depending on the orientation of amino-acids lining the binding pocket. 

This led to a lowest binding energy varying from -12.8 to -11.2 kcal/mol between the two 

models, and indicating high affinity binding in both cases. Interestingly, these binding energies 

were close to those found for IVM1 and IVM2 on Cel-Pgp-1 (-12.2 kcal/mol and -11.1 

kcal/mol, respectively, manuscript under writing, Part I, A). Plus, the docking position of IVM1 

and IVM1’ on Hco-Pgp-13_52, both showing the lowest energy binding found across the two 

models, were occupying the same space as IVM1 on Cel-Pgp-1. Their macrocycle ring on Hco-
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Pgp-13_52 was overlapping with the dissacharide moiety of IVM1 on Cel-Pgp-1, and vice 

versa, so that the macrocycle of IVM was found even more buried within the TMDs of Hco-

Pgp-13_52 than of Cel-Pgp-1. Plus, IVM1 on model n°52 formed a H-bond with S1028 of Hco-

Pgp-13, aligned with the residue T1028 of Cel-Pgp-1 that formed a H-bond with all ML tested. 

The two poses observed on Hco-Pgp-13_04 were, in contrast, very different from any low 

energy binding site found on Cel-Pgp-1 (manuscript under writing, Part I, A). 

For MOX, the result of one starting conformation was chosen for docking on Hco-Pgp-

13_04, whereas two different starting conformations were analyzed after docking on Hco-Pgp-

13_52. MOX1 (90 poses) was found at -10.8 kcal/mol on model n°04 and MOX3 (3 poses) was 

found at -10.0 kcal/mol binding energy on this model. In contrast, MOX1 (90 poses) was found 

at -11.7 kcal/mol on model n°52 and MOX1’ (65 poses) at -11.6 kcal/mol (Figure 15A, B, C 

and Table 3). The binding location of MOX1 on Hco-Pgp-13_04 was close to the cytoplasmic 

entrance of the binding pocket, whereas those of MOX3 on Hco-Pgp-13_04 and MOX1’ on 

Hco-Pgp-13_52 was in the middle of the pocket, and finally, MOX1 on Hco-Pgp-13_52 bound 

to the deepest part of the inner pocket (Figure 15D). They interacted with 11 to 15 residues, 

including 3 to 12 hotspots, and forming no H-bond, except for MOX1 forming one on model 

n°04 (Table 4). MOX1 and MOX1’ on model n°52 shared 8 common interacting residues, 

whereas MOX3 on model n°04 shared 3 interacting residues with each of them, and 2 with 

MOX1 on model n°04. As for IVM, the binding position of MOX on Hco-Pgp-13 depended on 

the model considered and thus on the orientation of lateral chains of residues lining the inner 

pocket. MOX lowest binding energy of -11.7 or -10.8 kcal/mol, depending on the model 

considered, revealed a high affinity for Hco-Pgp-13 whereas MOX1 was found at -10.5 

kcal/mol on Cel-Pgp-1, indicating a putative higher affinity of MOX for Hco-Pgp-13 than for 

Cel-Pgp-1 (manuscript under writing, Part I, A). MOX was found in the deepest core of the 

inner pocket of Cel-Pgp-1, similarly to what was found for MOX3 on the model n°04, with 

inverted locations of the macrocycle ring and spiroketal moiety. MOX1 and MOX1’ on the 

model n°52 of Hco-Pgp-13 had a location of their macrocycle ring close to that of MOX3 on 

model n°4, but with their spiroketal moieties even more buried within the inner core of the inner 

pocket of Hco-Pgp-13. 

It is interesting to note that the H-bonds found for all ML on T1028 of Cel-Pgp-1 have 

no counterpart on Hco-Pgp-13, on which most of ML poses formed no H-bond, except for 

IVM1 on model n°52 of Hco-Pgp-13 that formed a H-bond with S1028 aligned with T1028 of 

Cel-Pgp-1. On the other hand, E22 that formed a H-bond with IVA2 and MOX2 on Cel-pgp-1, 
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and also interacted with IVM1, is aligned in Hco-Pgp-13 to E21 that formed a H-bond with 

IVM1 on model n°04. Interestingly, other similarities appeared when comparing the docking 

of IVM and MOX on Hco-Pgp-13 and on Cel-Pgp-1. First, as for the clustering profiles 

obtained on Cel-Pgp-1, those of MOX presented less scattered clusters than those of IVM on 

Hco-Pgp-13, whatever model considered. Thus, the absence of disaccharide also appeared to 

lower the possibilities of binding to different sites in the binding pocket of Hco-Pgp-13. Plus, 

whatever model considered, the difference of binding energy between IVM and MOX was of 

about 1kcal/mol, as previously observed on Cel-Pgp-1. 

When comparing the binding sites of IVM and MOX in each of the two models, a 

striking difference appeared due to the possible location of IVM and MOX in the middle of the 

TMDs in model n°04 of Hco-Pgp-13. This was not observed in model n°52 and in Cel-Pgp-1, 

on which these poses correspond to an intermediate location between BD1 and BD2 (Fig. 16A 

and B). However, as observed in Cel-Pgp-1, some poses of IVM and MOX showed good 

alignments of the macrocycle ring. This was found for MOX1 and IVM1 on model n°04, with 

moieties at different locations around the macrocycle (Fig. 16C, left panel), for MOX1’ and 

IVM1’ on model n°52 (Fig. 16C, right panel), with almost superimposed molecules, but also 

for MOX3 on model n°04 and IVM1 on model n°52 (Fig. 16C, middle panel), with opposite 

orientations of the superimposed benzofurane moieties, showing that the two models are not 

totally different.  

c) Overall binding site of Hco-Pgp-13 according to the two models 

To better understand the difference observed between the binding sites obtained with 

each of the two models of Hco-Pgp-13, all molecules tested were superimposed for model n°04 

alone (Fig. 17A), model n°04 together with model n°52 (Fig. 17B), or model n°52 alone (Fig. 

17C), and compared to the overall binding site previously found for Cel-Pgp-1 (Fig. 17D). As 

expected, the overall binding pocket of model n°52 alone of Hco-Pgp-13 resembles that of Cel-

Pgp-1 more than the binding pocket of model n°04, due in particular to the similar narrow site 

between the two major binding domains. However, when looking at the superimposed binding 

pockets of Hco-Pgp-13_04 and Hco-Pgp-13_52, most of the binding locations of the various 

molecules docked were comprised in the same area. This indicated some complementarity 

between the two models, with different protrusions observed in each of them forming a global 

shape resembling that of Cel-Pgp-1.  
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The only binding sites found in the Hco-Pgp-13_04 model that appear to be not 

compatible with Hco-Pgp-13_52 are DXR2, MOX1 and IVM1 that occupy the narrow site of 

Hco-Pgp-13_52, corresponding to the part of Cel-Pgp-1 that separates the two sub-domains. To 

better compare this site between the three 3D structures, the binding poses of DXR2, MOX1 

and IVM1 on model n°04, together with ACD1 on model n°04 and n°52, were compared to the 

location of ACD1 and ACD2 on Cel-Pgp-1 (Fig. 18). The site that joins the two areas 

corresponding to BD1 and BD2 in Cel-Pgp-1 is mainly occupied by two elongated structures 

formed of aligned molecules in Hco-Pgp-13_04 (Fig. 18A). Interestingly, ACD1 of model n°52 

also aligned with one of these structures, showing that the two models are not contradictory. In 

contrast, none of them was aligned with the center of ACD molecules forming the 

corresponding site in Cel-Pgp-1 binding domain (Fig. 18B and C), showing a major difference 

between Hco-Pgp-13 and Cel-Pgp-1. Thus, Hco-Pgp-13 appears to be composed, like Cel-Pgp-

1, of two major binding sub-domains BD1 and BD2, linked by a site oriented differently than 

in Cel-Pgp-1, and either very narrow as in the C. elegans transporter, or wider, depending on 

the orientation of the sides chains of residues lining the inner pocket. ML could then bind to 

this intermediate area when Hco-Pgp-13 amino-acids allow it, by “opening” the middle area of 

the binding pocket, during which BD2 might be narrow and might not be able to fit ML, as only 

one MOX position was found there on model n°04. Then, the conformation of residues that 

form a more narrow site between BD1 and BD2 could allow a wider binding site opening in 

BD2 and thus fit IVM and MOX within this site with a higher affinity, so that their major 

binding site could be expected to have the location found on Hco-Pgp-13_52. 

Of course, it is necessary to keep in mind that these docking calculations were performed 

using two 3D structures that were constructed by homology with the crystal of a close Pgp 

homolog, Cel-Pgp-1 (PDB 4F4C), sharing 54% similarity for AAs present in the TMDs. The 

N-terminal helix was thus designed by homology to form a hairpin within the TMDs, with many 

interacting residues found on this helix. In particular, E21 was found to form a H-bond with 

most of substrates tested, showing once again the critical role of this hairpin when present in a 

Pgp, as it reaches the lower part of BD2. It could be wondered whether its absence would have 

changed much the binding profile of molecules tested, but the closer crystal structure of a Pgp 

not showing this helix is the mouse Pgp structure, which has been much controversed. We then 

chose to perform our homology modelling with a single, never questioned, crystal structure, 

rather than a bi-template homology modelling that can be more precise only if the two templates 

are themselves sure to be accurate. This docking is then less accurate than one performed 
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directly with a crystallized structure, so that the error bar of binding energies can be expected 

to be higher than the ones found for docking on Cel-Pgp-1 (about 0.25 kcal/mol), as well as 

those of the number of poses in a cluster (within ≈10% on Cel-Pgp-1, manuscript under writing, 

Part I, A). Thus, binding energies found for a same molecule on Hco-Pgp-13 and Cel-Pgp-1 

must be compared with caution.  

On the other hand, this docking strategy with two models allows a vision somehow 

flexible of the transporter, with two putative conformations of Hco-Pgp-13 compatible with 

each other in the dynamic process of ligand binding and translocation. This revealed more 

possible binding sites of IVM and MOX on Hco-Pgp-13 than what was found on Cel-Pgp-1, 

and we cannot rule out that a flexible strategy for docking on Cel-Pgp-1 would also have 

revealed supplementary binding sites. However, the lowest energy ones of IVM and MOX were 

found on the model n°52 of Hco-Pgp-13, with a general binding pocket more resembling that 

of Cel-Pgp-1 than the pocket of Hco-Pgp-04, so that  the binding poses found for IVM and 

MOX on Cel-Pgp-1 still appear as the most accurate possible after this study. On the other hand, 

some other molecules bound with a higher affinity to Hco-Pgp-13_04 than 52, as its BD1 

appeared more “closed” and interacted thus more closely with smaller compounds. This shows 

that the multispecific binding of Pgps may be possibly also partly explained by their flexibility, 

which was not taken into account in the strategy used on Cel-Pgp-1. Although the highest 

difference of energy binding between the two models was of 2.2 kcal/mol for VSP, it was found 

to bind in the same area on the other model. The lowest energy binding of other molecules only 

varied in a range of 0.2 to 1 kcal/mol between the two models, always with close to 

superimposed locations of binding within the pocket of Hco-Pgp-13. This shows that a flexible 

docking strategy would be more precise in terms of location of binding sites, but would not 

change much the binding energy or the location of binding of molecules in the pocket of a 

transporter. Plus, flexible docking is limited to some residues in the protein that must be chosen 

as the most relevant for interaction with ligands. This can more easily be done once preliminary 

docking calculations have been performed with a rigid transporter. It would thus be interesting 

to perform more docking calculations with an Hco-Pgp-13 protein flexible on residues such as 

E21 or other residues found to interact with most of molecules. However, this would take a 

huge amount of time to gain a few precision in the result, whereas in vitro experiments with 

molecules found to interact with high affinity to Hco-Pgp-13 would expectedly bring much 

more functional information than previously gained with this in silico docking. 
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d) Confrontation with in vitro data 

These in silico calculations indicated a very high affinity of binding for PCT, VSP and 

CLS, as well as for ACD (manuscript under writing, Part I, A) on Hco-Pgp-13 with binding 

energies below -10 kcal/mol. It should be noticed that, among them, CLS is the only “small 

ligand”, which likely gives it a still more marked significance (see below). This is consistent 

with our in vitro experiments showing a stimulation of ATPase activity of Hco-Pgp-13 by ACD 

(manuscript under writing, Part I, A) and PCT. In addition, these experiments indicated an 

apparent affinity in the µM range for both of them, in consistence with their respective 

calculated Eb (more negative for ACD) and membrane partition (higher for PCT). VRP and 

DXR bound with energies below -7 kcal/mol, compatible with a rather high affinity of these 

substrates on Hco-Pgp-13. This is in line with the transport of DXR observed on LLCPK1/Hco-

pgp-13 cells. The in silico data are further consistent with the finding that VSP (20 µM) 

inhibited DXR transport (tested at 10 µM) in these in vitro experiments, presumably by a 

competitive mechanism since they share partially overlapping binding sites in the inner 

chamber of Hco-Pgp-13. Obviously, for confirmation, specific interaction of DXR and VSP 

with Hco-Pgp-13 should be further tested in vitro by assaying their effects on its ATPase 

activity. 

In contrast, RHO binding energy on Hco-Pgp-13 was calculated above -4 kcal/mol, 

which suggests a very low affinity of binding on the transporter, or could even be considered 

as non-specific binding. However, functional assays of RHO accumulation in LLCPK1/Hco-

pgp-13 cells indicated a RHO transport by Hco-Pgp-13, revealed by a high increase of RHO 

accumulation in presence of VSP (even higher than for DXR). It could nevertheless be possible 

to reconcile this apparent discrepancy, by taking into account the possibility that Hco-Pgp-13 

could be a membrane lipid translocase, especially handling cholesterol or other sterols. Indeed, 

ATPase activity measurements have shown that Hco-Pgp-13 displays a “basal” activity in the 

absence of any exogenous added compound. This could mean that it can actively handle some 

endogenous membrane components. The very negative Eb value, especially taking into account 

its small size, calculated for CLS docking suggests that such endogenous substrate could be 

cholesterol, or at least any structurally-related sterol present in the P. pastoris cell membrane. 

Of course, this hypothesis should be easily tested by adding methyl-beta-cyclodextrin to the 

Hco-Pgp-13-containing membranes in order to specifically manipulate their sterol content and 

follow the repercussion on its ATPase activity.  
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Within this hypothesis of Hco-Pgp-13 being an active cholesterol translocase, the 

composition and/or the distribution of cholesterol in the plasma membrane of LLCPK1 cells 

should be altered in the presence of Hco-Pgp-13. It could then also modify the membrane 

partition and passive diffusion of the amphiphilic dye RHO in LLCPK1 cells, as shown for 

other types of membrane perturbation (Schulz et al., 2013). As transport accumulation assays 

are the result of kinetics depending on passive transport and active transport by various proteins, 

it does not directly accounts for the affinity of RHO towards Hco-Pgp-13 observed in silico in 

docking calculations. To go further, measurements of the ATPase activity stimulation by RHO 

would be required to better analyze its binding capacity on Hco-Pgp-13. The same type of in 

vitro studies performed with other ligands tested in docking experiments would represent a very 

informative combination of tools to better understand the molecular mechanism of ligand 

binding on, and putative transport by, Hco-Pgp-13. 

As a final conclusion, based on the whole of our data combining various approaches, 

Hco-Pgp-13 appears as a multidrug efflux transporter (6 high affinity ligands, 2 medium affinity 

ligands and only 1 low affinity to non-ligand out of 9 in silico tested molecules), especially 

handling MLs, but it seems also likely involved in membrane lipids, at least sterols, 

translocation. This would make it a fair functional homolog of mammalian Pgp. 
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Figures and Tables 

 

 

 

Figure 1. Expression level of Hco-pgp-13 mRNA and protein in LLCPK1 transfected cells. 

A. Quantitative Real-Time PCR on codon optimized Haemonchus contortus P-glycoprotein 13 

transfected in pig kidney epithelial cells (LLCPK1/Hco-pgp-13), at passage 5 and in 

LLCPK1/cat cells transfected with the gene coding for the chloramphenicol acetyltransferase. 

Relative expression over the pig P-glycoprotein (Ssc-Pgp) endogenous gene was calculated by 

the 2-Ct method. Mean of three replicate experiments ± S.D. are presented. B. Western-blot 

using antibody anti-His tag after SDS-PAGE with cytoplasmic (C) or membrane (M) extracts 

from LLCPK1 untransfected cells (lane 1), or transfected with  Hco-pgp-13 at passage 5 (lane 

4 and 5), or C219 antibody recognizing mammalian Pgp on LLCPK1 cells transfected with 

human (Hsa-) Pgp (lane 2 and 3).  Each lane was loaded with 10µg of protein. 
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Figure 2. Specificity of Hco-Pgp-13 antibodies. A. Western-blot using antibody anti- epitope 

1 and 2 of Hco-Pgp-13 after SDS-PAGE with membrane extracts from epithelial-like pig 

kidney LLCPK1 cells transfected with  Hco-pgp-13 (lane 1) or Hco-pgp-2 (lane 2). B. Western-

blot using antibody anti- Hco-Pgp-2 on membrane extracts from LLCPK1 cells transfected with 

Hco-pgp-13 (lane 1) or Hco-Pgp-2 (lane 2). Anti-human actin antibody was used as a loading 

control in lower panels. Each lane was loaded with 10µg of protein. 
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Figure 3. Functional transport assay of rhodamine 123 and doxorubicin fluorophore 

probes. Fluorescence accumulation is measured over time post-incubation of rhodamine 123 

(A, B) or doxorubicin (C, D), in the absence or presence of valspodar (VSP). A. C. 

Untransfected epithelial-like pig kidney cells (LLCPK1). B. D. Haemonchus contortus P-

glycoprotein 13 (Hco-pgp-13) transfectants at passage 6. Results are means of three replicate 

experiments ± S.E.M. 
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Figure 4. Cytotoxicity effect of actinomycin D (ACD) on pig kidney epithelial LLCPK1 

cells transfected with Hco-pgp-13 or cat. Cell survival percentage is expressed as compared 

to the 100% survival at the lowest concentration of ACD for each cell line. Two clones of cells 

transfected with Hco-pgp-13 were tested, clone 3 at passage 8 and clone 4 at passage 13, and 

compared to cells transfected with the cat gene, coding for the chloramphenicol acetyl 

transferase. 
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Figure 5. Effect of passages on the expression of Hco-Pgp-13 in pig kidney epithelial 
LLCPK1 cells. Western-blot using antibodies anti- epitope 1 and 2 of Hco-Pgp-13 after SDS-

PAGE with membrane extracts from LLCPK1 cells transfected with Hco-pgp-13 at passage 5 

or passage 9, or on membrane extracts from LLCPK1 cells transfected with cat gene.  Anti-

human actin antibody was used as a loading control in lower panels. Each lane was loaded with 

10µg of protein. 
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Figure 6. Stimulation of the ATPase activity of Hco-Pgp-13 expressed in Pichia pastoris 

membranes by paclitaxel. The ATPase activity is represented in nmol of Pi /min /mg of protein 

in P. pastoris membranes expressing Hco-Pgp-13, relative to the concentration of Paclitaxel in 

µM, in the absence (black bars), or in the presence of Vanadate (Van) 100 µM (white bars). 

Error bars have been calculated on triplicates within one experiment. No effect of PCT was 

observed on the basal ATPase activity of untransfected P. pastoris cells (data not shown). 
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Figure 7. Paclitaxel binding to Hco-Pgp-13_04 (A, C) and Hco-Pgp-13_52 (B, C). A, B, 

energy clusterings of PCT docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, binding 

sites of the 1st  and 2nd lowest energy clusters of PCT on each protein. PCT1 and PCT2 are 

represented in bright green and light green spheres respectively for docking on Hco-Pgp-13_04 

(purple ribbon ) and in dark green and light brown spheres respectively for docking on Hco-

Pgp-13_52 (green ribbon), using PyMol. 
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Figure 8. Verapamil binding to Hco-Pgp-13_04 (A, C) and Hco-Pgp-13_52 (B, C). A, B, 

energy clusterings of VRP docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, binding 

sites of the lowest energy clusters of VRP on each protein. VRP1 is represented in black and 

gray spheres for docking on Hco-Pgp-13_04 (purple ribbon) and Hco-Pgp-13_52 (green 

ribbon), respectively, using PyMol. 
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Figure 9. Rhodamine 123 binding to Hco-Pgp-13_04 (A, C) and Hco-Pgp-13_52 (B, C). A, 

B, energy clusterings of RHO docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, 

binding sites of the 1st  or 3rd lowest energy clusters of RHO on each protein. RHO1 is 

represented in dark red spheres for docking on Hco-Pgp-13_04 (purple ribbon ), RHO1 and 

RHO3 are represented in dark pink and light pink spheres respectively for docking on Hco-

Pgp-13_-52 (green ribbon), using PyMol. 
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Figure 10. Doxorubicin binding to Hco-Pgp-13_04 (A, C) and Hco-Pgp-13_52 (B, C). A, 

B, energy clusterings of DXR docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, 

binding sites of the 1st  and 2nd lowest energy clusters of DXR on each protein. DXR1 and DXR2 

are represented in yellow and brown spheres respectively for docking on Hco-Pgp-13_04 

(purple ribbon ) and in light pink and brown spheres respectively for docking on Hco-Pgp-

13_52 (green ribbon), using PyMol. 
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Figure 11. Valspodar binding to Hco-Pgp-13_04 (A, C) and _52 (B, C). A, B, energy 

clusterings of VSP docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, binding sites of 

the 1st  or 2nd lowest energy clusters of VSP on each protein. VSP1 is represented in light pink 

spheres for docking on Hco-Pgp-13_04 (purple ribbon ), VSP1 and VSP2 are represented in 

red and dark pink spheres respectively for docking on Hco-Pgp-13_52 (green ribbon), using 

PyMol. 
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Figure 12. Cholesterol binding to Hco-Pgp-13_04 (A, C) and Hco-Pgp-13_52 (B, C). A, B, 

energy clusterings of RHO docked to Hco-Pgp-13_04 (A) and Hco-Pgp-13_52 (B). C, binding 

sites of the 1st or 3rd lowest energy clusters of CLS on each protein. CLS1 is represented in 

bright turquoise spheres for docking on Hco-Pgp-13_04 (purple ribbon ), CLS1 and CLS2 are 

represented in dark turquoise and light blue spheres respectively for docking on Hco-Pgp-13_52 

(green ribbon), using PyMol. 
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Figure 13. Binding domain characteristics of compounds docked on the Hco-Pgp-13 

models 04 and 52. A. Front view of Hco-Pgp-13_04 and Hco-Pgp-13_52  represented in purple 

and green ribbon, respectively, with the binding sites of the representative lowest energy 

clusters of  all the tested molecules represented in sticks and transparent surfaces, with similar 

color as in (B) and (C). B. Zoom, without Hco-Pgp-13_04, on the front and lateral views of the 

overlap between the binding sites of the first or second lowest energy clusters of paclitaxel 

(PCT1, bright green and PCT2, light green), verapamil (VRP1, black), rhodamine 123 (RHO1, 

dark red), doxorubicin (DXR1, yellow and DXR2, orange), valspodar (VSP1, light pink) and 

cholesterol (CLS1, bright turquoise). C. Zoom, without Hco-Pgp-13_52, on the front and lateral 

views of the overlap between the first, second or third lowest energy clusters of paclitaxel 

(PCT1, dark green and PCT2, light brown), verapamil (VRP1, gray), rhodamine 123 (RHO1, 

dark pink and RHO3, light pink), doxorubicin (DXR1, light pink and DXR2, brown), valspodar 

(VSP1, red and VSP2, dark pink) and cholesterol (CLS1, dark turquoise and CLS2, light blue). 

All molecules are represented in sticks and transparent surface.  
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Figure 14.  Ivermectin binding to Hco-Pgp-13_04 (A, C, E) and Hco-Pgp-13_52 (B, D, E). 
Energy clustering of two different starting conformers of IVM dokced to Hco-Pgp-13_04 (A, 

C) and Hco-Pgp-13_52 (B, D). E, binding sites of the 1st  lowest energy cluster of each 

conformers. IVM1 and IVM1’ are represented in dark blue and brigth blue spheres respectively 

for docking on Hco-Pgp-13_04 (purple ribbon ), IVM1 and IVM1’ are represented in light blue 

and dark turquoise spheres respectively for docking on Hco-Pgp-13_52 (green ribbon), using 

PyMol. 
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Figure 15. Moxidectin binding to Hco-Pgp-13_04 (A, D) and Hco-Pgp-13_52 (B, C, D). 
Energy clustering of the most representative starting conformer of MOX dokced to Hco-Pgp-

13_04 (A) and of two most representative starting conformers of MOX Hco-Pgp-13_52 (B, C). 

D, binding sites of the 1st  or 3rd lowest energy cluster of each conformers. MOX1 and MOX3 

are represented in yellow and green spheres respectively for docking on Hco-Pgp-13_04 (purple 

ribbon ), MOX1 and MOX1’ are represented in orange and brown spheres respectively for 

docking on Hco-Pgp-13_52 (green ribbon), using PyMol. 
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Figure 16. Binding domain characteristics of the macrocyclic lactones ivermectin (IVM) 

and moxidectin (MOX) on the Hco-Pgp-13 models 04 and 52. A. Front view of Hco-Pgp-

13_04 and Hco-Pgp-13_52  represented in purple and green ribbon, respectively, with the 

binding sites of the representative lowest energy clusters of ivermectin and moxidectin all 

represented in sticks and transparent surfaces, with similar color as in (B) and (C). B. Zoom, 

without Hco-Pgp-13_04, on the front and lateral views of the overlap between the binding sites 

of representative lowest energy clusters of ivermectin (IVM1, dark blue and IVM1’, bright 

blue) and moxidectin (MOX1, yellow and MOX3, green). C. Zoom, without Hco-Pgp-13_52, 

on the front and lateral views of the overlap between the binding sites of the representative 

lowest energy clusters of ivermectin (IVM1, light blue and IVM1’, dark turquoise) and 

moxidectin (MOX1, orange and MO1’, brown). All molecules are represented in sticks and 

transparent surface. D. Zoom on the superposition of the binding sites of molecules for which 

macrocycle rings are found to overlap: IVM1 and MOX1 docked to Hco-Pgp-13_04 (left 

panel), IVM1 docked to Hco-Pgp-13_52 and MOX3 docked to Hco-Pgp-13_04 (middle panel), 

IVM1’ and MOX1’ docked to Hco-Pgp-13_52 . Images were generated with PyMol.      
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Figure 17. General binding pocket of Hco-Pgp-13 according to model 04 (A), models 04 and 52 superimposed (B), model 52 (C) and Cel-

Pgp-1 according to PDB crystal structure 4F4C (D). 
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Figure 18. Comparison of the area separating BD1 and BD2 between the two models of 

Hco-Pgp-13 and Cel-Pgp-1 4F4C PDB structure. 
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Table 1. Physico-chemical, enzymological properties and docking characterization of the set of molecules tested for the validation step of 

the in silico procedure on HcoPgp13 models 4 and 52 : actinomycin D (ACD), doxorubicin (DXR), paclitaxel (PCT), rhodamine 123 (RHO), 

valspodar (VSP), verapamil (VRP) and cholesterol (CLS). 

  

(a) as calculated using Marvin Sketch with the consensus method (b) as reported in Jin et al, 2012. (*) cluster not positioned whithin the inner 

chamber. 

Molecule DXR PCT RHO VSP VRP CLS 

MW (Da) 504 854 381 1215 455 387 

logP 
a
 1.9 3.3 3.3 4.7 5.0 7.1 

Hco-Pgp-
13 Model 

04 52 04 52 04 52 04 52 04 52 04 52 

Cluster 
rank 

1 2 1 2 1 2 1 2 1 1 3 1 1 2 1 1 1 1 2 

Binding 
Energy 

(kcal/mol) 
-8.8 -8.0 -9.0 -8.7 -10.5 -9.3 -11.5 -11.5 -3.9 -4.0 -3.6 -10.5 -8.2 -6.2 -7.7 -7.3 -11.1 -10.1 -10.5 

Nb of 
poses 

3 25 1 17 1 2 2 13 76 4 61 2 10 24 2 10 58 4 80 

Nb of 
inter-
acting 

residues 

15 11 13 12 16 14 17 17 10 11 7 22 16 14 17 15 15 14 14 

Nb of 
hotspot 
residues 

9 3 8 6 13 4 11 14 8 8 5 4 4 2 13 10 11 10 11 

Nb of H-
bonds 

3 5 2 3 1 2 1 1 2 1 1 0 1 0 2 1 2 1 0 
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Table 2. List of interacting residues of each transmembrane helix of HcoPgp13 models 4 

and 52 with the indicated lowest energy clusters of actinomycin D (ACD), doxorubicin 

(DXR), paclitaxel (PCT), rhodamine 123 (RHO), valspodar (VSP) and verapamil (VRP).  

 

Molecule DXR PCT RHO VSP VRP CLS 

Hco-
Pgp-13 
Model 

4 52 4 52 4 52 4 52 
 

4 52 4 52 

Cluster 
rank 

1 2 1 2 1 2 1 2 1 1   3 1 1 2 1 1 1 1 2 

TMa-b 

              Y8            

     R11       R11 R11 R11      

     D15       D15  D15      

        R18       R18 R18  R18 R18 

S19 S19  S19             S19    

  S20             S20 S20 S20   

E21 E21 E21 E21 E21  E21 E21 E21 E21  E21    E21 E21 E21   

     K25       K25 K25 K25      

            S26        

            V28        

            L29 L29 L29      

              P32      

              A33      

                            R45           

TM1 

   Q108 Q108  Q108 Q108                    

      M111              

    S115                         S115   S115 S115   

ECL1 
                        V118   

                                    T119   

TM3 

            K214   K214          

 L217                   

 R220                   

      M224 M224                               

TM5 

                    L331      

                F334   F334 

  L335      L335 L335      L335 L335  L335 L335 

    M339                                   

TM6 

  F358     F358  F358  F358       F358   F358 F358 F358 

  V361      V361 V361       V361  V361 V361 

    M362   M362 M362 M362      M362  M362 M362 M362 

                L364   L364 

   L365 L365  L365  L365 L365  L365    L365 L365 L365 L365 L365 

L366   L366 L366  L366              

Y369 Y369 
 

Y369 
 

Y369 Y369 
     

Y369 Y369 
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G372 G372 

      

 
L373 

   
L373 

      
L373 L373 

      

     
P376 

      
P376 

 
P376 

     

     H377       H377  H377      

                        V380               

TM7 
        L772 L772  L772       L772        

    F776   F776     F776 F776 F776   F776       F776 F776 F776 F776   

TM8 
    F803             F803                     

TM10 

      L909                     

L912      L912 L912             

S915      S915              

M916 M916  M916 M916 M916 M916 M916      M916       

     I917               

L919 L919 
   

L919 L919 
     

L919 L919 L919 
     

          
A920 

            
A920 A920 A920 

          

ICL4 
            L921              

                        T922 T922             

TM11 

S988 F985     S988                     

Q989 S988   Q989   Q989             

F991 Q989  Q989                 

T992    T992  T992 T992             

       Y993             

       M995          M995   

               V996  V996   

                 C999   

                              Y1000   Y1000 Y1000 Y1000 

TM12 

  F1018  F1018   F1018           F1018   F1018 F1018 F1018 

               I1021  I1021  I1021 

  I1022  I1022   I1022  I1022  I1022    I1022 I1022  I1022 I1022 

L1025  L1025  L1025   L1025 L1025       L1025 L1025 L1025 L1025 L1025 

  L1026 L1025 L1026   L1026 L1026 L1026  L1026    L1026 L1026 L1026   

S1028    S1028  S1028              

V1029   S1028 V1029  V1029 V1029         V1029 V1029   

   V1029   V1031              

     M1032 M1032 M1032      M1032       

     N1033       N1033 N1033       

     S1035       S1035 S1035       

                        S1036 S1036 S1036           

Nter 
            P1039 P1039 P1039          

                        E1040               

 

Bold:  hotspot residues. Underscored: residues establishing a H-bond.   



EXPERIMENTAL WORK: PART II - C  

 

264 

 

Table 3. Physico-chemical properties and docking characterization of the macrocyclic 

lactones ivermectin and moxidectin (MOX), to HcoPgp13 models 04 and 52. 

 

Molecule : 
MW (Da) / logP 

a

 
IVM: 875 / 4.3 MOX:  640 / 5.4 

Hco-Pgp-13 
Model 

04 52 04 52 
Cluster rank  1 1’ 1 1’ 1 3 1 1’ 

Binding Energy 
(kcal/mol) 

-11.2 -11.3 -12.8 -12.8 -10.8 -10.0 -11.7 -11.6 

Nb of poses  19 28 17 8 90 3 90 65 
Nb of inter-

acting residues  14 17 21 21 11 13 15 15 

Nb of hotspot 
residues  

5 4 14 15 3 9 12 10 

Nb of H-bonds  2 3 2 0 1 0 0 0 
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Table 4. List of interacting residues of each transmembrane helix of HcoPgp13 models 04 

and 52 with the indicated lowest energy clusters of ivermectin (IVM) and moxidectin 

(MOX). 

 

Molecule IVM MOX 

Hco-Pgp-
13 Model 

4 52 4 52 

Cluster 
rank 

1 1' 1 1' 1 3 1 1' 

TMa-b 

 R11       

 D15   D15    

      R18  

S19        

  S20   S20  S20 

E21  E21 E21  E21  E21 

    T22    

  K25     K25       

TM1 

     Q108   

     M111 M111  

    S115 S115       S115 

ECL1     V118           

TM3 
 L217       

          M224     

TM5 
      F334 F334 

      L335     L335 L335 

TM6 

  F358 F358   F358 F358 

   V361   V361 V361 

  M362 M362  M362 M362  

L365  L365 L365   L365 L365 

     L366 L366  

Y369 Y369   Y369 Y369   

 G372   G372    

L373 L373   L373    

 P376       

H377 H377     H377       

TM7 
  L772    L772  

    F776 F776     F776 F776 

TM8               F803 

TM10 

   L909     

  L912 L912     

 A913 A913 A913     

M916 M916 M916 M916 M916 M916   

I917 I917       
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L919 L919   L919    

A920 A920     A920       

IL10-11 L921               

TM11 

    Q989    

  M995      

    Y1000 Y1000     Y1000 Y1000 

TM12 

  F1018 F1018    F1018 

   I1022   I1022 I1022 

   M1024     

  L1025 L1025  L1025 L1025 L1025 

  L1026 L1026  L1026 L1026  

  S1028 S1028     

V1029  V1029 V1029  V1029  V1029 

  V1031 V1031     

M1032 M1032 M1032   M1032   

 N1033       

S1035 S1035             

 

 

Bold:  hotspot residues. Underscored: residues establishing a H-bond.  
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Supplementary Table 1. Primers used for quantitative Real-Time-PCR on epithelial-like 

pig (Sus scrofa, Ssc) kidney cells (LLCPK1) transfected with Haemonchus contortus (Hco-

) P-glycoprotein (Pgp) 13. 

 

Primer Nucleotide sequence (5’ to 3’) 

Optimized Hco-Pgp-13 Forward ATCTCCGCCGGATACATTG 

Optimized Hco-Pgp-13 Reverse GTGGTAATTTCCGGTAGCGTTT 

Ssc-Pgp Forward TGCCACCACGATAGCTGAGAACAT 

Ssc-Pgp Reverse ATGGCGATTCTCTGCTTCGTCCA 

Ssc-gapdh Forward AACTGCTTGGCACCCCTG 

Ssc-gapdh Reverse TTGGCAGCGCCGGTAGAA 

 

gapdh = glyceraldehyde 3-phosphate dehydrogenase. 
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General Discussion and Prospects 

 

In mammals, some ABC transporters, such as the human P-glycoprotein (ABCB1), 

transport numerous drugs and are strategically located on major protective barriers. For 

example, on the blood-brain barrier, they protect the brain from ivermectin entrance and 

neurotoxicity (Roulet et al., 2003; Schinkel, 1997; Schinkel et al., 1994). Some of these 

transporters are also involved in multidrug resistance in mammals and many other organisms 

(Eckford and Sharom, 2009; Jones and George, 2005; Koenderink et al., 2010; Lage, 2003; 

Leonard et al., 2003).  

In nematodes, many Pgps orthologs have been identified. H. contortus is one of the most 

economically important parasites in small ruminants industry. It is one of the first nematodes, 

after C. elegans, to have its entire genome sequenced (Laing et al., 2011; Laing et al., 2013), 

and where 10 Pgps (i.e. full-size B sub-family members) were found (whereas 14 full Pgps and 

a pseudogene exist in C. elegans). The individual role of each of these transporters remains to 

be determined. In particular, their involvement in multidrug transport, and eventually in 

resistance to anthelmintics, requires further investigation.  

Some Pgps are located on the amphidial neurons, which appear as a possible route of 

entry of toxics, and which structure alteration has been linked with ML resistance in C. elegans 

and H. contortus (Dent et al., 2000; Freeman et al., 2003; Menez et al., 2016; Urdaneta-Marquez 

et al., 2014). As the AH targets are located in the nervous system of the worms, Pgps expressed 

in these organs might be critical in preventing these drugs from reaching their targets, thus 

avoiding the death of parasites by paralysis of somatic and pharyngeal muscles. 

In C. elegans, two Pgps are found in these structures, Pgp-6 that has no ortholog in H. 

contortus, and Pgp-13. The latter has a close ortholog in H. contortus, thus called Hco-Pgp-13. 

We thus focused our interest on the characterization of the function Hco-Pgp-13. In this context, 

the release of a crystal structure for Cel-Pgp-1 (PDB: 4F4C) has been a major improvement in 

the deciphering of the function of individual nematode Pgps (Jin et al., 2012). It provides a first 

evidence of its multidrug transport function and a relevant template for modelling of close Pgp 

orthologs and drug docking. 
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1. Cel-Pgp-1 is a multidrug transporter with some homologies with 

mammalian Pgp   

We further reinforced that Cel-Pgp-1 is a multidrug transporter by performing in silico 

docking calculations and we determine the binding modes of various molecules of 

pharmacological interest. This indicated a close homology of binding profile of Cel-Pgp-1 with 

that of Hsa-Pgp, as previously described by Jin et al. (2012). Such approach allowed us to 

identify residues of Cel-Pgp-1 implicated in the interaction with the various compounds tested. 

Many of them were aligned to hotspot residues, previously identified for being involved in 

ligand binding in several mammalian Pgps in vitro (Aller et al., 2009; Bessadok et al., 2011; Li 

et al., 2013; Loo et al., 2006a, b; Loo and Clarke, 2001, 2002; Shilling et al., 2006). 

The shape of the full binding pocket of a Pgp was described for the first time as being 

composed of two interconnected major sub-domains, which resembles what was predicted 

earlier for a mammalian Pgp (Garrigues et al., 2002). This is also in line with previous in vitro 

(reviewed in (Ambudkar et al., 2006)), and in silico studies that had suggested the presence of 

at least two, possibly overlapping, binding sites for substrates on different Pgps (Chufan et al., 

2013; Srinivasan et al., 2014).  

2. Cel-Pgp-1 interacts with ML with high affinity 

This modelling approach allowed us to demonstrate that some AH drugs currently used 

in veterinary and human medicine to treat helminth infections can bind to Cel-Pgp-1. The major 

finding arising from our approach concerns the high affinity binding of all MLs of current 

clinical importance, with a very specific binding site on Cel-Pgp-1. The drug docking provided 

here, combined with the ATPase activation by drugs with high affinity binding to Cel-Pgp-1 

provided by Jin et al. (2012), allow us to confidently predict that all MLs tested here are 

certainly transported by Cel-Pgp-1. This is consistent with an increased sensitivity to IVM 

found in vitro for individual deletion strains of C. elegans (Janssen et al., 2013), although pgp-

1 deletion strain was not the most affected.  

Thus, this work opened the path to study homologies with other parasitic nematode 

Pgps. We then constructed two 3D models of Hco-Pgp-13 based on the 4F4C template, and 

they were found to have equivalent accuracies of 3D structure according to various evaluation 

tools. 
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3. Hco-Pgp-13 presents many homologies with Cel-Pgp-1, which makes it 

a putative ABC multidrug transporter 

We performed in silico docking calculations on the two 3D models of Hco-Pgp-13, 

combined with in vitro transport and ATPase assays on two heterologous expression systems. 

One ligand was clearly identified by two approaches: actinomycin D, and three further pointed 

by preliminary experiments (paclitaxel, doxorubicin and valspodar). The high affinity binding 

predicted for various other, chemically-unrelated compounds on Hco-Pgp-13 in docking 

experiments indicates putative multispecific binding capacities for this transporter. In 

particular, due to their remarkably high affinity found in silico, the AH drugs IVM and MOX 

can be expected to be ligands, potentially transported, but this needs to be further tested by in 

vitro experiments.  

Thus, the function of Hco-Pgp-13 looks somehow homologous to other H. contortus and 

C. elegans Pgps studied so far. Hco-Pgp-2, Hco-Pgp-9.1 and Hco-Pgp-16 were indeed shown 

to be able to transport rhodamine 123, in a way that can be inhibited by the ML IVM and MOX. 

This is consistent with a role for these proteins in the xenobiotics detoxication in H. contortus 

(Godoy et al., 2015a, 2016; Godoy et al., 2015b). In addition, in C. elegans, Cel-Pgp-2 has been 

suggested to be involved in pinocytosis, acidification of lysosomes and lipid storage in the 

intestine (Nunes et al., 2005; Schroeder et al., 2007), and this function could be conserved in 

Hco-Pgp-2 according to its localization partly in the intestine. Other functions described for 

individual Pgps in close nematodes are a possible role found for Cel-Pgp-3 in chloroquine and 

colchicine sensitivity (Broeks et al., 1995), and the involvement of the Pgp-9 of C. elongatus 

in sensitivity to KTZ, that can be modulated by ACD, VLN, DAU, and the three MLs: IVM, 

EPR and MOX (Kaschny et al., 2015). Plus, Pgps of C. elegans were all found individually 

involved in IVM sensitivity to various extent (Janssen et al., 2013). 

Furthermore, we described a binding domain presenting a similar shape as that of Cel-

Pgp-1, composed of two major sub-domains separated by a more or less narrow area of binding, 

depending on the model considered. We also identified interacting residues mostly conserved 

with Cel-Pgp-1 and mammalian Pgps in terms of alignment, although their nature was more 

variable. This transporter was then found to have a fair functional homology with Cel-Pgp-1 

and Hsa-Pgp, consistent with a relatively conserved transport function of Pgps across species. 

This indicates that Hco-Pgp-13 might also be a multidrug transporter. 
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4. Hco-pgp-13 and Cel-Pgp-1 might also have homologies in their 

substrate recognition sites with other Pgps  

One could then wonder whether most nematode Pgps will have more or less overlapping 

substrate recognition patterns, and hence biological function, and the possible selectivity of 

each isoform will remain to be determined. Indeed, this question of redundancy of the transport 

function should consider that the number of Pgps is larger in nematodes than in mammals, 

which express only 4 full transporters of the B sub-family (B1, B4, B5, B11). However, among 

these 4 transporters that display close sequence homologies, only B1 exhibits clear multidrug 

transport capacities. 

Interestingly, most ABCB transporters across species are composed of 12 TM helices, 

but the crystal of Cel-Pgp-1 showed a supplementary N-term small transmembrane hairpin 

structure (TMa-b) never described before for any mammalian ABC protein. This could 

contribute the larger distance between NBDs observed in the open inward-facing conformation, 

as compared to the distance between NBDs of mouse Pgp that does not present TMa-b (Aller 

et al., 2009; Li et al., 2013; Szewczyk et al., 2015; Ward et al., 2013), due to sterical constraints. 

This structure might thus impact both the dimerization of NBDs and the substrate affinity at the 

level of TMDs, since these supplementary helices close them on one side within the membrane. 

In particular, it could both create a less easily reachable binding domain and change its residue 

nature, and thus its specificity for the potentially handled compounds.  

Furthermore, 6/14 full Pgps (Pgp-1 and Pgp-10/11/12/13/14) have a long N-terminal 

sequence possibly forming a hairpin in C. elegans, whereas 2/10 Pgps (Pgp-10 and Pgp-13) in 

H. contortus are suspected to form such hairpin. Noticeably, Pgp-10 is the only ortholog in H. 

contortus of Pgp10/11 in C. elegans, and Pgp-13 is the only ortholog in H.contortus of 

Pgp12/13/14 in C. elegans, whereas Hco-Pgp-1, the closest ortholog of Cel-Pgp-1, presents a 

short N-terminal sequence. It thus will be desirable to evaluate whether these few TMa-b-

containing isoforms display specific functional homologies. Of interest, the Pgps of the cluster 

Pgp-12/13/14/15 (Pgp-15 being a pseudogene) appeared to have different degrees of 

involvement in ML extruding in C. elegans, according to two studies showing an increase 

susceptibility of C. elegans to IVM individual Pgp deletion strains as compared to WT 

C. elegans (Ardelli and Prichard, 2013; Janssen et al., 2013). This could be due either to 

different affinities for each of them to these drugs or to their specific localization.  
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5. The expression of Hco-Pgp-13 in Haemonchus contortus is widely 

distributed, supporting an important function for this protein 

Hco-Pgp-13 protein expression was located at the level of hypodermis and seam cell, both 

in the L3 larvae and adult. The L3 also showed staining of the membrane of epithelial cells of 

the gonad, and the adults appeared to express this transporter in pharyngeal glands or/and 

neurons, as well as in head neurons being possibly the amphids. Interestingly, this tissue 

expression pattern matched that of the whole cluster presenting the closest homologies of 

sequence in C. elegans, composed of Cel-Pgp-12/13/14/15. 

Hco-Pgp-13 thus appeared to have a wider tissue distribution than other Pgps localized 

so far in this parasite or in the free-living worm C. elegans. In fact, all the nematode Pgps 

localized so far were found in a few tissues each, at variance with their closest human homolog 

ABCB1, nearly ubiquitious (although with various expression levels), but similarly to the very 

specific expression of the full transporters ABCB4 and B11 that play specific roles in the liver 

biliary canalicule.  

Hco-Pgp-2 mRNA had been detected in the pharynx, mainly in pharyngeal glands, where 

Hco-Pgp-13 was also detected in our immunofluorescence assay, and in the intestine of H. 

contortus (Smith and Prichard, 2002), where we found no staining for Hco-Pgp-13. Hco-pgp-2 

mRNA was also detected in the vas deferens and lateral hypodermal chords anterior to the nerve 

ring, which correspond to the location of the amphidial nerves also stained in our study. 

However, the probe used for in situ hybridization had been designed on the partial sequence 

available at that time, not at the most specific region of Hco-Pgp-2, so that mRNA from other 

Hco-Pgps might have also been detected. Godoy et al. (2015a) precised the location of the 

protein of Hco-Pgp-2 by using specifically raised antibodies, and also found staining in the 

pharynx, in the deirid, a sensory cilia reaching the external environment on the side of the head, 

in head nerve cords and in the anterior intestine. Interestingly, Cel-Pgp-2, the closest unique 

ortholog of Hco-Pgp-2 in C. elegans, was also predicted to be expressed in the pharynx and 

intestine (Zhao et al., 2004). This localization was then confirmed, together with expression in 

the cell bodies of sensory neurons of the amphids (Nunes et al., 2005) (Schroeder et al., 2007). 

This showed a partly conserved localization of two orthologs across species.  

On the opposite, HcoPgp-9.1 was found expressed at the level of the uterus of adult 

female H. contortus (Godoy et al., 2016), whereas Cel-Pgp-9 was predicted to be expressed in 

the pharynx and intestine (Zhao et al., 2004). However, in this case, two other orthologs of Cel-
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Pgp-9 are thought to exist in H. contortus: Hco-Pgp-9.2 and Hco-Pgp-9.3, which could have 

different expression sites. In C. elegans, Cel-Pgp-1 and Pgp-3 were also suggested to be 

localized in the intestinal cells, as well as Pgp-3 in the excretory cell (Broeks et al., 1995) 

(Lincke et al., 1993). Cel-Pgp-3 had also been predicted to be expressed in the excretory cell 

and intestine by (Zhao et al., 2004), and other Cel-Pgps were also found each in some of the 

previously cited organs.  

The tissue localization of Pgp-13 in the amphids of C. elegans, which were shown to be 

shortened in some IVM-resistant strains, and its detection at least in their close vicinity and in 

other relevant organs in H. contortus, together with its (multi)drug transport function suggested 

by our in silico analysis, makes it of high interest to study the possible involvement of this 

protein in ML resistance. The pharyngeal glands nerve cords containing glands and neurons 

were also found as a site of expression of Hco-Pgp-13. These structures could be very important 

to protect from ML, as the loss of pharyngeal pumping occurs in the response to these AH due 

to the flaccid paralysis of muscles by inhibition of electrogenic ion channels in the neurons 

innervating the pharynx, which is thought to cause the death of nematodes by starvation.  

In addition, the expression of this Pgp in the hypodermis could also be critical, as these 

tissues are in close contact with muscles where neurons form junctions and where the paralysis 

occurs after IVM treatment. Since nematodes do not present blood circulatory system like 

mammals, the pathway used by exogenous compounds to reach their letal targets is not well 

described. Thus, an intestine location, as it is the case for Cel-Pgp-1, cannot be readily assessed 

for being important in protecting the nervous system of the treated nematode, in opposite to the 

situation in mammals, where the intestine is part of the primary route of entry of xenobiotics. 

As a whole, this shows that determination of the AH drug biodistribution inside a treated 

nematode is crucial for understanding its mode of action.  

Finally, the hypothesis of the presence of only one ortholog in H. contortus, Hco-Pgp-13, 

as compared to the corresponding four genes in C. elegans, would make its effect comparable 

to the added effects of all these genes. 

6. Perspectives for future investigation of Hco-Pgp-13 substrate profile  

Based on previous in vitro experiments investigating the capacity of ACD and PCT to 

interact with Hco-Pgp-13, supplementary assays could be performed to test the interaction of 

various compounds, previously screened in silico, with Hco-Pgp-13. The Pichia pastoris 
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expression system allows the stable expression of many ABC transporters. It then permits a 

very direct measure of an interaction between a transporter and its putative substrates, by 

studying the stimulation by various compounds of the ATPase activity of the transporter present 

on isolated membranes. However, if this system allows to conclude confidently that drugs that 

activate the Pgp ATPase are definitively substrates, it cannot be used for some other compounds 

that do not stimulate ATPase activity. This has to be interpreted with caution as this does not 

obviously means no transport. Indeed, a basal activity exists, actually observed in our ATPase 

activity assays, which can be stimulated or unchanged in the presence of ligands, depending on 

the translocation rate of the studied compound as compared to the potential endogenous 

substrate. However, in contrast to other in vitro techniques, such as transport and cytotoxicity 

assays, the stimulation of ATPase activity permits the determination of the protein-ligand 

affinity, which can be comparable to the binding energy found in silico by taking into account 

the membrane partition of each molecule that depends on its hydrophobicity. Competition 

experiments, with one activator and a molecule that inhibits this activation, also allow gaining 

insight into the interaction of molecules which would otherwise show no modification of basal 

ATPase activity.  

This heterologous expression system allowed in our project the successful expression of 

Hco-Pgp-13 protein at the membrane. We were able to start the investigation of Hco-Pgp-13 

substrate profile, and found a stimulation of the ATPase activity of Hco-Pgp-13 by ACD, as 

well as PCT in preliminary experiments. This highly resembled the results found for Cel-Pgp-

1 by Jin et al. (2012), and further experiments would help unravel the full recognition profile 

of Hco-Pgp-13, to determine if it also shows multispecific binding capacities. However, a 

limitation to the replication of this type of experiments has been the loss of the protein after 

freezing at -80°C and thawing of P. pastoris native membranes to perform functional assays, 

so that fresh cells were required to perform each experiment. The next experiments could then 

be performed on purified membranes reconstituted in proteoliposomes, presenting the 

advantage of a defined, controlled lipid composition. This would allow the direct study of 

ATPase activity stimulation by many compounds, without being hampered by the presence of 

other transporters in the system, so that the effect observed is the actual effect on the studied 

protein and does not require a negative control to validate the results. This would first allow 

determining the ability of Hco-Pgp-13 to transport ML, which is an important step in the 

elucidation of H. contortus resistance mechanisms to such drugs. More generally, this could 

help investigating in vitro the effect of molecules tested in silico, and thus increase the number 
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of mammalian Pgp substrates tested for their effect on Hco-Pgp-13, in order to gain insight into 

the multi-drug transport capacities of this transporter.  

7. Could Hco-Pgp-13 also transport endogenous sterols? 

The effect of the presence of sterols at various concentrations in the proteoliposome could 

help study the capacity of Hco-Pgp-13 to transport these putative endogenous substrates. 

Indeed, among the various mammalian ABC transporters having specific functions, some of 

them are transporters of lipids, with sometimes overlapping substrates (Le May et al., 2013; 

Lespine et al., 2009; Orlowski et al., 2007). In nematodes, membrane lipids are thus also 

relevant potential substrates for Pgps, as well as for the other ABC transporters. Nematodes 

require only a very low level of cholesterol, and they are auxotrophes for sterols, so that their 

membrane composition highly depends on the environment of each organism (Kurzchalia and 

Ward, 2003). For example, C. elegans feeds from ergosterol in the soil, whereas H. contortus 

is unlimited for cholesterol when it feeds from blood in its host. P. pastoris cells membranes 

are mainly composed of ergosterol, but their in vitro composition depends on the culture 

medium, whereas mammalian membranes are mostly made of cholesterol. It would thus be 

interesting to deplete the sterol level from proteoliposomes containing Hco-Pgp-13 and replace 

it or not with ergosterol or cholesterol. This would first permit to follow the basal activity 

variations, and then to compare the stimulation of ATPase activity by a same exogenous 

compound in presence of high concentrations of ergosterol, cholesterol, or few sterols. This 

way, we could identify the best initial composition of membranes that will yield a low basal 

activity of Hco-Pgp-13 ATPase, in order to obtain the highest stimulation effect possible by 

compounds investigated for their interaction with the transporter. This will then lead to a more 

precise comparison of the affinities of various ligands for Hco-Pgp-13. 

However, we would need to keep in mind that a modification of ATPase activity 

stimulation level could be an indirect effect of the membrane composition changing the reaction 

environment. Indeed, parameters such as the thickness of the lipid bilayer, that is different in a 

membrane poor in sterol versus rich in sterol, can change the stability of a membrane protein. 

This possible importance of the composition of membranes can also be addressed by measuring 

its functionality when expressed in mammalian cells, allowing to wonder whether the higher 

level of cholesterol present in the mammalian membranes, as compared to the low level of 

sterols present in nematodes membranes, could lead to a higher basal transport, and eventual 

competition with a fluorescent substrate. 
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8. Further description of Hco-Pgp-13 molecular properties and 

implication for other Pgps 

To further elucidate the molecular mechanisms of ligand binding on Hco-Pgp-13, 

mutagenesis studies could be performed on specific residues that seemed critical for ligand 

binding in silico. For example, the residue E21 was found to interact with all substrates tested 

except for VSP that bound in BD1 and CLS that bound very deep in BD2. Plus, it was found to 

form H-bonds with some poses of DXR, VRP and IVM. A change of the nature of this residue 

could be followed by expression in P. pastoris and ATPase activity assays with compounds that 

stimulated the ATPase of the WT protein, to see if the activation rate is changed, indication an 

alteration of the interaction. Such strategy could also help to determine the influence of the 

TMa-b hairpin by deleting its corresponding N-term sequence before transfection and 

functional assays. This was previously performed for Cel-Pgp-1 by Jin et al. (2012), who had 

not found much difference of function between the WT protein and the mutant Cel-Pgp-1 

deleted for the first 56 amio-acids, in terms of protection form the cytotoxic effect of ACD and 

PCT, and stimulation of the ATPase activity by these two molecules. Thus, the absence of TMa-

b in a protein that normally contains it might slightly modify the interaction site and affinity of 

substrates without dramatically changing the overall ligand profile of a Pgp. 

This combination of in silico prediction of ligand binding and in vitro assay of their effect 

on the ATPase activity of a transporter is a powerful tool to better understand the molecular 

mechanism of ligand transport. If the first compounds predicted to be substrates of Hco-Pgp-

13 in silico prove to have an effect of Hco-Pgp-13 ATPase activity in vitro, more docking 

calculations can be performed to screen interesting related compounds that can be further tested 

in vitro, which usually takes more time. By this way, the extensive multidrug capacity of a 

transporter can be more quickly studied in the wide variety of its substrates, with insights in the 

precise molecular mechanisms of binding that cannot be solved with biochemistry alone. 

Practically, both approaches are to be considered as valuably complementary, and should be 

combined as much as possible. 

Moreover, the characterization for the first time of a protein of H. contortus at the 

molecular level will help shedding light on the transport mechanism of other Pgps of this 

organism, first considering Hco-Pgp-10 that also contains a long N-term sequence, and then 

Hco-Pgp-1 that is the closest ortholog in H. contortus to the Cel-Pgp-1 3D structure template. 

If Hco-Pgp-13 is proven to be a multidrug transporter, and to transport MLs, then its properties 

could be compared to those of the proteins Hco-Pgp-2/9/16 that have shown similar properties 
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in vitro. Then, the most direct Pgps to compare with will be other Pgps from pathogenic 

nematodes having the closest homology possible with Cel-Pgp-1 and Hco-Pgp-13, and those 

that have been proven as multidrug transporters. But only the full transporters of ABCB should 

be compared, as half-transporters should share more homology with the human ABCB10 

protein, whose crystal structure has been solved (Shintre et al., 2013). This transporter, which 

showed less distance between its NBDs that Cel-Pgp-1, and whose conformation was almost 

independent of ATP presence, could also be used as template for homology modelling of close 

orthologs in species as close as possible. 

9. Investigation of Hco-Pgp-13 importance in the living worm 

To better understand the role of Hco-Pgp-13 in vivo, it will be interesting to study its 

involvement in ML resistance at the level of the living organism. This could be performed by 

injection of H. contortus with siRNA targeting hco-pgp-13 and looking for phenotype changes, 

for example in the distribution of a fluorescent compound, as compared to the WT parasite. 

The rescue of the function of deleted pgp-13 in C. elegans by Hco-pgp-13 could also be 

investigated. For this, a specific phenotype needs to be described for C. elegans deleted for pgp-

13 to evaluate drug toxicity in the absence and presence of various drugs, including ML. In 

particular, if Cel-Pgp-13 is critical for ML export and for protecting the worm from their 

toxicity, the motility, larval development or feeding capacity of C. elegans would be more 

altered in deleted strains than in WT in the presence of ML. Then, the sequence coding for Hco-

pgp-13 must be ligated to the sequence of the promoter of Cel-pgp-13, and fused in an 

expression vector for C. elegans. Gonad microinjection of the plasmid in C. elegans deletion 

strains finally allows obtaining C. elegans lineages expressing the transgene, and their 

phenotype can be compared with that of C. elegans deleted for Cel-Pgp-13. If a low sensitivity 

to ML is recovered in rescue strains as compared to deletion strains, Hco-Pgp-13 could be 

identified as important for ML transport and resistance in vivo.  

However, as Hco-Pgp-13 appears to be the ortholog of Cel-Pgp-13, 12 and 14, double 

or triple deletion strains is required to see if the function of the whole group of Pgps could be 

rescued. Such C. elegans double KO line can be obtained by crossing two independant KO 

lines.  



GENERAL DISCUSSION AND PROSPECTS  

 

281 

 

10. Perspective for fighting ML resistance in the field: design of inhibitors 

of Pgps which will have been identified as transporters of ML 

Once the substrate binding profile of parasitic Pgps will have been characterized, and 

those involved in ML transport leading to resistance will have been defined in H. contortus, it 

will be interesting to screen for molecules that could be used as inhibitors of Pgp transport while 

MLs are administered. This could help getting back to their initial efficacy against parasitic 

nematode in the case of ML resistance, but an important point will be to make sure that these 

compounds block only the Pgps of the parasite and not the Pgp of the treated host. Otherwise, 

the ML treatment combined to suh inhibitor could be toxic for the host.  

Given the substrate recognition pattern found for Cel-Pgp-1, that was relatively similar to 

mammalian Pgps (Jin et al., 2012), this task of looking for specificities between ABC 

transporters might be harder than expected. The Pgp of the sheep Ovis aries (Oar-Pgps), the 

main host of H. contortus, was found to show 58% mean similarity (according to BlastP) of 

residues within its two TMD domains with the corresponding domains of Cel-Pgp-1, which is 

equivalent to the similarity found between Hsa-Pgp and Cel-Pgp-1. As mentioned in Part II, A, 

of this manuscript, this similarity level is higher than that of all other Cel- or Hco-Pgps to Cel-

Pgp-1, except for the Pgp-9 of the two species. It might thus be harder to find inhibitors of 

Cel/Hco-pgp-1, or Cel/Hco-Pgp-13 that do not inhibit Oar-Pgps than inhibitors of Cel/Hco-

Pgp-10, showing the lowest homology of TMDs with Cel-Pgp-1 among all Pgps, that will not 

interact with mammalian Pgp. But this will require first to continue investigating the substrate 

profile of each Pgp one by one, in order to determine which one(s) has (/ve) the least similarity 

of binding profile, but are still involved in ML transport and thus are interesting to block in the 

parasite. As mammalian Pgps themselves can transport MLs, the balance between blocking 

H. contortus Pgps with inhibitors without being harmful for the host might be hard to find. 

However, we have shown for Cel-Pgp-1 that the interacting residues, although presenting 

a high ratio of hotspot residues, have very few to no conservation of their nature, leading to the 

conclusion that the 3D recognition pattern clearly differed with that of the mammalian Pgp. 

Thus, the same drug binds to different places in the two multispecific chambers. The binding 

potencies of these multispecific domains are then qualitatively different, and it might be 

possible to rationally design an optimized ligand that will be able to distinguish them. 

Finally, if the binding locations of compounds on various Pgps start to be described, the 

translocation mechanism of these transporters is not fully understood yet. In particular, the two 
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main binding sub-sites, when occupied, can be expected to have a different effect on the closing 

of NBDs required for ATP hydrolysis. Indeed, such transconformation appears harder when 

BD1 than when BD2 is occupied, and the ligands initially binding to BD1 might need one more 

step of movement within the protein before being expulsed in the external compartment. This 

would be coherent with a different effect on the stimulation of basal ATPase activity observed 

for substrates binding to BD2 and BD1, which translocation could take more or less time than 

that of endogenous substrates. Interestingly, the substrates observed in vitro to stimulate the 

most the basal ATPase activity of Cel-Pgp-1 were ACD, VNL and PCT, all binding to BD1. In 

silico molecular dynamics experiments could help elucidate this process involving a large 

amplitude transconformation of the protein, but only if performed with a sufficient time-scale 

to model the whole ligand translocation. Furthermore, as the lipid bilayer is hard to model 

around an ABC transporter, due to the variety of lipid molecules, the process described would 

be only approximate, as the lipids might play an important role during the dynamics of ligand 

translocation, probably more than during its first step of binding.  

Thus, much still needs to be done to better understand the mechanistics of Pgps, and their 

possible involvement in the resistance to anthlemintics in parasitic nematodes. Plus, to 

overcome the problem of resistance in parasites of small ruminants, we need to keep in mind 

that the transport of drugs by Pgps might not be the only mechanism involved. 

The approaches developed during this PhD have allowed gainining insights into 

responses important for the survival of parasitic nematodes when they are exposed to toxic 

drugs, and molecular targets to make drugs more efficient. This will hopefully contribute in 

optimizing the use of AH chemicals for the control of gastrointestinal parasitic nematodes of 

small ruminants.   
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Final Conclusion and Summary 

 

We provided advancements in the domain of nematode Pgp molecular characterization 

and function, in particular in relation with anthelmintics (AH), including macrocyclic lactones 

(ML), transport.  We reported the binding modes of various ligands on a Pgp of the nematode 

C. elegans, Cel-Pgp-1, using its recently published X-ray structural model, and in consistency 

with previous in vitro data (Jin et al., 2012). Overall, we also described for the first time the 

binding locations of a large set of AHs, and we showed that all ML bind to a very specific 

binding site with high affinity as compared to the validation set of molecules. In addition, we 

identified several hotspot residues for drug binding identified from alignment with mammalian 

Pgps as critical for ML binding on Cel-Pgp-1. Thus, we showed that a docking calculation 

strategy, usually performed to investigate the binding site of enzymes binding very specifically 

one substrate with a “key and lock” mechanism, could be a strong tool to gain insight into 

multiple binding sites of ligands on a multispecific ABC transporter harboring a wide binding 

domain.  

Then, initially starting from its nucleotide sequence given by the large-scale sequencing 

of parasitic nematode H. contortus genome, we started shedding light on the substrates of the 

ABC transporter of Hco-Pgp-13 both in silico, and in vitro. Based on alignment with the crystal 

structure of Cel-Pgp-1 (PDB: 4F4C), we proposed 2 putative 3D structures for the Hco-Pgp-13 

protein. The docking strategy previously validated was useful to screen for putative ligands of 

Hco-Pgp-13, which were for some of them tested in vitro. Various assays were performed in 

two heterologous Hco-Pgp-13 expression systems, the LLCPK1 mammalian cells and the yeast 

Pichia pastoris. ATPase activity assays performed on the latter showed that Hco-Pgp-13 can 

bind to and transport actinomycin D. More assays with other putative substrates will be required 

to discover the possibly wide variety of Hco-Pgp-13 substrates. 

The localization of Hco-Pgp-13 was found to be at the level of hypodermis, seam cells 

and other epithelial cells of the L3, and at pharyngeal glands or/and neurons, as well as head 

neurons being possibly the amphids in adults. This reveals a wider expression of Hco-Pgp-13 

than its close ortholog in C. elegans, Cel-Pgp-13, and it also corresponds to the locations of 

Cel-Pgp-12 and Cel-Pgp-14. More precise techniques, such as electron microscopy, will be 

necessary to determine if the neurons stained in the head with the two antibodies designed 
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against Hco-Pgp-13 are the amphids. Nonetheless, the various locations of expression of Hco-

Pgp-13 suggest an important role for this protein in the parasite, either for transport of 

endogenous or exogenous compounds. 

Then, the next question will be whether or not Hco-Pgp-13 can transport other drugs and 

among them, ML. If so, it will be important to study the consequences of this transport in ML 

resistance in H. contortus. Using the same method as the homology model built on Cel-Pgp-1, 

and docking calculations, the function of other Pgps of this parasite and others could be 

investigated, together with in vitro experiments. It will indeed be necessary to find which Hco-

Pgp, among the last six not investigated individually so far, are able to bind to and transport 

ML. The docking strategy will then be very useful to search for compounds that could compete 

with ML for binding onto each Pgp and thus inhibit their transport, which could help fighting 

resistance in parasitic nematodes. Specificity towards the parasitic Pgps will be required to 

avoid toxicity for the host. This will demand a model of mammalian Pgp accurate enough to 

perform docking calculations on the ABC transporters of the host and avoid the use of inhibitors 

that would block it. 

Finally, the global aim of this work will be to control the populations of H. contortus 

infecting goats and sheep, by targeting the worms that are already resistant to the main AHs 

used today in veterinary medicine. This would avoid the need to discover new anthelmintics, 

as the last ones released on the market were only efficient for a few years before leading to 

resistance. Plus, it could allow reducing the doses of AHs currently used by combination with 

inhibitors that can be selected for being less toxic. 
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TITLE: Identification and functional characterization of an ABC transporter of Haemonchus 

contortus, the P-glycoprotein 13 

___________________________________________________________________________

SUMMARY: 

Macrocyclic lactones (ML) are paralyzing anthelmintics used in animals and humans 

against parasite nematodes. However, their therapeutic success is compromised by the spread 

of ML resistance. This might be at least partly due to P-glycoproteins (Pgps) ABC transporters 

that are selected and overexpressed in ML-resistant nematodes. Deciphering the role of the 10 

Pgps expressed in the parasite of small ruminants Haemonchus contortus is thus of major 

importance to guaranty anthelmintic (AH) efficacy of various drugs. Here we focused on Hco-

Pgp-13 due to the expression in the amphids of its closest ortholog in the model nematode C. 

elegans. Indeed, the amphids represent a putative entry route of drugs to reach AH targets in 

the nervous system and have been linked to AH susceptibility in C. elegans and H. contortus. 

In order to predict the capacity of nematode Pgps to transport drugs, including ML and 

otherAH, we have developed an in silico drug docking model. We have used C. elegans Pgp-1 

(Cel-Pgp-1) crystal structure and have showed a high affinity binding of several ligands that 

have been shown to be activators of its ATPase function. ML were also found to bind with high 

affinity to Cel-Pgp-1, on a specific binding site. This approach provides a valuable tool to 

predict drug-drug interactions and to rationally design new competitive inhibitors of nematode 

Pgps, in order to improve anthelmintic therapeutics. 

We then predicted a putative 3D structure of Hco-Pgp-13 based on the recently released 

crystal of Cel-Pgp-1, with which it presented a high homology. This allowed the study of the 

interaction of Hco-Pgp-13 with potential substrates, in particular ML. We found similar 

affinities for various drugs previously tested on Cel-Pgp-1, supporting the good homology of 

these two proteins. Together with in vitro ATPase assay experiments that confirmed the 

substrate status of actinomycin D, this indicates a possible multispecifc recognition capacity of 

this parasitic transporter.  

The determination of Hco-Pgp-13 localization using immunohistochemistry showed a 

wide tissue expression consistent with a critical role for Hco-Pgp-13 in endogenous and/or 

exogenous substrate transport. 

In conclusion, this work provides insights into the role of nematode Pgps in transporting 

AH drugs, both at the level of the model organism C. elegans and of the parasitic nematode H. 

contortus. This suggests a high homology of function conserved between ABC tranporters in 

these species. The localization of such protein on amphidial structures and its possible 

involvement in drug resistance and survival of H. contortus to exposure to AH compounds 

remain to be precised.  

 

___________________________________________________________________________ 

KEYWORDS:  ABC transporter; P-glycoprotein, Haemonchus contortus, Caenorhabditis 

elegans; nematodes; anthelmintics; macrocyclic lactones; in silico docking; multispecific 

recognition; substrate transport; multidrug resistance, amphids.



RESUME  

 

310 

 

AUTEUR : Marion DAVID 

TITRE : Identification et caracterisation fonctionelle d’un transporteur ABC de 

Haemonchus contortus, la P-glycoprotein 13 

DIRECTEURS DE THESE : Dr Anne LESPINE et Pr Roger K. PRICHARD 

LIEU ET DATE DE SOUTENANCE : Toulouse, le 14 Octobre 2016 

RESUME : 

Les lactones macrocycliques (LM) sont des anthelminthiques (AH) à effet paralysant très 

utilisés chez les animaux et les humains contre les nématodes parasites. Cependant, leur succès 

thérapeutique est compromis par la résistance croissante aux LM, qui pourrait être en partie dû 

aux ABC transporteurs P-glycoprotéines (Pgps) sélectionnés et surexprimés chez les nématodes 

résistants aux LM. Dans ce travail, nous avons étudié plus précisément la P-glycoprotéine 13 

du parasite de petits ruminants, Haemonchus contortus. Son orthologue chez le modèle 

nématode C. elegans, Cel-Pgp-13, est exprimé dans les amphides, structures qui ont été 

associées à la sensibilité aux AH chez C. elegans et H. contortus. 

Pour prédire la capacité des Pgps de nematode à transporter des drogues, incluant des LM 

et autres AH, nous avons développé un modèle de docking in silico. Nous avons utilisé la 

structure cristallographique de C. elegans Pgp-1 (Cel-Pgp-1), et nous avons montré la liaison 

avec une forte affinité de plusieurs ligands décrits comme activateurs de sa fonction ATPasique. 

Nous avons aussi décrit une forte affinité des LM, et un site spécifique de liaison de ces 

composés à Cel-Pgp-1. Cette approche représente un outil important pour prédire les 

interactions entre AH, et pour concevoir rationnellement de nouveaux inhibiteurs compétitifs 

des Pgps de nématode, dans le but d’améliorer les stratégies thérapeutiques.  

Sur la base de cette approche, nous avons prédit la structure 3D de Hco-Pgp-13 à partir 

du cristal de Cel-Pgp-1 afin d’étudier son intéraction avec des substrats potentiels, en particulier 

les LM. Nous avons trouvé des affinités similaires pour différents composés précédemment 

testés sur Cel-Pgp-1. In vitro, la mesure de l’activité ATPasique montre que l’actinomycine D 

est un substrat de Hco-Pgp-13. Nos données démontrent la présence possible d’un domaine de 

reconnaissance multispécifique sur ce transporteur de parasite. 

La détermination par immunofluorescence de l’expression de Hco-Pgp-13 a montré une 

distribution tissulaire large indiquant que Hco-Pgp-13 pourrait jouer un role important dans le 

transport de substrats endogènes et/ou exogènes. 

En conclusion, ce travail permet de mieux comprendre le rôle des Pgps de nématodes 

dans le transport de médicaments AH, tant au niveau de l'organisme modèle C. elegans que du 

nématode parasite H. contortus. Cette étude suggère la conservation de la fonction de 

tranporteur ABC multidrogue dans ces espèces. La localisation de Hco-Pgp-13 sur les structures 

amphidiales, et son éventuelle implication dans la résistance aux médicaments et à la survie de 

H. contortus à l'exposition à des composés AH, restent à préciser. 
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