]. S. Bibliographiques1, M. Udroiu, A. Yano, M. Tomita, T. Sano et al., Recent advances in single-chamber solid oxide fuel cells: A review, Solid State Ionics Napporn, Single-Chamber Solid Oxide Fuel Cell Technology From its 3 (2010) 57134 Développement de piles à combustible de type SOFC, conventionnelles et mono-chambres, en technologie planaire par sérigraphie, Thèse, Ecole Nationale Supérieure des Mines de Saint-Etienne Pilas de combustible de una sola cámara soportadas sobre el ánodo Thèse, École Nationale Supérieure des Mines de Saint-Étienne, 2005. [7] anode cermet Ni-CGO pour une pile à combustible monochambre fonctionnant sous un mélange O 2 / C 3 H 8 Thèse, École Nationale Supérieure des Mines de Saint-Étienne, 2010. [8] conversion École Nationale Supérieure des Mines de Saint-Étienne, 2014. [9] Q. Lonné, Réactivité et densification sous irradiation laser de composites ZrB, 2007.

T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson, and F. Dogan, Performance of a Porous Electrolyte in Single-Chamber SOFCs, Journal of The Electrochemical Society, vol.70, issue.88, pp.152-527, 2005.
DOI : 10.1149/1.1858811

B. C. Steele, Survey of materials selection for ceramic fuel cells. II Cathodes and anodes, Solid State Ionics, p.12231234, 1996.

I. Riess, On the single chamber solid oxide fuel cells, Journal of Power Sources, vol.175, issue.1, p.325337, 2008.
DOI : 10.1016/j.jpowsour.2007.09.041

I. Riess, The significance of impeded reactions in solid state electrochemistry, Solid State Ionics, p.16671674, 2005.

I. Riess, P. J. Van-der-put, and J. Schoonman, Solid oxide fuel cells operating on uniform mixtures of fuel and air, Solid State Ionics, p.82, 1995.

D. Ivanova, A. Kovalevsky, V. Kharton, and F. M. Marques, Silica-scavenging effects in ceria-based solid electrolytes, Bol. La Soc. Española Ceram. Y Vidr, p.47, 2008.

J. Cheng, S. Zha, X. Fang, X. Liu, and G. Meng, On the green density, sintering behavior and electrical property of tape cast, Mater. Res. Bull, vol.37, p.24372446, 2002.

S. De-souza, S. Visco, and L. C. De-jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature, Solid State Ionics, pp.98-5761, 1997.

H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 116. [19] Thin Films by Electron Beam Deposition, Mater. Sci, vol.83, issue.25, 1996.
DOI : 10.1016/0167-2738(95)00229-4

L. D. Jadhav, S. H. Pawar, and M. G. Chourashiya, Effect of sintering temperature on structural and electricla properties of gadolinium doped ceria, Bull. Mater. Sci, pp.30-97100, 2007.

B. C. Steele, Appraisal of Ce 1-y Gd y O 2-y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ionics, pp.129-95110, 2000.

T. Van-gestel, D. Sebold, and H. P. Buchkremer, Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs, Journal of the European Ceramic Society, vol.35, issue.5
DOI : 10.1016/j.jeurceramsoc.2014.11.017

G. Laukaitis and J. Dudonis, Microstructure of gadolinium doped ceria oxide thin films formed by electron beam deposition, Journal of Alloys and Compounds, vol.459, issue.1-2, p.320327, 2008.
DOI : 10.1016/j.jallcom.2007.04.223

J. Cheng, S. Zha, and J. Huang, Sintering behavior and electrical conductivity of Ce 0.9 Gd 0.1 O 1.95 powder prepared by the gel-casting process, Mater. Chem. Phys, pp.78-791795, 2003.

S. B. Anantharaman and R. Bauri, Effect of sintering atmosphere on densification, redox chemistry and conduction behavior of nanocrystalline Gd-doped CeO 2 electrolytes, Ceram. Int, pp.39-94219428, 2013.

H. J. Park and G. M. Choi, Oxygen permeability of gadolinium-doped ceria at high temperature, Journal of the European Ceramic Society, vol.24, issue.6, pp.24-13131317, 2004.
DOI : 10.1016/S0955-2219(03)00555-7

T. Ivas, Cerium-Gadolinium-Cobalt-Oxides: Phase Equilibria and Defect Chemistry in Bulk and Grain Boundaries, 2013.

A. Arabaci, Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria, Ceramics International, vol.41, issue.4, p.41, 2015.
DOI : 10.1016/j.ceramint.2015.01.013

T. S. Zhang, J. Ma, L. H. Luo, and S. H. Chan, Preparation and properties of dense Ce 0.9 Gd 0.1 O 2-ceramics for use as electrolytes in IT-SOFCs, J. Alloys Compd, pp.422-4652, 2006.

J. L. Rupp, A. Infortuna, and L. J. Gauckler, Thermodynamic Stability of Gadolinia-Doped Ceria Thin Film Electrolytes for Micro-Solid Oxide Fuel Cells, Journal of the American Ceramic Society, vol.1, issue.6, pp.90-17921797, 2007.
DOI : 10.1007/s10832-005-2193-3

T. Kudo and H. Obayashi, Mixed Electrical Conduction in the FluoriteType Ce Gd x O, J. Electrochem. Soc, vol.123, p.415419, 1976.

S. W. Kim, Y. Lee, and G. M. Choi, Electrical conductivity of Gd-doped ceria film at low temperatures (300-500 °C), Solid State Ionics, pp.262-411415, 2014.

H. Z. Song, H. B. Wang, S. W. Zha, D. K. Peng, and G. Y. Meng, Aerosol-assisted MOCVD growth of Gd 2 O 3 -doped CeO 2 thin SOFC electrolyte film on anode substrate, Solid State Ionics, pp.156-249254, 2003.

N. Pryds, K. Rodrigo, S. Linderoth, and J. Schou, On the growth of gadolinia-doped ceria by pulsed laser deposition, Applied Surface Science, vol.255, issue.10, pp.255-52325235, 2009.
DOI : 10.1016/j.apsusc.2008.07.134

A. N. Samant and N. B. Dahotre, Laser machining of structural ceramics???A review, Journal of the European Ceramic Society, vol.29, issue.6, pp.29-969993, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.11.010

A. Bacciochini, N. Glandut, and P. Lefort, Surface densification of porous ZrC by a laser process, Journal of the European Ceramic Society, vol.29, issue.8, pp.29-15071511, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.09.002

URL : https://hal.archives-ouvertes.fr/hal-00376492

V. Liberman, M. Rothschild, J. H. Sedlacek, R. Uttaro, and A. Grenville, Excimer-laserinduced densification of fused silica: Laser-fluence and material-grade effects on the scaling law, J. Non. Cryst. Solids, pp.244-159171, 1999.

D. Triantafyllidis, L. Li, and F. H. Stott, Crack-free densification of ceramics by laser surface treatment, Surface and Coatings Technology, vol.201, issue.6, p.31633173, 2006.
DOI : 10.1016/j.surfcoat.2006.06.032

Q. Lonné, N. Glandut, and P. Lefort, Surface densification of porous ZrB 2 -39mol.% SiC ceramic composites by a laser process, J. Eur. Ceram. Soc, pp.32-955963, 2012.

P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov, Ceramic components manufacturing by selective laser sintering, Applied Surface Science, vol.254, issue.4, p.989992, 2007.
DOI : 10.1016/j.apsusc.2007.08.085

URL : https://hal.archives-ouvertes.fr/hal-00293795

C. S. Sandu, V. S. Teodorescu, C. Ghica, B. Canut, M. G. Blanchin et al., Densification and crystallization of SnO 2 :Sb sol-gel films using excimer laser annealing, Appl. Surf. Sci, pp.208209-382387, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01597251

E. D. Tsagarakis, C. Lew, M. O. Thompson, and E. P. Giannelis, Nanocrystalline barium titanate films on flexible plastic substrates via pulsed laser annealing, Applied Physics Letters, vol.3, issue.20, pp.89-2325, 2006.
DOI : 10.1007/978-3-662-02505-5

M. Mariño, M. Rieu, J. Viricelle, and F. Garrelie, Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells, Applied Surface Science, vol.374, 2015.
DOI : 10.1016/j.apsusc.2015.12.220

C. N. Sun and M. C. Gupta, Laser sintering of ZrB 2, J. Am. Ceram. Soc, vol.1729, pp.91-1731, 2008.
DOI : 10.1111/j.1551-2916.2011.04537.x

I. Theodorakos, I. Zergioti, V. Vamvakas, D. Tsoukalas, and Y. S. Raptis, Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications, Journal of Applied Physics, vol.25, issue.4, p.115, 2014.
DOI : 10.1107/S0021889878012844

Y. Wu, K. L. Choy, and L. L. Hench, Laser densification of TiO 2 films prepared by aerosol assisted vapour deposition, Appl. Surf. Sci, vol.247, issue.378383, 2005.
DOI : 10.1016/j.apsusc.2005.01.077

B. Qian and Z. Shen, Laser sintering of ceramics, Journal of Asian Ceramic Societies, vol.1, issue.4, p.315321, 2013.
DOI : 10.1016/j.jascer.2013.08.004

L. Bradley, L. Li, and F. Stott, Characteristics of the microstructures of alumina-based refractory materials treated with CO2 and diode lasers, Applied Surface Science, vol.138, issue.139, p.138139, 1999.
DOI : 10.1016/S0169-4332(98)00425-5

P. Besnard and P. Favennec, Le laser et ses applications, 50 ans après son invention, Institut Télécom et LAVOISIER, 2011.

S. Lazare and V. Granier, Ultraviolet Laser Photoablation of Polymers: A Review and Recent Results, Laser Chemistry, vol.10, issue.1, p.2540, 1989.
DOI : 10.1155/1989/18750

Y. Chen, C. Chang, and L. Chao, Modeling and experimental analysis in excimerlaser crystallization of a-Si films, J. Cryst. Growth, p.303, 2007.

I. A. Palani, N. J. Vasa, and M. Singaperumal, Crystallization and ablation in annealing of amorphous-Si thin film on glass and crystalline-Si substrates irradiated by third harmonics of Nd3+:YAG laser, Materials Science in Semiconductor Processing, vol.11, issue.4, pp.11-107116, 2008.
DOI : 10.1016/j.mssp.2009.05.001

I. A. Palani, N. J. Vasa, M. Singaperumal, and T. Okada, Influence of laser wavelength and beam profile on Nd 3+ :YAG laser assisted formation of polycrystalline-Si films, Thin Solid Films, pp.518-41834190, 2010.

A. A. Tseng, Y. T. Chen, C. L. Chao, K. J. Ma, and T. P. Chen, Recent developments on microablation of glass materials using excimer lasers, Optics and Lasers in Engineering, vol.45, issue.10, pp.45-975, 2007.
DOI : 10.1016/j.optlaseng.2007.04.003

A. B. Vannes and J. M. Pelletier, Notions générales sur les traitements thermiques superficiels réalisés sous faisceau laser

A. Catherinot, Intéraction laser-matiériau, Aspects thermiques/non-thermiques, photoablation et transport de la matière ejectée, CNRS Ecole sur l Limoges, 1996.

P. Regenfuss, A. Streek, L. Hartwig, S. Klötzer, T. Brabant et al., Principles of laser micro sintering, Rapid Prototyp, J, p.13, 2007.
DOI : 10.1108/13552540710776151

E. Ruiz-trejo, The optical band gap of Gd-doped CeO 2 thin films as function of temperature and composition, J. Phys. Chem. Solids, pp.74-605610, 2013.

B. Rivière, Optimisation du procédé de sérigraphie pour la réalisationde capteurs de Microélectronique, Thèse, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2004.

D. Rembelski, M. Rieu, L. Combemale, and J. P. Viricelle, In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells, Journal of Power Sources, vol.242, p.811816, 2013.
DOI : 10.1016/j.jpowsour.2013.05.118

URL : https://hal.archives-ouvertes.fr/hal-00840106

J. Lecourt, Etude et réalisation de lasers à fibre auto-impulsionnels à base

M. Demosthenous, Etude de la structure électronique de TiO et TiO 2 par spectroscopie de photoélectrons XPS et UPS, Thèse, 1978.

M. Reynaud-Ép and . Pijolat, Méthode non destructive de détermination de profils de concentration en espectroscopie ESCA par distributions angulair, Thèse, 1979.

L. Bradley, L. Li, and F. Stott, Flame-assisted laser surface treatment of refractory materials for crack-free densification, Materials Science and Engineering: A, vol.278, issue.1-2, 2000.
DOI : 10.1016/S0921-5093(99)00592-4

J. Cheng, S. Zha, J. Huang, X. Liu, and G. Meng, Sintering behavior and electrical conductivity of Ce 0.9 Gd 0.1 O 1.95 powder prepared by the gel-casting process

J. Haussonne, J. Barton, P. Bowen, and P. C. Carry, Céramiques et verres: principes et, 2005.

P. Datta, P. Majewski, and F. Aldinger, Study of gadolinia-doped ceria solid electrolyte surface by XPS, Materials Characterization, vol.60, issue.2, pp.60-138143, 2009.
DOI : 10.1016/j.matchar.2008.08.002

V. Gil, J. Tartaj, and C. , Moure, Low temperature synthesis and sintering behaviour of Gd- Boletín La Soc. Española Cerámica Y Vidrio, p.48, 2009.

V. Mangalaraja, S. Ananthakumar, M. Paulraj, K. Uma, M. López et al., Electrical and thermal properties of 10 mol% Gd 3+ doped ceria electrolytes synthesized through citrate combustion technique, Process. Appl. Ceram, vol.383, issue.2, 2002.

Y. L. Kuo, Y. M. Su, and J. Y. Chang, A facile method for the deposition of Gd 2 O 3 -doped ceria films by atmospheric pressure plasma jet, Thin Solid Films, p.215220, 2014.

M. Khandelwal, A. Venkatasubramanian, T. R. Prasanna, and P. Gopalan, Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate, Journal of the European Ceramic Society, vol.31, issue.4, p.31, 2011.
DOI : 10.1016/j.jeurceramsoc.2010.10.027

L. A. Villas-bôas, P. , P. Nascente, R. Landers, F. M. Figueiredo et al., XPS characterization of gadolinium-doped nano-ceria

J. L. Rupp, T. Drobek, A. Rossi, and L. J. Gauckler, Chemical Analysis of Spray Pyrolysis Gadolinia-Doped Ceria Electrolyte Thin Films for Solid Oxide Fuel Cells, Chemistry of Materials, vol.19, issue.5
DOI : 10.1021/cm061449f

E. Bêche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant, Ce3d XPS investigation of cerium oxides and mixed cerium oxide (Ce x Ti y O z ), Surf. Interface Anal, vol.264, pp.40-267, 2008.

T. Suzuki, I. Kosacki, V. Petrovsky, and H. U. Anderson, Optical properties of undoped and Gd-doped CeO 2 nanocrystalline thin films, J. Appl. Phys, pp.91-23082314, 2002.

M. Mogensen, N. M. Sammes, and G. A. , Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, p.129, 2000.
DOI : 10.1016/s0167-2738(99)00318-5

URL : http://orbit.dtu.dk/en/publications/physical-chemical-and-electrochemical-properties-of-pure-and-doped-ceria(e5f3db09-5bb0-4418-a6cb-9cca462b64ce).html

N. Stelzer, J. Nölting, and I. Riess, Phase Diagram of Nonstoichiometric 10 mol% Gd 2 O 3 - Doped Cerium Oxide Determined from Specific Heat Measurements, J. Solid State Chem, vol.117, p.392397, 1995.

. Selladurai, Thermal properties of 15-mol% gadolinia doped ceria thin films prepared by pulsed laser ablation, Ionics, issue.Kiel, pp.13-4750, 2007.

V. Iorish, E. Yungman, E. Shenyavskaya, and . Osina, The Thermodynamic Properties of the f-Elements and their Compounds: Part 2. The Lanthanide and Actinide Oxides, J. Phys

Y. A. Kotov, V. V. Osipov, M. G. Ivanov, O. M. Samatov, V. V. Platonov et al., Properties of YSZ and CeGdO nanopowders prepared by target evaporation with a pulse-repetitive CO 2 -laser, Rev, Adv. Mater. Sci, vol.5, p.171177, 2003.

M. Hatano, S. Moon, M. Lee, C. P. Grigoropoulos, and K. Suzuki, Excimer laser-induced melting and resolidification dynamics of silicon thin films, J.Korean Phys.Soc, pp.39-419, 2001.
DOI : 10.1063/1.371823

D. Groulx and W. Ogoh, Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System, Proc. COMSOL Conf, 2009.

F. Civan and C. M. Sliepcevich, Limitation in the Apparent Heat Capacity Formulation for Heat Transfer With Phase Change, Proc. Okla. Acad. Sci, vol.8388, p.67, 1987.

P. Cai, D. Green, and G. Messing, Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects, Journal of the American Ceramic Society, vol.74, issue.12, p.80, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03075.x

R. Mcnally and G. Beall, Crystallization of fusion cast ceramics and glass-ceramics, Journal of Materials Science, vol.55, issue.11, p.25962604, 1979.
DOI : 10.1007/BF00610628

K. Maca, J. Cihlar, K. Castkova, O. Zmeskal, and H. Hadraba, Sintering of gadolinia-doped ceria prepared by mechanochemical synthesis, Journal of the European Ceramic Society, vol.27, issue.13-15, pp.27-4348, 2007.
DOI : 10.1016/j.jeurceramsoc.2007.02.157

R. S. Torrens, N. M. Sammes, and G. A. Tompsett, Characterisation of (CeO 2 ) 0.8 (GdO 1.5 ) 0.2 synthesised using various techniques, Solid State Ionics, pp.111-915, 1998.

V. V. Ivanov, V. R. Khrustov, Y. A. Kotov, A. I. Medvedev, A. M. Murzakaev et al., Conductivity and structure features of Ce 1-x Gd x O 2-solid electrolytes fabricated by compaction and sintering of weakly agglomerated nanopowders

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Second, 1959.