J. A. Ainge, G. L. Keating, M. P. Latimer, and P. Winn, The pedunculopontine tegmental nucleus and responding for sucrose reward., Behavioral Neuroscience, vol.120, issue.3, pp.563-570, 2006.
DOI : 10.1037/0735-7044.120.3.563

H. L. Alderson, M. P. Latimer, and P. Winn, A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine, Brain Structure and Function, vol.436, issue.1-2, pp.247-253, 2008.
DOI : 10.1016/0006-8993(96)00432-5

L. F. Allen, W. L. Inglis, and P. Winn, Is the cuneiform nucleus a critical component of S.B. Sébille et al, NeuroImage, vol.147, pp.66-78, 1996.

B. R. Aravamuthan, J. A. Mcnab, K. L. Miller, M. Rushworth, N. Jenkinson et al., Cortical and subcortical connections within the pedunculopontine nucleus of the primate Macaca mulatta determined using probabilistic diffusion tractography, Journal of Clinical Neuroscience, vol.16, issue.3, pp.413-420, 2009.
DOI : 10.1016/j.jocn.2008.03.018

B. R. Aravamuthan, K. Muthusamy, J. F. Stein, T. Z. Aziz, and H. Johansen-berg, Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei, NeuroImage, vol.37, issue.3, pp.694-705, 2007.
DOI : 10.1016/j.neuroimage.2007.05.050

B. R. Aravamuthan, J. F. Stein, and T. Z. Aziz, The anatomy and localization of the pedunculopontine nucleus determined using probabilistic diffusion tractography [corrected], Br. J. Neurosurg, vol.22, 2008.

E. Bardinet, M. Bhattacharjee, D. Dormont, B. Pidoux, G. Malandain et al., A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease, Journal of Neurosurgery, vol.110, issue.2, pp.208-219, 2009.
DOI : 10.3171/2008.3.17469

URL : https://hal.archives-ouvertes.fr/inria-00616085

T. E. Behrens, H. Johansen-berg, M. W. Woolrich, S. M. Smith, C. A. Wheeler-kingshott et al., Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging, Nature Neuroscience, vol.5, issue.Suppl. 3, pp.750-757, 2003.
DOI : 10.1016/S1361-8415(01)00036-6

N. I. Bohnen, M. L. Müller, R. A. Koeppe, S. A. Studenski, M. A. Kilbourn et al., History of falls in Parkinson disease is associated with reduced cholinergic activity, Neurology, vol.73, issue.20, pp.1670-1676, 2009.
DOI : 10.1212/WNL.0b013e3181c1ded6

U. Bürgel, K. Amunts, L. Hoemke, H. Mohlberg, J. M. Gilsbach et al., White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability, NeuroImage, vol.29, issue.4, pp.1092-1105, 2006.
DOI : 10.1016/j.neuroimage.2005.08.040

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria et al., Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Science Translational Medicine, vol.33, issue.3, pp.343-345, 2016.
DOI : 10.2165/00003088-199733030-00002

T. Chiba, T. Kayahara, and K. Nakano, Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata, Brain Research, vol.888, issue.1, pp.83-101, 2001.
DOI : 10.1016/S0006-8993(00)03013-4

W. A. Corrigall, K. M. Coen, J. Zhang, and L. Adamson, Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine, Psychopharmacology, vol.160, issue.2, pp.198-205, 2002.
DOI : 10.1007/s00213-001-0965-2

S. Datta, Evidence That REM Sleep Is Controlled by the Activation of Brain Stem Pedunculopontine Tegmental Kainate Receptor, Journal of Neurophysiology, vol.87, issue.4, pp.1790-1798, 2001.
DOI : 10.1152/jn.00763.2001

D. Dautan, I. Huerta-ocampo, I. B. Witten, K. Deisseroth, J. P. Bolam et al., A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem, Journal of Neuroscience, vol.34, issue.13, pp.4509-4518, 2014.
DOI : 10.1523/JNEUROSCI.5071-13.2014

C. Destrieux, B. Fischl, A. Dale, and E. Halgren, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, NeuroImage, vol.53, issue.1, pp.1-15, 2010.
DOI : 10.1016/j.neuroimage.2010.06.010

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

B. Draganski, F. Kherif, S. Klöppel, P. Cook, A. et al., Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia, Journal of Neuroscience, vol.28, issue.28, pp.7143-7152, 2008.
DOI : 10.1523/JNEUROSCI.1486-08.2008

M. U. Ferraye, B. Debu, V. Fraix, L. Goetz, C. Ardouin et al., Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease, Brain, vol.133, issue.1, pp.205-214, 2009.
DOI : 10.1093/brain/awp229

M. Fournier-gosselin, N. Lipsman, J. A. Saint-cyr, C. Hamani, and A. M. Lozano, Regional anatomy of the pedunculopontine nucleus: Relevance for deep brain stimulation, Movement Disorders, vol.51, issue.2, pp.1330-1336, 2013.
DOI : 10.1109/TBME.2003.820382

C. François, D. Grabli, K. Mccairn, C. Jan, C. Karachi et al., Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study, Brain, vol.127, issue.9, pp.2055-2070, 2004.
DOI : 10.1093/brain/awh239

C. François, J. Yelnik, G. Percheron, and G. Fénelon, Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra, Exp. Brain Res, vol.102, pp.305-318, 1994.

C. François, J. Yelnik, D. Tandé, Y. Agid, and E. C. Hirsch, Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum, The Journal of Comparative Neurology, vol.265, issue.3, pp.334-3471096, 1999.
DOI : 10.1177/32.11.6548485

A. Galvan and Y. Smith, The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson???s disease, Basal Ganglia, vol.1, issue.4, pp.179-189, 2011.
DOI : 10.1016/j.baga.2011.09.001

E. Garcia-rill, J. Hyde, N. Kezunovic, F. J. Urbano, and E. Petersen, The physiology of the pedunculopontine nucleus: implications for deep brain stimulation, Journal of Neural Transmission, vol.131, issue.6, pp.225-235, 2014.
DOI : 10.1093/brain/awn075

M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl et al., The minimal preprocessing pipelines for the Human Connectome Project, NeuroImage, vol.80, pp.105-124, 2013.
DOI : 10.1016/j.neuroimage.2013.04.127

E. J. Henderson, S. R. Lord, M. A. Brodie, D. M. Gaunt, A. D. Lawrence et al., Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial, The Lancet Neurology, vol.15, issue.3, pp.249-258, 2016.
DOI : 10.1016/S1474-4422(15)00389-0

E. C. Hirsch, M. Graybiel, C. Duyckaerts, and F. Javoy-agid, Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy., Proceedings of the National Academy of Sciences, vol.84, issue.16, pp.5976-5980, 1987.
DOI : 10.1073/pnas.84.16.5976

S. Hong and O. Hikosaka, Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons, Neuroscience, vol.282, pp.139-155, 2014.
DOI : 10.1016/j.neuroscience.2014.07.002

W. L. Inglis, M. C. Olmstead, and T. W. Robbins, Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions, Behavioural Brain Research, vol.123, issue.2, pp.117-131, 2001.
DOI : 10.1016/S0166-4328(01)00181-4

C. Jan, C. François, D. Tandé, J. Yelnik, L. Tremblay et al., Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients, Eur. J. Neurosci, pp.124525-1535, 2000.

H. Johansen-berg, T. E. Behrens, E. Sillery, O. Ciccarelli, A. J. Thompson et al., Functional???Anatomical Validation and Individual Variation of Diffusion Tractography-based Segmentation of the Human Thalamus, Cerebral Cortex, vol.15, issue.1, pp.31-39, 2005.
DOI : 10.1093/cercor/bhh105

C. Karachi, D. Grabli, N. Baup, S. Mounayar, D. Tandé et al., Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys, Movement Disorders, vol.76, issue.8, pp.1183-1192, 2009.
DOI : 10.1002/mds.22547

C. Karachi, D. Grabli, F. A. Bernard, D. Tandé, N. Wattiez et al., Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease, Journal of Clinical Investigation, vol.120, issue.8, pp.2745-2754, 2010.
DOI : 10.1172/JCI42642DS1

URL : https://hal.archives-ouvertes.fr/hal-00795787

R. Kozak, E. M. Bowman, M. P. Latimer, C. L. Rostron, and P. Winn, Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention, Experimental Brain Research, vol.47, issue.2, pp.257-264, 2004.
DOI : 10.1007/s00221-004-2143-3

C. Lambert, L. Zrinzo, Z. Nagy, A. Lutti, M. Hariz et al., Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging, NeuroImage, vol.60, issue.1, pp.83-94, 2012.
DOI : 10.1016/j.neuroimage.2011.11.082

B. Lau, M. Welter, H. Belaid, F. Vidal, S. Bardinet et al., The integrative role of the pedunculopontine nucleus in human gait, Brain, vol.138, issue.5, pp.1284-1296, 2015.
DOI : 10.1093/brain/awv047

B. Lavoie and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract-tracing methods, The Journal of Comparative Neurology, vol.16, issue.2, 1994.
DOI : 10.1002/cne.903440204

B. Lavoie and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra, The Journal of Comparative Neurology, vol.26, issue.2, pp.232-241, 1994.
DOI : 10.1177/34.11.2430010

L. Bihan, D. Breton, E. Lallemand, D. Grenier, P. Cabanis et al., MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders., Radiology, vol.161, issue.2, pp.401-407, 1986.
DOI : 10.1148/radiology.161.2.3763909

URL : https://hal.archives-ouvertes.fr/hal-00349714

S. E. Leh, A. Ptito, M. M. Chakravarty, and A. P. Strafella, Fronto-striatal connections in the human brain: A probabilistic diffusion tractography study, Neuroscience Letters, vol.419, issue.2, pp.113-118, 2007.
DOI : 10.1016/j.neulet.2007.04.049

K. Manaye, R. Zweig, D. Wu, L. Hersh, S. De-lacalle et al., Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain, Neuroscience, vol.89, issue.3, pp.759-770, 1999.
DOI : 10.1016/S0306-4522(98)00380-7

M. Matsumura, A. Nambu, Y. Yamaji, K. Watanabe, H. Imai et al., Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey, Neuroscience, vol.98, issue.1, pp.97-110, 2000.
DOI : 10.1016/S0306-4522(00)00099-3

P. Mazzone, A. Lozano, P. Stanzione, S. Galati, E. Scarnati et al., Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson??s disease, NeuroReport, vol.16, issue.17, pp.1877-1881, 2005.
DOI : 10.1097/01.wnr.0000187629.38010.12

J. Mena-segovia, B. R. Micklem, R. G. Nair-roberts, M. A. Ungless, and J. P. Bolam, GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories, The Journal of Comparative Neurology, vol.248, issue.4, pp.397-408, 2009.
DOI : 10.1007/978-1-4615-0715-4_41

S. Mori and P. C. Van-zijl, Fiber tracking: principles and strategies - a technical review, NMR in Biomedicine, vol.14, issue.7-8, pp.468-480, 2002.
DOI : 10.1002/mrm.10074

E. Moro, C. Hamani, Y. Poon, T. Al-khairallah, J. O. Dostrovsky et al., Unilateral pedunculopontine stimulation improves falls in Parkinson's disease, Brain, vol.133, issue.1, pp.215-224, 2010.
DOI : 10.1093/brain/awp261

S. B. Sébille, Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates, NeuroImage, vol.147, pp.66-78, 2017.
DOI : 10.1016/j.neuroimage.2016.12.011

F. Calamante, J. Tournier, G. D. Jackson, and A. Connelly, Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping, NeuroImage, vol.53, issue.4, pp.1233-1243, 2010.
DOI : 10.1016/j.neuroimage.2010.07.024

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman et al., Structural and molecular interrogation of intact biological systems The effects of brain tissue decomposition on diffusion tensor imaging and tractography, Nature. Neuroimage, vol.16497, issue.36, pp.332-339, 2007.

T. Dhollander, D. Raffelt, and A. Connelly, Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image, p.5, 2016.

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

S. Jbabdi and H. Johansen-berg, Tractography: Where Do We Go from Here? Brain Connect, 2011.
DOI : 10.1089/brain.2011.0033

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677805/pdf

B. Jeurissen, J. Tournier, T. Dhollander, A. Connelly, and J. Sijbers, Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data, NeuroImage, vol.103, pp.411-426, 2014.
DOI : 10.1016/j.neuroimage.2014.07.061

D. Jones, M. Diffusion, J. Pfeuffer, H. Merkle, M. Beyerlein et al., Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup, Magn Reson Imaging, vol.22, issue.10, pp.1343-59, 2004.

A. Pfefferbaum, E. V. Sullivan, E. Adalsteinsson, T. Garrick, and C. Harper, Postmortem MR imaging of formalin-fixed human brain, NeuroImage, vol.21, issue.4, pp.1585-1595, 2004.
DOI : 10.1016/j.neuroimage.2003.11.024

N. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel et al., iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging Magnetic reso-nance imaging of the post mortem autistic brain Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue -Implications for MRI studies of human autopsy samples, Cell. J. Autism Dev. Disord. Neuroimage, vol.159, issue.44, pp.896-910, 2001.

T. M. Shepherd, P. E. Thelwall, G. J. Stanisz, S. J. Blackband, R. E. Smith et al., Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue, Magnetic Resonance in Medicine, vol.26, issue.1, pp.26-34, 2009.
DOI : 10.1007/978-1-4684-4583-1_13

N. Stikov, J. S. Campbell, T. Stroh, M. Lavelée, S. Frey et al., In vivo histology of the myelin g-ratio with magnetic resonance imaging Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains, Neuroimage. Magn. Reson. Med, vol.118, issue.50, pp.397-405, 2003.

S. Sun, J. J. Neil, H. Liang, Y. Y. He, R. E. Schmidt et al., Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain, Magnetic Resonance in Medicine, vol.169, issue.6, 2005.
DOI : 10.1161/01.STR.28.2.439

P. E. Thelwall, T. M. Shepherd, G. J. Stanisz, and S. J. Blackband, Effects of temperature and aldehyde fixation on tissue water diffusion properties, studied in an erythrocyte ghost tissue model, Magnetic Resonance in Medicine, vol.53, issue.2, pp.282-289, 2006.
DOI : 10.1038/jcbfm.1994.49

M. Tovi and A. Ericsson, Measurements of T1 and T2 over Time in Formalin-Fixed Human Whole-Brain Specimens, Acta Radiologica, vol.162, issue.5, pp.400-404, 1992.
DOI : 10.1097/00005072-197607000-00001

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers et al., Denoising of diffusion MRI using random matrix theory, NeuroImage, vol.142, 2016.
DOI : 10.1016/j.neuroimage.2016.08.016

J. Veraart, E. Fieremans, and D. S. Novikov, Diffusion MRI noise mapping using random matrix theory, Magnetic Resonance in Medicine, vol.8, issue.5, 2016.
DOI : 10.1371/journal.pone.0073021

K. W. Yeom, S. J. Holdsworth, A. T. Van, M. Iv, S. Skare et al., Comparison of Readout-Segmented Echo-Planar Imaging (EPI) and Single-Shot EPI in Clinical Application of Diffusion-Weighted Imaging of the Pediatric Brain, American Journal of Roentgenology, vol.200, issue.5, pp.437-480, 2003.
DOI : 10.2214/AJR.12.9854

S. Galvan, A. Galvan, and Y. Smith, The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson???s disease, Basal Ganglia, vol.1, issue.4, pp.179-189, 2011.
DOI : 10.1016/j.baga.2011.09.001

S. Galvan, A. Galvan, and Y. Smith, The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson???s disease, Basal Ganglia, vol.1, issue.4, pp.179-189, 2011.
DOI : 10.1016/j.baga.2011.09.001

G. Garcia-rill and E. , The pedunculopontine nucleus, Progress in Neurobiology, vol.36, issue.5, pp.363-89, 1991.
DOI : 10.1016/0301-0082(91)90016-T

. Garcia, Arousal mechanisms related to posture and locomotion : 1. descending modulation, Progress in brain research, pp.283-90, 2004.

. Garcia, Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus, Brain Research Bulletin, vol.18, issue.6, pp.731-739, 1987.
DOI : 10.1016/0361-9230(87)90208-5

. Giladi, Motor blocks in Parkinson's disease, Neurology, vol.42, issue.2, pp.42333-42342, 1992.
DOI : 10.1212/WNL.42.2.333

. Gilardi, Freezing of gait in patients with advanced Parkinson's disease, Journal of Neural Transmission, vol.108, issue.1, pp.53-61, 2001.
DOI : 10.1007/s007020170096

. Glasser, The minimal preprocessing pipelines for the Human Connectome Project, NeuroImage, vol.80, pp.105-129, 2013.
DOI : 10.1016/j.neuroimage.2013.04.127

. Goetz, The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state, Journal of Neural Transmission, vol.23, issue.3, pp.123667-78, 1996.
DOI : 10.1002/mds.21720

. Gomez-gallego, Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression, Journal of Neural Transmission, vol.26, issue.Suppl 3, pp.319-345, 1996.
DOI : 10.1615/CritRevNeurobiol.v11.i4.10

K. Granata, A. Granata, and S. Kitai, Inhibitory substantia nigra inputs to the pedunculopontine neurons, Experimental Brain Research, vol.86, issue.3, pp.459-66, 1991.
DOI : 10.1007/BF00230520

. Grunwerg, . Krauthamer, B. Grunwerg, and G. Krauthamer, Sensory responses of intralaminar thalamic neurons activated by the superior colliculus, Experimental Brain Research, vol.88, issue.3, pp.541-50, 1992.
DOI : 10.1007/BF00228183

. Guiot, . Derôme, G. Guiot, and P. Derôme, The principles of stereotaxic thalamotomy, pp.376-401, 1969.

. Guiot, Le tremblement d'attitude. indication la meilleure de la chirurgie stéréotaxique, Press Med, vol.75, pp.2513-2521, 1967.

. Hamani, Deep brain stimulation for chronic neuropathic pain: Long-term outcome and the incidence of insertional effect, Pain, vol.125, issue.1, 2006.
DOI : 10.1016/j.pain.2006.05.019

. Hamel, Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts, Journal of Neurology, Neurosurgery & Psychiatry, vol.74, issue.8, pp.741036-741082, 2003.
DOI : 10.1136/jnnp.74.8.1036

R. Hassler, Introduction to stereotaxis with an atlas of the human brain, pp.230-290, 1959.

. Hassler, PHYSIOLOGICAL OBSERVATIONS IN STEREOTAXIC OPERATIONS IN EXTRAPYRAMIDAL MOTOR DISTURBANCES, Brain, vol.83, issue.2, pp.337-50, 1960.
DOI : 10.1093/brain/83.2.337

. Hazrati, . Parent, L. Hazrati, and A. Parent, Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey, Brain Research, vol.585, issue.1-2, 1992.
DOI : 10.1016/0006-8993(92)91216-2

. Hazrati, Clinicopathological study in progressive supranuclear palsy with pedunculopontine stimulation, Movement Disorders, vol.23, issue.Suppl 3, pp.271304-271311, 2012.
DOI : 10.1002/mds.22055

. Herrero, Glutamic acid decarboxylase mrna expression in medial and lateral pallidal neurons in the mptp-treated monkey and patients with parkinson's disease, Advances in neurology, vol.69, pp.209-225, 1996.

. Hirabayashi, Stereotactic imaging of the pallidal target. Movement disorders : official journal of the, p.17, 2002.

. Hirai, . Jones, T. Hirai, and E. Jones, A new parcellation of the human thalamus on the basis of histochemical staining, Brain Research Reviews, vol.14, issue.1, pp.1-34, 1989.
DOI : 10.1016/0165-0173(89)90007-6

. Hirsch, Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy., Proceedings of the National Academy of Sciences of the United States of America, pp.5976-80, 1987.
DOI : 10.1073/pnas.84.16.5976

H. Hong, S. Hong, and O. Hikosaka, Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons, Neuroscience, vol.282, pp.139-55, 2014.
DOI : 10.1016/j.neuroscience.2014.07.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302061/pdf

. Hosey, Inference of multiple fiber orientations in high angular resolution diffusion imaging, Magnetic Resonance in Medicine, vol.56, issue.6, pp.1480-1489, 2005.
DOI : 10.1148/radiology.201.3.8939209

. Hua, Thalamotomy for Tremor, pp.99-114, 2002.
DOI : 10.1385/1-59259-312-7:99

. Huber, The pattern of depressive symptoms varies with progression of Parkinson's disease., Journal of Neurology, Neurosurgery & Psychiatry, vol.53, issue.4, pp.275-283, 1990.
DOI : 10.1136/jnnp.53.4.275

. Hunsche, Tractography-Guided Stimulation of Somatosensory Fibers for Thalamic Pain Relief, Stereotactic and functional neurosurgery, pp.91328-91362, 2013.
DOI : 10.1159/000350024

. Hyam, Contrasting Connectivity of the Ventralis Intermedius and Ventralis Oralis Posterior Nuclei of the Motor Thalamus Demonstrated by Probabilistic Tractography, Neurosurgery, vol.70, issue.1, pp.162-171, 2012.
DOI : 10.1227/NEU.0b013e3182262c9a

. Jahn, Supraspinal locomotor control in quadrupeds and humans, Progress in brain research, pp.353-62, 2008.
DOI : 10.1016/S0079-6123(08)00652-3

. Jahn, Imaging human supraspinal locomotor centers in brainstem and cerebellum, NeuroImage, vol.39, issue.2, pp.39786-92, 2008.
DOI : 10.1016/j.neuroimage.2007.09.047

K. Jellinger, The pedunculopontine nucleus in Parkinson's disease, progressive supranuclear palsy and Alzheimer's disease., Journal of Neurology, Neurosurgery & Psychiatry, vol.51, issue.4, pp.540-543, 1988.
DOI : 10.1136/jnnp.51.4.540

. Jia, Colocalization of ??-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study, Brain Research, vol.992, issue.2, pp.205-224, 2003.
DOI : 10.1016/j.brainres.2003.08.062

. Khan, Combined pedunculopontine-subthalamic stimulation in Parkinson disease, Neurology, vol.78, issue.14, pp.781090-781095, 2012.
DOI : 10.1212/WNL.0b013e31824e8e96

. Kitai, Afferent modulation of dopamine neuron firing patterns, Current Opinion in Neurobiology, vol.9, issue.6, pp.690-697, 1999.
DOI : 10.1016/S0959-4388(99)00040-9

. Kobayashi, Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys, Journal of neurophysiology, vol.88, issue.2, pp.715-746, 2002.

. Kondziolka, Gamma Knife thalamotomy for essential tremor, Journal of Neurosurgery, vol.108, issue.1, pp.117-124, 2008.
DOI : 10.3171/JNS/2008/108/01/0111

. Konigsmark, . Murphy, B. Konigsmark, and E. Murphy, Neuronal Populations in the Human Brain, Nature, vol.9, issue.5278, pp.2281335-2281341, 1970.
DOI : 10.1038/2281335a0

. Kreher, Multitensor approach for analysis and tracking of complex fiber configurations, Magnetic Resonance in Medicine, vol.51, issue.5, pp.1216-1241, 2005.
DOI : 10.1007/978-94-017-2221-6_5

. Kringelbach, Translational principles of deep brain stimulation, Nature Reviews Neuroscience, vol.62, issue.8, pp.623-635, 2007.
DOI : 10.1212/WNL.26.8.744

L. Lang, A. Lang, and A. Lozano, Parkinson's Disease, New England Journal of Medicine, vol.339, issue.15, pp.1044-53, 1998.
DOI : 10.1056/NEJM199810083391506

. Lau, The integrative role of the pedunculopontine nucleus in human gait, Brain, vol.138, issue.5, 2015.
DOI : 10.1093/brain/awv047

P. Lavoie, B. Lavoie, and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra, The Journal of Comparative Neurology, vol.26, issue.2, pp.232-273, 1994.
DOI : 10.1177/34.11.2430010

P. Lavoie, B. Lavoie, and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons, The Journal of Comparative Neurology, vol.17, issue.2, pp.190-209, 1994.
DOI : 10.1007/978-1-4757-0145-6_5

P. Lavoie, B. Lavoie, and A. Parent, Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract-tracing methods, The Journal of Comparative Neurology, vol.16, issue.2, pp.210-241, 1994.
DOI : 10.1002/cne.903440204

[. Bihan, Artifacts and pitfalls in diffusion MRI, Journal of Magnetic Resonance Imaging, vol.98, issue.12, pp.478-88, 2006.
DOI : 10.1007/978-3-540-45087-0_57

URL : https://hal.archives-ouvertes.fr/hal-00349658

R. Le, Chapter 4?supraspinal control of locomotion : the mesencephalic locomotor region, Progress in brain research, pp.51-70, 2011.

. Lenarz, The auditory midbrain implant : a new auditory prosthesis for neural deafness-concept and device description. Otology neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, issue.6, pp.27838-27881, 2006.

. Limousin, Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation, The Lancet, vol.345, issue.8942, pp.34591-34596, 1995.
DOI : 10.1016/S0140-6736(95)90062-4

E. Louis, Essential tremors : a family of neurodegenerative disorders ? Archives of neurology, pp.1202-1210, 2009.

. Louis, Differences in the Prevalence of Essential Tremor Among Elderly African Americans, Whites, and Hispanics in Northern Manhattan, NY, Archives of Neurology, vol.52, issue.12, pp.521201-521206, 1995.
DOI : 10.1001/archneur.1995.00540360079019

. Lujan, Axonal pathways linked to therapeutic and nontherapeutic outcomes during psychiatric deep brain stimulation, Human Brain Mapping, vol.52, issue.Pt 2, pp.958-68, 2012.
DOI : 10.1016/j.neuroimage.2010.05.049

. Machado, Deep brain stimulation for Parkinson's disease: Surgical technique and perioperative management, Movement disorders : official journal of the Movement Disorder Society, 2006.
DOI : 10.3171/jns.2005.103.3.0404

. Marlinsky, . Voitenko, V. Marlinsky, and L. Voitenko, The effect of procaine injection into the medullary reticular formation on forelimb muscle activity evoked by mesencephalic locomotor region and vestibular stimulation in the decerebrated guinea-pig, Neuroscience, vol.45, issue.3, pp.45753-45762, 1991.
DOI : 10.1016/0306-4522(91)90287-X

. Martinez-gonzalez, Topographical Organization of the Pedunculopontine Nucleus, Frontiers in Neuroanatomy, vol.5, p.22, 2011.
DOI : 10.3389/fnana.2011.00022

. Martinez-gonzalez, Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed, European Journal of Neuroscience, vol.14, issue.Suppl 2, pp.723-757, 2012.
DOI : 10.1016/j.parkreldis.2008.04.030

. Matsumoto, Neurons in the thalamic cm-pf complex supply striatal neurons with information about behaviorally significant sensory events, Journal of neurophysiology, vol.85, issue.2, pp.960-76, 2001.

. Matsumura, Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey, Neuroscience, vol.98, issue.1, pp.9897-110, 2000.
DOI : 10.1016/S0306-4522(00)00099-3

. Mazzone, Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson??s disease, NeuroReport, vol.16, issue.17, pp.161877-81, 2005.
DOI : 10.1097/01.wnr.0000187629.38010.12

. Mcdannold, Transcranial Magnetic Resonance Imaging??? Guided Focused Ultrasound Surgery of Brain Tumors, Neurosurgery, vol.66, issue.2, p.66323, 2010.
DOI : 10.1227/01.NEU.0000360379.95800.2F

. Mcnab, High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession, NeuroImage, vol.46, issue.3, pp.46775-85, 2009.
DOI : 10.1016/j.neuroimage.2009.01.008

. Mena-segovia, GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories, The Journal of Comparative Neurology, vol.248, issue.4, pp.397-408, 2009.
DOI : 10.1007/978-1-4615-0715-4_41

. Mena-segovia, Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations, The Journal of Physiology, vol.248, issue.12, pp.5862947-60, 2008.
DOI : 10.1016/j.jns.2006.05.036

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2008.153874/pdf

. Mena-segovia, Cholinergic modulation of midbrain dopaminergic systems, Brain Research Reviews, vol.58, issue.2, pp.265-71, 2008.
DOI : 10.1016/j.brainresrev.2008.02.003

. Meola, Human Connectome-Based Tractographic Atlas of the Brainstem Connections and Surgical Approaches, Neurosurgery, vol.79, issue.3, pp.79437-55, 2016.
DOI : 10.1227/NEU.0000000000001224

. Mestre, Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson's disease, Movement Disorders, vol.60, issue.1, pp.311570-1574, 2016.
DOI : 10.1109/TBME.2012.2227317

. Mesulam, Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons, The Journal of Comparative Neurology, vol.22, issue.4, pp.611-644, 1989.
DOI : 10.1113/jphysiol.1967.sp008326

. Mesulam, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1???Ch6), Neuroscience, vol.10, issue.4, pp.1185-201, 1983.
DOI : 10.1016/0306-4522(83)90108-2

. Mori, Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging, Annals of Neurology, vol.40, issue.2, pp.265-274, 1999.
DOI : 10.1002/mrm.1910400403

. Morita, Pedunculopontine Nucleus Stimulation: Where are We Now and What Needs to be Done to Move the Field Forward?, Frontiers in Neurology, vol.16, issue.Suppl 1, p.243, 2014.
DOI : 10.1016/j.parkreldis.2009.05.009

. Moro, Unilateral pedunculopontine stimulation improves falls in Parkinson's disease, Brain, vol.133, issue.1, 2010.
DOI : 10.1093/brain/awp261

. Moro, Longterm results of a multicenter study on subthalamic and pallidal stimulation in parkinson's disease, Movement disorders : official journal of the, pp.578-86, 2010.

. Moruzzi, . Magoun, G. Moruzzi, and H. Magoun, Brain stem reticular formation and activation of the EEG, Electroencephalography and Clinical Neurophysiology, vol.1, issue.1-4, pp.455-73, 1949.
DOI : 10.1016/0013-4694(49)90219-9

. Muthusamy, Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting, Journal of Neurosurgery, vol.107, issue.4, pp.814-834, 2007.
DOI : 10.3171/JNS-07/10/0814

C. Muzerengi, S. Muzerengi, and C. Clarke, Initial drug treatment in Parkinson???s disease:, BMJ, vol.351, p.4669, 2015.
DOI : 10.1136/bmj.h4669

. Naidich, Duvernoy's Atlas of the Human Brain Stem and Cerebellum, High-Field MRI, Surface Anatomy , Internal Structure, Vascularization and 3 D Sectional Anatomy, 2007.
DOI : 10.1007/978-3-211-73971-6

. Nakano, Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata, Brain Research, vol.537, issue.1-2, 1990.
DOI : 10.1016/0006-8993(90)90339-D

I. Nasrallah and D. Wolk, Multimodality Imaging of Alzheimer Disease and Other Neurodegenerative Dementias, Journal of Nuclear Medicine, vol.55, issue.12, pp.552003-552014, 2014.
DOI : 10.2967/jnumed.114.141416

J. Nicholls and J. Paton, Brainstem: neural networks vital for life, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.364, issue.1529, pp.3642447-51, 1529.
DOI : 10.1098/rstb.2009.0080

O. Noda, T. Noda, and H. Oka, Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: An intracellular HRP study, The Journal of Comparative Neurology, vol.173, issue.2, pp.254-66, 1986.
DOI : 10.1016/S0079-6123(08)63095-2

. Odekerken, Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial, The Lancet Neurology, vol.12, issue.1, pp.37-44, 2013.
DOI : 10.1016/S1474-4422(12)70264-8

. Ohye, Ventrolateral and Subventrolateral Thalamic Stimulation, Archives of Neurology, vol.11, issue.4, pp.427-461, 1964.
DOI : 10.1001/archneur.1964.00460220089012

Y. Okuma and N. Yanagisawa, The clinical spectrum of freezing of gait in parkinson's disease. Movement disorders : official journal of the, 2008.

. Olszewski, . Baxter, J. Olszewski, and D. Baxter, Cytoarchitecture of the human brainstem. By Jerzy Olszewski and Donald Baxter. Published and distributed in North America for S. Karger by J. B. Lippincott Company, Philadelphia and Montreal. 1954. 199 pages. Price $16.00 (Reviewed by Gerhardt von Bonin), The Journal of Comparative Neurology, vol.101, issue.3, pp.825-825, 1954.
DOI : 10.1002/cne.901010308

. Olszewski, . Baxter, J. Olszewski, and D. Baxter, Cytoarchitecture of the human brain stem, 1982.

. Orioli, . Strick, P. Orioli, and P. Strick, Cerebellar connections with the motor cortex and the arcuate premotor area: An analysis employing retrograde transneuronal transport of WGA-HRP, The Journal of Comparative Neurology, vol.237, issue.4, pp.612-638, 1989.
DOI : 10.1007/978-3-642-68560-6_20

. Ourselin, Block Matching: A??General??Framework??to??Improve Robustness of??Rigid??Registration of Medical Images, Third International Conference on Medical Robotics, pp.557-566, 1935.
DOI : 10.1007/978-3-540-40899-4_57

URL : https://hal.archives-ouvertes.fr/inria-00615860

. Palfi, Long-term safety and tolerability of prosavin, a lentiviral vector-based gene therapy for parkinson's disease : a dose escalation, Lancet, issue.19923, pp.3831138-3831184, 2014.

. Papavassiliou, Thalamic Deep Brain Stimulation for Essential Tremor: Relation of Lead Location to Outcome, Neurosurgery, vol.54, issue.5, p.62, 2008.
DOI : 10.1227/01.NEU.0000119329.66931.9E

. Parent, Two types of projection neurons in the internal pallidum of primates: Single-axon tracing and three-dimensional reconstruction, Journal of Comparative Neurology, vol.171, issue.2, pp.162-75, 2001.
DOI : 10.1016/0006-8993(79)90728-5

H. Paxinos, G. Paxinos, and X. Huang, Atlas of the human brainstem, 1959.

. Peppe, Deep brain stimulation of the pedunculopontine tegmentum and subthalamic nucleus: Effects on gait in Parkinson's disease, Gait & Posture, vol.32, issue.4, pp.512-520, 2010.
DOI : 10.1016/j.gaitpost.2010.07.012

G. Percheron, The thalamic territory of cerebellar afferents and the lateral region of the thalamus of the macaque in sterotaxic ventricular coordinates, Journal fur Hirnforschung, vol.18, issue.5, pp.376-400, 1977.

. Pereira, Deep brain stimulation of the pedunculopontine nucleus in Parkinson's disease. Preliminary experience at Oxford, British Journal of Neurosurgery, vol.12, issue.2, 2008.
DOI : 10.1016/j.jocn.2004.09.001

. Piallat, Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons, Neuroscience, vol.158, issue.4, pp.1201-1206, 2009.
DOI : 10.1016/j.neuroscience.2008.10.046

URL : https://hal.archives-ouvertes.fr/inserm-00536386

G. Plaha, P. Plaha, and S. Gill, Bilateral deep brain stimulation of the pedunculopontine nucleus for parkinson's disease, Neuroreport, issue.17, pp.161883-161890, 2005.

. Pose, Cuneiform neurons activated during cholinergically induced active sleep in the cat, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.20, issue.9, pp.3319-3346, 2000.

. Rajput, Essential tremor course and disability: A clinicopathologic study of 20 cases, Neurology, vol.62, issue.6, pp.62932-62938, 2004.
DOI : 10.1212/01.WNL.0000115145.18830.1A

. Rinaldi, Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation, Brain Research, vol.558, issue.1, pp.36-42, 1991.
DOI : 10.1016/0006-8993(91)90711-4

. Rincon, F. Louis-]-rincon, and E. Louis, Benefits and risks of pharmacological and surgical treatments for essential tremor: disease mechanisms and current management, Expert Opinion on Drug Safety, vol.16, issue.4, pp.899-913, 2005.
DOI : 10.1007/BF01720969

. Rinne, Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson's disease is related to disability of the patients, Parkinsonism & Related Disorders, vol.14, issue.7, pp.14553-14560, 2008.
DOI : 10.1016/j.parkreldis.2008.01.006

. Rohrbacher, Electrophysiological characteristics of substantia nigra neurons in organotypic cultures: spontaneous and evoked activities, Neuroscience, vol.97, issue.4, pp.703-717, 2000.
DOI : 10.1016/S0306-4522(00)00046-4

. Rolland, Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate, Movement Disorders, vol.28, issue.9, pp.1648-56, 2011.
DOI : 10.1016/S0168-0102(97)00039-4

. Rolland, Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication, Journal of Neurochemistry, vol.50, issue.4, pp.1321-1330, 2009.
DOI : 10.1016/0306-4522(92)90445-8

. Roseberry, Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia, Cell, vol.164, issue.3, pp.164526-164563, 2016.
DOI : 10.1016/j.cell.2015.12.037

. Rosenbloom, Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics, Alcohol research health : the journal of the National Institute on Alcohol Abuse and Alcoholism, vol.27, issue.2, pp.146-52, 2003.

D. Ryczko and R. Dubuc, The Multifunctional Mesencephalic Locomotor Region, Current Pharmaceutical Design, vol.19, issue.24, pp.4448-70, 2013.
DOI : 10.2174/1381612811319240011

. Rye, Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum, The Journal of Comparative Neurology, vol.44, issue.4, pp.483-528, 1987.
DOI : 10.1177/32.4.6368680

. Sakai, Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis), Neuroscience, vol.163, issue.4, pp.1158-70, 2009.
DOI : 10.1016/j.neuroscience.2009.07.036

. Sammartino, Tractography-Based Ventral Intermediate Nucleus Targeting: Novel Methodology and Intraoperative Validation, Movement Disorders, vol.20, issue.9, pp.311217-311242, 2016.
DOI : 10.1093/cercor/bhp280

G. Schaltenbrand and W. Wahren, Atlas for Stereotaxy of the Human Brain, 1977.

G. Schaltenbrand and W. Wahren, Atlas for stereotaxy of the human brain. Year Book Medical Publishers, 1978.

S. Schell, G. Schell, and P. Strick, The origin of thalamic inputs to the arcuate premotor and supplementary motor areas, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.4, issue.2, pp.539-60, 1984.

. Schrempf, Sleep disorders in parkinson's disease, Journal of Parkinson's disease, vol.4, issue.2, pp.211-232, 2014.

*. Sébille, Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates, NeuroImage, vol.147, pp.14766-78, 2017.
DOI : 10.1016/j.neuroimage.2016.12.011

F. Semba, K. Semba, and H. Fibiger, Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro- and antero-grade transport and immunohistochemical study, The Journal of Comparative Neurology, vol.292, issue.3, pp.387-410, 1992.
DOI : 10.1007/978-1-4757-4669-3

. Shik, [control of walking and running by means of electric stimulation of the midbrain], Biofizika, vol.11, issue.4, pp.659-66, 1966.

. Shimamoto, Physiological identification of the human pedunculopontine nucleus, Journal of Neurology, Neurosurgery & Psychiatry, vol.81, issue.1, pp.80-86, 2010.
DOI : 10.1136/jnnp.2009.179069

. Shink, Efferent connections of the internal globus pallidus in the squirrel monkey: II. topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus, The Journal of Comparative Neurology, vol.139, issue.3, pp.348-363, 1997.
DOI : 10.1002/(SICI)1096-9861(19970609)382:3<348::AID-CNE4>3.0.CO;2-3

. Shinoda, Input-Output Organization of the Ventrolateral Nucleus of the Thalamus, Stereotactic and Functional Neurosurgery, vol.60, issue.1-3, 1993.
DOI : 10.1159/000100587

L. Shute, C. Shute, and P. Lewis, THE ASCENDING CHOLINERGIC RETICULAR SYSTEM: NEOCORTICAL, OLFACTORY AND SUBCORTICAL PROJECTIONS, Brain, vol.90, issue.3, pp.497-520, 1967.
DOI : 10.1093/brain/90.3.497

. Sirota, Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys, European Journal of Neuroscience, vol.80, issue.11, pp.124081-92, 2000.
DOI : 10.1126/science.278.5340.1122

. Skinner, Arousal mechanisms related to posture and locomotion: 2. Ascending modulation, Progress in brain research, vol.143, pp.291-299, 2004.
DOI : 10.1016/S0079-6123(03)43028-8

. Skori´cskori´c, Evaluation of brainstem involvement in multiple sclerosis, Can J Neurol Sci, issue.3, pp.41349-41358, 2014.

. Smith, SIFT: Spherical-deconvolution informed filtering of tractograms, NeuroImage, vol.67, pp.298-312, 2013.
DOI : 10.1016/j.neuroimage.2012.11.049

. Smith, Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage, vol.23, 2004.
DOI : 10.1016/j.neuroimage.2004.07.051

. Smith, Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage, vol.23, 2004.
DOI : 10.1016/j.neuroimage.2004.07.051

. Smith, Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement, Journal of Neuroscience, vol.31, issue.45, pp.3116102-3116108, 2011.
DOI : 10.1523/JNEUROSCI.4634-11.2011

. Smith, Parkinson's Disease Therapeutics: New Developments and Challenges Since the Introduction of Levodopa, Neuropsychopharmacology, vol.131, issue.1, pp.213-259, 2012.
DOI : 10.1093/brain/awn075

. Snijders, Gait-related cerebral alterations in patients with Parkinson???s disease with freezing of gait, Brain, vol.134, issue.1, 2011.
DOI : 10.1093/brain/awq324

D. Song and S. Haber, Striatal responses to partial dopaminergic lesion : evidence for compensatory sprouting, The Journal of neuroscience : the official journal of the Society for Neuroscience, issue.13, pp.205102-205116, 2000.

. Sotiropoulos, Advances in diffusion MRI acquisition and processing in the Human Connectome Project, NeuroImage, vol.80, pp.125-168, 2013.
DOI : 10.1016/j.neuroimage.2013.05.057

G. Spann, B. Spann, and I. Grofova, Nigropedunculopontine projection in the rat: An Anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L), Journal of Comparative Neurology, vol.22, issue.3, pp.311375-88, 1991.
DOI : 10.1002/ana.410220107

F. Spiegelmann, R. Spiegelmann, and W. Friedman, Rapid determination of thalamic CT-stereotactic coordinates: A method, Acta Neurochirurgica, vol.52, issue.1-2, 1991.
DOI : 10.1007/BF01402051

. Stefani, Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease, Brain, vol.130, issue.6, 2007.
DOI : 10.1093/brain/awl346

M. Steriade, Arousal--Revisiting the Reticular Activating System, Science, vol.272, issue.5259, pp.272225-272231, 1996.
DOI : 10.1126/science.272.5259.225

. Steriade, Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems, The Journal of neuroscience : the official journal of the Society for Neuroscience, issue.8, pp.102541-59, 1990.

. Steriade, Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey, Neuroscience, vol.25, issue.1, pp.47-67, 1988.
DOI : 10.1016/0306-4522(88)90006-1

. Sudhyadhom, Delineation of motor and somatosensory thalamic subregions utilizing probabilistic diffusion tractography and electrophysiology, Journal of Magnetic Resonance Imaging, vol.15, issue.2, pp.600-609, 2013.
DOI : 10.1093/cercor/bhh105

. Takakusaki, Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction, Neuroscience, vol.119, issue.1, pp.293-308, 2003.
DOI : 10.1016/S0306-4522(03)00095-2

R. Tasker, Deep brain stimulation is preferable to thalamotomy for tremor suppression, Surgical Neurology, vol.49, issue.2, pp.145-53, 1998.
DOI : 10.1016/S0090-3019(97)00459-X

. Thevathasan, Pedunculopontine Nucleus Stimulation Improves Gait Freezing in Parkinson Disease, Neurosurgery, vol.69, issue.6, pp.691248-53, 2011.
DOI : 10.1227/NEU.0b013e31822b6f71

. Torres, Integrating Diffusion Tensor Imaging-Based Tractography into Deep Brain Stimulation Surgery: A Review of the Literature, Stereotactic and Functional Neurosurgery, vol.92, issue.5, pp.92282-90, 2014.
DOI : 10.1159/000362937

. Tournier, Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution, NeuroImage, vol.35, issue.4, pp.1459-72, 2007.
DOI : 10.1016/j.neuroimage.2007.02.016

. Tournier, Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusionweighted imaging, NMR in biomedicine, issue.12, pp.261775-86, 2013.

. Tournier, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution, NeuroImage, vol.23, issue.3, pp.1176-85, 2004.
DOI : 10.1016/j.neuroimage.2004.07.037

. Tripoliti, Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson's disease, Movement Disorders, vol.50, issue.3, pp.262434-262440, 2011.
DOI : 10.1044/1092-4388(2007/064)

D. Tuch, Q-ball imaging. Magnetic resonance in medicine, pp.1358-72, 2004.

. Tuch, High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magnetic Resonance in Medicine, vol.147, issue.4, pp.577-82, 2002.
DOI : 10.1148/radiology.217.3.r00nv43897

. Tustison, N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.291310-291330, 2010.
DOI : 10.1109/TMI.2010.2046908

D. Twieg, -trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods, Medical Physics, vol.10, issue.5, 1983.
DOI : 10.1118/1.595331

. Tyler, Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound, PLoS ONE, vol.37, issue.10, p.3511, 2008.
DOI : 10.1371/journal.pone.0003511.s004

. Veraart, Diffusion MRI noise mapping using random matrix theory, Magnetic Resonance in Medicine, vol.8, issue.5, pp.1582-1593, 2016.
DOI : 10.1371/journal.pone.0073021

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879661/pdf

. Veraart, Denoising of diffusion MRI using random matrix theory, NeuroImage, vol.142, pp.394-406, 2016.
DOI : 10.1016/j.neuroimage.2016.08.016

J. Vitek, Mechanisms of deep brain stimulation : excitation or inhibition. Movement disorders : official journal of the, p.17, 2002.

. Vitek, Physiologic properties and somatotopic organization of the primate motor thalamus, Journal of neurophysiology, vol.71, issue.4, pp.1498-513, 1994.

M. Wang, H. Wang, and M. Morales, Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat, European Journal of Neuroscience, vol.25, issue.2, pp.340-58, 2009.
DOI : 10.1007/BF00174143

. Weaver, Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes, Neurology, vol.79, issue.1, pp.55-65, 2012.
DOI : 10.1212/WNL.0b013e31825dcdc1

. Wedeen, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magnetic Resonance in Medicine, vol.118, issue.6, pp.1377-86, 2005.
DOI : 10.1017/CBO9780511810817

. Welter, PPNa-DBS for gait and balance disorders in Parkinson???s disease: a double-blind, randomised study, Journal of Neurology, vol.82, issue.Suppl 3, pp.1515-1540, 2015.
DOI : 10.1212/WNL.0000000000000315

. Wiberg, Somatosensory projection to the mesencephalon: An anatomical study in the monkey, The Journal of Comparative Neurology, vol.3, issue.1, pp.92-117, 1987.
DOI : 10.1007/BF00237538

P. Winn, Experimental studies of pedunculopontine functions : are they motor, sensory or integrative ? Parkinsonism related disorders, p.14, 2008.

. Yelnik, A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data, NeuroImage, vol.34, issue.2, pp.618-656, 2007.
DOI : 10.1016/j.neuroimage.2006.09.026

URL : https://hal.archives-ouvertes.fr/inria-00616029

R. Yezierski, Spinomesencephalic tract: Projections from the lumbosacral spinal cord of the rat, cat, and monkey, The Journal of Comparative Neurology, vol.62, issue.1, pp.131-177, 1988.
DOI : 10.1007/978-1-4757-1688-7

. Zesiewicz, Practice Parameter: Therapies for essential tremor: Report of the Quality Standards Subcommittee of the American Academy of Neurology, Neurology, vol.64, issue.12, pp.642008-642028, 2005.
DOI : 10.1212/01.WNL.0000163769.28552.CD

. Zhang, NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain, NeuroImage, vol.61, issue.4, pp.611000-611016, 2012.
DOI : 10.1016/j.neuroimage.2012.03.072

L. Zrinzo and L. Zrinzo, Surgical anatomy of the pedunculopontine and peripeduncular nuclei, British Journal of Neurosurgery, vol.48, issue.3, 2008.
DOI : 10.1002/mds.22000

. Zrinzo, Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study, Journal of Neural Transmission, vol.131, issue.Pt 6, pp.1181487-95, 1996.
DOI : 10.1093/brain/awn075

. Zweig, The pedunculopontine nucleus in Parkinson's disease, Annals of Neurology, vol.24, issue.1, pp.41-47, 1989.
DOI : 10.1212/WNL.37.9.1539

A. Sommaire and A. , 1 Production des ondes ultrasonores, p.148

. Mcdannold, Développées depuis maintenant plus d'un demi siècle, les applications thérapeutiques des ultrasons focalisés de haute intensité ne cessent de se multiplier et concernent les pathologies cancéreuses, mais aussi des tumeurs bénignes par destruction cellulaire, 2010.

L. and I. Par-résonance-magnétique, IRM) est une technique d'imagerie non invasive permettant d'accéder à la structure, la fonction et le réseau de connectivité cérébral sous-jacent, à partir de différentes modalités : IRM anatomique