. Chapter, ? Numerical integration of classical conservative field theories The content of this chapter has resulted in the following publi- cation

H. Ricateau and L. F. Cugliandolo, Numerical solutions of Hamiltonian PDEs: a multi-symplectic integrator in light-cone coordinates, p.2017
URL : https://hal.archives-ouvertes.fr/hal-01474871

G. Aarts, G. F. Bonini, and C. Wetterich, On thermalization in classical scalar field theory, Nuclear Physics B, vol.587, issue.1-3, pp.403-418, 2000.
DOI : 10.1016/S0550-3213(00)00447-8

J. Berges, Nonequilibrium quantum fields and the classical field theory limit, International Symposium on Statistical {QCD}, pp.351-355, 2002.
DOI : 10.1016/S0375-9474(02)00723-6

J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Basin of attraction for turbulent thermalization and the range of validity of classicalstatistical simulations, Journal of High Energy Physics, 2014.

J. Berges, S. Borsányi, and C. Wetterich, Prethermalization, Physical review letters Isotropization far from equilibrium, Nuclear Physics B, vol.93, issue.727, pp.142002-244, 2004.
DOI : 10.1016/j.nuclphysb.2005.08.030

URL : http://arxiv.org/pdf/hep-ph/0505182

J. Berges, A. Rothkopf, and J. Schmidt, Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium, Physical review letters, p.41603, 2008.

J. Berges and D. Sexty, Strong versus weak wave-turbulence in relativistic field theory, Physical Review D, vol.83, issue.8, p.85004, 2011.
DOI : 10.1103/PhysRevLett.91.111601

K. B. Blagoev, F. Cooper, J. F. Dawson, and B. Mihaila, Schwinger-Dyson approach to nonequilibrium classical field theory, Physical Review D, vol.20, issue.12, p.125003, 2001.
DOI : 10.1103/PhysRevD.20.3336

S. Borsanyi, Thermal features far from equilibrium: Prethermalization, arXiv:hep-ph/0409184, 2004.

S. Borsanyi and Z. Szep, Relaxation of (2+1)-dimensional classical O(2) symmetric scalar fields, Physics Letters B, vol.508, issue.1-2, pp.109-116, 2001.
DOI : 10.1016/S0370-2693(01)00443-9

D. Boyanovsky, C. Destri, H. J. De, and . Vega, dimensions: Energy cascades and universal scaling, Physical Review D, vol.54, issue.4, p.45003, 2004.
DOI : 10.1103/PhysRevD.54.3745

URL : https://hal.archives-ouvertes.fr/hal-00102075

C. Destri, H. J. De, and . Vega, Ultraviolet cascade in the thermalization of the classical ? 4 theory in 3+ 1 dimensions, Physical review D, 73, p.25014, 2006.

M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer et al., Relaxation dynamics and pre-thermalization in an isolated quantum system, 2011.

M. Kollar, F. A. Wolf, and M. Eckstein, Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems, Physical Review B, vol.84, issue.5, p.54304, 2011.
DOI : 10.1088/1742-5468/2010/07/P07016

A. P. Orioli, K. Boguslavski, and J. Berges, Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points, p.2015

M. Salle, J. Smit, and J. C. Vink, Staying thermal with Hartree ensemble approximations, Nuclear Physics B, vol.625, issue.3, pp.495-511, 2002.
DOI : 10.1016/S0550-3213(01)00659-9

G. Atanasiu and M. Neagu, Distinguished torsion, curvature and deflection tensors in the multi-time Hamilton geometry, 2008.

A. Echeverría-enríquez, M. C. Muñoz-lecanda, and N. Román-roy, Multivector field formulation of Hamiltonian field theories: equations and symmetries, Journal of Physics A: Mathematical and General, vol.32, issue.48, p.8461, 1999.
DOI : 10.1088/0305-4470/32/48/309

M. Forger, C. Paufler, and H. Römer, A general construction of poisson brackets on exact multusymplectic manifolds, Reports on Mathematical Physics, vol.51, issue.2-3, pp.187-195, 2003.
DOI : 10.1016/S0034-4877(03)80012-5

G. Giachetta and L. Mangiarotti, Advanced classical field theory, World Scientific, 2009.
DOI : 10.1142/7189

M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations II: Space+ time decomposition, Differential Geometry and its Applications, pp.375-390, 1991.

F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Advances in Theoretical and Mathematical Physics, pp.565-601, 2004.
DOI : 10.4310/ATMP.2004.v8.n3.a5

I. V. Kanatchikov, On the canonical structure of the De Donder-Weyl covariant Hamiltonian formulation of field theory I. Graded Poisson brackets and equations of motion, arXiv:hep-th/9312162 Basic structures of the covariant canonical formalism for fields based on the De Donder?Weyl theory, arXiv:hep-th/9410238, 1994. [27] , From the Poincaré-Cartan form to a Gerstenhaber algebra of Poisson brackets in field theory, Quantization, coherent states, and complex structures, pp.173-183, 1993.

M. Mclean and L. Norris, Covariant field theory on frame bundles of fibered manifolds, Journal of Mathematical Physics, vol.33, issue.10, pp.6808-6823, 2000.
DOI : 10.1090/surv/014

C. Paufler and H. Römer, De Donder-Weyl equations and multisymplectic geometry, Reports on Mathematical Physics, vol.49, issue.2-3, pp.325-334, 2002.
DOI : 10.1016/S0034-4877(02)80030-1

URL : http://arxiv.org/pdf/math-ph/0107019v1.pdf

J. Struckmeier and A. Redelbach, COVARIANT HAMILTONIAN FIELD THEORY, International Journal of Modern Physics E, vol.25, issue.03, pp.435-491, 2008.
DOI : 10.1063/1.526253

J. Vankerschaver, THE MOMENTUM MAP FOR NONHOLONOMIC FIELD THEORIES WITH SYMMETRY, International Journal of Geometric Methods in Modern Physics, vol.154, issue.06, pp.1029-1041, 2005.
DOI : 10.1017/CBO9780511526411

J. Vankerschaver, F. Cantrijn, J. De-león, and D. M. De-diego, Geometric aspects of nonholonomic field theories, Reports on Mathematical Physics, vol.56, issue.3, pp.387-411, 2005.
DOI : 10.1016/S0034-4877(05)80093-X

J. Von-rieth, The Hamilton???Jacobi theory of De Donder and Weyl applied to some relativistic field theories, Journal of Mathematical Physics, vol.25, issue.4, pp.1102-1115, 1984.
DOI : 10.1016/0370-2693(75)90163-X

U. M. Ascher and R. I. Mclachlan, Multisymplectic box schemes and the Korteweg?de Vries equation On symplectic and multisymplectic schemes for the KdV equation, Applied Numerical Mathematics Journal of Scientific Computing, vol.4839, issue.25, pp.255-83, 2004.

T. J. Bridges, Multi-symplectic structures and wave propagation, Mathematical Proceedings of the Cambridge Philosophical Society, vol.121, issue.1, pp.147-190, 1997.
DOI : 10.1017/S0305004196001429

T. J. Bridges and G. Derks, Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.2427-2469, 1999.
DOI : 10.1098/rspa.1999.0411

T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Physics Letters A, vol.284, issue.4-5, pp.184-193, 2001.
DOI : 10.1016/S0375-9601(01)00294-8

J. Chen, Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov?Kuznetsov equation, Letters in Mathematical Physics, p.115, 2003.

J. Chen and M. Qin, Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electronic Transactions on Numerical Analysis, vol.12, p.193, 2001.

J. Chen, M. Qin, and Y. Tang, Symplectic and multi-symplectic methods for the nonlinear Schr??dinger equation, Computers & Mathematics with Applications, vol.43, issue.8-9, p.1095, 2002.
DOI : 10.1016/S0898-1221(02)80015-3

Y. Chen, H. Zhu, and S. Song, Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schr??dinger Equation, Communications in Theoretical Physics, vol.56, issue.4, p.617, 2011.
DOI : 10.1088/0253-6102/56/4/03

J. Frank, B. E. Moore, and S. Reich, Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law, SIAM Journal on Scientific Computing, vol.28, issue.1, p.260, 2006.
DOI : 10.1137/050628271

J. Hong, S. Jiang, and C. Li, Explicit multi-symplectic methods for Klein???Gordon???Schr??dinger equations, Journal of Computational Physics, vol.228, issue.9, pp.3517-3532, 2009.
DOI : 10.1016/j.jcp.2009.02.006

J. Hong and C. Li, Multi-symplectic Runge???Kutta methods for nonlinear Dirac equations, Journal of Computational Physics, vol.211, issue.2, p.448, 2006.
DOI : 10.1016/j.jcp.2005.06.001

J. Hong, H. Liu, and G. Sun, The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs, Mathematics of Computation, vol.75, issue.253, p.167, 2006.
DOI : 10.1090/S0025-5718-05-01793-X

J. Hong, X. Liu, and C. Li, Multi-symplectic Runge???Kutta???Nystr??m methods for nonlinear Schr??dinger equations with variable coefficients, Journal of Computational Physics, vol.226, issue.2, p.1968, 2007.
DOI : 10.1016/j.jcp.2007.06.023

W. Hu and Z. Deng, Multi-symplectic method for generalized fifth-order KdV equation, Chinese Physics B, vol.17, p.3923, 2008.

A. L. Islas, D. A. Karpeev, and C. M. Schober, Geometric Integrators for the Nonlinear Schr??dinger Equation, Journal of Computational Physics, vol.173, issue.1, pp.116-585, 2001.
DOI : 10.1006/jcph.2001.6854

H. Liu and K. Zhang, Multi-symplectic Runge???Kutta-type methods for Hamiltonian wave equations, IMA Journal of Numerical Analysis, vol.26, issue.2, p.252, 2006.
DOI : 10.1093/imanum/dri042

Y. Ma, L. Kong, J. Hong, and Y. Cao, High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations, Computers & Mathematics with Applications, pp.61-319, 2011.

R. I. Mclachlan and G. R. , Geometric integrators for ODEs, Journal of Physics A: Mathematical and General, vol.39, issue.19, p.5251, 2006.
DOI : 10.1088/0305-4470/39/19/S01

R. I. Mclachlan, B. N. Ryland, and Y. Sun, High Order Multisymplectic Runge--Kutta Methods, High order multisymplectic Runge?Kutta methods, p.2199, 2014.
DOI : 10.1137/140958050

R. I. Mclachlan and M. Wilkins, The Multisymplectic Diamond Scheme, SIAM Journal on Scientific Computing, vol.37, issue.1, pp.369-390, 2015.
DOI : 10.1137/140958359

B. E. Moore and S. Reich, Multi-symplectic integration methods for Hamiltonian PDEs, Future Generation Computer Systems, vol.19, issue.3, p.395, 2003.
DOI : 10.1016/S0167-739X(02)00166-8

B. N. Ryland and R. I. Mclachlan, On Multisymplecticity of Partitioned Runge???Kutta Methods, SIAM Journal on Scientific Computing, vol.30, issue.3, p.1318, 2008.
DOI : 10.1137/070688468

B. N. Ryland, R. I. Mclachlan, and J. Frank, On the multisymplecticity of partitioned Runge???Kutta and splitting methods, International Journal of Computer Mathematics, vol.15, issue.6, p.847, 2007.
DOI : 10.1016/S0167-2789(01)00188-9

Y. Sun and P. Tse, Symplectic and multisymplectic numerical methods for Maxwell???s equations, Journal of Computational Physics, vol.230, issue.5, p.2076, 2011.
DOI : 10.1016/j.jcp.2010.12.006

Y. Wang, B. Wang, and X. Chen, Multisymplectic Euler box scheme for the KdV equation, Chinese Physics Letters, p.312, 2007.

H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A, vol.150, issue.5-7, pp.262-268, 1990.
DOI : 10.1016/0375-9601(90)90092-3

H. Zhu, Y. Chen, S. Song, and H. Hu, Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations, Applied Numerical Mathematics, pp.61-308, 2011.
DOI : 10.1016/j.apnum.2010.10.008

V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 1989.

G. Baker and J. Blackburn, The Pendulum: A Case Study in Physics, OUP Oxford, 2005.

A. Beléndez, C. Pascual, D. Méndez, T. Beléndez, and C. Neipp, Exact solution for the nonlinear pendulum, Revista brasileira de ensino de física, pp.645-648, 2007.

L. Collatz, The Numerical Treatment of Differential Equations, Grundlehren der mathematischen Wissenschaften, 1960.

R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations of Mathematical Physics, IBM Journal of Research and Development, vol.11, issue.2, pp.215-234, 1967.
DOI : 10.1147/rd.112.0215

I. Gelfand, S. Fomin, and R. Silverman, Calculus of Variations, 2000.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, Addison- Wesley series in physics, 2002.

E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 1987.
DOI : 10.1007/978-3-662-12607-3

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential -Algebraic Problems, 1991.

E. Isaacson and H. B. Keller, Analysis of numerical methods, Courier Corporation, 1994.

J. José and E. Saletan, Classical Dynamics: A Contemporary Approach, 1998.
DOI : 10.1017/CBO9780511803772

K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for non-linear least squares problems, 2004.

J. Milnor, Topology from the Differentiable Viewpoint, Princeton Landmarks in Mathematics, 1997.

K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations: An Introduction, 2005.
DOI : 10.1017/CBO9780511812248

M. Nakahara, Geometry, topology, and physics, Graduate Student Series in Physics, 2003.

J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2006.

P. Peter and J. Uzan, Primordial cosmology, Oxford graduate texts, 2009.

J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and C. Witzgall, Introduction to Numerical Analysis Physics of Simple Pendulum: A Case Study of Non-Linear Dynamics, Texts in Applied Mathematics, pp.3902-6000, 2002.

H. Ricateau, L. F. Cugliandolo, and M. Picco, Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model
URL : https://hal.archives-ouvertes.fr/hal-01589611

A. Aharony and D. Stauffer, Introduction to percolation theory, 2003.

A. A. Saberi, Recent advances in percolation theory and its applications, Physics Reports, vol.578, pp.1-32, 2015.
DOI : 10.1016/j.physrep.2015.03.003

M. Bauer and D. Bernard, 2D growth processes: SLE and Loewner chains, Physics Reports, vol.432, issue.3-4, pp.115-221, 2006.
DOI : 10.1016/j.physrep.2006.06.002

URL : https://hal.archives-ouvertes.fr/hal-00283878

J. Cardy, SLE for theoretical physicists, Annals of Physics, vol.318, issue.1, pp.81-118, 2005.
DOI : 10.1016/j.aop.2005.04.001

D. Duncan, An Introduction to the Loewner Equation and SLE

M. Gherardi, Exact Sampling of Self-avoiding Paths via Discrete Schramm-Loewner Evolution, Journal of Statistical Physics, vol.120, issue.2, pp.1-15, 2010.
DOI : 10.1007/s10955-005-7004-3

M. Henkel and D. Karevski, Conformal invariance: an introduction to loops, interfaces and stochastic Loewner evolution, 2012.
DOI : 10.1007/978-3-642-27934-8

W. Kager and B. Nienhuis, A Guide to Stochastic L??wner Evolution and Its Applications, Journal of Statistical Physics, vol.115, issue.5/6, pp.1149-1229, 2004.
DOI : 10.1023/B:JOSS.0000028058.87266.be

T. Kennedy, A Fast Algorithm for Simulating the Chordal Schramm???Loewner Evolution, Journal of Statistical Physics, vol.118, issue.5, pp.1125-1137, 2007.
DOI : 10.4007/annals.2005.161.883

G. F. Lawler, An introduction to the stochastic Loewner evolution, Random walks and geometry, Conformally invariant processes in the plane, pp.261-293, 2004.

H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Physical review letters, p.2325, 1987.

W. Werner, Part II: Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, pp.107-195, 2004.
DOI : 10.1007/978-3-540-39982-7_2

J. J. Arenzon, A. J. Bray, L. F. Cugliandolo, and A. Sicilia, Exact results for curvature-driven coarsening in two dimensions, Physical review letters, pp.98-145701, 2007.

K. Barros, P. L. Krapivsky, and S. Redner, Freezing into stripe states in two-dimensional ferromagnets and crossing probabilities in critical percolation, Physical Review E, vol.6, issue.4, p.40101, 2009.
DOI : 10.1007/BF01009954

T. Blanchard, F. Corberi, L. F. Cugliandolo, and M. Picco, How soon after a zero-temperature quench is the fate of the Ising model sealed?, EPL (Europhysics Letters), vol.106, issue.6, p.66001, 2014.
DOI : 10.1209/0295-5075/106/66001

URL : https://hal.archives-ouvertes.fr/hal-00933708

T. Blanchard, L. F. Cugliandolo, and M. Picco, A morphological study of cluster dynamics between critical points, Journal of Statistical Mechanics: Theory and Experiment, vol.2012, issue.05, p.5026, 2012.
DOI : 10.1088/1742-5468/2012/05/P05026

URL : https://hal.archives-ouvertes.fr/hal-00683575

T. Blanchard, L. F. Cugliandolo, M. Picco, and A. Tartaglia, Critical percolation in the dynamics of the bidimensional ferromagnetic Ising model, p.2017

T. Blanchard and M. Picco, Frozen into stripes: Fate of the critical Ising model after a quench, Physical Review E, vol.88, issue.3, p.32131, 2013.
DOI : 10.1088/1751-8113/42/26/265003

URL : https://hal.archives-ouvertes.fr/hal-00818107

A. J. Bray, Theory of phase-ordering kinetics Advances in Physics, pp.481-587, 2002.

A. J. Bray, K. Humayun, and T. J. Newman, Kinetics of ordering for correlated initial conditions, Physical Review B, vol.62, issue.4, p.3699, 1991.
DOI : 10.1103/PhysRevLett.62.361

S. Chakraborty and S. K. Das, Role of initial correlation in coarsening of a ferromagnet, The European Physical Journal B, vol.62, issue.6, 2015.
DOI : 10.1103/PhysRevLett.62.361

F. Corberi, L. F. Cugliandolo, F. Insalata, and M. Picco, Coarsening and percolation in a disordered ferromagnet, Physical Review E, vol.8, issue.2, p.22101, 2017.
DOI : 10.1103/PhysRevB.38.373

URL : https://hal.archives-ouvertes.fr/hal-01397802

F. Corberi and R. Villavicencio-sanchez, Role of initial state and final quench temperature on aging properties in phase-ordering kinetics, Physical Review E, vol.2011, issue.5, p.52105, 2016.
DOI : 10.1088/0305-4470/33/50/302

I. Dornic and C. Godrèche, Large deviations and nontrivial exponents in coarsening systems, Journal of Physics A: Mathematical and General, vol.31, issue.24, pp.31-5413, 1998.
DOI : 10.1088/0305-4470/31/24/004

C. Duclut and B. Delamotte, Frequency regulators for the nonperturbative renormalization group: A general study and the model A as a benchmark, Physical Review E, vol.95, issue.1, p.12107, 2017.
DOI : 10.1103/PhysRevLett.92.195703

URL : https://hal.archives-ouvertes.fr/hal-01465816

C. Godrèche and J. M. Luck, Response of non-equilibrium systems at criticality: exact results for the Glauber-Ising chain, Journal of Physics A: Mathematical and General, vol.33, issue.6, p.1151, 2000.
DOI : 10.1088/0305-4470/33/6/305

M. Kobayashi and L. F. Cugliandolo, Quench dynamics of the three-dimensional U(1) complex field theory: Geometric and scaling characterizations of the vortex tangle, Physical Review E, vol.26, issue.6, p.62146, 2016.
DOI : 10.1103/PhysRevLett.96.035301

M. P. Nightingale and H. W. Blöte, Monte Carlo computation of correlation times of independent relaxation modes at criticality, Physical Review B, vol.47, issue.2, p.1089, 2000.
DOI : 10.1103/PhysRevD.47.R1285

J. Olejarz, P. L. Krapivsky, and S. Redner, Zero-temperature freezing in the three-dimensional kinetic Ising model, Physical Review E, vol.16, issue.3, p.30104, 2011.
DOI : 10.1103/PhysRevE.57.1971

A. Sicilia, J. J. Arenzon, A. J. Bray, and L. F. Cugliandolo, Domain growth morphology in curvature-driven two-dimensional coarsening, Physical Review E, vol.2007, issue.6, p.61116, 2007.
DOI : 10.1103/PhysRevE.56.3788

URL : https://hal.archives-ouvertes.fr/hal-00170288

A. Sicilia, Y. Sarrazin, J. J. Arenzon, A. J. Bray, L. F. Cugliandolo et al., Geometry of phase separation, Physical Review E, vol.65, issue.3, pp.31121-036118, 2001.
DOI : 10.1103/PhysRevLett.101.197801

URL : https://hal.archives-ouvertes.fr/hal-00519911

A. Tartaglia, L. F. Cugliandolo, and M. Picco, Percolation and coarsening in the bidimensional voter model [141] , Phase separation and critical percolation in bidimensional spin-exchange models, Physical Review E EPL (Europhysics Letters), vol.92, issue.116, pp.42109-26001, 2015.

J. Beugnon and N. Navon, Exploring the Kibble???Zurek mechanism with homogeneous Bose gases, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.50, issue.2, p.22002, 2017.
DOI : 10.1088/1361-6455/50/2/022002

G. Biroli, L. F. Cugliandolo, and A. Sicilia, Kibble-Zurek mechanism and infinitely slow annealing through critical points, Physical Review E, vol.81, issue.5, p.50101, 2010.
DOI : 10.1088/1742-5468/2010/02/P02014

URL : https://hal.archives-ouvertes.fr/hal-00519926

P. Comaron, G. Dagvadorj, A. Zamora, I. Carusotto, N. P. Proukakis et al., Dynamical critical exponents in drivendissipative quantum systems, p.2017

A. , D. Campo, and W. H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, International Journal of Modern Physics A, vol.29, p.1430018, 2014.
DOI : 10.2172/1120720

K. Jain, Critical dynamics of classical systems under slow quench, EPLEurophysics Letters), vol.116, p.26003, 2016.

A. Jeli? and L. F. Cugliandolo, Quench dynamics of the 2d XY model, Journal of Statistical Mechanics: Theory and Experiment, p.2032, 2011.

T. W. Kibble, Topology of cosmic domains and strings, Journal of Physics A: Mathematical and General, vol.9, issue.8, p.1387, 1976.
DOI : 10.1088/0305-4470/9/8/029

T. Kibble, Phase-transition dynamics in the lab and the universe, Physics Today, vol.60, issue.9, p.47, 2007.
DOI : 10.1103/PhysRevLett.98.110402

P. L. Krapivsky, Slow cooling of an Ising ferromagnet, Journal of Statistical Mechanics: Theory and Experiment, vol.2010, issue.02, p.2014, 2010.
DOI : 10.1088/1742-5468/2010/02/P02014

C. Liu, A. Polkovnikov, and A. W. Sandvik, Dynamic scaling at classical phase transitions approached through nonequilibrium quenching, Physical Review B, vol.89, issue.5, p.54307, 2014.
DOI : 10.1016/0370-2693(89)91563-3

A. Picone, M. Henkel, and J. Richert, Competition between dynamic and thermal relaxation in non-equilibrium critical spin systems above the critical point, Journal of Physics A: Mathematical and General, vol.36, issue.5, p.1249, 2003.
DOI : 10.1088/0305-4470/36/5/305

URL : https://hal.archives-ouvertes.fr/hal-00132022

M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner, and N. P. Proukakis, Formation of Bose-Einstein condensates, 2016.

W. H. Zurek, Cosmological experiments in superfluid helium?, Nature, vol.177, issue.6037, pp.317-505, 1985.
DOI : 10.1016/0003-4916(68)90214-5

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, vol.27, issue.6, pp.1085-1095, 1979.
DOI : 10.1016/0001-6160(79)90196-2

C. Bäuerle, Y. M. Bunkov, S. N. Fisher, H. Godfrin, and G. R. Pickett, Laboratory simulation of cosmic string formation in the early Universe using superfluid 3 He, Nature, pp.382-332, 1996.

A. J. Bray, Renormalization-group approach to domain-growth scaling, Physical Review B, vol.63, issue.10, p.6724, 1990.
DOI : 10.1103/PhysRevLett.63.551

L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg et al., Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nature Communications, vol.37, p.6162, 2015.
DOI : 10.1016/S1049-250X(08)60101-9

I. Chuang, R. Durrer, N. Turok, and B. Yurke, Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals, Science, vol.251, issue.4999, pp.1336-1342, 1991.
DOI : 10.1126/science.251.4999.1336

A. Del-campo, G. De-chiara, G. Morigi, M. B. Plenio, and A. Retzker, Structural defects in ion chains by quenching the external potential: the inhomogeneous Kibble-Zurek mechanism, Physical review letters, p.75701, 2010.

G. Delfino, Field theory of Ising percolating clusters, Nuclear Physics B, vol.818, issue.3, pp.196-211, 2009.
DOI : 10.1016/j.nuclphysb.2009.04.002

S. Deutschländer, P. Dillmann, G. Maret, and P. Keim, Kibble???Zurek mechanism in colloidal monolayers, Proceedings of the National Academy of Sciences, pp.6925-6930, 2015.
DOI : 10.1088/1742-5468/2011/02/P02032

S. Donadello, S. Serafini, T. Bienaimé, F. Dalfovo, G. Lamporesi et al., Creation and counting of defects in a temperature-quenched Bose-Einstein condensate, Physical Review A, vol.112, issue.2, p.23628, 2016.
DOI : 10.1103/PhysRevLett.115.170402

P. C. Hohenberg, B. I. Halperin, G. Lamporesi, S. Donadello, S. Serafini et al., Theory of dynamic critical phenomena, Reviews of Modern Physics, vol.30, issue.88, p.435, 1977.
DOI : 10.1103/PhysRevLett.30.22

N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas, Science, vol.39, issue.5818, pp.167-170, 2015.
DOI : 10.1088/0305-4470/39/24/R01

M. E. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, 1999.

C. O. Reichhardt, A. Libál, and C. Reichhardt, Multi-step ordering in kagome and square artificial spin ice, New Journal of Physics, vol.14, issue.2, p.25006, 2012.
DOI : 10.1088/1367-2630/14/2/025006

P. Silvi, G. Morigi, T. Calarco, and S. Montangero, Crossover from Classical to Quantum Kibble-Zurek Scaling, Physical review letters, p.225701, 2016.
DOI : 10.1103/physrevlett.116.225701

URL : http://arxiv.org/pdf/1510.07941

S. Ulm, J. Roßnagel, G. Jacob, C. Degünther, S. T. Dawkins et al., Observation of the Kibble???Zurek scaling law for defect formation in ion crystals, Nature Communications, vol.100, pp.1302-5343, 2013.
DOI : 10.1080/0026897021000018321