F. Montheillet, Métallurgie en mise en forme à chaud. Techniques de l'ingénieur, (ref, 2009.

A. Authier, Cristallographie géométrique, ref. article : A1305), 1993.

G. Murry, Transformations dans les aciers. Techniques de l'ingénieur, (ref, 1998.

B. Thomas and J. H. Schmitt, Durcissement des aciers : Mécanismes. Techniques de l'ingénieur, (ref. article : M4340), 2002.

P. J. Cunat, Aciers inoxydables : Critères de choix et structure, 2000.

P. Lacombe and B. Baroux, Beranger : Les aciers inoxydables, 1990.

J. A. Spitznagel and R. Stickler, Correlation between precipitation reactions and bulk density changes in type 18-12 austenitic stainless steels, Metallurgical Transactions, vol.7, issue.6, pp.1363-1371, 1974.
DOI : 10.1007/978-1-4899-5880-8

H. J. Frost and M. F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics, 1982.

F. C. Frank and W. T. Read-jr, Multiplication processes for slow moving dislocations [15] G. I. Taylor : The mechanism of plastic deformation of crystals. Part I : Theoretical, Physical Review Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.79, issue.4855, pp.722-723, 1934.
DOI : 10.1103/physrev.79.722

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, 2004.

T. Sakai and J. J. Jonas, Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metallurgica, vol.32, issue.2, pp.189-209, 1984.
DOI : 10.1016/0001-6160(84)90049-X

K. Lucke, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metallurgica, vol.5, issue.11, pp.628-637, 1957.
DOI : 10.1016/0001-6160(57)90109-8

M. Hillert, A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metallurgica, vol.24, issue.8, pp.731-743, 1976.
DOI : 10.1016/0001-6160(76)90108-5

C. W. Sinclair, C. R. Hutchinson, and Y. J. Brechet, The Effect of Nb on the Recrystallization and Grain Growth of Ultra-High-Purity ??-Fe: A Combinatorial Approach, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, pp.821-830, 2007.
DOI : 10.2355/isijinternational.45.713

C. S. Smith, Zener : Grain, phases and interfaces: an interpretation of microstructure, Transactions of the Metallurgical Society of AIME, vol.175, pp.15-51, 1948.

J. E. Burke and D. Turnbull, Recrystallization and grain growth Progress in Metal Physics, pp.220-244, 1952.

J. E. Bailey and P. B. Hirsch, The Recrystallization Process in Some Polycrystalline Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.267, issue.1328, pp.11-30, 1328.
DOI : 10.1098/rspa.1962.0080

P. A. Beck and P. R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum, Journal of Applied Physics, vol.188, issue.2, pp.150-152, 1950.
DOI : 10.1063/1.1699614

P. R. Rios, F. Siciliano-jr, H. R. Sandim, R. L. Plaut, and A. F. Padilha, Nucleation and growth during recrystallization, Materials Research, vol.354, issue.1-2, pp.225-238, 2005.
DOI : 10.1016/S0921-5093(03)00011-X

URL : https://doi.org/10.1590/s1516-14392005000300002

E. Brunger, X. Wang, and G. Gottstein, Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H, Scripta Materialia, vol.38, issue.12, pp.1843-1849, 1998.
DOI : 10.1016/S1359-6462(98)00124-9

D. Ponge and G. Gottstein, Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Materialia, vol.46, issue.1, pp.69-80, 1998.
DOI : 10.1016/S1359-6454(97)00233-4

P. Bocher, J. Azar, B. L. Adams, and J. J. Jonas, Using Oim to Interpret the Dynamically Recrystallized Texture of a Low Stacking Fault Energy FCC Material, Materials Science Forum, vol.273, issue.275, pp.273-275249, 1998.
DOI : 10.4028/www.scientific.net/MSF.273-275.249

X. Wang, E. Brunger, and G. Gottstein, The role of twinning during dynamic recrystallization in alloy 800H, Scripta Materialia, vol.46, issue.12, pp.875-880, 2002.
DOI : 10.1016/S1359-6462(02)00072-6

H. Beladi, P. Cizek, and P. D. Hodgson, Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, pp.1175-1189, 2009.
DOI : 10.1016/S0921-5093(00)01696-8

S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Materials Science and Engineering: A, vol.283, issue.1-2, pp.274-288, 2000.
DOI : 10.1016/S0921-5093(00)00733-4

C. Chovet, Evolution des microstructures et des textures en grande déformation à chaud d'un alliage Al-Mg-Si. Caractérisation du mécanisme de recristallisation dynamique continue, Thèse de doctorat, 2000.

H. J. Mcqueen, J. K. Solberg, and N. Ryum, Nes : Evolution of flow stress in aluminium during ultra-high straining at elevated temperatures. Part II. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, vol.60, issue.4, pp.473-485, 1989.

R. A. Petkovic, M. J. Luton, and J. J. Jonas, Recovery and recrystallization of carbon steel between intervals of hot working, Canadian Metallurgical Quarterly, vol.197, issue.256, pp.137-145, 1975.
DOI : 10.1007/BF02643242

R. A. Djaic and J. J. Jonas, Recrystallization of high carbon steel between intervals of high temperature deformation, Metallurgical Transactions, vol.230, issue.no. 2, pp.621-624, 1973.
DOI : 10.1179/095066069790138056

Z. Xu and T. Sakai, Static Recovery and Recrystallization of Hot-worked Austenite in a Carbon Steel, Tetsu-to-Hagane, vol.77, issue.3, pp.462-469, 1991.
DOI : 10.2355/tetsutohagane1955.77.3_462

H. Beladi, P. Cizek, and P. D. Hodgson, The mechanism of metadynamic softening in austenite after complete dynamic recrystallization, Scripta Materialia, vol.62, issue.4, pp.191-194, 2010.
DOI : 10.1016/j.scriptamat.2009.10.022

F. L. Roch, Acier inoxydable pour forgeage à chaud et procédé de forgeage à chaud utilisant cet acier, btitle, 2014 Backofen : Determination of strain hardening characteristics by torsion testing, Proceedings of ASTM, pp.1259-1271, 1957.

J. P. Thomas, Étude expérimentale et modélisation de l'évolution microstructurale du superalliage 718 en déformation à chaud, Thèse de doctorat, École des Mines de Saint-Étienne, 2005.

T. Baudin, Analyse EBSD : Principe et cartographies d'orientations. Techniques de l'ingénieur, (ref, p.2016

S. A. Saltykov, Stereometric metallography, Metallurgizdat Moscow, 1958.

L. Gavard, Recristallisation dynamique d'aciers inoxydables austénitiques de haute pureté, Thèse de doctorat, École des Mines de Saint-Étienne, 2001.

A. Belyakov, H. Miura, and T. Sakai, Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel, Materials Science and Engineering: A, vol.255, issue.1-2, pp.139-147, 1998.
DOI : 10.1016/S0921-5093(98)00784-9

P. Kratochvíl, P. Luká?, P. Vostr-`-yvostr-`-vostr-`-y, J. Pacák, and J. Tome?, Dynamic softening and static recrystallisation of AISI 321 steel, Materials Science and Technology, vol.76, issue.1, pp.78-82, 1991.
DOI : 10.1179/mst.1991.7.1.78

J. Orend, F. Hagemann, F. B. Klose, B. Maas, and H. Palkowski, A new unified approach for modeling recrystallization during hot rolling of steel, Materials Science and Engineering: A, vol.647, pp.191-200, 2015.
DOI : 10.1016/j.msea.2015.08.085

M. Bernacki, R. E. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
DOI : 10.1016/j.scriptamat.2010.11.032

URL : https://hal.archives-ouvertes.fr/hal-00577039

N. Moelans, F. Wendler, and B. Nestler, Comparative study of two phase-field models for grain growth, Computational Materials Science, vol.46, issue.2, pp.479-490, 2009.
DOI : 10.1016/j.commatsci.2009.03.037

C. Maurice and F. J. Humphreys, 2D and 3D curvature driven vertex simulations of grain growth, Grain Growth in Polycrystalline Materials III, pp.81-90, 1998.

A. D. Rollett, M. J. Luton, and D. J. Srolovitz, Microstructural simulation of dynamic recrystallization, Acta Metallurgica et Materialia, vol.40, issue.1, pp.43-55, 1992.
DOI : 10.1016/0956-7151(92)90198-N

]. S. Bibliographie55, Y. C. Kim, and . Yoo, Dynamic recrystallization behavior of AISI 304 stainless steel, Materials Science and Engineering, vol.311, issue.12, pp.108-113, 2001.

P. Uranga, A. I. Fernandez, B. Lopez, and J. M. , Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite, Materials Science and Engineering: A, vol.345, issue.1-2, pp.319-327, 2003.
DOI : 10.1016/S0921-5093(02)00510-5

A. Dehghan-manshadi, M. R. Barnett, and P. D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, pp.39-1359, 2008.
DOI : 10.2355/isijinternational1966.22.253

J. J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami kinetics of dynamic recrystallization, Acta Materialia, vol.57, issue.9, pp.2748-2756, 2009.
DOI : 10.1016/j.actamat.2009.02.033

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, pp.1103-1112, 1939.
DOI : 10.1002/zaac.19332140411

F. Montheillet and O. Lurdos, A grain scale approach for modeling steady-state discontinuous dynamic recrystallization, Acta Materialia, vol.57, issue.5, pp.1602-1612, 2009.
DOI : 10.1016/j.actamat.2008.11.044

URL : https://hal.archives-ouvertes.fr/emse-00463547

R. Sandström and R. Lagneborg, A model for hot working occurring by recrystallization, Acta Metallurgica, vol.23, issue.3, pp.387-398, 1975.
DOI : 10.1016/0001-6160(75)90132-7

Y. Estrin, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metallurgica, vol.32, issue.1, pp.57-70, 1984.
DOI : 10.1016/0001-6160(84)90202-5

A. Yoshie, H. Morikawa, and Y. Onoe, Itoh : Formulation of static recrystallization of austenite in hot rolling process of steel plate, pp.425-431, 1987.

Y. Bergström, A dislocation model for the stress-strain behaviour of polycrystalline ??-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations, Materials Science and Engineering, vol.5, issue.4, pp.193-200, 1970.
DOI : 10.1016/0025-5416(70)90081-9

A. Laasraoui and J. J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates, Metallurgical Transactions A, vol.30, issue.7, pp.1545-1558, 1991.
DOI : 10.2355/isijinternational1966.27.425

F. Montheillet, D. Piot, N. Matougui, and M. L. , Fares : A critical assessment of three usual equations for strain hardening and dynamic recovery

Y. Estrin, Unified constitutive laws of plastic deformation -chapter 2, pp.69-106, 1996.

F. Montheillet and J. J. , Jonas : Models of recrystallization, ASM Handbook, vol.22, pp.220-231, 2009.

P. Bernard, S. Bag, K. Huang, and R. E. , Logé : A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering A, issue.24, pp.5287357-7367, 2011.

O. Beltran, K. Huang, and R. E. Logé, A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress, Computational Materials Science, vol.102, pp.293-303, 2015.
DOI : 10.1016/j.commatsci.2015.02.043

URL : https://hal.archives-ouvertes.fr/hal-01137230

D. G. Cram, H. S. Zurob, Y. J. Brechet, and C. R. Hutchinson, Modelling discontinuous dynamic recrystallization using a physically based model for nucleation, Acta Materialia, vol.57, issue.17, pp.5218-5228, 2009.
DOI : 10.1016/j.actamat.2009.07.024

URL : https://hal.archives-ouvertes.fr/hal-00602225

O. Bouaziz and P. Buessler, Iso-work Increment Assumption for Heterogeneous Material Behaviour Modelling, Advanced Engineering Materials, vol.6, issue.12, pp.79-83, 2004.
DOI : 10.1002/adem.200300524

J. E. Bailey and P. B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver, Philosophical Magazine, vol.46, issue.53, pp.485-497, 1960.
DOI : 10.1098/rspa.1957.0105

M. R. Staker and D. L. Holt, The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700??C, Acta Metallurgica, vol.20, issue.4, pp.569-579, 1972.
DOI : 10.1016/0001-6160(72)90012-0

S. V. Raj and G. M. Pharr, A compilation and analysis of data for the stress dependence of the subgrain size, Materials Science and Engineering, vol.81, issue.C, pp.217-237, 1986.
DOI : 10.1016/0025-5416(86)90265-X

J. Favre, D. Fabrègue, D. Piot, N. Tang, Y. Koizumi et al., Chiba : Modeling grain boundary motion and dynamic recrystallization in pure metals, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, pp.445861-5875, 2013.

D. Turnbull, Theory of Grain Boundary Migration Rates, JOM, vol.175, issue.2, pp.661-665, 1951.
DOI : 10.1103/PhysRev.73.526

U. F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science, vol.48, issue.3, pp.171-273, 2003.
DOI : 10.1016/S0079-6425(02)00003-8

D. Piot, G. Damamme, and F. Montheillet, Mesoscopic Modeling of Discontinuous Dynamic Recrystallization: Steady-State Grain Size Distributions, Materials Science Forum, vol.706, issue.709, pp.706-709234, 2012.
DOI : 10.4028/www.scientific.net/MSF.706-709.234

URL : https://hal.archives-ouvertes.fr/hal-00858912

F. Montheillet and J. P. Thomas, Damamme : Distribution de la taille des grains recristallisés dynamiquement dans les matériaux métalliques, Congrès Matériaux Tours, 2002.

S. H. Cho and Y. C. Yoo, Metadynamic recrystallization of austenitic stainless steel, Journal of Materials Science, vol.36, issue.17, pp.4279-4284, 2001.
DOI : 10.1023/A:1017995122420

A. Dehghan-manshadi, M. R. Barnett, and P. D. Hodgson, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Materials Science and Engineering: A, vol.485, issue.1-2, pp.664-672, 2008.
DOI : 10.1016/j.msea.2007.08.026

F. Montheillet and D. Piot, Damamme : Modeling of the thermomechanical processing of superalloys. UTC subcontract, pp.8-587, 2009.

G. Smagghe, D. Piot, F. Montheillet, G. Perrin, and A. Montouchet, The Issue of Grain Size Distribution Using Mean Field Models for Dynamic and Post-Dynamic Recrystallization, Materials Science Forum, vol.879, pp.1794-1799, 2017.
DOI : 10.4028/www.scientific.net/MSF.879.1794

C. Krill and L. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Materialia, vol.50, issue.12, pp.3059-3075, 2002.
DOI : 10.1016/S1359-6454(02)00084-8

R. Kamachali, 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations, Acta Materialia, vol.60, issue.6-7, pp.2719-2728, 2012.
DOI : 10.1016/j.actamat.2012.01.037

H. W. Hesselbarth and I. R. , Simulation of recrystallization by cellular automata, Acta Metallurgica et Materialia, vol.39, issue.9, pp.2135-2143, 1991.
DOI : 10.1016/0956-7151(91)90183-2

Y. Liu, T. Baudin, and R. Penelle, Simulation of normal grain growth by cellular automata, Scripta Materialia, vol.34, issue.11, pp.1679-1683, 1996.
DOI : 10.1016/1359-6462(96)00055-3

A. D. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science, vol.21, issue.1, pp.69-78, 2001.
DOI : 10.1016/S0927-0256(00)00216-0

K. Piekos, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix, Generalized vertex model of recrystallization ??? Application to polycrystalline copper, Computational Materials Science, vol.42, issue.4, pp.584-594, 2008.
DOI : 10.1016/j.commatsci.2007.09.014

H. Hallberg, Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth???a 2D level set study, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.8, p.85005, 2014.
DOI : 10.1088/0965-0393/22/8/085005

C. Mießen, M. Liesenjohann, L. Barrales-mora, L. Shvindlerman, and G. Gottstein, An advanced level set approach to grain growth ??? Accounting for grain boundary anisotropy and finite triple junction mobility, Acta Materialia, vol.99, pp.39-48, 2015.
DOI : 10.1016/j.actamat.2015.07.040

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, issue.21, pp.8015-8033, 2009.
DOI : 10.1016/j.jcp.2009.07.020

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
DOI : 10.1016/j.commatsci.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-00699554

M. Bernacki, Y. Chastel, T. Coupez, and R. E. , Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
DOI : 10.1016/j.scriptamat.2008.02.016

URL : https://hal.archives-ouvertes.fr/hal-00509731

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. P. Muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, pp.57-71, 2016.
DOI : 10.1016/j.commatsci.2016.04.045

URL : https://hal.archives-ouvertes.fr/hal-01327901

F. Haessner, Recrystallization of Metallic Materials, 1978.

C. Ghosh, V. V. Basabe, and J. J. , Determination of the Critical Strains for the Initiation of Dynamic Transformation and Dynamic Recrystallization in Four Steels of Increasing Carbon Contents, steel research international, vol.32, issue.5, pp.490-494, 2013.
DOI : 10.1016/0001-6160(84)90049-X

D. Cram, X. Fang, H. Zurob, Y. Bréchet, and C. Hutchinson, The effect of solute on discontinuous dynamic recrystallization, Acta Materialia, vol.60, issue.18, pp.6390-6404, 2012.
DOI : 10.1016/j.actamat.2012.08.021

URL : https://hal.archives-ouvertes.fr/hal-00781280

E. I. Poliak and J. J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Materialia, vol.44, issue.1, pp.127-136, 1996.
DOI : 10.1016/1359-6454(95)00146-7

. Oliveira, Comparison of analytical grain size distributions with threedimensional computer simulations and experimental data, Scripta Materialia, vol.54, issue.9, pp.1633-1637, 2006.

Y. Suwa, Y. Saito, and H. Onodera, Parallel Computer Simulation of Three-Dimensional Grain Growth Using the Multi-Phase-Field Model, MATERIALS TRANSACTIONS, vol.49, issue.4, pp.704-709, 2008.
DOI : 10.2320/matertrans.MRA2007225

R. D. Kamachali, Steinbach : 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations, pp.6-72719, 2012.

A. L. Cruz-fabiano, R. E. Logé, and M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Computational Materials Science, vol.92, pp.305-312, 2014.
DOI : 10.1016/j.commatsci.2014.05.060

URL : https://hal.archives-ouvertes.fr/hal-01023803

L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino-muñoz et al., Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations, Journal of Materials Science, vol.446, issue.7139, pp.5110970-10981, 2016.
DOI : 10.1038/nature05745

URL : https://hal.archives-ouvertes.fr/hal-01430758

M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica, vol.13, issue.3, pp.227-238, 1965.
DOI : 10.1016/0001-6160(65)90200-2

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, pp.35-50, 1961.
DOI : 10.1016/0022-3697(61)90054-3

C. Wagner, Theorie der alterung von niedershlägen durch umlösen (ostwaldreifung ). Elektrochem, p.581, 1961.

C. R. Hutchinson, H. S. Zurob, C. W. Sinclair, and Y. J. Brechet, The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels, Scripta Materialia, vol.59, issue.6, pp.635-637, 2008.
DOI : 10.1016/j.scriptamat.2008.05.036

URL : https://hal.archives-ouvertes.fr/hal-00358444

C. Castan, Étude de la recristallisation au cours du laminage à chaud d'aciers à basse densité fer-aluminium, Thèse de doctorat, École des Mines de Saint-Étienne, 2011.
DOI : 10.1051/metal/2011050