M. E. Huntelaar, The thermodynamic properties of Ce2O3(s) fromT??? 0 K to 1500 K, The Journal of Chemical Thermodynamics, vol.32, issue.4, pp.465-482, 2000.
DOI : 10.1006/jcht.1999.0614

M. C. Schmidt, T. Gerdes, J. Somers, and M. Porada, Microwave assisted internal gelation of droplets -a case study, InVerTec e.V. and Institute for Transuranium Elements and University of Bayreuth A new internal gelation process for fuel microsphere preparation without cooling initial solutions Method and apparatus for producing gel particles, Osepchuk, A history of microwave heating applications Processing materials with microwave energy, Materials Science and Engineering A, pp.14-21, 1984.

J. B. Jarvis and S. Kim, The Interaction of Radio-Frequency Fields With Dielectric Materials at Macroscopic to Mesoscopic Scales, Agrawal, Microwave Sintering of Ceramics, Composite, Metals, And Transparent Materials Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, pp.1-60, 1999.

D. Grossin, [6] D. Zymelka, Suivi par méthode optique du frittage micro-ondes d'oxydes céramiques Hasna, Composite Dielectric heating and drying: The computational process, Printemps des sciences Proceedings of the World Congress on Engineering Starck et al, Hand book of thermoprocessing Technologies: Fundamental processes component safety, pp.679-686, 2002.

D. E. Clark, Processing materials with microwave energy, Materials Science and Engineering: A, vol.287, issue.2, pp.153-158, 2000.
DOI : 10.1016/S0921-5093(00)00768-1

]. J. Wang, Evidence for the microwave effect during hybrid sintering and annealing of ceramics, Microwave Processing of Materials, pp.299-331, 1996.

R. R. Menezes, Microwave hybrid fast sintering of porcelain bodies, Journal of Materials Processing Technology, vol.190, issue.1-3, pp.223-229, 2007.
DOI : 10.1016/j.jmatprotec.2007.02.041

J. L. Hirshfield and V. L. Collin, The Electron Cyclotron Maser--An Historical Survey, IEEE Transactions on Microwave Theory and Techniques, vol.25, issue.6, pp.522-527, 1977.
DOI : 10.1109/TMTT.1977.1129150

R. L. Coble, Sintering crystalline solids. I intermediate and final diffusion models, Sintering of Advanced Materials, pp.787-792, 1961.

G. C. Kuczynski and P. Metallurgy, Sintering stress of homogeneous and heterogeneous powder compacts, Acta Metall, pp.11-29, 1961.

R. L. Raj24-]-s, R. L. Kang, and . Coble, Analysis of the sintering pressure Sintering Grain Growth and Microstructure Initial Sintering of Alumina and Hematite, Kuczynski, Sintering and Related Phenomena, pp.210-211, 1958.

R. R. Thridandapani, The Effect of Microwave Energy on Sintering, 2011.

C. Herring, Effect of Change of Scale on Sintering Phenomena, Journal of Applied Physics, vol.1, issue.4, pp.301-303, 1950.
DOI : 10.1063/1.1699658

S. J. Kang and Y. I. Jung, Sintering kinetics at final stage sintering: model calculation and map construction, Acta Materialia, vol.52, issue.15, pp.4373-78, 2004.
DOI : 10.1016/j.actamat.2004.06.015

W. D. Kingery, Introduction to Ceramics Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics, J. Am. Ceram. Soc, vol.7435, issue.34, pp.1959-1963, 1976.

J. Wang and R. Raj, Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania, Journal of the American Ceramic Society, vol.8, issue.9, pp.1172-1175, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05175.x

J. D. Hansen, Combined-Stage Sintering Model, Journal of the American Ceramic Society, vol.70, issue.12, pp.1129-1135, 1992.
DOI : 10.1007/978-1-4613-4431-5_3

D. L. Johnson, Finding and utilizing the master sintering curve, Presented at Sintering, 2003.
DOI : 10.1002/9781118407080.ch1

F. Zuo, Microwave versus conventional sintering: Estimate of the apparent activation energy for densification of ??-alumina and zinc oxide, Journal of the European Ceramic Society, vol.34, issue.12, pp.3103-3110, 2014.
DOI : 10.1016/j.jeurceramsoc.2014.04.006

URL : https://hal.archives-ouvertes.fr/emse-01063729

J. R. Manning, D. Kinetics-for-atoms-in-crystals, D. Van-nostrand-princeton40, ]. K. Rybakov, and V. E. Semenov, Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field, Physical Review B Physical Review B, vol.49, issue.52, pp.64-68, 1968.

J. H. Booske, Microwave ponderomotive forces in solid-state ionic plasmas, Physics of Plasmas, vol.80, issue.5, pp.1664-1670, 1998.
DOI : 10.1002/bbpc.19920960605

R. Wroe and A. T. Rowley, Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia, Journal of Materials Science, vol.29, issue.1, pp.2019-2026, 1996.
DOI : 10.1007/BF00356621

J. Binner, Evidence for the Microwave Effect during Hybrid Sintering, J. Am. Ceram. Soc, vol.89, 1977.

A. G. Whittaker, Diffusion in Microwave-Heated Ceramics [46] K. I. Rybakov et al, Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field, Brosnan et al, Microwave Sintering of Alumina at 2.45 GHz, pp.3426-3432, 2003.
DOI : 10.1021/cm050351i

R. Raj, Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics, Journal of the American Ceramic Society, vol.71, issue.4, pp.1941-1965, 2011.
DOI : 10.1111/j.1151-2916.1988.tb05863.x

D. L. Johnson, Microwave Heating of Grain Boundaries in Ceramics, Journal of the American Ceramic Society, vol.124, issue.4, pp.849-850, 1991.
DOI : 10.1111/j.1151-2916.1991.tb06937.x

J. H. Booske, Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids, Journal of Materials Research, vol.3, issue.02, pp.495-501
DOI : 10.1016/0375-9601(90)90880-W

K. I. Rybakov, Ponderomotive effects during contact formation in microwave sintering [55] K. I. Rybakov et al, The microwave ponderomotive effect on ceramic sintering Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, ionic crystals Dirstine, W. O. Gentry, R. N. Blumenthal and W. Hammetter, Calcia-doped ceria ceramic tubes for low temperature oxygen sensors, pp.3559-3567, 1049.

M. A. Rosynek, Catalytic properties of rare earth oxides Blasse and A. Brill, a New Phosphor for Flying-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce 3+, Catal. Review Science eng. App. Physics Letters, vol.11, pp.111-154, 1967.

H. C. Yao, Y. F. , and Y. Yao, Ceria in automotive exhaust catalysts I. Oxygen storage, Journal of Catalysis, vol.86, issue.2, pp.254-265, 1984.
DOI : 10.1016/0021-9517(84)90371-3

R. V. Horrigan, Industrial Application of Rare earth Elements, pp.95-100, 1981.

M. Mogensen, N. M. Sammes, and G. A. , Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Journal of Solid State Ionics, vol.64, pp.63-94, 2000.
DOI : 10.1016/s0167-2738(99)00318-5

URL : http://orbit.dtu.dk/en/publications/physical-chemical-and-electrochemical-properties-of-pure-and-doped-ceria(e5f3db09-5bb0-4418-a6cb-9cca462b64ce).html

M. Jalilpour and M. Fathalilou, Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method Fundamentals of the behavior of fission products in oxide nuclear fuels, International J. of the Physical Sciences, pp.944-948, 2012.

M. J. Prin67-]-d, J. Bevan, . J. Kordis68-]-r, and . Tilley, Etude expérimentale et modélisation Mixed oxides of the type MO2 (fluorite)?M2O3?I oxygen dissociation pressures and phase relationships in the system CeO2-Ce2O3 at high temperatures, Principles and applications of chemical defects, pp.1509-1523, 1964.

B. C. Steele and J. M. Floyd, The Oxygen Self-Diffusion and Electrical Transport Properties of Non-stoichiometric Ceria and Ceria Solid Solutions, Proc. Br, pp.55-76, 1971.

J. Faber, M. A. Seitz, and M. H. Mueller, Defect characterization in CeOsub(2-x) at elevated temperatures, J. Phys. Chem. Solids, vol.3772, pp.903-907, 1976.
DOI : 10.1016/0022-3697(76)90029-9

H. L. Tuller and A. S. Nowick, Defect structure and electrical properties of nonstoichiometric CeO2 single crystals, J. of Electrochemical Soc, vol.73, pp.209-217, 1979.
DOI : 10.1149/1.2129007

M. Boaro, A. Trovarelli, J. H. Hwang, and T. O. Mason, Electrical and oxygen storage/release properties of nanocrystalline ceria?zirconia solid solutions, Journal of Solid State Ionics, pp.85-95, 2002.

]. R. Podor, N. Clavier, J. Ravaux, L. Claparede, N. Dacheux et al., Dynamic aspects of cerium dioxide sintering: HT-ESEM study of grain growth and pore elimination, Journal of the European Ceramic Society, vol.32, issue.2, pp.353-362, 2012.
DOI : 10.1016/j.jeurceramsoc.2011.08.032

URL : https://hal.archives-ouvertes.fr/hal-00638087

M. N. Zhou and . Rahamanm, Effect of redox reaction on the sintering behavior of cerium oxide, Acta Materialia, vol.45, issue.9, pp.3635-3639, 1997.
DOI : 10.1016/S1359-6454(97)00052-9

J. M. Heintz, J. C. Bernier77-]-s, P. K. Ahmad, I. A. Rao, and . Syed, Synthesis and sintering properties of cerium oxide powders prepared from oxalate precursors Sintering temperature effect on density, structural and morphological properties of Mg-and Sr-doped ceria Microwave assisted hydrothermal synthesis of engineered cerium oxide nanopowders, J. of the European Ceram, Effects of rapid process on the conductivity of multiple elements doped ceria-based electrolyte, J. of Power Sources, pp.1569-1573, 1986.

S. A. Acharya, The effect of processing route on sinterability and electrical properties of nano-sized dysprosium-doped ceria, Journal of Power Sources, vol.198, pp.105-111, 2012.
DOI : 10.1016/j.jpowsour.2011.09.087

V. Komarov, S. Wang, J. Tang, J. Permittivity, and . Measurement, The Wiley Encyclopedia of RF and Microwave Engineering, 2004.

M. N. Afsar, J. R. Birch, R. N. Clarke, P. Toropaien, A. D. Vainikainen et al., The measurement of the properties of materials Method for accurate measurement of complex permittivity of tissue equivalent liquids [4] Agilent 85070E Dielectric Probe Kit 200 MHz to 50 GHz, technical overview An overview of dielectric properties measuring techniques, The Journal of The Canadian Society for Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics, Hwan, Q-factor measurement with network analyzer, Microwave Theory and Techniques, pp.183-199, 1984.

J. Sheen, J. P. Sheen-]-m, S. J. Mcneal, R. E. Jang, and . Newnham, Amendment of cavity perturbation technique for loss tangent measurement at microwave frequencies Maximum sample volume for permittivity measurement by cavity perturbation technique The effect of grain and particle size on the microwave properties of barium titanate, J. of App. Phys. IEEE Trans. Instrum. Meas. J. Appl. Phys, vol.10213, issue.83, pp.57-61, 1998.

J. Jow, Microwave heating and dielectric diagnosis technique in a single???mode resonant cavity, Review of Scientific Instruments, vol.11, issue.1, 1989.
DOI : 10.1109/TMTT.1985.1133108

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, pp.1679-1684, 1961.
DOI : 10.1063/1.1728417

M. T. Sebastian, Microwave dielectric properties of (1???x)CeO2???xCaTiO3 and (1???x)CeO2???xSm2O3 ceramics, Journal of the European Ceramic Society, vol.24, issue.9, pp.2583-2589, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.027

J. C. Garnett, Coulors in metal glasses and in metallic films, Philos. Trans. R. Soc. London, pp.385-420, 1904.
DOI : 10.1098/rsta.1904.0024

URL : http://rsta.royalsocietypublishing.org/content/roypta/203/359-371/385.full.pdf

T. Yamamoto, First-principles study of dielectric properties of cerium oxide, Thin Solid Films, vol.486, issue.1-2, pp.136-140, 2005.
DOI : 10.1016/j.tsf.2004.11.240

H. Yahiro, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry, vol.5, issue.4, pp.527-531, 1988.
DOI : 10.1007/3540083383_6

J. Francl and W. D. Kingery, Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity, Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity, pp.99-107, 1954.
DOI : 10.1111/j.1551-2916.1954.tb20108.x

M. I. Aivazov and I. A. Domashev, Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens, Rhee, Porosity-Thermal conductivity correlations for ceramics materials, pp.51-54, 1968.
DOI : 10.1007/BF00773737

J. C. Maxwell, W. Woodside, and J. H. Messmer, A treatise on electricity an magnetisme, J. Appl. Phys, vol.31, issue.3213, pp.314-431, 1891.

M. X. Shen, Prediction of thermal conductivity of two and three phase solid heterogeneous mixtures Thermal conductivity of heterogeneous two component systems Resistance to potential flow through a cubical array of spheres Thermal conductivity of particulate-filled polymers, Thermal Properties of Solids at Room and Cryogenic TemperaturesInternational Cryogenics Monograph Series) Edition 2014, pp.623-631, 1960.

H. Y. Xiao, Thermodynamic properties of CexTh1-x O2 solid solution from first-principles calculations Measuring the dielectric constant of solids with HP8510 network analyzer Thermal conductivity of earth materials at high temperature, Acta Materialia J Geophys. Res, vol.61202122, issue.235, pp.77-6966, 1972.

A. Beck, Methods for determining thermal conductivity and thermal diffusivity, Handbook of terrestrial heat-flow density determination, 1988.

]. S. Charmond, Développement d'un four micro-ondes monomode et frittage de poudres céramique et métallique, 2009.

E. Pert, Y. Carmel, A. Birnboim, T. Olorunyolemi, D. Gershon et al., Temperature measurement during microwave processing [5] A. Guyon, Frittage ultra-rapide naturel: chauffage par micro-ondes et induction Suivi par méthode optique du frittage micro-ondes d'oxydes céramiques, J. Am. Ceram. Soc Materials Letters, vol.84, pp.57-60, 1981.

H. Hao, Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field Comment on ''Temperature-Gradient-Driven Diffusion in Rapid-Rate Sintering Microwave processing of ceramic materials, Am, Kinetics mechanism of microwave sintering in ceramic materials, pp.2727-2731, 1989.

D. Bouvard, Dielectric and thermal properties of cerium dioxide up to 1000 °C and the effect of the porosity for microwave processing studies, Diffusion in Microwave-Heated Ceramics, pp.83-89, 2005.

K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, Computational Methods for Electromagnetics, pp.302-307, 1966.