A. Cornet and J. P. Deville, Physique et ingénierie des surfaces, 1998.

J. Marteau and S. Bouvier, Characterization of the microstructure evolution and subsurface hardness of graded stainless steel produced by different mechanical or thermochemical surface treatments, Surface and Coatings Technology, vol.296, pp.136-148, 2016.
DOI : 10.1016/j.surfcoat.2016.04.010

J. Marteau, Caractérisation multi-échelle et analyse par essai d'indentation instrumentée de matériaux à gradient générés par procédés mécaniques et thermochimiques de traitement de surface, Thèse, 2013.

L. Wagner, Mechanical surface treatments on titanium, aluminum and magnesium alloys, Materials Science and Engineering: A, vol.263, issue.2, pp.210-216, 1999.
DOI : 10.1016/S0921-5093(98)01168-X

V. Lacaille, C. Morel, E. Feulvarch, G. Kermouche, and J. M. Bergheau, Finite element analysis of the grain size effect on diffusion in polycrystalline materials, Computational Materials Science, vol.95, pp.187-191, 2014.
DOI : 10.1016/j.commatsci.2014.07.026

URL : https://hal.archives-ouvertes.fr/emse-01498591

S. Descartes, C. Desrayaud, E. Niccolini, and Y. Berthier, Presence and role of the third body in a wheel???rail contact, Wear, vol.258, issue.7-8, pp.1081-1090, 2005.
DOI : 10.1016/j.wear.2004.03.068

S. Descartes, M. Busquet, and Y. Berthier, An attempt to produce ex situ TTS to understand their mechanical formation conditions ??? The case of an ultra high purity iron, Wear, vol.271, issue.9-10, pp.1833-1841, 2011.
DOI : 10.1016/j.wear.2011.01.089

URL : https://hal.archives-ouvertes.fr/hal-00938451

E. Nordin and B. Alfredsson, Measuring shot peening media velocity by indent size comparison, Journal of Materials Processing Technology, vol.235, pp.143-148, 2016.
DOI : 10.1016/j.jmatprotec.2016.04.012

A. Ahmed, M. Mhaede, M. Wollmann, and L. Wagner, Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti???6Al???4V alloy, Applied Surface Science, vol.363, pp.50-58, 2016.
DOI : 10.1016/j.apsusc.2015.12.019

A. Drechsler, T. Dorr, and L. Wagner, Mechanical surface treatments on Ti???10V???2Fe???3Al for improved fatigue resistance, Materials Science and Engineering: A, vol.243, issue.1-2, pp.217-220, 1998.
DOI : 10.1016/S0921-5093(97)00804-6

S. E. Khany, M. A. Moyeed, M. Shahabuddinsiddiqui, G. M. Ahmed, and M. M. Baig, An Experimental Study of the Effect of Shot Peening on the Low Carbon Steel and Identification of Optimal Process Parameters, Materials Today : Proceedings. 4th International Conference on Materials Processing and Characterization, pp.3363-3370, 2015.
DOI : 10.1016/j.matpr.2015.07.310

K. Lu and J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Materials Science and Engineering: A, vol.375, issue.377, pp.375-37738, 2004.
DOI : 10.1016/j.msea.2003.10.261

URL : http://lu-group.imr.ac.cn/pdf/msea375-377(2004)38.pdf

N. R. Tao, Z. Wang, W. P. Tong, M. L. Sui, J. Lu et al., An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia, vol.50, issue.18, pp.4603-4616, 2002.
DOI : 10.1016/S1359-6454(02)00310-5

K. Dai and L. Shaw, Analysis of fatigue resistance improvements via surface severe plastic deformation, International Journal of Fatigue, vol.30, issue.8, pp.1398-1408, 2008.
DOI : 10.1016/j.ijfatigue.2007.10.010

T. Roland, D. Retraint, K. Lu, and J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Materialia, vol.54, issue.11, pp.1949-1954, 2006.
DOI : 10.1016/j.scriptamat.2006.01.049

M. Okada, S. Suenobu, K. Watanabe, Y. Yamashita, and N. Asakawa, Development and burnishing characteristics of roller burnishing method with rolling and sliding effects, Mechatronics, vol.29, pp.110-118, 2015.
DOI : 10.1016/j.mechatronics.2014.11.002

A. Sagbas, Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function Advances in Engineering Software, pp.992-998, 2011.

W. Tillmann, P. Hollingsworth, I. Baumann, L. Hiegemann, C. Weddeling et al., Thermally sprayed finestructured WC-12Co coatings finished by ball burnishing and grinding as an innovative approach to protect forming tools against wear, Surface and Coatings Technology, vol.268, pp.134-141, 2015.
DOI : 10.1016/j.surfcoat.2014.06.039

B. Tadic, S. Randjelovic, P. Todorovic, J. Zivkovic, V. Kocovic et al., Using a high-stiffness burnishing tool for increased dimensional and geometrical accuracies of openings, Precision Engineering, vol.43, pp.335-344, 2016.
DOI : 10.1016/j.precisioneng.2015.08.014

G. Kermouche, Etude de traitements mécaniques des surfaces reposante sur des sollicitations de rayure (superfinition, polissage, galetage), Matériaux & Techniques, vol.101, issue.308, 2013.
DOI : 10.1051/mattech/2013080

P. Delgado, I. I. Cuesta, J. M. Alegre, and A. Diaz, State of the art of Deep Rolling, Precision Engineering, vol.46, 2016.
DOI : 10.1016/j.precisioneng.2016.05.001

O. Maiss, B. Denkena, and T. Grove, Hybrid machining of roller bearing inner rings by hard turning and deep rolling, Journal of Materials Processing Technology, vol.230, pp.211-216, 2016.
DOI : 10.1016/j.jmatprotec.2015.11.029

V. M. Segal, Materials processing by simple shear, Materials Science and Engineering: A, vol.197, issue.2, pp.157-164, 1995.
DOI : 10.1016/0921-5093(95)09705-8

Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, vol.35, issue.2, pp.143-146, 1996.
DOI : 10.1016/1359-6462(96)00107-8

M. R. Jandaghi, H. Pouraliakbar, M. K. Shiran, G. Khalaj, and M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al-Mg alloy, Materials Science and Engineering: A, vol.657, pp.431-440, 2016.
DOI : 10.1016/j.msea.2016.01.056

S. Descartes, C. Desrayaud, and E. F. Rauch, Inhomogeneous microstructural evolution of pure iron during high-pressure torsion, Materials Science and Engineering: A, vol.528, issue.10-11, pp.3666-3675, 2011.
DOI : 10.1016/j.msea.2011.01.029

URL : https://hal.archives-ouvertes.fr/hal-00624781

Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, and D. A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Materials Characterization, vol.112, pp.180-187, 2016.
DOI : 10.1016/j.matchar.2015.12.021

Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials???development of the accumulative roll-bonding (ARB) process, Acta Materialia, vol.47, issue.2, pp.579-583, 1999.
DOI : 10.1016/S1359-6454(98)00365-6

H. Al-baida, C. Langlade, G. Kermouche, and R. Ambriz, Identification du comportement m??canique des mat??riaux ?? l???aide d???essais de micro-impact r??p??t??s, Mat??riaux & Techniques, vol.102, issue.6-7, p.604, 2014.
DOI : 10.1115/1.2812373

G. Kermouche, G. Pacquaut, C. Langlade, and J. M. Bergheau, Investigation of mechanically attrited structures induced by repeated impacts on an AISI1045 steel, Comptes Rendus M??canique, vol.339, issue.7-8, pp.552-562, 2011.
DOI : 10.1016/j.crme.2011.05.012

D. Hull and D. J. Bacon, Introduction to dislocations. Butterworth-Heinemann, 225 Wildwood Avenue, 01801-2041 20 rue des Grands-Augustins, 2001.

J. L. Martin, Dislocations et plasticité des cristaux, Presses polytechniques et universitaires romandes, CH-1015 Lausanne, 2000.

S. Mahajan, Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys, Scripta Materialia, vol.68, issue.2, pp.95-99, 2013.
DOI : 10.1016/j.scriptamat.2012.09.011

T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, vol.60, pp.130-207, 2014.
DOI : 10.1016/j.pmatsci.2013.09.002

URL : https://doi.org/10.1016/j.pmatsci.2013.09.002

H. Ghodizadeh, The influence of alloying and temperature on the stacking-fault energy of iron-based alloys, Thèse, Montanuniversitat Leoben, 2013.

J. C. Toledano, Bases physiques de la plasticité des solides. Les éditions de l'école polytechnique, 20 rue des Grands-Augustins, 2007.

K. T. Kashyap, A. Bhat, P. G. Koppad, and K. B. Puneeth, On Peierls Nabarro stress in Iron, Computational Materials Science, vol.56, pp.172-173, 2012.
DOI : 10.1016/j.commatsci.2011.12.033

M. Dietiker, S. Buzzi, G. Pigozzi, J. F. Loffler, and R. Spolenak, Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused ion-beam milling, Acta Materialia, vol.59, issue.5, pp.2180-2192, 2011.
DOI : 10.1016/j.actamat.2010.12.019

A. Chen, J. Liu, H. Wang, J. Lu, and Y. M. Wang, Gradient twinned 304 stainless steels for high strength and high ductility, Materials Science and Engineering: A, vol.667, pp.179-188, 2016.
DOI : 10.1016/j.msea.2016.04.070

URL : https://doi.org/10.1016/j.msea.2016.04.070

A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, First-principles investigation of the effect of carbon on the stacking fault energy of Fe???C alloys, Acta Materialia, vol.59, issue.8, pp.3041-3048, 2011.
DOI : 10.1016/j.actamat.2011.01.044

S. M. Lim, M. El-wahabi, C. Desrayaud, and F. Montheillet, Microstructural refinement of an Fe???C alloy within the ferritic range via two different strain paths, Materials Science and Engineering: A, vol.460, issue.461, pp.460-461532, 2007.
DOI : 10.1016/j.msea.2007.01.106

URL : https://hal.archives-ouvertes.fr/hal-00293960

J. Aldazabal and J. Gil-sevillano, Hall???Petch behaviour induced by plastic strain gradients, Materials Science and Engineering: A, vol.365, issue.1-2, pp.186-190, 2004.
DOI : 10.1016/j.msea.2003.09.026

T. G. Nieh and J. Wadsworth, Hall-petch relation in nanocrystalline solids, Scripta Metallurgica et Materialia, vol.25, issue.4, pp.955-958, 1991.
DOI : 10.1016/0956-716X(91)90256-Z

D. J. Dunstan and A. J. Bushby, Grain size dependence of the strength of metals: The Hall???Petch effect does not scale as the inverse square root of grain size, International Journal of Plasticity, vol.53, pp.56-65, 2014.
DOI : 10.1016/j.ijplas.2013.07.004

K. E. Aifantis and A. A. Konstantinidis, Hall???Petch revisited at the nanoscale, Materials Science and Engineering: B, vol.163, issue.3, pp.139-144, 2009.
DOI : 10.1016/j.mseb.2009.05.010

S. O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and K. M. , Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding, Journal of Alloys and Compounds, vol.658, pp.854-861, 2016.
DOI : 10.1016/j.jallcom.2015.11.032

G. Angella, F. Zanardi, and R. Donnini, On the significance to use dislocation-density-related constitutive equations to correlate strain hardening with microstructure of metallic alloys: The case of conventional and austempered ductile irons, Journal of Alloys and Compounds, vol.669, pp.262-271, 2016.
DOI : 10.1016/j.jallcom.2016.01.233

S. Queyreau, G. Monnet, and B. Devincre, Slip systems interactions in ??-iron determined by dislocation dynamics simulations, International Journal of Plasticity, vol.25, issue.2, pp.361-377, 2009.
DOI : 10.1016/j.ijplas.2007.12.009

V. Llaneza and F. J. Belzunce, Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening, Applied Surface Science, vol.356, pp.475-485, 2015.
DOI : 10.1016/j.apsusc.2015.08.110

P. Mann, H. Y. Miao, A. Gariepy, M. Levesque, and R. R. Chromik, Residual stress near single shot peening impingements determined by nanoindentation and numerical simulations, Journal of Materials Science, vol.50, issue.5, pp.2284-2297, 2015.
DOI : 10.1016/S1359-6454(02)00021-6

H. H. Ruan, A. Y. Chen, H. L. Chan, and J. Lu, Characterization of plastically graded nanostructured material, 2010 3rd International Nanoelectronics Conference (INEC), pp.698-708, 2010.
DOI : 10.1109/INEC.2010.5424603

H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment, Acta Materialia, vol.51, issue.7, pp.1871-1881, 2003.
DOI : 10.1016/S1359-6454(02)00594-3

Y. Lin, J. Lu, T. Xu, and Q. Xue, Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel, Acta Materialia, vol.54, issue.20, pp.5599-5605, 2006.
DOI : 10.1016/j.actamat.2006.08.014

Y. Samih, B. Beausir, B. Bolle, and T. Grosdidier, In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT), Materials Characterization, vol.83, pp.129-138, 2013.
DOI : 10.1016/j.matchar.2013.06.006

URL : https://hal.archives-ouvertes.fr/hal-01501658

E. Frutos, M. Multigner, and J. L. Gonzales-carraso, Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel, Acta Materialia, vol.58, issue.12, pp.4191-4198, 2010.
DOI : 10.1016/j.actamat.2010.04.010

W. P. Tong, Z. Han, L. M. Wang, J. Lu, and K. Lu, Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment, Surface and Coatings Technology, vol.202, issue.20, pp.4957-4963, 2008.
DOI : 10.1016/j.surfcoat.2008.04.085

X. Zhang, N. Hansen, Y. Gao, and X. Huang, Hall???Petch and dislocation strengthening in graded nanostructured steel, Acta Materialia, vol.60, issue.16, pp.5933-5943, 2012.
DOI : 10.1016/j.actamat.2012.07.037

S. Bagherifard, I. Fernandez-pariente, R. Ghelichi, and M. Guagliano, Effect of severe shot peening on microstructure and fatigue strength of cast iron, International Journal of Fatigue, vol.65, pp.64-70, 2014.
DOI : 10.1016/j.ijfatigue.2013.08.022

Z. Sun, D. Retraint, B. Guelorget, and L. Waltz, Micro-pillar compression tests to characterize the mechanical behavior of a nanocrystalline layer induced by SMAT in a 316L stainless steel, Mat??riaux & Techniques, vol.103, issue.3, p.304, 2015.
DOI : 10.1007/978-0-387-09783-1

J. Sun, W. P. Tong, H. Zhang, X. D. Du, and Y. C. Wu, Enhanced strength and plasticity of gas nitrided iron by surface mechanical attrition pretreatment, Surface and Coatings Technology, vol.286, pp.279-284, 2016.
DOI : 10.1016/j.surfcoat.2015.12.047

V. Lacaille, G. Kermouche, D. Y. Tumbajoy-spinel, E. Feulvarch, C. Morel et al., Modeling nitriding enhancement resulting from the NanoPeening treatment of a Pure Iron, Materials Science & Engineering -6th International Conference on Nanomaterials by Severe Plastic Deformation, 2014.
DOI : 10.1088/1757-899X/63/1/012124

S. Dai, Y. Zhu, and Z. Huang, Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening, Vacuum, vol.125, pp.215-221, 2016.
DOI : 10.1016/j.vacuum.2016.01.001

W. L. Li, N. R. Tao, and K. Lu, Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment, Scripta Materialia, vol.59, issue.5, pp.546-549, 2008.
DOI : 10.1016/j.scriptamat.2008.05.003

S. Q. Deng, A. Godfrey, W. Liu, and C. L. Zhang, Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature, Materials Science and Engineering: A, vol.639, pp.448-455, 2015.
DOI : 10.1016/j.msea.2015.05.017

S. Q. Deng, A. Godfrey, W. Liu, and N. Hansen, A gradient nanostructure generated in pure copper by platen friction sliding deformation, Scripta Materialia, vol.117, pp.41-45, 2016.
DOI : 10.1016/j.scriptamat.2016.02.007

URL : http://orbit.dtu.dk/en/publications/a-gradient-nanostructure-generated-in-pure-copper-by-platen-friction-sliding-deformation(f4560a83-a0ba-4bb3-aad5-9d26c0ca6cff).html

P. Zhang, S. X. Li, and Z. F. Zhang, General relationship between strength and hardness, Materials Science and Engineering: A, vol.529, pp.62-73, 2011.
DOI : 10.1016/j.msea.2011.08.061

J. Zhao, W. Xia, L. Ning, and F. L. Li, A gradient nano/micro-structured surface layer on copper induced by severe plasticity roller burnishing, Transactions of Nonferrous Metals Society of China, vol.24, issue.2, pp.441-448, 2014.
DOI : 10.1016/S1003-6326(14)63080-6

I. Brooks, P. Lin, G. Palumbo, G. D. Hibbard, and U. Erb, Analysis of hardness???tensile strength relationships for electroformed nanocrystalline materials, Materials Science and Engineering: A, vol.491, issue.1-2, pp.412-419, 2008.
DOI : 10.1016/j.msea.2008.02.015

A. Saulot, S. Descartes, and Y. Berthier, Sharp curved track corrugation: From corrugation observed on-site, to corrugation reproduced on simulators, Tribology International, vol.42, issue.11-12, pp.1691-1705, 2009.
DOI : 10.1016/j.triboint.2009.04.042

URL : https://hal.archives-ouvertes.fr/hal-00624931

M. Dao, N. Chollacoop, K. J. Van-vliet, T. A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Materialia, vol.49, issue.19, pp.3899-3918, 2001.
DOI : 10.1016/S1359-6454(01)00295-6

G. Kermouche, J. L. Loubet, and J. M. Bergheau, An approximate solution to the problem of cone or wedge indentation of elastoplastic solids, Comptes Rendus M??canique, vol.333, issue.5, pp.389-395, 2005.
DOI : 10.1016/j.crme.2005.04.001

D. K. Yang, J. T. Wang, D. Fabijanic, P. Cizek, B. S. Li et al., Ti-based amorphous/nanocrystal composite with high ductility and strain-hardening, Materials Science and Engineering: A, vol.560, pp.339-342, 2013.
DOI : 10.1016/j.msea.2012.09.076

D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia, vol.56, issue.3, pp.580-592, 2008.
DOI : 10.1016/j.actamat.2007.10.015

B. Laik, L. Eude, J. P. Pereira-ramos, C. S. Cojocaru, D. Pribat et al., Silicon nanowires as negative electrode for lithium-ion microbatteries, Electrochimica Acta, vol.53, issue.17, pp.5528-5532, 2008.
DOI : 10.1016/j.electacta.2008.02.114

URL : https://hal.archives-ouvertes.fr/hal-00796266

F. Iqbal, J. Ast, M. Goken, and K. Durst, In situ micro-cantilever tests to study fracture properties of NiAl single crystals, Acta Materialia, vol.60, issue.3, pp.1193-1200, 2012.
DOI : 10.1016/j.actamat.2011.10.060

D. Mordehai, S. W. Lee, B. Backes, D. J. Srolovitz, W. D. Nix et al., Size effect in compression of single-crystal gold microparticles, Acta Materialia, vol.59, issue.13, pp.5202-5215, 2011.
DOI : 10.1016/j.actamat.2011.04.057

M. Zamanzade, J. R. Velayarce, O. Torrents-abad, C. Motz, and A. Barnoush, Mechanical behavior of iron aluminides: A comparison of nanoindentation, compression and bending of micropillars, Materials Science and Engineering: A, vol.652, pp.370-376, 2016.
DOI : 10.1016/j.msea.2015.11.088

B. R. Soras-rogne and C. Thaulow, Effect of crystal orientation on the strengthening of iron micro pillars, Materials Science and Engineering: A, vol.621, pp.133-142, 2015.
DOI : 10.1016/j.msea.2014.10.067

K. D. Vernon-parry, Scanning electron microscopy : an introduction. Ill-Vs Review, pp.40-44, 2000.
DOI : 10.1016/s0961-1290(00)80006-x

URL : https://doi.org/10.1016/s0961-1290(00)80006-x

A. Bogner, P. H. Jouneau, G. Thollet, D. Basset, and C. Gauthier, A history of scanning electron microscopy developments: Towards ???wet-STEM??? imaging, Micron, vol.38, issue.4, pp.390-401, 2007.
DOI : 10.1016/j.micron.2006.06.008

URL : https://hal.archives-ouvertes.fr/hal-00434138

Y. Zhang, N. Brodusch, S. Descartes, R. R. Chromik, and R. Gauvin, Microstructure Refinement of Cold-Sprayed Copper Investigated By Electron Channeling Contrast Imaging, Microscopy and Microanalysis, vol.17, issue.05, pp.1499-1506, 2014.
DOI : 10.2320/matertrans.M2009439

URL : https://hal.archives-ouvertes.fr/hal-01283590

S. Wright, M. M. Nowell, S. P. Lindeman, P. P. Camus, M. De-graef et al., Introduction and comparison of new EBSD post-processing methodologies, Ultramicroscopy, vol.159, pp.81-94, 2015.
DOI : 10.1016/j.ultramic.2015.08.001

T. B. Britton, J. Jiang, Y. Guo, A. Vilalta-clemente, D. Wallis et al., Tutorial : Crystal orientations and ebsd -or which way is up ? Materials Characterization, pp.113-126, 2016.
DOI : 10.1016/j.matchar.2016.04.008

URL : https://doi.org/10.1016/j.matchar.2016.04.008

K. Dicks, Oxford instruments c -analytical 2003, www.EBSD.com, 2003.

A. Moreira-jorge, E. Prokofiev, G. Ferreira-de-lima, E. F. Rauch, M. Veron et al., An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing, International Journal of Hydrogen Energy, vol.38, issue.20, pp.8306-8312, 2013.
DOI : 10.1016/j.ijhydene.2013.03.158

E. Cossette, D. Schneider, P. Audet, B. Grasemann, and G. Habler, Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region, Tectonophysics, vol.651, issue.652, pp.651-65266, 2015.
DOI : 10.1016/j.tecto.2015.03.014

C. Schayes, J. Bouquerel, J. B. Vogt, F. Palleschi, and S. Zaefferer, A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading, Materials Characterization, vol.115, pp.61-70, 2016.
DOI : 10.1016/j.matchar.2016.03.020

Z. Weiss and K. Marshall, Elemental depth profiling of coated and surface-modified materials by GD-OES: hard coatings on cutting tools, Thin Solid Films, vol.308, issue.309, pp.308-309382, 1997.
DOI : 10.1016/S0040-6090(97)00586-5

F. Mohs, Treatise on mineralogy : or, the natural history of the mineral kingdom, p.1825

G. Guillonneau, Nouvelles techniques de nano-indentation pour des conditions expérimentales difficiles : très faibles enfoncements, surfaces rugueuses, température, Thèse, 2012.

G. Kermouche, Contribution à la modélisation théorique et numérique des essais d'indentation et de rayure, Thèse, 2005.

J. B. Pethica, C. J. Wilson, and B. K. Ambrose, An instrument for mechanical testing on the nanometre scale, Materials & Design, vol.7, issue.1, pp.23-24, 1986.
DOI : 10.1016/0261-3069(86)90033-6

G. Guillonneau, G. Kermouche, S. Bec, and J. L. Loubet, Extraction of Mechanical Properties with Second Harmonic Detection for Dynamic Nanoindentation Testing, Experimental Mechanics, vol.36, issue.12, pp.933-944, 2011.
DOI : 10.1016/0020-7225(65)90019-4

M. Van-landingham, Review of instrumented indentation, Journal of Research of the National Institute of Standards and Technology, vol.108, issue.4, pp.249-265, 2003.
DOI : 10.6028/jres.108.024

J. Woirgard, J. C. Dargenton, C. Tromas, and V. Audurier, A new technology for nanohardness measurements: principle and applications, Surface and Coatings Technology, vol.100, issue.101, pp.100-101103, 1998.
DOI : 10.1016/S0257-8972(97)00597-5

J. L. Bucaille, S. Stauss, E. Felder, and J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Materialia, vol.51, issue.6, pp.1663-1678, 2003.
DOI : 10.1016/S1359-6454(02)00568-2

URL : https://hal.archives-ouvertes.fr/hal-00613073

C. E. Foerster, J. H. Stankievicz, F. C. Serbena, C. M. Lepienski, and F. C. Zawislak, Flat end and Berkovich instrumented indentation of N and Si irradiated polyethylene ??? viscoelastic behavior, hardness and elastic modulus, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.257, issue.1-2, pp.510-514, 2007.
DOI : 10.1016/j.nimb.2007.01.221

S. Jayaraman, G. T. Hahn, W. C. Oliver, C. A. Rubin, and P. C. Bastias, Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests, International Journal of Solids and Structures, vol.35, issue.5-6, pp.365-381, 1998.
DOI : 10.1016/S0020-7683(97)89371-7

G. Kermouche, J. L. Loubet, and J. M. Bergheau, Extraction of stress???strain curves of elastic???viscoplastic solids using conical/pyramidal indentation testing with application to polymers, Mechanics of Materials, vol.40, issue.4-5, pp.271-283, 2008.
DOI : 10.1016/j.mechmat.2007.08.003

K. L. Johnson, The correlation of indentation experiments, Journal of the Mechanics and Physics of Solids, vol.18, issue.2, pp.115-126, 1970.
DOI : 10.1016/0022-5096(70)90029-3

P. Juran, P. J. Liotier, C. Maurice, F. Valiorgue, and G. Kermouche, Investigation of indentation-, impact- and scratch-induced mechanically affected zones in a copper single crystal, Comptes Rendus M??canique, vol.343, issue.5-6, pp.344-353, 2015.
DOI : 10.1016/j.crme.2015.03.003

URL : https://hal.archives-ouvertes.fr/emse-01352766

G. Kermouche, A. L. Kaiser, P. Gilles, and J. M. Bergheau, Combined numerical and experimental approach of the impact-sliding wear of a stainless steel in a nuclear reactor, Wear, vol.263, issue.7-12, pp.1551-1555, 2007.
DOI : 10.1016/j.wear.2007.02.015

I. N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, vol.3, issue.1, pp.47-57, 1965.
DOI : 10.1016/0020-7225(65)90019-4

M. F. Doerner and W. D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, vol.36, issue.04, pp.601-609, 1986.
DOI : 10.1016/0020-7225(65)90019-4

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.XI, issue.06, pp.1564-1583, 1992.
DOI : 10.1557/S0883769400054440

URL : https://hal.archives-ouvertes.fr/hal-01518596

Y. F. Gao, H. T. Xua, W. C. Oliver, and G. M. Pharr, Effective elastic modulus of film-on-substrate systems under normal and tangential contact, Journal of the Mechanics and Physics of Solids, vol.56, issue.2, pp.402-416, 2008.
DOI : 10.1016/j.jmps.2007.05.015

J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-manuel, Nanoindentation with a surface force apparatus. Mechanical properties and deformation of materials having a ultra-fine microstructures, pp.429-447, 1993.
DOI : 10.1007/978-94-011-1765-4_28

C. Bernard, V. Keryvin, J. C. Sangleboeuf, and T. , Indentation creep of window glass around glass transition, Mechanics of Materials, vol.42, issue.2, pp.196-206, 2010.
DOI : 10.1016/j.mechmat.2009.11.008

URL : https://hal.archives-ouvertes.fr/hal-00493882

G. Guillonneau, G. Kermouche, S. Bec, and J. L. Loubet, A simple method to minimize displacement measurement uncertainties using dynamic nanoindentation testing, Tribology International, vol.70, pp.190-198, 2014.
DOI : 10.1016/j.triboint.2013.10.013

URL : https://hal.archives-ouvertes.fr/emse-01161450

M. D. Uchic and M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Materials Science and Engineering: A, vol.400, issue.401, pp.400-401268, 2005.
DOI : 10.1016/j.msea.2005.03.082

J. Y. Zhang, S. Lei, Y. Liu, J. J. Niu, Y. Chen et al., Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars, Acta Materialia, vol.60, issue.4, pp.1610-1622, 2012.
DOI : 10.1016/j.actamat.2011.12.001

R. Lacroix, G. Kermouche, J. Teisseire, and E. Barthel, Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading, Acta Materialia, vol.60, issue.15, pp.5555-5566, 2012.
DOI : 10.1016/j.actamat.2012.07.016

URL : https://hal.archives-ouvertes.fr/hal-00746956

B. Su, D. Zhang, and T. W. Button, Embossing of ceramic micro-pillar arrays, Journal of the European Ceramic Society, vol.32, issue.12, pp.3345-3349, 2012.
DOI : 10.1016/j.jeurceramsoc.2012.04.009

S. Ito, Y. Takao, Y. Okamoto, K. Noritada, M. Tokeshi et al., Fabrication of pmma micropillars by reactive ion etching towards separation of white and red blood cells, Miniaturized Systems for Chemistry and Life Sciences, 16th International Conference, pp.1234-1236, 2012.

J. Liu, X. Zhang, G. Dong, Y. Liao, B. Wang et al., The performance of silicon solar cell with selective pillars fabricated by Cesium Chloride self-assembly lithography and UV-lithography, Solar Energy, vol.105, pp.274-279, 2014.
DOI : 10.1016/j.solener.2014.03.010

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, Deep reactive ion etching (Deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method, Microelectronic Engineering, vol.85, issue.2, pp.355-364, 2008.
DOI : 10.1016/j.mee.2007.07.006

M. Rommel, M. Rumler, A. Haas, A. J. Bauer, and L. Frey, Processing of silicon nanostructures by Ga+ resistless lithography and reactive ion etching, Microelectronic Engineering, vol.110, pp.177-182, 2013.
DOI : 10.1016/j.mee.2013.03.081

G. Monnet and M. A. Pouchon, Determination of the critical resolved shear stress and the friction stress in austenitic stainless steels by compression of pillars extracted from single grains, Materials Letters, vol.98, pp.128-130, 2013.
DOI : 10.1016/j.matlet.2013.01.118

M. Mutoh, T. Nagoshi, T. M. Chang, T. Sato, and M. Sone, Micro-compression test using non-tapered micro-pillar of electrodeposited Cu, Microelectronic Engineering, vol.111, pp.118-121, 2013.
DOI : 10.1016/j.mee.2013.02.040

J. R. Greer, W. C. Oliver, and W. D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Materialia, vol.53, issue.6, pp.1821-1830, 2005.
DOI : 10.1016/j.actamat.2004.12.031

H. Fei, A. Abraham, N. Chawla, and H. Jiang, Evaluation of Micro-Pillar Compression Tests for Accurate Determination of Elastic-Plastic Constitutive Relations, Journal of Applied Mechanics, vol.79, issue.6, pp.791-800, 2012.
DOI : 10.1016/j.scriptamat.2011.05.033

E. M. Grieveson, D. E. Armstrong, S. Xu, and S. G. Roberts, Compression of self-ion implanted iron micropillars, Journal of Nuclear Materials, vol.430, issue.1-3, pp.119-124, 2012.
DOI : 10.1016/j.jnucmat.2012.06.014

J. Y. Zhang, G. Liu, and J. Sun, Strain rate effects on the mechanical response in multi- and single-crystalline Cu micropillars: Grain boundary effects, International Journal of Plasticity, vol.50, pp.1-17, 2013.
DOI : 10.1016/j.ijplas.2013.03.009

D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehmb, FIB damage of Cu and possible consequences for miniaturized mechanical tests, Materials Science and Engineering: A, vol.459, issue.1-2, pp.262-272, 2007.
DOI : 10.1016/j.msea.2007.01.046

H. Asoh, S. Kotaka, and S. Ono, High-aspect-ratio GaAs pores and pillars with triangular cross section, Electrochemistry Communications, vol.13, issue.5, pp.458-461, 2011.
DOI : 10.1016/j.elecom.2011.02.020

C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider, and E. Arzt, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Materials Science and Engineering: A, vol.489, issue.1-2, pp.319-329, 2008.
DOI : 10.1016/j.msea.2007.12.038

M. B. Lowry, D. Kiener, M. M. Leblanc, C. Chisholm, J. N. Florando et al., Achieving the ideal strength in annealed molybdenum nanopillars, Acta Materialia, vol.58, issue.15, pp.5160-5167, 2016.
DOI : 10.1016/j.actamat.2010.05.052

J. P. Mccaffrey, M. W. Phaneuf, and L. D. Madsen, Surface damage formation during ion-beam thinning of samples for transmission electron microscopy, Ultramicroscopy, vol.87, issue.3, pp.97-104, 2001.
DOI : 10.1016/S0304-3991(00)00096-6

Y. Greenzweig, Y. Drezner, S. Tan, R. H. Livengood, and A. Raveha, Current density profile characterization and analysis method for focused ion beam, Microelectronic Engineering, vol.155, pp.19-24, 2016.
DOI : 10.1016/j.mee.2016.01.016

S. Lee, J. Jeong, Y. Kim, S. M. Han, D. Kiener et al., FIB-induced dislocations in Al submicron pillars: Annihilation by thermal annealing and effects on deformation behavior, Acta Materialia, vol.110, pp.283-294, 2016.
DOI : 10.1016/j.actamat.2016.03.017

R. Rabe, J. M. Breguet, P. Schwaller, S. Stauss, F. J. Haug et al., Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films, vol.469, issue.470, pp.469-470206, 2004.
DOI : 10.1016/j.tsf.2004.08.096

Y. Zou, H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nature Communications, vol.61, pp.7748-7758, 2015.
DOI : 10.1016/j.actamat.2012.09.009

URL : http://www.nature.com/articles/ncomms8748.pdf

Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia, vol.65, pp.85-97, 2014.
DOI : 10.1016/j.actamat.2013.11.049

G. Kermouche, G. Guillonneau, J. Michler, J. Teisseire, and E. Barthel, Perfectly plastic flow in silica glass, Acta Materialia, vol.114, pp.146-153, 2016.
DOI : 10.1016/j.actamat.2016.05.027

URL : https://hal.archives-ouvertes.fr/hal-01393682

K. M. Mostafa, P. R. Calvillo, J. De-baerdemaeker, K. Verbeken, C. A. Palacio et al., Physical, microstructural and mechanical study of isochronal annealing of deformed commercial iron, Journal of Alloys and Compounds, vol.656, pp.378-382, 2016.
DOI : 10.1016/j.jallcom.2015.09.233

D. Esqué-de-los-ojos, J. Ocenásek, and J. Alcalá, Sharp indentation crystal plasticity finite element simulations: Assessment of crystallographic anisotropy effects on the mechanical response of thin fcc single crystalline films, Computational Materials Science, vol.86, pp.186-192, 2014.
DOI : 10.1016/j.commatsci.2014.01.064

H. Al-baida, C. Langlade, G. Kermouche, and R. R. Ambriz, Abstract, Journal of Materials Research, vol.333, issue.14, pp.2222-2230, 2015.
DOI : 10.1016/j.ijsolstr.2005.06.068

T. Prezeau, T. Muller, M. Baron, J. Samuel, and E. Dransart, Surface treatment of a metal part, 2014.

T. Prezeau, T. Muller, and J. Samuel, Traitement de surface d'une pièce métallique par grenaillage oblique, EPPatentApp.EP20, vol.110815, p.553, 2013.

G. Guillonneau, G. Kermouche, J. M. Bergheau, and J. L. Loubet, A new method to determine the true projected contact area using nanoindentation testing, Comptes Rendus M??canique, vol.343, issue.7-8, pp.410-418, 2015.
DOI : 10.1016/j.crme.2015.06.004

URL : https://hal.archives-ouvertes.fr/emse-01500778

G. E. Fougere, L. Riester, M. Ferber, J. R. Weertman, and R. W. Siegel, Young's modulus of nanocrystalline Fe measured by nanoindentation, Materials Science and Engineering: A, vol.204, issue.1-2, pp.1-6, 1995.
DOI : 10.1016/0921-5093(95)09927-1

J. I. Rojas and D. Crespo, Modeling of the Effect of Temperature, Frequency, and Phase Transformations on the Viscoelastic Properties of AA 7075-T6 and AA 2024-T3 Aluminum Alloys, Metallurgical and Materials Transactions A, vol.141, issue.402, pp.4633-4646, 2012.
DOI : 10.1016/0921-5093(91)90714-X

Y. Ivanisenko, R. Z. Valiev, and H. J. Fecht, Grain boundary statistics in nano-structured iron produced by high pressure torsion, Materials Science and Engineering: A, vol.390, issue.1-2, pp.159-165, 2005.
DOI : 10.1016/j.msea.2004.08.071

J. J. Vlassack and W. D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments, Journal of the Mechanics and Physics of Solids, vol.42, issue.8, pp.1223-1245, 1994.
DOI : 10.1016/0022-5096(94)90033-7

O. Casals and S. Forest, Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and coatings, Computational Materials Science, vol.45, issue.3, pp.774-782, 2009.
DOI : 10.1016/j.commatsci.2008.09.030

URL : https://hal.archives-ouvertes.fr/hal-00379227

Y. Champion, Competing regimes of rate dependent plastic flow in ultrafine grained metals, Materials Science and Engineering: A, vol.560, pp.315-320, 2013.
DOI : 10.1016/j.msea.2012.09.072

D. Kuhlmann-wilsdorf, Theory of plastic deformation: - properties of low energy dislocation structures, Materials Science and Engineering: A, vol.113, pp.1-41, 1989.
DOI : 10.1016/0921-5093(89)90290-6

H. Parvin and M. Kazeminezhad, Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation, Computational Materials Science, vol.95, pp.250-255, 2014.
DOI : 10.1016/j.commatsci.2014.07.027

J. S. Jang and C. C. Koch, The hall-petch relationship in nanocrystalline iron produced by ball milling, Scripta Metallurgica et Materialia, vol.24, issue.8, pp.1599-1604, 1990.
DOI : 10.1016/0956-716X(90)90439-N

H. H. Fu, D. J. Benson, and M. A. Meyers, Analytical and computational description of effect of grain size on yield stress of metals, Acta Materialia, vol.49, issue.13, pp.2567-2582, 2001.
DOI : 10.1016/S1359-6454(01)00062-3

M. Zhao, J. C. Li, and Q. Jiang, Hall???Petch relationship in nanometer size range, Journal of Alloys and Compounds, vol.361, issue.1-2, pp.160-164, 2003.
DOI : 10.1016/S0925-8388(03)00415-8

K. A. Padmanabhan, H. Dinda, H. Hahn, and H. Gleiter, Inverse Hall???Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Materials Science and Engineering: A, vol.452, issue.453, pp.452-453462, 2007.
DOI : 10.1016/j.msea.2006.10.084

J. Alcalá and D. Esqué-de-los-ojos, Toward the development of continuum single-crystal contact mechanics analyses to microindentation experiments, Computational Materials Science, vol.52, issue.1, pp.14-19, 2012.
DOI : 10.1016/j.commatsci.2011.03.013

D. Tumbajoy-spinel, G. Kermouche, S. Descartes, J. M. Bergheau, V. Lacaille et al., Identification des propriétés mécaniques des surfaces tribologiquement transformées (tts) à partir des essais de nano-indentation et microcompression de piliers, Matériaux & Techniques, vol.103, issue.303, pp.1-9, 2015.
DOI : 10.1051/mattech/2015020

D. Tumbajoy-spinel, S. Descartes, J. M. Bergheau, V. Lacaille, G. Guillonneau et al., Assessment of mechanical property gradients after impact-based surface treatment: application to pure ??-iron, Materials Science and Engineering: A, vol.667, pp.189-198, 2016.
DOI : 10.1016/j.msea.2016.04.059

URL : https://hal.archives-ouvertes.fr/emse-01505794

R. E. Stoller and S. J. Zinkle, On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials, Journal of Nuclear Materials, vol.283, issue.287, pp.283-287349, 2000.
DOI : 10.1016/S0022-3115(00)00378-0

T. Suzuki, H. Koizuiv, and H. O. Kirchner, Plastic flow stress of b.c.c. transition metals and the peierls potential. Acta metall. mater, pp.2177-2187, 1995.

R. Huang, Q. J. Li, Z. J. Wang, L. Huang, J. Li et al., Flow Stress in Submicron BCC Iron Single Crystals: Sample-size-dependent Strain-rate Sensitivity and Rate-dependent Size Strengthening, Materials Research Letters, vol.3, issue.10, pp.121-127, 2015.
DOI : 10.1038/nmat4105

URL : http://www.tandfonline.com/doi/pdf/10.1080/21663831.2014.999953?needAccess=true

D. Caillard, Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature, Acta Materialia, vol.58, issue.9, pp.3504-3515, 2010.
DOI : 10.1016/j.actamat.2010.02.024

H. Mughrabi, The alpha-factor in the taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations : Dependence on slip mode, dislocation arrangement and density, Current Opinion in Solid State and Materials Science, 2016.

L. S. Toth, C. F. Gu, B. Beausir, J. J. Fundenberger, and M. Hoffman, Geometrically necessary dislocations favor the Taylor uniform deformation mode in ultra-fine-grained polycrystals, Acta Materialia, vol.117, pp.35-42, 2016.
DOI : 10.1016/j.actamat.2016.06.062

A. Arsenlis and M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Materialia, vol.47, issue.5, pp.1597-1611, 1999.
DOI : 10.1016/S1359-6454(99)00020-8

J. Jiang, B. Britton, and A. J. Wilkinson, Accumulation of geometrically necessary dislocations near grain boundaries in deformed copper, Philosophical Magazine Letters, vol.92, issue.11, pp.580-588, 2012.
DOI : 10.1088/0965-0393/18/7/074005

Z. Arechabaleta, P. Van-liempt, and J. Sietsma, Quantification of dislocation structures from anelastic deformation behaviour, Acta Materialia, vol.115, pp.314-323, 2016.
DOI : 10.1016/j.actamat.2016.05.040

S. Wang, N. Hashimoto, and S. Ohnuki, Effects of hydrogen on activation volume and density of mobile dislocations in iron-based alloy, Materials Science and Engineering: A, vol.562, pp.101-108, 2013.
DOI : 10.1016/j.msea.2012.10.100

L. P. Kubin and A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scripta Materialia, vol.48, issue.2, pp.119-125, 2003.
DOI : 10.1016/S1359-6462(02)00335-4

URL : https://infoscience.epfl.ch/record/90684/files/KubinLP-2003.pdf

S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang et al., Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations, Acta Materialia, vol.56, issue.13, pp.3245-3259, 2008.
DOI : 10.1016/j.actamat.2008.03.011

M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Materials Science and Engineering: A, vol.527, issue.10-11, pp.2738-2746, 2010.
DOI : 10.1016/j.msea.2010.01.004

F. Barbe, R. Quey, and T. Lakhdar, Numerical modelling of the plasticity induced during diffusive transformation. Case of a cubic array of nuclei, European Journal of Mechanics - A/Solids, vol.26, issue.4, pp.611-625, 2007.
DOI : 10.1016/j.euromechsol.2006.09.005

M. A. Vicente-alvarez, J. R. Santisteban, P. Vizcaíno, G. Ribárik, and T. Ungar, Quantification of dislocations densities in zirconium hydride by X-ray line profile analysis, Acta Materialia, vol.117, pp.1-12, 2016.
DOI : 10.1016/j.actamat.2016.06.058