
HAL Id: tel-01664343
https://theses.hal.science/tel-01664343

Submitted on 14 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Large-scale Distributed Systems The
infrastructure Viewpoint - Toward Fog and Edge

Computing as The Next Utility Computing Paradigm?
Adrien Lebre

To cite this version:
Adrien Lebre. Contributions to Large-scale Distributed Systems The infrastructure Viewpoint - To-
ward Fog and Edge Computing as The Next Utility Computing Paradigm?. Distributed, Parallel, and
Cluster Computing [cs.DC]. Université de Nantes, 2017. �tel-01664343�

https://theses.hal.science/tel-01664343
https://hal.archives-ouvertes.fr

Université Bretagne Loire

Habilitation à Diriger des recherches

Presentée par

Adrien Lebre

École Doctorale Sciences et technologies de l’information, et mathématiques
Discipline : Informatique et applications, section CNU 27
Unité de recherche : IMT Atlantique, Inria, LS2N
Soutenue le 1er Sept. 2017

Contributions to Large-scale
Distributed Systems

The infrastructure Viewpoint
Toward Fog and Edge Computing as The Next Utility

Computing Paradigm?

Contributions aux systèmes
distribués à large échelle
la vision infrastructure

Vers le Fog et l’Edge computing comme nouveau modèle
d’informatique utilitaire ?

M. Claude Jard, Président
Professor in Computer Science at University of Nantes
Head of Nantes Digital Science Laboratory (LS2N).
M. Erik Elmroth, Rapporteur
Professor in Computing Science at Umea University, Sweden
Head of Umea University research on distributed systems.
M. Manish Parashar, Rapporteur
Distinguished Professor of Computer Science at Rutgers University, USA
Director of the Rutgers Discovery Informatics Institute (RDI2).
M. Pierre Sens, Rapporteur
Professor at the University of Pierre et Marie Curie (Paris 6), France
Head of the REGAL Resarch Group.
M. Frédéric Desprez, Examinateur
Senior Researcher at Inria
Deputy Scientific Director at Inria

It does not matter how slowly you go
as long as you do not stop.

— Confucius

Acknowledgments

Because I see now how overloaded can be the schedule of senior researchers, I would
like to start these acknowledgments by expressing my gratitude to all the members of
the committee for accepting to evaluate m work despite their respective obligations.
It is a real honor for me to have such a prestigious committee.

This document covers most of the activities I made since the defense of my Phd in
2006. During these ten years, I had the opportunities to work with many French as
well as Foreign colleagues. While these are acknowledged throughout the document,
I would like, here, to warmly thank all of them for the collaborations we had and that
have made the researcher I am today. I should highlight that I am much indebted to

• Dr. Christine Morin for showing me what a community can accomplish ;

• Prof. Mario Südholt for the freedom and trust he has given me in each action I
have wanted to achieve since my arrival in his team ;

• Dr. Frédéric Desprez for his confidence and guidance he has never stopped to
give me during this period.

Special thanks go to the Phd candidates, Post-docs and Engineers I had the chance
to work with. In addition to performing the real work that makes research progress-
ing, they have been key persons that through their competences and efforts have kept
my enthusiasm and my energy to conduct research activities intact. The contribu-
tions to the field of distributed computing I am glad to present in this document could
not have been achieved without them.

Finally, my most affectionate thanks go to:

• My Friends who are throught our weekend outings and meals the best way for
me to “recharge my batteries” ;

• My parents-in-law who indirectly have participated to the work presented in
this manuscript, in particular by taking care of my kids each time it has been
necessary ;

• My parents who after 39 years still continue to impress me for the devotion
they have for their five children ;

• My brothers, sister(s) (in-law) and their kids with whom I should have spent
much more times than what I have done ;

• My children, Elie-Lou and Jonaswho are, by their daily smiles, an endless source
of happiness ;

• And, my lovely wife, Dorothée, who is, in good times and bad, the most won-
derful person I have met.

iii

Table of Contents

I Introduction 1
1 Introduction 3

1.1 General Context . 3
1.2 Scientific Contributions . 4

1.2.1 Dynamic scheduling of VMs 5
1.2.2 Virtualization and Simulation toolkits 6
1.2.3 Beyond the Clouds . 7

1.3 Looking Back to the Future . 7
1.4 Organization of the Document . 9

II Dynamic Virtual Machine Scheduling 10
2 VM Cluster-Wide Context Switch 13

2.1 Challenge Description . 13
2.2 Our Proposal: A Generic VMs Context Switch 15

2.2.1 Fundamentals . 15
2.2.2 Architecture Overview . 16

2.3 Proof-of-Concept & Validations . 20
2.3.1 Proof-of-Concept . 20
2.3.2 Experiments . 20

2.4 Related Work . 22
2.5 Summary . 23

3 Distributed Virtual Machine Scheduler 25
3.1 Addressing Scalability, Reactivity and Fault-tolerant Aspects 25

3.1.1 Challenge Description . 25
3.1.2 Our Proposal: DVMS . 27
3.1.3 Proof-Of-Concept & Validation 30
3.1.4 Summary . 33

3.2 Locality Aware-Scheduling Strategy 34
3.2.1 Challenge Description . 34
3.2.2 Our Proposal: A Locality-aware Overlay Network 35
3.2.3 Proof-of-Concept & Validation 38
3.2.4 Summary . 40

3.3 Related Work . 41
4 Conclusion & Open Research Issues 43

III Virtualization and Simulation toolkits 46
5 Adding virtualization capabilities to SimGrid 49

5.1 Challenge Description . 49
5.2 SimGrid Overview . 50
5.3 Our proposal: Simgrid VM . 51

5.3.1 Adding a VM Workstation Model 52
5.3.2 Adding a Live Migration Model 54
5.3.3 SimGrid VM API (C and Java) 58

5.4 Validation . 59
5.4.1 Experimental Conditions . 61
5.4.2 Evaluation of the VM Workstation Model 62
5.4.3 Live migrations with various CPU levels 63
5.4.4 Live Migrations under CPU Contention 64
5.4.5 Live Migrations under Network Contention 65

v

vi Table of Contents

5.5 Related Work . 66
5.6 Summary . 67

6 Virtual Machine Placement Simulator 69
6.1 Challenge Description . 69
6.2 Our Proposal: VMPlaceS . 70
6.3 Dynamic VMPP Algorithms . 72
6.4 Experiments . 74

6.4.1 Accuracy Evaluation . 74
6.4.2 Analysis of Entropy, Snooze and DVMS 75

6.5 Related Work . 77
6.6 Summary . 78

7 Conclusion & Open Research Issues 81

IV Beyond the Clouds: Recent, Ongoing and Future Work 85
8 The DISCOVERY Initiative 87

8.1 Context & Motivations . 87
8.2 From Cloud to Fog/Edge Computing Facilities 89
8.3 Revising OpenStack Through a Bottom/Up Approach 91

8.3.1 Design Considerations . 91
8.3.2 The Choice of OpenStack . 92

8.4 Innovation Opportunities . 94
8.5 Summary . 96

9 RevisingOpenStack toOperate Fog/EdgeComputing Infrastruc-
tures: a First Proof-Of-Concept 99
9.1 Challenge Description . 99
9.2 Revising OpenStack . 100

9.2.1 Distributing the AMPQ Bus 101
9.2.2 Distributing the Databases 101
9.2.3 The Nova POC: From MySQL to Redis 102

9.3 Experimental Validation . 103
9.3.1 Impact of Redis w.r.t MySQL 104
9.3.2 Multi-site Scenarios . 106
9.3.3 Compatibility with Advanced Features 107

9.4 Summary . 108
10 Conducting Scientific Evaluations of OpenStack 109

10.1 Challenge Description . 109
10.2 Background . 110

10.2.1 Deploying OpenStack and controlling Experiments 110
10.2.2 Enos Default Benchmarks . 110
10.2.3 Monitoring and Gathering Metrics 111

10.3 EnOS . 111
10.3.1 EnOS Description Language for Flexible Topologies 111
10.3.2 EnOS Workflow . 112

10.4 Experiments . 113
10.5 Related Work . 115
10.6 Summary . 116

11 Ongoing and Future Work: A Software Stack for Fog/Edge In-
frastructures 119

Bibliography 125

V Appendix 135
A Résumé long en francais 137

a.1 Contexte générale . 137
a.2 Contributions Scientifiques . 138

a.2.1 Placement dynamique de machines virtuelles 138

Table of Contents vii

a.2.2 Virtualisation et bibliothèques de simulation 140
a.2.3 Au delà de l’informatique en nuage 142

a.3 Une recherche dirigée par l’expérimentation 143
B Detailled Curriculum Vitae/List of Publications/Invited Talks 145

Part I

I N T RO D U C T IO N

This habilitation thesis presents an overview of the major research activities I conducted as
part of the ASCOLA Research Group of the Ecole des Mines de Nantes (now IMT Atlantique),
where I have held an Associate Professor position since October 2008. ASCOLA is a joint team
of the Automation, Production andComputer ScienceDepartment of IMTAtlantique, the Inria
research center in Rennes, and the “Laboratoire des Sciences du Numérique de Nantes” (LS2N,
UMR CNRS 6004) in France. The team addresses the general problem of the implementation
and evolution of large and complex software architectures. In particular, we pursue the objec-
tive of new language abstractions and implementation techniques for large-scale applications
in cloud- and grid-based systems, both on the level of (service-based) applications and (virtu-
alized) infrastructures. The document summarizes the main contributions I achieved on this
topic.

I highlight that each part includes, at the beginning, a short preamble such as this one. The
goal is to give additional information regarding the work that is presented. In particular, for
each contribution, I mention the different persons that took part to the activities and, as appro-
priate, the sources of funding that have been associated.

Last but not the least, all URLs that are given in this manuscript have been validated on
March 2017.

2

http://web.emn.fr/x-info/ascola/doku.php

1Introduction

In this introduction, I first present the scientific context of my research and second highlight
three main actions I have done since I have joined the ASCOLA Research Group.

To conclude this introduction, I voluntary chose to give a brief overview of the activities
I have been doing along the ones presented in this manuscript. Reading of this last section is
not mandatory to understand the scientific aspects that will be discussed later on. The goal
is to highlight a few details that I consider as key elements in my professional life such as
my engagement in the Grid’5000 consortium or more generally my involvement in the sci-
entific community – Being involved in the community has been and will be a key element of
my research activities – I have always been convinced of the importance to promote collab-
orations and exchanges between researchers: collaborations is the answer to tackle scientific
challenges that would be almost impossible to address alone.

1.1 General Context

To accommodate the ever-increasing demand for computation and storage capabili-
ties, computing infrastructures have continuously evolved since the 1960’s. Figure 1
provides a chronology of major advances in communication and computation tech-
nologies. It depicts in particular the different computing architectures starting from
the historical mainframe computers to the advent of Cloud Computing solutions that
host most IT-services nowadays.

As early as the advent of the
TCP/IP network, Utility Com-
puting infrastructures have been
leveraging network backbones to
deliver more efficient solutions.

Figure 1: Evolution of Communi-
cation/Computation Facilities

Although these architectures radically differ in their design and the way of using
them, mainframes, commodity clusters, Grids and more recently Cloud Computing
facitilies have all been targeting the Utility Computing concept for IT capabilities as
defined by John McCarthy in 1961.

If computers of the kind I have
advocated become the computers
of the future, then computing may
someday be organized as a public
utility just as the telephone system
is a public utility... The computer
utility could become the basis of
a new and important industry -
John Mc Carthy, Speaking at the
MIT centennial in 1961

Because it enables Utility Computing providers to go beyond the capacity of a sin-
gle machine, distributed computing became the prevalent infrastructure for deliver-
ing IT as a service in the middle of the 1990’s. However, due to the complexity to
operate and use Distributed Computing Platforms, it has taken almost two decades

3

of research activities and technology transfers (Foster and Kesselman, 2010) to popu-
larize them in all domains of science and industry (Armbrust et al., 2010; Low, Chen,
and Wu, 2011). Among the key enablers of this democratization are virtualization
technologies. Proposed as early as Mainframes (Popek and Goldberg, 1974) but used
for about a decade in distributed computing (Fallenbeck et al., 2006; Sotomayor, Kea-
hey, and Foster, 2008), system virtualization had a huge impact on distributed com-
puting.

Virtual Machines have finally
arrived. Dismissed for a number

of years as merely academic
curiosities, they are now seen

as cost-effective techniques for
organizing computer systems
resources to provide extraor-
dinary system flexibility and

support for certain unique
applications. Goldberg, 1974,
A Survey of Virtual Machine

Research, Computer, 7(6), 34-45.

System Virtualization can be seen an independent abstraction between hardware
resources and software applications that enables the division of physical resources
into several independent virtual elements. These elements can be assigned “on-the-
fly” to applications according to their requirements, thus improving the flexibility in
terms of resource management. Among virtualization technologies, the concept of
virtual machine is probably best known (Barham et al., 2003). A Virtual Machine
(VM) provides a substitute of a physical machine with its own operating system, li-
braries and applications. A hypervisor acts as the independent abstraction that en-
ables the execution of several VMs simultaneously on a physical machine. Using VMs
offers strong advantages from the end-users/developers point of view. First, they can
customize a VM with the runtime they want, save it in a persistent manner and start it
each time it is needed. Second, by splitting a service into multiple VMs, it is possible
to adapt the number of running VMs in order to satisfy the expected quality of ser-
vice on time. Finally, using VMs provides a stronger isolation between the different
tenants that use the distributed infrastructure. Indeed, applications running inside a
VM cannot access resources that have been assigned to other VMs.

While Virtualization technologies paved the way of the Cloud Computing revolu-
tion, in particular of the computation dimension of the Infrastructure-as-a-Service
model (IaaS, i.e., a distributed infrastructure where developers/end-users can provi-
sion VMs on demand) (Sotomayor, Rubén S Montero, et al., 2009), it also led to new
scientific and technical challenges in terms of resource management (Foster, Y. Zhao,
et al., 2008). These challenges are related to the classical management of all resources
consumed and provided by the hosting infrastructure (servers, storage, and network)
and on the management of the VM lifecycle (creation, suspend/resume and migration
operations). Since 2008, my research activities have been focusing on these challenges
with three major contributions (i) on the dynamic scheduling of VMs in cloud com-
puting infrastructures (Hermenier, Lebre, and Menaud, 2010; Quesnel and Lebre,
2011; Balouek, Lebre, and Quesnel, 2013; Quesnel, Lebre, Pastor, et al., 2013; Ques-
nel, Lebre, and Südholt, 2013; Pastor et al., 2014), (ii) on delivering abstractions and
accurate models to study VM related challenges through simulations (Hirofuchi and
Lebre, 2013; Hirofuchi, Pouilloux, and Lebre, 2013; Hirofuchi, Pouilloux, and Lebre,
2015; NGuyen and Lebre, 2017) and, finally, (iii) on the design of a new generation
of Utility Computing that can cope with new requirements of Internet of Things and
Mobile Computing applications (Lebre, Anedda, et al., 2011; Bertier et al., 2014; Le-
bre, Pastor, Simonet, et al., 2017; Confais, Lebre, and Parrein, 2017). It is noteworthy
that although these three parts can be considered as independent activities, they have
nurtured each other as explained in the following.

1.2 Scientific Contributions

At coarse-grained, the red thread of the activities I conducted is the following one:
While investigating the challenge related to the dynamic scheduling of VMs, in par-
ticular under the scalability perspective (see Section 1.2.1), I remarked that our com-
munity lacked of a simulator toolkit to evaluate and compare state-of-the-art’s solu-
tions at large scale (see Section 1.2.2). Addressing these challenges at large scale has
been a wise choice with respect to the current trend toward large-scale and widely
distributed Cloud Computing Infrastructures (see Section 1.2.3).

4

1.2.1 Dynamic scheduling of VMs
2008 - 2015

Among challenges IaaS providers soon facedwas theVMsproliferation dilemma (a.k.a.,
the VM sprawl (Sarathy, Narayan, and Mikkilineni, 2010)). Due to the fact that the
creation of VMs was becoming straightforward and the possibility to provision and
free VMs on demand, administrators as well as developers have built new services/ap-
plications on a VM-basis. The main issue of this software architecture choice is that it
may lead to over-provisioning situations where some VMs are consuming resources
that they do not longer need, preventing other VMs to access resources they require.
To mitigate resource waste as well as shortages, the distributed computing commu-
nity has been investigating new mechanisms in charge of maximizing system utiliza-
tion while ensuring the Quality of Service (QoS) of each VM.

Among the different solutions available, the ASCOLA research group worked on
the Entropy proposal (Hermenier, Lorca, et al., 2009), a framework built on the con-
cept of a central MAPE loop (Monitor-Analyze-Plan-Execute) (Huebscher and Mc-
Cann, 2008) and constraint programming concepts (Rossi, Van Beek, and Walsh,
2006) to deal with the VMs placement problem. The first contribution we made at
my arrival in ASCOLA has been a generalization of the Entropy proposal to manip-
ulate VMs across a cluster in the same manner as processes on a laptop (Hermenier,
Lebre, and Menaud, 2010). We proposed the concept of cluster-wide context switches of
virtualized jobs. By encapsulating jobs into VMs and by using VM operations such as
migration, suspend and resume it was possible to resolve under-used and over-loaded
situations dynamically by means of autonomous mechanisms that reassign resources
in case of service degradation. This fine-grained management of VMs enabled the
execution of a maximum number of jobs simultaneously and non-intrusively (VMs
were considered as black boxes).

Leveraging this first result, I proposed to investigate how this cluster-scale solution
could be extended to handle larger infrastructures composed of thousands of servers
potentially spread over multiple-sites. The key idea I proposed has been to leverage
P2P mechanisms while keeping the constraint programming approach to address the
optimization problem. First, we introduced DVMS (Distributed VM Scheduler), a man-
ager that schedules and supervises VMs cooperatively and dynamically in distributed
systems (Quesnel and Lebre, 2011; Quesnel, Lebre, and Südholt, 2013; Quesnel, Le-
bre, Pastor, et al., 2013; Balouek, Lebre, and Quesnel, 2013). DVMS relies on a ring-
based algorithm that allows nodes to cooperate for solving under and over-loaded sit-
uations: when a node cannot guarantee the QoS for the VMs it is hosting or when it
is under-utilized, it starts an iterative scheduling procedure by querying its neighbor
to find a better placement. If the request cannot be satisfied by the neighbor, it is for-
warded to the following free one until the procedure succeeds. This approach allows
each scheduling procedure to send requests only to a minimal number of nodes, thus
decreasing the scheduling as well as the reconfiguration time (a.k.a., the aforemen-
tioned VM context switch operation) without requiring a central point. The second
extension we made focused on the locality of nodes hosting the VMs. The objective
was to mitigate inter-site VM relocations that are costly in the context of a cloud in-
frastructure spread over several sites (Pastor et al., 2014). To tackle this problem, we
designed a generic building block that enables the reification of the locality aspects at
the level of the scheduling algorithm. The locality has been estimated through a cost
function of the latency/bandwidth tuple between peers in the network, thus enabling
each peer to select its closest neighbors. We rely on Vivaldi (Dabek et al., 2004), a sim-
ple decentralized protocol allowing to map a network topology onto a logical space
while preserving locality. On top of Vivaldi, a shortest path construction, similar to
Dijkstra’s well-known algorithm, is performed each time there is a need for cooper-
ation between two nodes that take part in the schedule. We evaluated the advantage
of this new building block by changing the overlay network in the DVMS proposal.

5

It is noteworthy that for each proposal, we implemented an open-source frame-
work and evaluated it through in-vivo experiments, as further discussed in the docu-
ment.

All pieces of software are available online: http://beyondtheclouds.github.
io/DVMS/.

1.2.2 Virtualization and Simulation toolkits
2013 -

While evaluating our VM placement algorithms, I observed there was no instrument
to evaluate and compare the different approaches that have been proposed in the lit-
erature. Although the VM placement problem has been a hot topic for almost one
decade, most proposals were evaluated either using limited scale in-vivo experiments
or ad-hoc simulator techniques. Such validation methodologies are unsatisfactory.
First they do not model precisely enough real production platforms (size, workload
representativeness, etc.). Second, they do not enable the fair comparison of each ap-
proach.

SimGrid is a scientific instrument
to study the behavior of large-scale
distributed systems such as Grids,

HPP, P2P and more recently
Cloud systems thanks in part

to the work I did. It can be used to
evaluate heuristics and prototype

applications. All this as a free
software. Further information

available at the Simgrid website.

The second contributionwemade has consisted in extending SimGrid, a toolkit for
the simulation of potentially complex algorithms executed on large-scale distributed
systems (Casanova, Legrand, and Quinson, 2008). Although it has been intensively
used in HPC and P2P areas, it did not provide the VM abstractions that were required
to study and compare VM placement strategies and more generally VM-related chal-
lenges. We proposed SimGrid VM, a highly-scalable and versatile simulation frame-
work supporting VM environments (Hirofuchi, Pouilloux, and Lebre, 2015). Sim-
Grid VM allows users to launch hundreds of thousands of VMs on their simulation
programs and control VMs in the same manner as in the real world (e.g., suspend/re-
sume and migrate). Users can execute computation and communication tasks on
physical machines and VMs through the same SimGrid API, which provides a seam-
less migration path to IaaS simulations for hundreds of users. Moreover, SimGrid
VM includes a live migration model that implements the precopy migration algo-
rithm. This model correctly calculates the migration time as well as the migration
traffic, taking account of resource contention caused by other computations and data
exchange within the whole system.

Leveraging these extensions, we developed VMPlaceS (Lebre, Pastor, and Süd-
holt, 2015), a dedicated simulation framework to perform in-depth investigations and
fair comparisons of VM placement algorithms. VMPlaceS provides generic program-
ming support for the definition of VM placement algorithms, execution support for
their simulation at large scales, as well as new means for their trace-based analysis.
The accuracy of VMPlaceS has been validated by comparing simulated and in-vivo
executions of a centralized scheduling strategy (Hermenier, Lorca, et al., 2009). We
have also illustrated the relevance of VMPlaceS by evaluating and comparing algo-
rithms representative of three different classes of virtualization environments: cen-
tralized, hierarchical and fully distributed placement algorithms. The corresponding
experiments have provided the first systematic results comparing these algorithms in
environments including up to one 1K nodes and 10K VMs.

Although the efforts I put in this action are less important now than what I did
between 2013 and 2015, I continue to contribute to this area. In addition to being
involved in the Simgrid community as much as I can (Lebre, Legrand, et al., 2015), I
recently started a study on the boot time of VMs (NGuyen and Lebre, 2017). Most
cloud simulators often ignored the VM boot time because they assumed that the dura-
tion is negligible. Because the VM booting process consumes resources (CPU, I/O …),
it has been rather simple to disprove through experiments this assumption. Booting
a VM can last from tens of seconds up to minutes depending on co-located work-
loads. We expect to validate a first-class VM boot time model soon and integrate it
into SimGrid.

6

http://beyondtheclouds.github.io/DVMS/
http://beyondtheclouds.github.io/DVMS/
http://simgrid.gforge.inria.fr
http://simgrid.gforge.inria.fr

All pieces of software are available online: http://simgrid.gforge.inria.fr
and http://beyondtheclouds.github.io/VMPlaceS/.

1.2.3 Beyond the Clouds
2014 -

To satisfy the demand for Cloud Computing resources while realizing economies of
scale, the production of computing resources has been concentrated for the last ten
years in mega data centers (DCs) where the number of physical resources that one
DC can host is limited by the capacity of its energy supply and its cooling system. To
meet these critical needs in terms of energy supply and cooling, the trend has been
toward building DCs in regions with abundant and affordable electricity supplies or
taking advantage of free cooling techniques available in regions close to the polar cir-
cle (Gary Cook, 2013).

the Discovery initiative is an
Open-Science Initiative aiming at
implementing a fully decentralized
IaaS manager. Since 2015, the
initiative is mainly supported
through the Inria Project Labs pro-
gram and the I/O labs, a joint lab
between Inria and Orange Labs. I
am the Principal Investigator of
this actions and the current leader.
Further information available at
the DISCOVERY website.

While this model of mega DCs still prevails, the advent of
new usages related to Internet of Things applications (IoT) (Atzori, Iera, and Mora-
bito, 2010), Mobile Edge Computing (MEC) (Fernando, Loke, and Rahayu, 2013) and
Network Function Virtualization (NFV) (Mijumbi et al., 2016) is strongly challenging
this approach. As an example, the projection regarding the number of connected de-
vices and applications thatwill consume cloud services and generatemassive amounts
of data is a severe scalability challenge for the current model (B. Zhang et al., 2015).
To cope with these changes in terms of usage, the cloud and network communities
are now advocating for going from a few central platforms to massively distributed
small sized DCs that are deployed at the edge of the network, thus closer to end-users
and their related devices, and applications (Bonomi et al., 2012).

The drivers of this (r)evolution lay in the development of appropriate software
mechanisms that will enable an operator to aggregate, supervise and expose suchmas-
sively distributed resources on the first hand, and the implementation of new kinds
of services deployed and managed by the operator itself or by third-party users on
the other hand. I have been investigating this challenge for the last 4 years through
preliminary studies. Built on these initial investigations I proposed the creation of
the DISCOVERY Inria Project Lab that I have led since 2015. DISCOVERY gath-
ers academic and industry experts in research areas such as large-scale infrastructure
management systems, network and P2P algorithms.

From the scientific and technical point of view, the novelty of DISCOVERY lies in
a new way of designing a system in charge of operating a massively distributed cloud.
The system we envisioned can be viewed as a distributed operating system, manip-
ulating Virtual Machines in a geo-distributed infrastructure. The major difference
with respect to the state of the art is related to our bottom-up approach: instead of
designing a system in charge of orchestrating independent cloud instances, we target
to revise and extend mechanisms of the OpenStack software suite with P2P and self-*
techniques. Although this activity is rather young in comparison to the two previous
ones, it is important for me to deal with it in this manuscript. First, we obtained a few
interesting results in particular around the OpenStack community that deserve to be
highlighted (Lebre, Pastor, Simonet, et al., 2017; Cherrueau et al., 2017). Second, this
activity paves the way for several activities I plan to do for the next couple of years. In
particular, this action should lead to set-up a new research group in Nantes that will
focus on the design of a complete software stack to operate and use next generation
of Utility Computing infrastructures: The Fog, the Edge and beyond!

1.3 Looking Back to the Future

At the end of my post-doctorate position, I led a preliminary work that investigated
how suspend/resumeVMoperations can benefit the best effortmode of theGrid’5000
infrastructure (Gallard, Lebre, and Morin, 2010). Grid’5000 is a dedicated testbed

7

http://simgrid.gforge.inria.fr
http://beyondtheclouds.github.io/VMPlaceS/
http://beyondtheclouds.github.io
http://beyondtheclouds.github.io
http://www.grid5000.fr

for experiment-driven research in all areas of computer science, with a focus on par-
allel and distributed computing including Cloud, HPC and Big Data (Bolze et al.,
2006). In Grid’5000, users book resources leveraging a batch-scheduler approach.
Our proposal consisted in encapsulating jobs into VMs so that it became possible to
suspend/resume them each time it was needed. Although this study did not have a
strong impact on the scientific community because the innovative part with respect
to the state-of-the art was not important enough (Sotomayor, Keahey, and Foster,
2008), it completely changed the perception I had regarding how a distributed com-
puting infrastructure should be operated and used (Gallard, Lebre,Morin, et al., 2012;
Lebre, 2010). From my point of view, the notion of sandboxes provided by the VM
abstraction would radically change the distributed computing perspective and it was
urgent to extend several mechanisms of Grid’5000 in order to be able to investigate
virtualization challenges.

Leveraging the aforementioned study and achievements made by the distributed
systems community, I have been underlining the importance of VM technologies in
distributed computing infrastructures. As early as 2008, I proposed to create a dedi-
cated working group at the French national level. The efforts of this group have been
then consolidated through several actions such as the Hemera Inria Large-Scale ini-
tiative1 (2010-2014) whose virtualization activities I led. We added the virtualization
capabilities to Grid’5000, enabling researchers and engineers to investigate virtual-
ization related challenges (Balouek, Amarie, et al., 2012).

Created in 2006, Grid’5000 is a
large-scale and versatile testbed
for experiment-driven research.

With more than 500 active users
per year since 2006, it is one

of the most recognised testbeds
worlwide. I have been involved in

different strategic committees since
2008. For Further information

available at the Grid’5000 website.

Along with these activities, I organized several events such as the French events
‘’Journée Thèmes Emergents” on Virtualization in Distributed Architectures orga-
nized in 2010 and 2014 in Nantes.2 At the international level, I had the opportunity
to co-chair the ACM Virtualization Technologies in Distributed Computing work-
shop (VTDC) between 2011 and 2015.3 Co-located with the ACM HPDC conference,
VTDC workshop series has been an important forum for the exchange of ideas and
experiences on the use of virtualization technologies in distributed computing. In
addition to VTDC, I also took part in several technical program committees such as
ACM SuperComputing, IEEE/ACM CCGrid, Europar, IEEE CloudCom and IEEE
IC2E to name a few.

Being strongly involved in the community has been a decisive point to strengthen
my expertise and to consolidate the vision I have regarding how next generations
of utility computing infrastructures should be designed. In particular, I have been
among the first researchers to promote and work on the concept of massively dis-
tributed cloud infrastructures deployed on network point of presences (Bertier et al.,
2014). This has been a wise choice as this new paradigm referred to as the Fog/Edge
Computing nowadays, is attracting growing interest by the network as well as the
distributed computing communities. In addition to taking part in several events that
dealt with this topic (program and track chairs of recent events such as ICFEC, Cloud-
Com and Europar to name a few), I have been invited to co-chair the transversal ac-
tion “Virtualization and Clouds” of the RSD GDR4 since 2015. This action aims at
further bridging the gap between the communication networks and distributed sys-
tems experts of the RSD GDR (as example, we gathered 80 people in Paris for the
1st edition of the CloudDay events). Although the use of virtualization technologies
has been leading to exciting developments for almost ten years now, current solu-
tions for operating virtual infrastructures still need to provide a tighter integration
between network, computation and storage resources at a geographically wide area
network scope. This integration is mandatory to build the next generation of Inter-
net backbones as well as Utility Computing infrastructures. This is urgent as the new
requirements of IoT and mobile computing applications cannot be satisfied by cur-

1 https://www.grid5000.fr/mediawiki/index.php/Hemera.
2 http://web.emn.fr/x-info/ascola/doku.php?id=internet:jte-virtualization-2010 and

http://people.rennes.inria.fr/Adrien.Lebre/PUBLIC/CloudDay/.
3 http://people.rennes.inria.fr/Adrien.Lebre/VTDC/vtdc15.html.
4 https://rsd-cloud.lip6.fr.

8

http://www.grid5000.fr
http://www.grid5000.fr
https://www.grid5000.fr/mediawiki/index.php/Hemera
http://web.emn.fr/x-info/ascola/doku.php?id=internet:jte-virtualization-2010
http://people.rennes.inria.fr/Adrien.Lebre/PUBLIC/CloudDay/
http://people.rennes.inria.fr/Adrien.Lebre/VTDC/vtdc15.html
https://rsd-cloud.lip6.fr

rent cloud computing offers. Finally, I would like to underline that I’m still deeply
involved in the Grid’5000 consortium taking part in the architecture and executive
committees where we are discussing how Grid’5000 should evolve with respect to
recent challenges related to the Industrial Internet and the Internet of Skills. These
two internets can be seen as a convergence between data centers, network and IoT
devices.

1.4 Organization of the Document

The major part of this manuscript is devoted to the presentation of the three scientific
activities that have been highlighted in this introduction (one part for each of them).
I underline that all these works have been published and are here gathered, standard-
ized, and revised to make the manuscript more consistent. The last chapter presents
an overview of my ongoing activities and my research program for the coming years.

In detail, the documents is structured in 11 chapters. Chapter 2 presents the VM
cluster-wide context-switch concept. Chapter 3 discusses the extensions that have
been proposed around the DVMS proposal. Chapter 4 concludes the first part. Chap-
ter 5 describes the extension we proposed in the SimGrid toolkit, including the ele-
mentary VM abstractions and the live migration model. Chapter 6 gives an overview
of the VMPlaceS framework that has been built on top of the SimGrid extensions.
Chapter 7 concludes this second part and also discusses preliminary results about an
on-going work on the VM boot operation. Chapter 8 presents the DISCOVERY initi-
tive. Chapter 9 and Chapter 10 present the first results we obtained within the frame-
work of DISCOVERY and the OpenStack community. Finally, Chapter 11 concludes
this manuscript by summarizing ongoing activities and giving a few perspectives on
my future works.

Note that the appendix, attached at the end of this manuscript, includes a detailed
Curriculum Vitae, the complete list of my publications and and invited talks.

9

Part II

D YN AM IC V I R T U A L M AC H IN E
SC H ED U L IN G

This part presents a compilation of the following publications: (Hermenier, Lebre, and
Menaud, 2010) and (Quesnel, Lebre, and Südholt, 2013; Quesnel, Lebre, Pastor, et al., 2013)
(Pastor et al., 2014).

These results have been possible thanks to collaboration with:

• Jérome Gallard, Phd in the MYRIADS Resarch Group (2007-2010), Rennes, now Re-
search Engineer à Orange Labs ;

• Fabien Hermenier, Phd in the ASCOLA Research Group (2006-2009), Nantes, now Ass.
Professor at University of Nice ;

• Jean Marc Menaud, Professor in the ASCOLA Research Group, IMT Atlantique Nantes
;

• Flavien Quesnel, Phd in the Ascola Research Team (0ct 2010- Feb 2013), Nantes, now
Research Engineer at System-X Institute ;

• Mario Südholt, Professor and Head of the ASCOLA Research Group, IMT Atlantique,
Nantes ;

• Daniel Balouek-Thomert, Research Engineer, Hemera Inria Large Scale Initiative, (Dec
2011 - May 2012), Lyon, now PostDoc at Rutgers University ;

• Jonathan Pastor, Phd in the Ascola Resarch Team (Oct 2012 - Oct 2016), Nantes, now
PostDoc at Chicago University ;

• Frédéric Desprez, Senior researcher and Deputy Scientific Director at Inria, Grenoble ;

• Cédric Tedeschi, Ass. Profesor in theMYRIADSResearchGroup, University of Rennes 1,
Rennes ;

• Marin Bertier, Ass. Professor in the ASAP Research Group, INSA, Rennes.

The activities have been mainly supported by the Ecole des Mines de Nantes (now IMT At-
lantique), which succesively granted the Phd scholarships of Fabien Hermenier, Flavien Ques-
nel and Jonathan Pastor. I underline that Dr. Fabien Hermenier has been supervised by my
colleague Prof. Jean-Marc Menaud. In the following, I co-supervised, first, the Phd of Dr.
Flavien Quesnel with Prof. Mario Südholt and, second, the Phd of Dr. Jonathan Pastor with
Dr. Frédéric Desprez.

Major Results aswell as software code are available at: http://beyondtheclouds.github.
io/DVMS/.

11

http://beyondtheclouds.github.io/DVMS/
http://beyondtheclouds.github.io/DVMS/

2VM Cluster-Wide Context Switch

Distributed infrastructures such as clusters are mostly handled by resources management
systems with a static allocation of resources for a bounded amount of time. Those approaches
are insufficient for an efficient use of resources. To provide a finer management, job pre-
emption, migration and dynamic allocation of resources are required. However due to the
complexity of developing and using such mechanisms, advanced scheduling strategies have
rarely been deployed in production. This trend has been evolving since 2008 thanks to the
use of migration and preemption capabilities of VMs. However, even though the manipula-
tion of VMs-based jobs enables the reconfiguration of the system according to the scheduling
objective, changing the state and the location of numerous VMs at each decision is tedious
and degrades the overall performance. In addition to the scheduling policy implementation,
developers have to focus on the feasibility of the actions (such as suspend, resume and migrate)
while executing them in the most efficient way.

In this section, we present the cluster-wide context switch, a building block that lever-
age virtualization capabilities to facilitate the development of advanced scheduling strate-
gies (Hermenier, Lebre, and Menaud, 2010). Our proposal relies on the manipulation of
virtualized-jobs (vjobs), i.e. jobs composed of VMs, through their life cycle. As a proof of
concept, we have integrated the cluster-wide context switch module into the Entropy consoli-
dation manager (Hermenier, Lorca, et al., 2009). Developers of scheduling policies can now
only focus on the algorithm to select the vjobs to run. Then the cluster-wide context switch
infers and plans the actions to perform on the VMs. It ensures the feasibility of the process
and selects, among the multiple satisfying solutions, the one implying the fastest change. We
evaluated the cluster-wide context switch through a FCFS dynamic scheduler. Transparently
for developers, it uses dynamic allocation of resources, preemption and migration technics to
maximize the resources usage.

The chapter concludes by highlighting three research axes raised by this work.

2.1 Challenge Description

Scheduling jobs has been and still is a major concern in distributed computer sys-
tems. According to their size and their objectives, computing infrastructures are ex-
ploited in different ways. However, few of them are dedicated to one particular appli-
cation and the most common way of exploiting large common computing infrastruc-
tures has mainly consisted in using Resources Management Systems (RMS) (Krauter,
Buyya, and Maheswaran, 2002) where users request resources for a specific duration
according to their estimated needs. Such an allocation of resources lead to a coarse-
grain exploitation of infrastructures. In the best case, the allocated time slot is larger
than the estimate and resources are underused. In the worst case, running applica-
tions can be withdrawn from their resources which may lead to the loss of all the per-
formed calculations. Although strategies such as back-filling approaches have been
proposed to improve the resources usage, preemption mechanisms such as the ones
used for context switching in traditional operating systems are valuable to deliver an
efficient management of resources. Thanks to preemption mechanisms, jobs can be
processed, even partially, and suspended according to the scheduler objectives (Feit-
elson et al., 1997): Whenever necessary, the RMS can suspend some jobs and start, or
resume from previously saved images, other ones. Such an allocation scheme is pre-
sented in Figure 2. Unfortunately due to the problem of residual dependencies (Clark

13

et al., 2005), the development of such mechanisms is tedious and only few RMS allow
such a level of scheduling (Etsion and Tsafrir, 2005).

Figure 2: Toward a Dy-
namic Scheduling Strategy

Figure 2a depicts a minimalist
scheduling process: jobs are

enqueued one after the other
and are scheduled according
to their estimated duration
and resource requirements.

Figure 2b illustrates the back-
filling mechanism improvement,
which deals with fragmentation
issues while guaranteeing a time
reservation for the first job in the
queue. Although there exist more

advanced backfilling strategies,
such as Conservative which
provides time guarantee for

each waiting job in the queue,
these strategies suffer from
limitations that prevent an

optimal usage of the resources
without exploiting advanced

mechanisms such as preemption.
Figure 2c presents such an
approach that enables the

execution of a job, even par-
tially, each time it is possible.

the queue

Processors

Time

job

Running

in the

queue

2nd
1st
job

in the
queue 3rd job in

the queue

4th job in

(a) Jobs 1, 2, 3 and 4 arrive in the queue and have to be scheduled

2nd

3rd job in

the queue

Processors

Time

4th job in

Running the queue

1st

job

in the

queue

job

in the

queue

(b) FCFS + EASY back filling: jobs 2 and 3 have been back filled.
Some resources are unused (dark gray areas).

the queue

Running

2nd

job

in the
1st

queue
job

in the

queue

Processors

Time

3rd job in

the queue

4th job in

(c) EASY back filling with preemption. The job 4 is started earlier
without impacting job 1. A small piece of resources is still unused (dark
gray areas). Thanks to the consolidation and preemption mechanisms,

it is possible to improve the whole cluster usage.

The increasing popularity of virtualization technologies in 2008 led to several ini-
tiatives (Fallenbeck et al., 2006; Sotomayor, Keahey, and Foster, 2008) that investi-
gated the use of VM migration and preemption capabilities to improve the resource
usages of distributed infrastructures: live migration (Clark et al., 2005) aims to adapt
the assignments of VMs according to their current requirements (Bobroff, Kochut,
and Beaty, 2007; Hermenier, Lorca, et al., 2009; Ruth et al., 2006; Verma, Ahuja, and
Neogi, 2008), while the suspend and the resume actions provide preemption (Anedda
et al., 2010).

However manipulating VMs needs to be performed carefully. First, suspending or
resuming VMs can impact the correctness of a job, especially if the VMs are inter-
connected. Second, migrating a VM from one node to another one can be impossi-
ble without violating VM expectations in terms of resource or placement constraints
(e.g., migrating a “replica” VM to the same host that the master instance should not
be allowed) (Grit, D. Irwin, Yumerefendi, et al., 2006; Hermenier, Lorca, et al., 2009;
Wood et al., 2009). Finally, each context switch (or permutation) of VMs should be
performed in an efficient manner. Migrating a VM can last from a few seconds up
to minutes according to the executed workload while suspending/resuming VMs are
I/O intensive operations that can negatively impact the performance of the whole
infrastructure.

Although considering permutation issues is fundamental, most developers of sched-
ulers did not consider it as a primary concern. In most cases, they simply focused on
the efficiency of the algorithms to select the jobs to run while ignoring the mecha-
nisms to perform the transition between the current situation and their solution.

The remainder of the chapter is organized as follows: Section 2.2 describes the VM
context switch proposal overall. It first introduces fundamentals and second gives an
overview of the framework and how a VM context switch is performed clusterWide.

14

Section 2.3 discusses an evaluation of a sample scheduler that enabled us to validate
our concept. Section 2.4 addresses related work. Finally Section 2.5 concludes this
chapter and gives some perspectives.

2.2 OurProposal: AGeneric VMsContext Switch

Back to 2009, the first contribution we did has been to deliver the VM cluster-wide
context switch operation as a fundamental building block (Hermenier, Lebre, and
Menaud, 2010). We showed that the permuation operation between two allocations
of VMs is independent from the policy itself and can be addressed through a generic
mechanism. Thanks to it, developers can implement sophisticated algorithms to sched-
ule “virtualized” jobs without handling the issues related to their manipulations.

2.2.1 Fundamentals

This section deals with the fundaments of our proposal. First, we define the virtualized
job abstraction and the different actions that change its state. Second, we present
preliminary experiments on the cost of each action.

Virtualized job

The first change we did has been to reconsider the batch scheduler granularity from
the usual job to the virtualized one. We defined the virtualized job (vjob) abstraction.
According to the nature of the application to execute (centralized or distributed), a
vjob can be composed of several VMs. Implementing a dynamic scheduling policy
consists in manipulating vjobs through their four different states described in Fig-
ure 3: waiting, sleeping, running or terminated. The transition between the
different states consists in applying the associated action to all the VMs composing
the vjob. Actions are supposed to be atomic: all the VMs composing a vjob are in the
same state. The action migrate slightly differs from others. It relocates a VM from one
node to another with a negligible downtime using the livemigration capability (Clark
et al., 2005). This action can be performed on subsets of vjobs as it does not change
the state of the manipulated VMs.

terminated

running

sleeping

run stop

resume

suspend
waiting

ready

migrate

Each transition but migrate
implies to execute the associated
action on each VM attached to the
vjob

Figure 3: The Life Cycle of a
Virtualized Job.

In detail, the action run starts the selected vjob and puts it into the state running.
It consists in launching the VMs of the vjob on the cluster. A vjob can be suspended
on a persistent device to free resources with the action suspend. This lets the vjob
into the state sleeping. Reciprocally, a suspended vjob can be resumed with the
action resume: each VM is resumed from its state file previously saved. Finally, the
action stop shuts down a vjob and puts it into the state terminated. The pseudo state
ready combines the states waiting and sleeping. Both precede the state running
and if the actions to perform the transition are different, these states are equivalent
regarding to the availability of the vjob and its resources consumption.

Relying on this model, implementing a dynamic cluster scheduler consists of the
following steps, (i) determine the set of vjobs to run, (ii) associate a sufficient amount

15

of resource to each VM attached to the selected vjobs, and (iii) execute the mandatory
actions to perform the vjobs transition.

The main contribution of our proposal has been to provide a generic system to deal
with the two latest steps.

VM Elementary Operation Costs

Evaluating the cost of a cluster-wide context switch is mandatory since it significantly
reduces the performance on the nodes involved in the action. Indeed migrating, sus-
pending or resuming aVM requires someCPU resources, memory and network band-
width. When the involved nodes host CPU intensive VMs, performing the action re-
duces their access to these resources for the whole duration of the action. In order
to have an idea of the cost of each operation, in particular the completion time, we
conducted a first series of experiments. Evaluations have been done on 11 homoge-
neous nodes from Grid’5000 including a 2.1 GHz Intel Core 2 Duo, 4 GB of RAM
and interconnected through a giga ethernet network. Each node runs a GNU/Linux
2.6.26-amd64withXen 3.2 and 512MBof RAMare allocated to theDomain-0. Three
NFS storage servers provide the virtual disks for all the VMs.

Figure 4: Completion time
of VM Operations accord-
ing to the amount of mem-

ory allocated to the VM

VM memory size (in MB)

 5

 10

 15

 20

 25

 30

 35

 40

 45

(i
n
 s

e
c
)

start/run

stop/shutdown
migrate

512
 0

C
o
m

p
le

ti
o
n
 t
im

e

1024 2048

(a) Run/Migrate/Stop

 0
1024 2048

 50

 100

 150

 200 local
local+scp

local+rsync

512

C
o
m

p
le

ti
o
n
 t
im

e
(i
n
 s

e
c
)

VM memory size (in MB)

(b) Suspend

 150

 100

 50

 0
1024 2048

local

512

(i
n
 s

e
c
)

local+scp
local+rsync

VM memory size (in MB)

 200

C
o
m

p
le

ti
o
n
 t
im

e

(c) Resume

Figure 4 shows the average duration of each action depending on the amount of
memory allocated to the manipulated VM. As expected, the duration of a run or a
stop action is independent from the amount of memory allocated to the VM: boot-
ing a VM takes around 6 seconds in our architecture whereas a clean shutdown takes
approximately 25 seconds. This second duration is due to the different service time-
outs and can be easily reduced to a second by using a “hard” shutdown of the VM. On
the opposite, the duration of a migration on a VM clearly depends on the amount of
memory allocated to it.

This series of experiments is one
of the first link I want to highlight
with the second major contribution

I present in this manuscript. As
discussed later on in Chapter 5, I
conducted deeper investigations

to understand the parameters that
govern first the live migration

process and second the VM boot
operation. Here, I want to focus

the reader’s attention on the cost of
manipulating VMs dynamically,

especially on the start and
migration time because we will

see they can be really significant.

Moreover the duration of a suspend or a resume action depends on the involved
nodes. We conducted several benchmarks to evaluate the cost implied by a local or
a remote suspend/resume operation (i.e., the suspend is done locally and the com-
mand scp or rsync pushes the file on the destination node and reciprocally for the
resume). The difference between a local and a remote resume/suspend is quite signifi-
cant (twice the duration). These results show the interests of preferring local suspend
and resume actions instead of the remote ones to reduce the duration of a cluster-wide
context switch.

2.2.2 Architecture Overview

As a generalization of one previous contribution of the ASCOLA Research group, the
cluster-wide context switch has been integrated as an independend module of the
Entropy consolidation manager (Hermenier, Lorca, et al., 2009). Entropy focused
on hosting all the running VMs on the minimum number of nodes using migrations.
Since it did not consider the whole life cycle of the VMs, it was not able to solve over-
loaded situations that require to suspend VMs. In addition, it manipulated each VM
individually and was not able to ensure a consistent state for a set of interconnected
VMs. After describing the changes we made to Entropy, we present the implementa-
tion of the cluster-wide context switch.

16

Global Design

We consider a cluster as a set of working nodes that can host VMs, a set of storage
nodes to serve the virtual disks of the VMs and a set of service nodes that host ser-
vices such as the head of the distributed monitoring system and the Entropy service.
A configuration describes the CPU and thememory capacity of each node and the CPU,
the memory requirement and the position of each VM in the cluster. A viable config-
uration denotes a configuration where each running VM has an access to a sufficient
amount ofmemory andCPU resources to satisfy its requirements. Ourmodifications
on Entropy make it able to implement the cluster-wide context switch.

hypervisor

Sensor

hypervisor

Sensor

hypervisor

Sensor

Monitoring Execution

statistics through an external

system (such as ganglia)

current configuration

efficient reconfiguration plan

run/stop, suspend/resume

and migration orders

VM1 VM2 VM3 VM4 VM5 VM6Dom0 Dom0 Dom0

sample

configuration

Scheduling

policy
CW Context switch

Module
(select the jobs to run)

Figure 5: The control loop of
Entropy

The system acts as a loop (see Figure 5) that (i) extracts the current configuration
from a monitoring service, (ii) executes the scheduling strategy defined by adminis-
trators that indicates the state of the vjobs for the next iteration, (iii) determines from
the current and the new configuration the actions to perform and plans them and (iiii)
executes the cluster-wide context switch by performing the actions.

Implementation

Performing a cluster-wide context switch requires to execute several actions on VMs
in a correct order and an efficient way. In this section, we first address the feasibility
of these actions. Second we describe our solution to ensure the correctness of sus-
pending and resuming a set of interconnected VMs. Finally, we present our approach
to reduce the duration of its execution.

Plan the actions on VMs

Regarding to the life cycle of the vjobs, their current state and their state computed
by the scheduling policy for the next round, we determine the actions to apply on
VMs. These actions must be planned to ensure their feasibility. Some actions have
to be executed before others (Grit, D. Irwin, Yumerefendi, et al., 2006; Wood et al.,
2009) and additional migrations have to be considered to solve inter-dependency is-
sues (Hermenier, Lorca, et al., 2009). Solving these dependencies consists in provid-
ing a reconfiguration plan that describes an execution protocol ensuring the feasibility
of the actions. A reconfiguration plan is modeled as a sequence of steps, i.e., a set of
actions that are executed sequentially, while the actions composing them are executed
in parallel. To reduce the duration of the cluster-wide context switch and to increase
reactivity, it is mandatory to perform in parallel as many actions as possible so that
each action takes place with the minimum possible delay.

The reconfiguration plan is created iteratively from a reconfiguration graph that
describes the actions to perform to pass from one configuration to another. A recon-
figuration graph is an oriented multigraph where each node denotes a machine and
each edge denotes an action on a VM between two machines. First, all the feasible
actions are grouped into a step. If there are no feasible actions, it is due to an inter-
dependent issue. In this situation, the cycle is broken with an additional migration

17

on a temporary node to create at least one feasible action, added to the current step.
Then the step is appended to the plan, and a new reconfiguration graph is created
using the temporary resulting configuration of the plan and the expected configura-
tion. This process is repeated until the resulting configuration of the plan equals the
expected configuration.

Suspending and resuming a vjob

When several VMs execute a distributed application, they exchange network packets
through a transport protocol, commonly TCP. This protocol maintains a total order-
ing between IP packets and ensures their delivery. When a host does not receive an
acknowledgment for a packet after multiple retransmissions or when the keep-alive
timeout is reached, the protocol considers the receiver as unreachable and closes the
connection.

During the cluster-wide context-switch, the states of VMs belonging to the same
vjob may not be consistent for a moment since actions are based on a VM granularity
and some VMs may not be reachable during this time. Thus it is necessary to co-
ordinate the suspend and the resume actions when the cluster-wide context switch
manipulates the state of several VMs belonging to the same vjob. This coordination
ensures that the distributed application will not fail during the reconfiguration.

Suspending a VM consists in pausing it then writing the image of its memory to a
disk. When the VM is paused, it does not execute any instructions. On the opposite,
resuming a VM consists in restoring its memory by reading its image from the disk
then unpausing it. While executing a pause (or an unpause) takes only a few millisec-
onds, reading (or writing) the image from (to) the disk takes a significant amount of
times, led by the amount of memory allocated to the VM (see Section 2.2.1).

Once one of the VMs is paused while others are running, the state of the vjob is
not consistent. To avoid network errors, the VMs will have to be in the same state
(sleeping or running) before outreaching the unreachable delay of TCP. A solution to
efficiently coordinate several suspend and resume actions without any clock synchro-
nization is to pause each VM sequentially, in a deterministic order using their unique
identifier. To coordinate the suspend actions, all the VMs are first paused sequen-
tially then the content of their memory is written in parallel to the disk (Figure 6(a)).
To coordinate several resumes, the images are read in parallel then all the VMs are
unpaused sequentially in the same order they were suspended earlier (Figure 6 (b)).
As the pause and the unpause actions take only a few milliseconds, this solution en-
sures that the delay between the first and the last pause (or unpause) is inferior to the
unreachability delay while non-acknowledged packets will be retransmit.

Figure 6: Several suspend
and resume actions are co-

ordinated by sequencing
pause and unpause actions

(a) Suspend (b) Resume

Our coordination protocol can be integrated into Entropy by altering the reconfig-
uration plan. It consists in grouping the resume and the suspend actions into the same
step. The suspend actions do not have precondition so they are naturally grouped into
the first step as they are always feasible. The conception of a plan ensures that if an
action is feasible at a specific step, it is feasible for all the following steps. Thus, to
satisfy the dependencies of the resume actions, each action is grouped into the step
that initially contains the last resume action. Figure 7 shows an unmodified recon-
figuration plan, it suspends a vjob j1 composed of the VMs vm1 and vm2, resumes a
vjob j2 composed of the VMs vm4 and vm5, the VMs vm3 and vm6 belong to other

18

vjobs that stay in the running state. Figure 8 shows the modified version of this plan
with the coordination of the actions related to vjobs j1 and j2.

s1 : suspend(vm1) & suspend(vm2)

s2 : resume(vm4) & migrate(vm3)

s3 : resume(vm5) & migrate(vm6)

Figure 7: Unmodified reconfigu-
ration plan with three steps s1 ,
s2 , and s3 . ’ & ’ indicated the
parallelism.

s1 : pause(vm1)

s2 : pause(vm2)

s3 : write(vm1) & write(vm2)

s4 : migrate(vm3)

s5 : migrate(vm6) & read(vm4) & read(vm5)

s6 : unpause(vm4)

s7 : unpause(vm5)

Figure 8: Reconfiguration plan
to coordinate the suspend and
resume actions of the vjob j1 and
j2 .

Reducing the duration of the execution

To reduce the duration of a cluster-wide context switch, Entropy computes several
similar configurations where all the vjobs of each configuration have a state identical
to the sample configuration provided by the scheduling algorithm. Indeed, according
to the scheduler policy, the location of the VMs is not relevant, only the state of each
vjob is significant. However from a cluster-wide context switch point of view, each
transition has a duration. As a consequence, we should be able to compare recon-
figuration plans with a cost function and select the one with the smallest estimated
duration.

The cost of a plan is a positive value. Its has no unit but it allows to compare differ-
ent plans when they reach equivalent configurations. The cost of a reconfiguration
plan P composed of a sequence of n steps s and x actions a is defined through an
objective function K described in the Equation (1). This model assumes the cost of
an action is minimal when it is executed in the first step. Thus, delaying an action
increases the cost of a plan.

K (p) =

m∑
x=0

K (ax)

ax ∈ si,K (ax) =
i−1∑
j=0

K (sj) + k (ax) (1)

K (si) = max (k (ax)) , ax ∈ si

The local cost k of an action ax relies on the experiments described in Section 2.2.1.
The different values for k(ax) are listed in Table 1. We showed that the duration of
both the stop and the run actions is constant and depends on the software running
in the involved VM. For this study, their cost has been set to 0. The duration of a
suspend and a migrate actions is led by the memory requirement of the involved VM.
We set this cost to the amount of memory allocated to it. Finally, the duration of the
resume action depends on thememory demand of the VM and its destination location.
Indeed, a local resume does not require to move the image file to the destination node.
We choose to define the cost of a remote resume as twice the cost of a local one. By
such a way, we favor local resume.

To compute the different viable configurations, Entropy uses theChoco solver (Jussien,
Rochart, and Lorca, 2008) which is based on a Constraint Programming (Rossi, Van
Beek, and Walsh, 2006) approach.

19

Table 1: Local cost of an
action ai . Dm(vmj)
denotes the memory al-
located to the VM vmj

Type of ax k(ax)

migrate Dm(vmi)

run constant

stop constant

suspend Dm(vmj)

resume Dm(vmj) if local,
2×Dm(vmj) otherwise

2.3 Proof-of-Concept & Validations

As a proof of concept, we implemented a sample scheduler that only indicates at each
round the states of the vjobs. According to the changes, the cluster-wide context
switch system handles the transition and provides transparent dynamic resources al-
location, live migration and vjob preemption. We discuss the execution of this algo-
rithm relying on the cluster-wide context switch on a cluster composed of 11working
nodes running NAS Grid Benchmarks (Frumkin and Van der Wijngaart, 2002).

2.3.1 Proof-of-Concept

A common objective of schedulers is to execute jobs as soon as possible. The use of
preemption, migration and dynamic allocation of resources improves the cluster us-
age by executing jobs, even temporarily, when there is a sufficient amount of resource
to satisfy their requirements. The scheduling algorithm we implemented tends to sat-
isfy those principles.

The algorithm computes a list of vjobs, initially empty, that specifies the vjobs that
must be running for the next iteration. To avoid starvation, all the vjobs are stored
in a queue with a FCFS priority. For each vjob in the queue, we check if it exists a
viable configuration composed of the current vjob and the vjobs already in the list.
This assumption is made using the First Fit Decrease algorithm that assigns each VM
composing the vjob to the first node with a sufficient amount of free resources. If the
algorithm succeeds in assigning all the VMs then the vjob is added to the list. After
the last iteration over the queue, the list of vjobs that will be in the running state is
defined, the other vjobs will be in the ready state.

2.3.2 Experiments

The experiment consists in scheduling 8 vjobs, each composed of 9 VMs, using our
sample scheduling algorithm. Although vjobs are submitted at the same moment,
they are enqueued in a deterministic order to ensure the reproducibility of the ex-
periments. Each vjob is running an application composed of NASGrid Tasks. The
application embedded in the vjob is launched when all the VMs are in the running
state. When the application is terminated, it signals to Entropy to stop its vjob. Each
VM requires a fixed amount of memory, from 512 MB to 2048 MB and requires an
entire CPU when the NASGrid task is executing a computation on the VM. The mon-
itoring sensor running on each working node takes at most 10 seconds to signal a
change to themonitoring frontend (i.e., a Gangliamonitoring system). Obviously, this
reactivity has a negative impact on the ability of Entropy to quickly fix a non-viable
configuration and a faster monitoring system would have improved this situation.

Computing the reconfiguration plan with the minimum cost may be time consum-
ing. Choco has the property that it can be aborted at any time, in which case it returns
the best result computed so far. This feature enabled us to impose a time limit on the
solver, to ensure the reactivity of the approach. In previous experiments (Hermenier,

20

Lorca, et al., 2009), Entropy computes reconfiguration plans with 200 nodes and 400
VMs in oneminute. For the current experiment, the total computation time is limited
to 30 seconds and Choco computes each plan in less than 20 seconds.

Figure 9 shows the cost and the duration of the cluster-wide context switches per-
formed during the experiment. Those with a small cost and duration only perform
migrations, run or stop action. As an example, the five with a cost equal to 0 only
perform run and stop actions and take at most 13 seconds. The cluster-wide context
switch with a cost equal to 1024 performs 3 migrations in 19 seconds. Cluster-wide
context switches with a higher cost perform in addition suspend and resume actions.
This increases significantly the duration of their execution. As an example, the one
with a cost equal to 4608 takes 5 min 15 seconds to execute 9 stop actions, 18 run
actions, 9 resume actions and 9 migrations. In addition, the cost of the plan is not
related to its duration when it implies different kind of actions. As mentioned in Sec-
tion 2.2.2, the cost function only enables to determine the best reconfiguration plan
when all the VMs in the destination configuration have the same state. At this mo-
ment, our cost function cannot be used to estimate the duration of one cluster-wide
context switch. However it appears to be a viable solution to avoid to migrate VMs or
perform remote resumes if possible: 21 over the 28 resume actions performed during
the experiment were made on the nodes that perform the suspend earlier.

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 1 2 3 4 5 6 7 8 9

D
u
ra

ti
o
n
 i
n
 m

in
u
te

Reconfiguration cost (step 1k)

Figure 9: Cost and duration
of the 19 cluster-wide context
switches performed during the
experiment

The second part of this evaluation analyses the benefit of the cluster-wide context
switch with regards to to a static approach. In theory, the gain provided by dynamic
scheduling policies is related to the resources requirements of the vjobs. In the best
case, requirements evolve during the execution of the vjob, and the benefits are sig-
nificant. In the worst case, requirements are constants and a static approach with
backfilling is sufficient. As in many cases, the NASGrid benchmarks used in this ex-
periment do not require an entire CPU all the time.

In this experiment, the static scheduling policy relies on a simulated First Come,
First Serve (FCFS) algorithm. The FCFS scheduler selects the vjobs to execute by it-
erating over a queue. When there is a sufficient amount of free resources to execute
all the VMs composing a vjob, the scheduler allocates a CPU and a sufficient amount
of memory to each VM for the whole duration of the vjob. Each vjob is composed
of 9 VMs, thus requiring 9 CPUs to run. As each vjob requires the same amount of
CPU to run, a backfilling strategy would not improve scheduling. Figure 10 shows
the execution diagram of the vjobs.

Figure 10: Execution diagram for
the vjobs with a FCFS Scheduler

Figure 11a and 11b show the resources usage of the VMs with the two different
schedulers. The average resources usage is more important with our module dur-

21

Figure 11: Resources
utilization of the VMs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

M
e

m
o

ry
 r

e
q

u
ir
e

m
e

n
ts

 i
n

 G
B

Time in minutes

Entropy
FCFS

(a) Memory requirements

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

%
 R

e
s
o

u
rc

e
s
 r

e
q

u
ir
e

m
e

n
ts

Time in minutes

Entropy
FCFS

(b) CPU requirements

ing the first 30 minutes. Afterwards, resources utilization with Entropy decreases as
there are no more vjobs to run. At 2 minutes 10, the cluster is overloaded as the run-
ning vjobs demand 29 processing units while only 22 are available. In this situation,
the scheduler indicates which of all the vjobs must be running to have a viable config-
uration and the cluster-wide context switch performs the transition by suspending
the vjobs that must be in the ready state. This improvement of the resource usage
reduces the cumulated completion time of the vjobs. The cumulated completion time
for the 9 vjobs is equals to 250 minutes with the FCFS scheduler. It is reduced to 150
minutes with our sample scheduling policy.

To conclude, one can implement finer scheduling strategies by focusing on the
scheduling policy and leaving the issues related to the vjob permutation to the cluster-
wide context switch module.

2.4 Related Work

Back to 2010, Sotomayor et al. (Sotomayor, Keahey, and Foster, 2008; Sotomayor,
Rubén Santiago Montero, et al., 2008) provided with Haizea the concept of lease as
an abstraction for resource provisioning. Users negotiate an amount of resource for
a specific duration by indicating (i) wether the lease is made in a best-effort mode or
uses advanced reservations and (ii) if it is preemptible. Depending on its type, the
lease may be migrated, or suspended to free resources for non-preemptible leases or
leases with advanced reservations. This approach enables users to renew a period of
execution for a new amount of time but does not provide a way to dynamically change
the set of resources assigned to a lease with variable needs.

Grit et al. (D. E. Irwin et al., 2006; Grit, D. Irwin, Yumerefendi, et al., 2006; Grit, D.
Irwin,Marupadi, et al., 2007) described in Shirako the necessity of separating theman-
agement policy of the VMs and the mechanisms to perform the changes as we argue
in the present work. They considered the sequencing issues when migrating several
VMs for resource management policies, However to solve inter-dependencies, they
chose to suspend a VM to break the cycle of dependencies instead of using a bypass
migration. Regarding to our experimental study, suspending a VM ismuchmore time
consuming than the use of a bypass migration. Moreover, they only considered VM
migration in their VM manager. By ignoring the possibilities to manipulate the state
of the VMs, it is not possible to implement advanced scheduling policies.

Fallenbeck et al. (Fallenbeck et al., 2006) provided an environment to dynami-
cally adapt the number of slots available for specific scheduling policies with multiple
queues. A VM is available on each working node for each queue. Depending on the
size of each queue, the amount of corresponding activated VMs varies. This approach
reduces the number of idle nodes in clusters as compared to clusters with a static par-
tition scheme of the slots. The solutionwe proposed is different as we provide a single
scheduling environment that acts on the jobs instead of acting on the number of slots
per queue.

All of these works addressed the lack of flexibility in resourcemanagement systems
and usedVMmechanisms to improve it. Each solution addressed a particular use case.

22

All faced the same issues when manipulating VMs but all used ad-hoc mechanisms to
solve them without considering a general approach as we described in this chapter.

Finally, several works addressed the interest of dynamic consolidation in datacen-
ters to provide an efficient use of the resources. Khanna et al. (Khanna et al., 2006)
and Bobroff et al. (Bobroff, Kochut, and Beaty, 2007) provided algorithms to mini-
mize the unused portion of resources. However, they did not consider the sequencing
and the cyclic issues when performing the migrations. Wood et al. (Wood et al., 2009)
provideed a similar environment and exploit the page sharing between the VMs to
improve the packing. They showed the interest of planning the changes to detect and
avoid sequencing issues but did not consider inter-dependent migrations. In general,
all of these solutions provide an algorithm to compute a viable configuration, specific
to their objectives and use live migrations to perform the changes. However, their ap-
proaches are limited as they do not consider critical situations such as an overloaded
cluster, with no viable assignment to satisfy all the resource requirements. Thanks to
the suspend/resume mechanisms provided by the cluster-wide context switch, these
situations become easily manageable and actions are performed more efficiently due
to a finer plan.

2.5 Summary

For an efficient use of resources in clusters, advanced scheduling algorithms require
preemption, migration and dynamic allocation of resources to the jobs. These mech-
anisms must be considered by developers in addition to the implementation of the
algorithm that selects the jobs to run. This increases the complexity of developing ad-
vanced algorithms and prevents their deployment on clusters. To relieve developers
of the burden of dealing with those operations, we defined the cluster-wide context
switch building block. By leveraging this mechanism, developers can focus on the al-
gorithm to select the vjobs to run. The cluster-wide context switch infers and plans
the actions to perform on the VMs, ensures the feasibility of the process and selects,
among the multiple satisfying solutions, the one implying the fastest reconfiguration
between the current virtual machines/physical machines mapping and the expected
one.

We validated our proposal by evaluating a sample strategy in charge of scheduling
NASGrid jobs on top of Grid’5000 servers. As expected, the use of migration and
preemption provided by the cluster-wide context switch block improves the whole
resource usage compared to a static approach.

While this study brought important clues on how advanced scheduling strategies
should be designed in cloud computing infrastructures, it also raised several ques-
tions.

The first question we identified concerns the importance of having a specific lan-
guage that will enable developers to declare in details the composition of the vjob they
submit. Keeping in mind that a vjob can be composed of several VMs, a scheduling
strategy should not only take into account resource violations but also placement con-
straints of vjobs. This is critical as some placement decisions can be inefficient and
even dramatic in some situations: For instance, a developer may expect to have high
availability guarantees by replicating a VM several times. However, the scheduling
strategy can relocate, in association with the cluster-wide context switch, those VMs
on the same physical server, breaking the HA objective.

The second question is related to the scalability of the proposed mechanism and
more generally about the scheduling challenge that is an NP-hard problem (the time
needed to solve it grows exponentially with the number of nodes and VMs, which are
considered). Because the time to compute a new scheduling placement as well as the
time to apply the context-switch is important, the schedule may be outdated because
workloads may have changed before it is eventually applied. Moreover, during these
two phases, the scheduler manager does not enforce the QoS anymore, and thus can-

23

not react quickly to new QoS violations. It is therefore very important to propose
some optimizations to reduce these two phases as much as possible.

The last question is linked to the previous one, it consists in improving the cost
function that we use in the cluster wide context switch mechanism to identify the
best reconfiguration plan (see Section 2.2.2). The objective is to estimate the duration
of a cluster-wide context switch as accurate as possible. To this aim, additional inves-
tigations first on the cost of each action and second on the side effects of performing
them simultaneously are required.

The first question has been addressed by my colleague Dr. Hermenier in (Herme-
nier, Lawall, and Muller, 2013). The second question is largely discussed in the next
chapter. Finally, the last question is still an open issue. However, the work we did on
modeling VM operations as described in Sections 5 and 6 has paved the way toward
more advanced cost functions.

24

3Distributed Virtual Machine
Scheduler

As discussed in the previous chapter, encapsulating jobs into VMs allows developers to use
preemption as well as relocation mechanisms to implement advanced scheduling strategies.
These strategies enhance the optimization of systems utilization while guaranteeing Quality
of Service (QoS) properties at the same time. While several studies promote the implementa-
tion of dynamic VM scheduling, they all face strong limitations regarding scalability, reactiv-
ity and fault-tolerance aspects. Our second contribution in this area has been to use the VM
context switch building block, which has been previously introduced, and P2P mechanisms
to address the aforementioned challenges.

In this chapter, we first describe DVMS (Distributed VM Scheduler), a framework that
enables VMs to be scheduled cooperatively and dynamically in large-scale distributed systems.
We describe, in particular, how several VM reconfigurations (a.k.a., VM context switches) can
be dynamically calculated in parallel and applied simultaneously. We evaluate our prototype
by means of ad-hoc simulations and in-vivo experiments and compare it to a well-known
centralized approach. The corresponding results show that our scheduler is able to manage
hundreds of nodes and thousands of VMs in a few seconds.

The second section deals with an optimization we proposed in DVMS. Although the first
version improves the scalability criterion significantly, it does not consider the physical topol-
ogy of the network. However, taking into account network considerations is critical for large-
scale infrastructures, in particular when they are deployed throughout distinct geographical
sites. The second contribution we present is a new building block designed on top of the Vi-
valdi overlay. Thanks to the Vivaldi coordinates and a shortest path based algorithm, DVMS
is able to solve and perform each VM context switch by using the closest servers available in
the neighborhood. Experiments confirm that without changing the scheduling decision algo-
rithm, the number of WANWide reconfiguration as been considerably reduced.

The last section discusses related work.

3.1 Addressing Scalability, Reactivity andFault-
tolerant Aspects

In this section, we present how it can be possible to schedule VMs in order to maxi-
mize system utilization while ensuring the quality of service in large-scale distributed
systems (i.e., composed of thousands of physical servers).

After presenting in Section 3.1.1 the limitations of centralized-based scheduling ap-
proach, we give an overview of the DVMS proposal in Section 3.1.2. In Section 3.1.3,
we discuss a few experiments we performed on top of Grid’5000 to validate our Proof-
of-Concept. Finally, we conclude by giving a summary of the major results we ob-
tained and higlight two research directions this work opened in Section 3.1.4.

3.1.1 Challenge Description

Although VM scheduling is an NP-hard problem 1, most of the proposals that pro-
mote the use of VMs to implement dynamic VM scheduling (Hermenier, Lorca, et al.,

1 The time needed to solve it grows exponentially with the number of nodes and VMs considered

25

2009; Sotomayor, Rubén SMontero, et al., 2009; Lowe, 2010) rely on amaster/worker
design (see Figure 12a). In this model, a single daemon is in charge of performing the
different phases: monitoring all resources, computing the schedule and applying the
reconfiguration.

The choice of a single master node leads to several problems. First, during the
computation and the application of a schedule, these managers do not enforce QoS
properties anymore, and thus cannot react quickly to QoS violations.

Second, since the manipulation of VMs is costly as discussed in the previous chap-
ter, the time needed to apply a new schedule is particularly important: the longer the
reconfiguration process, the higher the risk that the schedule may be outdated, due
to the workload fluctuations, when it is eventually applied (see Figure 12b). Finally,
a single master node can lead to well-known fault-tolerance issues: a group of VMs
may be temporarily isolated from themaster node in case of a network disconnection;
moreover, QoS properties may not be ensured anymore if the master node crashes.

Figure 12: VMs scheduling in
a master/workers architecture

1. Monitoring

3. Applying
schedule

2. Computing
schedule

Service node

Worker node

Communication
between nodes

(a) Scheduling steps (b) Workload fluctuations during scheduling

Even if a better design of the master can help to separate each phase in order to
resolve some of these issues (a multi-threaded model, for instance, can help to track
workload changes so that a scheduling process can be stopped if need be), a central-
ized approach will always be subject to scalability, reactivity and fault tolerance is-
sues. Considering the increasing size of data centers, these concerns are predomi-
nant (Kotsovinos, 2011; Vaquero, Rodero-Merino, and Buyya, 2011).

To address this challenge, we investigated whether a more decentralized approach
can tackle the aforementioned limitations. Indeed, scheduling takes less time if the
work is distributed among several nodes, and the failure of a node does not impede
scheduling strongly anymore. We introduced DVMS (Distributed VM Scheduler), a
manager that schedules and supervises VMs cooperatively and dynamically in dis-
tributed systems (Quesnel and Lebre, 2011; Quesnel, Lebre, and Südholt, 2013; Ques-
nel, Lebre, Pastor, et al., 2013; Balouek, Lebre, and Quesnel, 2013). Hierarchical so-
lutions (Feller, Rilling, and Morin, 2012) that can be seen as good candidates face
important limitations: First, finding an efficient partitioning of resources is a tedious
task as matching a hierarchical overlay network on top of a distributed infrastructure
is often not natural. Secondly, in addition to requiring complex failover mechanisms
to face crashed leaders/super peers and network disconnections, hierarchical struc-
tures have not been designed to react swiftly to physical topology changes such as
node apparitions/removals and network performance degradations.

P2P algorithms allow to address both concerns, i.e., scalability as well as resiliency
of infrastructures. Few proposals have been made precisely to distribute the dynamic
management of VMs (Rouzaud-Cornabas, 2010; Yazir et al., 2010). However, the re-
sulting prototypes are still partially centralized. Firstly, at least one node has access to
a global view of the system. Secondly, most solutions consider all nodes for schedul-

26

ing, which limits scalability. Thirdly, they still rely on service nodes, that are potential
single points of failure (SPOF).

Our proposal has been designed to work with partial views of the system, without
any SPOF, and to be non-predictive and event-driven. This design rules enabled us
to propose a system that is more reactive, more scalable and more tolerant to nodes
crashes or network disconnections in comparison with available approaches.

3.1.2 Our Proposal: DVMS

In this section, we describe the foundations of the DVMS proposal. Then we present
its main characteristics and focus on on two major parts: (i) its iterative scheduling
procedure and (ii) the deadlock detection/resolution mechanism.

In DVMS, when a node cannot guarantee the QoS for its hosted VMs or when
it is under-utilized, it starts an iterative scheduling procedure (ISP) by querying its
neighbor to find a better placement. If the request cannot be satisfied by the neigh-
bor, it is forwarded to the following free one until the ISP succeeds. This approach
allows each ISP to send requests only to a minimal number of nodes, thus decreasing
the scheduling time without requiring a central point. In addition, this approach al-
lows several ISPs to occur independently at the same moment throughout the infras-
tructure. In other words, scheduling is performed on partitions of the system that
are created dynamically, which significantly improves the reactivity of the system. It
should be noted that nodes are reserved for exclusive use by a single ISP, in order to
prevent conflicts that could occur if several ISPs performed concurrent operations
on the same nodes or VMs. Even if such a strategy allows to maintain a consistent
state of the infrastructure, it may lead to deadlocks when all nodes are reserved by
active ISPs. To tackle this issue, we proposed a (distributed) deadlock detection and
resolution mechanism. Moreover, communication between nodes is done through a
fault-tolerant overlay network, which relies on distributed hash table (DHT) mecha-
nisms to mitigate the impact of a node apparitions/removals (Ratnasamy et al., 2001;
Rowstron and Druschel, 2001; I. Stoica et al., 2003).

Architecture Overview

In order to develop a scheduling mechanism that is reactive, scalable and reliable, we
designed it on the basis of a peer-to-peer and event-based approach. A scheduling ac-
tivity is started on demand, i.e., only if a (scheduling request) event is received. Since
such events may occur simultaneously throughout the infrastructure, we propose to
manage each event independently so that several events can be tackled in parallel, thus
leading to better reactivity. This approach contrasts with more traditional solutions,
where scheduling is started periodically. It also differs from a predictive strategy that
computes schedules in advance to anticipate workload fluctuations. Although pre-
dictive approaches may help to prevent the start of scheduling processes that finally
prove to be superfluous, prediction requires an accurate knowledge of workload pro-
files, which is not always available. In our proposal, an event may be generated each
time a virtualized job (vjob, see Chapter 2) is submitted or terminated, when a node
is overloaded or underloaded, or when a system administrator wants to put a node
into maintenance mode.

Regarding the peer-to-peer aspects of our approach, our system does not distin-
guish any node: all nodes behave equivalently as far as scheduling is concerned. Each
node can (i) submit vjobs, (ii) generate events and (iii) handle events generated by
other nodes. A node monitors only its local resources. However, it can get access
on demand to a partial view of the system, by communicating with its neighbors by
means of an overlay network which is similar to those used to implement distributed
hash tables (Ratnasamy et al., 2001; Rowstron and Druschel, 2001; I. Stoica et al.,
2003). To facilitate understanding, we consider here that the overlay provides a ring
topology. Accessing a partial view of the system improves scalability (computing and

27

applying a schedule on a small subset is faster) while the DHT mechanism enhances
fault-tolerance (the nodes can continue to communicate transparently even if several
of them crash).

Figure 13: Iterative
scheduling: example

3

1

22
3

1
Node
Leader
Event initiator

n Partitition no. n

3

1

22
3

1

Firstout relation
Partition in state GROW

n

The Iterative Scheduling Procedure

The ISP defines the different actions that should be applied when a (scheduling re-
quest) event occurs on a node; the goal of the ISP is the reservation of a subset of
nodes, a so-called partition, that is sufficient in order to solve the (scheduling) event
that motivated the start of the ISP. Overall, the ISP proceeds by successively reserv-
ing free nodes (and leapfrog sets of already reserved nodes) until an appropriate set of
nodes is reserved or a deadlock is reached. In the latter case, deadlocks are handled
as shown in the following section.

Figure 14: Iterative
scheduling: algorithm

In order to maintain a consistent state in an environment in which several ISPs can
occur simultaneously, each node can take part only in one ISP at a time. Each node
monitors its local resources.

When a node Ni detects a problem (e.g., it is overloaded), it starts a new ISP by
generating a scheduling event (we refer to the original node that initiated the ISP as
the initiator). The ISP reserves the current node and sends the event to its neighbor,
the node Ni+1. If the node Ni+1 is not already involved in another ISP, the node
Ni+1 reserves itself, i.e., joins the growing partition, and becomes the new leader of the
partition. In Figure 13, two steps during the execution of three on-going ISPs are
shown: partitions are colored; leaders are marked as black, initiators as gray nodes
(we explain themeaning of the arrows later on). From the first to the second execution
state, the first partition has grown from two to five nodes.

28

The leader is the node that is actively trying to solve the event. First, the leader
notifies the nodes involved in the ISP that it has taken the leadership. Then, it re-
trieves up-to-date monitoring information from these nodes. Finally, it computes a
new schedule based on this information. If this schedule does not meet the resource
requirements of the initial scheduling event, the leader forwards the event to its neigh-
bor, node Ni+2 (see the corresponding sequence diagram shown in Figure 14). Simi-
larly, if the node Ni+2 is not involved in an another ISP, the node joins the partition,
becomes the new leader and performs the same operations as previously described. If
the computation of the new schedule succeeds, nodeNi+2 applies it (e.g., by perform-
ing appropriate VM migrations) and finally releases all members of the partition, so
that nodes Ni, Ni+1 and Ni+2 are free to take part in another ISP.

To avoid useless communications and to determine the next available node for an
ISP (i.e, the next leader), each node maintains a ‘first out’ relation. This value indicates
the next node that does not belong to the current partition. Thus, when an already
reserved node receives an event, it forwards the request directly to its ‘first out’ node.
This approach allows us to efficiently handle the transience of ISPs, that appear and
disappear according to events and their resolutions, as well as to efficiently contact
the following potentially free node and thus limit the communication with nodes that
are already taking part in another partition.

Finally, note that if a node detects a problem while it is already involved in an ISP,
the event is not forwarded to its neighbor; the update process performed by the leader
enables its integration into the following scheduling computation.

Deadlock Prevention

Resource requests may lead to deadlock situations in which no partition can satisfy
its corresponding scheduling request since there are no free node left. It is therefore
necessary to prevent deadlocks. Figure 15 shows an example of two deadlock-related
execution states: a situation just before a deadlock on the left, another one just after
deadlock resolution on the right.

2

1+31

2

3

Node
Leader
Event initiator

n Partitition no. n

Partition in state CNGROW
2

1+31

2

3
n

Partition in state GROW

Figure 15: Handling deadlocks

Conceptually, we prevent deadlocks as follows. Partitions are used to handle re-
source requests by reserving free nodes. They are therefore in state GROW (indicated
by the set of nodes colored in light blue in figures 13 and 15). In a potential dead-
lock situation, partitions become aware that they cannot grow anymore and switch
to state CNGROW, that stands for ‘cannot grow’ (the corresponding partitions are col-
ored in dark red on Figure 15). Note that the partition no. 2 on the left hand side has
not yet switched to that state. Once a deadlock has been identified, two partitions (or
several pairs) in state CNGROW will merge and thus provide more nodes to try to solve
the two ISPs simultaneously. This is shown on the right hand side, where partitions
no. 1 and 3 have been merged and reached state GROW once again. In this example, the
merged partition may now be sufficient after which the corresponding computations
are started and the partition is dissolved.

Note that merging partitions does not guarantee that a solution will be found, it
only gives better chances to solve the corresponding events by providing more possi-
bilities to move the VMs. It is especially true if complementary events are combined
(e.g., an ‘overloaded node’ event and an ‘underloaded node’ one).

From the algorithm viewpoint, deadlock prevention is performed in a decentral-
ized manner during event processing as follows (see Figure 16). The ISP of a growing
partition sends a (scheduling) event around the ring in order to find free nodes. If the

29

Figure 16: Per-node event
processing algorithm

An ISP starts

State ← GROW

Event solved before going back to the initiator?

State ← CNGROW

At least one node out of the partition?

Status of the next node out of the partition?

Skip the partition of this node

Try to merge the two partitions

Integrate it in the partition

ISP not solvable

ISP ends with success

Yes No

No Yes

Involved in a partition (GROW)

Involved in a partition (CNGROW)

Free

Failure

Success

event comes back to the initiator, the partition switches to state CNGROW. After that,
this partition will switch back to state GROW if:

• The ISP finds free nodes (e.g., if another partition was dissolved).

• The ISP finds another partition in state CNGROW and is able tomerge its partition
with it.

This procedure is correct in that it permits all deadlock situations to be prevented.
It may indicate deadlock situations even if there are some free nodes, because a parti-
tion may be freed after the deadlock prevention algorithm has visited that partition.
This is, however, unavoidable in a dynamic, asynchronous setting as ours, and has a
negligible impact on the performance of our algorithm.

Although we do not discuss it in this manuscript, We highlight that we have proven
the correctness, including deadlock freedom and absence of starvation, of our algo-
rithm by means of a (manual) formal development using the formal framework of
first-order linear temporal logic(see (Quesnel, Lebre, Pastor, et al., 2013) for further
details).

3.1.3 Proof-Of-Concept & Validation

To validate our proposal, we implemented a Proof-of-Concept in Java. This proto-
type enabled us to conduct ad-hoc simulations as well as in-vivo experiments that we
present in this section

Proof-Of-Concept

The prototype processes ‘overloaded node’ and ‘underloaded node’ events (defined by
means ofCPU andmemory thresholds by the system administrator). The ISP relies on
a a simple (unidirectional) ring (see Figure 17). This enabled us to evaluate the benefits
in scalability and reactivity of our proposal as discussed in the following section.

From the software architecture viewpoint, our system is composed of a node agent (NA)
per node. Each NA is made of a knowledge base, a resource monitor, a client, a server
and a scheduler (see Figure 17).

The knowledge base contains various types of information. Some information is
available permanently: monitoring information about the local node (resources con-
sumed and VMs hosted), a stub to contact the neighbor, and a list of events generated

30

Figure 17: Implementation
overview

by the node. Other information is accessible only during an iterative scheduling pro-
cedure: monitoring information about the reserved nodes (if a scheduler is running
on the node) and a stub to contact the scheduler that tries to solve the event.

The resource monitor is in charge of updating the monitoring information every 2
seconds. If it detects a problem while it is not already involved in another ISP, it
triggers a new ISP by generating the appropriate event (e.g., to indicate that the node
is overloaded), reserving the node and sending the event to the neighbor by means of
a client (the latter being instantiated on-demand to send a request or a message to a
server).

The server processes requests and receives messages from other nodes. It launches,
in particular, a scheduler when it receives an event.

The scheduler first updates the leadership information of the other members of the
ISP and retrieves the monitoring information from each member as part of the ac-
knowledgment. Based on the information it received, it tries to solve the correspond-
ing event by computing a new schedule and applying it, if possible. If the schedule is
applied successfully, the scheduler finally cancels node reservations.

Last but not the least, the prototype has been designed so that any dynamic VM
scheduler may be used to compute and apply a new schedule. However, we underline
that DVMS relies by default on the latest proposal of the Entropy system (Hermenier,
Demassey, and Lorca, 2011).

Validation

DVMS has been evaluated through ad-hoc simulations and in-vivo experiments. We
do not discuss in details all experiments in this manuscript and invite the reader to
refer to (Quesnel, Lebre, and Südholt, 2013; Quesnel, Lebre, Pastor, et al., 2013) for
further information. We chose to only discuss large-scale evaluations involving up to
4.7K VMs distributed over 467 nodes of the Grid’5000 testbed. As far as we know,
these experiments constitute the largest in vivo validation that has been performed so
far with decentralized VM schedulers.

The objective of our experiments was to validate the DVMS relevance to improve
scalability as well as reactivity of a centralized scheduling policy on real experiments.
The scheduling algorithm we used in all experiments was the latest one that has been
developed as part of the Entropy framework as mentioned previously. Giving up
consolidation optimum in favor of scalability, this algorithm provides a ‘repair mode’
that enables overload problems to be corrected according to the requirements of VMs
and placement constraints (Hermenier, Lawall, andMuller, 2013). At each invocation,
the algorithm looks for the optimal solution until it reaches a predefined timeout.
The optimal solution is the one that implies the cheapest reconfiguration plan while
satisfying resource and placement constraints during relocation operations. Once
the timeout is triggered, the algorithm returns the best solution among the ones it
has found so far.

31

Experimental Parameters:

The number and the characteristics of the worker nodes used during the three exper-
iments are shown respectively on Figure 18 and on Table 2.

We developed a set of scripts to make the control of the experiments easier. These
scripts have been capitalized in a framework entitled vm5k 2 (Balouek, Lebre, and
Quesnel, 2013; Imbert et al., 2013) in charge of:

• Installing a software stack on each Grid’5000 node, including the KVM hyper-
visor and the Libvirt virtualization library.

• Deploying KVM virtual machines, so that Entropy and DVMS are evaluated on
the same configurations.

• Iteratively injecting CPU workloads into the different VMs by invoking the
stress command; it is worth noting that the framework turns to a new itera-
tion when all ‘overloaded node’ events have been solved.

Figure 18: Number of
nodes used during the ex-
periments on Grid’5000

0	

20	

40	

60	

80	

100	

120	

140	

160	

Griffon	

 Graphene	

 Paradent	

 Parapide	

 Parapluie	

 Sol	

 Suno	

 Pastel	

N
um

be
r o

f P
M

s	

Cluster	

2000 VMs	

251 PMs	

3325 VMs	

309 PMs	

4754 VMs	

467 PMs	

Table 2: Characteris-
tics of the nodes used

during the experiments

Site Cluster Processor RAM (GB)

Nancy Griffon Intel; 2*4 cores; 2.50Ghz 16
Graphene Intel; 1*4 cores; 2.60Ghz 16

Rennes Paradent Intel; 2*4 cores; 2.50Ghz 32
Parapide Intel; 2*4 cores; 2.93Ghz 24
Parapluie AMD; 2*12 cores; 1.70Ghz 48

Sophia Sol AMD; 2*2 cores; 2.60Ghz 4
Suno Intel; 2*4 cores; 2.26Ghz 32

Toulouse Pastel AMD; 2*2 cores; 2.61Ghz 8

vm5k was running on a dedicated node on the suno cluster. The software stack
of each node is as follows: Linux Debian 6 (Squeeze) 64 bits, KVM 1.1.2, virt-install
0.600.1, virsh 0.9.12, vm5k, OpenJDK JRE 6, Entropy 2.1 and DVMS.

Each VM had 1 virtual CPU and 1 GB of RAM and is attached to a 1 GB COW disk
image leveraging a common backing file previously deployed on each node. The CPU
consumption of each VM was set randomly (with a seed for reproducibility) to 0% or
100% of its virtual CPU. During each iteration, the percentage of VMs that consumed
100% of their virtual CPU was between 40% and 70%.

The overloaded threshold was configured at 100% (i.e., a PM was considered ad
overloaded if the VMs it hosted tried to consume more than 100% of its CPU re-
sources). The number of overload problems injected per iteration was on average:

• 26 (standard deviation: 22) for the experiment with 251 PMs and 2000 VMs.

2 https://github.com/lpouillo/vm5k

32

https://github.com/lpouillo/vm5k

• 28 (standard deviation: 21) for the experiment with 309 PMs and 3325 VMs.

• 40 (standard deviation: 35) for the experiment with 467 PMs and 4754 VMs.

Each experimentwas performed on 10 iterations. Migrations have been performed
using the virsh command with the copy-storage-inc option.

Finally, the Entropy timeout was determined empirically and configured so that
the time (in seconds) to compute a reconfiguration did not exceed one tenth of the
number of nodes considered for scheduling.

Results:

Figure 19 shows the results. The mean value and the standard deviation are given for
each experiment.

0
20

40
60

80
10

0

D
ur

at
io

n
of

 a
n

ite
ra

tio
n

(s
)

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

251 PMs
2000 VMs

309 PMs
3325 VMs

467 PMs
4754 VMs

Entropy
DVMS

(a) Duration of an iteration

0
5

10
15

20

T
im

e
to

 s
ol

ve
 a

n
ev

en
t (

s)
M

ea
n

an
d

st
an

da
rd

 d
ev

ia
tio

n

251 PMs
2000 VMs

309 PMs
3325 VMs

467 PMs
4754 VMs

DVMS

(b) Time to solve an event with
DVMS

0
10

20
30

40
50

T
im

e
to

 a
pp

ly
 a

 r
ec

on
fig

ur
at

io
n

(s
)

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

251 PMs
2000 VMs

309 PMs
3325 VMs

467 PMs
4754 VMs

Entropy
DVMS

(c) Time to apply a reconfiguration

Figure 19: Experiments in vivo
on the Grid’5000 testbed

We observe that, on average, DVMS improves the reactivity of Entropy by a factor
two (cf. Figure 19a). This can be explained by the fact that DVMS considers each prob-
lem independently and hence can process each of them simultaneously. On average,
each problem is solved in less than 12 seconds, cf. Figure 19b)

We can see that the time required to apply a reconfiguration cannot be neglected
(cf. Figure 19c). Entropy spends approximately as much time to compute a reconfig-
uration as to apply it (cf. Figures 19c and 19a). However, on the DVMS side, the time
needed to solve an overload problem is strongly dominated by the time required to
apply the corresponding reconfiguration (cf. Figures 19c and 19b). Indeed, since each
problem affects only few nodes, the time needed to compute a reconfiguration is very
small (less than 1 second on average) comparing with the time to perform a migration
including the COW file.

Regarding the number of migrations more precisely, DVMS performed as many
migrations as Entropy for each iteration since these two frameworks were evaluated
with the same configurations and had to solve exactly the same overload problems.

3.1.4 Summary

To address scalability, reactivity and fault tolerance aspects of virtualized resources
managers, we proposed DVMS, a new P2P-based VM manager. Keeping in mind the
following objective: maximizing system utilization while ensuring the quality of ser-
vice., DVMS schedules VMs dynamically and cooperatively in distributed systems, To
validate the behavior of DVMS as well as the resulting overhead on the nodes compos-
ing the infrastructure, we conducted several experiments through ad-hoc simulations
and in vivo experiments. In particular, the experiments, which have been presented in
this manuscript, are as far as we know, the only ones conducted at such as scale(i.e. up
to 4.7K VMs on 467 nodes). Results showed that a cooperative approach like DVMS
is appropriate to solve resource violations in an highly reactive and scalable manner.

To consolidate our study, it would have been interesting to perform additional ex-
periments on the resilience aspects, when nodes join or leave the system. Indeed, a
key element of the DVMS proposal is the network overlay that enables peers to com-
municate throughout the ring. Although, we propose to leverage parts of the Chord

33

algorithm (I. Stoica et al., 2003) in order to manage node additions and removals in
an autonomous way (that is, node predecessors as well as node successors are notified
at each modification of the ring structure), it would have been interesting to measure
the impact of the ring’s modifications on the ISP performance. These experiments
would have enabled us to identify whether DVMS can cope with a high-churn rate.

Another limitation regarding DVMS is related to the “simple” ring approach it
leverages. Even though DVMS has significantly improved the scalability, it does not
consider the phyiscal topology of the network and thus does not favour cooperations
between nodes that are close to each other. While this is acceptable within an infras-
tructure where nodes are interconnected through low latency and high bandwitdh
networks, it becomes critical when the scheduler has to perform reconfigurations be-
tween nodes of different racks/sites. To address this issue, we proposed a revision of
our proposal as discussed in the next section.

3.2 Locality Aware-Scheduling Strategy

The ever-increasing size ofmodern data-centers aswell as the promotion of distributed
Cloud Computing infrastructures like the next platform to deliver the Utility Com-
puting paradigm, had favor the investigations on distributed VM scheduling algo-
rithms (Feller, Morin, and Esnault, 2012; Quesnel, Lebre, and Südholt, 2013). Al-
though these proposals considerably improve the scalability, leading to the manage-
ment of hundreds of thousands of VMs over thousands of physical machines (PMs),
they do not consider the network overhead introduced by multi-site infrastructures.
This over- head can have a dramatic impact on the performance if there is no mecha-
nism favoring intra-site vs. inter-site manipulations.

In this section, we introduce a new building block designed on top of a Vivaldi
overlay network in order to maximize the locality criterion (i.e., efficient collabora-
tions between PMs. We combined this mechanism with DVMS and showed its ben-
efit by discussing several experiments performed on four distinct sites of Grid’5000.
In details, Section 3.2.1 describes the challenge we addressed. Section 3.2.2 gives an
overview of our proposal by introducing the short path algorithm on top of Vivaldi
and the way we integrate it into DVMS. In Section 3.2.3, we validate the proposal
by analyzing its benefits with respect to the previous version of DVMS. Finally, Sec-
tion 3.2.4 concludes and raises research questions.

3.2.1 Challenge Description

Systemmechanisms in charge of operating cloud computing infrastructures relymore
and more on P2P buidling blocks. Although it has been used first on storage services
such as key/value stores (DeCandia et al., 2007), several academic studies have in-
vestigated the relevance of P2P algorithms in other mechanisms. The design of new
scheduler managers such as DVMS is one example among others. However, P2P pro-
posals still face limitations coming from the overlay network they rely on. DVMS, for
instance, maps a ring overlay network on a distributed infrastructure. Such an over-
lay prevents DVMS to make any distinction between close nodes and distant ones,
limiting the optimization that can be performed. Similarly, the approach described
in (Feller, Morin, and Esnault, 2012), while adopting an orthogonal, gossip-based ap-
proach, still suffers from building a randomized overlay network, thus breaking the
physical topology.

Considering that both the network latency and the bandwidth between peers have
a strong impact on the reactivity criterion of the scheduling problem (see Section 2.2.1
and Chapter 5, locality properties of peers should be considered to favor efficient VM
operations. In other words, to reduce as much as possible the time to perform a VM
context switch (i.e., to switch from a mapping between VMs and PMs running in the
infrastructure to another one), it is crucial to make cooperation first between peers in

34

the closest neighborhoods before contacting peers belonging to other sites. Moreover,
it is noteworthy that this notion of locality is dynamic, and varies over time according
to the network bandwidth/latency and disconnections.

We illustrate the problem in Figure 20. In this example, we have three partitions
and we can see the growth of partition 1 between two steps 3.

While the ISP strategy enables DVMS to limit the size of one partition to a minimal
number of nodes, these nodes are selected without considering the network condi-
tions at the time the ISP starts. This leads to inefficient situations where VM migra-
tions occur between two nodes that are far from each other, which lasts longer than
a migration between two close nodes. Obviously the ring can be built to limit the
distance between peers globally (i.e., peers of the same region/area would be grouped
together as illustrated in Figure 20). However, in such a case, at least two nodes of
each group are directly connected to two far nodes. Note that an approach such as
the one proposed in (Garces-Erice et al., 2003), which consists in deploying one ring
per site and relying on a super-ring to interconnect few representatives of each local
ring, would not solve many problems. Besides problems inherent to hierarchical and
structured overlay networks, this solution would not provide a good answer to local-
ity: When going out of the local ring, it would still not be possible to find the next
closest ring.

Node
Leader
Event initiator

n

Firstout relation
Partition in state GROW

n Partitition no. n

3

1

2
3

1

22
3

1

2
3

1

Cluster 1 Cluster 2

Cluster 3

Cluster 1

Cluster 2
Cluster 3

The ring has been matched on top
of three distinct clusters.

Figure 20: Solving three problems
simultaneously and indepen-
dently with DVMS.

3.2.2 Our Proposal: A Locality-aware Overlay Network

As illustrated in the previous paragraph, one of the primary downsides of overlay
networks lies in that they break the physical topology by connecting nodes that have
no physical proximity. After presenting previous initiatives that dealt with this notion
of peers locality, we present our proposal.

Overlay Networks and Locality

Besides hierarchical attempts in building locality-aware overlay networks (Garces-
Erice et al., 2003; Z. Xu, Mahalingam, and Karlsson, 2003; Z. Xu and Z. Zhang, 2002),
we can first mention the locality improvement mechanisms of the Pastry structured
overlay network (Rowstron andDruschel, 2001). In order to reduce the latency of the
routing process, each node is given the opportunity to choose the closest nodes to fill
its routing table. Learning the existence of new nodes relies on a periodic exchange
of parts of routing tables.

3 For further information regarding the notion of “first out”, see Section 6.3. In this example, readers can
consider that the “first out” relation enables DVMS to handle communications efficiently, as each node
involved in a partition can forward a request directly to the first node on the outside of its partition.

35

Similar mechanisms have been adopted within unstructured overlay networks to
make their logical connections reflect the physical proximity of nodes, each node dis-
covering its closest nodes through gossiping. Note that the proximity between two
nodes can be estimated through any transitive metric, in particular the latency be-
tween the nodes (Jelasity and Babaoglu, 2005).

These approaches need to constantly maintain the knowledge of close nodes in
order to provide the best node possible at the cost of periodic communications (un-
correlated to the actual amount of requests to be processed by the overlay network).

The overlay network we proposed differs in that it adopts a lazy approach consist-
ing in searching close nodes only upon receipt of requests. This way, the quality of
the response is proportional to the frequency of requests.

Our protocol relies on the Vivaldi protocol (Dabek et al., 2004) to detect close
nodes. Vivaldi places nodes in a multi-dimensional space. Each node is given coordi-
nates inside this space reflecting its physical location. The protocol is based on simple
message exchanges. Initially, each node is given a random position in the space and
chooses (possibly arbitrarily) a small subset of nodes, composing its view. Then, each
node starts estimating the round trip time between itself and another node chosen
randomly in its view, and adapts its distance with this node in the space accordingly,
coming closer to it or moving away from it. The nodes can repeat this step indepen-
dently (each with another node from its view), to improve the accuracy of the posi-
tioning. A globally accurate positioning of nodes can be obtained very quickly (in
a small number of such steps) if nodes have a few long-distance nodes in their view
and if the network is not excessively dynamic. These long distance links can be easily
maintained.

Recall that Vivaldi does not allow to directly know the nodes that are close in the
network, but to be able to recognize them through their coordinates. Our overlay
relies on the examination of Vivaldi coordinates of nodes discovered during the pro-
cessing of requests sent to it.

Locality-aware Overlay Network

The overlay network we proposed is made of two layers.

• The lower layer is mainly an implementation of the Vivaldi protocol, which
allow nodes to be aware of their position in the infrastructure. We underline
that nodes are initially interconnected arbitrarily.

• Based on these coordinates, the upper layer is responsible for building a locality-
aware overlay dynamically. This layer takes its roots in the classic Dijkstra’s
shortest path algorithm to collect a set of close nodes starting from a given po-
sition.

Searching for Close Nodes:

Once the Vivaldi map is achieved, and each node knows its coordinates, we are able
to estimate how close two given nodes are by calculating their distance in the map.
However, recall that the view of each node does not a priori contain its closest nodes
4. Therefore, we need additional mechanisms to locate a set of nodes that are close to
a given initial node. Vivaldi gives a location to each node, not a neighborhood.

We use a modified, distributed version of the classic Dijkstra’s shortest path algo-
rithm that leverages the Vivaldi map to build such a neighborhood. More specifically,
its goal is to build a spiral5 interconnecting the nodes in the plane that are the closest
ones from a given initial node.

4 In the following, we call this view the network view, to distinguish it from the spiral view to be intro-
duced later.

5 Our use of the term spiral is actually a misuse of language, since the graph drawn in the plane might contain
crossing edges.

36

Let us consider that our initial (or root) point is the node nR. The first step is to
find a node to build a two-node spiral starting with nR. This is done by selecting the
node from nR’s network view, say ni, which exhibits the smallest distance with nR.
ni becomes the second node in the spiral. From this point on, nR remembers ni as its
successor and ni remembers nR as its predecessor. nR also sends its network view to
ni, which, on receipt, creates its spiral view that contains the N nodes closest to nR

taken from both nR and ni network views. It will allow ni to find the next node to
build the spiral. Assuming this closest node from nR in ni’s spiral view is nj , nj will
be added in the spiral by becoming the successor of ni. nj receives ni’s spiral view
and creates and fills its own spiral view with nodes closest to nR contained in both
ni’s spiral view and nj ’s network view. This algorithm is repeated until the amount
of nodes requested by the application have been interconnected in the spiral.

Note that there is a risk to be blocked at some point, having a spiral view containing
only nodes that are already in the spiral, hindering from extending it further. How-
ever, this problem can be easily addressed by introducing few long-distance nodes
when the spiral view is created/updated.

Learning:

Applying the protocol described above, the quality of the spiral is questionable in the
sense that the nodes that are actually close to the root nodenR may not be included.To
improve the quality of the spiral, i.e., to reduce the average distance from each of its
nodes to the initial node, we rely on a learning mechanism coming with no extra
communication cost: When a node is contacted to become the next node in one spiral,
and when it receives the associated spiral view, it can also keep in its network view
the nodes that are closer to itself, thus potentially increasing the quality of a future
spiral construction. Such an improvement through learning is illustrated in Figure 21.
Note that learningmay also be used to constantly improve already built spirals. While
providing obvious advantages, allowing it comes at the cost of changing links in the
spirals dynamically, which may not match all applications’ constraints.

(a) Initial View (b) B creates a “spiral” (c) A creates a “spiral”

(a) The initial view of each node
is materialized by the dashed
lines. Given these views, the
spiral obtained from node A is
represented by the double thick
lines. In particular, this spiral
allowed A and B to discover each
other. (b) If B starts building a
spiral, it will start by contacting
A. This spiral construction allows
also E and B to discover each
other. (c) If A is requested to start
another spiral, it will exhibit an
increased locality awareness.

Figure 21: Learning Mechanism

PeerActor: A Building Block to Abstract Overlay Networks

As a P2P scheduling algorithm, the DVMS proposal can be divided in two major com-
ponents: (i) The ring overlay network and (ii) the protocol in charge of detecting and
resolving scheduling issues. As our goal consists in taking into account locality crite-
ria without changing the DVMS protocol, we designed a building block, i.e., the Peer
actor, which enables us to revisit DVMS by abstracting the overlay network it relies
on. At a coarse-grain level, the Peer actor can be seen as a generic layer for high level
distributed services, providing network abstractions and robust communications be-
tween agents deployed on each node. By leveraging the Peer actor API, developers
can focus on the service itself without dealing with node apparitions/removals and
network disconnections.

From the software point of view, the Peer actor relies on modern software frame-
works (Scala and Akka) following the actor model rules. In such a model, each in-

37

stance will collaborate by exclusively exchanging messages, and priority will be given
to collaboration between close instances when using the locality-based overlay (LBO).

Figure 22: DVMS on
top of the Peer actor. Physical Machine

DVMS Service DVMS Service

Peer Actor Peer Actor

Notification
Actor

Notification
Actor

Vivaldi
Overlay

Vivaldi
Overlay

Chord
Overlay

Chord
Overlay

Overlay
Actor

Overlay
Actor

or

As illustrated in Figure 22, the Peer actor contains two sub actors: The Notification
actor and the Overlay network actor. The Notification actor enables services to sub-
scribe to events that will be triggered by other services, as for detecting overloading
of nodes or for handling crash of neighbours. The Overlay network actor is in charge
of sending/receiving messages through the network. In order to compare both ap-
proaches, ring-based vs. locality-aware, we developed two different Overlay network
actors: The first one provides a Chord-like overlay (I. Stoica et al., 2003), while the
second one delivers the locality-aware overlay described in Section 3.2.2.

3.2.3 Proof-of-Concept & Validation

The main objective of the experiments we conducted was to estimate the impact of lo-
cality on the performance of a distributed scheduling algorithm. A significant portion
of the reconfiguration time is spent in VM live migration operations, which depends
of network parameters such as latency and bandwidth. One way to improve the per-
formance of distributed scheduling algorithms is to promote collaborations between
close resources, which can be reached by maximizing the ratio:

nb intrasite migrations/nb migrations.

Proof-of-Concept

A prototype of DVMS leveraging the peer actor abstraction has been developed. In ad-
dition we built two versions of the network overlay actor: one working with Chord,
and one working with the Vivaldi based overlay. This mean that now DVMS is net-
work overlay agnostic to, and thus can be used with either of the network overlay
without requiring any modification in it’s source code.

The implementation is based on modern programming language and framework
such as Scala and Akka framework. Scala is a language that mixes object oriented pro-
gramming with functional programming, it’s compiler produces Java bytecode which
can be run in any JVM environment. Combining Scala with Akka enabled us to take
advantage of advanced techniques for concurrent programming such as future/promise
and actor model, and to benefit from Java ease of deployment.

Experimental Protocol

To compare our experiments, we implemented a dedicated injector that makes load
changes of VMs during a predefined time. VMs are launched on nodes in a round-

38

robin manner, i.e., each node hosts roughly the same number of VMs at the beginning.
The experiment consists in repeatedly changing target CPU loads of VMs. Every t sec-
onds, the injector that is deployed on a dedicated node selects one VM and changes its
CPU load according to a Gaussian distribution. t is a random variable that follows an
exponential distribution with rate parameter λ. The Gaussian distribution is defined
by a mean (µ) as well as a standard deviation (σ) that are given at the beginning of the
experiment. The parameters are λ = Nb_VMs/300 and µ = 70, σ = 30. Concretely,
the load of each VM starts from 0% and varies on average every 5 minutes in steps
of 10 (with a significant part between 40% and 100% of CPU usage). The duration of
each experiment was set to 3600 seconds.

800 km

Grenoble (10)

Luxembourg (10)

Nancy (10)
Rennes (10 + 1)

Figure 23: Testbed.

Figure 23 depicts our testbed. For each experiment, we booked 40 compute servers
spread over 4 geographical sites (10 PMsper site) and 1 service server from theGrid’5000
testbed. The compute servers were used to run VMs and DVMS while the service
node runs the aforementioned injector. Each compute node was equipped with 8
cores and hosted a number of VMs proportional to its number ofCPU cores (nbVM =
1.3 × nb cores), leading to a global number of 416 VMs. Although such a num-
ber is rather small regarding the latest experiments that have been performed on
DVMS (Quesnel, Lebre, Pastor, et al., 2013), our goal is not to validate once again
the scalability criteria but to focus on the locality aspect of such an algorithm.

Results

Maximization of Intra-SiteMigrations:

Table 3 compares the ratio between intra-site migrations and the total number of
migrations, using Chord or our LBO network. The results show that the impact of
locality is significant: Using LBO leads to an average number of 86.3% of intra-site
migrations while using a Chord-based DVMS decreases this ratio to 49.6%.

Chord LBO
Average 0.496 0.863

Minimum 0.378 0.798
Maximum 0.629 0.935

Table 3: Comparison of intra-
site migrations ratio (DVMS/-
Chord vs. DVMS/LBO)

Dynamic Clustering:

During our investigation of the results brought about LBO, we noticed that many
of the inter-site migrations were performed between Luxembourg and Nancy sites.
In Table 4, it is noticeable that Luxembourg and Nancy have a latency that is signifi-
cantly below usual inter-site latencies (Nancy and Luxembourg are separated by only

39

100 kilometers), while Rennes and Grenoble have almost the same latency with all
their respective remote sites. Indeed, servers located in Luxembourg and Nancy are
more likely to collaborate with each other, while those located on Rennes and Greno-
ble will find collaborators regardless of their location. This explains why many of the
inter-site migrations were performed between Luxembourg and Nancy. This means
that LBO enabledDVMS to learnwhich site ismore interesting to performVMmigra-
tion. Promoting low latency inter-site collaborationmademany inter-sitemigrations
acceptable compared to those executed by the Chord version.

Table 4: Latency mea-
sured between sites. Grenoble Luxembourg Nancy Rennes

Grenoble 0.09 ms 16.55 ms 14.24 ms 15.92 ms
Luxembourg 0.17 ms 2.70 ms 13.82 ms

Nancy 0.27 ms 11.42 ms
Rennes 0.23 ms

Reactivity:

Table 5: Comparison of par-
titions metrics using DVM-
S/Chord and DVMS/LBO.

Chord LBO
Average number of sites involved 1.645 1.082

Average duration to detect a valid configuration (msec) 154.63 98.50

Table 5 depicts metrics that allow for an objective comparison of the efficiency of
both overlay networks. In addition to reducing the number of inter-site migrations,
the side effect of using the LBO is to reduce the solving time: The partition duration
is 46% lower than that encountered with Chord. This result is consistent with the fact
thatwith our locality-aware overlay, the number of sites that are involved in partitions
becomes very close to one. Indeed collaborating with closer nodes allows exchanging
information between nodes of the partition much faster, thus increasing once again
the reactivity of the system.

3.2.4 Summary

In this section, we introduced a lazy locality-aware overlay network that acts as a
generic building block to reify the locality aspects in distributed system mechanisms.
In our study, the locality has been estimated through a cost function of the latency
between peers in the network, thus enabling each peer to select its closest neighbors.
We rely on Vivaldi (Dabek et al., 2004), a simple decentralized protocol allowing to
map a network topology onto a logical space while preserving locality. On top of Vi-
valdi, a shortest path construction, similar to the well-known Dijkstra algorithm, is
performed each time there is a need for cooperation between two nodes. We illus-
trated the advantage of this new building block by changing the overlay network in
the DVMS proposal that has been previously discussed (see Section ??).

Our experiments over Grid’5000 showed that, connecting 4 different sites and
scheduling VMs over them, we could gain up to 72% of inter-site operations. It is
worth noting that one experimental observation we had during this work was that
the proposed overlay network was actually able to reflect the underlying topology,
and in particular to build a hierarchical overlay dynamically if the underlying topol-
ogy is hierarchical.

It is noteworthy that this study also opened two additional scientific challenges.
The first question is related to the VM context switch operation and the decision

40

model used in the scheduling mechanisms. Indeed, it would be interesting to refine
both of them in order to consider the cost difference between intra-site and inter-site
migrations. By favoring intra-sitemigrations inmulti-site partitions, it should be pos-
sible to significantly reduced the time to complete the VM context switch operation.
The second question concerns the way of estimating the locality criterion. While we
considered the latency criterion to identify the location of each node, it would have
been interesting to consider the latency/bandwidth tulple. While the latency is rather
stable, the bandwidth may significantly vary according to the on-going network ex-
changes that occur on the physical backbone: Two nodes that are geographically re-
mote, can provide better performances than two nodes belonging to the same site. It
would be interesting to perform additional experiments to see how our lazy-overlay
is reactive with respect to such fluctuations.

3.3 Related Work

In this section, we presentmajorwork on distributed resourcemanagement, and espe-
cially notable approaches related to the dynamic scheduling of VMs. Contrary to pre-
vious solutions that performed scheduling periodically, latest proposals have tended
to rely on an event-based approach: scheduling is started only if a scheduling event
occurs in the system, for example if a node is overloaded.

In the Snooze project (Feller, Rilling, Morin, et al., 2010; Feller, Rilling, and Morin,
2012), nodes are distributed among managers and a front-end oversees the managers;
when an event occurs, it is processed by a manager that takes into account all nodes it
is in charge of. This approach considers both scalability and fault-tolerance concerns.
However, it still relies on a single front-end to submit new VMs, which can limit its
scalability. Moreover, the infrastructure is partitioned statically, which may prevent
Snooze to handle events in an optimal way.

Most of the recent approaches try to delegate as much scheduling work as possible
to the worker nodes.

With some distributed approaches, the worker nodes rely on a single service node
to schedule VMs (Yazir et al., 2010; Mastroianni, Meo, and Papuzzo, n.d.), which may
lead to scalability and fault-tolerance problems. (Yazir et al., 2010) uses a service node
to collect monitoring information on all worker nodes; when an event occurs on a
worker node, this node retrieves information from the service node, computes a new
schedule and performs appropriate migrations. (Mastroianni, Meo, and Papuzzo,
n.d.) uses a front-end to submit new VMs to the system; this front-end broadcasts the
arrival of a new VM to all nodes; each node answers only if it accepts to host the VM;
the front-end then chooses a node randomly among those which have responded; a
migration is handled in the same way as a new VM submission.

With some other proposals, the scheduling is fully handled by the worker nodes,
but they do require a global view of the system to schedule VMs (J. Xu, M. Zhao, and
Fortes, 2009; Rouzaud-Cornabas, 2010). This global view may be kept up-to-date
continually (J. Xu, M. Zhao, and Fortes, 2009) or on demand (Rouzaud-Cornabas,
2010), which may be a time-consuming operation if the infrastructure is big.

Finally, some proposals work with a partial view of the system (Barbagallo et
al., 2010; Marzolla, Babaoglu, and Panzieri, 2011; Feller, Morin, and Esnault, 2012).
(Marzolla, Babaoglu, and Panzieri, 2011) and (Feller, Morin, and Esnault, 2012) rely
on a periodic approach; with (Marzolla, Babaoglu, and Panzieri, 2011), each node
tries to exchange VMs with its neighbors, while with (Feller, Morin, and Esnault,
2012), a node takes the leadership and performs scheduling among its neighborhood.
In (Barbagallo et al., 2010), each node sends scouts to other nodes; a scout is a soft-
ware agent that is in charge of (i) travelling in the infrastructure to collect monitor-
ing information and (ii) sharing this information with its origin node when it comes
back, to help the origin node schedule its VMs. These proposals focused on long-term
scheduling policies, like consolidation, and were not designed to handle QoS viola-

41

tions quickly. Moreover, they may lead to a high number of migrations (Barbagallo
et al., 2010; Marzolla, Babaoglu, and Panzieri, 2011).

Last but not the least, none of these approaches have been designed to take account
of the network topology and therefore cannot manage VMs efficiently in a multi-site
deployment.

As claimed in this chapter, an ideal decentralized approach should (i) handle QoS
violations quickly, (ii) compute reconfigurations that are close to optimality, (iii) limit
the number of migrations and (iv) consider the physical topology and the resilience
aspects of the infrastructure.

42

4Conclusion & Open Research Issues

The holy grail for Infrastructure-as-a-Service providers is to maximize the utiliza-
tion of their infrastructure while ensuring the quality of service for the applications
they host. Depiste the flexibility brought by system virtualization and all progress
in the design of the frameworks in charge of operating VM on pools of physical ma-
chines (Lowe, 2010; OpenNebula website; CloudStack website; OpenStack website),
most IaaS managers do not efficiently handle the aforementioned objective. Even
worse, most production cloud computing infrastructures still leverage static and greedy
policies. There are two reasons for this situation. First, manipulating a large number
of VMs in an efficient and consistent manner can rapidely become tedious. Second,
the implementation of advanced scheduling policies are subject to hard scalability
problems, in part due to their centralized design (i.e., the management tasks are per-
formed by a restricted set of dedicated nodes).

In this first part, we studied how to mitigate these concerns.

• In Chapter 2, we described a generalization of the concepts proposed in the
Entropy framework (Hermenier, Lorca, et al., 2009). Entropy was an academic
proposal developped by the ASCOLAResearch group atmy arrival. The system
acted as an infinite control loop, which performs a globally optimized place-
ment according to cluster resource usage and scheduler objectives. 1 Our work
has consisted in proposing the context switch module that transparently han-
dle all VMs manipulations (Hermenier, Lebre, and Menaud, 2010). Given the
initial placement and the expected one, the context switch module computes an
optimized reconfiguration plan. This plan describes sequences of transitions to
perform (i.e. the run, migrate, suspend/resume, stop VM operations) in order
to move from the current situation to the new one. As the cost of each action
and the dependencies between them is considered, the module reduces, the du-
ration of each VM context switch by performing aminimumnumber of actions,
in the most efficient way. Thanks to this module, developers can focus on the
scheduling algorithm in charge of identifying which VMs should be executed.
This contribution has tackled the difficulty of manipulating in an efficient and
consistent manner a large number of VMs.

• in Chapter 3, we explained how we revised the context switch module in order
to address the aforementioned scalability limitation. Our first contribution has
consisted in decentralizing the cluster-wide context switch framework, result-
ing in the DVMS (Distributed Virtual Machine Scheduler) proposal (Quesnel,
Lebre, and Südholt, 2013). DVMS is deployed as a set of agents that are orga-
nized following a ring topology. Agents cooperate with one another to guar-
antee that demands of the VMs are satisfied during their executions. A Proof-
of-Concept has been implemented and validated by means of ad-hoc simula-
tions (not presented in this manuscript) andwith experiments on the Grid’5000
testbed (Quesnel, Lebre, Pastor, et al., 2013). Although, DVMS was very reac-
tive to schedule tens of thousands of VM distributed over thousands of nodes,
we observed that the duration of some reconfigurations was much longer than
others. Deeper investigations revealed that considering the physical topology
of large-scale Cloud Computing platforms is important to handle VM context
switches in an efficient manner (it is faster to reconfigure VMs hosted on the

1 http://entropy.gforge.inria.fr.

43

http://entropy.gforge.inria.fr

same rack than between remote ones). This issue becomes even critical inmulti-
sites infrastructures, which become the norm as discussed in Part IV. In this
case, VM context switches can occur WANWide (i.e., at a Wide Area Network
scale), degrading significantly performance as well as quality of the service of
the whole system. In the second section of this chapter, we have described how
it has been possible to reify the physical topology information that were previ-
ously hidden by the DVMS overlay. Concretely, we have proposed a new over-
lay built on top of the Vivaldi coordinates system and a shortest path algorithm.
We have illustrated the advantage of this new building block by changing the
overlay network in DVMS. Experiments performed on top of Grid’5000 have
shown the advantages of this new overlay in the case of DVMS.

In addition to a few perspectives that have been presented for each contribution,
these studies has raised two important questions.

• The first question is related to the low adoption of advanced scheduling strate-
gies. Although the scientific community has investigated for almost one decade
the use of dynamic and efficient VM scheduling such as the ones discussed in
the previous chapters, most production infrastructures continue to leverage
static policies.
One of the important reasons is the contrast between the number of VMs con-
sidered to validate academic proposals (up to one thousand in the best case)
and the number actually hosted by Infrastructure-as-a-Service platforms (up
to tens and hundreds of thousands instances). Such a gap does not enable aca-
demic/industry experts to corroborate the relevance ofmanaging VMs dynami-
cally. The issue is that valid assumptions on small infrastructuresmight become
completely erroneous on much larger ones. However, evaluating robustness
and performance of advanced mechanisms through large-scale “in vivo” (i.e.,
real-world) experiments is not straightforward. In addition to disposing of an
appropriate testbed, it implies expensive and tedious tasks to build a complete
system that handles control, monitoring and reproducibility of the experiments.
When investigated, the correctness of most contributions in the management
of large-scale IaaS platforms has been proved by means of ad-hoc simulators.
Although such analyses contribute to the state of the art, the validation method-
ology is unsatisfactory to compare, validate and promote new proposals. Like
for Grids (Casanova, Legrand, and Quinson, 2008), P2P (Montresor and Jela-
sity, 2009) and more recently highest levels of cloud systems (Calheiros et al.,
2011), the IaaS community needs an open simulation framework for evaluat-
ing concerns related to the dynamic management of VMs. Besides allowing
to investigate large-scale instances in an efficient and accurate way, this frame-
work should provide adequate analysis tools to make the discussions of results
as clear as possible.

• The second question concerns the scalability, reliability and reactivity challenges
of all mechanisms that are necessary to operate and use Cloud Computing in-
frastructures (OpenNebula website; CloudStack website; OpenStack website). In-
deed, if we consider current trends about Cloud Computing infrastructures in
terms of size (larger and larger) and in terms of usage (cross-federation), ev-
ery large-scale issues must be addressed as soon as possible to efficiently man-
age next generation of Cloud Computing platforms. Leveraging a preliminary
study we conducted in 2011 (Lebre, Anedda, et al., 2011) and the results pre-
sented in Chapter 3, revising system mechanisms with P2P building blocks
looks to be an interesting research direction to investigate. The challenges will
be related to two aspects: First, P2P algorithms need to be redrafted to take
into account the physical topology that is specific to multi-sites infrastructures.
This is mandatory, as illustrated with DVMS, to favor intra-site collaborations
but should be extended to mitigate expensive inter-sites communications and

44

to deal with network split brain in an efficient and robust manner. Second,
most of the Cloud Computing software stack should be revised to cope with
scalability as well as distribution of resources of next generation Cloud Com-
puting platforms.

The first question has been addressed to a certain extent through the works that are
presented in Part III. The second one is currently under investigation through several
actions that are performed within the framework of the DISCOVERY initiative 2 as
described in Part IV.

2 http://beyondtheclouds.github.io.

http://beyondtheclouds.github.io

Part III

V I R T U A L I Z A T IO N AN D S IM U LAT IO N
TO O LK I T S

This part presents a compilation of the following publications (Hirofuchi, Pouilloux, and
Lebre, 2015) and (Lebre, Pastor, and Südholt, 2015). The ongoing work that is presented in
the conclusion has been recently presented in (NGuyen and Lebre, 2017).

These results have been possible thanks to collaboration with:

• Flavien Quesnel, Phd in the Ascola Research Team (0ct 2010- Feb 2013), Nantes, now
Research Engineer at System-X Institute ;

• Lionel Eyraud-Dubois, Researcher in the RealOpt Research Team, Inria, Bordeaux ;

• Jonathan Pastor, Phd in the Ascola Resarch Team (Oct 2012 - Oct 2016), Nantes, now
PostDoc at Chicago University ;

• Laurent Pouilloux, Research Engineer Hemera Inria Large Scale Initiative, (Jan 2013 -
Sep 2015), Lyon ;

• Takahiro Hirofuchi, Invited Researcher in the ASCOLA Research Team (Jan 2013 - Dec
2013), AIST Japan ;

• Mario Südholt, Professor and Head of the ASCOLA Research Group, IMT Atlantique,
Nantes ;

• Frédéric Desprez, Senior researcher and Deputy Scientific Director at Inria, Grenoble ;

• Anthony Simonet, PostDoc Researcher in the Ascola Research Team (Oct 2015-2017),
Nantes ;

• Linh Thuy Nguyen, Phd in the Ascola Resarch Team (Dec 2015, defense expected Dec
2018)

I should complete this list with all folks I met during the different SimGrid user-days. In
particular, the results presented here could not have been achieved without the support of the
project founders and active maintainers of this crazy piece of software :

• Arnaud Legrand, CNRS Researcher and Head of the POLARIS Research Team, Greno-
ble ;

• Martin Quinson, Professor at the Ecole Normale Supérieur, Rennes ;

• Frédéric Suter, CNRS Researcher at the IN2P3 Computing Center, Lyon.

Between 2013 and 2016, the activities have been mainly supported by the French ANR
project SONGS (11-INFRA-13) and the Japaneese JSPS KAKENHI (Grant 25330097). The on-
going activies are supported by the H2020 BigStorage European Training Network (MSCA-
ITN-2014-ETN-642963) and the DISCOVERY Inria Project Lab. I underline that I am the
principal investigator of the different actions that have been done and that I have been (co)-
supervising all the aformentioned PhDs candidates.

Major Results as well as software code are available at: http://simgrid.gforge.inria.
fr/contrib/clouds-sg-doc.php and http://beyondtheclouds.github.io/VMPlaceS/.

47

http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://beyondtheclouds.github.io/VMPlaceS/

5Adding virtualization capabilities to
SimGrid

As real systems become larger and more complex, the use of simulator frameworks grows in
our research community. By leveraging them, users can focus on the major aspects of their
algorithm, run in-siclo experiments (i.e., simulations), and thoroughly analyze results with-
out facing the complexity of conducting in-vivo studies (i.e., on real testbeds). Nowadays the
virtual machine (VM) technology has become a fundamental building block of distributed
computing environments, in particular in cloud infrastructures, thus our community needs
a full-fledged simulation framework that enables us to investigate large-scale virtualized
environments through accurate simulations. To be adopted, such a framework should pro-
vides easy-to-use APIs, close to the real ones and preferably fully compatible with those of an
existing popular simulation framework.

In this chapter, we present how we have extended SimGrid, a widely-used open-source
simulation toolkit, in order to deliver a highly-scalable and versatile simulation framework
supporting VM environments. Our proposal allows users to launch hundreds of thousands of
VMs on their simulation programs and control VMs in the same manner as in the real world
(e.g., suspend/resume and migrate). Users can execute computation and communication tasks
on physical machines (PMs) and VMs through the same SimGrid API, which will provide
a seamless migration path to IaaS simulations for hundreds of SimGrid users. Moreover,
SimGrid VM includes a live migration model implementing the precopy migration algorithm.
This model correctly calculates the migration time as well as the migration traffic, taking
into account resource contention caused by other computations and data exchanges within
the whole system. This allows user to obtain accurate results of dynamic virtualized systems.
We confirmed accuracy of both the VM and the live migration models by conducting several
micro-benchmarks under various conditions.

In addition to enabling the development of VMPlaceS as explained in the last section, this
work has been important for more recent activities focusing on the estimate of the VM context
switch operation (Kherbache, Madelaine, and Hermenier, 2015).

5.1 Challenge Description

Nowadays, VM technology plays one of the key roles in cloud computing environ-
ments. Large-scale data centers can manipulate up to one million of VMs, each of
them being dynamically created and destroyed according to user requests. Numer-
ous studies on large-scale virtualized environments are being conducted by both aca-
demics and industries in order to improve performance and reliability of such sys-
tems. However, these studies sometimes involve a potential pitfall; the number of
virtual machine (VMs) considered to validate research proposals (up to one thousand
in the best case) is far less than the number actually hosted by real Infrastructure-as-
a-Service (IaaS) platforms. Such a gap prevents researchers from corroborating the
relevance of managing VMs in a more dynamic fashion, since valid assumptions on
small infrastructures sometimes become completely erroneous on much larger ones.
The reason behind this pitfall is that it is not always possible for researchers to evalu-
ate robustness and performance of cloud computing platforms through large-scale in
vivo experiments. In addition to the difficulty in obtaining an appropriate testbed, it
implies expensive and tedious tasks such as controlling, monitoring and ensuring the
reproducibility of the experiments. Hence, correctness of most contributions in the

49

management of IaaS platforms has been proved by means of ad-hoc simulators and
confirmed, when available, with small-scale in vivo experiments. Even though such
approaches enable our community to make a certain degree of progress, we advocate
that leveraging ad-hoc simulators with not so representative in vivo experiments is
not rigorous enough to compare and validate new proposals

Like for Grids (Casanova, Legrand, and Quinson, 2008), P2P (Montresor and Jel-
asity, 2009) and more recently highest levels of cloud systems (Calheiros et al., 2011),
the IaaS community needs an open simulation framework for evaluating concerns re-
lated to the management of VMs. Such a framework should allow investigating very
large-scale simulations in an efficient and accurate way as well as it should provide
adequate analysis tools to make the discussions of results as clear as possible: By lever-
aging simulation results, researchers will be able to limit in vivo experiments only to
the most relevant ones.

Our contribution is SimGrid VM, the first highly-scalable and versatile simula-
tion framework supporting VM environments. We built it upon SimGrid (Casanova,
Legrand, and Quinson, 2008) since its relevance in terms of performance and validity
has already been demonstrated for many distributed systems. 1

Our simulation framework allows users to launch hundreds of thousands of VMs
on their simulation programs and accurately control VMs in the same manner as in
the real world. The framework correctly calculates resource allocation to each com-
putation/communication task, considering VM placement on a simulated system.

In addition to the virtual workstation model, we also integrated a live migration
model implementing the precopy migration algorithm. This model correctly calcu-
lates the migration time as well as the migration traffic, taking account of resource
contention caused by other computations and data exchanges within the whole sys-
tem. This allows user to obtain accurate results of systems where migrations play
a major role. This is an important contribution as several people might erroneously
consider that livemigrations can be simulated by simply leveraging data transfermod-
els. As discussed in this chapter, several parameters such as the memory update speed
of a VM govern live migration operations and should be considered in the model if
we want to deliver correct values.

The remaining of the chapter is organized as follow Section 5.2 gives an overview
of SimGrid. After summarizing the requirements for the VM support in a simula-
tion framework, Section 5.3 introduces SimGrid VM and explains in details how the
virtual workstation and the live migration models have been designed. Evaluation
of both models is discussed in Section 5.4. Section 5.5 deals with related work and
finally, Section 5.6 concludes and gives some perspectives for SimGrid VM.

5.2 SimGrid Overview

SimGrid is a simulation framework to study the behavior of large-scale distributed
systems such as Grids, HPC and P2P systems. There is a large, world-wide user com-
munity of SimGrid. The design overview of SimGrid was described in (Casanova,
Legrand, and Quinson, 2008). SimGrid is carefully designed to be scalable and ex-
tensible. It is possible to run a simulation composed of 2,000,000 processors on a
computerwith 16GB ofmemory. It allows running a simulation on arbitrary network
topology under dynamic compute and network resource availabilities. It allows users
to quickly develop a simulating program through easy-to-use APIs in C and Java.

Users can dynamically create two types of tasks, i.e., computation tasks and commu-
nication tasks, in a simulation world. As the simulation clock is going forward, these
tasks are being executed, consuming CPU and network resource in the simulation
world. Behind the scene, SimGrid formalizes constraint problems (Rossi, Van Beek,
and Walsh, 2006) to get a resource share to each task. Even though there is complex

1 http://simgrid.gforge.inria.fr/Publications.php.

50

http://simgrid.gforge.inria.fr/Publications.php

resource contention, it can formulate constraint problems expressing such a situa-
tion. Until the simulation ends, it repeats formalizing constraint problems, solving
them, and then continuing with the next simulation step. As input parameters, users
will prepare platform files that describe how their simulation environments are orga-
nized; for example, they will include the CPU capacity of each host and the network
topology of their environments.

Although SimGrid has many features such as model checking, the simulation of
MPI applications, and the task scheduling simulation ofDAGs (Direct AcyclicGraphs),
we limit our description to the fundamental parts, which are directly related to the
VM support.

SimGrid is composed of three different layers:

• The MSG layer provides programming APIs for users. In most cases, users de-
velop their simulation programs only using the APIs in this layer. It allows users
to create a process on a host and to execute a computation/communication task
on it.

• The SIMIX layer is located in the middle of the components. This layer works
for the synchronization and scheduling of process executions on a simulation.
Roughly, it provides a functionality similar to system calls in the real world,
i.e.,simcall in the SimGrid terminology. When a process calls a simcall to do
an operation (e.g., compute, or send/receive data) in the simulation world, the
SIMIX layer converts it to an action in a corresponding simulation model (ex-
plained later). Then, the SIMIX layer blocks the execution of the process until
the operation is completed in the simulation world. If there is another pro-
cess that is not yet blocked, the SIMIX layer performs the context switch to
another process, converts its operation to another action, and blocks the ex-
ecution of that process. After all processes are blocked (i.e., the SIMIX layer
has converted the operations of all the currently-running processes to actions),
the SIMIX layer requests each model to solve constraint problems, which de-
termines the resource share of each action. After all constraint problems are
solved, the SIMIX layer sets the simulation clock ahead until at least one action
is completed under the determined resource shares. Then, it restarts the execu-
tion of the processes of the completed actions. These steps are repeated until a
simulation is over.

• The SURF layer is the kernel of SimGrid, where a simulation model of each
resource is implemented. A model formulates constraint problems according
to requests from the SIMIX layer, and then actually solves them to get the re-
source share of each action. There are a CPU model and a network model, used
for computation and communication tasks, respectively.

In addition to theMSGAPI, SimGrid provides several abstractions such as theTRACE
mechanisms that enable to perform fine post-mortem analysis of the users’ simu-
lations with some visualization tools like the Triva/Viva/PajeNG software suite ().
SimGrid will produce rich simulation outputs allowing users to perform statistical
analysis on simulation results.

5.3 Our proposal: Simgrid VM

The extension of SimGrid to support VM abstractions has been driven by the follow-
ing requirements:

• Produce accurate results. Our simulation framework requires the capability to
accurately determine resource shares on both virtualized and non-virtualized
systems, which must take account of VM placement on physical resources as
well as the mechanism of virtualization. In other words, if VMs are co-located

51

on a PM, the system should calculate a correct CPU time to each VM. If a net-
work link is shared with multiple data transfers from/to VMs or PMs, the sys-
tem needs to assign a correct bandwidth to each transfer.

• Achieve high scalability. SimGrid has been carefully designed to be able to per-
form large-scale simulations. The VM support on SimGrid must also achieve
high scalability for large simulation environments comprising a mix of thou-
sands of VMs and PMs.

After giving an overview of how we introduced the concept of virtual and physi-
cal machine layers in its solving engine of constraint problems, we present the live
migration model we implemented. Thanks to these extensions, users can now simu-
late the computation and the communication of virtualized environments as well as
investigating mechanisms involving VM live migration operations.

5.3.1 Adding a VM Workstation Model

In the extension for the VM support, we introduced the concept of an abstraction
level in the core of SimGrid, i.e., the PM level and VM level. This design enables us
to leverage the constraint problem solver of SimGrid also for the VM support. No
modification to the solver engine has been required.

Figure 24: Design Overview
of the VM Support in SimGrid

During a simulation, SimGrid
repeats the following steps: (S1)

The SIMIX Run function switches
the execution context to each

process. (1-2-3) Each process calls
a MSG API function, and the

corresponding workstation model
formulates constraint problems.
(S2) The SIMIX Run function

requests to solve constraint prob-
lems. Then, it updates the states of

processes with solved values and
sets the simulation clock ahead.

Figure 24 illustrates the design overview of SimGrid with the VM support. We
added the virtual workstation model to the SURF layer, and also modified the SIMIX
layer to be independent of the physical and virtualworkstations. Aworkstationmodel
is responsible for managing resources in the PM or VM layer. The virtual worksta-
tionmodel inherits most callbacks of the physical one, but implementing VM-specific
callbacks. When a process requests to execute a new computation task, the SIMIX
layer calls the SURF API of the corresponding workstation model (i.e. depending on
where the task is running, the PM or a VM workstation model is used). Then, the
target workstation model creates a computation action, and adds a new constraint
problem into that layer.

In the SURF layer, the physical workstation model creates PM resource objects for
each simulated PM. A PM resource object is composed of a CPU resource object and
a network resource object. A CPU resource object has the capability (flop/s, floating
operation per second) of the PM. A network resource object corresponds to the net-
work interface of the PM. A VM resource object basically has the same structure as
a PM one, including a CPU resource object and a network object. However, a VM
resource object has the pointer to the PM resource object where the VM is running.
It also has a dummy computation action, which represents the CPU share of the VM
in the PM layer (i.e., a variable objectXi in the following). Currently, we mainly focus

52

on the simulation of CPU and network resources. Disk resource simulation will be
integrated in the near future.

As explained in Section 5.2, the SIMIX RUN function executes processes in a simu-
lation in a one-by-one fashion, and then requests each workstation model to calculate
resource shares in each machine layer. We modified the SIMIX RUN function to be
aware of the machine layers on the simulation system. In theory, it is possible to sup-
port the simulation of nested virtualization (i.e., execute a VM at the inside of another
VM) by adding another machine layer to the code.

Physical Machine
(Capacity C)

Task
(X1)

Task
(X2)

1. Solve all the constraint problems at once.
Eq1: X1 + X2 < C

Physical Machine
(Capacity C)

1. Solve the constraint problems at the physical machine layer.
 Eq1: X1 + X2 + X3 < C
2. Solve the constraint problems at the virtual machine layer.
 Eq2: X1,1 + X1,2 < X1

 Eq3: X2,1 < X2

VM
(X1)

Task
(X1,1)

Task
(X1,2)

VM
(X2)

Task
(X2,1)

Task
(X3)

Virtual Machine Layer

Physical Machine Layer

SimGrid with Virtual Machine SupportSimGrid without
Virtual Machine Support

Extend

C is the CPU capacity (i.e., the
processing speed in flop/s) of
a PM. Xi are CPU resource
shares assigned to tasks or VMs at
the PM layer (from the Host OS
viewpoint, a VM is regarded as a
task). Xi,j are those of the tasks
running inside the VMi .

Figure 25: Resource Share Calcu-
lation with VM Support

The extension of the VM support solves constraint problems with 2 steps. First,
the system solves the constraint problems in the PM layer, and obtains the values of
how much resource is assigned to each VM (using the corresponding dummy action
of each VM). Then, the system solves the constraint problems in the VM layer. From
the viewpoint of a PM, a VM is considered as an ordinary task on the PM. From the
viewpoint of a task inside a VM, a VM is considered as an ordinary host below the
task.

Without the VM support, the solver engine solves all constraint problems on a sim-
ulation at once. The left side of Figure 25 shows a simple example where 2 computa-
tion tasks are executed on a PM. The PM has a CPU of the capacity C (flop/s). Then,
the system formulates a constraint problem,

X1 +X2 < C (2)

where X1 and X2 are the CPU shares of each task, respectively. If there are no other
conditions, the solver engine assigns 50% of the computation capacity of the PM to
each task.

The right side of Figure 25 shows an example with the VM support. A PM has two
VMs (VM1 and VM2) and a computation task. VM1 has two computation tasks, and
VM2 has a computation task. First, the system formulates a constraint problem at the
PM layer.

X1 +X2 +X3 < C (3)

where X1, X2, and X3 are the CPU shares of VM1, VM2, and the task on the PM.
If there are no other conditions, the solver engine assigns 33.3% of the computation
capacity of the PM to VM1, VM2 and the task on the PM. Second, the system formu-
lates a constraint problem at the VM layer. Regarding VM1 executing 2 computation
tasks, the solver engine makes

X1,1 +X1,2 < X1 (4)

where X1,1, X1,2 are the CPU shares of the tasks on VM1. In the same manner, for
VM2 executing 1 computation task, the solver engine makes

X2,1 < X2 (5)

53

where X2,1 is the CPU shares of the task on VM2. Thus, if there are no other con-
ditions, each task on VM1 obtains 16.7% of the CPU capacity while the VM2 one
obtains 33.3%.

SimGrid allows end-users to set priority to each task. This capability alsoworks for
the VM support. As for the above example, if we set 2x larger priority to VM1, VM1
obtains 50% of the computation capacity, and VM2 and the task on the PM get only
25%, respectively. Additionally, we added the capping mechanism of the maximum
CPU utilization of each task and VM. We can set the maximum CPU utilization of
VM1 to 10% of the capacity of the PM. Even if we remove VM2 and the task on the
PM, VM1 cannot obtain more than 10%. These features are useful to take account of
virtualization overheads in simulations. In the real world, we can sometimes observe
that the performance of a workload is degraded at the inside of a VM. It is possible to
simulate this kind of overhead by means of setting priority and capping of tasks and
VMs appropriately.

The network resource calculationmechanismwith theVM support is implemented
in the same manner as the CPU mechanism. The network mechanism considers the
resource contention on the PM and also that of shared network links.

5.3.2 Adding a Live Migration Model

Virtual machine monitors (VMMs) supporting live migration of VMs usually imple-
ment the precopy algorithm (Clark et al., 2005). At coarse grained, this algorithm
transfers all memory pages to the destination PM, before switching the execution
host of a VM. Thus, one can erroneously envision that live migration operations can
be simulated simply by one network exchange between the source and the destination
nodes. However, the pre-copy algorithm is a bit more complex and it is crucial to con-
sider several parameters that clearly govern the time that is mandatory to migrate one
VM from one node to another. In this section, first, we describe the successive steps
of the precopy algorithm and show that the memory update speed of the VM gov-
erns this algorithm by discussing several micro-benchmarks. The design of our live
migration model that relies on this preliminary study is finally introduced.

Live Migration Fundamentals

When a live migration is invoked for a particular VM, the VMM performs the follow-
ing stages:

• Stage 1: Transfer all memory pages of the VM. Note that the guest operating
system is still running at the source. Hence, somememory pages can be updated
during this first transfer.

• Stage 2: Transfer thememory pages that have been updated during the previous
copy phase. Similar to Stage 1, some memory pages will be updated during this
second transfer. Hence Stage 2 is iteratively performed until the number of
updated memory pages becomes sufficiently small.

• Stage 3: Stop the VM. Transfer the rest of memory pages and other negligibly
small states (e.g., those of virtual CPU and devices). Finally, restart the VM on
the destination.

Since Stage 3 involves a temporal pause of the VM, the VMM tries to minimize
this downtime as much as possible, making it unnoticeable from users and appli-
cations. For example, the default maximum downtime of Qemu/KVM, the de-fact
Linux VMM (Kivity et al., 2007), is 30 ms. During Stage 2, Qemu/KVM iteratively
copies updated memory pages to destination, until the size of remaining memory
pages becomes smaller than the threshold value that will achieve the 30 ms down-
time. Consequently, a migration time mainly depends on the memory update speed

54

of the VM and the network speed of the migration traffic. A VM intensively updat-
ing memory pages will require a longer migration time and in the worst case (i.e., the
memory update speed is higher than the network bandwidth), a migration will not
finish (i.e.„ not converge in technical terms). Although libvirt (libvirt: The virtualiza-
tion API n.d.) allows users to set a timeout value for a migration, this mechanism is
not enabled in the default settings of Linux distributions.

Impact of The Memory Update Speed

In order to have an idea of the magnitude of the memory update speed in cloud ap-
plications, we performed preliminary experiments using representative workloads.
This clarifies whether the memory update speed is large enough to be considered as a
predominant factor of a live migration model. First, we used a web server workload,
and second a database server. We measured how the memory update speed changes
in response to the CPU load change of the VM. Each workload runs on the guest OS
of a VM.

To measure the memory update speeds, we extended Qemu/KVM to periodically
output the current memory update speed of a VM. The VMM has the mechanism to
track updated memory pages during a migration, i.e., dirty page tracking. The VMM
maintains the bitmap recording updated memory page offsets. With the extension,
the VMM enables dirty page tracking: it scans and clears every second the bitmap in
order to count up the number of updated pages. It is noteworthy that we did not ob-
serve noticeable CPU overhead due to this extension. The recent hardware supports
dirty page tracking in the hardware level, and its CPU overhead is substantially small
compared to the CPU consumption of a workload.

Web Sever:

(a) Apache Web Server (b) Apache Web Server (cached
contents)

(c) PostgreSQL Database Server

Figure 26: The correlation be-
tween CPU utilization and
memory update speed

We set up a VM with one VCPU, 1 GB of memory, and one network interface on
a PM. The network interface was bridged to the physical network link of GbE. We
configured an Apache-2.2 web server on the guest OS of the VM. The Apache server
worked in the multi-threads mode, handling each HTTP session with one thread. An-
other PM was used to launch the siege web server benchmark program, 2 which ran-
domly retrieves files available on the web server by performing HTTP get requests.
Static web contents had been generated in advance on the guest OS. The size of each
file was 100 KB (i.e., a typical size of a web content on the Internet) and the total size
of the generated web contents was 2 GB (20K files).

In order to investigate the impact of the page cache mechanism upon the update
memory speed, we performed two particular cases:

• For the first case, the benchmark program randomly accessed all 2 GB web
contents. Because the RAM size of the VM is 1 GB, accessing more than 1 GB
involves I/O accesses since the whole contents cannot be cached by the guest
OS. When a requested file is not on the page cache, the guest OS reads the con-
tent file from the virtual disk, involving memory updates.

2 http://www.joedog.org/siege-home.

55

http://www.joedog.org/siege-home

• For the second case, we limited HTTP requests only to 512 MB of the web
contents. The corresponding 5000 files had been read on the guest OS, before
launching the benchmark program. By caching target files beforehand, wemin-
imized memory updates due to the page cache operation.

For both experiments, we gradually increased the number of concurrent accesses
performed by the benchmark program: The number of concurrent sessions was in-
creased by 16 every 60 seconds, up to 512. We measured the memory update speed
and the CPU utilization every second. Figures 26a and 26b show the correlation be-
tween the CPU utilization level of the VM and its memory update speed. When the
number of concurrent sessions increased, the CPU utilization as well as the mem-
ory update speed became higher. We expected that the memory update speed of the
first case would be significant because of refreshing the page cache, and that of the
second case would be small because all file contents were already cached. As shown
in Figure 26b, however, in the second case, there exist intensive memory updates
(e.g., 30 MB/s at 60% of the CPU utilization), which are not negligible in comparison
to the network bandwidth. Considering that the Apache server sends data through
zero copy operations (e.g., the use of sendpage(), or the combination of mmap() and
send()), this memory update speed results from the pages used by the web server to
manage HTTP session (i.e., the heap on the guest OS). The guest OS kernel will also
update memory pages for TCP connections, receiving client requests and sending dy-
namically generated data (i.e., HTTP protocol headers).

Database Server:

The second study focuses on a postgresql-9.2.4 database server. The configuration
of the VM was the same as that of the web server experiments. The pgbench bench-
mark 3 was used on the other PM. It emulates the TPC-B benchmark specification
(Transaction Processing Performance Council, 1994) that targets database manage-
ment systems on batch applications, and the back-end database server on market seg-
ment. The default setting of the benchmark program aims atmeasuring themaximum
performance of a database server and thus completely saturates the CPU utilization
of the VM. To observe the behavior of the VM at various CPU utilization levels, we
inserted a 20 ms delay at the end of each sequence of transaction queries.

After starting the experiment, we increased the number of concurrent database
sessions by 2 every 60 seconds and up to 70 concurrent sessions. Similarly to the
Apache experiments, we can observe on Figure 26c, a clear linear correlation between
them. Because every 60 seconds the benchmark program was re-launched with a
new concurrency parameter, the sporadic points distant from themajoritywas caused
by establishing new database sessions. As shown in the graph, there exists intensive
memory updates of the VM. In this experiment, when the CPU utilization was 60%,
the memory update speed reached 40MB/s (30% of the theoretical GbE bandwidth).

To conclude, although points are scattered in the different graphs, we can observe
that a proportional correlation between the CPU usage and thememory update speed
exists as a rough trend in the experiments. Such a correlation is important as it will
enable to determine the memory update speed of a VM according to its CPU usage.

Summary:

Through the above experiments, we have seen that the memory update speed can
be quite significant in comparison with the network bandwidth. Providing a naive
model, which simply obtains the cost of a live migration by dividing the VM memory
size by the available network bandwidth, is not appropriate as the memory update
speed determines the duration of Stage 2 of the precopy algorithm. As an example,
the naive model will estimate the migration of the aforementioned database to 8 sec-

3 http://www.postgresql.org/.

56

http://www.postgresql.org/

onds (i.e., the time required for transferring 1 GB data over the 1 Gbps link) for all
situations. This might result in a tremendous gap from the migration performance
in the real world once the VM starts to be active: when the database VM is utilizing
60% CPU resource, the live migration time of this VM was approximately 12 seconds,
and the transferred data size during the migration reached approximately 1500 MB.
This corresponds to 1.5 times the migration cost estimated by the naive model. Fig-
ure 27 presents the theoretical estimation of migration cost for a VM (1 GB RAM).
The graphs clearly reveal that it is critical to consider the impact of memory updates
in order to make an accurate estimation of migration time and generated network
traffic.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 20 40 60 80 100 120

M
ig

ra
ti
o

n
 T

im
e

 (
s
)

Memory Update Speed (MB/s)

(a) Migration Time (s)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120
M

ig
ra

ti
o

n
 T

ra
ff

ic
 (

M
B

)
Memory Update Speed (MB/s)

(b) Migration Traffic (MB)

A VM with 1 GB RAM over
a 1 Gbps link. The values are
theoretically estimated according
to the precopy algorithm.

Figure 27: Impact of memory
updates on migration cost

Moreover, the time to perform the first two stages is easily and greatly affected by
activities of other VMs and workloads running in the system:

• From the network point of view, the traffic of a live migration can suffer from
other network exchanges. For instance, a workload of a VM may create net-
work traffics that competes with migration ones. Similarly, such a competi-
tion occurs when multiple live migrations are performed simultaneously. In all
these cases, the available network bandwidth for a live migration dynamically
changes.

• When several VMs are co-located, they compete with each other for obtain-
ing CPU resources. This contention may lead to performance degradation of
workloads. Hence, the memory update speed of the VM dynamically changes
due to the activities of other co-located VMs.

A naive model that miscalculates migration times and possibly under- or over-
estimates the corresponding network traffic will result in erroneous simulation re-
sults far from the real world behaviors. To accurately estimate the impact of the mem-
ory update speed, the resource sharing among workloads and VMs must be consid-
ered. In other words, the simulation framework should consider contention on virtu-
alized and non-virtualized systems: If VMs are co-located on a physical machine, the
system should compute a correct CPU time to each VM. If a network link is shared
with multiple data transfers, including those of migrations, the system needs to assign
a correct bandwidth to each transfer.

Implementation

The live migration model we implemented in SimGrid, performs the same operations
of the precopy algorithm described in Section 5.3.2. We denote the memory size
of a VM as R. The memory update intensity of the VM is given by a parameter α
(bytes/flops). It denotes how much memory pages are marked dirty while one CPU
operation (in a simulation world) is executed. We have published a Qemu extension
(Qemu-DPT, dirty page tracking) to easily measure the current memory update speed
of a VM, which enables SimGrid users to easily determine the memory update inten-
sity of the workloads they want to study. For example, a user launches a VM with
Qemu-DPT, starts a workload on the VM, changes a request rate to the workload,

57

and measures the current CPU utilization level and the memory update speed. Users
can easily confirm whether there is a linear correlation and determine the value of
correlation coefficient (i.e., the memory update intensity of the workload). If a lin-
ear correlation is not appropriate, it is possible to develop another correlation from
measured data.

During a live migration, our model repeats data transfer until the end of Stage 3.
All transfers are simulated by using the send/recv operations proposed by the Sim-
Grid MSG API. We define the data size of the ith transfer as Xi bytes. At Stage 1,
the precopy algorithm sends all the memory pages, i.e., X1 = R. In Stage 2, the
algorithm sends memory pages updated during the previous data transfer. Based on
our preliminary experiments, we assume that there will be many situations where the
memory update speed is roughly proportional to the CPU utilization level. We use a
linear correlation function as the first example of correlation functions. The size of
updated memory pages during the data transfer is proportional to the total amount of
CPU shares assigned to the VM during this period. Thus, we obtain the data transfer
size of the next phase as Xi+1 = min(αSi, R

′), where Si (floating operations, flops)
is the total amount of CPU shares assigned to the VM during the ith data transfer (as a
reminder, Si is computed by the solver engine as described in Section 5.3.1). R′ is the
memory size of the working set used by workloads on the VM. The size of updated
memory pages never exceeds the working set size.

The simulation framework formulates constraint problems to solve the duration of
each data transfer, which is based on the network speed, latency, and other communi-
cation tasks sharing the same network link. If the maximum throughput of migration
traffic B is given, the model controls the transfer speed of migration data, not to ex-
ceed this throughput. This parameter corresponds to migrate-set-speed of the
libvirt API (libvirt: The virtualization API n.d.).

Every time migration data is sent in a simulation world, the model estimates the
available bandwidth for the ongoing live migration, in the same manner as the hyper-
visor does in the real world. The current throughput of migration traffic is estimated
by dividing the size of sent data by the time required for sending the data. This esti-
mated value is used to determine the acceptable size of remaining data when migrat-
ing from Stage 2 to Stage 3. If the maximum downtime d is 30 ms (i.e., the default
value of Qemu), and if the migration bandwidth is estimated at 1 Gbps, the remaining
data size must be less than 3,750 KB in Stage 3. The migration mechanism repeats
the iteration of Stage 2 until this condition is met.

Finally, at Stage 3, our model creates the communication task ofXn bytes to trans-
fer the rest of memory pages. After this final task ends, the system switches the exe-
cution host of the VM to the destination.

Since a linear correlation will explain the memory update speed in typical situa-
tions, we implemented it as a default correlation function. However, the proportional
function used in the current implementation is just an example of correlation func-
tions to estimate the memory update speed of a VM. If this proportional function is
not appropriate for a situation, it is possible to define another correlation function.

The correlation function of the memory update speed can be defined not only with
the CPU utilization level but also with any other variables available in the simulation
world. For example, a request rate of an application can be used, if it explains the
memory update speed of a VM. We consider that in most cases a user will need to
modify only one function get_update_size() in the VM extension, which calcu-
lates the size of updated memory pages.

5.3.3 SimGrid VM API (C and Java)

In our work, we extended the MSG programming API in order to manipulate a VM
resource object as shown in Table 6. Each operation in this API corresponds to a
real-world VM operation such as create/destroy, start/shutdown, resume/suspend
and migrate. We newly defined the msg_vm_t structure, which is a VM object in a

58

msg_vm_t MSG_VM_create(msg_host_t pm, ...) Create a VM object on the
given PM with the specified pa-
rameters.

void MSG_VM_destroy(msg_vm_t vm) Destroy the VM.
void MSG_VM_start(msg_vm_t vm) Start the VM.
void MSG_VM_shutdown (msg_vm_t vm) Shutdown the VM.
void MSG_VM_migrate(msg_vm_t vm,
msg_host_t dst_pm)

Migrate the VM to the given
destination PM.

void MSG_VM_set_params(msg_vm_t vm,
ws_params_t params)

Set parameters of the VM.

vm_state_t MSG_VM_get_state(msg_vm_t vm) Return the state of the VM.
msg_host_t void MSG_VM_get_pm(msg_vm_t vm) Return the PM of the VM.
void MSG_VM_suspend(msg_vm_t vm) Suspend the execution of the

VM. Keep VM states on mem-
ory.

void MSG_VM_resume(msg_vm_t vm) Resume the execution of the
VM.

void MSG_VM_save(msg_vm_t vm) Suspend the execution of the
VM. Save VM states to storage.

void MSG_VM_restore(msg_vm_t vm) Restore the execution of the
VM from storage.

void MSG_VM_set_bound(msg_vm_t vm, double
bound)

Set the maximum CPU utiliza-
tion level of the VM.

void MSG_VM_set_affinity(msg_vm_t vm,
unsigned long mask)

Set the CPU-core affinity of the
VM.

Table 6: The APIs to manipulate
a VM resource object in the VM
support

simulation world, supporting these VM APIs. It should be noted that a VM object
inherits all features from a PM object msg_host_t. A VM resource object supports
most existing operations of a PM, such as task creation and execution. From the view-
point of users, they can treat a VM as an ordinary host, except a VM supports these
VM-specific operations.

As discussed in Section 5.3.2, users need to specify the memory size of a VM, the
memory update intensity of the VM, and the memory size of the working set of mem-
ory used by a workload on the VM. These parameters are specified either at the VM
creation or through the MSG_VM_set_params() function.

Figure 28 shows an example code using the VM APIs. example() starts a VM on
the given PM, and launches a worker process on the VM. The way of launching a
process is exactly the same as that of a PM; we can use MSG_process_create() also
for a VM.

Although this example is in C, it is noteworthy that the JAVA SimGrid API has been
also extended. Hence, end-users can develop their simulators either by interacting
with the native C routines or by using the JAVA bindings.

Finally, we highlight that we also extended the multicore support of SimGrid to al-
low the simulation of virtualized systems running onmulticore servers. The set_affinity
function pins the execution of a VM (or a task) on given CPU cores.

5.4 Validation

In order to confirm the correctness and the accuracy of the VM extensions within
SimGrid, we conducted severalmicro benchmark experiments onGrid’5000 and com-
pared results with the simulated ones. We discuss in this section major ones.

59

Figure 28: An Example
Code Using the VM APIs /* the main function of the worker process */

static int worker_main(int argc, char **argv)
{

/* computation size (floating operations) */
const double flops = 10000;

/* Repeat computation. */
for (;;) {

msg_task_t task = MSG_task_create(``Task'', flops, 0, NULL
);

MSG_task_execute(task);
MSG_task_destroy(task);

}
return 0;

}

void example(msg_host_t pm)
{

unsigned long ramsize = 2UL * 1024 * 1024; // 2 GB
double memory_update_intensity = 60; // 60 MB/s at 100 % CPU
load
double working_set_size = 0.9; // 90 % of ramsize

/* 0. Create a VM (named VM0) on the PM. */
msg_vm_t vm = MSG_vm_create(pm, ``VM0'', ramsize,
mem_update_intensity, working_set_size);
MSG_vm_start(vm);

/* 1. Launch a process on the VM. */
msg_process_t pr = MSG_process_create(``worker'', worker_main,
NULL, vm);
/* 2. Keep the VM running for 10 seconds. */
MSG_process_sleep(10);
/* 3. Suspend the VM for 10 seconds. */
MSG_vm_suspend(vm);
MSG_process_sleep(10);
MSG_vm_resume(vm);
/* 4. Keep the VM running for 10 seconds. */
MSG_process_sleep(10);

/* 5. Clean up. */
MSG_process_kill(pr);
MSG_vm_shutdown(vm);
MSG_vm_destroy(vm);

}

60

5.4.1 Experimental Conditions

In this paragraph, we give details that will enable to reproduce the experiments dis-
cussed in the next sections.

All experiments in the real world were conducted on the Grid’5000 Graphene clus-
ter. Each PM has one Intel Xeon X3440 (4 CPU cores), 16 GB memory, and a GbE
NIC. The hardware virtualization mechanism (i.e., Intel VT) was enabled.

We used Qemu/KVM (Qemu-1.5 and Linux-3.2) for the hypervisor in the experi-
ments. Assuming long-lived active VMs instead of idle VMs that never became active
after being booted, we modified a few lines of source code of Qemu to disable the
mechanism not to transfer zero-filled pages. This mechanism does not effectively
work if the VM is running for a while with active workloads. In such case, non-zero
data already exists in most memory pages. Moreover, Qemu-1.5 also supports the
XBRLE compression of migration data (Svard et al., 2011). This mechanism, which
is disabled in the default settings of major Linux distributions, enables to pick up up-
dated regions of the pages and send them with compression (even though a memory
page is marked as dirty, only a few bytes in the page may have been updated, thus
selecting only the updated data enables to reduce the migration traffic). Although, it
is possible to extend SimGrid to simulate the behaviors of these compression mech-
anisms, we choose to focus our study on the development of a sound model that can
capture common behaviors among hypervisors, and to not focus on implementation-
specific details of a particular hypervisor. Hence, we kept this mechanism disabled.
The virtual disk of a migrating VM is shared between source and destination physi-
cal machines by a NFS server. This is a widely-used storage configuration in cloud
computing platforms. To cover more advanced configurations, we are extending our
model to support virtual disks and understand the impact of I/O intensive workloads.
This effort enables us to simulate the relocation of the associated VM images, which
will be reported in our future work.

We used the Execo automatic deployment engine (Imbert et al., 2013) to describe
and perform the experiments by using its Python API. According to the scenario of
an experiment, the Execo deployment engine automatically reserves, install and con-
figure nodes and network resources that are mandatory before invoking the scripts
of the experiment. This mechanism allows us to easily run and reproduce our exper-
iments. All experiments were repeated at least 5 times with no noticeable deviations
in obtained results. Then, the same experiments were also conducted on SimGrid.

Although the VM extension of SimGrid supports multicore CPU simulation, in
the following micro benchmarks, VMs were pinned to the first CPU core both in real-
world and simulation experiments, so as to carefully discuss how resource contention
impacts on live migration performance.

Finally, in order to carefully investigate live migration behaviors, we developed a
memory update program, memtouch, emulating various load conditions by real ap-
plications. The memtouch program works as a workload that has a linear correlation
between CPU utilization levels and memory update speeds. It produces the memory
update speed at a given CPU utilization level, by interleaving busy loops, memory up-
dates and micro sleeps in an appropriate ratio as explained in our previous work (Hi-
rofuchi, Nakada, et al., 2012).

Thememory update program accepts two kinds of parameters. One is a target CPU
utilization level (%). The other is a memory update intensity value that characterizes
an application. For example, we observed that the database workload in Section 5.3.2
had a linear correlation between memory update speeds (Y) and CPU utilization lev-
els (X), which was Y = αX . This α is the key parameter to model the memory up-
date behavior of this database workload. From Figure 26c, we can roughly estimate
the memory update intensity α to be 60MB/s at CPU 100%. This 60MB/s is passed
to the arguments of the memory update program. If a given target CPU utilization
level is 50%, the memory update speed of the program becomes 30MB/s. Moreover,
if other workloads or co-located VMs compete for CPU resource and the memory

61

Figure 29: The CPU load
of each task in a CPU re-

source contention experiment

(a) Grid’5000 (b) Simulation

In each graph, from the top to
the bottom, the CPU usages

of Task on VM2, Task on PM,
Task1 on VM1, and Task2 on

VM1, are illustrated, respectively.

update program only gets 25%, the actual memory update speed becomes 15MB/s.
This behavior correctly emulates what happens in consolidated situations.

5.4.2 Evaluation of the VM Workstation Model

The CPU resource allocation of a VM impacts on is memory update speed, and the
memory update speed is a dominant parameter that governs live migration time. Be-
fore doing the experiments focusing on live migration, we confirmed that our VM
support of SimGrid correctly calculates CPU and network resource allocations for
VMs.

We launched 2 VMs and 4 computation tasks with the same arrangement as the
right side of Figure 25: 2 VMs (VM1 and VM2) are launched on a PM. VM1 has 2
computation tasks, and VM2 has 1 computation task. The PM also has a computation
task. All tasks tried to obtain the 100% CPU utilization, competing with each other.
We used the memory update intensity of the database benchmark as discussed in the
above (i.e., 60MB/s at the 100% CPU utilization).

Figure 29a shows the CPU utilization level of each task in a real-world experiment
on Grid’5000. First, VM1, VM2, and the task on the PM fairly shared the CPU re-
source of the PM, consuming approximately 33.3% respectively. On VM1, each task
consumed approximately 50% of the CPU share assigned to VM1. At 30 seconds, we
suspended VM1 running the 2 tasks. Thus, the task on VM2 and the task on the PM
consumed approximately 50%, respectively. At 60 seconds, we resumed VM1. The
CPU utilization of each task was recovered as the initial state. At 90 seconds, we shut
downVM2. Then, the CPU share of VM1 and the task on the PM increased to approx-
imately 50%, respectively. These results were reasonable, considering the hypervisor
fairly assigns CPU resources to each VM and the task on the PM.

The same experiment was performed in simulation. As shown in Figure 29b, the
VM support of SimGrid correctly captured the CPU load change of each task in large
part. However, there areminor differences between the real-world and simulation ex-
periments, especially just after a VM operation (i.e., suspend/resume and shutdown)
was invoked. For example, the shutdown of VM2 took approximately 3 seconds to
be completed. When the suspension of a VM is invoked, the guest OS stops all the
processes on it, and then commits all pending write operations to virtual disks. In
the real world, these operations will sometimes have an impact on other tasks on the
same PM. We consider that if a user needs to simulate further detail of VM behaviors,
it is possible to add the overhead of VM operations into the VM model. As mentioned
earlier, we are working for example on modeling VM boot and snapshotting costs re-
lated to I/O accesses to the VM images.

The second experiment we conducted aimed at observing the behavior of VMs un-
der network resource contention. Because live migration time is impacted also by
network resource availability, the VM support of SimGrid needs to correctly calcu-
late network resource assignments to each communication task. Although a former
study regarding SimGrid (Casanova, Legrand, and Quinson, 2008) already proved
the correctness of its network model, the study had been done when our VM support
was not available. It is necessary to confirm the network model also correctly works
at the VM level.

62

We launched 2 VMs and 4 communication tasks with the same arrangement as
the previous experiment. However, in this experiment, 4 communication tasks were
launched instead of computation tasks. Each communication task continued to send
data to another PM. The destination PM of each communication task was different,
respectively.

Figure 30a shows the result of a real-world experiment. iperf was used to send
data to destination. The host operating system fairly assigned network resources to
each TCP connection. For example, while VM1 was suspended, the 2 communica-
tion tasks on it could not send data, and the bandwidth of the 1Gbps link was split
into 2 other TCP connections. As shown in Figure 30b, the VM support of SimGrid
correctly captured this behavior.

(a) Grid’5000 (b) Simulation

In each graph, from the top to the
bottom, the network throughput of
Task on VM2, Task on PM, Task1
on VM1, and Task2 on VM1, are
illustrated, respectively.

Figure 30: The network through-
put of each task in a network
resource contention experiment

It should be noted that, in the real world experiment, the packet queuing discipline
of the physical network interface of the source PM needed to be set to SFQ (Stochastic
FairnessQueuing), which enforces bandwidth fairness among TCP connectionsmore
strongly than the default one of Linux (i.e., basically, first in first out). Although the
TCP algorithm is designed to achieve fairness among connections, we experienced
that, without using SFQ, the network traffic made by the task running on the PM
occupied more than 90% of the available bandwidth of the network interface. We
consider that this problem was caused by the difference of packet flow paths between
the task on the PM and the other tasks running on VMs. Although the latest libvirt
code on its development repository uses SFQ as we did, libvirt-0.9.124 used in the
experiments did not.

In summary, through these experiments, we confirmed that the VM support of
SimGrid correctly calculates CPU and network resource assignments to VMs and
tasks. The prerequisite to obtain sound simulation results of live migrations is met.

5.4.3 Live migrations with various CPU levels

We conducted a series of experiments to confirm the correctness of the live migration
model. The settings of VMs were the same as the above experiments. The memory
update intensity was set to that of the database benchmark (i.e., 60MB/s at the 100%
CPU utilization). The memory size of a VM was 2GB. The size of the working set
memory was set to its 90%.

Figure 31 shows live migration times with different CPU utilization levels. This
graph compares the real experiments onGrid’5000, the simulation experiments using
ourmigrationmodel, and the simulation experiments with the naivemigrationmodel
(i.e., without considering memory updates). These results confirm the preliminary
investigations performed in Section 5.3.2: As the CPU utilization level of the VM
increased, we observed that the live migration time of the VM became longer. Our
simulation framework implementing the precopy algorithm successfully simulated
this upward curve, within 2 seconds deviations (9% at most).

On the other hand, the naive simulation without the precopy algorithm failed to
calculate correct migration times, especially in the higher CPU utilization levels. At
the CPU 100% case, the naive simulation underestimated the migration time by 50%.

4 It is included the latest stable release (wheezy) of the Debian/GNU distribution.

63

Figure 31: Comparison
of live migration time

The X axis shows CPU utiliza-
tion levels and corresponding

memory update speeds. Update
memory speed of the workload

is 60 MB/s at 100% of CPU.

Simulation frameworks without the migration model, e.g., CloudSim, will produce
these results.

The small differences between the Grid’5000 results and our precopy model, e.g.,
up to 2 seconds in Figures 31, can be explained by the fact that in addition to the
memtouch program, other programs and the guest kernel itself are consuming CPU
cycles and are slightly updating memory pages of the VM in the reality. Furthermore,
because the system clock on the guest OS is less accurate than that of the host OS,
the memory update speed by the program involves small deviations from the target
speed. We are going to show that this deviation might be problematic in a few corner
cases where memory update speed and available migration bandwidth are close to
each other.

5.4.4 Live Migrations under CPU Contention

A live migration is deeply impacted by CPU resource contention on the source and
destination PMs. We performed migration experiments with the different numbers
of co-located VMs. In addition to the VM to be migrated, other VMs were launched
on the source or destination PM. To discuss serious resource contention, sometimes
found dynamic VM packing systems, all the VMs were pinned to the first physical
CPU core of the PM. The cpuset feature of libvirt (libvirt: The virtualization API
n.d.) was used in real-world experiments, and MSG_vm_set_affinity() was called
in simulation programs. All the VMs executed the memtouch program on their guest
OSes. The target CPU utilization of memtouch was set to 100%; although all the VM
on the PM tried to obtain 100% CPU resource, they actually obtained partial CPU
resource due to co-location. Qemu/KVM will fairly assign CPU resource to each
VM. 5

Figure 32a shows live migration times when other VMs were launched on the
source PM.When the number of co-located VMswas higher, the actual livemigration
times decreased, becoming close to that of nomemory update case (i.e., approximately
20 seconds). This serious CPU resource contention reduced the actual memory up-
date speed of themigrating VM,which results in shortermigration times. Our simula-
tion framework correctly calculated assigned CPU resource and captured migration
behavior.

Figure 32b is the case where the other VMs were launched on the destination PM.
Because the migrating VM, updating memory pages on the source PM, did not com-
pete with the other VMs for CPU resource, the live migration times were not affected

5 It should be noted that even if multiple VMs share one PM, the number of memory pages associated to
each VM does not change. The hypervisor assigns 2 GB of memory pages to each VM.

64

(a) SRC (b) DST

In Figures 32a and 32b, the
number of co-located VMs
is changed, on the source and
destination PM, respectively.

Figure 32: Live migration time
with resource contention

by the number of other VMs. This behavior was successfully reproduced by our sim-
ulation framework with the precopy model.

When there were other VMs on the destination PM, the migration times were
slightly longer than that of the 1-VM case on Grid’5000. During a live migration,
the hypervisor launches a dummy VM process on the destination PM. The dummy
VM process is receiving migration data from the source PM. Although this receiv-
ing operation requires very little CPU resource, the data receiving speed was slightly
reduced due to the CPU resource contention on the destination PM. We consider
that CPU overheads of sending/receiving migration data are negligible in most use-
cases because they are substantially small as compared to resource usage by VM work-
loads. However, if a user of our simulation framework needs to carefully simulate
such behaviors, it is possible to create micro computation tasks corresponding to
data sending/receiving overheads by leveraging the SimGrid MSG API. In addition,
as discussed in Section 5.4.3, there were also small deviations between the results of
Grid’5000 and the simulation. If these deviations are not negligible, it is also possible
to improve the simulationmechanism by taking into account CPU cycle consumption
and memory update by the guest kernel and other processes.

5.4.5 Live Migrations under Network Contention

A live migration time is also deeply impacted by the available network bandwidth for
the migration. The hypervisor uses a TCP connection to transfer migration data of a
VM. It should be noted that from the viewpoint of the host OS this is a normal TCP
connection opened by a userland process (i.e., the Qemu process of a VM). On the
host OS and the network link, there is no difference between the TCP connection of
a live migration and other TCP connections (including NFS sessions used for disk
I/O of VMs). We limited the available bandwidth for a migration to 25%, 50%, 75%
and 100% of the GbE throughput. The virsh migrate-set-speed command was
used. These experiments are intended to correspond to real-world situations where
concurrent live migrations are performed at once or live migration traffic is affected
by other background traffic. Because disk I/O of a VM creates NFS requests, these
experiments also cover situations where disk I/O of VMs impact live migration traf-
fic.

65

Figure 33: Live migration time
with resource contention (cont)

(a) Bw. 25% (b) Bw. 50% (c) Bw. 75% (d) Bw. 100%

In Figures 33a-33d, the available
bandwidth is limited, i.e., 25%,

50%, 75%, and 100% of GbE,
respectively. The results on the

gray zone (no convergence) mean
the cases where migrations never

finished. Note that the scale of
the Y axis is different. Update
memory speed of the workload

is 60 MB/s at 100% of CPU.

Figures 33a-33d compare real and simulated migration times. When the available
bandwidth was smaller, the simulation with the naive model underestimated live mi-
gration timesmore seriously. The realmigration times exponentially increased, as the
available bandwidth was smaller. The precopy live migration model correctly simu-
lated these trends in most cases. If the available bandwidth is smaller than the actual
memory update speed of the VM, the algorithm of the precopy live migration never
finished. The iterative memory copy phase of the precopy live migration (i.e., Stage
2 in Section 5.3.2) continues until someone cancels (i.e., gives up) the live migration.
This behavior was correctly simulated at the 60%, 80% and 100% CPU utilization lev-
els of the 25% GbE bandwidth case (see Figure 33a).

The only exceptional case where the precopy model did not follow the results of
real experiments, was at the 100% CPU utilization level of the 50% GbE bandwidth
case (see Figure 33b). The simulation using the precopy model predicted this live mi-
gration never finished, although the live migration on Grid’5000 finished in 330 sec-
onds. In this condition, the migration bandwidth was 50% of 1 Gbps (i.e., 59.6MB/s),
while the memory update speed was 60MB/s. Because the migration bandwidth is
theoretically smaller than the memory update speed, the precopy migration model
iterated Stage 2 of the precopy algorithm forever. On the other hand, as discussed
in Section 5.4.3, since the actual memory update speeds of the VM would be slightly
below the migration bandwidth, the real live migration finished in a finite period of
time.

We consider that this problem will not appear in most cases. However, if a user
needs to simulate such an exceptional situation where the migration bandwidth and
the memory update speed of a VM are very close, it is necessary to give careful consid-
eration to the accuracy of these simulation parameters. A simulation program may
need to consider subtle memory updates by the guest kernel and the network band-
width fluctuation caused by other background traffic.

To conclude, we can affirm that our experiments were accurate enough to validate
our extensions in most cases.

5.5 Related Work

CloudSim (Calheiros et al., 2011) is a simulation framework that allows users to
develop simulation programs of cloud datacenters. It has been used, for example,
for studies regarding dynamic consolidation and resource provisioning. Although
it looks that CloudSim shares the same goal with our SimGrid project, the current
API of CloudSim is based on a relatively top-down viewpoint of cloud environments.
Their API provides a perspective of datacenters composed of application services and

66

virtual and physical hosts. Users will create pseudo datacenter objects in their simu-
lation programs. In their publication, a migration time is calculated by dividing a VM
memory size by a network bandwidth. 6 This model, however, cannot correctly sim-
ulate many real environments where workloads perform substantial memory writes.
On the other hand, we can say that SimGrid takes a bottom-up approach. Our on-
going project currently pays great attention to carefully simulate the behavior of a
VM running in various conditions, which leads to well-fitting simulation results of
cloud environments where many VMs are concurrently running with various work-
loads. As far as we know, our virtualization support of SimGrid is the first simulation
framework that implements a live migration model of the precopy algorithm. It will
provide sound simulation results for dynamic consolidation studies.

iCanCloud (Núñez et al., 2012) is a simulation framework with the job dispatch
model of a virtualized datacenter. Their hypervisor module is composed of a job
scheduler, waiting/running/finished job queues, and a set of VMs. For the use of
commercial cloud services like Amazon EC2, there is trade-off between financial cost
and application performance. This framework was used to simulate provisioning and
scheduling algorithms with the cost-per-performance metric. Koala (Mills, Filliben,
and Dabrowski, 2011) is a discrete-event simulator emulating the Amazon EC2 inter-
face. It extends the cloud management framework Eucalyptus (Nurmi et al., 2009),
modeling its cloud/cluster/node controllers. VM placement algorithms were com-
pared using this simulator. These frameworks are designed to study a higher-level
perspective of cloud datacenters, such as resource provisioning, scheduling and en-
ergy saving. Contrary, SimGrid, originally designed for the simulation of distributed
systems, performs computation and data sending/receiving in the simulation world.
It simulates more fine-grained system behavior, which is necessary to thoroughly an-
alyze cloud environments.

GreenCloud (Kliazovich et al., 2010) is a simulator extending a network simulator
NS2. It allows simulating energy consumption of a datacenter, considering workload
distributions and network topology. This simulator is intended to capture commu-
nication details with their packet-level simulation. SimGrid does not simulate dis-
tributed system in the packet level, but in the communication flow basis. It is designed
to simulate distributed systems, composed of computation and communication, in a
scalable manner. The SONGS project is also working on integrate energy models to
SimGrid, which enables energy consumption simulations of datacenters.

We consider that it would be possible to implement a precopy live migration model
on these simulation toolkits. However, substantial extension of existing code may be
necessary. In order to correctly simulate migration behaviors of VMs, a simulation
toolkit requires the mechanism modeling a live migration algorithm and the mecha-
nism to correctly calculate resource share of VMs.

SimGrid supports a formal verification mechanism for distributed systems, a simu-
lation mechanism of parallel task scheduling with DAG (direct acyclic graphs) models,
and a simulation mechanism of unmodified MPI applications. The VM extension of
SimGrid enables researchers to use these mechanisms also for virtualized environ-
ments. We have carefully designed the VM extension to be compatible with existing
components in SimGrid.

5.6 Summary

We developed a scalable, versatile, and easy-to-use simulation framework supporting
virtualized distributed environments, which is based on a widely-used, open-source

6 In the source code of the 3.0.3 release, the power-aware datacenter model of CloudSim (PowerDataceter
Class) assumes that the half network bandwidth of a target host is always used for a migration because they
assume the other half is used for other VM communications. According to CloudSim FAQ, for those who
directly program migrations in simulations, CloudSim provides an API to invoke a migration. However,
users need to assign an estimated completion time to each migration. It does not have a mechanism to
accurately estimate the completion time.

67

simulation framework, SimGrid. The extension to SimGrid is seamlessly integrated
with existing components of the simulation framework. Users can easily develop sim-
ulation programs comprising VMs and PMs through the same SimGrid API. We re-
designed the constraint problem solver of SimGrid to support resource share calcula-
tion of VMs, and developed a live migration model implementing the precopy migra-
tion algorithm of Qemu/KVM. Through micro benchmarks, although we observed
that a few corner cases cannot be easily simulated when the memory update speed
is closed to the network bandwidth, we confirmed that our precopy live migration
model reproduced sound simulations results in most cases. In addition, we showed
that a naive migration model, not considering memory updates of the migrating VM
nor resource sharing competition, underestimated the live migration time as well as
the resulting network traffic. As future work, it would be valuable to complete this
model of the precopu algorithm in order to take into account the migration of the
persistent states of a VM (a.k.a., the VM image). While VMs generally rely on remote
attached volumes within one site, considering the cost of migrating the VM image is
mandatory to simulate WANWide migration in an accurate manner.

Regarding the scalability of our extensions, we succeeded to perform sample sim-
ulations up to 4K PMs and 25K VMs. However, we discovered that the scalability of
our extensions is exponential and not proportional to the number of PMs/VMs. We
areworkingwith the SimGrid core developers to investigate how the performances of
our extensions can be improved. The first envisioned approach is to use co-routines
instead of the pthread library.

The current code of SimGrid, including all the aforementioned VM extensions, is
available at: http://simgrid.gforge.inria.fr.

To conclude this chapter, I would like to underline a few points:

• While a first use-case is presented in the original paper (Hirofuchi, Pouilloux,
and Lebre, 2015) in order to illustrate the advantage of SimGrid VM, I chose
to not discuss here but rather to deal with in the next chapter. Indeed, this first
use-case enabled us to validate the accuracy of the VMPlaceS proposal that is
described in the following.

• Our contribution regarding the live-migrationmodel enabled tomake progress
on the estimation of the duration of a VMs context switch operation (Kherbache,
Madelaine, and Hermenier, 2015) introduced in Chapter 2.

• I have recently started a new activity that aims to extend the presented exten-
sions with a model for the boot operation of a VM (NGuyen and Lebre, 2017).
This point is further discussed in Chapter 7.

68

http://simgrid.gforge.inria.fr

6Virtual Machine Placement
Simulator

Advanced Virtual Machines placement policies such as the ones presented in Part II have
been evaluated either using limited scale in-vivo experiments or ad hoc simulator techniques.
These validation methodologies are unsatisfactory. First they do not model precisely enough
real production platforms (size, workload representativeness …). Second, they do not enable
the fair comparison of different approaches.

In this chapter, we present VMPlaceS, a dedicated simulation framework to perform in-
depth investigations and fair comparisons of VM placement algorithms. VMPlaceS enables
researchers (i) to study and compare VM placement algorithms , (ii) to detect possible limi-
tations at large scale and (iii) easily investigate different design choices. Built on top of the
SimGrid VM extensions presented in the previous chapter, VMPlaceS provides programming
support to ease the implementation of placement algorithms and runtime support dedicated
to load injection and execution trace analysis. It supports a large set of parameters enabling
researchers to design simulations representative of a large space of real-world scenarios.

To illustrate its relevance, we have implemented and analyzed three well-known approaches:
Entropy (Hermenier, Lorca, et al., 2009), Snooze (Feller, Rilling, and Morin, 2012), and
DVMS (Quesnel, Lebre, and Südholt, 2013). We have chosen these three systems as they rep-
resent three classes of placement algorithms: Entropy is an instance of a centralized model,
Snooze of a hierarchical one and DVMS of a fully distributed one. Using VMPlaceS, we
compare the scalability and reactivity (i.e., the time to solve SLA violations) of the strategies
— a contribution of its own. We believe that VMPlaceS will allow researchers to validate the
significant benefits of new placement algorithms, thus accelerating VM placement research
results and favouring the transfer to IaaS production platforms.

6.1 Challenge Description

Even if more flexible and often more efficient approaches to the Virtual Machine
Placement Problem (VMPP) have been developed, most of the popular Cloud Com-
puting management systems (CloudStack website; OpenNebula website; OpenStack
website), or IaaS toolkits (Moreno-Vozmediano, Rubén S Montero, and Ignacio M
Llorente, 2012), continue to rely on elementary Virtual Machine (VM) placement
policies that prevent them from maximizing the usage of CC resources while guar-
anteeing VM resource requirements as defined by Service Level Agreements (SLAs).

An important impediment to the adoption of more advanced strategies such as
dynamic consolidation, load balancing and other SLA-enforcing algorithms devel-
oped by the academic community (Hermenier, Lorca, et al., 2009; Feller, Rilling, and
Morin, 2012; Quesnel, Lebre, and Südholt, 2013) is related to the experimental pro-
cesses used for their validation: most VM placement proposals have been evaluated
either using ad hoc simulators or small in-vivo (i.e., real-world) experiments. These
methods are not accurate and not representative enough to (i) ensure their correct-
ness on real platforms and (ii) perform fair comparisons between them.

Implementing each proposal and evaluating it on representative testbeds in terms
of scalability, reliability and varying workload changes would definitely be the most
rigorous way to observe and propose appropriate solutions for Cloud Computing
production infrastructures. However, in-vivo experiments, if they can be executed at
all, are always expensive and tedious to perform (for recent reference see (Barker et

69

al., 2014)). They may even be counterproductive if the observed behaviors are clearly
different from the expected ones. Consequently, new placement algorithms are con-
tinuously proposed without really identifying the significant benefits of each of them.

To address this problem, we proposed VMPlaceS, a dedicated simulation frame-
work to perform in-depth investigations of VM placement algorithms and compare
them in a fair way. To cope with real conditions such as the increasing scale of mod-
ern data centers, as well as the workload dynamicity and elasticity characteristics that
are specific to the Cloud Computing paradigm, VMPlaceS allows users to study large-
scale scenarios that involve thousands of VMs, each executing a specific workload that
evolves during the simulation.

This chapter discusses theVMPlaceS proposal. The presentation of SimGrid, which
is presented in the original paper (Lebre, Pastor, and Südholt, 2015), has been re-
moved for consistency reasons. We invite readers to refer to the previous chapter for
further information. In Section 6.2, we describe the VMPlaceS proposal, and its gen-
eral functioning. A Brief overview of the three approaches we analyzed is given in
Section 6.3. This part might look like redundant as the Entropy and the DVMS pro-
posals have been largely discussed in the previous chapter. However, I chose to keep
it with the objective of making the read of the whole chapter more straightforward.
Section ?? discusses an experiment that proved the satisfying accuracy of VMPlaceS.
Results of simulations are discussed in Section 6.4. In particular, they revealed the
importance of the duration of the reconfiguration phase (i.e., the step where VMs are
relocated throughout the infrastructure) compared to the computation phase (i.e., the
step where the scheduler solves the placement problem). Section 6.5 deal with related
work. Finally, Section 6.6 present, respectively, related work and a conclusion.

6.2 Our Proposal: VMPlaceS

The aim of VMPlaceS is twofold: (i) to relieve researchers of the burden of dealing
with VM creations andworkload fluctuations when they evaluate new VM placement
algorithms and (ii) to offer the possibility to compare them.

Overview.

VMPlaceS has been implemented in Java by leveraging the SimGrid MSG API. Al-
though Java has an impact on the efficiency of SimGrid, we believe its use is accept-
able because Java offers important benefits to researchers for the implementation of
advanced scheduling strategies, notably concerning the ease of implementation of
new strategies. As examples, we implemented the Snooze proposal in Java and the
DVMS proposal using Scala and Java.

Figure 34: VMPlaceS’s Workflow
Initialization Phase

Create Hosts, VMs and events

Analysis Phase
Analyse observed traces

Generate R graphs

Injector/scheduling Phase

Injector
Consume Events

(load/nodes changes)
Observe/record VM violations

Scheduler
Monitor node usages

Compute viable placements
Reconfigure the system by relocating

 VMs throughout the infrastructure

Gray parts correspond to the
generic code while the white one
must be provided by end-users.

VMPlaceS performs a simulation in three phases, see Figure 34: (i) initialization,
(ii) injection and (iii) trace analysis. The initialization phase corresponds to the cre-
ation of the environment, the VMs and the generation of an event queue. The simu-
lation is performed by at least two SimGrid processes, one executing the injector, the
generic part of the framework which is in charge of injecting the events during the ex-

70

ecution of the simulation, and a second one executing the to-be-simulated scheduling
algorithm.

The latter analyzes the collected traces in order to gather the results of the simula-
tion, notably by means of the generation of figures representing, e.g., resource usage
statistics.

Researchers develop their scheduling algorithm using the SimGrid MSG API and
a more abstract interface that is provided by VMPlaceS and consists of the classes
XHost, XVM and SimulatorManager. The two former classes respectively extend
SimGrid’s Host and VM abstractions while the latter controls the interactions between
the different components of the simulator. Through these three classes users can
inspect, at any time, the current state of the infrastructure (i.e., the load of a host/VM,
the number of VMs hosted on the whole infrastructure or on a particular host, check
whether a host is overloaded, etc.).

Initialization Phase.

VMPlaceS first createsnVMs and assigns them in a round-robinmanner to the first p
hosts defined in the platform file. The default platform file corresponds to a cluster of
h+s hosts, where h corresponds to the number of hosting nodes and s to the number
of services nodes. The valuesn,h and s constitute input parameters of the simulations
(specified in a Java property file). These hosts are organized in form of topologies, a
cluster topology being the most common one. It is possible, however, to define more
complex platforms to simulate, for instance, federated data center scenarios.

Each VM is created based on one of the predefined VM classes. A VM class cor-
responds to a template specifying the VM attributes and its memory footprint. It is
defined in terms of five parameters: the number of cores nb_cpus, the size of the
memory ramsize, the network bandwidth net_bw, the maximum bandwidth avail-
able mig_speed and the maximum memory update speed mem_speed available when
the VM is consuming 100% of its CPU resources. Available classes are defined in a
text file that is modifyable by users. As pointed out in Section 5.3.2, the memory
update speed is a critical parameter that governs the migration time as well as the
amount of transferred data. VM classes provide means to simulate arbitrary kinds of
workload (e.g., memory-intensive ones). All VMs start with a CPU consumption of
0 that will evolve during the simulation depending on the injected load as explained
below. Once the creation and the assignment of VMs completed, VMPlaceS spawns
at least two SimGrid processes, the injector and the launcher of the selected scheduler.
At its start the injector creates an event queue that will be consumed during the sec-
ond phase of the simulation. Currently, VMPlaceS supports CPU load change events
(only). The event queue is generated in order to change the load of each VM every t
seconds on average. t is a random variable that follows an exponential distribution
with rate parameter λt while the CPU load of a VM evolves according to a Gaussian
distribution defined by a given mean (µ) as well as a given standard deviation (σ). t, µ
and σ are provided as input parameters of a simulation. Furthermore, each random
process used in VMPlaceS is initialized with a seed that is defined in a configuration
file. This way, we can ensure that different simulations are reproducible and may be
used to establish fair comparisons.

Finally, we highlight that adding new events can be done by simply defining new
event Java classes implementing the InjectorEvent interface and by adding the code
in charge of generating the corresponding events that are then handled similarly to
the CPU Load ones.As an example, the next release of VMPlaceS will integrate node
apparition/removal events that will be used to simulate crashes.

Injector Phase.

Once the VMs and the global event queue are ready, the evaluation of the scheduling
mechanism can start. First, the injector process iteratively consumes the different
events. Changing the load of a VM corresponds to the creation and the assignment

71

of a new SimGrid task in the VM. This new task has a direct impact on the time that
will be needed to migrate the VM as it increases or decreases the current CPU load
and thus its memory update speed.

Based on the scheduler decisions, VMs will be suspended/resumed or relocated
on the available hosts. Users must implement the algorithm in charge of solving the
VMPP but also the code in charge of applying reconfiguration plans using methods
from the SimulatorManager class. This step is essential as the reconfiguration cost
is a key element of dynamic placement systems.

It is noteworthy that VMPlaceS invokes the execution of each scheduling solver,
as a real implementation would do, to get the effective reconfiguration plan. That is,
the computation time that is observed is not simulated but corresponds to the effec-
tive one, only the workload inside the VMs and the reconfiguration operations (i.e.,
suspend/resume and migrate) are simulated in SimGrid.

Trace Analysis.

The last step of VMPlaceS consists in analyzing the information that has been col-
lected during the simulation. This analysis is done in two steps. First, VMPlaceS
records several metrics related to the platform utilization using an extended version
of SimGrid’s TRACEmodule1. This way, visualization tools that have been developed
by the SimGrid community, such as PajeNG 2, may be used with VMPlaceS. Further-
more, our extension enables the creation of a JSON trace file, which is used to repre-
sent resource usage by figures generated using the R statistical environment (Bloom-
field, 2014).

By default, VMPlaceS records the load of the VMs and hosts, the start and the du-
ration of each violation of VM requirements in the system, the number of migrations,
the number of times the scheduler mechanism has been invoked and the number of
times it succeeds or fails to resolve non-viable configurations.

The TRACE API is extensible in that as many variables as necessary can be created
by users of our system, thus allowing researchers to instrument their own algorithm
with specific variables that record other pieces of information.

6.3 Dynamic VMPP Algorithms

To illustrate the interest of VMPlaceS, we implemented three dynamic VM placement
mechanisms: a centralized one based on the Entropy proposal (Hermenier, Lorca, et
al., 2009) (see Chapter 2), a hierarchical one based on Snooze (Feller, Rilling, and
Morin, 2012), and a fully-distributed one based on DVMS (Quesnel, Lebre, and Süd-
holt, 2013) (see Chapter 3).

These systems search for solutions to violations caused by overloaded nodes. A
host is overloaded when its VMs try to consume more than 100% of the CPU capac-
ity of the host. In such a case, a resolution algorithm looks for a reconfiguration plan
that can lead to a viable configuration. For the sake of simplicity, we chose to use
the latest solver developed as part of the Entropy framework (Hermenier, Demassey,
and Lorca, 2011) as this resolution algorithm for all three systems. The Entropy solver
evaluates different viable configurations until it reaches a predefined timeout. Once
the timeout has been triggered, the algorithm returns the best solution among the
ones it finds and applies the associated reconfiguration plan by invoking live migra-
tions in the simulationworld. In the remainder of this section, we present an overview
of the three systems.

1 http://simgrid.gforge.inria.fr/simgrid/3.12/doc/tracing.html
2 https://github.com/schnorr/pajeng/wiki

72

http://simgrid.gforge.inria.fr/simgrid/3.12/doc/tracing.html
https://github.com/schnorr/pajeng/wiki

Entropy-based Centralized Approach.

The centralized placement mechanism consists in one single SimGrid process de-
ployed on a service node. This process implements a simple loop that iteratively
checks the viability of the current configuration by invoking the aforementionedVMPP
solver with a predefined frequency. The resource usage is monitored through direct
accesses to the states of the hosts and their respective VMs. We also monitor, for each
iteration, whether the VMPP solver succeeds or fails. In the case of success, VMPlaceS
records the number of migrations

Snooze-based Hierarchical Approach.

Snooze (Feller, Rilling, and Morin, 2012) harnesses a hierarchical architecture in or-
der to support load balancing and fault tolerance, cf. Figure 35. At the top, a group
leader (GL) centralizes information about the whole cluster using summary data about
group managers (GMs) that constitute the intermediate layer of the hierarchy. GMs
manage a number of local controllers (LCs) that, in turn, manage the VMs assigned to
nodes.

Figure 35: Snooze Architecture

During execution, higher-level components periodically send heartbeats to lower-
level ones; monitoring information, e.g., about the system load, is also sent periodi-
cally in the opposite direction. In order to propagate information, Snooze relies on
hardware support for multicast communication.

The implementation in VMPlaceS of the core architectural abstractions of Snooze
leverages the XHOST, XVM and SimulatorManagerwhile othermechanisms have been
implemented using Simgrid’s primitives and standard Java mechanisms. For instance,
communication between Snooze actors is implemented based on SimGrid’s primi-
tives for, mainly asynchronous, event handling. The multicast capability that is used,
e.g., to relay heartbeats, is implemented as a dedicated service that manages a state to
relay heartbeat events in a concurrent manner to all receivers. Finally, our Snooze
simulation uses, as its original counterpart, a multi-threaded implementation (i.e.,
based on multiple SimGrid processes) in order to optimize reactivity even for large
groups of LCs (or GMs) that have to be managed by one GM (or GL).

DVMS-based Distributed Approach.

DVMS (Distributed Virtual Machine Scheduler) (Quesnel, Lebre, and Südholt, 2013)
enables the cooperative and fully-distributed placement of VMs. A DVMS agent is

73

deployed on each node in order to manage the VMs on the node and collaborate with
(the agents of) neighboring nodes. Agents are defined on top of an overlay commu-
nication network that defines the node-neighbor relation. We have implemented a
simple unstructured overlay that enables the agents to collaborate by providing a link
to a neighbor on the latter’s request.

When a node detects that it cannot provide enough resources for its hosted VMs, it
triggers an Iterative Scheduling Procedure (ISP) that enables the node to cooperate with
its neighborhood (see Section 3.1.2 for further information).

6.4 Experiments

Two kinds of experiments have been performed to validate the relevance of VM-
PlaceS. The objective of the first one was to evaluate the accuracy of the returned
results while the second was a concrete use-case of VMPlaceS, analyzing the three
strategies introduced before.

6.4.1 Accuracy Evaluation

To validate the accuracy of VMPlaceS, we have implemented a dedicated version of
our framework3 on top of the Grid’5000 testbed and compared the execution of the
Entropy strategy invoked every 60 seconds over a 3600 seconds period in both the
simulated and the real world. Regarding the in-vivo conditions, experiments have
been performed on top of the Graphene cluster (Intel Xeon X3440-4 CPU cores, 16
GB memory, a GbE NIC, Linux 3.2, Qemu 1.5 and SFQ network policy enabled) with
6 VMs per node. Each VM has been created using one of 8 VM predefined classes.
The template was 1:1GB:1Gbps:1Gbps:X, where the memory update speed X was a
value between 0 and 80% of the migration bandwidth (1Gbps) in steps of 10. Starting
from 0%, the load of each VM varied according to the exponential and the Gaussian
distributions. The parameters were λ = #VMs/300 and µ= 60, σ = 20. Concretely,
the load of each VM varied on average every 5 min in steps of 10 (with a significant
part between 40% and 80%). A dedicated memtouch program (Hirofuchi, Pouilloux,
and Lebre, 2015) has been used to stress both the CPU and the memory accordingly.
Regarding the simulated executions, VMPlaceS has been configured to reflect the in-
vivo conditions. In particular, we configured the network model of SimGrid in order
to cope with the network performance of the Graphene servers that were allocated to
our experiment (6 MBytes for the TCP gamma parameter and 0.88 for the bandwidth
corrective simulation factor).

Figure 36 shows the time to perform the two phases of the Entropy algorithm for
each invocation when considering 32 PMs and 192 VMs through simulations (top)
and in reality (bottom). Overall, we can see that simulation results successfully fol-
lowed the in-vivo ones. During the first hundreds seconds, the cluster did not ex-
perience VM requirement violations because the loads of VM were still small (i.e.,
Entropy simply validated that the current placement satisfied all VM requirements).
At 540 seconds, Entropy started to detect non viable configurations and performed
reconfigurations. Diving into details, the difference between the simulated and in-vivo
reconfiguration time fluctuated between 6% and 18% (median was around 12%). The
worst case, i.e., 18%, was reached when multiple migrations were performed simulta-
neously on the same destination node. In this case and even if the SFQ network policy
was enabled, we discovered that in the reality the throughput of migration traffic fluc-
tuated when multiple migration sessions simultaneously shared the same destination
node. We confirmed this point by analyzing TCP bandwidth sharing through iperf
executions. We are currently investigating with the SimGrid core-developers how we

3 The code is available on demand (it used to be at https://github.com/BeyondTheClouds/
G5K-VMPlaceS, however, because we do not maintain it anymore, we turned the github repository as
a private one).

74

https://github.com/BeyondTheClouds/G5K-VMPlaceS
https://github.com/BeyondTheClouds/G5K-VMPlaceS

0 1000 2000 3000 4000
0

20
40

60

Simulation

Time (s)

Ti
m

e
(s

)

Computation
Reconfiguration

0 1000 2000 3000 4000

0
20

40
60

In vivo

Time (s)

Ti
m

e
(s

)

Computation
Reconfiguration

(a) Simulations

0 1000 2000 3000 4000

0
20

40
60

Simulation

Time (s)
Ti

m
e

(s
)

Computation
Reconfiguration

0 1000 2000 3000 4000

0
20

40
60

In vivo

Time (s)

Ti
m

e
(s

)

Computation
Reconfiguration

(b) Grid’5000

The Y-axis represents the duration
of each Entropy invocation. It is
divided into two parts: the time
to look for a new configuration
(the computation phase in red) and
the time to relocate the VMs (the
reconfiguration phase in black).
Both axis are in seconds.

Figure 36: Comparison between
simulated and in-vivo Execu-
tions

can integrate this phenomenon into the live-migration model. However, as a migra-
tion lasts less than 15 seconds in average, we believe that that the current simulation
results are sufficiently accurate to capture performance trends of placement strate-
gies.

6.4.2 Analysis of Entropy, Snooze and DVMS

As a validation of our approach (and a contribution by itself), we now provide simula-
tion results comparing the Entropy, Snooze and DVMS strategies. We highlight that
most of the DVMS code has been coded in SCALA leveraging the Java primitives of
SimGrid for the communications between the different DVMS agents that have been
implemented, in turn, using the abstractions of VMPlaceS.

Experimental Conditions.

Each simulation has been executed on a dedicated server, thus avoiding interferences
between simulations and ensuring reproducibility between the different invocations.
VMPlaceS has been configured to simulate a homogeneous infrastructure of PMs
composed of 8 cores, 32 GB of RAM and 1 Gpbs Ethernet NIC. To enable a fair com-
parison between the three strategies, the scheduling resolver only considered 7 cores,
i.e., one was devoted to run the Snooze LC or the DVMS admin processes (a common
experimental setup). Ten VMs have been initially launched on each simulated PM.
Each VM relied on one of the VM classes described in the accuracy experiment and
one set of load-change parameters has been used: λ = #VMs/300, µ = 60 and σ = 20.
The stationary state was reached after 20 min of the simulated time with a global clus-
ter load of 85%. We have performed simulations over a period of 1800 seconds. The
consolidation ratio, i.e., the number of VMs per node, has been defined such that a
sufficient number of violations is generated. We have discovered that below a global
load of 75%, few VM violations occurred under the selected Gaussian distribution we
have chosen. This result is rather satisfactory as it can explained why most produc-
tion DCs target a comparable load level.4 Finally, infrastructures composed of 128,
256, 512 and 1024 PMs, hosting respectively 1280, 2560, 5120 and 10240 VMs have
been investigated. For Entropy and Snooze that rely on service nodes, additional sim-
ulated PMs have been provided. For Snooze, one GM has been created per 32 LCs
(i.e., PMs). The solver has been invoked every 30s for Entropy and Snooze.

4 http://www.cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually/

75

http://www.cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually/

General Analysis.

Figure 37: Scalability/Re-
activity analysis of En-

tropy, Snooze and DVMS

●

●

●

●

128 nodes
1280 vms

256 nodes
2560 vms

512 nodes
5120 vms

1024 nodes
10240 vms

0
10

00
0

20
00

0
30

00
0

40
00

0

● ●
●

●

Infrastructure sizes

T
im

e
(s

)

●

●

Centralized
Distributed
Hierarchical
Without scheduling

Infrastructure size Duration of violations (µ ± σ)

Centralized Hierarchical Distributed

128 nodes 21.26 ± 13.55 21.07 ± 12.32 9.55 ± 2.57

256 nodes 40.09 ± 24.15 21.45 ± 12.10 9.58 ± 2.51

512 nodes 55.63 ± 42.26 24.54 ± 16.95 9.57 ± 2.67

1024 nodes 81.57 ± 86.59 29.01 ± 38.14 9.61 ± 2.54

Infrastructure size Duration of computations (µ ± σ)

Centralized Hierarchical Distributed

128 nodes 3.76 ± 7.43 2.52 ± 4.63 0.29 ± 0.03

256 nodes 7.97 ± 15.03 2.65 ± 4.69 0.25 ± 0.02

512 nodes 15.71 ± 29.14 2.83 ± 4.98 0.21 ± 0.01

1024 nodes 26.41 ± 50.35 2.69 ± 4.92 0.14 ± 0.01

Infrastructure size Duration of reconfigurations (µ ± σ)

Centralized Hierarchical Distributed

128 nodes 10.34 ± 1.70 10.02 ± 0.14 10.01 ± 0.11

256 nodes 10.26 ± 1.45 10.11 ± 0.83 10.01 ± 0.08

512 nodes 11.11 ± 3.23 10.28 ± 1.50 10.08 ± 0.82

1024 nodes 18.90 ± 7.57 10.30 ± 1.60 10.04 ± 0.63

Figure 37 presents on the left the cumulated violation time for each placement pol-
icy and on the right several tables that give more details by presenting the mean and
the standard deviations of the duration of, respectively, the violations and the com-
putation/reconfiguration phases. As anticipated, the centralized approach did not
scale and even incurs an overhead in the largest scenario compared to a system that
did not perform any dynamic scheduling. The more nodes Entropy has to monitor,
the less efficient it is during both the computation and reconfiguration phases. This
is to be expected for the computation phase (which tries to tackle an NP-complete
problem). As to reconfiguration, the reconfiguration plan becomes more complex
for large scenarios, including several migrations coming from and going to the same
nodes. Such plans are not optimal as they increase the bottleneck effects at the net-
work level of each involved PM. Such a simulated result is valuable as it confirms that
reconfiguration plans should avoid such manipulations as much as possible. The re-
sults of the hierarchical approach are clearly better than the Entropy-based ones but
worse than those using DVMS-based placement. However, diving into the details,
we can see that both the time needed for the computation and reconfiguration are
almost independent from the cluster size (around 3s and 10s) and not much worse
than those of DVMS, especially for the reconfiguration phase, which is predominant.
These results can be easily explained: the centralized policy addresses the VMPP by
considering all nodes at each invocation, while the hierarchical and the distributed al-
gorithms divide the VMPP into sub problems, considering smaller numbers of nodes
(32 PMs in Snooze and, on average, 4 in the case of DVMS). To clarify the influence
of the group size on the performance of Snooze, i.e., the ratio of LCs attached to one
GM, we have performed additional simulations for varying group sizes. VMPlaceS
has significantly facilitated this study as the corresponding simulations differ just by
configuration parameters and do not require modifications to the code base.

Investigating Algorithm Variants.

VMPlaceS facilitates the in-depth analysis of variants of placement algorithms. We
have, for example, analyzed, as a first study of its kind, how the Snooze-based place-
ment depends on the no. of LCs assigned to a GM. Figure 38 presents the simulated
values obtained for scenarios with 2, 4, 8 and 32 LCs per GM for four infrastructure
sizes. The overall performance (i.e., cumulated violation time) shows that 2 LCs per
GM result in significantly higher violation times. The relatively bad performance of
the smallest group size can be explained in terms of the number of failures of the re-
configuration process, that is, overloading situations that are discovered but cannot

76

●

●

●

●

128 nodes
1280 vms

256 nodes
2560 vms

512 nodes
5120 vms

1024 nodes
10240 vms

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

●

●

●

●

Infrastructure sizes

T
im

e
(s

)

●

●

Hierarchical2LCs
Hierarchical4LCs
Hierarchical8LCs
Hierarchical32LCs

Infra. Size No. of failed reconfigurations

2 LCs 4 LCs 8 LCs 32 LCs

128 19 0 0 0

256 29 0 0 0

512 83 1 0 0

1024 173 7 0 0

Infra. Size Duration of the computations (µ ± σ)

2 LCs 4 LCs 8 LCs 32 LCs

128 0.16 ± 1.23 0.34 ± 1.81 0.58 ± 2.40 2.53 ± 4.62

256 0.18 ± 1.31 0.42 ± 1.99 0.66 ± 2.50 2.65 ± 4.69

512 0.15 ± 1.20 0.33 ± 1.78 0.67 ± 2.54 2.83 ± 4.98

1024 0.19 ± 1.37 0.42 ± 2.02 0.89 ± 2.90 2.69 ± 4.91

Figure 38: Hierarchical place-
ment: influence of varying group
sizes

be resolved due to a lack of resources (see tables on the right). Groups of 2 LCs per
GM are clearly insufficient at our global load level (85%). Failed reconfigurations are,
however, already very rare in the case of 4 LCs per GM and do not occur at all for
8 and 32 LCs per GM. This is understandable because the load profile we evaluated
rarely results in many LCs of a GM to be overloaded at once. Violations can therefore
be resolved even in the case of a smaller number of LCs available for load distribution.
Conversely, we can see that the duration of the computation phases decreases strongly
along with the group size. It reaches a value close to the computation times of DVMS
for a group size of 4-LCs per GM.We thus cannotminimize computation times and vi-
olation times by reducing the number of LCs because larger group sizes are necessary
to resolve overload situations if the VM load gets higher. In contrast, DVMS resolves
this trade-off by means of its automatic and dynamic choice of the partition size nec-
essary to handle an overload situation. Once again, this information is valuable as it
will help researchers to design new algorithms favoring the automatic discovery of
the optimal subset of nodes capable to solve violations for given load profiles.

The study performed in this paper has allowed us to analyze several other variants
and possible improvements (which we cannot present here for lack of space), such
as a reactive approach to hierarchical placement instead of the periodical one used
by Snooze, as well as more aggressive partitioning in the case of DVMS. VMPlaceS
also provides additional metrics such as the overall count of migrations, the average
duration of each migration … These allow important properties, e.g., the migration
overhead, to be studied. All these variants can be easily studied and evaluated thanks
to VMPlaceS.

Finally, we have succeeded to conduct DVMS simulations up to 8K PMs/80K VMs
in a bit less than two days. We did not present these results in this paper because it
was not possible to run a sufficient number of Snooze simulations at such a scale (the
Snooze protocol being more complex). The time-consuming portions of the code
are related to SimGrid internals such as sleep and send/recv calls. Hence, we are
collaborating with SimGrid core developers in order to reduce the simulation time
in such cases.

6.5 Related Work

Jobs/tasks scheduling in distributed system is an old challenge and thus several sim-
ulators have been proposed to investigate pros and cons of new strategies for several
years.As a recent example, Google has released the simulator 5 it used for the Omega
framework (Schwarzkopf et al., 2013). However, jobs/tasks scheduling simulators
do not consider the notion of VM and its associated capabilities (suspend/resume,
migrate) and thus are not appropriate to investigate Cloud Computing production
platforms.

5 https://github.com/google/cluster-scheduler-simulator

77

https://github.com/google/cluster-scheduler-simulator

As discussed in Section 5.5, a few simulator toolkits that have been proposed to
address Cloud Computing concerns (Kliazovich et al., 2010; Calheiros et al., 2011;
Núñez et al., 2012; Cartlidge and Cliff, 2013) can be classified into two categories.
The first corresponds to ad-hoc simulators that have been developed to address one
particular concern. For instance, CReST (Cartlidge andCliff, 2013) is a discrete event
simulation toolkit built for Cloud provisioning algorithms. If ad-hoc simulators al-
low some characteristics of the behaviors of the system to be analyzed, they do not
consider the implication of the different layers, which can lead to non-representative
results. Moreover, most ad-hoc solutions are developed for one shot analyses. That is,
there is no effort to release them as a complete and reusable tool for the scientific com-
munity. The second category (Kliazovich et al., 2010; Calheiros et al., 2011; Núñez et
al., 2012) corresponds tomore generic cloud simulator toolkits (i.e., they have been de-
signed to addressmultiple CloudComputing challenges). However, they focusmainly
on the API and not on the model of the different mechanisms of Cloud Computing
systems. For instance, CloudSim (Calheiros et al., 2011), which has been widely used
to validate algorithms and applications in different scientific publications, is based on
a top-down viewpoint of cloud environments. That is, there are no articles that prop-
erly validate the different models it relies on: a migration time is simply (and often
imprecisely) calculated by dividing VM memory sizes by network bandwidth values.
In addition to be subject to inaccuracies at the low level, available cloud simulator
toolkits often use oversimplified models for virtualization technologies, also leading
to non-representative results. As highlighted throughout this chapter, we have cho-
sen to build VMPlaceS on top of SimGrid in order to build a generic tool that benefits
from the accuracy of its models related to virtualization abstractions (see Chapter 5).

6.6 Summary

We have presented VMPlaceS, a framework providing generic programming support
for the definition of VM placement algorithms, execution support for their simula-
tion at large scales, as well as new means for their trace-based analysis. We have val-
idated its accuracy by comparing simulated and in-vivo executions of the Entropy
strategy on top of 32 PMs and 192 VMs. We have also illustrated the relevance of
VMPlaceS by evaluating and comparing algorithms representative of three different
classes of virtualization environments: centralized, hierarchical and fully distributed
placement algorithms. Note that in the original implementation of Snooze, a specific
heuristic to solve the placement/reconfiguration VM problem is used. As the sake
of simplicity, we simply reused the entropy scheduling code for the three systems.
The corresponding experiments have provided the first systematic results comparing
these algorithms in environments including up to one 1K nodes and 10K VMs. We
are in touch with the SimGrid core developers in order to improve our code with the
ultimate objective of addressing infrastructures up to 100K PMs and 1 Millions VMs.

The expected extensions that would enable end-users to provision and remove
VMs during the execution of a similuation are now available. We should however
provide a better API than the one available right now. Regarding start/stop and sus-
pend/resume operations, it is noteworthy to mention that we are working on the in-
tegration of a new model for the boot of the VMs (NGuyen and Lebre, 2017). Such a
functionality is critical to simulate in accurate way advanced strategies that use those
operations. Finally, we are also extendingVMPlaceS to benefit from the energymodel
of physical machines that has been recently integrated into SimGrid. Both features
are discussed in the conclusion of this second part.

As future work, we plan to extend VMPlaceS with additional dimensions in or-
der to simulate other workload variations stemming from network and HDD I/O
changes. This is important as most of VM placement strategies has only considered
CPU and memory dimensions so far. Finally, it would be valuable to play simulations
with real traces instead of the statistical models we are using right now. Unfortu-

78

nately, it is very difficult to find such traces, as most of cloud providers do not want
to release them.

A version ofVMPlaceS is available on a public git repository:http://beyondtheclouds.
github.io/VMPlaceS/.

79

http://beyondtheclouds.github.io/VMPlaceS/
http://beyondtheclouds.github.io/VMPlaceS/

7Conclusion & Open Research Issues

Recent and foreseen technical evolutions lead to distributed-infrastuctures of unprece-
dented dimensions. Evaluating the scalability, robustness and performance of system
mechanisms in charge of operating such infrastructures raises severe methodological
challenges. Simply executing them is not always possible as it requires to build the
complete system beforehand, and it may not even be enough when uncontrolled ex-
ternal load prevents reproducibility. Simulation is an appealing alternative to study
such systems. If it may not be sufficient in some cases to capture the whole complex-
ity of the phenomena, simulation allows however to capture some important trends
in an easy and convenient way, while ensuring the controllability and reproducibility
of experiments.

While simulations have proven its effectiveness in the context of grids and P2P (Buyya
and Murshed, 2002; Casanova, Legrand, and Quinson, 2008) for more than a decade,
the needs for an accurate cloud simulator toolkit had became critical for the Cloud
Computing community. Such a tool should enable researchers to conduct studies on
VM-based distributed systems in a productive manner as well as to compare different
algorithms with the same simulation platform. Back to 2013 when we started to ad-
dress this question, only a few toolkits allowed Cloud Computing studies. CloudSim
was the most known (Calheiros et al., 2011). It has been built on the same simulation
mechanics as GridSim (Buyya and Murshed, 2002) and exposes specific interfaces to
conduct cloud studies. The main issue of CloudSim and other available solutions is
that they seek a compromise between execution speed and simulation accuracy. To
this end, most of them rely on rather simple models of performance that do not allow
obtaining realistic results, which is what we were looking for in the context of our
placement VM algorithms (see Chapter 3).

In this second part, we have presented the work we have done to deliver a highly-
scalable and versatile simulation framework supporting VM environments, keeping
in mind our initial goal of delivering to the community a dedicated framework for
the evaluation and comparison of VM placement/reconfiguration strategies.

• In Chapter 5, we have described how we leveraged the SimGrid framework to
enable the simulation of Infrastructure-as-a-Service Clouds. SimGrid is an al-
most 15 years-old open source project whose domain of application has kept
growing since its creation and whose efforts in term of simulation quality/ac-
curacy are recognized by the community. The extension we have proposed to
SimGrid has been designed and implemented in order to be as transparent as
possible to other components: SimGrid users can now easily manipulate VMs
while continuing to take the advantage of the usual SimGrid MSG API for cre-
ating computation and communication tasks either on PMs or on VMs. Such
a choice provides a seamless migration path from traditional clusters simula-
tions to IaaSes for hundreds of SimGrid users. This has been made possible
by introducing the concept of abstraction level (i.e., physical and virtual) into
the core of SimGrid. A virtual workstation model, inheriting from the work-
station one, has been added into the framework. This model overrides the
operations that are VM-specifics only. While implementing the VM abstrac-
tions, we have developed a shared-resource calculation mechanism for VMs
and a live migration model implementing the precopy migration algorithm of
Qemu/KVM. Through experiments, we have confirmed that our simulation
framework correctly reproduced livemigration behaviors of the real world, un-

81

der various conditions. To our best knowledge, it was the first class support of
live migration in a cloud simulator toolkit.
Although we did not discuss it, we underline that the ANR SONGS French
project, which have provided funding for the research activity, has also sup-
ported a work focusing on the modeling of datacenters with the same level of
the API of Amazon EC2 or OpenStack. 1 This work relies on the set of exten-
sions presented in this manuscript.
Finally, I would like to highlight that our extensions have been integrated into
the core of SimGrid since its version 3.11, released in May 2014 and that I am
still an active contributor of the corresponding code as discussed later in this
chapter.
The current version of SimGrid is available at:
http://simgrid.gforge.inria.fr.

• In Chapter 6, we have described VMPlaceS, a dedicated framework to evalu-
ate and compare VM placement algorithms. Leveraging the aforementioned
SimGrid extensions, VMPlaceS provides programming support for the defini-
tion of VM placement algorithms, execution support for their simulation at
large scale, as well as new means for their trace-based analysis. Globally the
framework is composed of two major components: the injector and the VM
placement algorithm. The injector constitutes the generic part of the frame-
work (i.e., the one researchers can directly use) while the VM placement algo-
rithm is the component to be analyzed (or compare with other existing algo-
rithms). To illustrate the relevance of VMPlaceS, we have evaluated three algo-
rithms: Entropy (Hermenier, Lorca, et al., 2009), a centralized approach using
constraint programming to solve the placement/reconfiguration VM problem,
Snooze (Feller, Rilling, and Morin, 2012), a hierarchical approach where each
manager of a group invokes Entropy to solve the placement/reconfiguration
VM problem, and DVMS (Quesnel, Lebre, and Südholt, 2013), a distributed ap-
proach that dynamically partitions the system and invokes Entropy on each par-
tition. One can note that since our initial study, the latest version of Entropy 2

has been integrated into VMPlaceS. This study has shown that VMPlaceS facil-
itates the implementation and evaluation of variants of placement algorithms.
The corresponding experiments have provided the first systematic results com-
paring these algorithms in environments including up to one thousand nodes
and ten thousands VMs in most cases. While such a number is already valuable,
we are still working with the SimGrid core developers in order to improve the
code of VMPlaceS with the ultimate objective of addressing infrastructures up
to 100K physical machines and 1 Million VMs over a period of one day.
We believe that VMPlaceS will be beneficial to a large number of researchers
in the field of Cloud Computing as it enables them to analyze the main charac-
teristics of a new proposal and thus allows in vivo experiments to be restricted
to placement mechanisms that have the potential to handle Cloud Computing
production infrastructures.
The current version of VMPlaceS is available on a public git repository:
http://beyondtheclouds.github.io/VMPlaceS/.

Although I have already highlighted a few perspectives for each contribution, I
would like to give additional details regarding two of them.

• Following previousworks on live-migration, we have conducted an experimen-
tal study in order to propose a first-class VM boot time model (NGuyen and
Lebre, 2017). Most cloud simulators often ignore the VM boot time or give a

1 http://schiaas.gforge.inria.fr.
2 http://www.btrplace.org

82

http://simgrid.gforge.inria.fr
http://beyondtheclouds.github.io/ VMPlaceS/
http://schiaas.gforge.inria.fr
http://www.btrplace.org

naive model to represent it. However, simple experiments show that the boot-
ing time can fluctuate between few seconds up to several minutes according
to the system conditions: Keeping in mind that the VM booting process con-
sumes resources, it is obvious that any other co-located workload will impact
the booting process of a new VM.
Our work is motivated by the importance of the duration of the boot action for
many operations of a cloud system. For instance, if a sporadic VM ismandatory
to perform a task, the time to boot it, is a crucial information that may change
the decision of provisioning it. More generally, considering the boot time is
essential for VM allocation strategies.
In this preliminary study, we have discussed several experiments in order to
identify which factors affect the VM boot time and their influence levels. Based
on the results, we can confirm that a simple model based on constant values
is definitely not accurate enough since it cannot handle the variation of the
boot time under workload that may increase up to 50 times under high I/O
contentions. We have proposed a first model that succeeds to follow major
fluctuation with deviations within 2 seconds in case of CPU contention, and
10 seconds in average for I/O contention (when resource utilization is lower
than 90%). Obviously these experiments should be completed with additional
ones before the implementation of our model into SimGrid. We plan for in-
stance to analyze the impact of remote-attached volumes that are intensively
used in Desktop as a service scenario. However, the results we obtained so far
are promising.

• Regarding VMPlaceS, we are finalizing the support for estimating the energy
consumption of an infrastructure for different VM placement algorithms. Sim-
Grid has recently integrated an energy consumption model for physical ma-
chines. This extension requires only small changes to the initial cluster con-
figuration, i.e., setting one or several p-states with a corresponding power con-
sumption for hosts. SimGrid then estimates the power consumed by a host
proportionally to its current CPU load. The energy consumption is fed to Sim-
Grid’s TRACE module like any other metric, allowing easy post-mortem visu-
alization and analysis. 3 To illustrate this new feature, we have implemented,
by using the VMPlaceS abstractions, a second centralized placement algorithm
based on the First Fit Decreased proposal (Johnson, 1973) (FFD). FFD favors
VM consolidation and enhance the possibility to turn-off hosts when they are
not executing VMs. We expect to demonstrate that VMPlaceS eases the com-
parison of the energy efficiency of placement policies by comparing the two
centralized algorithms with respect to this new metric. We are consolidating
right now the different metrics we have gathered, and prepare a longer article
that will present in details this new feature.

Finally, I would like to highlight that maintaining and moving forward the code of
the SimGrid extensions, as well as VMPlaceS, require a considerable effort in terms
of engineering. This effort becomes more and more important according to the num-
ber of features all the SimGrid community continue to integrate. While on the first
side, it is valuable to keep those extensions up-to-date for the scientific community, it
is unfortunately, on the other side, not-well recognized by our institution and some-
times a lost battle. Moreover, simulator toolkits such as SimGrid should face the high
velocity of technologies in particular in the Cloud Computing domain. For instance,
containers technology has also become a fundamental building block of distributed
computing environments. It would be valuable for our community to propose ab-
stractions such as the ones we proposed for system virtualization. However, it will
require important efforts that should be sustained by recurrent funding programs.

3 http://simgrid.gforge.inria.fr/tutorials/simgrid-energy-101.pdf.

83

http://simgrid.gforge.inria.fr/tutorials/simgrid-energy-101.pdf

This point that may look out-of-scope of this manuscript, has been decisive in the
way I started my recent research activities: while we target the design and develop-
ment of a fully distributed IaaS toolkit, we have chosen to revise a well-known soft-
ware stack instead of developing a system from scratch. This way enables us to miti-
gate engineering efforts as discussed in the third and last part.

84

Part IV

B E YO N D T H E C LO U D S : R EC EN T ,
O N G O IN G AN D FU TU RE W O R K

Although this part relies on publications that have been, or in the process of being, pub-
lished (Bertier et al., 2014; Lebre, Pastor, Simonet, et al., 2017; Cherrueau et al., 2017), the way
of presenting differs from the two previous activities. My goal here is to give an overview of
my recent, ongoing and future activities. First, I present the DISCOVERY initiative, an open-
science action I have been leading since 2014 and that will last at least till July 2019. Note
that this chapter does not present a single scientific contribution as such, but rather gives an
overview of the DISCOVERY goals leveraging the original Inria Project Lab proposal I submit-
ted two years ago. The objective is to introduce to readers the foundations on which rely my
ongoing activities and the ones that will follow. Second, I compiled a short version of two con-
tributions we did during these two first years. Finally, I conclude this part and this manuscrit
by presenting a few challenges I plan to address for the next 4 years and probably more.

These results, which are relatively new in comparison to the ones presented before, have
also been made possible thanks to several persons that took part to numerous brainstorming
sessions 4

Although, I cannot list of of them here, I would like to recognize the commitment of indi-
viduals like:

• Flavien Quesnel, Phd in the Ascola Research Team (0ct 2010- Feb 2013), Nantes, now
Research Engineer at System-X Institute ;

• Cédric Tedeschi, Ass. Profesor in theMYRIADSResearchGroup, University of Rennes 1,
Rennes ;

• Marin Bertin, Ass. Professor in the ASAP Research Group, INSA, Rennes ;

• Frédéric Desprez, Senior researcher and Deputy Scientific Director at Inria, Grenoble ;

• Jonathan Pastor, Phd in the Ascola Resarch Team (Oct 2012 - Oct 2016), Nantes, now
PostDoc at Chicago University;

• Anthony Simonet, PostDoc Researcher in the Ascola Research Team (Oct 2015-2017),
Nantes ;

• Matthieu Simonin, Research Engineer at Inria, Rennes ;

• Ronan-Alexandre Cherrueau, Research Engineer within the framework of DISCOV-
ERY Inria Project Lab (2016, 2019), Nantes;

• Dimitri Pertin, PostDoc Researcher in the ASCOLAResearch Team (Oct 2016-Jan 2018),
Nantes.

I should also complete this list with first, my academic colleagues who have recently agreed
to join me in this initiative: Dr. Christian Perez, Dr. Gilles Fedak, Dr. Anne-Cecile Orgerie,
Dr. Mario Südholt Dr. Shadi Ibrahim and Dr. Helene Coullon, and second, all Researchers,
Engineers and Phd candidates from Orange Labs. They have all contributed a lot through
their fruitful exchanges. Finally, I should thanks, Thierry Carrez, Director of Engineering at
OpenStack Foundation for his availability and wise counsels he has been giving us since Dec
2015.

I sincerely hope I did no omit anyone, in which case, I apologize.
Between 2013 and 2014, the activities have beenmainly supported by the Ecole desMines de

Nantes (now IMTAtlantique). Since 2015, theDiscovery initiative ismainly supported through
the Inria Project Labs program and the I/O labs, a joint lab between Inria and Orange Labs. I
underline that I am the principal investigator of this initiative. Finally, I have been chairing the
Massively Distributed Working Group of the OpenStack community since April 2016. This
second action is complementary to the scientific one as it enables us to get contact with strong
industrials such as AT&T, Deutch Telekom …in addition to Orange Labs. An important aspects
in the current context of the European Research that favor cooperation between academic and
industrial sector.

Major Results aswell as software code are available at: http://beyondtheclouds.github.
io/ and https://wiki.openstack.org/wiki/Massively_Distributed_Clouds

4 Please visit the Discovery website for a complete up-to-date list.

86

http://beyondtheclouds.github.io/
http://beyondtheclouds.github.io/
https://wiki.openstack.org/wiki/Massively_Distributed_Clouds
http://beyondtheclouds.github.io/contact.html

8The DISCOVERY Initiative

The strong adoption of the Cloud Computing paradigm has greatly favored the involvement
of our community to address major challenges faced by Cloud Computing providers. Several
scientific contributions led to technical evolutions that allowed the consolidation of services
and applications in large-scale data centers of ever-increasing size. Although this is still
a main trend for achieving efficiency and reducing total cost of ownerships, experts from
academia and industry have started to advocate the evolution of Cloud Computing infras-
tructures towards a massively distributed federation of smaller data centers placed at the edge
of network backbones. This paradigm shift is dictated by requirements for improved Qual-
ity of Service and growing user concern of trust/privacy issues, along with technological
advances in the capacity and capabilities of servers, mobile networks and end-user devices.

Among the obstacles to the adoption of this model, referred to as Fog/Edge Computing, is
the development of a convenient and powerful software stack capable of managing a signifi-
cant number of remote data-centers deployed at the edge in a unified way.

We published a first study on how such a system could be designed (Lebre, Anedda, et
al., 2011) through a collaboration with colleagues from the CRS4 research center in Italy.
This work led to the foundations of the DISCOVERY1 open-science initiative three years
later (Bertier et al., 2014) The objective of DISCOVERY is to design, prototype and evaluate
the mechanisms and policies required for efficient management of edge cloud infrastructures.
This emerging paradigm shows great potential to vastly improve service agility, QoS, and
availability, by bringing resources closer to end-users. As described in this chapter, our ap-
proach is fundamentally different from today’s broker-based solutions as we chose to revise
the OpenStack software suite in order to make it inherently cooperative.

8.1 Context & Motivations

Over the last decade, mostly economic concerns have driven consolidation of services
and applications in Data Centers (DCs) of ever-increasing size, where the number of
physical resources that one DC can host is limited by the capacity of its energy sup-
ply and its cooling system (see Figure 39a). To meet these critical needs in terms of
energy supply and cooling, the current trend is toward building mega-DCs in regions
presenting energy advantages, such as cheap hydroelectricity (see Figure 39b) or loca-
tion advantages, such as proximity to the polar circle which allows free cooling (Gary
Cook, 2013).

(a) Microsoft DC in Quincy (WA) (b) Quincy DCs

Figure 39: Quincy - Where
Agriculture meets Technol-
ogy. Cloud providers come
to the Quincy area because
of its abundant and cheap
hydroelectricity.

However, concentrating Mega-DCs in few attractive locations has two main prob-
lems: (a) reduced availability and (b) increased response time. A disaster2 in these
areas would be catastrophic for all services hosted in the DCs leading to long service

1 http://beyondtheclouds.github.io.
2 On March 2014, a large crack has been found in the Wanapum dam leading to emergency procedures. This

hydro plant supports major data centers in central Washington, including Quincy.

87

http://beyondtheclouds.github.io

disruption. Similar problems can be caused by network disruptions that can affect all
services. Second, hosting resources in a few locations leads to increased overheads,
perceived as lower QoS by users. Such overheads can prevent the adoption of Cloud
Computing by latency-sensitive applications and lead to significantly lower applica-
tions where hierarchical approaches work well, e.g. in the IoT domain. This draw-
back has been highlighted by industry (Gartner, 2014) as well as scientific studies (B.
Zhang et al., 2015).

The concept of micro/nano DCs deployed through the backbone and up to the
edge (A. Greenberg et al., 2008; Satyanarayanan et al., 2009; Bonomi et al., 2012;
Garcia Lopez et al., 2015) is an alternative to Mega-DCs and a promising solution to
the aforementioned concerns.Localized or micro data centers

are a fact of life, but by applying
a self-contained, scalable and

remotely managed solution and
process, CIOs can reduce costs,
improve agility, and introduce
new levels of compliance and
service continuity. Creating
micro data centers is some-

thing companies have done for
years, but often in an ad hoc
manner. Gartner, Jan 2015

Such a paradigm, referred to as “Fog/Edge Comput-
ing”, has been discussed in the past but was never realized because operating multiple,
small DCs may appear counter-intuitive from the point of view of economies of scale
in terms of physical resources and administration effort. However, today, technologi-
cal advances in the capacity and capabilities of servers, mobile networks and end-user
devices, alongwith the advent of new usages related to Internet of Things applications
(IoT) (Atzori, Iera, and Morabito, 2010), Mobile Edge Computing (MEC) (A. Ahmed
and E. Ahmed, 2016) and Network Function Virtualization (NFV) (Mijumbi et al.,
2015) present new opportunities for placing resources closer to the edge (B. Zhang
et al., 2015). The benefits of micro data centers have been also highlighted already by
industry and practitioners (David Cappuccio, 2015).

The main barrier for the adoption of such a decentralized model of Cloud Comput-
ing is the increased complexity in terms of managing, monitoring, and controlling a
complex and diverse network of resources and the extension of current interfaces to
turn location into a first-class citizen.

The objective of DISCOVERY initiative is to improve management aspects of edge-
clouds and facilitate their deployment. As opposed to existing approaches that rely on
brokering systems, we proposed a new model of coordinating a significant number
of sites through a common software platform with self-* and P2P mechanisms. Since
2014 (Bertier et al., 2014), we have been advocating the need to redesign a system
specifically for edge-clouds that will interact with low level mechanisms available on
each physical resource (compute storage and network) and leverage advanced P2P
mechanisms to coordinate them in a native manner (see Section ??). This strategy
differs from available solutions that have been built using “glue” components in the
form of broker or orchestration services.

To mitigate the effort required for designing and developing such a distributed
cloud management system, we chose, in 2015 in coordination with Orange Labs, to
revise the OpenStack core-services. After more than six years of intensive effort, the
OpenStack software suite (OpenStack website) has become the de facto open-source
solution to operate, supervise and use a Cloud Computing infrastructure. We made
the bet that revisingOpenstackwill allow us to reuse asmuch as possible from already
successful mechanisms and to focus on the key challenges raised by such massively
distributed cloud infrastructures.

This chapter presents the foundations on which rely my ongoing and future activ-
ities. First, I describe how we proposed to mitigate the cost overheads of deploying
and operating multiple DCs that have been enlightened many times by the defenders
of large-scale DCs. Second. I discuss some key elements that motivate the choice of
designing a system capable of supervising a set of remote DCs in a unified way. I ex-
plain why federated proposals (Buyya, Ranjan, and Calheiros, 2010) are not the best
approaches to operate Fog/Edge infrastructures andwhy designing a fully distributed
system by revising the OpenStack software suite makes sense. Third, I present several
opportunities that can bring an Internet-Scale IaaS manager. Finally, I conclude this
chapter by highlighting a few research directions where we expect to contribute.

88

8.2 From Cloud to Fog/Edge Computing Facili-
ties

Micro/Nano DCs relevance has been largely discussed because operating multiple
small DCs breaks somehow the idea of resources pooling and thus increase the oper-
ational costs. To answer this question once for all, we conducted on own study and
confirmed (Simonet, Lebre, and Orgerie, 2016) that distributed Cloud Computing
solutions can compete in terms of economical viability with the industry references
(Amazon, Microsoft, Google …). The study highlights in particular opportunities for
telcos and network operators that can leverage their existing network facilities, start-
ing from the core nodes of the network backbone to the different network access
points (a.k.a.,. PoPs – Points of Presence) in charge of interconnecting public and pri-
vate institutions. By hosting micro/nano DCs in PoPs, it becomes possible to mutu-
alize resources that are mandatory to operate network/data centers while delivering
widely distributed CC platforms better suited to cope with disasters and to match the
geographical dispersal of users.

(a) Topology/Metrology of the RENATER network (the French NREN) - Each red
square corresponds to one network point of presence (72 PoPs overall)

(b) Topology of the Internet2 Network (one of the USA NREN) (c) The GEANT federation

Figure 40: Examples of NREN
backbones

89

Figures 40a and 40b illustrate the advantages of such a proposal. They present the
network topology of the French and USA National Research and Education Network
(NREN), i.e. the backbone dedicated to universities and research institutes in France
and respectively in USA.

Both figures reveal several important points:

• There are a significant number of network points of presence across each ter-
ritory;

• Both backbones have been deployed to avoid disconnections (i.e. more than
95% of the PoPs can be reached by at least two distinct routes);

• The backbone was deployed and is renewed to match the demand. In particular
for RENATER,we can see that the density/capacity of points of presence aswell
as the bandwidth of each link are more important on the edge of large cities
such as Paris and Marseille.

• Themetrology information available on theRENATERmap confirms thatmost
resources are underutilized: only two links are used between 45% and 55% (i.e.
the links gathering the traffic toward the Internet), a few between 25% and 40%,
and the majority below the threshold of 25%;

More generally, all NRENs are interconnected to constitute larger network back-
bones such as the GÉANT PAN in Europe as depicted on Figure 40c. GÉANT con-
nects over 50 million users at 10,000 institutions across Europe and supporting re-
search in different areas such as energy, environment, space and medicine. Such a
European PAN is composed of significant number of PoPs that can be used to deploy
and provide a competitive European Cloud for the academics but also all governmen-
tal institutions for instance.

Figure 41: From Container-
ized micro DCs to mas-
sively distributed clouds

(a) Deployment of the SF’s micro DC

(b) Deployment of a new PoP of the Orange French backbone

(c) SF’s micro DC final installation

Figure 41 completes the illustration of such an in-network distributed cloud. The two
pictures on the left show the deployment and the final installation of the Schneider
microDC on the construction site of the Sagrada Familia in Barcelona (Spain) in order
to support the construction process as well as ticketing and other SF’s processes3.
The pictures on the right show the deployment of a new network PoP for the Orange
French network. From the hardware point of view, such a container looks similar to
a containerized DC such as the SF one. We can easily envision that such a PoP can

3 Why a world famous church needs a micro DC? (Nov 2015, Schneider blog)

90

http://blog.schneider-electric.com/datacenter/2015/11/12/updating-the-sagrada-familia-why-a-world-famous-church-needs-a-micro-data-center-solution/

be equipped with few servers in charge of delivering compute, storage and network
capacities.

While from the economical point of view, a few models have been proposed to de-
termine where such micro/nano DCs should be deployed (A. Greenberg et al., 2008;
Simonet, Lebre, and Orgerie, 2016), the question of how operating such an infrastruc-
ture composed of a significant numbers of of sites still remains. Indeed, at this level
of distribution, latency and fault tolerance become primary concerns, and collabo-
ration between components that are hosted on different location must be organized
wisely. This is the question we try to solve within the framework of the DISCOVERY
initiative.

8.3 Revising OpenStack Through a Bottom/Up
Approach

The massively distributed cloud we target is an infrastructure that is composed of
up to hundreds of micro DCs, which are themselves composed of up to one hundred
servers (up to two racks). In this section, I discuss design considerations that has
motivated our implementation choices of revising OpenStack with P2P mechanisms.

8.3.1 Design Considerations

Broker vs Cooperative Systems

Brokering/Orchestration of clouds are the first approaches that are considered when
it comes to operate and use distinct clouds. Each micro DC hosts and supervises its
own Cloud Computing infrastructure and a brokering service is in charge of provi-
sioning resources by picking them on each cloud. While these top/down approaches
with a simple centralized broker can be acceptable for basic use cases, advanced bro-
kering services becomemandatory tomeet requirements of production environments
(monitoring, scheduling, automated provisioning, SLAs enforcements…). In addition
to dealing with scalability and single point of failure (SPOF) issues, brokering services
become more and more complex to finally integrate most of the mechanisms that are
already implemented by IaaS managers (Buyya, Ranjan, and Calheiros, 2010; Houidi
et al., 2011). Consequently, the development of a brokering solution is as difficult as
the development of management system of CC resources (a.k.a., a Iaas manager or a
cloud kit) but with the complexity of relying only on the least common denominator
APIs. While several initiatives have been working for several years on Cloud Com-
puting standards such as OCCI (Loutas et al., 2010), they do not allow developers
to manipulate low-level capabilities of each system, which is generally mandatory to
finely administrate resources. In other words, building mechanisms on top of exist-
ing ones, as it is the case of federated systems, prevents them from going beyond the
provided APIs (or require intrusive mechanisms that must be adapted to the different
cloud computing software stacks).

The second way to operate a distributed cloud infrastructure is to design and build
a dedicated system which will define and leverage its own software interface, thus
extending capacities of traditional Clouds with its API and a set of dedicated tools.
Designing a specific system offers an opportunity to go beyond classical federations
by addressing all crosscutting concerns of a software stack as complex as a Cloud
Computing resource management system.

From a Hierarchical to a Peer-to-Peer IaaS Manager

Considering the advantage of an Internet-Scale Cloud Computing manager with re-
spect to brokering proposals, the next question is to analyze whether collaborations
between mechanisms of the system should be structured either in hierarchical or

91

in flat way via a P2P scheme. During the last years few hierarchical solutions have
been proposed in industry (Cascading OpenStack web; Scaling solutions for OpenStack
web) and academia (Feller, Rilling, and Morin, 2012; Farahnakian et al., 2014). Al-
though they may look easier at first sight than Peer-to-Peer structures, hierarchical
approaches require additional maintenance costs and complex operations in case of
failure of critical peers. Moreover, mapping and maintaining a relevant tree archi-
tecture on top of massively distributed infrastructures is not meaningful. Static par-
titioning of resources that is usually performed is not appropriated for constantly
changing environments such as Fog/Edge Computing platforms. Finally, a hierarchi-
cal structure means that there is a global entry point that does not enable to address
the latency requirements of modern usages such as IoT, NFV an MEC applications
(every cloud request going through the global entry point before being served by one
DC). As a consequence, hierarchical approaches do not look to be satisfactory to op-
erate a massively distributed IaaS infrastructure such as the one we target. On the
other side, P2P file sharing systems are a good example of software that works well
at large scale in a context where Computing/Storage resources are geographically
spread. While P2P/decentralized mechanisms have been under-used for building op-
erating system mechanisms, they have showed the potential to handle the intrinsic
distribution of massively distributed cloud infrastructures as well as the scalability
required to manage them (DeCandia et al., 2007).

To summarize, DISCOVERY advocates the development of a dedicated system that
will interact with low level mechanisms available on each physical resource (compute
storage and network) and leverage advanced P2P mechanisms to coordinate them.

8.3.2 The Choice of OpenStack

The Internet-scale Cloud manager we target should deliver a set of high level mecha-
nisms whose assembly results in a system capable of operating an IaaS infrastructure.

IaaS Manager Fundamentals

Recent studies have showed that state of the art IaaS managers (Peng et al., 2009)
were constructed over the same concepts and that a reference architecture for IaaS
managers can be defined (Moreno-Vozmediano, Rubén S Montero, and Ignacio M
Llorente, 2012).

This architecture covers primary services that are needed for building the LUC OS:

• The virtual machines manager is in charge of managing VMs’ cycle of life
(configuration, scheduling, deployment, suspend/resume and shut down).

• The Image manager is in charge of VM’ template files (a.k.a., VM images).

• The Network manager provides connectivity to the infrastructure: virtual
networks for VMs and external access for users.

• The Storage manager provides persistent storage facilities to VMs and the
hosted applications.

• The Administrative tools provide user interfaces to operate and use the in-
frastructure.

• Finally, the Information manager monitors data of the infrastructure for the
auditing/accounting.

Thus the challenge within the DISCOVERY initiative is to guarantee for each of
the aforementioned services that it can work in a fully distributed way. However, as
designing and developing each of those systems from scratch would be an herculean
work, we propose to minimize both design and implementation efforts by reusing
as much as possible successful mechanisms, and more concretely by investigating

92

whether a revised version of the OpenStack (OpenStack website) could fulfill require-
ments to operate a Fog/Edge infrastructure. In other words, we propose to determine
which parts of OpenStack can be directly used and which ones must be revised with
P2P approaches. As already highlighted, OpenStack has become the de facto open-
source solution to operate, supervise and use a Cloud Computing infrastructure.

This strategy would enable us to focus the effort on key issues such as the dis-
tributed functioning and the organization of efficient collaborations between soft-
ware components composing of OpenStack.

OpenStack Ecosystem Overview

OpenStack (OpenStack website) is an open-source project that aims at developing a
complete Cloud Computing management system. The description available on the
OpenStack website is the following :

OpenStack software controls large pools of compute, storage, and networking resources
throughout a data center, managed through a dashboard or via the OpenStack API. Open-
Stack works with popular enterprise and open source technologies making it ideal for het-
erogeneous infrastructure. Hundreds of the world’s largest brands rely on OpenStack to
run their businesses every day, reducing costs and helping them move faster. OpenStack
has a strong ecosystem, and users seeking commercial support can choose from different
OpenStack-powered products and services in the Marketplace. The software is built by a
thriving community of developers, in collaboration with users, and is designed in the open at
our Summits.

(a) OpenStack community overview in 2015 (b) OpenStack services

Figure 42: OpenStack EcoSystem

Figures 42a and 42b complete the aforementioned description with the objective
to illustrate the richness of the OpenStack ecosystem. Started in 2012, the OpenStack
foundation gathers 500 organizations with groups such as Google, IBM, Intel …The
software platform relies on tens of services with a development cycle based on a 6-
month basis. It is composed ofmore than 2millions of lines of code, mainly in python,
just for the core-services. While these aspects make the whole ecosystem quite veloce,
they are also good signs of the maturity of the community.

Within the framework of DISCOVERY, we focus on revising the core services (i.e.,
the low-level components) that deliver the Compute, Network and Storage as a ser-
vices capabilities. With the achievements of such an objective, we expect that most of
the higher level OpenStack services will be able to benefit from the low level revisions
in a rather comfortably and straight forward way.

The Open-Source Cascading OpenStack/ TriCircle Solution

Although there is, as far as we know, no other action that investigates how OpenStack
can be revised to cope with Fog/Edge Computing requirements, it is noteworthy to
mention the Tricircle action.

93

Proposed and supported byHuawei, the Tricircle project4 has been an important at-
tempt to address the massively distributed cloud use-case. At coarse-grained the idea
was rather similar to the Cells approach available by default in the Nova OpenStack
core services and used by in the CERN infrastructure5. Indeed, both approaches are
taking a cascading approach to forward the application requests to one particular site
in charge of serving it. In Tricircle, a Topminimalistic “OpenStack API gateway”man-
ages multiple Bottom (a.k.a., cascaded) OpenStack instances, which may very well be
running in different sites. While the current implementation is based on a central
service, the top layer is a logical concept that itself could be distributed and deployed
throughout distinct data centers for ensuring reliability as well as scalability of the
solution.

While both initiatives, DISCOVERY and Tricircle targeted the same objective, our
vision is in the opposite direction precisely. From our point of view Tricircle can
be compared to a brokering approach dedicated for OpenStack systems, that is built
only on top of the OpenStack API. By consequence, Tricircle suffers of the same draw-
backs of brokering approaches that have been highlighted in Section 8.3.1. Moreover,
by addressing the challenge of distributing the Tricircle top layer, developers were fac-
ing the same challenges we have identified to distributed OpenStack core-services. In
other words, the Tricircle developers had to redevelopedmost of themechanisms that
were already available at low level to be able to deliver an advanced orchestrating ser-
vices but then they should also redistributed these mechanisms between distinct sites.
As previously stressed, we claim for a bottom/up approach where the distribution of
OpenStack core-services should be achieved by default in order to ensure an efficient
cooperation of distinct OpenStack instances throughout distinct sites. Nevertheless,
as we are facing similar issues such as the sharing of VM images between distinct sites
or the extension of the API to reify the location dimension, we are in touch with the
Tricircle community. As an example, we will present in the Pike Summit in Boston a
shared presentation. 6

8.4 Innovation Opportunities

While advantages and opportunities ofmassively distributed clouds have been empha-
sized several years ago (Church, A. G. Greenberg, and Hamilton, 2008; A. Greenberg
et al., 2008), delivering an OpenStack that can natively be extended to distinct sites
will create new opportunities.

Micro Datacenters, also known by
the adorable name “cloudlets,” as
a key concept for optimizing the

performance and usefulness of mo-
bile and other networked devices
via the cloud. Service providers
have embraced this vision most

strongly from the start, but it
won’t be long before enterprise
IT pros will likely do the same

Victor Bahl, Microsoft Re-
search distinguished sci-

entist Victor, March 2015

From the infrastructure provider point of view, Internet Service Providers (ISPs),
academic and private institutions in charge of operating a part of the Internet net-
work will be able to build competitive Fog/Edge Computing platforms in a relatively
short time and with a limited cost. Instead of redeploying a complex and expensive
infrastructure, they will be able to leverage IT resources and devices such as computer
room air conditioning units, inverters or redundant power supplies already present in
each network point of presence of their backbone. While we outlined the advantages
of such scenario for NRENs in details in Section 8.2, we should complete the descrip-
tion by highlighting that such in-network cloud infrastructure could be extended for
telecom operators first on each radio base station they operate and second to the ex-
treme edge by leveraging resources available on the home gateways as depicted on
Figure 43.

4 https://wiki.openstack.org/wiki/Tricircle_before_splitting and https://wiki.
openstack.org/wiki/Tricircle

5 http://superuser.openstack.org/articles/openstack-in-production-cern-s-cloud-in-kilo
6 When one Cloud is not enough: an overview of sites, regions, edges, distributed clouds and more (Boston

OpenStack Summit, May 2017).

94

https://wiki.openstack.org/wiki/Tricircle_before_splitting
https://wiki.openstack.org/wiki/Tricircle
https://wiki.openstack.org/wiki/Tricircle
http://superuser.openstack.org/articles/openstack-in-production-cern-s-cloud-in-kilo
https://www.openstack.org/summit/boston-2017/summit-schedule/events/18076/when-one-cloud-is-not-enough-an-overview-of-sites-regions-edges-distributed-clouds-and-more

Inter Micro DCs latency
LCore [50ms-100ms]

Edge  
Frontier

Edge  
Frontier

Extreme Edge  
Frontier

Domestic network

Enterprise network

Wired link
Wireless link

Cloud Computing

Micro/Nano DC

Hybrid network

Cloud Latency  
LCloud> 100ms

 Edge to Fog latency
LFog [10-100ms]

In addition to deploying com-
putation/storage capabilities in
PoPs, the Fog/Edge model can be
extended first to each radio base
station that enables to interconnect
smartphones and IoT devices to
the network backbone, and second,
to the Extreme Edge by using
resources provided by third party
tenants (smartboxes, private micro
DCs …)

Figure 43: From the Cloud to the
Extreme Edge - Infrastructure
Vision

Similarly, nano/micro DCs solutions proposed by large companies such as Schnei-
der7 and SMEs such as Celeste8 in France will benefit from a cooperative OpenStack
in order to operate their DCs not on a single basis but globally, delivering a more flex-
ible offer to their end-users. When the capabilities offered by a micro DC will not
be sufficient to address the peak of activity it will be possible to temporarily lever-
age additional resources available from another center of the company that deployed
the micro DC solution. More generally, a distributed version of OpenStack will na-
tively allow the federation of a significant number of DCs to constitute a global one.
Such a feature is a strong advantage for the private cloud model in comparison to the
current hybrid offers that breaks the notion of a single deployment operated by the
same tenant. Each time a company will face a peak of activity, it will be possible to
provision dedicated servers and attach them to the initial deployment. Those servers
can either be provided by dedicated hosting services that have DCs close to the insti-
tution (for instance, one can consider to extend the resource available in a company
(left side on the figure) with resources provided by the first micro DCs present in the
network) or by directly deploying transportable and containerized server rooms close
to the private resources. The major advantage is that such an extension is completely
transparent for the administrators/users of the IaaS solution because they continue
to supervise/use the infrastructure as they are used to without sharing the resources
with other tenants.

This notion of WAN-wide elasticity can be generalized, as it will be possible to
deploy containerized server rooms whenever and wherever they will be mandatory.
As examples, we can envision to temporarily deploy IT resources for sport events
such as olympic games or for public safety purposes in case of disasters (the TCS
use-case) or any other specific need (see the Sagrada Familia example in Barcelona
in Section 8.2) and connect them to the global DC of a company.

The common thread in all scenarios is the possibility of extending an infrastruc-
ture wherever needed with additional resources, the only constraint being to be able
to plug the different locations with a backbone that offers enough bandwidth and
quality of service to satisfy network requirements. The last scenario we can envision
is related to current European start-ups that propose to combine computing and heat
technologies around specialized micro/nano DCs such as Cloud&Heat9 in Germany
and Qarnot Computing10 in France. These companies that have a business model re-
lying on the notion of decentralized micro/nano DCs can also take the advantage of
a cooperative OpenStack to operate here also their infrastructure globally. I under-

7 http://www.schneider-electric.us/en/solutions/system/s4/
data-center-and-network-systems-micro-data-center/

8 https://www.celeste.fr/stardc-offre
9 https://www.cloudandheat.com/en/technology.html

10 http://www.qarnot-computing.com

95

http://www.schneider-electric.us/en/solutions/system/s4/data-center-and-network-systems-micro-data-center/
http://www.schneider-electric.us/en/solutions/system/s4/data-center-and-network-systems-micro-data-center/
https://www.celeste.fr/stardc-offre
https://www.cloudandheat.com/en/technology.html
http://www.qarnot-computing.com

line that I am involved in a new French ANR Research project coordinated by Qarnot
Computing as further discussed in Chapter 11.

From the software provider point of view, DISCOVERYwill favor the development
of advanced applications dealing with smart-homes/cities, e-governmental services,
public safety and more generally all challenges related to the industrial internet 11.
Developers will be able to design new applications but also revise major cloud ser-
vices in order to deliver more locality aware management of data, computation, and
network resources. For instance, it will be possible to deploy on-demand Content
Delivery Network solutions according to specific requirements. Cloud storage ser-
vices such as Dropbox could be revised to mitigate the overheads of transferring data
from sources (Confais, Lebre, and Parrein, 2017). Instead of the currently prevalent
push of data to remote clouds, DISCOVERY will allow to support pulling data closer
to the user location. Nowadays data is mostly uploaded to the remote clouds without
considering whether such data movements are effectively solicited or not. Among
the DISCOVERY objectives one is to enable data to stay as close as possible to the
source that generates them and be transferred on the other side only when it will
be solicited. Such strategies will mitigate the cost of transferring data in all social
networks for instance but can also be leveraged to address trust/privacy challenges.
Similarly, developers will be able to deliver data analytic software stack that enable
computations to be launched close to data sources. Such mechanisms will be shortly
mandatory to handle the huge amount of data that Internet of Things will generate.

8.5 Summary

Similarly to the key services that have been proposed in the past for Cloud Comput-
ing and that led to its success, our community should propose building blocks for
Fog/Edge infrastructures. Those building blocks are mandatory (i) to allow opera-
tors to supervise these massively distributed hererogenous and dynamic platforms
and, (ii) to favor the development of new kinds of geo-aware services.

In this chapter, I presented an overview of the DISCOVERY initiative I have been
leading since 2014. After describing the physical infrastructure we consider, I dis-
cussed some design considerations that justify our choice of (i) not implementing an-
other brokering approach and (ii) revising OpenStack instead of developing a system
from scratch.

Although delivering an efficient distributed version of an Internet-Scale IaaS man-
ager is a challenging task, we believe that addressing it is the key to favor the emer-
gence of a new generation of Utility Computing. We expect DISCOVERY to pave the
way for exploring in detail, how to operate a widely distributed infrastructure in a
unified manner and what are the main challenges to solve. We believe that the DIS-
COVERY initiative will increase significantly the knowledge base and will provide in-
sights to break new ground in the Fog/Edge Computing research area. In particular,
we expect to contribute to several key aspects of large-scale distributed infrastructure
management:

• Performance and QoS via taking into account location as a first class citizen.

• Elasticity and scalability via fundamental extensions to scheduling and data-
path (network and storage) mechanisms.

• Availability for disaster scenarios by enabling partial infrastructure operation.

• Mobility and disconnected operation by using weak consistency and reconcil-
iation.

11 http://www.iiconsortium.org.

96

http://www.iiconsortium.org

• Reactivity and robustness by treating infrastructure (compute, storage, network)
changes due to reconfiguration or failures as common events, rather than the
static approaches used today.

• Programming Models and abstractions by extending current cloud APIs to al-
low end-users and developers to exploit the unique features of Fog/Edge plat-
forms.

Overall, and compared to current state-of-the-art approaches, DISCOVERY will
address fundamental infrastructure management concerns that have long been the
main barrier for adopting new infrastructuremodels and improving infrastructure ef-
ficiency and application QoS. As the deployment of Fog/Edge computing is expected
to increase over the next years, conducting research in this area is timely and key for
industry as described in Section 8.4.

Finally, we claim that choosing OpenStack is a key element as it should enable
the scientific community to attract key industrial actors. As examples, Orange Labs,
British Telecom as well as major European NRENs already expressed their interest
in our action. Moreover, we believe that it is time for the scientific community to
get involved and contribute to the OpenStack software in the same way it has been
done for the Linux ecosystem. We expect that preliminary works such as the ones pre-
sented in the next chapters will have a decisive impact in both the scientific and the
open-source community to gather experts around the goal that have been presented
in this chapter: Delivering an open-source software stack for Fog/Edge Computing
infrastructures.

97

9Revising OpenStack to Operate
Fog/Edge Computing
Infrastructures: a First
Proof-Of-Concept

Academic and industry experts are now advocating for going from large-centralized Cloud
Computing infrastructures to smaller ones massively distributed at the edge of the network.
Among the obstacles to the adoption of this model is the development of a convenient and
powerful IaaS system capable of managing a significant number of remote data-centers in a
unified way.

In this chapter, we introduce the premises of such a system by revising the OpenStack
software, a leading IaaS manager in the industry. The novelty of our solution is to operate
such an Internet-scale IaaS platform in a fully decentralized manner, using P2P mechanisms
to achieve high flexibility and avoid single points of failure. More precisely, we describe how
we revised the OpenStack Nova service by leveraging a distributed key/value store instead
of the centralized SQL backend. We present experiments that validate the correct behavior
and gives performance trends of our prototype through an emulation of several data-centers
using Grid’5000 testbed. In addition to paving the way to the first large-scale and Internet-
wide IaaS manager, we expect this work will attract a community of specialists from both
distributed system and network areas to address the Fog/Edge Computing challenges within
the OpenStack ecosystem.

9.1 Challenge Description

As stressed in the previous chapter, concentrating Mega-DCs in only a few attractive
places implies different issues. First, a disaster in these areas would be dramatic for IT
services the DCs host as the connectivity to CC resources would not be guaranteed.
Second, in addition to jurisdiction concerns, hosting computing resources in a few lo-
cations leads to useless network overheads to reach each DC. Such overheads prevent
the adoption of the Cloud Computing paradigm by several kind of applications such
as mobile computing (Satyanarayanan et al., 2009) and IoT (B. Zhang et al., 2015).

The concept of micro/nano DCs deployed at the edge of the backbone has been
proposed as a promising solution for the aforementioned concerns (A. Greenberg
et al., 2008). Although it has been introduced as soon as 2008, the model has been
debated for a couple of years because it was believed that there would be no way to
operate multiple small DCs without increasing initial and exploitation expenditures.
A recent study demonstrated that amodel leveraging existing network facilities (a.k.a.,
network point of presences) can deliver competitive solutions from the economic
viewpoint in comparison to current Amazon offers (Simonet, Lebre, and Orgerie,
2016).

While the question of whether Fog/Edge Computing platforms will be deployed is
not being debated anymore, the question of howoperating such awidely geo-distribut-
ed infrastructure still remains. Indeed, at this level of distribution, latency and fault
tolerance become primary concerns, and collaboration between components that are
hosted on different locations must be organized wisely. With their IOx and Fog Direc-

99

tor software solutions (Bonomi et al., 2012), Cisco allows IoT applications to run on
infrastructures composed of NFV-enabled hardware (at the edge) and existing cen-
tralized clouds. However, their solution does not allow to run Virtual Machines and
does not compete with existing IaaS platforms.

In this chapter, I present how we revised OpenStack (OpenStack website) in or-
der to deliver a first-class Internet-scale IaaS manager. Revising OpenStack allow
us to propose a system that is as convenient to administrate and as easy to use as
existing IaaS managers. Specifically, we describe how we revised the Nova service
(the OpenStack compute element) with a decentralized key/value store in place of the
centralized SQL database. This revision enables us to distribute Nova over several
geographical sites. The correct functioning of this proof of concept has been vali-
dated via several experiments performed on top of Grid’5000. In addition to tackling
both the scalability and distribution issues of the SQL database, our prototype leads
to promising performance. More than 80% of the API requests are performed faster
than with the SQL backend without doing any modification in the Nova code.

With this work, we hope to bring attention to the matter and start building a large
community around anOpenStack-based Internet-scale IaaSManager, like it was once
done for Linux and HPC.

The remaining of the chapter is as follows. Section 9.2 describes OpenStack and
how we revised it. The validation of our prototype focusing on the Nova service is
presented in Section 9.3. Finally, Section 9.4 concludes and discusses future research
and development actions. Note that the original paper (Lebre, Pastor, Simonet, et al.,
2017) includes a discussion related to the design and development of an Internet-scale
IaaS manager. However, those aspects have been presented in the previous chapter.
We invite readers to refer to Section 8.3 for futher information, in particular to better
understand why we chose to revise OpenStack with P2P mechanisms.

9.2 Revising OpenStack

OpenStack (OpenStack website) is an open-source project that aims to develop a
complete Cloud Computing software stack. Figures 44 presents the general vision
of OpenStack with the three expected capabilities of IaaS platforms: Compute Net-
work and Storage. Applications at the top can request through a high level API com-
pute, network and storage resources. OpenStack bricks in the middle communicate
through shared services. From the technical point of view, OpenStack is composed
of two kinds of nodes: on the first side, the compute/storage/network nodes are ded-
icated to deliver the XaaS capabilities such as hosting VMs for the compute; on the
other side the controller nodes are in charge of executing the OpenStack services.

Figure 44: OpenStack Overview

Figure 45 shows the core-services of OpenStack. This architecture is comparable
with the reference one described in the previous section.

OpenStack services are organized following the Shared Nothing principle. Each
instance of a service (i.e., serviceworker) is exposed through anAPI accessible through
a Remote Procedure Call (RPC) system implemented on top of a messaging queue or via
web services (REST). This enables a weak coupling between services. During their

100

Nova Nova

Compute
 manager

Swift Swift

Glance Glance

Storage
 manager

Neutron Neutron

Network
 manager

KeyStone KeyStone

Horizon Horizon

Administrative tools,
Information manager,
Accounting/Auditing

Figure 45: Core-Services of
OpenStack.

life-cycle, services create and manipulate logical objects that are persisted in shared
databases, thus enabling service workers to easily collaborate. However, even if this
organisation of services respects the Shared Nothing principle, the message bus and the
fact that objects are persisted in shared databases limit the scalabilty of the system, as
stated in the OpenStack documentation:

OpenStack services support massive horizontal scale. Be aware that this is not
the case for the entire supporting infrastructure. This is particularly a prob-
lem for the database management systems and message queues that OpenStack
services use for data storage and remote procedure call communications.

To conclude, revising OpenStack to make it fully decentralized should be carried
out in two ways: distributing the messaging queue as well as the shared relational
databases.

9.2.1 Distributing the AMPQ Bus

As indicated, services composing OpenStack collaborate mainly through a RPC sys-
tem built on top of an AMQP bus. The AMQP implementation used by OpenStack
is RabbitMQ. While this solution is generally articulated around the concept of a cen-
tralized master broker, it also provides a cluster mode that can be configured to work
in a highly available manner. Several machines, each hosting a RabbitMQ instance,
work together in an Active/Active functioning where each queue is mirrored on all
nodes. While it has the advantage of being simple, it has the drawback of being very
sensitive to network latency, and thus it is not relevant for multi-site configurations.
This limitation is well known from the distributed messaging queue community. Few
workarounds have been proposed for systems such as RabbitMQ and more recently,
P2P-like solutions such as ActiveMQ (Snyder, Bosnanac, and Davies, 2011) or Ze-
roMQ (Hintjens, 2013) have been released.

Thoses broker-less approaches satisfy our requirements in terms of scalability. Con-
sidering that there is already an action to use ZeroMQ in place of RabbitMQ in Open-
Stack1, we chose to focus our efforts on the DB challenge.

9.2.2 Distributing the Databases

As of today, only a few actors such as Rackspace 2 have been dealing with large-scale
challenges. In other words, most of the OpenStack deployments only involve a few
compute nodes and do not require more than a single database (DB) node. The use
of a second DB is generally proposed to meet the high availability constraint that is

1 https://wiki.openstack.org/wiki/ZeroMQ
2 http://rack.ly/6010B2xpQ

101

https://wiki.openstack.org/wiki/ZeroMQ
http://rack.ly/6010B2xpQ

mandatory in production infrastructures. In such a context, the OpenStack commu-
nity recommends the use of at least an active/passive replication strategy (a second DB
acts as a failover of the master instance).

When the infrastructure becomes larger or includes distinct locations, it becomes
mandatory to distribute the existing relational DBs over several servers. Two ap-
proaches are proposed by the OpenStack community.

The first one consists in partitioning the infrastructure into groups called cells con-
figured as a tree. The top-cell is in charge of redistributing requests to the children
cells. Each child cell can be seen as an independent OpenStack deployment with its
ownDB server andmessage queue broker. In addition to facing hierarchical approach
issues we previously discussed (see Section ??), we highlight that additional mech-
anisms are mandatory in order to make collaboration between cells possible (there
is no communications nor interactions between children cells). Consequently, this
approach is more comparable to a brokering solution than to a native collaboration
between IaaS core-services.

The second approach consists in federating severalOpenStack deployments through-
out an active/active replicationmechanism ofDBs (Kemme andAlonso, 2010) through
solutions such as Galera: when an instance of a service processes a request and per-
forms some actions on one site, changes in the inner-states stored in the DB are also
propagated to all the other DBs of the infrastructure. From a certain point of view,
it gives the illusion that there is only one unique DB shared by all OpenStack deploy-
ments. Although the described technique has been used in production systems, most
of them only involve a limited number of geographical sites. Indeed, active replication
mechanisms imply important overheads that limit the size of infrastructures. To sum
up neither the hierarchical approach nor the active replication solution are suited to
deal with a massively distributed infrastructure as the one we target.

While not yet explored for the main OpenStack components, NoSQL databases
built on top of recent P2P key/value stores seem to have more suitable properties
for highly distributed contexts, providing better scalability and built-in replication
mechanisms. The challenge consists in analyzing how OpenStack internals can be
revised to be able to store service states in a key/value store instead of a classical SQL
system. In the next section we present how we revised the Nova component in this
direction.

9.2.3 The Nova POC: From MySQL to Redis

Nova is the OpenStack core-service in charge of VM management. Its software ar-
chitecture is organized in a way which ensures that each of its sub-services does not
directly manipulate the DB (see Figure 46). Instead it calls API functions proposed
by a service called “nova-conductor”. This service forwards API calls to the “db.api”
component that proposes one implementation per database type. Currently, there is
only one implementation that works on relational DBs. This implementation relies
on the SQLAlchemy object-relational-mapping (ORM) that enables the manipulation
of a relational database via object oriented code.

Thanks to this software pattern, we developed ROME, an ORM library that en-
ables interactions with key/value stores in the same way SQLAlchemy interacts with
relational DBes. ROME has been developed in a non intrusive way by proposing the
same API as SQLAlchemy as well as the same internal mechanisms (such as Queries,
JOIN operations and Sessions —the SQLAlchemy equivalent of transactions). These
implementations have been achieved in order to take into account key/value store
specifics: first, we developed a distributed lock system on top of Redis as well as a
two-phase commit approach to support sessions, enabling atomic modifications of the
key/value store like traditional SQL transactions; second we included a secondary in-
dex in order to speed up complex queries containing join operations.

102

Figure 46: Nova - Software Ar-
chitecture and DB dependencies.

The integration of ROME within the OpenStack Nova code was restricted to the
“db.api” file where every call to SQLAlchemy has been replaced with a call to ROME.
Thanks to this modification, it is now possible to operate and use a multi-site Open-
Stack infrastructure by relying solely on Redis, a P2P key/value store solution. We
chose to use Redis in our prototype because of its deployment/usage simplicity.

Figure 47 depicts such a deployment where a key/value store and a global shared
AMQP bus enabled all controllers to interact. The number of controller nodes on
each site can vary according to the expected demand created by end-users: sites with
a large number of compute nodes can have several controllers whereas a controller
node can be be mutualized with a compute node as illustrated for Site 3.

We highlight that any controller node can provision VMs by invoking services on
the whole infrastructure and not only on the site where it is deployed. In other words,
because the states and the communications are managed globally, any service can sat-
isfy any request.

AMQP
bus

AMQP
bus

AMQP
bus

Key/Value Store

Nova
Controller 3

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Controller 2n-sched

n-cond
n-api
n-net
n-cpu
horizon Nova

Compute
Nodes

Nova Compute Nodes

Nova
Controller 1

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Controller 5 n-sched

n-cond
n-api
n-net
n-cpu
horizon

Nova Controller 4
and compute node

n-sched
n-cond
n-api
n-net
n-cpu
horizon

Nova
Compute
Node

Site 1

Site 2

Site 3

Site 4

Nova controlers (in light-red)
are connected through a shared
key/value backend and the AMQP
bus. Each controller runs all nova
services and can provision VMs on
any compute node (in light blue).

Figure 47: Distributed Deploy-
ment of Nova

9.3 Experimental Validation

The validation of our prototype has been done via three sets of experiments targeting
the main OpenStack services. The first one aimed at measuring the impact of the
use of Rome/Redis instead of SQLAlchemy/MySQL in a single site deployment. The

103

Figure 48: Investigated de-
ployments on top of G5K

and role of each server node.

(a) Single centralized DB (b) Redis Key/Value Store (c) Galera

second set focused on multi-site scenarios by comparing the impact of the latency
on our distributed Nova service with respect to an active/active Galera deployment.
Finally, the last experiment enabled us to evaluate whether our low level revisions
impact higher level OpenStack mechanisms such as the host-agregates capability.

All Experiments have been performed on Grid’5000, a large-scale and versatile ex-
perimental testbed that enables researchers to get access to a large amount of bare-
metal computing resources with very fine control of the experimental conditions.
Our experiments use the Parasilo and Paravance clusters, that share a similar con-
figuration3: two 4-core Intel Xeon E5-2630v3 CPUs @ 2.4 GHz, 128 GB of RAM
and two 10 GB ethernet network interface. We deployed and configured each node
involved in the experiment with a customized software stack (Ubuntu 14.04, Open-
Stack Kilo and Redis v3) using Python scripts and the Execo toolbox (Imbert et al.,
2013). We underline that we used the legacy network mechanisms integrated in Nova
(i.e., without Neutron) and deployed other components that were mandatory to per-
form our experiment (in particular Keystone and Glance) on a dedicated node on the
first site (entitled master node on Figure 48).

9.3.1 Impact of Redis w.r.t MySQL

Time penalties

Changesmade overNova’s source code to support Redis is likely to affect its reactivity.
The first reason is that Redis does not support operations like joining, and thus the
code we developed to provide such operations implies a computation overhead. The
second reason is related to networking: unlike a single MySQL node, data is spread
over several nodes in a Redis deployment, leading to several network exchanges for
one request. Finally, Redis provides a replication strategy to deal with fault tolerant
aspects, also leading to possible overheads.

Table 7: Average response
time to API requests for a

mono-site deployment (in ms).

Backend configuration Redis MySQL
1 node 83 37
4 nodes 82 -
4 nodes + repl 91 -

Table 7 compares average response times used to satisfy API requests made during
the creation of 500 VMs on an infrastructure deployed over one cluster (containing
1 controller node and 6 compute nodes), using either Redis or MySQL under three
scenarios: i) a single-nodeMySQL database, ii) a 4-node Redis databasewith no repli-
cation and iii) a 4-node Redis database with replication. While the distribution of Re-
dis between several nodes and the use of the replication feature do not significantly
increase the response time (first column), the difference between the average API re-
sponse time of Rome/Redis and SQLAlchemy/MySQL may look critical at first sight
(124% higher). However, it must be mitigated with Figure 49 and Table 8.

3 https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware

104

https://www.grid5000.fr/mediawiki/index.php/Rennes:Hardware

Figure 49: Statistical distribution
of Nova API response time (in
ms.).

Figure 49 depicts the statistical distribution of the response time of each API call
that has been made during the creation of the 500 VMs. It is noticeable that for a large
part of them (around 80%), Rome/Redis delivers better performance than SQLAlche-
my/MySQL. On the other side, the 10% of the slowest API calls are above 222 mswith
our proposal while they are are around 86 ms when using MySQL. Such a difference
explains the averages recorded in Table 7 and we need to conduct deeper investiga-
tions to identify the kind of requests and how they can be handled in a more effective
way. Overall, we can see that even with these slow-requests, the completion time for
the creation of 500 VMs is competitive with respect to SQLAlchemy/MySQL as illus-
trated by Table 8. In other words, some API functions have a more significant impact
than others on the VM creation time.

Backend configuration Redis MySQL
1 node 322 298
4 nodes 327 -
4 nodes + repl 413 -

Table 8: Time used to create
500 VMs on a single cluster
configuration (in sec.)

Networking penalties

As we target the deployment of an OpenStack infrastructure over a large number
of geographical sites linked together through the Internet, the quantity of data ex-
changed is an important criterion for the evalution of our solution. In particular, as
data is stored in the key/value store with an object structure, it requires a serializa-
tion/deserialization phase when objects are stored/queried. To enable this serializa-
tion, the addition of some metadata is required, which leads to a larger data footprint
and thus a larger amount of data exchanged between database and OpenStack nodes.

To determine wether the level of network-overhead is acceptable or not, network-
ing data has been collected during the previous experiments. Table 9 compares the
total amount of data exchanged over network depending of the database configura-
tion that has been used. As MySQL does not store serialized objects, i.e., objects are
serialized on the client-side by the ORM, only raw data is exchanged over the net-
work. We, thus, consider the single node MySQL as the reference solution, which
has been measured at 1794MB. Our solution deployed over a single Redis node ex-
changes 2190MB, which means that the networking overhead related to the combina-
tion of ROME and Redis is estimated around 22%. Doing the same experiment with
a 4-node Redis cluster, without data replication, leads to a 33% networking overhead
compared to a single MySQL node. Finally, when the data replication is enabled with
one replica, the amount of data exchanged over the network is 76% higher than with-
out replication.

Because those values cumulates the network traffic overall, it is not possible to an-
alyze whether the replacement of SQLAlchemy/MySQL by Rome/Redis leads to ad-
ditional traffic between the controller/compute and the DB nodes. To answer such

105

Table 9: Amount of
data exchanged over the

network (in MBytes)

Backend configuration Redis MySQL
1 node 2190 1794
4 nodes 2382 -
4 nodes + repl (1 replica) 4186 -

a question, we used the iftop 4 tool, and gathered information about the origin and
destination of TCP/IP messages exchanged during the creation of VMs. Figure 50 de-
picts the data exchanges in function of the origin (horizontal axis) and the destination
(vertical bars), with varying database configurations. For example, on the first bar, the
green area corresponds to the in network of controller nodes where the source is the
master node.

Regarding the exchanges between the different kinds of nodes, we observe that
there is no significant variation between the three scenarios. The only variation con-
cerns the DB nodes (Figures 50a and 50b). This confirms that the networking over-
head depicted in Table 9 comes from the DB nodes. Finally, Figure 50c confirms that
most of the overhead observed when enabling data replication is also caused by ad-
ditional data exchanged between database nodes. This enables us to conclude that
using Rome/Redis in place of SQLAlchemy/MySQL is acceptable from the network
viewpoint.

Figure 50: Amount of data
exchanged per type of nodes,

varying the DB configura-
tion (Y-axis scales differ).

(a) Single centralized DB (b) 4 nodes Redis cluster without
replication

(c) 4 nodes Redis cluster with
replication (1 replica)

9.3.2 Multi-site Scenarios

The second experiment we performed consisted in evaluating a single OpenStack de-
ployment spread over several locations. Our goal was to compare the behavior of a
single MySQL OpenStack with the advised Galera solution and our Rome/Redis pro-
posal. Figure 48 depicts how the nodes have been configured for each scenario. While
the deployment of a single MySQL node is a non sense in a production infrastructure
as discussed before, evaluating this scenario enabled us to get an indication of the
maximum performance we can expect. Indeed, in this scenario, there is no synchro-
nization mechanism and consequently no overhead related to communications with
remote DB nodes. Moreover, conducting such an experiment at large scale enabled
us to see the limit of such a centralized approach.

Regarding the experimental methodology, distinct locations (i.e., clusters) have been
emulated by adding latency between group of servers thanks to the TC Unix tool. This
enables us to ensure reproducibility between experiments. Each cluster contains 1
controller node, 6 compute nodes, and one DB node when needed. Scenarios includ-
ing 2, 4, 6, and 8 clusters have been evaluated, leading to infrastructures composed of
up to 8 controllers and 48 compute nodes in total. The latency between each cluster
has been set to 10 ms and then 50 ms.

We evaluate the stress induced on the controllers when provisioning and booting
500 VMs at the same time. VM provisioning queries are fairly distributed amongst
the controllers.

4 http://www.ex-parrot.com/pdw/iftop/

106

271	 263	
229	

223	
209	

139	 123	

422	

2199	

2011	

1811	
1988	

723	

427	
341	

302	268	
203	 184	

759	

0	

500	

1000	

1500	

2000	

2500	

2	 4	 6	 8	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	loca>ons	

ROME+Redis	(10ms)	
MySQL	(10ms)	
MySQL+Galera	(10ms)	
ROME+Redis	(50ms)	
MySQL	(50ms)	

Due to synchronization issues,
MySQL+Galera values with 50 ms
delay are absent.

Figure 51: Time to create 500
VMs with a 10ms and 50ms
inter-site latency

Figure 51 presents the observed times. As expected, increasing the number of clus-
ters leads to a decrease of the completion time. This is explained by the fact that a
larger number of clusters means a larger number of controllers and compute nodes
to handle the workload. The results measured with a 10ms latency show that our ap-
proach takes a rather constant time to create 500 VMs, which stabilizes around 220
seconds whatever the number of sites involved in the experiments. Although a single
MySQL node scales up to 6 locations, the performance degrades from 8 locations. In
this case, the single MySQL performs 89% slower than our approach and the advised
Galera solution is 891% slower than our approach. With a 50ms inter-cluster latency,
the difference between Redis and MySQL is accentuated in the 8 clusters configura-
tion, as MySQL is 151% slower than our Redis approach.

RegardingGalera, it is noteworthy that important issues related to synchronization
issues appear with a 50 ms latency, preventing the collection of trustable results. Such
pathological behaviors are due to 1) the high latency between clusters and 2) the burst
mode we used to create the 500 VMs.

To summarize, in addition to tackling the distribution issue, the couple Rome/Re-
dis enables OpenStack to be scalable: the more controllers are taking part to the de-
ployment, the better performance.

9.3.3 Compatibility with Advanced Features

The third experiment aimed at validating the correct behavior of existing OpenStack
mechanisms while using our Rome/Redis solution. Indeed, in order to minimize
the intrusion in the OpenStack source code, modifications have been limited to the
nova.db.api component. This component can be considered as the part of Nova
that has the most direct interaction with the DB. Limiting the modification to the
source code of this component should enable us to preserve compatibility with exist-
ing mechanisms at higher level of the stack. To empirically validate such an assump-
tion, we conducted experiments involving multi-site and the usage of host-aggregate
(a.k.a., availability-zone) mechanism (one advanced mechanism of OpenStack that en-
ables the segregation of the infrastructure). Similarly to the previous experiments,
our scenario involved the creation of 500 VMs in parallel on a multi-sites OpenStack
infrastructure deployed on top of Rome/Redis. Two sets of experiments were con-
ducted: a set where each node of a same geographical site was member of a same host
aggregate (that is the same availability zone) and a second set of experiments involving
flat multi-site OpenStack (i.e., without defining any availability zone). Being compat-
ible with the host-aggregate feature is important because as previously mentioned in
our flat approach, any controller can be involved in any provisioning request.

Experimental results show that the host-aggregate/availability-zone mechanism
behaves correctly on top of our proposal: VMs are correctly balanced according to

107

the locations where they have been started while the flat multi-site deployment led to
a non uniform distribution with respectively 26%, 20%, 22%, 32% of the created VMs
for a 4-location experiment.

9.4 Summary

Proposing a software solution to manage “in network” Cloud Computing infrastruc-
tures is a key challenge of our community. In this chapter, we presented our view on
how such a software stack could be designed by leveraging the OpenStack software
suite. As a proof-of-concept, we presented a revised version of the Nova service that
uses our ROME library to store states of the OpenStack services in Redis, a P2P key/-
value store system. We discussed several experiments validating the correct behav-
ior of our prototype and showed promising performance when operating 8 locations
with a single decentralized OpenStack instance.

Our ongoing activities focus on two aspects. First, we are integrating similar changes
in other OpenStack core services such as Glance and Neutron.

Second, we study how it can be possible to restrain the visibility of some objectsma-
nipulated by the different controllers. Indeed, having low level mechanisms such as a
global bus or a key/value system spread WANwide can be source of networking over-
heads: our POC manipulates objects that might be used by any instance of a service,
no matter where it is deployed. We are investigating how some objects could benefit
from a restrained visibility: If a user has build an OpenStack project (tenant) that is
based on few sites, appart from data-replication, there is no need for storing objects
related to this project on external sites. Restraining the storage of such objects ac-
cording to visibility rules would save network bandwidth and reduce overheads. We
are in particular investigating whether network pooling strategies such as the ones
proposed in Cassandra (Lakshman and Malik, 2010) may be more appropriate to the
geo-distribution of the infrastructure.

As future work, we plan to evaluate the relevance of the newSQL emerging tech-
nology (Pavlo and Aslett, 2016). NewSQL systems are appealing since they would
allow the gathering of “the best of both worlds” - SQL and NoSQL - by distribut-
ing the data while keeping strong properties on the stored datas. Although they are
supposed to support natively the MySQL protocol (meaning that switching from a
MySQL database to a NewSQL should be very simple), current implementation 5

only support a subset of the MySQL protocol. Our objective is to evaluate to what
extent, this technology can be used for OpenStack core-services that require ACID
properties.
A version of our Proof-of-concept is available on public git repositories:
Rome code - https://github.com/BeyondTheClouds/rome
Revised nova code (Liberty based) - https://github.com/BeyondTheClouds/nova.

Finally, I underline that this work has been presented at the SpringOpenStack sum-
mit in 2016 6 before being published (Lebre, Pastor, Simonet, et al., 2017). This pre-
sentation enabled us to exchange with the OpenStack foundation and to take part to
different discussions/working groups. For instance, we have been taking part in the
performance team since this date. We perform in particular performance evaluations
in order to identify major bottlenecks in the OpenStack Vanilla code. To this aim,
we designed the EnOS framework that is introduced in the next chapter. I also high-
light that we have set up a new working group dedicated to the massively distributed
use-case 7. Being involved in such actions is important as it allows the community to
identify complementary actions and move forward faster.

5 https://github.com/cockroachdb/cockroach or https://github.com/pingcap/tidb
6 A Ring to Rule them All: Revising Openstack Internals to Operate Massively Distributed Clouds (Austin,

April 2016).
7 https://wiki.openstack.org/wiki/Massively_Distributed_Clouds

108

https://github.com/BeyondTheClouds/rome
https://github.com/BeyondTheClouds/nova
 https://github.com/cockroachdb/cockroach
https://github.com/pingcap/tidb
https://www.openstack.org/summit/austin-2016/summit-schedule/events/7342/a-ring-to-rule-them-all-revising-openstack-internals-to-operate-massively-distributed-clouds
https://wiki.openstack.org/wiki/Massively_Distributed_Clouds

10Conducting Scientific Evaluations
of OpenStack

By massively adopting OpenStack for operating small to large private and public clouds, the
industry has made it one of the largest running software project, overgrowing the Linux ker-
nel. As discussed in previous chapters, this has been a key element for selecting the OpenStack
software suite for the DISCOVERY initiative.

However, with success comes increased complexity; facing technical and scientific chal-
lenges, developers are in great difficulty when testing the impact of individual changes on
the performance of such a large codebase, which will likely slow down the evolution of Open-
Stack. Thus, we claim it is now time for the scientific community to join the effort and get
involved in the development of OpenStack, like it has been once done for Linux.

In this spirit, we developed EnOS (Cherrueau et al., 2017), an integrated framework
that relies on container technologies for deploying and evaluating OpenStack on any testbed.
EnOS allows researchers to easily express different configurations, enabling fine-grained
investigations of OpenStack services. EnOS collects performance metrics at runtime and
stores them for post-mortem analysis and sharing. The relevance of the EnOS approach
to reproducible research is illustrated by evaluating different OpenStack scenarios on the
Grid’5000 testbed.

While the presentation of EnOS is rather general in the sense that it has been designed
to help researchers/engineers to deal with any kind of OpenStack challenges related to per-
formance evaluations, I highlight that EnOS has been designed following the preliminary
study. Being able to perform reproducible experiments at large scale is a key element for the
Discovery initiative. As discussed at the end of this chapter, EnOS is strongly used in the
DISCOVERY consortium to identify in particular how OpenStack core-services behave in a
WAN context.

10.1 Challenge Description

Although the adoption of Cloud Computing has been largely favored by public offers
(AmazonEC2 andMicrosoft Azure, to name a few), numerous private and public insti-
tutions have been contributing to the development of open-source projects in charge
of delivering Cloud Computing management systems (CloudStack website; OpenNeb-
ula website; OpenStack website). In addition to breaking vendor lock-in, these oper-
ating systems of Cloud Computing platforms enable administrators to deploy and op-
erate private cloud offers, avoiding issues such as data-jurisdiction disputes, latency
constraints, etc.

As mentioned in the previous chapters, the OpenStack software suite has become
the de facto open-source solution to operate, supervise and use a Cloud Computing
infrastructure (OpenStack website). Despite its dynamism that makes whole ecosys-
tem incredibly hard to keep up with, OpenStack has been adopted in a large variety
of areas such as public administrations, e-commerce and science1. Its undeniable suc-
cess and spread urges the scientific community to get involved and contribute to the
OpenStack software in the same way it has been once done for the Linux ecosystem.
A major involvement of our community would enable OpenStack to better cope with

1 See http://superuser.openstack.org/ for further information

109

http://superuser.openstack.org/

ongoing changes in Cloud Computing, such as Fog and Edge Computing and IoT
applications.

To help developers and researchers identify major weaknesses of a complex system
such as OpenStack and to facilitate the evaluation of proposed improvements, we
designed EnOS (Experimental eNvironment for OpenStack). 2 Leveraging container
technologies and “off-the-shelf” benchmarks, EnOS is the first holistic framework
for evaluating OpenStack in a flexible and reproducible way. Its Experimentation-as-
Code vision allows to automate every step of the experimentation workflow, from the
configuration to the results gathering and analysis. In addition, because each service
is isolated in a single container, EnOS is able to express and deploy complex scenarios,
and to evaluate each service individually.

Moreover, EnOS has been designed around pluggable mechanisms that allow re-
searchers and developers to evaluate OpenStack on various infrastructures (testbed
platforms, public and private clouds, all-in-one Virtual Machines), and execute any
benchmarking suite in addition to Rally (Rally web) and Shaker (Shaker web) that are
supported by default. Finally, EnOS comes with visualization tools that provide mul-
tiple synthetic views of the gathered metrics suitable for explanatory and exploratory
experiments.

In this chapter, I give a first overview of the EnOS system. Section 10.2 presents the
different technologies we used to build the EnOS framework. The framework itself
is discussed in Section 10.3. To illustrate the possibility offered by our framework,
I discuss a first series of experiments that have been conducted thanks to EnOS in
Section 10.4. Section 10.5 discusses related work.

Finally Section 10.6 concludes and discusses future research and development ac-
tions.

10.2 Background

To limit the effort in terms of development, EnOS has been built on top of different
technologies that are presented in the following. For further information regarding
OpenStack, we invite readers to refer to Chapters 8 and 9.

10.2.1 DeployingOpenStack and controllingExperiments

Due to the richness and complexity of the OpenStack ecosystem, making the deploy-
ment of OpenStack easy has always been an important topic. Among all the deploy-
ment solutions that are available, we chose to use Kolla (Kolla web). Kolla provides
production ready containers and deployment tools for operating OpenStack infras-
tructures. In Kolla, each OpenStack service is encapsulated with its dependencies in a
dedicated container. Container images can be built on demand, stored and used dur-
ing the deployment. Kolla features many default behaviors, allowing quick prototyp-
ing, but they are fully customizable: vanilla or modified versions of OpenStack can be
installed, deployment topologies can be adapted to the user’s needs and configuration
of all the services can be changed. To perform remote actions such as deploying soft-
ware components, Kolla uses the Ansible deployment engine (Ansible web). Ansible
gathers hosts on groups of machines on which specific tasks are applied. This group
mechanism in play is very flexible and thus allows alternative deployment topologies
to be specified.

10.2.2 Enos Default Benchmarks

Measuring the performance of a cloud infrastructure in a rigorous and comparable
way is an important challenge for our community. Although the EnOS abstractions

2 https://github.com/BeyondTheClouds/enos.

110

https://github.com/BeyondTheClouds/enos

allow end-users to plug any custom benchmarks as discussed later on, EnOS comes
with two open source benchmarks by default: Rally and Shaker.

Rally

Rally is the official control-plane benchmark suite for OpenStack; it injects API re-
quests to running services. Extensive benchmarks are allowed by two concepts : the
Runner (e.g., the number of times a request is performed or how many parallel threads
are used to perform the requests), the Context (e.g., how many users and tenants must
be used for the injection)

Shaker

Shaker is a framework for data plane testing of OpenStack. It currently targets syn-
thetic benchmarks execution (for instance iperf3 (iPerf web), flent (Flent web)) on
top of instances. Shaker supports the definition and the deployment of different in-
stances and network topologies. The possible scenarios include extensive evaluation
of network capabilities of an OpenStack cloud.

10.2.3 Monitoring and Gathering Metrics

Analysis of OpenStack is mostly based on metrics generated during the experiments
and relies on three components: metrics agents, a metrics collector and a metrics vi-
sualization service. Those components are loosely coupled, allowing for alternatives
to be plugged in when necessary. In the current implementation, metric agents are
cAdvisor (cAdvisor web) and collectd (collectd web). They are responsible for sending
metrics from hosts to the collector. Metrics can be enabled or disabled at will through
the metrics agents configuration files. The Metrics collector relies on the InfluxDB
timeseries optimized database (InfluxDB web). Finally, the visualization is delivered
by Grafana (Grafana web), a dashboard composer.

10.3 EnOS

Evaluating the OpenStack software suite can be divided into four logical phases. The
first phase consists in getting raw resources; the second one deploys and initializes
the selected version of OpenStack over these resources; the third invokes the bench-
marks to be executed; finally, the fourth analyzes results of the evaluation. To help
in tackling all these phases, we developed EnOS (Cherrueau et al., 2017; Cherrueau
et al., 2016), a holistic approach for the evaluation of OpenStack. After presenting
the resource description language that has been designed to configure EnOS, this sec-
tion describes how each phase has been implemented. In particular, how EnOS can
address performance evaluations for any infrastructure by abstracting fundamental
principles of each phase.

10.3.1 EnOSDescriptionLanguage for Flexible Topologies

The description of the resources to acquire as well as the mapping of the different ser-
vices on top of those resources is made with a YAML resource description language.
This language offers a very flexible mechanism that lets EnOS end-users specify and
evaluate OpenStack performance over a large set of topologies. However, OpenStack
is made of numerous services and writing this description is tedious. For this reason,
EnOS reuses Kolla service groups to gather many OpenStack services under the same
logical name, which drastically reduces the description size. For instance, the small
description in Figure 52a describes a simple deployment topology. This description

111

Figure 52: EnOS Resources
Description Examples

resources:
network: 1
compute: 2

(a) General description

resources:
paravance:

network: 1
econome:

compute: 2

(b) Extended version for Grid’5000

says: “provide one resource for hosting network services and two others for hosting compute
services”.

In the context of EnOS, a resource is anything running a Docker daemon and that
EnOS can SSH to. This could be a bare-metal machine, a virtual machine, or a con-
tainer resource according to the testbed used for conducting the experiments.

Moreover, we emphasize that the language is resource provider dependent in order
to handle infrastructure specificities. For instance, on Grid’5000, the language has
been extended to specify the name of physical clusters where resources should be
acquired, as depicted in Figure 52b. In this description, the paravance cluster (located
in Rennes) will provide resources for the network services and the econome cluster
(located in Nantes) will provide resources for the compute nodes.

Isolating a service on a dedicated resource is as simple as adding its name to the
description. For instance, adding rabbitmq: 1 at the end of the description on Fig-
ure 52a tells EnOS to acquire a dedicated resource for the AMQP bus. Henceforth,
the bus will no longer be part of the network resource but deployed on a separate
resource at the deployment phase. Obviously, it is possible to do the same for the
database, nova-api, glance, neutron-server…

Scaling a service simply requires to increase the number of resources allocated to
this service into the description. For instance, increasing the value of rabbitmq: 1
to rabbitmq: 3 tells EnOS to acquire three dedicated resources for the AMQP bus.
Henceforth, the deployment phase will deploy a cluster composed of three RabbitMQ.

These two characteristics of the language allow a very flexible mechanism to both
isolate and scale services.

10.3.2 EnOS Workflow

The following describes the four steps that are achieved by EnOS.

Getting Resources Phase

Calling enos up launches the first phase that acquires the resources necessary for the
deployment ofOpenStack. To get these resources, EnOS relies on the aforementioned
description and the notion of provider. A provider implements how to get resources
on a specific infrastructure and thusmakes this job abstract to EnOS.With suchmech-
anism, an operator can easily evaluate OpenStack over any kind of infrastructure by
implementing the related provider. A provider can also be given by the support team
of an infrastructure, independently of any particular OpenStack evaluation project.
In other words for each testbed, an extended version of the EnOS DSL and a provider
should be available. Currently, EnOS supports two kinds of infrastructure; the first
one gets bare-metal resources from the Grid’5000 testbed ; the second one uses a VM
based on Vagrant (Vagrant web).

We emphasize that additional drivers for any other system can be easily imple-
mented in less than 500 lines of Python code.

The output of the first phase is a list of addresses which reference resources, to-
gether with the name of the OpenStack services to deploy over each resource. This
way, EnOS will be able to initiate a SSH connection to these resources during the next
phase and deploy the requested OpenStack services.

112

Deploying and Initializing OpenStack Phase

Calling enos init deploys and initializes OpenStack with Kolla. Concretely, EnOS
uses the list of resources and services provided by the previous phase and writes them
into a file called the inventory file. Kolla then uses this file to deploy, in a containerized
manner, OpenStack services on the correct resources.

The Kolla tool runs eachOpenStack service in an isolated container which presents
a huge advantage for collecting metrics such as CPU, memory, and network utiliza-
tion. Indeed, in addition to isolation, container technologies offer fine-grained re-
source management and monitoring capabilities (Xavier et al., 2013). This means it
is possible to collect the current resource usage and performance information, what-
ever the container runs, through a standard API, and hence offers to EnOS a generic
metrics collection mechanism that stands for every OpenStack service. Under the
hood, EnOS relies on cAdvisor (See Section 10.2.3) to implement this generic collec-
tion mechanism.

Running Performance Evaluation Phase

Calling enos bench injects workloads to stress the platform. By default, EnOS comes
with Rally and Shaker frameworks. However, the EnOS abstractions allow end-users
to plug any custom benchmarks like for instance the recent SPECCloud Benchmark.3.

A workload in EnOS is composed of scenarios that will be run in sequence. Each
scenario description is specific to the underlying benchmarking tool but EnOS will
know how to run it. In the case of Shaker or Rally parameterized scenarios are possi-
ble adding more flexibility to the execution.

Analysing the Evaluation Phase

Calling enos backup generates all components needed for the analyses of the perfor-
mance evaluation.

Metrics gathering is twofold. First, EnOS collects general metrics (CPU/memory
usage, network utilization, opened sockets…). Second, it is able to store specific statis-
tics offered by the benchmarking suite used. The former relies on a set of agents
whose role is to send metrics to a collector. The latter is specific to the benchmarking
suite that is executed and occurs during the backup phase. Similarly to the previous
section, integrating custom benchmarking tools may require extending EnOS to re-
trieve the relevant reports.

EnOS allows general metrics to be observed in real-time during the experiment.
Preconfigured dashboards are indeed accessible through a Web interface. EnOS’s
backup gathers a larger source of information since they include configuration files,
logs of OpenStack services, all the collected metrics and all the reports generated by
the benchmarking suite used. EnOS can then build a virtual machine image embed-
ding all these data and tools to allow post-mortem exploration.

10.4 Experiments

To illustrate how operators and developers can use EnOS to identify limiting services
through the exploration of general metrics, we conducted a first series of evaluations
to study how OpenStack behaves when the number of compute nodes scales up to
1,000. Experiments have been executed on the Grid’5000 paravance cluster.

We deploy an OpenStack cloud multiple times with EnOS and vary the number of
compute nodes from 100 to 1,000 between two deployments. The OpenStack code
was based on the Mitaka release. The “fake driver” was chosen as virtualisation driver
at the compute level to increase the density of compute nodes on a single physical ma-
chine. We achieve to deploy 1,000 nova-compute “fake driver” on 20 physicalmachines.

3 SPEC CloudTM IaaS 2016

113

https://www.spec.org/cloud_iaas2016/

Table 10: Average CPU usage
of OpenStack services while
varying the number of com-

pute nodes (in number of cores).

Nb. of compute nodes 100 200 500 1,000

Nova Conductor 1.22 2.00 3.68 7.00
HAProxy 0.11 0.18 0.33 0.49
RabbitMQ 0.98 1.65 3.11 5.00
MariaDB 0.03 0.06 0.13 0.21

Table 11: Maximum RAM
usage of OpenStack services
while varying the number of
compute nodes in megabytes.

Nb. of compute nodes 100 200 500 1,000

Nova Conductor 2.47 2.47 2.45 2.47
HAProxy 6.27 6.32 7.04 8.71
RabbitMQ 1,628 2,580 5202 11,520
MariaDB 502 546 570 594

Two other physical machines were used to host Control and Neutron groups respec-
tively. The fake driver is an in-memory hypervisor that performs mostly the same
routine tasks to maintain the state of its local –fake– instances except for neutron-
server. The latter service is thus out of the scope of the current evaluation.

Metrics are collected for one hour without performing any request on the deployed
system. EnOS enables us to inspect these metrics per service. Table 10 and 11 present
respectively the CPU and RAM consumption of representative services during this
idle period. The observed CPU consumption is very small, except for the Nova Con-
ductor service that interfaces all Nova services with the MariaDB database. This in-
formation is valuable for the OpenStack community as it clearly shows that there
is room for improvement to reduce the consumption of the nova-conductor ser-
vice (for 1,000 nodes, the current code requires the equivalent of 7 cores while the
compute nodes are idle). For the RAM consumption, an important increase is ob-
served for RabbitMQ that is heavily used for communications between services like
nova-conductor and nova-compute. Table 12 presents the maximum number of
connections for RabbitMQ and MariaDB. It clearly shows that the increased RAM
usage is linked to network usage: the number of open connections on the RabbitMQ
container grows indeed at the same rate as memory usage. Moreover, the number of
connections opened by RabbitMQ can be explained by the fact that, even in idle state,
OpenStack is maintaining several permanent connections with each Nova and Neu-
tron agents. This leads to the conclusion that RabbitMQ will be hard to scale beyond
this limit without reviewing the communication patterns in use. To further explain
this increase in resource usage, we export from EnOS the number of database queries
performed each second by MariaDB.

Table 12: Maximum number
of simultaneous open connec-
tions for OpenStack services
while varying the number of
compute nodes (thousands).

Nb. of compute nodes 100 200 500 1,000

RabbitMQ 1.5 2.93 6.89 13.5
MariaDB 79 85 120 170

The number of SELECT queries performed each second for the one-hour period is
plotted in Figure 53. We observe that the average number of queries increases linearly
with the number of nodes. More importantly, from the figure, we observe periodic
spikes. These spikes are due to periodic tasks run by Nova services and Neutron
agents. They are indeed reporting periodically their states in the database. UPDATE
queries follow the same pattern but are not plotted here. Note that the reporting
interval is configurable and may be decreased in the configuration file at the cost of
decreasing the consistency of the state stored in the database.

This evaluation demonstrates how OpenStack can be studied with EnOS as a black-
box and how complex mechanisms involving multiple services can be explored.

114

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (seconds)

0

100

200

300

400

500

600

S
E
LE

C
T
 q

u
e
ri

e
s

100
200
500
1,000

Figure 53: Number of SQL
queries per second executed by
MariaDB while varying the
number of compute nodes. Hori-
zontal lines show the average for
each series.

10.5 Related Work

The evaluation of OpenStack can be achieved either by the control or the data plane
side.

As previously highlighted, several control plane evaluations have been performed (Litvin-
ski and Gherbi, 2013; Schmidt et al., 2016). However, they have been investigated us-
ing ad-hoc frameworks that prevent researchers to reproduce them. For instance, the
authors of (Litvinski and Gherbi, 2013) reviewed the behavior of the Nova Scheduler
using specific and deprecated tools 4 on Nova Computes.

Data plane evaluations have suffered from the same problem. For instance, differ-
ent OpenStack network components were compared in (Callegati et al., 2014) using
deprecated tools named Rude and Crude 5. Additionally, an ad-hoc framework based
on perl and bash scripts has been proposed for network evaluation (Karacali and
Tracey, 2016).

Many studies have investigated the challenges of evaluating complex infrastruc-
tures such as distributed systems (Buchert et al., 2015) and IaaS clouds (Iosup, Pro-
dan, and Epema, 2014). Four challenges can be extracted from these studies: the
ease of experimenting, the replicability (replay an experiment in the same conditions),
the reproducibility (experiments can be launched on different infrastructures), the
control of the parameter space and the experiment scalability. By embracing the
Experimentation-as-Code vision and by choosing a pluggable design, EnOS should be
able to offer a sustainable method for evaluating OpenStack by tackling these four
challenges. Although the current code base only integrate two benchmark suites,
namely Rally (Rallyweb) and Shaker (Shaker web), attractive tools such as PerfKit (Per-
fKit Benchmarker web) and CloudBench (Silva et al., 2013) can be easily invoked to
provide a large panel of synthetic and real-world workloads.

Among the different actions we know, Browbeat (Browbeat - Performance monitor-
ing and testing of OpenStack web) is the only OpenStack project whose goals closely
match those of EnOS. It provides indeed a set of Ansible playbooks to run workloads
on OpenStack and to analyze the result metrics. The workloads are generated by
Rally, Shaker or PerfKit Benchmarker (PerfKit Benchmarker web) and the metric visu-
alization is done by services such as collectd, grafana or ELK (Elasticsearch, Logstash,
Kibana web). However, compared to EnOS, Browbeat requires that the operator sets
a functional OpenStack with TripleO (TripleO web) (i.e., OpenStack On OpenStack).
TripleO is an OpenStack project to deploy two clouds. The first one is a deployment
cloud (named undercloud), and is used to set up tunable workload overclouds on which

4 KRASH: Reproducible CPU Load Generation for Linux.
5 RUDE & CRUDE: Real-time UDP Data Emitter & Collector for RUDE

115

https://krash.ligforge.imag.fr/
http://rude.sourceforge.net/

Browbeat runs its benchmarks. This deployment phase adds a significant difficulty
for researchers who desire to evaluate OpenStack releases. Moreover, it constraints
the researcher to evaluate OpenStack on top of an OpenStack cloud whereas EnOS
is testbed agnostic.

10.6 Summary

With a community that gathers more than 5,000 people twice a year at a single lo-
cation, the OpenStack software suite has become the de facto open-source solution
to operate, supervise and use Cloud Computing infrastructures. While it has been
mainly supported by key companies such as IBM, RedHat and more recently Google,
we claim that distributed computing scientists should now join the effort to help the
OpenStack consortium address the numerous technical and scientific challenges re-
lated to its scalability and reliability. Similarly to what our scientific community has
been doing for Linux, the OpenStack software suite should benefit from scientific
guidance. However, diving into OpenStack and understanding its intricate internal
mechanisms is a tedious and sometimes too expensive task for researchers.

To allow academics, and more generally the OpenStack consortium to identify is-
sues, propose counter-measures, and validate code improvements, we presented in
this paper the EnOS framework. Thanks to container technologies and the use of
“off-the-shelf” benchmarks, EnOS is the first holistic approach for evaluating Open-
Stack in a controlled and reproducible way. We illustrated the relevance of EnOS by
analyzing how OpenStack behaves at different scales. This experiment helps in iden-
tifying services which will become bottlenecks (e.g., RabbitMQ, nova-conductor)
with a large number of compute nodes. An important aspect for our objective of op-
erating Fog/Edge infrastructures.

Similarly to the previous action (see Chapter 9), this work strengthened our rela-
tionships with the OpenStack community. As an example, EnOS has been used to
conduct several experiments in the context of the OpenStack performance working
group (OpenStack Performance Documentation web). Concretely, we evaluated Open-
Stack workability and performance at large scale by analysing a 1000 nodes cloud
emulation on top of Grid’5000. Results have been presented in the Barcelona Open-
Stack summit in October 2016. ??Chasing 1000 nodes Scale (OpenStack Summit,
Barcelona, Oct 2016)

I should highlight that EnOS has been recently extended in order to allow Re-
searchers/Engineers to enforce network emulation in terms of latency and bandwidth
limitations. 6 Thanks to this feature, we can emulate different network topologies
(e.g., LAN vs WAN) and evaluate how OpenStack core-services behave. Current ex-
periments are related (i) to the evaluations of different message bus solutions that can
replace the current RabbitMQ solution, which does not scale well, and (ii) to identify
network requirement in the case of WAN infrastructures. Conducting these experi-
ments is a major concern for the DISCOVERY initiative and more generally for tel-
cos that target the deployment of Fog and Edge Computing infrastructures. We will
present major results in the OpenStack Summit in Boston in May 2017. 7

As mid-term actions, we plan to extend EnOS with the new OpenStack Profiler
tool. This will help researchers investigating in details performance issues by analyz-
ing the execution traces of any OpenStack functionality.

The current version of EnOS is available on a public git repository:https://github.
com/BeyondTheClouds/enos.

Finally, I would like to underline that OpenStack is only one example of such large
software projects that can benefit from the involvement of our scientific community.
The approach pursued by EnOS can be easily extended to other complex software

6 Enos document - Network Emulation.
7 Toward Fog Edge and NFV Deployments: Evaluating OpenStack WANwide (Boston, May 2017).

116

https://github.com/BeyondTheClouds/enos
https://github.com/BeyondTheClouds/enos
http://enos.readthedocs.io/en/latest/network-emulation/index.html
https://www.openstack.org/summit/boston-2017/summit-schedule/events/17952/toward-fog-edge-and-nfv-deployments-evaluating-openstack-wanwide

stacks. The only requirement is to get containerized versions of said software. This
trend is expected to grow, looking for instance at the Docker Hub repository (Docker
Hub web).

117

11Ongoing and Future Work: A
Software Stack for Fog/Edge
Infrastructures

Fog and Edge computing infrastructures can be considered as a new generation of
Utility Computing that have been proposed as an alternative to the current Cloud
Computing facilities. The main idea is to deploy smaller data-centers at the edge of
the backbone in order to bring Cloud Computing resources closer to the end-usages.
While a couple of works illustrated the advantages of such infrastructures in partic-
ular for Internet of Things, Mobile Edge Computing and Network Function Virtu-
alization applications, the question of how to operate such widely geo-distributed
infrastructures still remains opens.

However, designing a well-suitedmanagement system is a challenging task because
Fog/Edge infrastructures significantly differ from traditional cloud systems regard-
ing heterogeneity, dynamicity and the potential massive distribution of resources and
networking environments. While clouds are placed on few sites and rely on high per-
formance servers and networks, Fog/Edge Computing infrastructures are deployed
across a significant number of sites. Each site may have its own hardware specifics
and network topology with different bandwidth and latencies characteristics. More-
over, a significant part of resources can join and leave the infrastructure according to
the service usage, failures, policies and maintenance operations.

Because the deployment of Fog/Edge Computing infrastructures is expected to in-
crease over the next years, conducting research in this area is timely and key for indus-
try and academia worldwide. In particular, it is crucial for our community to quickly
propose models, abstractions and algorithms that will enable operators as well as end-
users to supervise, and reciprocally take the advantage of, Fog/Edge Computing in-
frastructures.

In this part, we have presented the vision I have been promoting since 2013 (Bertier
et al., 2014) and discussed preliminary results regarding how such a new generation
of Utility Computing infrastructure can be deployed and controlled:

• In Chapter 8, we have given an overview of the DISCOVERY project, an open-
science initiative I have proposed and that I have been leading for the three last
years. The originality of DISCOVERY lies in the way of designing a system in
charge of operating a massively geographically distributed cloud. The system
we envision can be viewed as a distributed operating system, manipulating Vir-
tual Machines in a geo-distributed infrastructure. The major difference with
respect to the state of the art is related to our bottom-up approach: instead
of designing a system in charge of orchestrating independent cloud instances
(a.k.a., brokering approaches), we target to revise and extend mechanisms of
cloud software stacks with P2P and self-* techniques. Using such design prin-
ciples for establishing the foundation mechanisms of a cooperative cloud man-
agement system will be a major breakthrough compared to current manage-
ment solutions. It is noteworthy that this proposal follows the work we did
around DVMS (see Chapter 3). To mitigate the development effort and favor
the transfer of our research to the industry, we chose to achieve this by using
OpenStack.

119

The DISCOVERY initiative is being mainly supported since 2015 by Inria and
Orange Labs and will last at least until 2019. It gathers about 20 Researcher-
s/Engineers/PhD Candidates that are working on different mechanisms that
are mandatory to manipulate virtualized environments WANwide as well as
new software abstractions to support the development of new cloud services,
which will benefit from Fog/Edge characteristics.

• Chapter 9 presents a proof of concept of a first-class Internet-scale IaaS man-
ager. Specifically, we have described how we revised the Nova service (the
OpenStack core-service in charge of managing VMs) with a decentralized key/-
value store in place of the centralized SQL database. Although the development
guidelines of OpenStack services encourage the shared nothing principle, the
message bus and the fact that objects are persisted in shared databases limit
the scalabilty of the system. While P2P solutions have been proposed in the
literature and a ZeroMQ driver is available in the OpenStack ecosystem, there
were no correct solution to distribute the databases. By implementing a dedi-
cated library that enables to replace the SQL backend by a NoSQL one, we suc-
ceeded to distribute Nova over several geographical sites. We have discussed
several experiments validating the correct behavior of our prototype and have
shown promising performance when operating 8 locations with a single decen-
tralized OpenStack instance. AS previously underlined, this work enabled us
to exchange with the OpenStack foundation and to take part in different discus-
sions/working groups. Those exchanges conducted us to set up a new working
group that deals specifically with the massively distributed use-case.1

• Chapter 10 is not directly related to the DISCOVERY target. In fact, it presents
an overview of the EnOS framework. A tool we have implemented to make our
investigations on OpenStack easier: With a software stack that relies on tens
of services, including more than 3 millions lines of code for the core-services
alone 2, diving into the OpenStack code is a tedious and often daunting task.
EnOS is a free software framework that leverages container technologies and
“off-the-shelf” benchmarks for automating reproducible evaluations of Open-
Stack in a flexible and extensible way. Thanks to EnOS, researchers and devel-
opers alike can now evaluate the performance of distinct OpenStack deploy-
ment scenarios, and compare the collected results, identify limitations, pro-
pose counter-measures, and validate code improvements. We illustrated the
relevance of EnOS through a first series of experiments on top of Grid’5000.
Those experiments aimed at analyzing how OpenStack behaves at different
scales. This has helped us identify services which will become bottlenecks (e.g.,
RabbitMQ, nova-conductor) with a large number of compute nodes. To the
best of our knowledge, EnOS is the first holistic approach for evaluating Open-
Stack. That is, it has been designed with the Experimentation-as-Code vision:
every step of the experimentation workflow, from the configuration to the re-
sults gathering and analysis, can be automated. Although EnOS has been de-
signed with OpenStack in mind, I should underline that the concepts that have
been proposed are relevant for any kind of complex software stack. The only
requirement is to get containerized versions of said software. This trend is ex-
pected to grow, looking for instance at the Docker Hub repository.

Each of these activities is ongoing and will last at least until 2019. It is important
to understand that revising a complete software stack such as OpenStack is a huge
task that goes far beyond a single researcher. It is actually possible to start at least
one Phd on each of the core-services of an IaaS manager and to evaluate proposals by
implementing them in the OpenStack framework.

1 https://wiki.openstack.org/wiki/Massively_Distributed_Clouds
2 https://www.openhub.net/p/openstack.

120

https://wiki.openstack.org/wiki/Massively_Distributed_Clouds
https://www.openhub.net/p/openstack

In addition to the short-term perspectives that have been highlighted at the end of
each section, I plan to address the following challenges during the next three years:

• Monitoring Services – Delivering a distributed version of cloud management
systems will not be sufficient for allowing developers to benefit from all oppor-
tunities of massively distributed cloud platforms. In addition to locality con-
siderations, a Fog/Edge cloud manager should offer the possibility to monitor
contextual information that might be available on the different locations. Con-
cretely, developers should be able to program and deploy their own probes to
monitor and collect all the information that might be relevant for them. Such
information is valuable for specifying deployment/reconfiguration constraints
and to develop advanced adaptation scenarios in order to satisfy for instance
the so well-known Service Level agreements. Monitoring large-scale infras-
tructures is an important challenge of distributed computing and several solu-
tions have been proposed (Fatema et al., 2014). However, none of them has
been designed to fit the Fog/Edge Computing requirements. In addition to
being static in the sense that you cannot reconfigure them on demand, they
rely on centralized persistent storage systems that are not suited to a massively
distributed infrastructure such as the ones we target. Through a Phd Grant ob-
tained in the context of Inria/Orange joint Lab, we have been working on this
challenge since 2016. The Phd subject consists in proposing a framework in
charge of managing the probes life cycle (deployment, configuration, collect of
information and removal) for Fog/Edge Computing infrastructures. The objec-
tive is twofold because in addition to enriching the capabilities from the devel-
oper point of view, we expect to use such a service for the internal mechanisms
of the revised version of OpenStack designed in the context of DISCOVERY.

• Installation andUpgrade Process –As discussed, an IaaSmanager such asOpen-
Stack is a complex and tedious ecosystem composed of tens of services includ-
ing millions of lines of code released on 6-month cycles. In a Fog/Edge context
where those services will be distributed throughout all sites –like we did with
Nova– it will become impractical for administrators to deploy and upgrade the
services on-demand and with the current System Configuration Tools (De-
laet, Joosen, and Van Brabant, 2010). Hence models and mechanisms for de-
ployment and reconfiguration of services in an autonomous manner will be
paramount. Those systems must be capable of automatically installing and up-
grading any service without impacting the execution of hosted applications;
this process will require some computation and data to be relocated elsewhere.
I recently proposed to address this challenge with Dr. Helene Coullon who re-
cently joined the ASCOLA research group and Dr. Dimitri Pertin, currently
Post-doctorate researcher in the DISCOVERY initiative.

• AdvancedVMPlacement Strategies –Although several contributions have been
proposed around the efficient provisioning of VMs on cloud federations (place-
ment/scheduling (Tordsson et al., 2012), the contributions have been limited
by either using the least common denominator of the functionality available in
different clouds or not being able to interact directly with the native cloud re-
source management system. Instead, by enabling higher-level services (i.e., at
the application level) to interact with lower-level mechanisms (i.e., the internal
mechanisms in charge of manipulating physical resources in each site), it will
be possible to provide new placement and auto-scaling methods with full con-
trol over resource management decisions. This tight integration will also allow
dynamic reconfiguration at higher layers, each time lower-level mechanisms
detect significant events (disconnections, failures, new resources). Therefore,
the techniques to be developed should be able to globally optimize scheduling
and scaling decisions based on location of users, data, network and all informa-
tion related to the physical infrastructure. This work will leverage my previous

121

activities around (i) the DVMS proposal (Quesnel, Lebre, and Südholt, 2013)
(described in Chapter 3) and (ii) the synergy between low level and higher level
services (Oliveira et al., 2012) (not addressed in this manuscript). Delivering
such high-level IaaS service has to the best ofmy knowledge not been addressed
yet. I plan to address this aspect with Dr. Frédéric Desprez and the support of
a new post-doctorate researcher that should be hired in the context of the DIS-
COVERY project by the end of 2017.

• Energy & Sustainability Aspects – By not requiring the construction of new
facilities in isolated places – which means building huge structures, resulting
in wasted amount of time and energy to bring all the needed resources there –
and by leveraging resources closer to end-users, the model envisioned by DIS-
COVERY represents a serious opportunity to develop a more sustainable Util-
ity Computing model. However, there is to the best of my knowledge, no study
that really answer the question whether Fog/Edge infrastructures would en-
able to reduce the energy footprint of the Internet. Moreover being smaller,
Fog/Edge sites are better candidates to renewable energies. Similarly to the
follow-the-moon/follow-the sun approach, the use of several sites spread across
a large territory will offer opportunities to use various energy sources (solar
panels, wind turbines, etc.). This opportunity (Berral et al., 2014), will be en-
abled by the native capability of our cloud management system to federate dis-
tinct sites and accommodate entire DCs going periodically offline. Since the
whole infrastructure will be supervised by a single system, implementing ad-
vanced load-balancing strategies will be simplified compared to a federated ap-
proach. I plan to address these challenges, starting in particular with the energy
cost and renewable opportunities analysis with Dr. Anne Cecile Orgerie and
the support of a new post-doctorate researcher that should be hired within the
DISCOVERY context by the end of 2017. This activity should also be strength-
ened in the next years through the CPER SeDuCe (a French funding program)
supervised by Prof. Jean Marc Menaud from the ASCOLA research group. The
SeDuCe project (Sustainable Data Centers: Bring Sun, Wind and Cloud Back
Together), aims to design an experimental infrastructure dedicated to the study
of data centers with low energy footprint within the Grid’5000 framework.

• Cloud storage – Cloud storage should be revised to mitigate the overhead of
transferring data from their sources to the different locations where they are
needed. Programmers could for example want to favor a pulling mode, as op-
posed to a pushing one. Nowadays, data is mostly uploaded to remote clouds
without considering whether the induced data movements will be of any use in
the future. A challenge for storage services like the famousAmazon S3 (Palankar
et al., 2008) (or Swift in the case of OpenStack) is to enable data to stay as close
to their source as possible, and be transferred on longer distances only when
necessary. Similarly, developers will be able to deliver Hadoop-like strategies
where computations are launched close to data sources. Such mechanisms will
be shortly mandatory to handle the huge amount of data the Internet of Things
will generate.
Although they have not been presented in this manuscript, I should highlight
that I have already started to conduct activities in this area with Dr. Benoit
Parrein { (Confais, Lebre, and Parrein, 2016; Confais, Lebre, and Parrein, 2017).
Moreover, I will strengthen this activity with the new ANR GRECO project
(2017-2020). The goal of the GRECO project is to develop a reference resource
manager for cloud of things. One of the principal challenges will be to handle
the execution context of the environment in which the cloud of things oper-
ate. Indeed, unlike classical resourcemanagers, connected devices imply to con-
sider new kinds of networks, execution supports, sensors and new constraints
like human interactions. The great mobility and variability of these contexts

122

make the modeling of the quality of service more difficult. To face this chal-
lenge, we intend to innovate in designing scheduling and data management
systems that will use machine learning techniques to automatically adapt their
behavior to the execution context. The GRECO project is built upon a collabo-
ration between an enterprise (Qarnot Computing) and two french research in-
stitutes: the Laboratoire d’Informatique de Grenoble (LIG) and Inria for which
I am the main representative. Although all results achieved in GRECO will be
beneficial for DISCOVERY (and reciprocally), I will mainly focus on the data
management aspect in GRECO.

All these research directions are already well defined with concrete ongoing or
planned actions. I propose to address them with academic and industry colleagues
coming from either the distributed computing community or the network one. I am
convinced that the cloud/network convergence is achievable only by gathering a set
of people from diverse backgrounds. More generally, I hope that activities such as
the ones conducted within the DISCOVERY framework will contribute to fill the
gap between both communities. This connection has already started with the differ-
ent activities around Software-Defined Networking and Network as a Service (a.k.a.,
Network Function Virtualization) and may result in a new community dealing with
Utility Computing challenges where network and computational concerns are fully
integrated. Such a new community may leverage the background of both areas to pro-
pose new systems that are more suitable to accommodate the needs of our modern
societies. I highlight that I have been co-leading the virtualization and cloud action of
the French GDR RSD since 2015. This action aims to favor this cloud/network tech-
nology convergence across the French Research community.3 As previously high-
lighted, I am also deeply involved in the OpenStack community through different
international working groups that deal with NFV and Fog/Edge challenges.

In the mid and long term, my expectation is to work with my colleague through a
new research group focusing on challenges related to the management and advanced
usages of next generations ofUtility Computing infrastructures (i.e.,. Fog, Edge, Clouds
and beyond), notably by delivering appropriate system abstractions at low and high
levels in addition to addressing cross cutting dimensions such as energy or security.
The strong separation between network and data centers does not exist anymore.
Computers, Smartphones, IoT …, all constitute the modern Internet that is at the
heart of our society in all the activities we develop. It changes our way of thinking
about the world, working, training, and entertaining. This (r)evolution is made pos-
sible by the progressive deployment of sophisticated service infrastructures and its
articulation with the various players. Indeed, the platforms that constitute this widely
distributed digital environment are complex, heterogeneous, dynamic and of variable
dimensions, from units with a few “cores” to computing facilities made up of millions
of processing units. They also rely on software components and applications consist-
ing of a wide variety of “bricks”, which are assembled according to different needs and
make extensive use of virtualization for the mobilized resources(compute, network,
storage).

Started in 2015, the goal of DISCOVERY has been defined to propose an unified
and advanced cloud management systems. This system should allow operators to
deploy and supervise a cloud computing platform across several sites while offering
to end-users/developers appropriated abstractions to embrace the opportunities of-
fered by the geo-distribution of resources. However, those objectives should be now
extended to go beyond the edge and take into account all devices that will compose
next generation of ICT infrastructures, from the IoT sensors up to the largest data
centers. Taking into account the whole infrastructure is mandatory to propose an
efficient and well-suited software stack that will favor the emergence of new kinds
of applications related to the Industrial Internet (smart cities, connected cars, cloud
manufacturing, e-health services …), sometimes also referred to as Internet of Skills.

3 https://rsd-cloud.lip6.fr/rescom17/.

123

https://rsd-cloud.lip6.fr/rescom17/

Finally, I started this manuscript by discussing the importance of being involved
in communities, notably in the Grid’5000 consortium. I want to conclude it also by
stressing the importance of such facilities for my research and more generally for all
Computer and Network scientists that perform experiment-driven research. Next
generations of the Internet will result in a system of systems whose availability, relia-
bility and performance will become major challenges that we will have to face. Like
Physicians that rely on dedicated facilities such as the Large Hadron Collider to val-
idate hypothesis, the deployment of a Large-Scale Instrument for the digital science
community is proven of utmost importance. Withouth such a facility, it will impos-
sible to assess, compare and validate the scientific results. For a few months, we
have been working on a new proposal that will benefit from the experience of the
Grid’5000 4 and FIT 5 communities. Entitled SILECS, this project aims at provid-
ing a large instrument for research in distributed computing and networks, which
will enable us to tackle all the scientific challenges of Internet of Things, data cen-
ters, and the networks connecting them. This instrument will offer a multi-platform
experimental infrastructure (HPC, Cloud, Big Data, Software Defined Storage, IoT,
wireless, Software Defined Network …) capable of exploring the infrastructures that
will be deployed tomorrow and assist researchers and industrial about how to design,
build and operate a multi-scale, robust and safe computer system. The findings pro-
duced by the community need to be validated in complex environments where the
real physical technology is instrumental to give credibility and raise the level of con-
fidence in the research results. Likewise, the data produced by the experiments are
valuable and will be processed and archived in order to support benchmarked and re-
producible studies. This concern is well-recognized by the research community and
is also related to reproducible research concerns raised and discussed as a hot topic
lately.

4 http://www.grid5000.fr
5 https://www.iot-lab.info

124

http://www.grid5000.fr
https://www.iot-lab.info

Cited Publications of the Author

Balouek, Daniel, Alexandra Carpen Amarie, et al. (2012). “Adding virtualization capa-
bilities to the Grid’5000 testbed.” In: International Conference on Cloud Computing
and Services Science. Springer, pp. 3–20 (cit. on pp. 8, 143).

Balouek, Daniel, Adrien Lebre, and Flavien Quesnel (2013). “Flauncher and DVMS–
Deploying and SchedulingThousands of VirtualMachines onHundreds ofNodes
DistributedGeographically.” In:ACM/IEEE International Scalable Computing Chal-
lenge (SCALE 2013), held in conjunction with CCGrid’2013 (cit. on pp. 4, 5, 26, 32,
139).

Bertier, Marin et al. (2014). “Beyond the clouds: How should next generation utility
computing infrastructures be designed?” In:Cloud Computing. Springer, pp. 325–
345 (cit. on pp. 4, 8, 86–88, 119, 143).

Cherrueau, Ronan-Alexandre et al. (2016). ENOS: a Holistic Framework for Conduct-
ing Scientific Evaluations of OpenStack. Technical Report RT-0485. Inria Rennes
Bretagne Atlantique ; Nantes (cit. on p. 111).

Cherrueau, Ronan-Alexandre et al. (2017). “Toward a Holistic Framework for Con-
ducting Scientific Evaluations ofOpenStack.” In: Proceedings of the 17th IEEE/ACM
International Symposium Cluster Grid and Cloud Computing (short papers track, CC-
GRID 2017), To appear (cit. on pp. 7, 86, 109, 111, 142).

Confais, Bastien, Adrien Lebre, and Benoı̂t Parrein (2016). “Performance Analysis of
Object Store Systems in a Fog/Edge Computing Infrastructures.” In: Proceedings
of the 8th IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2016), pp. 294–301 (cit. on p. 122).

Confais, Bastien, Adrien Lebre, and Benoı̂t Parrein (2017). “An Object Store Service
for a Fog/Edge Computing Infrastructure based on IPFS and Scale-out NAS.”
In: Proceedings of the 1st IEEE International Conference on Fog and Edge Computing
(ICFEC 2017, collocated with CCGRID), To appear (cit. on pp. 4, 96, 122).

Gallard, Jérôme, Adrien Lebre, and Christine Morin (2010). “Saline: Improving best-
effort job management in grids.” In: Proceedings of 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP 2010). IEEE,
pp. 575–579 (cit. on pp. 7, 143).

Gallard, Jérôme, Adrien Lebre, Christine Morin, et al. (2012). “Architecture for the
next generation system management tools.” In: Future Generation Computer Sys-
tems 28.1, pp. 136–146 (cit. on pp. 8, 143).

Hermenier, Fabien, Adrien Lebre, and Jean-Marc Menaud (2010). “Cluster-wide con-
text switch of virtualized jobs.” In: Proceedings of the 4th International ACM Work-
shop on Virtualization Technologies in Distributed Computing (colocated with HPDC
2010). ACM, pp. 658–666 (cit. on pp. 4, 5, 11, 13, 15, 43, 139).

Hirofuchi, Takahiro and Adrien Lebre (2013). “Adding virtual machine abstractions
into SimGrid: A first step toward the simulation of infrastructure-as-a-service
concerns.” In: Proceedings of the 3rd Internationl Conference on Cloud and Green
Computing (CGC 2013). IEEE, pp. 175–180 (cit. on p. 4).

Hirofuchi, Takahiro, Laurent Pouilloux, and Adrien Lebre (2013). “Adding a live mi-
grationmodel into simgrid:Onemore step toward the simulation of infrastructure-
as-a-service concerns.” In: Proceedings of the IEEE 5th International Conference on
Cloud Computing Technology and Science (CloudCom 2013). Vol. 1. IEEE, pp. 96–
103 (cit. on p. 4).

Hirofuchi, Takahiro, Laurent Pouilloux, and Adrien Lebre (2015). “SimGrid VM: Vir-
tual Machine Support for a Simulation Framework of Distributed Systems.” In:
IEEE Transactions on Cloud Computing Journal (cit. on pp. 4, 6, 47, 68, 74, 140).

125

Lebre, Adrien (2010). How Virtualization Changed the Grid Perspective? Invited talk -
From Grid to Cloud workshop, Ecole Normale Superieure de Lyon, France. (Cit.
on pp. 8, 143).

Lebre, Adrien, Paolo Anedda, et al. (2011). “Discovery, beyond the clouds.” In:Euro-Par
2011: Parallel Processing Workshops - Lecture Notes in Computer Science. Springer,
pp. 446–456 (cit. on pp. 4, 44, 87).

Lebre, Adrien, Jonathan Pastor, Anthony Simonet, et al. (2017). “Revising OpenStack
to Operate Fog/Edge Computing infrastructures.” In: Proceedings of the 5th IEEE
International Conference on Cloud Engineering (IC2E 2017), Vancouver, France, To
appear (cit. on pp. 4, 7, 86, 100, 108, 142).

Lebre, Adrien, Jonathan Pastor, and Mario Südholt (2015). “VMPlaceS: A Generic
Tool to Investigate and Compare VM Placement Algorithms.” In: European Con-
ference on Parallel Processing - Lecture Note in Computer Science. Springer, pp. 317–
329 (cit. on pp. 6, 47, 70, 141).

NGuyen, Thuy Linh and Adrien Lebre (2017). “Virtual Machine Boot Time Model.”
In: Proceedings of 25th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP 2017). IEEE, to appear (cit. on pp. 4, 6, 47, 68,
78, 82, 141).

Oliveira, Frederico Alvares de et al. (2012). “Self-management of applications and sys-
tems to optimize energy in data centers.” In:Achieving Federated and Self-Manageable
Cloud Infrastructures: Theory and Practice. IGI Global, pp. 372–394 (cit. on p. 122).

Pastor, Jonathan et al. (2014). “Locality-Aware Cooperation for VMScheduling in Dis-
tributed Clouds.” In: European Conference on Parallel Processing - Lecture Notes in
Computer Science. Springer, pp. 330–341 (cit. on pp. 4, 5, 11, 139).

Quesnel, Flavien and Adrien Lebre (2011). “Cooperative dynamic scheduling of vir-
tual machines in distributed systems.” In: Euro-Par 2011: Parallel Processing Work-
shops - Lecture Notes in Computer Science. Vol. 7156. Springer, pp. 457–466 (cit. on
pp. 4, 5, 26, 139).

Quesnel, Flavien, Adrien Lebre, Jonathan Pastor, et al. (2013). “Advanced validation
of the dvms approach to fully distributed vm scheduling.” In: Prooceedings of the
11th IEEE International Symposium on Parallel and Distributed Processing with Ap-
plications (ISPA-13). IEEE, pp. 1249–1256 (cit. on pp. 4, 5, 11, 26, 30, 31, 39, 43,
139).

Quesnel, Flavien, Adrien Lebre, and Mario Südholt (2013). “Cooperative and reactive
scheduling in large-scale virtualized platforms with DVMS.” In: Concurrency and
Computation: Practice and Experience 25.12, pp. 1643–1655 (cit. on pp. 4, 5, 11, 26,
31, 34, 43, 69, 72, 73, 82, 122, 139).

Simonet, Anthony, Adrien Lebre, and Anne-Cécile Orgerie (2016). “Deploying Dis-
tributed Cloud Infrastructures: Who and at What Cost?” In: Proceedings of the
Intercloud Workshop 2016 (co-located with IEEE International Conference on Cloud
Engineering), pp. 178–183 (cit. on pp. 89, 91, 99).

126

Bibliography

Ahmed, Arif and Ejaz Ahmed (2016). “A survey on mobile edge computing.” In: Pro-
ceedings of the 10th IEEE International Conference on Intelligent Systems and Control
(ISCO 2016), pp. 1–8 (cit. on p. 88).

Anedda, Paolo et al. (2010). “Suspending, migrating and resuming HPC virtual clus-
ters.” In: Future Generation Computer Systems 26.8, pp. 1063–1072 (cit. on p. 14).

Ansible (web). https://www.ansible.com (cit. on p. 110).
Armbrust, Michael et al. (2010). “A view of cloud computing.” In: Communications of

the ACM 53.4, pp. 50–58 (cit. on p. 4).
Atzori, Luigi, Antonio Iera, and Giacomo Morabito (2010). “The internet of things: A

survey.” In: Computer networks 54.15, pp. 2787–2805 (cit. on pp. 7, 88, 142).
Barbagallo, Donato et al. (2010). “A bio-inspired algorithm for energy optimization in

a self-organizing data center.” In: Self-Organizing Architectures. Springer, pp. 127–
151 (cit. on pp. 41, 42).

Barham, Paul et al. (2003). “Xen and the art of virtualization.” In: ACM SIGOPS oper-
ating systems review. Vol. 37-5. ACM, pp. 164–177 (cit. on p. 4).

Barker, Adam et al. (2014). “Academic Cloud Computing Research: Five Pitfalls and
Five Opportunities.” In: HotCloud (cit. on p. 69).

Berral, Josep L et al. (2014). “Building green cloud services at low cost.” In: Proceedings
of the 34th IEEE International Conference on Distributed Computing Systems (ICDCS
2014). IEEE, pp. 449–460 (cit. on p. 122).

Bloomfield, Victor A (2014). Using R for Numerical Analysis in Science and Engineering.
Vol. 1. CRC Press (cit. on p. 72).

Bobroff, Norman, Andrzej Kochut, and Kirk Beaty (2007). “Dynamic placement of
virtual machines formanaging sla violations.” In: Integrated Network Management,
2007. IM’07. 10th IFIP/IEEE International Symposium on. IEEE, pp. 119–128 (cit.
on pp. 14, 23).

Bolze, Raphaël et al. (2006). “Grid’5000: A large scale and highly reconfigurable ex-
perimental grid testbed.” In: International Journal of High Performance Computing
Applications 20.4, pp. 481–494 (cit. on pp. 8, 143).

Bonomi, Flavio et al. (2012). “Fog computing and its role in the internet of things.”
In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM, pp. 13–16 (cit. on pp. 7, 88, 100, 142).

Browbeat - Performance monitoring and testing of OpenStack (web). https://github.
com/openstack/browbeat (cit. on p. 115).

Buchert, Tomasz et al. (2015). “A survey of general-purpose experiment management
tools for distributed systems.” In: Future Generation Computer Systems 45, pp. 1–
12. url: https://hal.inria.fr/hal-01087519 (cit. on p. 115).

Buyya, Rajkumar and Manzur Murshed (2002). “Gridsim: A toolkit for the model-
ing and simulation of distributed resource management and scheduling for grid
computing.” In: Concurrency and computation: practice and experience 14.13-15,
pp. 1175–1220 (cit. on p. 81).

Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N Calheiros (2010). “Intercloud: Utility-
oriented federation of cloud computing environments for scaling of application
services.” In: Proocedings of the International Conference on Algorithms and Architec-
tures for Parallel Processing (ICA3PP’10). Springer, pp. 13–31 (cit. on pp. 88, 91).

cAdvisor (web). https://github.com/google/cadvisor (cit. on p. 111).
Calheiros, Rodrigo N et al. (2011). “CloudSim: a toolkit for modeling and simulation

of cloud computing environments and evaluation of resource provisioning algo-

127

https://www.ansible.com
https://github.com/openstack/browbeat
https://github.com/openstack/browbeat
https://hal.inria.fr/hal-01087519
https://github.com/google/cadvisor

rithms.” In: Software: Practice and experience 41.1, pp. 23–50 (cit. on pp. 44, 50, 66,
78, 81).

Callegati, Franco et al. (2014). “Performance of Network Virtualization in cloud com-
puting infrastructures: The OpenStack case.” In: Proceedings of the 3rd IEEE In-
ternational Conference on Cloud Networking (CloudNet 2014). IEEE, pp. 132–137
(cit. on p. 115).

Cartlidge, John and Dave Cliff (2013). “Comparison of Cloud Middleware Protocols
and Subscription Network Topologies using CReST, the Cloud Research Simu-
lation Toolkit-The Three Truths of Cloud Computing are: Hardware Fails, Soft-
ware has Bugs, and People Make Mistakes.” In: CLOSER, pp. 58–68 (cit. on p. 78).

Casanova, Henri, Arnaud Legrand, and Martin Quinson (2008). “Simgrid: A generic
framework for large-scale distributed experiments.” In: Proceedings of the 10th In-
ternational Conference on Computer Modeling and Simulation (UKSIM 2008). IEEE,
pp. 126–131 (cit. on pp. 6, 44, 50, 62, 81, 140).

Cascading OpenStack (web). https://wiki.openstack.org/wiki/OpenStack_
cascading_solution (cit. on p. 92).

Scaling solutions for OpenStack (web). http://docs.openstack.org/openstack-
ops/content/scaling.html (cit. on p. 92).

Church, Kenneth, Albert G Greenberg, and James R Hamilton (2008). “On Deliver-
ing Embarrassingly Distributed Cloud Services.” In: HotNets, Usenix. Citeseer,
pp. 55–60 (cit. on p. 94).

Clark, Christopher et al. (2005). “Live Migration of Virtual Machines.” In: Proceedings
of the 2nd ACM/USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI ’05), pp. 273–286 (cit. on pp. 13–15, 54).

CloudStack (website). http://cloudstack.apache.org (cit. on pp. 43, 44, 69, 109).
collectd (web). https://collectd.org/ (cit. on p. 111).
Dabek, Frank et al. (2004). “Vivaldi: A decentralized network coordinate system.” In:

ACM SIGCOMM Computer Communication Review. Vol. 34. 4. ACM, pp. 15–26
(cit. on pp. 5, 36, 40, 140).

David Cappuccio Gartner, Inc. (2015). Apply a Self-Contained Solution to Micro Data
Centers. REPORT G00268769 (cit. on p. 88).

DeCandia,Giuseppe et al. (2007). “Dynamo: amazon’s highly available key-value store.”
In: ACM SIGOPS operating systems review 41.6, pp. 205–220 (cit. on pp. 34, 92).

Delaet, Thomas, Wouter Joosen, and Bart Van Brabant (2010). “A Survey of System
Configuration Tools.” In: Proceedings of the 24th Large Installation System Adminis-
tration Conference (LISA 2010). Vol. 10. USENIX, pp. 1–8 (cit. on p. 121).

Docker Hub (web). https://hub.docker.com/explore/ (cit. on p. 117).
Elasticsearch, Logstash, Kibana (web). https://www.elastic.co (cit. on p. 115).
Etsion, Yoav and Dan Tsafrir (2005). “A short survey of commercial cluster batch

schedulers.” In: School of Computer Science and Engineering, The Hebrew University
of Jerusalem 44221, pp. 2005–13 (cit. on p. 14).

Fallenbeck, Niels et al. (2006). “Xen and the art of cluster scheduling.” In: Proceedings
of the 2nd International Workshop on Virtualization Technology in Distributed Com-
puting. IEEE Computer Society, p. 4 (cit. on pp. 4, 14, 22).

Farahnakian, Fahimeh et al. (2014). “Hierarchical vm management architecture for
cloud data centers.” In: Proceedings of the 6th IEEE International Conference on
Cloud Computing Technology and Science (CloudCom 2014). IEEE, pp. 306–311 (cit.
on p. 92).

Fatema, Kaniz et al. (2014). “A survey of Cloud monitoring tools: Taxonomy, capa-
bilities and objectives.” In: Journal of Parallel and Distributed Computing 74.10,
pp. 2918–2933 (cit. on p. 121).

Feitelson, Dror G. et al. (1997). “Theory and Practice in Parallel Job Scheduling.” In:
IPPS ’97: Proceedings of the Job Scheduling Strategies for Parallel Processing. Springer-
Verlag, pp. 1–34 (cit. on p. 13).

Feller, Eugen, Christine Morin, and Armel Esnault (2012). “A case for fully decentral-
ized dynamic VM consolidation in clouds.” In: Proceedings of the 4th International

128

https://wiki.openstack.org/wiki/OpenStack_cascading_solution
https://wiki.openstack.org/wiki/OpenStack_cascading_solution
http://docs.openstack.org/openstack-ops/content/scaling.html
http://docs.openstack.org/openstack-ops/content/scaling.html
http://cloudstack.apache.org
https://collectd.org/
https://hub.docker.com/explore/
https://www.elastic.co

Conference on Cloud Computing Technology and Science (CloudCom 2012). IEEE.
Taiwan, pp. 26–33 (cit. on pp. 34, 41).

Feller, Eugen, Louis Rilling, and ChristineMorin (2012). “Snooze: A scalable and auto-
nomic virtual machine management framework for private clouds.” In: Proceed-
ings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012). IEEE Computer Society, pp. 482–489 (cit. on pp. 26, 41,
69, 72, 73, 82, 92).

Feller, Eugen, Louis Rilling, Christine Morin, et al. (2010). “Snooze: a scalable, fault-
tolerant and distributed consolidation manager for large-scale clusters.” In: Pro-
ceedings of the 2010 IEEE/ACM International Conference on Green Computing and
Communications (GreenComm 2010). IEEE Computer Society, pp. 125–132 (cit.
on p. 41).

Fernando, Niroshinie, Seng W Loke, and Wenny Rahayu (2013). “Mobile cloud com-
puting: A survey.” In: Future generation computer systems 29.1, pp. 84–106 (cit. on
pp. 7, 142).

Flent (web). https://flent.org/ (cit. on p. 111).
Foster, Ian and Carl Kesselman (2010). “The History of the grid.” In: Computing 20.21,

p. 22 (cit. on p. 4).
Foster, Ian, YongZhao, et al. (2008). “Cloud computing and grid computing 360-degree

compared.” In: Grid Computing Environments Workshop, 2008. GCE’08. Ieee, pp. 1–
10 (cit. on p. 4).

Frumkin, Michael and Rob F Van der Wijngaart (2002). “Nas grid benchmarks: A tool
for grid space exploration.” In: Cluster Computing 5.3, pp. 247–255 (cit. on p. 20).

Garces-Erice, Luis et al. (2003). “Hierarchical peer-to-peer systems.” In: Parallel Pro-
cessing Letters 13, pp. 643–657 (cit. on p. 35).

Garcia Lopez, Pedro et al. (2015). “Edge-centric Computing: Vision and Challenges.”
In: ACM SIGCOMM Computer Communication Review 45.5, pp. 37–42 (cit. on
p. 88).

Gartner, Inc. (2014). The Impact of the Internet of Things on Data Centers. REPORT (cit.
on p. 88).

Gary Cook, Jodie Van Horn (2013). How Dirty is Your Data ? Greenpeace International
Report (cit. on pp. 7, 87, 142).

Grafana (web). http://grafana.org/ (cit. on p. 111).
Greenberg, Albert et al. (2008). “The Cost of a Cloud: Research Problems in Data

Center Networks.” In: ACM SIGCOMM Computer Communication Review 39.1,
pp. 68–73 (cit. on pp. 88, 91, 94, 99).

Grit, Laura, David Irwin, Varun Marupadi, et al. (2007). “Harnessing virtual machine
resource control for job management.” In: Proceedings of the First International
Workshop on Virtualization Technology in Distributed Computing (VTDC). Citeseer
(cit. on p. 22).

Grit, Laura, David Irwin, Aydan Yumerefendi, et al. (2006). “Virtual machine hosting
for networked clusters: Building the foundations for” autonomic” orchestration.”
In: Proceedings of the 1st International workshop on Virtualization Technology in Dis-
tributed Computing (VTDC 2006). IEEE, pp. 7–7 (cit. on pp. 14, 17, 22).

Hermenier, Fabien, SophieDemassey, andXavier Lorca (2011). “Bin repacking schedul-
ing in virtualized datacenters.” In: Proceedings of the 17th international conference
on Principles and practice of constraint programming. CP’11. Perugia, Italy: Springer-
Verlag, pp. 27–41 (cit. on pp. 31, 72).

Hermenier, Fabien, Julia Lawall, and Gilles Muller (2013). “Btrplace: A flexible consol-
idation manager for highly available applications.” In: Transactions on dependable
and Secure Computing 10.5, pp. 273–286 (cit. on pp. 24, 31, 139).

Hermenier, Fabien, Xavier Lorca, et al. (2009). “Entropy: a consolidation manager for
clusters.” In: Proceedings of the 2009 ACM SIGPLAN SIGOPS international confer-
ence on Virtual execution environments. ACM, pp. 41–50 (cit. on pp. 5, 6, 13, 14, 16,
17, 20, 25, 43, 69, 72, 82, 139).

129

https://flent.org/
http://grafana.org/

Hintjens, Pieter (2013). ZeroMQ: Messaging for Many Applications. ” O’Reilly Media,
Inc.” (cit. on p. 101).

Hirofuchi, Takahiro, Hidemoto Nakada, et al. (2012). “Reactive cloud: Consolidating
virtual machines with postcopy live migration.” In: Information and Media Tech-
nologies 7, pp. 614–626 (cit. on p. 61).

Houidi, Ines et al. (2011). “Cloud service delivery across multiple cloud platforms.” In:
Proceedings of the IEEE International Conference on Services Computing (SCC 2011),
IEEE, pp. 741–742 (cit. on p. 91).

Huebscher, Markus C and Julie A McCann (2008). “A survey of autonomic comput-
ing—degrees, models, and applications.” In: ACM Computing Surveys 40.3, p. 7
(cit. on pp. 5, 139).

Imbert, Matthieu et al. (2013). “Using the EXECO toolbox to perform automatic and
reproducible cloud experiments.” In: Proceedings of the 1st International Workshop
on UsiNg and building ClOud Testbeds (UNICO, collocated with IEEE CloudCom
2013. Bristol (cit. on pp. 32, 61, 104).

InfluxDB (web). https://www.influxdata.com (cit. on p. 111).
Iosup, Alexandru, Radu Prodan, and Dick Epema (2014). “Iaas cloud benchmarking:

approaches, challenges, and experience.” In: Cloud Computing for Data-Intensive
Applications. Springer, pp. 83–104 (cit. on p. 115).

iPerf (web). https://iperf.fr/ (cit. on p. 111).
Irwin, David E et al. (2006). “Sharing Networked Resources with Brokered Leases.” In:

USENIX Annual Technical Conference, General Track, pp. 199–212 (cit. on p. 22).
Jelasity, Márk and Ozalp Babaoglu (2005). “T-Man: Gossip-based overlay topology

management.” In: International Workshop on Engineering Self-Organising Applica-
tions. Lecture Notes in Articial Intelligence. Springer, pp. 1–15 (cit. on p. 36).

Johnson, David S (1973). “Near-optimal bin packing algorithms.” PhD thesis. Mas-
sachusetts Institute of Technology (cit. on p. 83).

Jussien, Narendra, Guillaume Rochart, and Xavier Lorca (2008). “Choco: an open
source java constraint programming library.” In: CPAIOR’08 Workshop on Open-
Source Software for Integer and Contraint Programming (OSSICP’08), pp. 1–10 (cit.
on p. 19).

Karacali, Bengi and John M Tracey (2016). “Experiences evaluating openstack net-
work data plane performance and scalability.” In: Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS 2016). IEEE, pp. 901–
906 (cit. on p. 115).

Kemme, Bettina and Gustavo Alonso (2010). “Database replication: a tale of research
across communities.” In: Proceedings of the VLDB Endowment 3.1-2, pp. 5–12 (cit.
on p. 102).

Khanna, Gunjan et al. (2006). “Application performance management in virtualized
server environments.” In: Network Operations and Management Symposium, 2006.
NOMS 2006. 10th IEEE/IFIP. IEEE, pp. 373–381 (cit. on p. 23).

Kherbache, Vincent, Eric Madelaine, and Fabien Hermenier (2015). “Scheduling Live-
Migrations for Fast, Adaptable and Energy-Efficient Relocation Operations.” In:
Utility and Cloud Computing (UCC), 2015 IEEE/ACM 8th International Conference
on. IEEE, pp. 205–216 (cit. on pp. 49, 68).

Kivity, Avi et al. (2007). “kvm: the Linux virtual machine monitor.” In: Proceedings of
the Linux symposium. Vol. 1, pp. 225–230 (cit. on p. 54).

Kliazovich, Dzmitry et al. (2010). “GreenCloud: a packet-level simulator of energy-
aware cloud computing data centers.” In: Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, pp. 1–5 (cit. on pp. 67, 78).

Kotsovinos, Evangelos (2011). “Virtualization: Blessing or curse?” In: Communications
of the ACM 54.1, pp. 61–65 (cit. on p. 26).

Krauter, Klaus, Rajkumar Buyya, and Muthucumaru Maheswaran (2002). “A taxon-
omy and survey of grid resource management systems for distributed comput-
ing.” In: Software: Practice and Experience 32.2, pp. 135–164 (cit. on p. 13).

130

https://www.influxdata.com
https://iperf.fr/

Lakshman, Avinash and Prashant Malik (2010). “Cassandra: A Decentralized Struc-
tured Storage System.” In: ACM SIGOPS Operating Systems Review 44.2, pp. 35–
40 (cit. on p. 108).

Lebre, Adrien, Arnaud Legrand, et al. (2015). “Adding storage simulation capacities to
the simgrid toolkit: Concepts, models, and api.” In: Proceedings of the IEEE/ACM
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2015). IEEE, pp. 251–
260 (cit. on pp. 6, 141).

libvirt: The virtualization API. http://libvirt.org (cit. on pp. 55, 58, 64).
Litvinski, Oleg and Abdelouahed Gherbi (2013). “Openstack scheduler evaluation us-

ing design of experiment approach.” In: Proceedings of the 16th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC 2013). IEEE, pp. 1–7 (cit. on p. 115).

Loutas, Nikolaos et al. (2010). “Towards a reference architecture for semantically in-
teroperable clouds.” In: Proceedings of the 2nd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom 2010). IEEE, pp. 143–150 (cit.
on p. 91).

Low, Chinyao, Yahsueh Chen, and Mingchang Wu (2011). “Understanding the deter-
minants of cloud computing adoption.” In: Industrial management & data systems
111.7, pp. 1006–1023 (cit. on p. 4).

Lowe, Scott (2010). Mastering VMware vSphere 4. John Wiley & Sons (cit. on pp. 26,
43).

Marzolla, Moreno, Ozalp Babaoglu, and Fabio Panzieri (2011). “Server consolidation
in clouds through gossiping.” In: World of Wireless, Mobile and Multimedia Net-
works (WoWMoM), 2011 IEEE International Symposium on a. IEEE, pp. 1–6 (cit. on
pp. 41, 42).

Mastroianni, Carlo, Michela Meo, and Giuseppe Papuzzo. “Self-economy in cloud
data centers: Statistical assignment and migration of virtual machines.” In: Pro-
ceedings of the 17th European Conference on Parallel and Distributed Computing (Euro-
Par’11) (cit. on p. 41).

Mijumbi, Rashid et al. (2015). “Network function virtualization: State-of-the-art and
research challenges.” In: IEEE Communications Surveys & Tutorials 18.1, pp. 236–
262 (cit. on p. 88).

Mijumbi, Rashid et al. (2016). “Network function virtualization: State-of-the-art and
research challenges.” In: IEEE Communications Surveys & Tutorials 18.1, pp. 236–
262 (cit. on pp. 7, 142).

Mills, Kevin, James Filliben, andChristopherDabrowski (2011). “Comparing vm-placement
algorithms for on-demand clouds.” In: Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. IEEE, pp. 91–98 (cit. on
p. 67).

Montresor, Alberto and Márk Jelasity (2009). “PeerSim: A scalable P2P simulator.” In:
Proceedings of the 9th International Conference on Peer-to-Peer Computing (P2P’09).
IEEE, pp. 99–100 (cit. on pp. 44, 50).

Moreno-Vozmediano, Rafael, Rubén S Montero, and Ignacio M Llorente (2012). “Iaas
cloud architecture: From virtualized datacenters to federated cloud infrastruc-
tures.” In: Computer 45.12, pp. 65–72 (cit. on pp. 69, 92).

Núñez, Alberto et al. (2012). “iCanCloud: A flexible and scalable cloud infrastructure
simulator.” In: Journal of Grid Computing 10.1, pp. 185–209 (cit. on pp. 67, 78).

Nurmi, Daniel et al. (2009). “The eucalyptus open-source cloud-computing system.”
In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid. IEEE Computer Society, pp. 124–131 (cit. on p. 67).

OpenNebula (website). https://opennebula.org (cit. on pp. 43, 44, 69, 109).
OpenStack (website). http://www.openstack.org (cit. on pp. 43, 44, 69, 88, 93, 100,

109).
Kolla (web). https://wiki.openstack.org/wiki/Kolla (cit. on p. 110).
Rally (web). https://wiki.openstack.org/wiki/Rally (cit. on pp. 110, 115).
Shaker (web). https://github.com/openstack/shaker (cit. on pp. 110, 115).

131

http://libvirt.org
https://opennebula.org
http://www.openstack.org
https://wiki.openstack.org/wiki/Kolla
https://wiki.openstack.org/wiki/Rally
https://github.com/openstack/shaker

Palankar, Mayur R et al. (2008). “Amazon S3 for science grids: a viable solution?” In:
Proceedings of the 2008 international workshop on Data-aware distributed computing.
ACM, pp. 55–64 (cit. on p. 122).

Pavlo, Andrew and Matthew Aslett (2016). “What’s Really New with NewSQL?” In:
ACM SIGMOD Record 45.2, pp. 45–55 (cit. on p. 108).

Peng, Junjie et al. (2009). “Comparison of several cloud computing platforms.” In: Pro-
ceedings of the 2nd International Symposium on Information Science and Engineering
(ISISE 2009). IEEE, pp. 23–27 (cit. on p. 92).

PerfKit Benchmarker (web).http://googlecloudplatform.github.io/PerfKitBenchmarker/
(cit. on p. 115).

OpenStack Performance Documentation (web).http://docs.openstack.org/developer/
performance-docs/ (cit. on p. 116).

Popek, Gerald J and Robert PGoldberg (1974). “Formal requirements for virtualizable
third generation architectures.” In:Communications of the ACM 17.7, pp. 412–421
(cit. on p. 4).

Ratnasamy, Sylvia et al. (2001). “A scalable content-addressable network.” In: Proceed-
ings of the International Conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM ’01). SanDiego, California, USA:
ACM, pp. 161–172 (cit. on p. 27).

Rossi, Francesca, Peter Van Beek, and Toby Walsh (2006). Handbook of constraint pro-
gramming. Elsevier (cit. on pp. 5, 19, 50, 139).

Rouzaud-Cornabas, Jonathan (2010). “A distributed and collaborative dynamic load
balancer for virtual machine.” In: Euro-Par 2010: Parallel Processing Workshops -
Lecture Notes in Computer Science. Springer, pp. 641–648 (cit. on pp. 26, 41).

Rowstron, Antony and Peter Druschel (2001). “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems.” In: Proceedings of
the IFIP/ACM International Conference on Distributed Systems Platforms and Open
Distributed Processing. Vol. 2218. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 329–350 (cit. on pp. 27, 35).

Ruth, Paul et al. (2006). “Autonomic live adaptation of virtual computational environ-
ments in a multi-domain infrastructure.” In: Proceedings of the IEEE International
Conference on Autonomic Computing (ICAC’06). IEEE, pp. 5–14 (cit. on p. 14).

Sarathy, Vijay, PurnenduNarayan, andRaoMikkilineni (2010). “Next generation cloud
computing architecture: Enabling real-time dynamism for shared distributed
physical infrastructure.” In: Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), 2010 19th IEEE International Workshop on. IEEE, pp. 48–53
(cit. on p. 5).

Satyanarayanan, Mahadev et al. (2009). “The case for vm-based cloudlets in mobile
computing.” In: IEEE pervasive Computing 8.4 (cit. on pp. 88, 99).

Schmidt, Anita et al. (2016). “Performance Analysis of an OpenStack Private Cloud.”
In: Proceedings of the 6th International Conference on Cloud Computing and Services
Science (CLOSER 2016), pp. 282–289 (cit. on p. 115).

Schwarzkopf, Malte et al. (2013). “Omega: flexible, scalable schedulers for large com-
pute clusters.” In: Proceedings of the 8th ACM European Conference on Computer
Systems. ACM, pp. 351–364 (cit. on p. 77).

Silva, Marcio et al. (2013). “Cloudbench: Experiment automation for cloud environ-
ments.” In: Proceeding of the IEEE International Conference on Cloud Engineering
(IC2E 2013). IEEE, pp. 302–311 (cit. on p. 115).

Snyder, Bruce, Dejan Bosnanac, and Rob Davies (2011). ActiveMQ in Action. Manning
(cit. on p. 101).

Sotomayor, Borja, Kate Keahey, and Ian Foster (2008). “Combining batch execution
and leasing using virtual machines.” In: Proceedings of the 17th international sym-
posium on High performance distributed computing. ACM, pp. 87–96 (cit. on pp. 4,
8, 14, 22, 143).

132

http://googlecloudplatform.github.io/PerfKitBenchmarker/
http://docs.openstack.org/developer/performance-docs/
http://docs.openstack.org/developer/performance-docs/

Sotomayor, Borja, Rubén Santiago Montero, et al. (2008). “Capacity leasing in cloud
systems using the opennebula engine.” In: Workshop on Cloud Computing and its
Applications. Vol. 3 (cit. on p. 22).

Sotomayor, Borja, Rubén S Montero, et al. (2009). “Virtual infrastructure manage-
ment in private and hybrid clouds.” In: IEEE Internet computing 13.5 (cit. on pp. 4,
26).

Stoica, I. et al. (2003). “Chord: a scalable peer-to-peer lookup protocol for internet
applications.” In: IEEE/ACM Transactions on Networking 11, pp. 17–32 (cit. on
pp. 27, 34, 38).

Svard, Petter et al. (2011). “High performance live migration through dynamic page
transfer reordering and compression.” In: Cloud Computing Technology and Sci-
ence (CloudCom), 2011 IEEE Third International Conference on. IEEE, pp. 542–548
(cit. on p. 61).

Tordsson, Johan et al. (2012). “Cloud brokering mechanisms for optimized placement
of virtual machines across multiple providers.” In: Future Generation Computer
Systems 28.2, pp. 358–367 (cit. on p. 121).

Transaction Processing Performance Council (1994). TPC BENCHMARK B, Standard
Specification Revision 2.0. http://www.tpc.org/tpcb/spec/tpcb_current.
pdf (cit. on p. 56).

TripleO (web). http://tripleo.org/ (cit. on p. 115).
Vagrant (web). https://www.vagrantup.com/ (cit. on p. 112).
Vaquero, Luis M, Luis Rodero-Merino, and Rajkumar Buyya (2011). “Dynamically

scaling applications in the cloud.” In: ACM SIGCOMM Computer Communication
Review 41.1, pp. 45–52 (cit. on p. 26).

Verma, Akshat, Puneet Ahuja, andAnindyaNeogi (2008). “Power-aware dynamic place-
ment of hpc applications.” In: Proceedings of the 22nd annual International Confer-
ence on Supercomputing (ICS’08). ACM, pp. 175–184 (cit. on p. 14).

Wood, Timothy et al. (2009). “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers.” In: Proceedings of the 2009 ACM SIGPLAN
SIGOPS international conference on Virtual execution environments. ACM, pp. 31–
40 (cit. on pp. 14, 17, 23).

Xavier, Miguel G et al. (2013). “Performance evaluation of container-based virtualiza-
tion for high performance computing environments.” In: Proceedings of the 21st
Euromicro International Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP 2013). IEEE, pp. 233–240 (cit. on p. 113).

Xu, Jing, Ming Zhao, and José AB Fortes (2009). “Cooperative autonomic manage-
ment in dynamic distributed systems.” In: Proceedings of Symposium on Self-Stabilizing
Systems. Springer, pp. 756–770 (cit. on p. 41).

Xu, Zhichen,MallikMahalingam, andMagnus Karlsson (2003). “Turning heterogene-
ity into an advantage in overlay routing.” In: Proceedings of the 32nd IEEE Confer-
ence on Computer and Communications (INFOCOM 2003). Vol. 2. IEEE, pp. 1499–
1509 (cit. on p. 35).

Xu, Zhichen and Zheng Zhang (2002). “Building low-maintenance expressways for
p2p systems.” In: Hewlett-Packard Labs, Palo Alto, CA, Tech. Rep. HPL-2002-41 (cit.
on p. 35).

Yazir, Yagiz Onat et al. (2010). “Dynamic resource allocation in computing clouds us-
ing distributed multiple criteria decision analysis.” In: Proceedings of the 3rd Inter-
national Conference on Cloud Computing (CLOUD 2010). Ieee, pp. 91–98 (cit. on
pp. 26, 41).

Zhang, Ben et al. (2015). “The Cloud is Not Enough: Saving IoT from the Cloud.” In:
Proceedings of the 7th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 15). USENIX Association (cit. on pp. 7, 88, 99, 142).

133

http://www.tpc.org/tpcb/spec/tpcb_current.pdf
http://www.tpc.org/tpcb/spec/tpcb_current.pdf
http://tripleo.org/
https://www.vagrantup.com/

Part V

A P P EN D IX

ARésumé long en francais

A.1 Contexte générale

Afin de satisfaire la demande croissante de calcul et de stockage, les systèmes infor-
matiques n’ont cessé d’évoluer. Des super-ordinateurs («mainframes ») à l’avènement
des infrastructures actuelles dites d’informatique en nuage, les évolutions ont été ry-
thmées par les avancées technologiques réalisées depuis les années 1960 dans le do-
maine de la conception des ordinateurs bien évidemment mais également dans celui
des communications. En effet, parce qu’ils permettent de fournir des capacités au
delà de celles pouvant être délivrées par une unique machine, les systèmes informa-
tiques ont évolué dès les années 1990 vers un modèle d’infrastructure distribuée re-
posant sur une interconnexion de plusieurs machines distinctes. Cependant, de part
leur complexité d’administration et d’utilisation, il a fallut attendre près de vingt ans
d’activités de recherche et de transferts technologiques pour démocratiser ces infras-
tructures aussi bien dans les domaines scientifiques qu’industriels.

Parmi les technologies qui ont permis cette adoption massive des infrastructures
distribuées, les technologies de virtualisation système ont joué un rôle clé. La virtual-
isation système peut être vue comme une couche d’abstraction entre le matériel et les
logiciels applicatifs. Cette abstraction permet une division des ressources physiques
proposées par unemachine en plusieurs éléments « virtuels ». Chacun de ces éléments
peut être affecté à la volée à chacune des applications en fonction de leurs besoins,
offrant ainsi une plus grande flexibilité dans la gestion des ressources disponibles.
Parmi les abstractions disponibles, la machine virtuelle est probablement la plus con-
nue. Une machine virtuelle fournit une vision abstraite d’une machine physique avec
sa propre pile logicielle (i.e., un système d’exploitation, des bibliothèques et les appli-
catifs à exécuter). Cette vision plus ou moins réduite des ressources disponibles est
rendue possible grâce à un hyperviseur déployé sur la machine physique. Un hyper-
viseur peut être vue comme un système d’exploitation traditionnel qui exécute des
machines virtuelles en place des processus usuels. En d’autres termes, il est en charge
de superviser et d’exécuter l’ensemble des machines virtuelles qui sont présentes sur
la machine physique. L’utilisation des machines virtuelles offre plusieurs avantages
du point de vue des utilisateurs. Tout d’abord, elle permet de configurer la totalité de
la pile logicielle présente dans la machine virtuelle et de sauvegarder cette pile logi-
cielle de manière pérenne. Ce mécanisme permet de redémarrer cet environnement
« virtualisé » à chaque fois que nécessaire sans se préoccuper de l’endroit où la ma-
chine virtuelle sera démarrée. De plus, en s’appuyant sur la granularité offerte par
la machine virtuelle pour développer les applications (en particulier des applications
n tiers), il est possible d’adapter le nombre de machines virtuelles de manière à sat-
isfaire la qualité de service attendue. Le terme d’élasticité est souvent employé pour
décrire ce phénomène d’adaptation. Enfin, l’utilisation des machines virtuelles offre
une isolation plus forte entre les différents services qui sont exécutés simultanément
sur une même machine physique. En effet, l’hyperviseur doit assurer qu’une machine
virtuelle ne puisse en aucun cas accéder aux ressources affectées aux autres machines
virtuelles co-localisées sur la même machine physique.

Bien que les technologies de virtualisation aient joué un rôle important dans l’adop-
tion quasi-unanime aujourd’hui du modèle d’informatique en nuage, notamment sur

137

les solutions « Infrastructure-as-a-Service1 » (IaaS), elles ont également conduit à de
nouveau défis scientifiques et techniques, notamment sur les aspects qui ont trait à la
gestion des ressources offertes par l’infrastructure (c.-à-d. l’ensemble des serveurs de
calcul, de stockage et des liens réseau) ou encore à la gestion du cycle de vie des ma-
chines virtuelles (création, mise en pause, redémarrage et migration) au travers cette
même infrastructure.

Dans ce manuscrit je présente une synthèse des principaux travaux que j’ai réal-
isés autour ces problématiques depuis mon arrivée en 2008 dans l’équipe ASCOLA.
Plus précisément, je me concentre sur trois axes dans lesquels j’ai réalisés diverses
contributions. Le premier axe aborde la problématique du placement dynamique des
machines virtuelles. Le second traite de la mise en place d’abstractions et de modèles
exactes permettant l’étude via simulation des défis relatifs à la gestion et l’utilisation
de machines virtuelles dans une infrastructure distribuée à large-échelle. Enfin, le
troisième et dernier axe décrit une nouvelle génération d’infrastructure visant à cor-
riger les problèmes intrinsèques au modèle d’informatique en nuage reposant sur un
nombre limité de centres de données à large échelle. Cet autour de cet axe et des
perspectives que je souhaite y donner pour les prochaines années que je conclus ce
document.

A.2 Contributions Scientifiques

Bien que chacune des contributions ait été traitée de manière indépendante dans ce
manuscrit, l’intersection entre ces travaux est non nulle. Après avoir étudier pendant
près de 5 ans la problématique du placement dynamique de machines virtuelles dans
des infrastructures distribuées, nous nous sommes confrontés à la difficulté de valider
nos propositions à large échelle. Ces validations sont nécessaires au vu de la taille en
des infrastructures actuelles (des dizaines de milliers de machines physiques pour des
centaines de milliers de machines virtuelles). C’est pour répondre à ce défi que j’ai dé-
cidé de m’intéresser aux bibliothèques de simulations et de proposer des extensions
nous permettant d’évaluer les différentes propositions algorithmiques de placement
de machines virtuelles proposées par la communauté. Abordé la problématique de la
gestion des ressources physiques ainsi que des machines virtuelles sous les angles du
massivement distribué et du large-échelle m’a emmené à considérer tout d’abord puis
à argumenter en faveur d’une nouvelle génération d’informatique utilitaire massive-
ment distribuée.

A.2.1 Placement dynamique de machines virtuelles
2008 - 2015

Les operateurs d’infrastructure en nuage ont rapidement été confrontés à une explo-
sion du nombre de machines virtuelles. En effet, la souplesse apportée par les ma-
chines virtuelles était telle que les administrateurs et les développeurs se sont mis à
concevoir des applications en considérant lamachine virtuelle comme granularité élé-
mentaire. Le défaut de cette approche est qu’elle conduit rapidement à des problèmes
de sur-utilisation, et réciproquement de famine, pour certains services (une machine
virtuelle exécutant un calcul peu couteux peut utiliser une quantité de ressources
qu’elle n’a plus besoin alors que les performances d’un autre service s’exécutant dans
une autre machine virtuelle peuvent être dégradées faute de ressources disponibles).
Pour limiter ce phénomène, la communauté scientifique a proposé plusieurs solutions
en charge de maximiser l’utilisation de l’infrastructure tout en garantissant la qual-
ité de services pour chacune des machines virtuelles. Parmi les différentes systèmes
disponibles à mon arrivée dans l’équipe ASCOLA, plusieurs de mes collègues travail-

1 Une infrastructure distribuée où les développeurs/utilisateurs peuvent instancier à la demande des ma-
chines virtuelles.

138

laient sur la proposition Entropy (Hermenier, Lorca, et al., 2009). Articulé autour
d’une boucle autonomique (Huebscher and McCann, 2008) et d’un moteur de pro-
grammation par contraintes (Rossi, Van Beek, and Walsh, 2006), le système Entropy
avait pour objectif d’assurer le meilleur taux de consolidation possible dans un cen-
tre de données (i.e.,. trouver le nombre minimal de serveurs physiques permettant
d’exécuter l’ensemble des machines virtuelles présente dans l’infrastructure tout en
garantissant que les ressources demandées soient satisfaites). La première contribu-
tion a consisté en une généralisation des concepts de gestion dynamique desmachines
virtuelles proposées par Entropy. Le mécanisme proposé a permis une gestion du cy-
cle des machines virtuelles au travers une infrastructure distribuée identique à celle
du cycle des processus dans un système d’exploitation standard (Hermenier, Lebre,
andMenaud, 2010). Concrètement, nous avons proposé le concept de changement de
contexte de machines virtuelles à l’échelle d’une grappe informatique. En ne manipu-
lant que des machines virtuelles et en utilisant les fonctionnalités telles que la mise en
pause, le redémarrage et la migration à chaud, il a été possible de résoudre de manière
transparente les problèmes de violation de la qualité de service tout en maximisant
l’utilisation des ressources : la boucle autonomique surveille de manière périodique
l’utilisation effective des ressources et reconfigure la grappe de calcul à chaque fois
que cela est nécessaire en mettant soit en pause certaines machines virtuelles soit en
les relocalisant vers d’autres nœuds physiques. Il est alors possible d’implémenter
n’importe quelle politique de placements (consolidation, équilibrage de charge …) et
laisser le module de changement de contexte faire les opérations nécessaires pour
passer d’une configuration (i.e., un placement de machines virtuelles sur les machines
physiques) à une autre).

Plusieurs perspectives ont été identifiées à la suite de ces travaux. Alors qu’une
partie de mes collègues s’est concentrée sur la spécification et la prise en compte
des dépendances entre les machines virtuelles afin de ne pas appliquer des change-
ments de contextes incorrectes (comme par exemple la mise en place de deux ma-
chines virtuelles sur une même nœud dans un contexte de haute disponibilité (Her-
menier, Lawall, and Muller, 2013)), j’ai choisi de me concentrer sur la problématique
du passage à l’échelle du mécanisme initialement proposé. L’objectif était de pouvoir
appliquer des changements de contexte de machines virtuelles sur des infrastructures
composées de dizaines de milliers de serveurs physiques (et donc de centaines de
milliers de machines virtuelles). Pour y parvenir, nous avons proposé de garder l’ap-
proche par contraintes pour le mécanisme de résolution du problème combinatoire
et de distribuer le processus autonomique en utilisant notamment des mécanismes «
pair à pair ». Nous avons tout d’abord proposé la solution DVMS (Distributed Vir-
tual Machine Scheduler). DVMS permet de placer et de maintenir dynamiquement
et de manière coopérative un ensemble de machines virtuelles sur une infrastructure
à large échelle (Quesnel and Lebre, 2011; Quesnel, Lebre, and Südholt, 2013; Ques-
nel, Lebre, Pastor, et al., 2013; Balouek, Lebre, and Quesnel, 2013). DVMS repose
sur un algorithme construit au dessus d’un anneau qui permet lorsqu’une machine
physique est surchargée (ou sous chargée) de déclencher un processus itératif qui con-
siste à aller de proche en proche afin de trouver un meilleur placement (si le voisin
directe ne peut pas proposer un meilleur placement alors le voisin suivant est inter-
rogé à son tour, e processus itératif prend fin lorsque que un placement correcte et
satisfaisant est trouvé). Cette approche permet de limiter l’espace de recherche à son
minimum, réduisant ainsi le temps nécessaire pour résoudre le problème combina-
toire ainsi que celui pour appliquer le changement de contexte (i.e., l’opération de
reconfiguration). La seconde extension que nous avons proposée, s’est concentrée
sur les notions de localité. L’objectif était de favoriser les changements de contexte
entre les nœuds « proches », en particulier nous souhaitions proposer une solution
pour limiter les reconfigurations impliquant des machines physiques en provenance
de sites géographiques distants (Pastor et al., 2014). Nous avons développé une ab-
straction générique qui permet de réifier les notions de localité au niveau de l’algo-
rithme de placement de machines virtuelles. Dans ces travaux, la notion de localité a

139

été estimée au travers une fonction prenant en compte la latence entre les machines
physiques composant notre infrastructure. En prenant en compte cette information,
l’algorithme peut effectuer le processus itératif précédemment décrit en sélectionnant
les nœuds les plus proches. L’abstraction proposée pour réifier la localité repose sur
le protocole « pair à pair » Vivaldi qui permet de faire correspondre une structure
logique à une topologie physique tout en préservant cette notion de localité (Dabek
et al., 2004). Au dessus de Vivaldi, un algorithme de plus court chemin permet à
chaque nœud de parcourir l’infrastructure de proche en proche. Nous avons évalué
cette proposition en remplaçant le réseau logique de type anneau précédemment util-
isé dans la proposition DVMS avec cette nouvelle brique. Les résultats ont montré
que les opérations inter-sites étaient utilisées qu’en dernier recours (c.-à-d., quand il
n’y avait aucune configuration permettant de satisfaire les besoins de toutes les ma-
chines virtuelles d’un même site et que par conséquent l’ajout de machines physiques
extérieures devient nécessaire).

Des perspectives spécifiques à chacun de ces travaux sont évoquées de manière
plus précise dans le document. Toutefois, de manière plus générale, il est intéressant
de noter qu’ils sont également le point de départ des deux axes de recherches que j’ai
étudiés par la suite. Le premier concerne la difficulté de valider et comparer les straté-
gies de placements disponibles dans la littérature. Le second plus large m’a emmené
à m’interroger sur la pertinence des technologies « pair-à-pair » sur l’ensemble des
sous-services nécessaire à la supervision d’une infrastructure virtualisée (ou de type
informatique en nuage).

Chacune des propositions évoquées ci dessus a donné lieu à des développements
open-sources opérationnels : http://beyondtheclouds.github.ior/DVMS/).

A.2.2 Virtualisation et bibliothèques de simulation
2013 -

Lors de la validation des différentes algorithmes réalisés dans le cadre de la proposi-
tion DVMS, nous avons été confrontés d’une part à la difficulté de conduire des tests
in-vivo2 à large échelle mais également à celle de pouvoir de réaliser des compara-
isons rigoureuses avec les principales solutions proposées par l’état de l’art. En effet,
bien que la problématique du placement des machines virtuelles est un sujet impor-
tant depuis déjà de nombreuses années, la plupart des solutions a été validée soit en
s’appuyant sur des simulateurs ad-hoc soit par des évaluations in-vivo à des petites
échelles. Une telle méthodologie n’est pas suffisante pour permettre d’avancer et de
consolider ces efforts. Tout d’abord, elle ne permet pas d’évaluer les algorithmes dans
des conditions représentatives des systèmes de production composés d’un nombre de
machines physiques important. Ensuite, elle ne permet pas une comparaison juste en-
tre les différentes solutions et donc il est impossible de bien comprendre les avantages
et défauts de chacune.

Le second axe sur lequel j’ai choisi de concentrer des efforts concerne l’extension
de l’outil SimGrid, une bibliothèque dédiée à l’étude d’algorithmes pour les infras-
tructures distribuées à large échelle (Casanova, Legrand, and Quinson, 2008). Bien
que l’outil soit utilisé depuis plusieurs années dans les domaines comme le calcul à
haute performance ou encore l’étude des systèmes « pair-à-pair », SimGrid ne fournis-
sait pas les abstractions nécessaires à l’étude d’algorithmes impliquant des machines
virtuelles. Nous avons donc proposé un ensemble d’extensions permettant de dé-
marrer des centaines de milliers de machines virtuelles via simulation et de les ma-
nipuler comme dans le monde réel (mise en pause, redémarrage et migration) (Hi-
rofuchi, Pouilloux, and Lebre, 2015). Les utilisateurs peuvent exécuter des calculs
ainsi que des communications sur les machines physiques ou virtuelles au travers
l’API historique de SimGrid. Cette caractéristique est un avantage pour tous les util-
isateurs qui souhaiteraient faire une transition vers les infrastructures de type IaaS.

2 En conditions réels – à la différence de in siclo qui signifie par simulation.

140

http://beyondtheclouds.github.ior/DVMS/

Par ailleurs, nous avons intégré un modèle pour la migration à chaud de machines
virtuelles. Cemodèle, qui met enœuvre le mécanisme de pré-copie, calcul demanière
précise le temps nécessaire pour effectuer une opération de migration ainsi que la
quantité de données échangés entre lesmachines physiques et ce tout en tenant compte
des charges relatives aux autres tâches de calcul et de communications s’exécutant sur
l’infrastructure simulée. C’est, à notre connaissance, le premier modèle permettant
de fournir une telle estimation et ce de manière précise.

Il est intéressant de noter que l’ensemble des extensions qui ont trait aux machines
virtuelles a été intégré au code de SimGrid dès la version 3.11 en Mai 2014. Bien que
nous ayons apporté quelques optimisations, les extensions sont toujours présentes et
les interfaces restent inchangées. Il ont notamment permis de construire un outil de
plus haut niveau permettant l’étude de système comme Amazon EC2 ou OpenStack. 3
A noter que je n’ai pas participé au développement de cette surcouche, mon activité
s’est concentrée sur la mise en œuvre de l’outil VMPlaceS (Lebre, Pastor, and Südholt,
2015), brièvement décrit ci-après.

VMPlaceS est un outil dédié à l’évaluation et la comparaison des algorithmes de
placement dynamique de machines virtuelles via simulations. Il fournit plusieurs
abstractions facilitant le développement des algorithmes de placement, l’évaluation
à large échelle ainsi que plusieurs mécanismes pour permettre une analyse automa-
tique des métriques collectées pendant la simulation. La précision de VMPlaceS a
été validée en comparant des résultats obtenus in-siclo et in-vivo pour l’algorithme
centralisée Entropy (Lebre, Pastor, and Südholt, 2015). Nous avons également il-
lustré la pertinence de l’outil en analysant et comparant trois classes d’algorithmes
: centralisée, hiérarchique et distribuée. Cette analyse a été, à notre connaissance, la
première étude comparant de manière automatique plusieurs stratégies de placement
au dessus d’infrastructures composées jusqu’à 1000 machines physiques et 10000 ma-
chines virtuelles.

Pour conclure sur cet axe de recherche, je tiens à souligner que bien que le projet
ANR INFRA SONGS qui a supporté les activités décrites ci dessus soit terminé, je
reste autant que possible impliqué dans la communauté SimGrid (Lebre, Legrand,
et al., 2015). De plus, j’ai récemment débuté une nouvelle série d’expérience ayant
pour objectif la mise en place d’un modèle permettant d’estimer le temps de démar-
rage d’une machine virtuelle (NGuyen and Lebre, 2017). Une majeure partie des
bibliothèques de simulations ignore simplement le temps nécessaire au démarrage
d’une machine virtuelle, considérant que ce dernier est négligeable. Cependant il est
facile de comprendre que cette hypothèse est erronée puisque le démarrage d’une ma-
chine virtuelle demande d’accéder à des ressources (CPU, entrées/sorties disques et
réseaux). Les expériences que nous avons réalisées nous ont permis d’observer que
le démarrage qui prend quelques secondes peut durer plusieurs minutes en fonction
des applications co-localisées sur la machine physique. Nous avons proposé un pre-
mier modèle construit via une régression linéaire de nos observations. Bien que nous
devions finaliser la validation de ce modèle en étudiant plusieurs scénarios tels que
l’utilisation de solutions de stockages distantes, nous espérons pouvoir rapidement
intégrer un premier modèle permettant de prendre en compte le temps de démar-
rage des machines virtuelles, critère prépondérant également dans les algorithmes de
placement.

Comme précédemment les travaux ont donné lieu à des développements open-
source disponible pour SimGrid à l”adresse : http://simgrid.gforge.inria.fr
et pour VMPlaceS à l’adresse : http://beyondtheclouds.github.ior/DVMS/).

3 http://schiaas.gforge.inria.fr.

141

http://simgrid.gforge.inria.fr
http://beyondtheclouds.github.ior/DVMS/
http://schiaas.gforge.inria.fr

A.2.3 Au delà de l’informatique en nuage
2014 -

Pour satisfaire une demande en constante croissance tout en réalisant d’importantes
économies d’échelle, les opérateurs d’infrastructures de type informatique en nuage
ont privilégié la construction de centres de données toujours plus grands. La limite
en taille de ces « méga » centres de données est régie par des aspects liés à la capac-
ité électrique qui peut être délivrée ainsi qu’au système de refroidissement qui sont
nécessaires à leur fonctionnement. Pour pallier ces limitations, les opérateurs ont
construits ces nouveaux géants dans un nombre limité de lieux stratégiques : c’est
à dire des endroits où une importante source d’énergie est disponible, ou bien avec
un climat suffisamment froid toute l’année pour bénéficier de techniques dites de re-
froidissement naturel (Gary Cook, 2013). Bien que cette tendance persiste, les nou-
veaux usages liés à l’internet des objets (IoT) (Atzori, Iera, and Morabito, 2010), la
virtualisation des réseaux (Mijumbi et al., 2016) ou encore l’informatique mobile
(MEC) (Fernando, Loke, and Rahayu, 2013) mettent en exergue les limitations de
ce modèle. A titre d’exemple, une projection sur les quantités de données qui vont
être générées et/ou manipulées par les objets connectés et les applications associées
ne pourront être traitées avec les infrastructures actuelles (B. Zhang et al., 2015). Pour
traiter les limitations intrinsèques du modèle « centralisé », notamment en terme de
latences réseau, les experts académiques et industriels défendent aujourd’hui l’idée
d’étendre le modèle d’informatique en nuage à la périphérie du réseau. C’est à dire
vers un modèle massivement distribué, composé non plus de quelques « méga » cen-
tres de données mais de nombreux « micro » centres placés au travers et en bordure
de l’Internet notamment en s’appuyant sur les points de présence réseau déjà exis-
tants. Ce nouveau paradigme, appelé “Cloud Massivement Distribué” ou plus récem-
ment Fog/Edge Computing promet de rapprocher les ressources des utilisateurs et
donc d’améliorer les performances des applications (Bonomi et al., 2012). Toute-
fois, l’essor de ce nouveau paradigme passe, d’une part, par la mise en œuvre d’un
système de gestion distribuée qui va permettre aux opérateurs d’agréger, de super-
viser et d’exposer une infrastructure à large échelle massivement répartie, et d’autre
part en étendant les interfaces actuelles afin de permettre le développement de nou-
veaux services qui tireront partie de cette géo-distribution. Je me suis concentré sur
ces aspects depuis ces quatre dernières années au travers plusieurs études prélimi-
naires. Ces études m’ont permis de proposer en 2015 avec plusieurs collaborateurs
l’Inria Project Lab DISCOVERY. Ce projet que je coordonne rassemble des spécial-
istes des systèmes de gestion d’infrastructures virtualisées, du réseau et des systèmes
pair-à-pair et implique également deux opérateurs réseau majeurs au niveau national,
à savoir ORANGE et RENATER. Du point de vue scientifique, la rupture de notre ap-
proche par rapport à l’état de l’art réside dans la manière de concevoir la pile logicielle
en charge d’opérer ce nouveau type d’infrastructure. Le système que nous visons peut
être vue comme un système d’exploitation distribué, permettant une gestion unifiée
des machines virtuelles au travers de plusieurs sites. C’est à dire qu’à la différence
des solutions qui consiste à proposer un système en charge d’orchestrer un ensemble
d’infrastructures indépendantes (approche que nous définissons comme de « haut en
bas »), nous défendons une approche de « bas en haut ». Dans cette approche les mé-
canismes systèmes à plus bas niveaux sont conçues de manière coopérative en s’ap-
puyant le cas échéant sur des algorithmes « pair à pair » comme cela l’a été proposé
dans nos propositions de placements de machines virtuelles. Afin d’éviter des efforts
de développements conséquents, nous avons choisi d’appliquer cette approche aux
principaux services de la solution OpenStack. Bien que ces travaux soient récents, en
comparaison avec les deux activités précédentes, j’ai choisi de les présenter dans ce
manuscrit pour deux raisons majeures. Tout d’abord, nous avons obtenu des résul-
tats qui méritent d’être présentés au vue de l’intérêt qu’ils ont suscité dans la commu-
nauté OpenStack ainsi que la communauté scientifique (Lebre, Pastor, Simonet, et
al., 2017; Cherrueau et al., 2017). Ensuite, c’est autour de cet axe de recherche que j’ai

142

choisi d’articuler mes activités à venir pour les prochaines années. En particulier, une
des actions à moyen terme consiste en la création d’une nouvelle équipe de recherche
sur Nantes. Cette équipe abordera les problématiques liées aux mécanismes systèmes
ainsi qu’aux abstractions applicatives permettant la supervision et l’utilisation des in-
frastructures d’informatique utilitaire actuelles, en cours de déploiements et à venir.

A.3 Une recherchedirigée par l’expérimentation

A la fin de mon post-doctorat, j’ai réalisé une étude qui avait pour objectif d’analyser
dans quelle mesure l’utilisation desmachines virtuelles pouvait permettre une gestion
plus fine des ressources de l’infrastructure Grid’5000, en particulier des tâches sans
garanties (« best effort » en anglais). Grid’5000 est une plateforme d’expérimentation
dédiée à la communauté française conduisant des recherches dans les différents do-
maines rattachés aux systèmes distribués (calcul haute performance, gestion massive
des données ou encore informatique en nuage) (Bolze et al., 2006). Les utilisateurs de
Grid’5000 accèdent aux ressources en les réservant pour une durée déterminée. Au
bout de la période spécifiée, les ressources sont libérées que la tâche soit terminée ou
non. Pour permettre de sauvegarder l’état des tâches afin de les redémarrer ultérieure-
ment, nous avons proposé de les encapsuler dans desmachines virtuelles (Gallard, Le-
bre, and Morin, 2010). Bien que l’impact de cette étude est été limité du faite qu’elle
n’apportait qu’un incrément technique vis à vis de l’état de l’art (Sotomayor, Kea-
hey, and Foster, 2008), elle a complétement changé ma perspective sur la manière de
superviser et d’utiliser les infrastructures distribuées (Gallard, Lebre, Morin, et al.,
2012; Lebre, 2010) : le concept de conteneur (ou bac à sable) qu’apportait la virtu-
alisation système allait révolutionner notre domaine et il était critique d’étendre les
mécanismes présents dans Grid’5000 pour faciliter les études autour de cette tech-
nologie. J’ai proposé dès 2008 de créer un groupe de travail au niveau national au-
tour de cet objectif. Les travaux abordés par ce groupe ont rapidement pu être con-
solidés par le support de plusieurs actions comme l’action d’envergureHemerahttps:
//www.grid5000.fr/mediawiki/index.php/Hemera. (2010-2014) où j’ai pu co-
ordonner les travaux sur la virtualisation. Nous avons notamment mis en œuvre
plusieurs mécanismes permettant aux utilisateurs de Grid’5000 d’étudier les problé-
matiques liées à la virtualisation et à l’informatique en nuage (Balouek, Amarie, et
al., 2012). En parallèle de ces activités, j’ai organisé plusieurs évènements comme les
journées « thèmes émergents » sur les technologies de virtualisation dans les systèmes
distribués en 2010 et 2014 sur Nantes.4 Au niveau international, j’ai eu l’opportunité
de co-animer l’atelier ACM «Virtualization Technologies in Distributed Computing
» entre 2011 et 2015.5 Co-localisé avec la conférence ACM HPDC, les ateliers VTDC
ont été un lieu d’échanges importants sur les défis associés à cette technologie. En
plus de VTDC, j’ai également pris part à plusieurs comités de programmes tels que
les conférences ACM SuperComputing, IEEE/ACM CCGrid, Europar, IEEE Cloud-
Com ou encore IEEE IC2E, tous à plusieurs reprises. Etre impliqué significativement
dans la communauté a été un élément clé qui m’a permis de renforcer mon exper-
tise et de consolider la vision que j’avais sur la manière de concevoir les prochaines
générations d’infrastructures pour l’informatique utilitaire. J’ai été, en particulier,
parmi les premiers chercheurs à défendre et à étudier le concept d’une informatique
en nuage massivement distribué en périphérie du réseau d’Internet (Bertier et al.,
2014). Ce choix s’est révélé être judicieux au vu de l’intérêt que porte la communauté
des systèmes distribués mais également celle des réseaux et m’a permis aujourd’hui
d’animer plusieurs évènements clés de notre communauté (responsable du comité de
programme et co-responsable du domaine Cloud, Fog et Edge Computing, récipro-
quement pour les conférences IEEE ICFEC 2017, IEEE CloudCom 2017 et 2016 et

4 http://web.emn.fr/x-info/ascola/doku.php?id=internet:jte-virtualization-2010 et
http://people.rennes.inria.fr/Adrien.Lebre/PUBLIC/CloudDay/.

5 http://people.rennes.inria.fr/Adrien.Lebre/VTDC/vtdc15.html.

143

https://www.grid5000.fr/mediawiki/index.php/Hemera
https://www.grid5000.fr/mediawiki/index.php/Hemera
http://web.emn.fr/x-info/ascola/doku.php?id=internet:jte-virtualization-2010
http://people.rennes.inria.fr/Adrien.Lebre/PUBLIC/CloudDay/
http://people.rennes.inria.fr/Adrien.Lebre/VTDC/vtdc15.html

EuroPar 2016). Par ailleurs, j’ai été invité à co-animer l’action transverse « Virtual-
isation et clouds » du groupe de recherche CNRS « Réseau et Systèmes Distribués
» depuis 2015.6 Cette action a pour objectif de favoriser les collaborations entre les
communautés systèmes distribuées et réseaux autour de cette convergence des infras-
tructures de calculs et de communications. Bien que chaque communauté a proposé
de nombreuses avancées scientifiques et technologiques, il est primordial d’aborder
dès à présent les problématiques de manière commune afin de proposer un nouvelle
génération d’infrastructures capable de satisfaire les besoins des nouvelles applica-
tions liées à l’ Internet des Objets, l’informatique mobile ou encore la virtualisation
des réseaux. Enfin, je souhaite à préciser que je reste fortement impliqué dans la com-
munauté Grid’5000, notamment à travers le comité exécutif et le comité des archi-
tectes. Parmi les actions en cours, nous étudions dans quelle mesure Grid’5000 de-
vrait évoluer de manière à pouvoir appréhender les problématiques liées à l’Internet
Industriel (également connu sous le nom d’Entreprise du Futur). L’Internet Industriel
peut être vue commeune combinaison des centres de données, des réseaux de commu-
nications et des équipements rattachés à l’Internet des Objets. Une piste sérieuse est
la combinaison des deux infrastructures Grid’5000 et FIT comme abordé plus ample-
ment dans lemanuscrit. Organisation générale du document. Le document, rédigé en
anglais, porte principalement sur les trois contributions scientifiques évoquées préal-
ablement et des perspectives spécifiques à chacune d’entre elle. Il est important de
noter que l’ensemble de ces travaux a déjà été publié dans des conférences ou jour-
naux à portée internationale. Les contenus présentés ici ont été consolidés et mis en
forme afin de faire ressortir la cohérence globale demes activités de recherche. Seul le
dernier chapitre évoquent des points réellement nouveau notamment en présentant
les actions que j’ai prévues de réaliser sur au moins les 4 prochaines années.

6 https://rsd-cloud.lip6.fr.

144

https://rsd-cloud.lip6.fr

DETAILED CURRICULUM VITAE

Adrien Lebre
Inria Researcher

(on leave from Mines Nantes)
PhD in Distributed Systems and HPC File systems

Address: 5 Avenue du moulin de la touche
44240 SUCE SUR ERDRE, FRANCE
Phone :+ 33 (0)6 40 12 95 87
E-mail :adrien.lebre@inria.fr

Website: http://www.emn.fr/x-info/alebre08/

39 years old (born on June 1977, the 28th)
French nationality

Married, two children (2003/2009)

Education

2003 - 2006 PhD in Computer Science at the ”Institut National Polytechnique de Grenoble”, France.

Design and development of an Input/Output scheduling framework for HPC architecture(C,
Linux, kernel space - http://aioli.imag.fr).

Funded by BULL SA company around the LInux Platform Solution collaboration with the Grenoble
Computer Science Laboratory and supervised by Prof. Brigitte Plateau and co-supervised by Prof.
Yves Denneulin (currently vice-head of Grenoble Computer Science Lab) and Pascal Rossé-Laurent
(BULL Linux Senior Architect).

2001 - 2002 MSc in Computer Science ”Communications and Systems”, University of Sciences Joseph Fourier,
Grenoble, France, with honours (get a merit-based scholarship from the University).

Evaluations and improvements of meta-data management by setting up distributed mechanisms
within the Parallel NFS system (C, Linux, user space - http://nfsp.imag.fr).

1998 - 2001 Mâıtrise de Mathématiques et d’Informatique, equivalent to a Taught Master’s Degree in
Computer Science, ”Institut Universitaire Professionnalisé” Avignon, France, with honours.

Work Experience

Since Oct. 2013 Contract Researcher at the Inria Rennes Bretagne Atlantique center, France (on leave from a
Researcher position at Mines Nantes).

Research activities are done in the context of the Discovery intiative that aims at at overcoming the
main limitations of the traditional server-centric cloud solutions by deploying cloud infrastructures
directly on top of the network backbone facilities (http://beyondtheclouds.github.io).

2008 - 2013 Researcher (“ Chargé de Recherche EPA ”) at the Mines Nantes Engineering School, France.

Research activities are done in the ASCOLA Research Group. Major works cover two main areas:
the design and the implementation of new distributed file systems and the use of virtualization
technologies in large scale platforms.

2006 - 2008 Post Doc at INRIA, the French Research Institute of Computer Science, Rennes, France.

Design and development of a symmetric file system for cluster (C, Linux, kernel space) under
the framework of the EU-funded XtreemOS project led by Christine Morin (Senior Researcher at
INRIA). Further information at http://kerrighed.sourceforge.net/wiki/index.php/KernelDevelKdFS

2002 3 months, system developer, Grenoble Computer Science Laboratory, France.

Design and development of a RAID layer in the Parallel NFS proposal (C, Linux, user space).

2001 6 months, internship, CanalNumedia (Vivendi group), Stockholm, Sweden.

Design and development of several content management modules for the different Scandinavian
Canal+ websites (ASP, XML - SQL Server, IIS).

1/10

Teaching Experience

2012 - 2013 In charge of the Information Systems module, (JEE, Play Framework, ∼35 students).

2008 - 2012 In charge of the Object-oriented Programming module, (JAVA, ∼100 students)

In charge of the Systems and Networks module, (∼25 graduate students) including Introduction
to Gnu/Linux and Open-Source Systems (UBUNTU) and Operating systems and Networks
tutorials.

2006 - 2012 Distributed Computing lectures, MSc in Computer Science, University of Rennes, France.

2006 - 2007 Computer architecture lectures, last year of statistics engineering school, ENSAI, Rennes, France.

Operating systems tutorials, MSc in Computer Science, IFSIC, University of Rennes, France.

2004 - 2006 Parallel Programming practical works, MSc and PhD, INPG Doctoral School, Grenoble, France.

System, network and database tutorials, 2nd year of engineering school, ENSGI, Grenoble, France.

Computer Skills

System GNU/Linux (Debian) use and internal design, distributed computing (cluster, grid, cloud).
Distributed and local file systems, virtualization technologies.

Simgrid (co-developper of the VM abstractions), OpenStack (Chair of the Massively Distributed
WG, Member of the Performance Team).

Programming C (user/kernel), JAVA, python, parallel programming (thread, MPI), Data Base systems
(SQL/NoSQL), and multimedia programming (javascript, HTML, XML)

Selected Publications

Journals
Conferences
Workshops

Revising OpenStack to Operate Fog/Edge Computing infrastructure, by A. Lebre, J. Pastor,
A. Simonet, and F. Desprez - in Proceedings of IEEE International Conference on Cloud Engineering
(IC1E 2017), Canada, Apr. 2017.

Performance Analysis of Object Store Systems in a Fog and Edge Computing Infrastructure,,
by B. Confais, A. Lebre and B. Parrein - in Transactions on Lare-Scale Data and Knowledge-
Centered Systems Journal - Springer, 2017.

SimGrid VM: Virtual Machine Support for a Simulation Framework of Distributed Systems,
by T. Hirofuchi, A. Lebre and L. Pouilloux - in IEEE Transactions on Cloud Computing Journal,
Dec 2015.

Adding Virtualization Capabilities to the Grid’5000 Testbed, by D. Balouek, A. Carpen Amarie,
G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lebre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Perez, F. Quesnel, C. Rohr, and L. Sarzyniec - in Cloud Computing and Services
Science, volume 367 of Communications in Computer and Information Science, Springer 2013.

Cooperative and Reactive Scheduling in Large-Scale Virtualized Platforms with DVMS, by F.
Quesnel, A. Lebre, and M. Sudholt - Concurrency and Computation: Practice and Experience,
Dec 2012.

Managing Virtual Resources: Fly through the Sky, by J. Gallard and A. Lebre, ERCIM News,
Oct. 2010

Cluster-wide context switch of virtualized jobs by F. Hermenier, A Lebre, and J.M. Menaud, in
Proceedings of the ACM VTDC Workshop, co-located with the ACM HPDC Conference, US, June
2010.

I/O Scheduling for Multi-Application Clusters by A Lebre, G. Huard, Y. Denneulin, and P. Sowa,
in Proceedings of the IEEE Cluster Conference, Spain, 2006.

Performance Evaluation of a Prototype Distributed NFS Server by R. Avila, P. Navaux, P.
Lombard, A. Lebre, and Y. Denneulin, in Proceedings of the IEEE SBAC-PAD Conference, Brasil,
Oct. 2004.

2/10

Selected Invited Talks

International
European

Virtualization and Cloud fundamentals, Initial Training School, MSCA-ETN BigStorage, March
2015, Spain.

How Should Next Generation Utility Computing Infrastructures Be Designed to Solve Sus-
tainability and Efficiency Challenges?, ISC Cloud Conference, Sep 2014, Germany

Challenges and Issues of Next Cloud Computing Platforms at Inria, Post-Consultation Work-
shop on the H2020 ICT Work Programme, April 2013, Belgium.

Beyond the Cloud: The Discovery Initiative, 6th edition of the VHPC workshop (co-located with
EUROPAR 2011), France.

Virtualization Technologies in Distributed Architecture: The Grid5000 Recipe, 4th edition of
the ACM VTDC workshop (co-located with HPDC 2010), US.

National An Overview of Cloud Computing Challenges, Institut Francaise de Bio-Informatique, Cumulo
NumBio School, Aussois, May 2015.

Beyond the clouds, NRENs opportunities, RENATER, e-infrastuctures, Paris, March 2015.

The Discovery Initiative, Where we Are?, Joint lab INRIA – Alcatel Lucent Bell Labs, Villarceaux,
Jan 2015.

The Discovery Initiative, Telecom Paris Sud, Cloud Computing summer school, Evry, Aug 2013.

How Virtualization Changed the Grid Perspective, From Grid to Cloud workshop, Ecole Normale
Superieure de Lyon, Sept 2010.

Research Projects/Activities

On-going Member of the EU Marie Sklodowska Curie ETN BigStorage consortium (∼3.8MEuros,
2015/2019), ASCOLA Representative (∼250KEuros), WP leader. Build on the Marie Curie ITN
SCALUS, this network will train future data scientists to deal with the on-going deluge of data by
leveraging infrastructures at the convergence of cloud and HPC solutions.

Member of the French ANR Greco (∼525KEuros, 2017/2020), ASCOLA Representative
(∼100KEuros)).The goal of the GRECO project is to develop a reference resource manager for
cloud of things. One of the principal challenges will consist in handling the execution context of the
environment in which the cloud of things operates.

Project Investigator of the DISCOVERY Initiative - http://beyondtheclouds.github.io

Started 4 years ago, this Open-Science initiative targets the design and the implementation of a
new generation of Utility Computing platforms. In July 2015, Inria agreed to support this
action within the framework of the Inria Project Lab (IPL) program until 2019 with a budget
of approximately 200/250KEuros per year.
Coordinated by myself, the DISCOVERY IPL involves the ASCOLA, ASAP, AVALON, and
MYRIADS Inria Project-Teams, Orange Labs and RENATER.

Member of the Grid’5000 consortium - http://www.grid5000.org

In charge of the Grid’5000 Winter School 2012 (Dec 2012, 70 persons).
Virtualization WP leader of the INRIA Large-scale Initiative Hemera (until Dec 2014).
Architect committee member of the Groupement d’Interet Scientifique G5K (since 2010).
Executive committee member of the GIS G5K (since 2014).

Past Member of the French ANR Infra SONGS (∼1.8MEuros, 2012/2016), ASCOLA Representative
(∼100KEuros), http://infra-songs.gforge.inria.fr). The SONGS project aims at providing a simulator
toolkit for the next generation systems. My involvement consists in extending the SimGrid framework
with virtualization abstractions.

Member of the EU Marie Curie ITN SCALUS consortium (∼3MEuros, 2009/2013), ASCOLA
Representative (∼200KEuros). SCALUS aimed at at elevating education, research, and development
inside the storage area with a focus on cluster, grid, and cloud.

3/10

Member of the French CNRS PEPS Virtual Machine Scheduling Action (∼10Keuros, 2012/2013,
ASCOLA Representative). Coordinated by the Tours University, this project aimed at defining VM
scheduling fundamentals.

EIT ICT Labs, Cloud Computing Action Line, Act. 10239, MYRIADS/ASCOLA (∼25KEuros,
2011/2012), deployment of major cloudkits on Grid’5000 testbed.

Member of the EU XtreemOS Project from 2006-2008. Project Initiatior of the kDFS proposal,
a symmetric file system for the Kerrighed project (http://www.kerrighed.org, maintainer until 2009)

Coordinator of the aIOLi and NFSp activities (Brasil, Poland and France) from 2005-2007
(http://{aioli,nfsp}.imag.fr)

Collective Duties

Steering/Program
Committees

Organization of the 5th (General Chair), the 6th (Program Chair), and the 7th and 8th (co-general
chair) ACM/IEEE VTDC Workshop (co-located with HPDC).

Organization of the 1st IEEE International Conference on Fog and Edge Computing (Program
Chair) (co-located with CCGRID 2017).

PC Member at ACM/IEEE SC 2017/2016/2013, ACM/IEEE HPDC 2017, ACM/IEEE CC-
GRID 2017/2016/2015/2013, IEEE CloudCom 2016 (Fog/Edge Computing Co-Track
Chair)/2015/2014, EuroPar 2016 (Cloud Computing Track Chair)/2015/2013, IEEE IC2E
2015/2014, IEEE BigData 2014/2013, IEEE CGC 2013/2012/2011 Conferences and several work-
shops related to storage, virtualization and energy concerns in large scale infrastructures (please, see
my webpage for an up-to-date list).

Publicity Chair at ACM/IEEE Cluster 2014, Tutorial Chair at IEEE IC2E 2014.

Member of the executive committee of the GDR CNRS RSD ”Réseau et Système distribué” and
Co-leader of the transversal action Virtualization and Clouds of this GDR since 2015.

Co-organizer of the CloudDay events since 2015.
Co-organizer of the 2017 RESCOM Spring School.

Reviewer International journals such as IEEE TPDS and TCC, Elsevier JPDC and FGCS . . .

Associate Editor of the IEEE Transactions on Big Data journal.

FP7 STREP external reviewers (yearly face-to-face evaluations) 2013/2014/2015

Austrian Science START Program 2013 (equivalent to the French ANR Jeune Chercheur Program).

PhD Supervisions Mohamed Abderrahim, Large-scale programmable monitoring system, co-supervised with K. Guil-
louard (Orange Labs), defense expected by the end of 2018.

Bastien Confais, Locality in Fog Storage Systems, co-supervised with B. Parrein, defense expected
by the end of 2018.

Linh Nguyen, Elasticity in Cloud and HPC storage Systems, co-supervised with M. Südholt,
defense expected by the end of 2018.

Jonathan Pastor, Cloud should be a Distributed Infrastructure, co-supervised with F. Desprez,
achieved in Oct 2016 (now PostDoc at University of Chicago).

Flavien Quesnel, Dynamic scheduling of virtual machines in large scale systems, co-supervised
with Prof. M. Südholt, achieved in Feb 2013 (now Research Engineer at IRT System X).

PostDoc/Engineer
Supervisions

Ronan Alexandre Cherrueau, Main Engineer of the DISCOVERY Initiative, Engineer position
co-supervised with M. Simonin, Funded by Inria in the context of the MERCURY InriaHub program,
Jul 2016/Jul 2019.

Anthony Simonet, Cost-Benefit Analysis of the DISCOVERY Model, Postdoc position co-
supervised with A-C. Orgerie, Funded by Inria in the context of the Discovery initiative, Oct 2015/June
2017.

Ismael Figueroa, Staying alive without hearbeats, Postdoc position, co-supervised with N.
Tabareau. Funded by Inria in the context of the Discovery initiative, July 2014/Jan 2015 (now
Ass. Prof. University Catholic of Valparaiso, Chile).

4/10

Takahiro Hirofuchi, Adding virtualization abstractions into SimGrid, PostDoc position, Funded
by the ANR SONGS Project, Jan/Dec 2013 (now Full-time Researcher at AIST Japan).

Alexandra Carpen Amarie, One-Click IaaS Clouds in Grid’5000, Research Engineer Position.
Funded by EIT ICT Labs, Act. 10239, Sept. 2011/April 2012 (now PostDoc at Vienna Univer-
sity of Technology, Austria).

Thesis Committees
(external reviewer)

Jérome Gallard, Flexible management of distributed computing infrastructures, University of
Rennes, May 2011.

Alexandra Carpen Amarie, BlobSeer as a data storage facility for Clouds: self-adaptation,
integration, evaluation, University of Rennes, Dec 2011.

Sheheryar Malik, Resource Aware Cloud Computing, University of Nice-Sophia Antipolis, Dec
2012.

Alexandre Lissy, “Utilisation de méthodes formelles pour garantir des propriétés de logiciels
au sein d’une distribution : exemple du noyau Linux”, University of Tours, March 2014.

Houssem Medhioub, “Architectures et mécanismes de fédération dans les environnements
Cloud Computing et Cloud Networking”, University Pierre et Marie Curie/TelecomSud Paris,
April 2015.

Vincent Kherbach, “Ordonnancement des migrations à chaud de machines virtuelles”, Univer-
sity of Nice-Sophia Antipolis, Dec 2016.

Ismael Cuadrado-Cordero, “Microclouds: An Approach for a Network-Aware Energy-Efficient
Decentralized Cloud”, University of Rennes 1, Feb 2017.

Luis Pineda, “Efficient Support fo Data-Intensive Scientific Workflows on Geo-Distributed
Clouds”, University of Rennes 1, May 2017.

Selection
Committee

Telecom Nancy, Associate Professor position, May 2013.

Languages

French Mother tongue

English Almost fluent

Referees

Academics Frédéric Desprez, Senior Researcher at INRIA / Scientific Director of the Grid’5000 platform /
IBM Faculty Award 2008 (http://graal.ens-lyon.fr/˜desprez/)

Narendra Jussien, Director of IMT Mines Albi Carmaux (head of the C.S. department of the
Ecole des Mines de Nantes between 2008 and 2013 / Google Focused Research Award 2010
(http://narendra.jussien.free.fr/)

Christine Morin, Senior Researcher at INRIA / Head of the MYRIADS Project Team
(http://www.irisa.fr/myriads/members/cmorin)

Additional Information

Social skills Good public relations (dynamic, communicative and open-minded) .
Interested in working in multicultural teams.

Organization skills Experience in setting-up projects and external collaborations.

Interests Keen on skateboarding, skiing and snowboarding for more than 25 years
Running (long-distance), climbing, listening music, playing drums

Miscellaneous Clean driving licence
First aid certificate (”Attestation Française des Premiers Secours” graduated in 1997)

5/10

COMPLETE LIST OF PUBLICATIONS

PhD Thesis

[1t06] A. Lebre sous la direction de Brigitte Plateau, aIOLi : contrôle, ordonnancement et régulation des accès aux données
persistantes dans les environnements multi-applicatifs haute performance, Institut National Polytechnique de Grenoble,
spécialité Informatique : systèmes et Logiciels, Sep. 2006.

Book Chapters

[1bc14] M. Bertier, F. Desprez, G. Fedak, A. Lebre, A-C Orgerie, J. Pastor, F. Quesnel, J. Rouzaud-Cornabas, and
C. Tedeschi, Beyond the Clouds: How Should Next Generation Utility Computing Infrastructures Be Designed?, In
Cloud Computing: Challenges, Limitations and R&D Solutions, pp 325-345 - Editors: Z. Mahmood - Computer
Communications and Network, Springer, 2014.

[2bc12] F. Alvares, A. Lebre, T. Ledoux, and J.M. Menaud, Self-management of applications and systems to optimize
energy in data centers,In Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice -
Editors: I. Brandic, M. Villari and F. Tuse - IGI Global, Feb 2012.

International Journals

[5j15] B. Confais, A. Lebre and B. Parrein, Performance Analysis of Object Store Systems in a Fog and Edge Computing
Infrastructure, in Transactions on Large-Scale Data and Knowledge-Centered Systems Journal - Springer, 2017.

[4j15] T. Hirofuchi, A. Lebre and L. Pouilloux, SimGrid VM: Virtual Machine Support for a Simulation Framework of
Distributed Systems, in IEEE Transactions on Cloud Computing Journal, Dec 2015.

[3ji13] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lebre, D. Margery, N.
Niclausse, L. Nusbaum, O. Richard, C. Perez, F. Quesnel, C. Rorh and L. Sarzyniec, Adding Virtualization Capabilities
to the Grid’5000 Testbed,In Cloud Computing and Services Science, Revised selected papers of CLOSER 2012, Vol
367, pp 3-20 - Editors: I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan - Springer, Feb 2013.

[2ji12] F. Quesnel, A. Lebre, and M. Südholt, Cooperative and Reactive Scheduling in Large-Scale Virtualized Platforms
with DVMS, Concurrency and Computation: Practice and Experience, Dec. 2012.

[1ji12] J. Gallard, A. Lebre, C. Morin, T. Naughton, S. Scott, and G. Vallée. Architecture for the Next Generation System
Management Tools, Future Generation Computer Systems, Jan. 2012.

International Conferences

[23ic17] M. Abderrahim, K. Guillouard, M. Ouzzif, J. Francois, and A. Lebre, An Holistic Monitoring Service for Fog/Edge
Infrastructures: a Prospective Analysis, in Proceedings of the IEEE International Conference on Future Internet of
Things and Cloud (FiCloud 2017), Czech Republic, August 2017.

[22ic17] R-A. Cherrueau, D. Pertin, A. Simonet, M. Simonin, and A. Lebre, ENOS: a Holistic Framework for Conducting
Scientific Evaluations of OpenStack, short paper in Proceedings of the IEEE/ACM Symposium on Cluster, Cloud and
Grid Computing (CCGRID 2017), Spain, May 2017.

[21ic17] B. Confais, A. Lebre, and B. Parrein, An Object Store Service for a Fog/Edge Computing Infrastructure based
on IPFS and Scale-out NAS, in Proceedings of the IEEE Conference on Fog and Edge Computing (ICFEC’17), Spain,
May 2016.

[20ic17] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, Revising OpenStack to Operate Fog/Edge Computing Infras-
tructures, in Proceedings of the IEEE Conference on Cloud Engineering (IC2E’17), Canada, April 2017.

[19ic17] L. T. N’Guyen, and A. Lebre, Virtual Machine Boot Time Model, in Proceedings of the Euromicro International
Conference on Parallel, Distributed and Network-Based Computing (PDP’17), Russia, March. 2017.

[18ic16] B. Confais, A. Lebre, and B. Parrein, Performance Analysis of Object Store Systems in a Fog/Edge Computing
Infrastructures, in Proceedings of the IEEE Conference on Cloud Computing Technology and Science (CloudCom’16),
Luxembourg, Dec. 2016

[17ic15] A. Lebre, J. Pastor, and M. Südholt, VMPlaceS: A Generic Tool to Investigate and Compare VM Placement
Algorithms, in Proceedings of the Europar Conference, LNCS 9233, Austria, August 2015.

6/10

[16ic15] A. Lebre, A. Legrand, F. Suter and P. Veyre, Adding Storage Simulation Capacities to the SimGrid Toolkit:
Concepts, Models, and API, in Proceedings of the 15th IEEE/ACM Symposium on Cluster, Cloud and Grid Computing
(CCGRID 2015), China, May 2015.

[15ic14] J. Pastor, M. Bertier, F. Desprez, A. Lebre, F. Quesnel and C. Tedeschi, Locality-aware Cooperation for VM
Scheduling in Distributed Clouds, in Proceedings of the Europar Conference, LNCS 8632, Portugal, August 2014.

[14ic13] T. Hirofuchi, A. Lebre, and L. Pouilloux, Adding a Live Migration Model Into Simgrid, in Proceedings of the
IEEE Conference on Cloud Computing Technology and Science (CloudCom’13), pp 96-103, UK, Dec. 2013.

[13ic13] T. Hirofuchi, A. Lebre, Adding Virtual Machine Abstractions Into SimGrid, A First Step Toward the Simulation
of Infrastructure-as-a-Service Concerns, in Proceedings of the IEEE International Conference on Cloud and Green
Computing (CGC’13), Germany, Sept 2013.

[12ic13] F. Quesnel, A. Lebre, J. Pastor, M. Südholt, and D. Balouek, Advanced Validation of the DVMS Approach to
Fully Distributed VM Scheduling, in Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing with Application (ISPA’13), Australia, July 2013.

[11ic11] F. Quesnel, and A. Lebre, Operating Systems and Virtualization Frameworks: From Local to Distributed Similar-
ities, in proceedings of the Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP’11, session: Virtualization in Distributed Systems), Cyprus, Feb. 2011.

[10ic10] J. Gallard, A. Lebre, and Christine Morin, Saline: Improving Best-Effort Job Management in Grids. in Proceedings
of the Euromicro International Conference on Parallel, Distributed and Network-Based Computing (PDP’10 session:
Virtualization in Distributed Systems), Italy, Feb. 2010.

[9çic10] J. Gallard, C. Morin, G. Vallée, T. Naughton, S. Scott, L., and A. Lebre, Architecture for the Next Generation
System Management Tools, in Proceedings of the International Conference on Utility and Cloud Computing (UCC
2010), India, Dec. 2010.

[8ic10] J. Gallard, A. Lebre, G. Vallée, C. Morin, P. Gallard, and S. L. Scott, Refinement Proposal of the Goldberg’s Theory,
in Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’09),
LNCS 5574, Taiwan, 2009.

[7ic09] P. Riteau, A. Lebre, and C. Morin, Handling Persistent States in Process Checkpoint/Restart Mechanisms for HPC
Systems, in Proceedings of the IEEE/ACM International Symposium on Cluster Computing and Grid (CCGRID 2009),
China, 2009

[6ic08] A Lebre, R. Lottiaux, E. Focht, and C. Morin, Reducing Kernel Development Complexity in Distributed Environ-
ments, in Proceedings of the EUROPAR Conference, LNCS 5168, Spain, 2008.

[5ic06] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa, I/O Scheduling Service for Multi-Application Clusters, in Proceed-
ings of the IEEE Cluster Conference, Spain, Sep 2006.

[4ic05] A. Lebre, and Y. Denneulin, aIOLi: An Input/Output LIbrary for cluster of SMP, in Proceedings of the IEEE/ACM
Cluster Computing and Grid Conference (CCGRID 2005), United Kingdom, May 2005.

[3ic04] R.B. Avila, P.O.A. Navaux, P. Lombard, A. Lebre, and Y. Denneulin, Performance Evaluation of a Prototype Dis-
tributed NFS Server, in Proceedings of the IEEE Computer Architecture and High Performance Computing Conference
(SBAC-PAD), Brazil, 2004.

[2c03] O. Valentin, P. Lombard, A. Lebre, C. Guinet, and Y. Denneulin, Distributed File System for Clusters and Grids, in
Proceedings of the Parallel Processing and Applied Mathematics Conference, LNCS 3019, Poland, 2003.

[1ic03] P. Lombard, Y. Denneulin, O. Valentin, and A. Lebre, Improving the Performances of a Distributed NFS Im-
plementation, in Proceedings of the Parallel Processing and Applied Mathematics Conference, LNCS 3019, Poland,
2003.

International Workshops

[8iw14] A. Lebre, A. Simonet and A-C Orgerie, Deploying Distributed Cloud Infrastructures: Who and at What Cost?, in
Proceedings of the 5th IEEE International Workshop on Cloud Computing Interclouds, Multiclouds, Federations, and
Interoperability (InterCloud’15, co-located with IEEE IC2E’15), Germany, April 2015.

7/10

[7iw14] G. B. Brand, and A. Lebre, GBFS: Efficient Data-Sharing on Hybrid Platforms. Towards adding WAN-Wide
elasticity to DFSes, in Proceedings of the Workshop on Parallel and Distributed Computing for Big Data Applications
(WPBA’14, co-located with IEEE SBAC-PAD’14), France, Oct 2014.

[6iw13] M. Imbert, L. Pouilloux, J. Rouzaud-Cornabas, A. Lebre and T. Hirofuchi, Using the EXECO toolbox to perform
automatic and reproducible cloud experiments, in Proceedings of the International Workshop on UsiNg and building
ClOud Testbeds (UNICO’13, co-located with IEEE CloudCom’13), UK, Dec. 2013.

[5iw13] S. Badia, A. Carpen-Amarie, A. Lebre, and L. Nussbaum, Enabling Large-Scale Testing of IaaS Cloud Platforms
on the Grid’5000 Testbed, in Proceedings of the International Workshop on Testing The Cloud (TTC’13, co-located
with ACM ISSTA 2013), Switzerland, July 2013.

[4iw11] A. Lebre, P. Anedda, M. Gaggero, and F. Quesnel, DISCOVERY, Beyond the Clouds - DIStributed and COoperative
framework to manage Virtual EnviRonments autonomicallY: a prospective study, in Proceedings of the Virtualization
for High Performance Cloud Computing workshop (colocated with EUROPAR 2011), LNCS 6853 , France, August
2011.

[3iw11] F. Quesnel, and A. Lebre, Cooperative Dynamic Scheduling of Virtual Machines in Distributed Systems, in
Proceedings of the Virtualization for High Performance Cloud Computing workshop (colocated with EUROPAR 2011),
LNCS 6853 , France, August 2011.

[2iw11] F. Hermenier, A. Lebre, and J. M. Menaud, Cluster-Wide Context Switch of Virtualized Jobs, in Proceedings
of the International ACM Workshop on Virtualization Technologies in Distributed Computing (colocated with ACM
HPDC 2010), US, June 2010.

[1iw08] J. Gallard, G. Vallée, A. Lebre, C. Morin, P. Gallard, and S. L. Scott, Complementarity between Virtualization
and Single System Image Technologies, in Proceedings of the Virtualization in High-Performance Cloud Computing
workshop (colocated with EUROPAR 2008), LNCS LNCS 5415 Spain, 2008.

International Communications (with reviewing process)

[9icom16] C. Collicutt, A. Lebre, C. Huang When One Cloud is Not Enough: An Overview of Sites, Regions, Edges,
Distributed Clouds, and More, OpenStack Summit, Boston, USA, May 2017.

[8icom16] R. A. Cherrueau, A. Lebre, P. Riteau Toward Fog, Edge and NFV deployments – Evaluating OpenStack WAN-
wide, OpenStack Summit, Boston, USA, May 2017.

[7icom16] A. Lebre, J. Pastor, M. Simonin and T. Carrez, A Ring to Rule Them All - Revising OpenStack Internals to
Operate Massively Distributed Clouds, OpenStack Summit, Austin, USA, April 2016.

[6icom15] F. Desprez, S. Ibrahim, A. Lebre, A-C. Orgerie, J. Pastor and A. Simonet, Energy-Aware Massively Distributed
Cloud Facilities: the DISCOVERY Initiative, in Proceedings of the 11th IEEE international Conference on Green
Computing and Communications (GreenCom 2015), poster session, short paper, Sydney, Australia, Dec 2015.

[5icom13] F. Quesnel, D. Balouek, and A. Lebre, Deploying and Scheduling Thousands of Virtual Machines on Hundreds of
Nodes Distributed Geographically, in the IEEE International Scalable Computing Challenge (SCALE 2013) (colocated
with CCGRID 2013), Netherlands, May 2013.

[4icom13] A. Lebre, and F. Desprez Challenges and issues of next cloud computing platforms at Inria, Post-Consultation
Workshop on the H2020 ICT Work Programme 2014.

[3icom12] G. Brand, and A. Lebre, Mitigating Network Impact in Large Scale DFSes, in Proceedings of the USENIX
Conference on File and Storage Technologies (Poster Session, short paper), Feb 2012.

[2icom10] J. Gallard, and A. Lebre, Managing Virtual Resources: Fly through the Sky, ERCIM News, Oct. 2010

[1icom06] A. Lebre, Y. Denneulin, G. Huard, and P. Sowa, Adaptive I/O Scheduling for Distributed Multi-applications
Environments, in Proceedings of the IEEE International Symposium on High Performance Distributed Computing
(HPDC 2006), ooster Session, short paper, Paris, France, June, 2006.

National Journals

[1fj08] A. Lebre, G. Huard, and Yves Denneulin, Optimisation des E/S disques dans les environnements multi-applicatifs
distribués, Technique et Science Informatiques (TSI), Feb 2008.

8/10

National Conferences

[5fc16] B. Confais, A. Lebre, and B. Parrein, Quel système de stockage pour les architectures Fog ?, in Proceedings of
the Compas Conference (Conference sur l’informatique en Parallélisme, Architecture et Système), Jul. 2016.

[4fc09] L. Eyraud-Dubois, A. Lebre, P. Martineau, A. Soukhal, V. T’kindt and D. Trystram, A Server Consolidation
Problem: Definition and Model, in Proceedings of the Roadef Conference, Feb 2013.

[3fc09] F. Hermenier, A. Lebre, and J.M. Menaud, Changement de contexte pour tâches virtualisées à l’échelle de grappes,
in Proceedings of the ACM-ASF CFSE Conference, Sept. 2009.

[2fc06] A. Lebre, G. Huard, and P. Sowa, Optimisation des E/S avec QoS dans les environnements multi-applicatifs
distribués, in Proceedings of the ACM-ASF RenPar Conference, Oct. 2006.

[1fc05] A. Lebre, and Y. Denneulin, aIOLi : gestion des Entrées/Sorties parallèles dans les grappes SMPs, in Proceedings
of the ACM-ASF RenPar Conference, May 2005.

Miscellaneous

[13misc16] Adrien L., and F. Desprez Research Issues for Future Cloud Infrastructures, European Commission, Belgium,
Nov. 2016

[12misc16] R-A. Cherrueau, D. Pertin, A. Simonet, M. Simonin, and Adrien L. ENOS: a Holistic Framework for Conducting
Scientific Evaluations of OpenStack, INRIA Technical Report RR-485, Nov 2016.

[11misc15] A. Lebre, J. Pastor, F. Desprez,The DISCOVERY Initiative - Overcoming Major Limitations of Traditional
Server-Centric Clouds by Operating Massively Distributed IaaS Facilities, Inria Research Report RR 8779, Sep 2015.

[10misc12] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lebre, D. Margery, N.
Niclausse, L. Nussbaum, O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, Adding Virtualization Capabilities
to Grid’5000, INRIA Research Report RR-8026, July 2012.

[9misc10] J.M. Menaud, A. Lebre, T. Ledoux, J. Noyé, P. Cointe, R. Douence, and M. Südholt, Vers une réification de
l’énergie dans le domaine du logiciel. In Journées du GDR Génie de la Programmation et du Logiciel, France, March
2010

[8misc09] , J. Gallard, A. Lebre, and C. Morin, Saline: Improving Best-Effort Job Management in Grids, INRIA Research
Report RR-7055, 2009.

[7misc08] A. Lebre, R. Lottiaux, E. Focht, and C. Morin, Reducing Kernel Development Complexity in Distributed Envi-
ronments, INRIA Research report RR-6405, Jan 2008.

[6misc07] J. Gallard, A. Lebre, G. Vallée, P. Gallard, S.L. Scott, and C. Morin, Is Virtualization Killing Single System
Image Research, INRIA Research Report RR-6389, Dec. 2007.

[5misc07] XtreemOS consortium, Design and Implementation of High Performance Disk Input/Output Operations in a
Federation, Delivrable XtreemOS D2.2.5 (35 pages), Dec. 2007, (http://www.xtreemos.eu).

[4misc06] XtreemOS consortium, Specification of Federation Resource Management Mechanisms, Delivrable XtreemOS
D2.2.1 (67 pages), Dec. 2006, (http://www.xtreemos.eu).

[3misc05] A. Lebre, Y. Denneulin, and T.T. Van, Controlling and Scheduling Parallel I/O in a Multi-applications Environ-
ment, INRIA Research Report, RR-5689, Sept. 2005.

[2misc05] A. Lebre, and Y. Denneulin, aIOLi : gestion des Entrées/Sorties Parallèles dans les grappes SMP, INRIA Research
Report RR-5522, March 2005.

[1misc02] A. Lebre, Composition de service de données et de méta-données dans un système de fichiers distribué, Master
thesis, June 2002.

9/10

INVITED TALKS

International Audience

[6ipres15] Virtualization and Cloud fundamentals, Initial Training School, MSCA-ETN BigStorage, Spain March 2016.

[5ipres14] How Should Next Generation Utility Computing Infrastructures Be Designed?, ISC Cloud Conference, Germany,
Sep 2014.

[4ipres13] Challenges and Issues of Next Cloud Computing Platforms at Inria, Post-Consultation Workshop on the H2020
ICT Work Programme, Belgium, April 2013.

[3ipres13] Beyond the Cloud: The Discovery Initiative, 6th edition of the VHPC Workshop (co-located with EUROPAR
2011), France Aug 2011.

[2ipres11] Dynamic Scheduling of Virtual Machines, EIT ICT Lab/Contrail Cloud Computing Summer School, France,
June 2011.

[1ipres10] Virtualization Technologies in Distributed Architectures: The Grid’5000 Recipe, 4th Edition of the ACTM VTDC
Workshop (co-located with HPDC 2010), USA, June 2010.

National Audience

[9fpres16] Revising OpenStack to operate the next generation of Cloud Computing platforms, CargoDay - La virtulisation:
état des lieux, Nantes , Oct 2016.

[8fpres15] The Discovery Initiative, Where We Are?, Inria Alcatel Lucent Bell Labs, Villarceaux, Jan 2015.

[7fpres15] The Discovery Initiative, Would OpenStack be the solution?, Journée SUCCESS - France Grille, Paris, Nov
2015.

[6fpres15] An Overview of Cloud Computing Challenges, Institut Francaise de Bio-Informatique, Cumulo NumBio School,
Aussoy May 2015.

[5fpres15] Beyond the clouds, NRENs opportunities, RENATER e-Infrastructures, Paris, Jan 2015.

[4fpres15] The Discovery Initiative, Where We Are?, Inria Alcated Lucent Bell Labs, Villarceaux, Jan 2015.

[3fpres13] The Discovery Initiative, Cloud Computing Summer School, Evry, France, Aug 2013.

[2fpres11] Cloud and Virtualization, France Grille, Cloud Workshop, Lyon, France, Oct 2011.

[1fpres10] How Virtualization Changed the Grid Perspective, From Grid to Cloud Workshop, Lyon, France, Sept 2010.

10/10

Version: 2017-10-19 23:46

	Acknowledgments
	I Introduction
	1 Introduction
	1.1 General Context
	1.2 Scientific Contributions
	1.2.1 Dynamic scheduling of VMs
	1.2.2 Virtualization and Simulation toolkits
	1.2.3 Beyond the Clouds

	1.3 Looking Back to the Future
	1.4 Organization of the Document

	II Dynamic Virtual Machine Scheduling
	2 VM Cluster-Wide Context Switch
	2.1 Challenge Description
	2.2 Our Proposal: A Generic VMs Context Switch
	2.2.1 Fundamentals
	2.2.2 Architecture Overview

	2.3 Proof-of-Concept & Validations
	2.3.1 Proof-of-Concept
	2.3.2 Experiments

	2.4 Related Work
	2.5 Summary

	3 Distributed Virtual Machine Scheduler
	3.1 Addressing Scalability, Reactivity and Fault-tolerant Aspects
	3.1.1 Challenge Description
	3.1.2 Our Proposal: DVMS
	3.1.3 Proof-Of-Concept & Validation
	3.1.4 Summary

	3.2 Locality Aware-Scheduling Strategy
	3.2.1 Challenge Description
	3.2.2 Our Proposal: A Locality-aware Overlay Network
	3.2.3 Proof-of-Concept & Validation
	3.2.4 Summary

	3.3 Related Work

	4 Conclusion & Open Research Issues

	III Virtualization and Simulation toolkits
	5 Adding virtualization capabilities to SimGrid
	5.1 Challenge Description
	5.2 SimGrid Overview
	5.3 Our proposal: Simgrid VM
	5.3.1 Adding a VM Workstation Model
	5.3.2 Adding a Live Migration Model
	5.3.3 SimGrid VM API (C and Java)

	5.4 Validation
	5.4.1 Experimental Conditions
	5.4.2 Evaluation of the VM Workstation Model
	5.4.3 Live migrations with various CPU levels
	5.4.4 Live Migrations under CPU Contention
	5.4.5 Live Migrations under Network Contention

	5.5 Related Work
	5.6 Summary

	6 Virtual Machine Placement Simulator
	6.1 Challenge Description
	6.2 Our Proposal: VMPlaceS
	6.3 Dynamic VMPP Algorithms
	6.4 Experiments
	6.4.1 Accuracy Evaluation
	6.4.2 Analysis of Entropy, Snooze and DVMS

	6.5 Related Work
	6.6 Summary

	7 Conclusion & Open Research Issues

	IV Beyond the Clouds: Recent, Ongoing and Future Work
	8 The DISCOVERY Initiative
	8.1 Context & Motivations
	8.2 From Cloud to Fog/Edge Computing Facilities
	8.3 Revising OpenStack Through a Bottom/Up Approach
	8.3.1 Design Considerations
	8.3.2 The Choice of OpenStack

	8.4 Innovation Opportunities
	8.5 Summary

	9 Revising OpenStack to Operate Fog/Edge Computing Infrastructures: a First Proof-Of-Concept
	9.1 Challenge Description
	9.2 Revising OpenStack
	9.2.1 Distributing the AMPQ Bus
	9.2.2 Distributing the Databases
	9.2.3 The Nova POC: From MySQL to Redis

	9.3 Experimental Validation
	9.3.1 Impact of Redis w.r.t MySQL
	9.3.2 Multi-site Scenarios
	9.3.3 Compatibility with Advanced Features

	9.4 Summary

	10 Conducting Scientific Evaluations of OpenStack
	10.1 Challenge Description
	10.2 Background
	10.2.1 Deploying OpenStack and controlling Experiments
	10.2.2 Enos Default Benchmarks
	10.2.3 Monitoring and Gathering Metrics

	10.3 EnOS
	10.3.1 EnOS Description Language for Flexible Topologies
	10.3.2 EnOS Workflow

	10.4 Experiments
	10.5 Related Work
	10.6 Summary

	11 Ongoing and Future Work: A Software Stack for Fog/Edge Infrastructures
	Bibliography

	V Appendix
	A RÃ©sumÃ© long en francais
	A.1 Contexte gÃ©nÃ©rale
	A.2 Contributions Scientifiques
	A.2.1 Placement dynamique de machines virtuelles
	A.2.2 Virtualisation et bibliothÃ¨ques de simulation
	A.2.3 Au delÃ€ de lâ•Žinformatique en nuage

	A.3 Une recherche dirigÃ©e par lâ•ŽexpÃ©rimentation

	B Detailled Curriculum Vitae/List of Publications/Invited Talks

