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Out-of-equilibrium dynamics in
classical field theories and ISING
spin models

Abstract

This thesis is made up of two independent parts.

In the first chapter, we introduce a novel numerical method to integrate partial dif-
ferential equations representing the Hamiltonian dynamics of field theories. It is a
multi-symplectic integrator that locally conserves the stress-energy tensor with an ex-
cellent precision over very long periods. Its major advantage is that it is extremely
simple (it is basically a centred box scheme) while remaining locally well defined. We
put it to the test in the case of the non-linear wave equation (with quartic potential)
in one spatial dimension, and we explain how to implement it in higher dimensions.
A formal geometric presentation of the multi-symplectic structure is also given as well
as a technical trick allowing to solve the degeneracy problem that potentially accom-
panies the multi-symplectic structure.

In the second chapter, we address the issue of the influence of a finite cooling rate while
performing a quench across a second order phase transition. We extend the KIBBLE —
ZUREK mechanism to describe in a more faithfully way the out-of-equilibrium regime
of the dynamics before crossing the transition. We describe the time and cooling
rate dependence of the typical growing size of the geometric objects, before and when
reaching the critical point. These theoretical predictions are demonstrated through a
numerical study of the emblematic kinetic ferromagnetic ISING model on the square
lattice. A description of the geometric properties of the domains present in the system
in the course of the annealing and when reaching the transition is also given.
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Introduction

Complex systems gather a broad variety of problems from many different fields (in
Physics but also in Biology, in Computer Sciences, in Finance ...). They are systems
constituted of a large number of interacting degrees of freedom, and therefore, any
attempt of an exhaustive description would be out of reach (and irrelevant). However,
they can be described in a satisfactory way using a statistical approach. This is
precisely the purpose of statistical physics: understand the overall behaviours of a
system from its microscopic description, ie how and when collective behaviours emerge.

A statistical system is said at equilibrium when the probability distribution of states
(ie the probability that the system being in a given state) coincide with the equilibrium
one (eg the BOLTZMANN distribution). In fact, the concept of equilibrium concerns
the statistical properties of the system: it is a characterisation in probability, not of
the exact state of the system at a given time. Although this particular situation is
quite well understood, in nature, it is the exception rather than the rule. A system
which is not in equilibrium is said to be out-of-equilibrium, and, unfortunately, this
cannot be tackled with the same framework; such a situation is generally much more
difficult to describe.

Among all the possibilities for a system to be out-of-equilibrium, there is a particu-
lar situation that has especially drawn attention over the last few years, and that is
the focus of intense research. The post-quench evolution is one the simplest out-of-
equilibrium situation: it consists of preparing the system in a particular state that
satisfies a chosen statistics; then, at the initial time, it is suddenly left free to evolve.
This procedure can also be seen as abruptly changing a control parameter in a system
being at equilibrium. Afterwards, the evolution in time of the statistical observables is
obtained by averaging over different copies of the same procedure. The aim of study-
ing the out-of-equilibrium dynamics induced by a quench is to bring out some generic
behaviours, and to allow for a better understanding of such systems.

This thesis is devoted to study the post-quench dynamics in chosen circumstances. It
is organised in two independent chapters; in the first one, we discuss the numerical
tools to deal with conservative field theories in such a (non-perturbative) far-from-
equilibrium regime. In the second chapter, we discuss the effects of quenching the
control parameter with a finite changing rate in the particular case of the ferromagnetic
kinetic ISING models (ie ISING models endowed with microscopic stochastic dynamics
for the individual spins).






Chapter I

Numerical integration of classical
conservative field theories

1 Introduction and preliminaries

1.1 Introduction

While the equilibrium properties of statistical systems are quite well understood (al-
though the computations are not always feasible in practice, especially analytically),
there is no such a general framework to deal with their out-of-equilibrium behaviour.
Yet, whether they are blocked in a metastable state (for instance, in metallurgy, the
state of a metal after a quench hardening process), or they never reach an equilib-
rium state (because of some external driving phenomenon like in meteorology), in-
equilibrium systems are rather the exception than the rule.

The out-of-equilibrium dynamics of classical conservative field theories was the initial
subject of this thesis. In particular, on the last few years, it has been observed that
a field theory, suddenly quenched in a far-from-equilibrium state, may present a re-
markable dynamics in some circumstances [2]: after a fast and complex evolution, the
system reach a quasi-equilibrium that does not correspond to the thermal equilibrium
state of the problem (observables have converged to an unexpected value). Later, on a
much longer time-scale, the system slowly evolves to the correct equilibrium state (it
can possibly stay in the pre-thermal state in case the system is an integrable model).

The most interesting feature of this pre-thermalisation dynamics [3,5,6,10,12,13] is that
the pre-thermal state can be described by a slightly adjusted version of the equilibrium
tools. Afterwards, the evolution from the pre-thermal state to the equilibrium one is
sufficiently slow to be considered as infinitely slow; once again, we are able to treat it
with the tools of the equilibrium statistical physics [14,15]. In such a situation, the part
of the dynamics that cannot be described using the equilibrium framework is reduced
to only a few times the characteristic time-scale of the problem. See [4,7-9,11,16,17|
for further details.

Understanding in which circumstances such a pre-thermalisation dynamics may hap-
pen was the first question of interest. Unfortunately, while trying to address the
latter, it appeared that the numerical integration of conservative field theories is not
a straightforward task; especially when trying to reach long-times. In particular, the
basic approaches are simply not working.



Numerical integration of classical conservative field theories

This first chapter of the thesis is devoted to the development of a reliable numerical
integrator for classical conservative field theories.

Our goal is to solve the equation of motion: a non-linear partial differential equation?
(PDE) possessing a particular structure. Usual strategies to tackle PDEs are to consider
an approximation of the initial equation (by removing some non-leading terms for
example) or a particular domain of the parameter space (perturbative approaches,

..). However, these partial pieces of information can be insufficient to understand
the behaviour of the system in a satisfactory way.

It then becomes relevant to focus on approximate solutions, but this time, of the
original equation, and for the full range of variation of the parameters. This is exactly
what one tries to achieve by using numerical methods. The question then arises as to
how to control the numerical approximation.

To be more precise, let us take a time dependent process p(t), governed by a differential
equation

f(p7p,7p//7"') :07

where the ’ indicates time derivative. In a finite-difference representation of this equa-
tion, the approximation process is quite well controlled, and at each time step, we
know the magnitude of the error that has been done. Yet, a priori, we cannot predict
the accumulation of these errors over many time steps and therefore, we cannot control
the approximation made on the time-dependent solution (especially in the long-time
limit).

The question can then be rephrased as, why should we trust a solution obtained with a
numerical solver? To address this question, the standard procedure is to observe how
reducing the discretisation steps affects the solution; in particular, the idea is to check
whether the solution converges to something fix when the steps cancel. This simple
approach is an excellent estimator when we try to evaluate how good a numerical
method performs on short- or intermediate-time solutions. However, this brute-force
approach is inapplicable for long-time solutions.

Another standard option to address the question of the quality of a numerical solver
is to test, as precisely as possible, all the known properties of the problem. Firstly:

i. If a particular solution is available, we can easily check whether the numerical
solution is in agreement with it.

7. In the same spirit, we can compare a numerical solution to the exact one, for some
particular choices of the parameters (by turning off all the interaction terms, for
example).

Nevertheless, these two kinds of tests are not robust enough and nothing ensures that
the numerical approximation will behave in the same way in a different regime (where
no exact solutions are available).

The second kind of test is based on symmetries and conservation laws:

1. If the theory admits a symmetry group, we expect the numerical solutions to be
(as closely as possible) in agreement with the discrete analogue of this symmetry
group (and, especially, the discrete part of it).

1. Due to the latter, the theory can exhibit some conserved quantities that the nu-
merical solutions should preserve as closely as possible.

Lin this chapter, we directly consider a local field theory; not an underlying model on a lattice
whose field theory would be an approximate description.

4



1 Introduction and preliminaries

Symmetries and conserved quantities are very good error estimators. They provide an
overall control on the numerical approximations and authorise us to trust (or not) in
a numerical solution.

Obviously, the accessibility to such validations is closely related to the structure of
the PDE and the method we are going to introduce will only be applicable to the
Hamiltonian ones (ie arising from DE DONDER — WEYL — HAMILTON equations), that
will be defined later. Let us simply state for the moment that they are Lagrangian
PDEs (ie arising from an EULER — LAGRANGE equation).

The symmetry group of such a theory generally decomposes as follows: G =T x S x I,
where

i. T is the space-time symmetry group (eg the POINCARE group). Unfortunately,
the discretisation process will generally break this symmetry; however, we shall
carefully pay attention to preserve the surviving part: the LORENTZ covariance.

7. S is the part associated with the multi-symplectic structure to be explained below.
Its preservation will be in depth explored all through this chapter.

iii. I is the internal symmetry group of the theory (eg Zs). This part will be neglected
since it does not cause any difficulties in practice.

Now, we have to stress that we shall focus on the particular class of finite-difference
methods. A finite-difference method is like a cooking recipe composed of two ingredi-
ents:

i. Firstly, a lattice, that samples a bounded region of the support (eg the space-time
manifold).

1. Secondly, a set of discretisation rules, that translate the continuous quantities to
their lattice analogues. The continuous unknowns, defined on the space-time man-
ifold, are sampled through the lattice. The discretisation rules specify how to
combine these samples with the aim to compute derivatives, force terms, ...

Applying these rules to the equation of motion toggles from a PDE to a set of algebraic
equations (governing the behaviour of the quantities defined on the lattice). Solving
these algebraic equations leads to a set of values on the lattice nodes. This is a sam-
pling of the solution, and in adjunction with some interpolation rules, an approximate
solution of the PDE is thus constructed. However, it has to be noted that these sam-
ples are not necessarily exact, and both the samples and the interpolation process are
responsible for dissimilarities with the exact solution.

Many standard finite-difference schemes already exist [86], and are often adequate.
Each method has its own preferred application field. In the kind of problems we shall
be interested in, we need to control the very long-time behaviour (with respect to a
characteristic time-scale in the system), and we need a procedure that minimises the
error accumulated over a huge number of steps. For this reason, we need to develop
our own numerical scheme that performs well over long time-scales (even though we
may have to make some compromise on its short-time quality).

Generally, most methods are able to behave rather correctly on short time-scales.
Therefore, the simpler and faster the method, the better it is in this regime. However,
the problem complicates at long-times, since two phenomena conspire against the
performance of most strategies:

7. On the one hand, a priori, the reduction of the time step improves the quality of
the approximation and then the quality of the solution, but this obviously inhibits
reaching long-times.
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it. On the other hand, at each step, some numerical truncation errors are induced by
the finite precision of the numbers’ representation in a computer. Such errors are
generally inflated when the size of the step decreases and accumulate as the number
of steps increases.

It results that, decreasing the time-step reduces the part of the errors due to the
approximation scheme but, in the meantime, it increases the part coming from the
accumulation of the truncation errors (inevitably occurring at each step); consequently,
the precision cannot be indefinitely improved. This has to be taken into account when
trying to reach long-times; hence, the necessity to chose a numerical method designed
to behave correctly whatever the number of steps to handle (and which does not require
a too small time-step).

Regarding mechanical systems (support is of dimension one, eg just time), there exists a
very particular class of finite-difference integrators: the symplectic ones. They are well
known (especially by researchers in planetary orbits evolution) because of their very
good capability to preserve the energy of Hamiltonian systems with a high accuracy
even over long-times [62]. Such integrators are based on the conservation of a very
important (even central) structure of mechanical systems: the symplecticity of the
phase space.

Generalisations to field theories (PDE) raises further difficulties since the conservation
of the energy is no longer rigid enough. Actually, the correct fundamental quantity to
be preserved is now the stress-energy tensor. Its conservation is local (by opposition
to the conservation of the energy, which is through a space integral), and hence, more
fundamental. Therefore, the symplectic structure is no longer adapted and needs to
be generalised.

Multi-symplectic numerical integrators, introduced by BRIDGES and REICH at the be-
ginning of the 215° century [40, 42, 43|, generalise to PDEs the concept of symplectic
integrators. Applied to conservative PDEs, multi-symplectic integrators exhibit excel-
lent local conservation properties (especially of the stress-energy tensor) and a very
stable behaviour for long-time integrations [50].

In the past fifteen years the subject has been widely studied [53,57-61,63,65]|, and suc-
cessfully applied to a broad variety of problems, including the non-linear SCHRODINGER
equation [47-49, 54,56, 71|, the non-linear DIRAC equation [52]|, the MAXWELL equa-
tions [68], the KLEIN -~ GORDON equation [46], the KORTEWEG — DE VRIES (KDV)
equation [38,39,55,69|, the BOUSSINESQ equation [45], as well as the ZAKHAROV —
KuzNETsov (ZK) equation [44].

However, none of these methods fulfil all of our requirements; they all only consider
the S part of the symmetry group, completely forgetting about the space-time part of
it (7). The only one which fortuitously does not break the covariance of the theory
(the centred box scheme [42]) suffers from a severe scalability issue.

The aim of this work is to introduce a new finite-difference multi-symplectic method,
based on the centred box scheme. The latter was one of the first multi-symplectic
schemes introduced [42], and it has been proved that it is stable and possesses a num-
ber of desirable properties [50]; including compliance with the LORENTZ covariance.
However, it is not well defined locally [66,67], so it requires a global solver, causing
a severe scalability issue. The idea we introduce in this chapter, inspired by [12], is
to use a rotated lattice in the light-cone coordinates; this restores the locality of the
algorithm, drastically enhancing its efficiency without affecting its high precision.

We organise the presentation in a pedagogical way; first discussing the theoretical

6



1 Introduction and preliminaries

justification of the method, and next showing how it performs compared to other ones
in the market. We also discuss, without any assumption on the dimension of space-
time, the problem of the degeneracy of the multi-symplectic structure and we show
how to solve it in the particular case of the non-linear wave equation.

The outline of the chapter is the following.

The remaining of this preliminary part, sections 1.2 to 1.4, will be devoted to some
reminders of differential geometry and Hamiltonian mechanics (both in its theoretical
and numerical aspects).

The second part of this chapter, section 2, will be devoted to the definition of the nec-
essary concepts, to exhibit the multi-symplectic structure, to deduce from it the local
conservation laws (as well as the global ones), and finally, to present how to rewrite the
equations to prepare the implementation of our multi-symplectic method. Throughout
this section, the concepts and results will be illustrated through the example of the
non-linear wave equation (whose A ¢* theory, used in section 4, is a particular case).

Next, in section 3, the method we have developed: the Multi-Symplectic Integrator
in the Light-Cone Coordinates (MSILCC), will be introduced in detail. We shall also
demonstrate its conservation properties. Again, the non-linear wave equation will be
our working example.

Finally, in section 4, we shall compare the MSILCC integrator to two standard methods:

1. On the one hand, a very basic scheme based on the EULER approximation of deriva-
tives (this method is widely used by a broad community and proves to be preserving
the multi-symplectic structure too).

7. On the other hand, the method proposed by BOYANOVSKY, DESTRI and DE VEGA
[12], constructed such that it exactly conserves the energy of the system (non-local
conservation); we will show that this is unfortunately not a guarantee of quality.

The comparison will be performed using the so-called A ¢* field theory in dimension
D =1+1. We shall, in particular, study the local conservation (or not) of the stress-
energy tensor. This example will allow us to emphasise the strengths and weaknesses
of our method.

A short conclusions section will close the first chapter of this thesis.

1.2 Geometry preliminaries

The constructions presented throughout this chapter will require some elements of
symplectic geometry. This section introduces the necessary concepts of differential ge-
ometry, without being intended to be an exhaustive presentation; it is inspired from [87]
to which we refer for a complete review.

First, the concept of tangent space to a differentiable manifold is introduced. Next,
the notion of dual space, of cotangent space and objects called co-vectors are defined.
Secondly, the tensor product and, in particular, a special kind of tensors called forms
will be defined. Later, another noteworthy tensor: the metric, that connects the
objects of a space to the objects of its dual will be introduced. Afterward, the exterior
derivative, the gradient, the interior product as well as the LIE derivative will be
defined.

Note that, unless explicitly stated, EINSTEIN’s summation convention will be used.

7



Numerical integration of classical conservative field theories

Figure 1.1 — Illustration of the tangent space to a 2-dimensional manifold. 7,2 is the
tangent space to €2 at z. The basis vectors, d; and 8y, can be seen as velocity
vectors for a point moving respectively along the curvilinear coordinate z' or z2.
{zl, z2} is a local coordinate system that parametrises Z, an open neighborhood
of z on Q. In this example, the coordinate system {zl,zQ} is in fact globally

defined on €.

Tangent space: vectors

Let us consider a differentiable manifold!, 2, of finite dimension n.

The tangent space to €, at any point z € Q, denoted? 7., is the set of all the
vectors tangent to the manifold at z. T is isomorphic to R™ ie is a n-dimensional
vector space.

Since 2 is a manifold, it can be described, at least locally, by a coordinate system,
{z*}, where a runs from 1 to n. Hence, the set

{aa - aa} (1.2.1)
0z a€1,n]

is a vector basis for TQ2. This basis can be assumed as orthonormal provided that
the local coordinate system {z%} is correctly chosen on the manifold.

To see this, let us consider Z, an open neighborhood of z on 2. Since this open set
can be as small as necessary, and since €2 is a manifold, Z is isomorphic to R"™; Z is
therefore covered by a well-defined coordinate system {z®}. On the other hand, the
derivative with respect to the curvilinear coordinate z® results in a velocity vector
which is tangent to the trajectory swept by z®. Hence, 8, at z is a tangent vector to
Z at z. By repeating this construction for each coordinate, we construct a set of n
tangent vectors. This set is linearly independent provided that the coordinate system
{2} is well-defined at z. Hence, these n tangent vectors, the set (1.2.1), form a basis
for T,Q2. Figure 1.1 illustrates this construction.

Having defined a basis for the tangent space, any vector v € T2 can be decomposed
in coordinates as

v=1v%9, . (1.2.2)

Lalso called a smooth manifold, it is a topological manifold coming with a notion of differentiabil-
ity [85].

2if the point where the tangent space is taken is not a relevant information in the context, it will be
omitted, and the tangent space to €2, at any point, will be denoted T2. This is an abuse of notation,
and TQ) should not be confused with the tangent bundle, commonly denoted by mathematicians in

this way (the tangent bundle being the disjoint union of the tangent spaces ie | |, ., T:2).
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1 Introduction and preliminaries

Let {9, := 3/62“} and {5a = a/@i“} be two basis of the tangent space, arising from
two curvilinear coordinate system on the manifold: {z*} and {Z*}. One can pass from
one to the other using the chain rule:

0 oz* 9 b A
= D0 = @ @ = 8aZ 8[, y and (123&)
0, =09,2"0, . (1.2.3b)

Oa

Therefore, the coordinates of the vector v = v* 8, = v¢ t‘% € T transform as

v? = 8yz*° | and (1.2.4a)
7% = Gyt (1.2.4b)

which is known as how vectors transform.

Dual space

Let us now consider a vector space, V, of finite dimension n, and let K be the field of
the scalars. V always admits a dual space, denoted V*, defined as the vector space
of all the linear maps from V to K.

Among other properties, as long as V is finite-dimensional, V* has the same dimension.
The dual of the dual is isomorphic to the vector space itself, again, as long as it is
finite-dimensional. This isomorphism is in practice strongly restrictive: the possible
bijections between (V*)* and V are almost reduced to the identity.

Let B := {e,} be a basis in V', where a runs from 1 to n, and let us denote B* := {e®}
a basis in V*. One can show that, for any basis B in V, there exists a particular basis
B* in V*, namely the dual basis, such that

eb(e,) :== 8%, (1.2.5a)

where 0 is the KRONECKER symbol. Since the dual of the dual is almost the vector
space itself, the reciprocal holds: for any basis B* in V*, there exists a particular basis
B in V such that

ey(e?) =4y . (1.2.5b)

From now, let B* := {e®} be the dual basis to B := {e,}. Thus, for any pair v =
v®e, € V and w = wy,e® € V*, the action of the one on the other expands in
coordinates as

w(v) = v(w) = 2wy 62 = v¥ w, . (1.2.6)

However, at this stage, there is no relation between v and w; they live in different
spaces. The connection between the elements of V' and the elements of its dual relies
on the existence of a metric tensor (which will be defined later).

Cotangent space: co-vectors

Let us return to the notion of tangent space.

Since T2 is a finite-dimensional vector space, it possesses a dual, called the cotangent
space, which has thus the same dimension. This cotangent space is denoted (T2)* =:
T*Q and its elements are called co-vectors.
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Let now B := {8,} be the basis in TQ arising from the curvilinear coordinate system
{2} (on Q, or, at least, on an open neighborhood of z). From now, B*, the dual
basis in 7*Q (ie the basis for co-vectors), will be denoted

{da = dza}ae[[l,n]] . (127)

The action of a co-vector on a vector (or vice versa) is respectively obtained from
egs. (1.2.5a) and (1.2.5b) that become
d®(8,) := % , and (1.2.8a)
Oy(d®) ==y . (1.2.8b)

Let us now show how co-vectors behave under reparameterisation of the manifold.
Again, let {z?} and {Z%} be two curvilinear coordinate system on the manifold;
let {8, :=0/0:"} ‘and {8, :=9/0z°} be the associated two basis in 7% and let
{d® :=dz%} and {d* := dz?} be the corresponding two dual basis in 7*{). The basis
co-vectors generally transform as
d?* =T¢d", and (1.2.9a)
d*=Tyd". (1.2.9b)
Using eqgs. (1.2.3b), (1.2.8b) and (1.2.9a) and, respectively, egs. (1.2.3a), (1.2.8b)
and (1.2.9b), one successively obtains:
9y(d) = Tz 9y(d) = T2 65 = Ty
= 8y2° 0.(d?) = 8y2° de = 8y , and
By(d") = T¢ 8y(d°) =T}
= 8,2°9.(d%) = 9yz* .
Hence, egs. (1.2.9a) and (1.2.9b) read

d® = §,2%d’ , and (1.2.10a)
d* = §,z°d’ , (1.2.10b)
meaning that co-vectors transform in an inverse way, compared to vectors, under a

reparameterisation of the manifold. Therefore, a co-vector w = w, d* = @, d® € T*Q
has its coordinates that transform as

we = 02wy, , and (1.2.11a)
Wy = 82" wy . (1.2.11b)

Tensor product: tensors and p-forms

The tensor product! of vector spaces is a commutative bilinear product that allows
one to obtain a bigger vector space in such a way that the dimension of the product
is the product of the dimensions.

Let us consider N vector spaces, {V;}, where i runs from 1 to N, and M co-vector
spaces, {W;}, where j runs from 1 to M, and let

Lor direct product.

10



1 Introduction and preliminaries

be, respectively, any basis in V; and Wj.

The tensor product of these spaces, denoted
N
Uy =Q@Vie QW =Viehe cVyeWiaWo - @Wy, (1.213)
is a vector space of dimension

N M
dim Uy = [[dimV; [ dimW; . (1.2.13b)
i=1 j=1

The objects living in U} are called tensors of order (N, M). A tensor of order (1,0)
is simply a vector; a tensor of order (0, 1) is a co-vector; while a tensor of order (1,1)
is a matrix. In fact, in the coordinates of the tensor, N is the number of upper indices
while M is the number of lower indices.

Since UJI\‘? is a finite-dimensional vector space, it possesses a basis:
M
‘ b
® 6((17;_) ® ® € ) a1 ® 6&2) ® ® e(N) ® e(l) ® 6(2) ® T ® e(]]\v/{[) (1214)
— i1

where a; € [1,dim V;] for each ¢ € [1, N], and where b; € [1,dim W;] for each j €
[1, M]. Hence, any tensor t € U ]]\\,/I can be decomposed in coordinates as

t =1} by ® el ® ® el - (1.2.15)

In the following, we shall only consider tensor products of the tangent and the cotan-
gent spaces

N M
7Y Q= (T)®" 0 (T7)®Y = R T R T, (1.2.16)
and a tensor t € T]J\\,/I Q will be decomposed in coordinates as
(aa b;
= tylp2 N ®aal ®®d (1.2.17)

Using egs. (1.2.3a), (1.2.3b), (1.2.10a) and (1.2.10b), we obtain that a basis vector in
T]]\‘,4 Q) transforms under reparameterisation of the manifold as

= HB Fa Hab 2bi ®3al ®®db and (1.2.18a)
H H 8y, 2% ®8al®®db (1.2.18b)

Oy,

.®2

@
Il
MR

E
S.‘)z

1

.
Il

I ii@
%

Then, the transformation rules for the coordinates of ¢ are straightforward: in tgllgj','.'b‘x;’ ,

the upper indices are contravariant (ie they transform as the coordinates of a vector),

11



Numerical integration of classical conservative field theories

while the lower indices are covariant (ie they transform as the coordinates of a co-
vector).

Let us now define the symmetric product:

-

oy~ oo v vy =LY Qo w210

i=1 pEPN (a1 an) =1

M
b; 1 pj
47 =15 > @d (1.2.19b)

pEPN (b1 bpr) J=1

<=

Il
i

J

as well as the anti-symmetric product, or wedge product:

N N
Ao =8 no) n---nayy) = Z o(p) @) and  (1.2.20a)
i=1 PEPN (a1 an) =1
M M
A d’ o 'Z a(p) Q) dY (1.2.20b)
Jj=1 pEP (b1 bpy) J=1

where Py is the symmetric group of M symbols, and o(p) is the signature of the
permutation p. Note that V and A are not equivalent to ® since the product on the right
hand side is not a commutation of the product on the left hand side; the permutation
apply on the indices, not on the vectors (see the indices in gray parenthesis!).

Since the permutation apply on indices, symmetrisation and anti-symmetrisation can
be equivalently? defined through the coordinates of the tensor. Symmetrisation of
contravariant indices, and respectively, of covariant indices, is defined through the
symmetric product as

N N

tlaraz- ®aal = ¢laraz-an) \/ 8a, =t \/ 9, , and (1.2.21a)
] =1
M

b1b2 “bar) ®d b=t (b1ba-+ bag) \/ d J tb1bg~--bM \/ dbj R (1.2.21b)
j=1

while anti-symmetrisations are defined from

N N N

tlraz-anl 6 9, := ool A\ g, = ¢mazen A g, and (1.2.22a)
M M M

tonbobng @AY = tpypyeng \ A% = typyeny, [\ A% (1.2.22b)
j=1 j=1 j=1

Therefore, the symmetrisation brackets, (") and (), respectively read

|
e = g 2 1, and (1.2.23a)
" pEPN (a1 an)
1
Foaban b)) = 37 D o - (1.2.23b)

" pEPr (b1 bag)

Imost of the times, these indices are omitted; here we only wrote them to highlight on what the
permutation apply.

2the product and the bracket notations will be indifferently used.

12



1 Introduction and preliminaries

while the anti-symmetrisation brackets, [] and ], are given by
1
tlarazanl . N Z o(p)t? | and (1.2.24a)
pEPN (a1 an)
1
Ubybo-byg = il Z o(p) ty . (1.2.24Db)

PEP (b1 bar)

These brackets symmetrise/anti-symmetrise all enclosed indices. We also define the
protection brackets, " (for contravariant indices) and |...| (for covariant indices),
that exclude the enclosed indices from an outer symmetrisation/anti-symmetrisation
operation.

Among all possible tensors, there is a noteworthy type, called p-forms, that are anti-
symmetric tensors of order (0,p). The formalism later presented mainly relies on
2-forms:

w = wy d* ®d" = wyd* Ad’ =wud* Ad”, (1.2.25)

where wgp = wigp) 18 anti-symmetric in its two indices.

Metric and dual vectors

Let us consider now another particular kind of tensors. A metric tensor! is a sym-

metric non-degenerated tensor of order (0,2). Let 7 = () d* ® d® = Nab) A* V db =
Nap d® V d° be a metric on? Q.
First, since the metric is a symmetric non-degenerated application that maps two

vector to a scalar, it defines a scalar product. Let u = u® d, and v = v* 8, be two
vectors of TCQ). Their scalar product is defined as

(u,v) = n(u,v) = e uv® . (1.2.26)

Since the metric is never degenerated, it can be inverted; its inverse, n~' = n® 8, Vv 8y
(such that 1g, 7" = 62), defines a scalar product for co-vectors.

On the other hand, while the metric acts on a vector to produce a co-vector, its inverse
acts on a co-vector to produce a vector. They connect the objects of the tangent
space with the objects of its dual in a bijective way defining the notion of dual for
vectors/co-vectors. They act on the basis vectors/co-vectors as

1(8,) = My d® V d%(8y) = Mpe 06 d® = gy d® =: (8,)* , and (1.2.27a)
n Hd®) =" 8y v 8.(d%) = > 6% By = P B, =: (d)* . (1.2.27b)
Hence, v =v% 9, € T and w = w, d* € T*Q are dual provided that

v = (1) = v (ed)* = v e’ =wp e’ =w , ie (1.2.28a)
Vp = Ngp V¢ = wp (1.2.28Db)
which means that the dual of a vector, is the vector of the dual space having the same

coordinates in the dual basis. In coordinates, we observe that the metric, 74, is used
to lower indices while its inverse, 7%, raise indices. In particular, 7., n*¢ = n,° = <.

Lor simply a metric.

here we assume that € is such that there exists a (0, 2)-tensor that is never degenerated (tensors
can be defined on any differentiable manifold, but not all the differentiable maniflods admit a metric).
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Gradient and exterior derivative

The exterior derivative, d, generalises to forms the notion of differential. It maps a
p-form,
P

f = faraza, \ A, (1.2.29)
j=1
to a p 4+ 1-form:
P
df :==dfaasa, A\ A, (1.2.30a)
j=1
where d f4,a,---a, is the differential: applied on a function f : Q — K (a scalar field on
Q), it reads
df = {?J: d*=9,fd". (1.2.30b)
z

Using its definition and SCHWARZ’s theorem!, one can show that the exterior derivative

of the exterior derivative vanishes: dd := 0. A p-form that vanishes under exterior
derivative (df = 0) is said to be closed.

We shall also use the gradient of the scalar fields on €Q; it is the dual of the differential

V= (df) = 0.f () = 8, f 0™ B, . (12.31)

Interior product and LIE derivative

Let us finally introduce the notion of interior product and LIE derivative.

Let f be a p-form on € while v is a vector. The interior product of v and f is the
p — 1-from

(twf) = f(v,) (1.2.32)
that is the contraction of the first index in the form with the index of the vector.

Let now v = {v(z) € T.Q|Vz € Q} be a vector field> on 2. The LIE derivative
with respect to the vector field v is defined following the CARTAN’s identity as the
anti-commutator of the interior product and the exterior derivative

Lo = (1o, d) = to(d) + d(te) - (1.2.33)

The LIE derivative measures the variations along the integral curves of the vector field.

This concludes the definition of the necessary geometric tools. Let us now recall the
essential steps of the construction of the Hamiltonian formulation of mechanics.

lsometimes known as CLAIRAUT’s theorem.

2a vector field is a continuous set of vectors from the tangent space for all the points on the
manifold e it is a section of the tangent bundle (again, the tangent bundle being the total space

obtained by fibration of the manifold with its tangent space ie | |, ., T-9).
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1.3 Reminders of Hamiltonian mechanics

This section will be devoted to remind some essential aspects of the Hamiltonian
formulation of mechanics. This presentation is inspired from |72, 78,82, 83| to which
we refer for further details. Generalisations to field theories will be presented later.

We first recall the HAMILTON’s equations of motion and how they emerge from the
least action principle. Next, we define the phase space and recall the proof of the
conservation of its symplectic structure. Secondly, we recall the POI1sSSON formulation
of the HAMILTON’s equations. Then, the notion of symplectic invariant is introduced
via the canonical transformations of the phase space. Later, we shall recall the proof
of LIOUVILLE’s theorem for statistical mechanics of Hamiltonian systems. Afterwards,
we shall briefly comment on how to generalise this construction in case of a time-
dependent Hamiltonian.

Lagrangian, action and EULER — LAGRANGE equation of motion

Consider a conservative mechanical problem parametrised by a time ¢ and that consists
of N degrees of freedom (eg a d-dimensional problem with N/d particles, ...). Let
¢'(t) and ¢ = dqz/dt respectively be the generalised position and velocity of the ‘!
degree of freedom (i running from 1 to N).

The dynamics are characterised by a Lagrangian, L({qi, q’}), that obviously depends
on the generalised positions and velocities but, as an assumption, not explicitly on time
(the time dependence is only thought ¢' and ¢*):
oL
—=0. 1.3.1
5 (1.3.1)

The action reads

S[{d'}] ::/L({qi,q'i})dt. (1.3.2)

Given the dependencies of the Lagrangian, the variation of the action is

oL d AL\ . .
= — - — . v 1.3.
S ( o @ 6qz>5q , (1.3.3)

where dS is the variation of the action arising from a variation in the trajectory,
5q'(t) (see [77] for a rigorous definition and a complete presentation of the calculus of
variations). The least action principle, that is mainly §S = 0, leads to the following
EULER — LAGRANGE equations® of motion:

oL d oL
- — — — =0, (1.3.4)
dgt  dt 90¢*
where i € [1, N].
Hamiltonian formulation
For each generalised position one may define a conjugate momentum
oL
Di = e (1.3.5)

Lone for each degree of freedom.
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The Hamiltonian is defined by the following LEGENDRE transformation that substi-
tute the conjugate momentum p; to the generalised velocity ¢* provided that it is not
a singular transformation:

H({d",pi}) =pid' — L({d",d"}) - (1.3.6)

Since the Lagrangian does not depend explicitly on time, the Hamiltonian does not

either
OH 0L

o 9%y, 1.3
a1 ot~V (1.3.7)

Using egs. (1.3.4) and (1.3.6) one successively obtains

OH :

=q 1.3.8
op; 1 (1.3.8a)
0H 0L d oL

= = 22— and 1.3.8b

o¢  o¢  dtoag o™ ( )
dH O0H 0H , OH o

= '+ pi=-Did +qp=0. (1.3.8¢)

a ot "ot o

Hence, the canonical HAMILTON’s equations of motion

. O0H

it = 1.3.9
pi = —g? , and (1.3.9b)
H=0. (1.3.9¢)

The LEGENDRE transformation (1.3.6) substitutes the N 2°¢ order differential EULER —
LAGRANGE equations of motion by a set of 2N differential equations of first order (the
third HAMILTON’s equation, the one that concerns H, is in facts trivial).

Phase space and symplectic structure

The phase space, denoted (2, is a differentiable manifold of dim Q = n = 2N that is
parametrised by the DARBOUX coordinates: {2°} := {¢'} U {p;} (the union of the
positions and momenta).

Since € is a differentiable manifold we can define on it the 2-from
W =wep d* Ad® :=d¢’ Adp; — dp; Adg’ = 2dg’ Adp; . (1.3.10)

It is a closed (dw = 0) non-degenerated (detw # 0) 2-from. Hence, (2, w) is what
is called a symplectic manifold where w is the symplectic form on it. This
symplectic structure is an essential part of the Hamiltonian formulation of mechanics;
explicit physical examples will be given below, page 25.

Let us now define z € T}

1 N T

z2=2"0s:=[¢" - ¢ pm - pn] (1.3.11)

As long as {2} is a global coordinate system on €2, assumption which we shall admit
from now on, for each z € TC) there is an unique associated point z € ). z is called the
state vector since it selects a unique state of the system. In fact, with this particular
vector field we provide some kind of vector space structure to Q.
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Using the symplectic form (1.3.10) and the state vector (1.3.11), the HAMILTON’s
equations of motion are equivalent to

Lw=w(z,)=dH . (1.3.12)
Indeed, since

Lw=w(2,-) =¢dp; — p;dq’ , and
“ o 1 T op;
eq. (1.3.12) reduces to egs. (1.3.9a) and (1.3.9b).

For any smooth function f on (2 there exists a vector field, x s, defined as

w(xys, ) =df . (1.3.13)

dp; ,

Hence, the Hamiltonian admits such a vector field, the Hamiltonian vector field,
xu, and from eq. (1.3.13) it follows that the equation of motion also reads

Z=xH. (1.3.14)

We also define the Hamiltonian flow, @, as the integral curves of the Hamiltonian
vector field

V3 = (d®)* = xz . (1.3.15)

A fundamental property of the symplectic form is that it is conserved under the
Hamiltonian flow: using the closeness of the symplectic form as well as eqgs. (1.3.13)
and (1.3.14), one successively obtains

Lypyw =ty dw + d(ty,w)
= d(w(xH;-))
=d(dH)
=0. (1.3.16)

Po1ssoON bracket

Since w is non-degenerated it can be inverted and its “inverse” reads

wh = 17_1 ® n_l(w) = O, N\ Oy (1317)

be — —6¢. Here we have used the ¥ symbol instead of the usual ~! since

wﬁ = w(wﬁ) = —n (due to the sign, they are not truly inverses of each other).
Let f({q ,pi}), ({q ,pi}) and h({q ,pi}) be three smooth functions on 2.
The Po1ssON bracket of f and g,

{f.g} = —{g. [} = w(xs Xg) = Lx,;9 = wH(df,dg) = w™ 8, A By(d f,dg)

1.3.18
= w9, f Byg ﬂ@_g@ ( )

Where Wap W

is related to (it is sometimes referred to as being) the inverse of the symplectic form.
It is an anti-symmetric bilinear application that respects the product rule

{fg.h}=f{g,n} +{f,h}g, (1.3.19)
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and that is subject to a JACOBI identity:
{f.gt, 0} + {{g. h}. f} +{{h. f},9} =0 (1.3.20)

The Po1ssoN bracket notoriously plays a fundamental role in Hamiltonian mechanics.
Most of the properties that give the POISSON bracket such a fame are in fact properties
of the symplectic form, however these two objects are so closely related that they
merge into the same concept. Accordingly, in the following, these two objects will be
interchangeably used depending on which one is the more suitable to highlight a given

property.

Earlier we have introduced the action of the Hamiltonian flow in terms of symplectic
form, let us now express it in terms of the POISSON bracket. We consider a smooth
function f := f ({ q, pi}, t) that depends on the DARBOUX coordinates and explicitly
on time. Its differential,

of

ar = q
F=gpdte

of
gt

of

di
q+3pz‘

dp; . (1.3.21)

is hence composed of the exterior derivative on 2 (that takes into account the depen-
dence on the DARBOUX coordinates) plus the part corresponding to the time depen-
dence. Dividing by dt and identifying the HAMILTON’s egs. (1.3.9a) and (1.3.9b) and
then the definition of the POISSON bracket, one successively obtains
df _of 9f d¢' | Of dpi
a = ot Tog at Ty ar
of of . of .
:§+5qiq +8p¢pi
of oOf OH O0f OH
ot dq' Ip;  Op; Oq'
of
ot

Since this holds for any smooth function, one finally obtains

d 0
T T H (1.3.22)

Thus, the POISSON bracket allows to rewrite the set of HAMILTON’s egs. (1.3.9a)
to (1.3.9¢) in a more symmetrical way

i'={q¢' . H} , (1.3.23a)
pi = {pi, H} , and (1.3.23b)
H=0. (1.3.23¢)

Another consequence of eq. (1.3.22) is that any function whose POISSON bracket with
H vanishes and that does not depend explicitly on time is a conserved quantity under
Hamiltonian flow. Such quantities are called integrals of motion. Any linear combi-
nation of integrals of motion in an integral of motion too and, following the JACOBI
identity (1.3.20), the POI1ssON bracket of two integrals of motion is an integral of
motion too. Hence, the set of all the integrals of motion is a LIE algebra.
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As a final remark, we stress that the POISSON brackets of the DARBOUX coordinates
have a noteworthy form

{¢'.d} =0, (1.3.24a)
{pi,p;} =0, and (1.3.24b)
{d",pj} =6}, (1.3.24c)

usually called canonical P0OI1SSON brackets.

Canonical transformations: symplectic geometry

Canonical transformations are special deformations of the phase space that pre-
serve the structure of the HAMILTON’s equations. Let us consider the generic trans-
formation

¢ —Q ({d.pj}.t), (1.3.25a)
pi — Pi({¢’,p;}.t) , and (1.3.25D)
Recalling that the HAMILTON’s equations in the DARBOUX coordinates read
. OH
/= 1.3.26
q apZ ) ( a)
H
pi = _ng‘ ; and (1.3.26b)
- OH
H=— 1.3.26
at (1.3.26c)
a transformation like (1.3.25a) to (1.3.25¢) is canonical if, and only if
., OK
Q' = 2D, (1.3.27a)
. K
P = _gQi , and (1.3.27b)
. 0K
K=—. 1.3.27
8t ( C)

This is the definition of a canonical transformation. Still following [72,78,82,83], let
us now recall a practical way to construct such a change of coordinates.

From first principles we know that the HAMILTON’s equations arise from the stationary
property of the action. Hence the transformation (1.3.25a) to (1.3.25c) is canonical
provided that

68S=0=06 [ (pidd—H)dt=6 | (P,Q' — K)dt . (1.3.28)
[ (it =) =s [(n' - x)

Here we have written the least action principle in Hamiltonian form! for both the
original and the transformed coordinates (and Hamiltonian). This constraint holds
provided that the integrands only differ by a total derivative or a scaling factor:

: g dF
Mpid' —H) = PQ' =K+ . (1.3.29)

'using the inverse of the LEGENDRE transformation that were used to define the Hamiltonian (see

eq. (1.3.6)).
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The scaling transformation, represented by A, merely stands for a change of units and
it can be assumed that A = 1 without loss of generality. Now, observing eq. (1.3.29)
we remark that F := Fl({qi,Qi},t) is necessarily a function of {qi,Qi} and t. Its
differential reads

dF = p;d¢’ — P,dQ' + (K — H) dt (1.3.30a)
oF, .. OF _, OF

= ——d¢' - dQ" + ——dt . 1.3.30b

og 0+ 50 9@+ 5 (1.3.30b)

Thus, we are able to generate a canonical transformation provided that there exists a
function F} such that

OF,
,= 1.3.31
Pi = 5 (1.3.31a)
OF,
p=-21 1.3.31
20 and (1.3.31Db)
OF,
K=H+—. 1.3.31
+ 5 (1.3.31c)

Fy is called a generating function of the first kind. Its a generating function since,
given Fy, the transformation is fully characterised using egs. (1.3.31a) to (1.3.31c).
There exists four kinds of generating functions: here, F} is a function of {qi, Qi} and
t. However, by LEGENDRE transformation, we can substitute to F} a function that
depends on t and on any couple selected in {qi,Qi,pi,Pi} and use it to generate a
canonical transformation. The four kinds of generating functions are listed in table I.1.

Generating function Transformation equations
P Rl @) neGg i B=—gg
F::FQ({qi,Pi},t)—QiPi Pi:g? ain:gij
F=F3({pQ'},t) +d'p; qi:_gij and Piz_ggi
Fi=Fi({ps P},t) +¢'pi—Q' P | ¢’ = _ZZ and Q' = ZE

Table 1.1 — The four kinds of generating functions for canonical transformations with
their transformation equations. Given any function Fj one can obtain by LEG-
ENDRE transformation, a function F' := Fj, that fully characterises a canonical
transformation following egs. (1.3.31a) to (1.3.31c). The corresponding transfor-
mation equations for Fj are given in the second column (the third eq. (1.3.31c)
remains unchanged except that Fj is substituted by Fy).

The eq. (1.3.31c) has a particular status and is called the HAMILTON — JACOBI equation

OF
K=M\H+ — 1.3.32
NH + = (1.3.32)

where we have restored the A parameter (previously set to 1).

Let us now consider a time-independent deformation of the phase space, ie the gener-
ating function does not depend explicitly on time:

OF
5 =0 (1.3.33)

20



1 Introduction and preliminaries

Hence, the transformation (1.3.25a) to (1.3.25¢) becomes

¢ — Q' ({d,p}) , (1.3.34a)
pi = P,({¢,p;}) , and (1.3.34b)
H({d,p:}) = K({Q", P}) . (1.3.34c)

Using the HAMILTON — JACOBI eq. (1.3.32), and setting again A = 1, one obtains
K = H. Meaning that the transformed Hamiltonian is the original one expressed in
the new coordinates and hence, that K and H are functions of {qi, p,-} as well as of
{Qi, B} Using this, the equations of motion for the new coordinates successively read

5 0Q 5 0Q
Q N 6qjq +6pjpj
_ o oH Q' o
- J¢? 9p; Opj O
_0Q' [ 0H oQ* N OH 0P, 0Q'[0H 9Q* N OH 0P,
~ O0¢f |0QF Op; 0Py Opj dp; |0QF 8¢ OP, ¢
 9H [9Q' 0Q"  9Q Q%] | 0H [9Q' 0P, 9Qi 9P,
0QF | O¢d dp;  Op; O OP, | 0¢? dp;  Op; O
— aTgJ{Q 7Q]}qp+aTDj{Q ,Pj},, » and (1.3.35a)
. oH » oOH
-Pi = T@{RaQJ}qp—f_aiR]{PLvP]}qp ) (1335b)

where the ,, index on the POISSON bracket means that it is taken in the {qi,pi}
coordinates. The transformation (1.3.34a) to (1.3.34c) is canonical if, and only if

., 0K OH
Q = 8PZ = TPZ s and (1336&)
. 0K oH
p=_2r __ 27 1.3.36b
50 = 30 (1.3.36b)

Comparing egs. (1.3.35a) and (1.3.35b) to egs. (1.3.36a) and (1.3.36b) we concluded
that transformation (1.3.34a) to (1.3.34c) is canonical as long as

{Qi,Qj}qp =0, (1.3.37a)
{P;, Pj},, =0, and (1.3.37b)
{Q", Pj}qp = —{Pp;, Qi}qp =05 (1.3.37c)

This is a necessary and sufficient condition.

Let us now consider two smooth functions, f := f({¢",p:}) = f({Q", P;}) and g :=

21



Numerical integration of classical conservative field theories

g({qi,pz‘}) = g({Qi, H}) One successively obtains

B [8]” 0Q7  of 3P]} [89 oQF dg aPk]
0Q7 d¢®  OP; dq' | |0QF Op;  OPy Op;
B [af 0Q7  of 5]3]} [39 oQF dg apk]
0Q7 dp;  OP; Op; | |0QF 9¢® = 0P, Oq'
of dg [aQﬂ‘ Q% aQi 8Qk] of dg [apj oP, OP; apk]

©0Q) 0QF | 0¢' Opi Opi O’ | T OP; OP; | 0¢' dp;  Op; Og
of g [0Q) 0P, 0QY OP,] | Of dg [0P; 0QF 9P; 0QF
OQ) 0Py, | ¢ Op;  Opi O¢° |  OP; OQF | d¢® Op;  Op; Oq
_Of 99 (i A 8f dg
— Q! aTgf{Q’Q] w " 3P, op; P Pitgy
of 99 of g j (1.3.38)
o b {9 Pk 5p; i P Qe
_0f 09 _9f 99 _

where the last line assumes the canonicity of the transformation that maps {qi, pi} to
{Qi,]%}. Hence, the POISSON bracket is invariant under a time-independent canon-
ical transformation. This is also true for the symplectic structure since the Poisson
bracket and the symplectic form are two equivalent objects. A change of coordinates
that preserves the symplectic form is called a symplectic transformation. The set
of all symplectic transformations forms the symplectic group.

However, we must stress an important point on the terminology: canonical and sym-
plectic transformations are not the same thing. A canonical transformation is a de-
formation of phase space that preserves the structure of HAMILTON’s equations. On
the other hand, a symplectic transformation preserves the symplectic form (ie the
Po1ssON bracket). The two concepts collapse only for the particular case of a time-
independent transformation. For a change of coordinates that depends explicitly on
time, they are not equivalent anymore, at least not in the framework introduced until
now.

Canonical and symplectic transformations are conciliated by the time-dependent Hamil-
tonian formalism that modifies the definition of the phase space as well as the definition
of the symplectic form to handle the explicit dependence on time; this will be briefly
discussed at the end of the section. In this framework, canonical and symplectic trans-
formations stand for the same concept.

LIOUVILLE’s theorem

The LIOUVILLE’s theorem plays a fundamental role in the statistical description of
Hamiltonian mechanical systems. It describes the evolution of a density over phase
space (relying on the conservation of the volume form under Hamiltonian flow!). This
density can be seen either as a probability density or as a density of independent

Ltherefore the LIOUVILLE’s theorem is sometimes improperly presented as the conservation of the
volume.
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particles. Let us first prove the conservation of the volume form; then we shall explicitly
state the theorem.

The natural volume form in the phase space is the top wedge power of the symplectic
2-form:

dV < wNV =2V <LN]\/[21> d¢* Adpy Adg> Adpa A---AdgY Adpy . (1.3.40)

where |-] can be either the floor (|-]), or the ceil ([-]) function. The variation under
Hamiltonian flow! of this 2/N-form is

Loy dV o Ly, w™N = N (Ly,w) A1 =0, (1.3.41)

where we have used the invariance of the symplectic 2-from (see eq. (1.3.16)), as well as
the fact that the LIE derivative respects the LIEBNITZ rule with respect to the wedge
product. Hence, the natural volume form (1.3.40) is conserved under Hamiltonian
flow. We are now going to use this fact to prove the LIOUVILLE’s theorem.

Let p( {qi, pi}, t) be a density on the phase space: whether it is a probability density
or a density of independent particles. The number of particles/the probability to be,
at time ¢, in the infinitesimal volume dV, centred in {qi,pi}, is N = p({qi,pi}, t) dy.
The time variation of this quantity is only due to the Hamiltonian flow (no disappearing
nor creation of particles/probability), hence one successively obtains

(ZX = Ly, (N) (1.3.42)
= Ly (pdV)
(L) AV — p Ly dV
= —(tyydp)dV
= —dp(xu)dV
= —w(xp, xz)dV
= w(xH, Xp) AV
={H,p}dv, (1.3.43)

where we have used the conservation of the volume form, eq. (1.3.41). Since dV does
not depend explicitly on time, we can divide the last equation by this infinitesimal
volume and integrate it in the time derivative on the left hand side. Then we identify
the definition of p and we finally obtain

dp
o = {H,p}. (1.3.44)

Hence, using eq. (1.3.22), we have proved that the density is constant along the Hamil-
tonian flow:
dp _ 9p

_op H'—0. 1.3.4
i at+{p, }=0 (1.3.45)

This is LIOUVILLE’s theorem.

Yie the LIE derivative with respect to the Hamiltonian vector field.
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Time-dependent Hamiltonian

The framework introduced until now assumes that the Lagrangian (as well as the
Hamiltonian) does not explicitly depend on time. To handle its possible dependence,
the objects introduced so far require some extensions. Let us consider a mechanical
system described by a Lagrangian L({qi, qi}, t) that explicitly contains the time. The
Hamiltonian is still defined by the LEGENDRE transformation

H({¢',pi},t) ==pid' — L({d",d'},1) , (1.3.46)

such that the Hamiltonian is explicitly time-dependent as well. The HAMILTON’s
equations of motion remain unchanged

,  OH
= 1.3.47
pi = —g? , and (1.3.47b)
- OH
H=—. 1.34
Fr (1.3.47¢)

However, the phase space, still denoted €2, needs to be extended. It is now a dif-
ferentiable manifold of dim{2 = n = 2N 4 2 that consists of the original phase
space for time-independent problems plus two extra dimensions that correspond to
the time and the Hamiltonian. Hence, the generalised DARBOUX coordinates are
{22} = {t} U {¢'} U{H} U{p;}. Here, the ordering in the DARBOUX coordinates is
not arbitrary: p; is the conjugate momentum to ¢; and the same holds for H which is
the conjugate momentum of ¢. Indeed, H is the conserved quantity that correspond
to the translational invariance along t as it is for the usual conjugate momentums.

The symplectic 2-form requires some extensions too. It is now defined as w = wqp d* A
d’:=2 (dqi ANdp; —dt A dH), and is naturally closed (dw = 0) and non-degenerated
(det w # 0). Hence, (£2,w) is still a symplectic manifold.

The state vector, z € T2, becomes
z=20, := [t g - &N H p - pN}T. (1.3.48)

The equation of motion henceforth reads

w(z,:) =0, (1.3.49)
since
w(z,-) = Hdt —p;dq’ + ¢'dp; — dH
— e = jidg’+dfdp - G de- S dd - S =0
Hence, the evolution of the state vector is explicitly given by
2 =xy +wi(dH, "), (1.3.50)

where x g is defined as earlier but using the actual extended symplectic form.

In this way, the framework previously introduced can be extended to take into account
an explicit time dependence in the Hamiltonian, or in the deformations of phase space.

Throughout this section, we have recalled some elementary constructions of the Hamil-
tonian mechanics. Later in the chapter (section 2) we shall introduce the DE DONDER —
WEYL framework that generalise these concepts to the field theory. Before that, let
us review the numerical integration methods for conservative mechanics.

24



1 Introduction and preliminaries

1.4 Numerical integration of Hamiltonian mechanical systems

The methods for integrating field theories are widely inspired from the one of mechan-
ics, and most of the observations valid in the latter case will remain valid.

The aim of this section is to give an overview of the existing methods for numerically
solving conservative ordinary differential equations (ODEs); keeping in mind our final
goal, we shall carefully analyse if the methods can correctly handle the long-time
dynamics of the problem.

There is a broad variety of methods to tackle ODEs numerically, but, as already stated,
here we focus on finite-difference methods. Besides, this presentation is not intended
to be exhaustive; our objective is to bring out some general concepts, and we only
introduce a restricted selection of the most known technics. This presentation is in-
spired from [75,79,80,91] where one can find a complete review on numerical methods
in general and, in particular, on the subject of numerical integration of ODEs.

First, two mechanical systems are introduced to be used as application examples.
Secondly, we present the construction, as well as a proof of the main properties of
some of the most renowned methods. Next, their strengths and weaknesses will be
analysed, as well as their accuracy, on the two cases mentioned just above.

The harmonic oscillator and the simple pendulum

For the purpose of evaluating the performances of the numerical integrators, we con-
sider two Hamiltonian mechanical problems whose exact solution is known.

We consider a particle with only one degree of freedom subject to a time-independent
Hamiltonian flow. The dynamics of the system is therefore fully described by the state
vector

z = [q] : (1.4.1a)

p

subject to the equation of motion
wap 20 = O, H | (1.4.1b)

where the symplectic form w = wgp d® A d° is defined as

Wap = [_01 é] . (1.4.1¢)

1. The first considered problem is the linear case of the harmonic oscillator whose
Hamiltonian is

2 2
p q
H:==—+=. 1.4.2
7 T3 (1.4.2)
The equation of motion is of course
Gg=p,and (1.4.3a)
Assuming the initial configuration
q(t=0)=qo , and (1.4.4a)
p(t=0)=1pp , (1.4.4b)
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the solution reads

q(t) = qo cost + pg sint , and (1.4.5a)
p(t) = po cost — qo sint , (1.4.5b)

and is obviously T := 2w-periodic.

i1. The second problem of interest is the so-called simple pendulum. It is a non-
linear exactly solvable model [73,74, 92| whose dynamics follows the flow of the

Hamiltonian )
H::%Jrl—cosq : (1.4.6)
The equation of motion is thus
Gg=p,and (1.4.7a)
p= —sing . (1.4.7b)
Let us define the modulus?, k, as
H py?> 1—cosqy .
2
_H_po” 1.4,
k 5 1 + 5 , ie (1.4.8a)
2
k=+ p% + sin? %0 . (1.4.8b)

The system can present two sorts of behaviour. First, for k? < 1 the system is
oscillating, and the exact evolution for such an initial configuration follows

q(t) = qo + 2 sgn (sn (t + T‘]{?2)) arccos (dn (t + T|k2))

, and 1.4.9a

— 2 sgn (Sn (T}kQ)) arccos (dn (T‘/{SQ)) ( )

p(t) =2k cn (t + T‘kz) , where (1.4.9b)
T=cn! (%‘W) . (1.4.9¢)

On the other hand, for k2 > 1 the system is whirling?:

1 1
q(t) = qo + 2 sgnpy [am (k(t +7) k2> — am <k7' k2>] , and (1.4.10a)

1
p(t) = 2k dn (k(t +7) k:z) , where (1.4.10b)
1 1
7= dn <§Z /#) . (1.4.10c)
In both cases, the motion has a periodicity?
po’ q0
T(QOaPO) = 4%{K<k§2 = T + sin? 2)} , (1411)

that depends on the orbit. Here, cn (z|m), dn(z|m) and sn(z|m) are the three
principal JACOBI elliptic functions, am (z|m) is the amplitude function and K (m)
is the complete elliptic integral of the first kind [89].

Lan integral of motion.

Znote that in the following expression sgn po cannot vanishes since po = 0 necessarly corresponds
to the oscillating behaviour (k% < 1).

3since the phase space is compact in the direction of the first DARBOUX coordinate (gq).

26



1 Introduction and preliminaries

The EULER’s methods

This section describes the construction and properties of the EULER’s methods. They
are a collection of possible ways to approximate the derivative of a function and con-
sequently an ODE.

The first step of the method is to discretise the time as a uniform uni-dimensional
lattice that samples the state vector:

t—t,:=nd,and (1.4.12a)
z(t) = zp = 2(ty) . (1.4.12b)

The continuous vector field z(¢) is substituted by the samples z,, on each of the lattice’s
nodes t,. This representation reduces the amount of unknowns from a non-enumerable
set to a countably infinite. The vector field can then be approximately reconstructed
from the samples using an interpolation rule.

The EULER’s methods approximate the derivative of a function at point t,, =
(n+ )d by the finite difference’

e A @ . (1.4.13)

This approximation differs from the exact definition of a derivative only by the lack of
the limg_,q; however, this is precisely this limit that cannot be taken on a computer
and that explains the errors produced by numerical integrators.

In this definition the parameter « can be freely chosen but is generally bounded into
[0, 1]. Nevertheless, there are a few noteworthy choices for this parameter:

1. a = 0 is the so called EULER explicit rule,
ii. o = 1/2 is the Midpoint rule,
141. while @ = 1 is the EULER implicit rule.

Using approximation (1.4.13) the discrete equivalent of the equation of motion (1.4.1b)
characterises the dynamics of the discretised problem:

Zb+1 _ Zb
Wab RTTL = aaH(zn+a) s (1414)

where
Znta =0 2Zpp1 +(1—a)z, . (1.4.15)

Thus, the discrete evolution of the harmonic oscillator is given by
dn+1 — 4n

]

w = —agni1 — (1 — @) gn (1.4.16b)

=appt1 + (1 —a)py, , and (1.4.16a)

Inote that the centred EULER’s rule,

P Zn+1l — 2n—1
n~N ————
20 ’

produces numerical errors of higher order in § but leads to an incorrect approximation of the second

order derivative:
Zn42 — 2zn + zZn—2

462 ’
which consists of two independent sub-lattices (the odd one and the even one).

Zn =
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while the evolution of the simple pendulum by

dn+1 — 4n
0
DPn+1 — Pn
1)
These equations define a map from z,, to z, 1 that allows one to obtain an approximate
solution of the problem. For o = 0 this application is explicitly defined while in
generall, for o # 0, the map is implicit. Solving such an implicit map requires finding
the root of a multi-dimensional vector function?. There exists a broad variety of
algorithms for roots finding [84,88] but from first principles they are all based on the
NEWTON — RAPHSON method or the GAUSS — SEIDEL one?; however, these algorithms
suffer from their lack of robustness. A more robust approach? is to substitute the
problem of finding a root by the problem of finding a minimum of the square. This can
be achieved using the standard gradient descendent, gradient conjugate or NEWTON
methods; nevertheless, to obtain the numerical results that will be presented later in
the section, we have used the LEVENBERG — MARQUARDT algorithm that is slightly
more sophisticated.

=appy1 + (1 —a)p, , and (1.4.17a)

= —sin(agpr1 + (1 —a)qn) . (1.4.17b)

The symplectic form w, is defined at time t,, as follows and should have the same
structure at later times if the evolution map preserves it:

Wy = wepd? AdY | e (1.4.18a)

Whi1 = wapd? g AdDL (1.4.18b)

By rewriting eq. (1.4.14), and applying the exterior derivative on it, one obtains

Wap 2211 = wap 22 + 6 8 H (2n+0) , and then (1.4.19a)
wap dbyy = wepdt + 6 [a 8,0, Hd", | + (1 — o) B, H dg] : (1.4.19D)

where 8,0, H is taken at z,.,. Hence, one successively obtains

(wap — 6 @ B H] Al 1 = [wap + 0 (1 — @) B8, H| dY, , ie (1.4.20)
[wWap — 6 € 8uBpyH] A%y AdE 4 = [wap + 6 (1 — @) 88, H]d% 1 A,
wap iy Adby ) =
Wnp+1 =
= [Wap + 0 8,8 H| A% A,

+6(1—20a)8,8,Hd? 4 Ad),

= —[wpa — S BB, H] A%, A

+6(1—20)8,8,Hd%, N,
= —[wpe + 0 (1 — ) B8, H]d% A dY

+5(1—202)8,8,Hd% A,

 for non-linear problems.
%je from R" to R™.
3the line search method (ie dichotomy) is not appliable in dimension higher than one.

4it is generally not recommended to search for a root by a minimization approach since optimisa-
tion algorithms may converge to a secondary minimum that actually does not correspond to a root of
the function. However, in the present case and if § is small enough, the minimization algorithm starts
in a close vicinity of the root; preventing it from falling into the valley of a secondary minimum.
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= wepd2 Ad] +6(1—2a)8,0,Hd%,, Ad
Wni1 = wp +0(1—2a)8,8,HA% AdY . (1.4.21)

The symplectic form is preserved by the evolution map if and only if

7. 6 = 0, which is the continuous limit and has no practical interest,
i. or a = 1/2, which is the Midpoint rule,
11%. Or
9,0, H A% Nd,=0. (1.4.22)

Using eq. (1.4.20), dj; | can be explicitly expressed by inverting the term in brack-
ets on the left-hand side:

d®,, =D¢d (1.4.23)

where Dy is a complicated expression but we do not need it explicitly. Thus,
condition (1.4.22) becomes

DEB.O,HdA2 NdE =0, (1.4.24)
and since {dﬁ A dg} is a basis for the 2-forms, this is equivalent to
D5 8.0,H =0 . (1.4.25)

This equation is satisfied provided that
1. H is a solution of this differential equation but this is not true in general,
1. or 0.0,H = 0 which is a particular case too,
ii4. or finally, if D = 0 which implies dj, | = 0 (ie the evolution map degenerates
the symplectic form and is therefore not able to preserve it).

Hence, the only general solution is @ = 1/2. Since it exactly preserves the symplec-
tic form over the phase space, the Midpoint rule is called a symplectic integrator;
meaning that the evolution map defined by the Midpoint rule is a symplectic trans-
formation of the phase space.

As we shall highlight later in this section, the conservation of the symplectic form!
implies excellent conservation properties of the integrals of motion, even in the long-
time dynamics (ie after a large number of time-steps). Symplectic integrators are
the only viable way to correctly perform the integration of a Hamiltonian mechanical
system over large times.

Let us now investigate the order of the error made due to the discretisation of the
equation of motion. Starting from eq. (1.4.1b), one successively obtains

wap 2° = 8,H , ie
W wep ¥ = w® 8y H
—08 30 = W B, H

3% = —w® §yH =: ¥ , then (1.4.26a)

5% = 3P @\ = X" Byx* , and (1.4.26b)

F0 = 200X O™ + 2°X BeBpX® = X 0ex” Bpx” + XX Bepx” . (1.4.26¢)

Lthat is the fundamental geometric object over the phase space as we have shown earlier.
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On the other hand, the exact evolution within a time-step d can be obtained through
the TAYLOR series as
2 53

2 2 zn) + 5 (za) + O(6")
2

=22+ 6x%(zn) + % X (zn) Opx*(2n)
. .
+ % [XC(Zn) 3ch(zn) Opx"(zn) + X“(2n) Xb(zn) 8cabXa(Zn)] + 0(54)

Then, noticing that 2,41 — 2z, = O(J), and using eq. (1.4.14), one successively obtains

n

Zpiy =2y +02%(2zn) +

Z?L+1 = zp + X" (2n + @ (2Zns1 — 20))

=2y +0x%(zn)+da (zzﬂ — zfl) X (zn)
2
+9 % (zflﬂ — z,i) (zzﬂ - zﬁ) D0y X" (zy) + O(6%)
= 20 40X (zn) + 0% ax"(zn + @ (2ni1 — 2n)) Box“(20)

2

+ 63 % X (Zn + @ (Zna1 — 20)) X2 (20 + @ (Zng1 — 2n)) BeBpX*(20) + (9(54)

=z0 +x%(zn) + 8 [Xb(zn) + « (zﬁH - zﬁ) 8cxb(zn) + (’)((52)} X (zn)
+ 63 Oj [C(20) + 00)] [ (20) + 0(6)] 0.84x"(20) + O(6)
= 25 + X" (2n) + 07 a X(2n) Bpx"(20)
+0% 0% X (20 + & (2nt1 — 2n)) BeX"(2n) Bpx*(2n)
4500 (2 (20 BB (22) + O
= 2+ 0 X" (2n) + 02 a X (2n) Bpx“(20)
+ 0% a® [X“(2n) + O(6)] Bex"(2n) BpX" (2n)
4002 () B8 (22) + O(2)
= 28+ 0 X% (2n) + 0% a x"(20) Bpx*(2n)
18 a? [x%zn) 8" (2) B (z2) + 1 X (20) ¥ (22) B0 (22)| + O(5%)

The error committed because of the discretisation of the equation of motion is therefore

|
Zpi1 — Zpy1 = 52 (Oé — 2) P (2n) BpX*(2n)
g [<a2 _ é) X (20) Bex’ (2n) Box®(20) L (1a27)

CY2
+ (2 B (15> X(20) X" (20) 886X (zn) | + O(6?)

and since, for any «, the term of order 6 cannot be cancelled in general, one has
1
2l =20 =6 (a — 2) X" (zn) Bpx*(2n) + O(6°) . (1.4.28)

Thus, the Midpoint rule is a second-order integrator (z%,, — Z%,; = O(6%)) while all
the other choices of o lead to first-order integrators (22, — Z2,; = O(4?)).
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Partitioned EULER

The partitioned EULER method is a variation of the method introduced above that
uses the possible separability of the Hamiltonian. Here, for simplicity, we consider a
system with only one degree of freedom and we also assume! that the dynamics are
characterised by a separable Hamiltonian:

H(q,p) :==T(p) +V(q) . (1.4.29)

The aim of a partitioned method is to separate the state vector into several sub-parts
and then, to discretise each part on a different lattice, with different rules. In the

present situation the state vector
q
z = , 1.4.30
o (1430

is partitioned into the two parts: ¢ and p. Next, ¢(¢) and p(t) are both discretised
on a uniform uni-dimensional lattice but with different origins; they are shifted by a
half-spacing;:

t—ty:=né, (1.4.31a)
Q(t) — Qn ‘= Q(tn) , and (1.4.31b)
p(t) = pn = p(tn +9/2) . (1.4.31c¢)

Afterwards, we use the explicit EULER rule for ¢ and the implicit one for p

Gnt1 —qn  OT

5 = a—p(pn) , and (1.4.32a)
Pnt1—pn OV
P = = ani) (1.4.32D)

The resulting approximation is somehow a Midpoint rule in the sense that the finite-
difference represents the derivative at the midway of the time-step. However, the
interest of having separated the state vector results in the fact that the evolution map
is not implicit (by contrast to the Midpoint approximation). Indeed, solving first the
evolution of ¢ and then the evolution of p, the application is explicit:

oT
Gn1=qn+90 Fp(pn) ; and (1.4.33a)
ov oV oT
=pp— 06— =pp — 6 — = . 14.
P+l =pn — 0 9 (gnt1) =pn—9 9 (qn+5 o (pn)> (1.4.33b)

Let us now have a look at the same questions as for the EULER methods: is the
evolution map a symplectic transformation and what is the order of the integrator?

First, the symplectic form on the lattice is given by

n = 2d n d — =2d n/NT 5
w Gn A dpp—1/ n I\ 5 (1.4.34a)
= dqn VAN (dpn + dpnfl) ) and
W1 = 2dq,_1/; ANdpp—1 =2 fl A dpp—1 (1.4.34b)

= (dgn +dgn—1) Adpp—1 .

this assumption is required; in contrast to the number of degree of freedom that we have reduced
to the minimum in the aim to simplify the presentation.
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By taking the exterior derivative on egs. (1.4.33a) and (1.4.33b), we obtain the evolu-
tion equations for the forms

o*T

dgnt1 =dgn +6 5 ap .9 (pn) dpn, , and (1'4'353)
0*v

dppt1 =dpn — 6 g 2 (Qn—i-l) dgn+1 - (1'4‘35b)

Then, one successively obtains

Wpt1 = dgpy1 A (dppg1 + dpp)
o2V
= dQnJrl A dpn -0 55 a 2 (Qn+1) dQn+1 + d(InJrl A dpn
= 2dgp41 Adp,

2

o0-T
=dgu1 ANdp, + (dqn +0 ap? 5 (Pn) dpn> Adpy,
= (dQn—H + dQn) A dpy,

= Wt (1.4.36)

0T
= (dg, +4¢ 87])2(])”) dp, | Adpy, + dg, A dpy,

= 2dg, Adpy
0%V
=dg, Adp, +dg, A <dpn1 -6 T{]Q(Qn) dqn>

= dQn A (dpn + dpnfl)
= wy (1.4.37)

o?V
=dgn A <dpn_1 =0 ——5(qn) dQn> + dgy, A dpn—1

0q

= 2dg, Adpr—1
2

0
= dQn /\dpn—l + <dQn 1 +0 8

T
(pn 1)dpn 1> /\dpn—l

= (dgn + dgn-1) Adpn—1

=Wp_1/y - (1.4.38)
Hence,

Wnil = Wpyify = Wn = Wy_15 - (1.4.39)

Therefore, the partitioned EULER approximation preserves the symplectic form. In
fact, each sub-step is a symplectic transformation: the evolution map for ¢ as well as
the one for p independently preserve the symplectic form.

Let us now determine the order of the errors resulting from the discretisation process.
By TAYLOR expansion, we first obtain the exact evolution within a time-step ¢

Qnt1 = Qﬂ% +3 Qn+1/2 qn+1/2 + 0(53)
oT 52 oV o*T 3
—Qn'f'éaip(pn) 4 8 (qn+ /2) ap2 (pn)+o(5 ) , and
Poy1 = %p +5 5 Ptz + pn+1/2 + 0(53)
oV 52 aT o*V

=pn—0 afq(%ﬂ) - (Prs1sn) W(Qnﬂ) +0(8°%) .

4 ap
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Recalling the equation of motion that governs the actual evolution of the system,

T
Gn+1 = qn + 0 gp(pn) , and

oV
Pntl =DpPn—0 87q(q”+1> )

we can estimate the errors produced by the numerical integrator at each time-step:

52 oV 0T

qn+1 — Qn-‘rl = Z 87(1((]7”1/2) 87])2(])”) + 0(53) = 0(52) s and (1440&)
5% 0T o*V

Pt — Pop1 =7 8—p(pm1/z) g (i) + 0(5%) = 0(8?) , (1.4.40Db)

since the terms of (’)(52) do not vanish in general. Hence, the partitioned EULER
method is a first-order (explicit) symplectic integrator.

The numerical behaviour of these integrators will be discussed below in section 1.4
page 36. In particular, we shall observe the importance of being symplectic or not.
We shall also observe that the higher the order of the integrator, the faster the errors
will vanish when § goes to zero (as a power law that corresponds to the order of the
integrator). However, since our interest is in reaching long-time, it inhibits having a
too small §, and the order of the approximation will actually not be the most important
deciding factor.

A selection of other well-known methods

As mentioned earlier, there exist many numerical methods to integrate ODEs [75,79,
80,91]. In the present section, we shall discuss two noteworthy classes of methods that
can be constructed in such a way to be symplectic. On the one hand, the methods of
the RUNGE — KUTTA type and, on the other hand, the methods constructed from the
YOSHIDA expansion of the evolution operator [70]. The aim of this section if only to
give a sketch of these methods; it is absolutely not intended to be exhaustive. There
are two reasons for that: firstly, because the class of the RUNGE — KUTTA integrators
is a wide subject, whose discussion should require an entire book. Secondly, because
these two kinds of methods are not suitable for a generalization to Hamiltonian PDEs.

In fact they can be generalised to Hamiltonian PDEs: many papers treat of RUNGE —
KuTTA high-order multi-symplectic integrators, and it would be possible to generalise
the YOSHIDA expansion as well. However, this generalization is at the cost of treating
space and time in a different way, manifestly breaking the covariance of the theory.
The importance of the covariance will be presented in the next sections but we shall
carefully pay attention, and put a lot of efforts not to break this symmetry. Hence,
treating space and time differently is not a satisfying discretisation approach.

Here we introduce these two classes of numerical approximations because they are
notorious, and have interesting properties when applied on Hamiltonian ODEs.

1. Let us start with the methods of the RUNGE — KUTTA type. Let us first rewrite
the equation of motion (1.4.1b) as

30 = —w® G H =: @ . (1.4.41)
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1.

As earlier, the state vector is sampled on the nodes of the uniform uni-dimensional
lattice that discretises time:

t—ty,:=nd ,and (1.4.42a)
z(t) = zp = 2(ty) - (1.4.42b)

The exact evolution of the system in phase space is obtained by moving along the
integral curves of the Hamiltonian vector field, thus

Znta =Zn 0 / dBx*(zn+p) (1.4.43)
0

where o € [0,1]. The idea of the RUNGE — KUTTA methods is to approximate
this integral by a quadrature formula: the time interval, J, is decomposed in M
sub-intervals, and then the integral is approximated by the finite sum

M
1)
ngmin = 2t qp > Rk X* (Zntiya) (1.4.44)
k=0

where m € [1, M]. This approximated evolution map is explicit as soon as R, = 0
for all £ > m. The matrix R is the approximation pattern, and is chosen such that
the first terms of the TAYLOR expansion vanish (up to O(5M +1) for an explicit in-
tegrator). For instance, explicit and implicit EULER methods are RUNGE — KUTTA
integrators of order M = 1 with, respectively,

0 0 0 0
R = [1 O} ,and R = [() J . (1.4.45)

The choice of the coefficients of R has been widely studied, and it is possible to
define high-order symplectic integrators in this way. We are not going to detail how
to determine the R matrix, but we refer to the broad literature on the subject.

The second class of methods introduced in this section is based on the YOSHIDA
expansion of the evolution operator. These methods are based on a splitting of the
Hamiltonian, and it is required to assume it as separable:

H(q,p) :=T(p)+V(q) - (1.4.46)

The equation of motion (1.4.1b) can be rewritten in terms of POISSON bracket as

¢={q,H} , and (1.4.47a)
p=1{p,H} . (1.4.47b)

The solutions of these equations can be abstractly written as

q(t) = U(t — to) q(to) , and (1.4.48a)
p(t) =U(t — to) p(to) (1.4.48b)

where U is the evolution operator of the system:

Ut —to) = et =) 1 HY — (0 =00) ({ T3+ {, V}) (1.4.49)
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For small enough evolution time, this evolution operator can be decomposed as

U(s) = S HY Z ST (VD)

_ CM> Om 0T} o Bm 6 {,V} + O(5M+1) (1.4.50a)

m=1

= U(5) + O (M), (1.4.50b)

where the 2M coefficients {ayy,, B} can be found using the BAKER — CAMPBELL —
HAUSDORFF formula [70]. U() is, therefore, an approximate evolution operator of
order M. Its interest is that it is explicit and preserves the symplectic structure of
the phase space. Let us now prove this. We first notice that

{-,T}°%:={{, T}, T} =0, and (1.4.51a)
{ Vi ={{ V},V}=0. (1.4.51b)

since

[0.TY°% = ({0, T(0)} T(p)} = {Z’(m,ﬂp)} 0,

{p.T}°% = {{p.T(p)},T(p)} ={0.T(p)} =0,
{¢.V}°? ={{a.V(9)},V(@)} ={0,V(¢)} =0, and

1.V = (. V(@) V(9)} = {-gqu)} 0.

Hence, U(J) can be explicitly be written using

om0 5T Zid 4 a,,6 {, T}, and (1.4.52a)
Pmd VY Zid v g oL V) (1.4.52b)
These operators act as transformations of the phase space: the first one acts as
Q(q,p) := eamé{"T}q: q+04m5g§(p) , and (1.4.53a)
P(gp) =m0t Thp—p (1.4.53b)

and preserves the POISSON bracket:

oT
{Q. P}, ={ap}y +amds 5-0)py ={a,p}, - (1.4.53¢)
Op ap
The second one acts as
Q(g,p) = ePmd (V3 qg=gq,and (1.4.54a)
. ov
P(q,p) == eﬂmé{ ,V}p:p—ﬁm(sa—q(q) , (1.4.54b)
and therefore preserves the symplecticity of the phase space:
aVv
{Qv P}qp = {qap}qp - Bm d q, Fq(q) = {Qap}qp . (1454C)
qp

Finally, since U(6) is a composition of symplectic transformation, it is an (explicit,
M-order) symplectic integrator for H.
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Numerical results

In the present section we discuss the numerical results obtained using the four following
methods:

1. the explicit EULER approximation as described in section 1.4 with @ = 0,
i. the Midpoint rule (section 1.4, a = 1/2),
iii. the implicit EULER method (section 1.4, o = 1),
iv. and finally, the partitioned EULER approach (see section 1.4).

Two of them are symplectic (the Midpoint rule as well as the partitioned EULER
method); the others are not. Two of them are explicit (the explicit and the partitioned
EULER methods) while the two others are implicit. We thus have the four possible
combinations of symplecticity and to be explicit or not. All the integrators are of the
first order in §, except the Midpoint rule which is second order.

The integrators will be put to the test on two mechanical problems: on the one hand,
the harmonic oscillator (a linear theory) and, on the other hand, the simple pendulum
(a non-linear oscillator).

Once again, there is nothing original in this discussion; we do the same observations
as described in the literature.

In all the following figures we use the symbolic operator A: it is an error estimator of
the equation it is applied on, and has no dimension; it must be compared to 1.

The numerical evolution is presented in fig. 1.2 for the harmonic oscillator and in fig. 1.3
for the simple pendulum. First, we observe that all the methods have a tendency to
produce a slower dynamics than the expected one (none of them is able to preserve
the period of the motion). Secondly, we observe that the explicit and implicit EULER
methods (the first row) manifestly do not preserve the volume of phase space; the
geometry of the phase space is strongly broken. The explicit approximation amplifies
the energy, leading to a divergence, while the implicit one decreases the energy of
the system. The two symplectic approximations (Midpoint and partitioned EULER)
preserve the volume in a much better way!, even if they produce an unexpected de-
formation: they preserve the geometrical properties of the phase space but are still an
approximation of the flow. The Midpoint rule follows the exact evolution in a closer
way than the partitioned EULER approximation; we cannot attribute this observation
to the fact they have a different approximation order since for such a § the errors they
commit are of the same magnitude (see fig. .4 for § = 7'/8). Hence, we assume (but
we shall argue this later) that the implicit aspect of the approximation improves its
behaviour. Moreover, on the phase space of the simple pendulum (fig. 1.3) we observe
that the two implicit methods (the right column) respect the Hamiltonian flow lines
while the explicit methods (left column) produce a significant distortion of the latter;
observe in particular the vicinity of the point (q =37/2,p = 2).

Figures [.4 and 1.5 represent the error committed by the different methods as a function
of the time-step. The first remark we can make (looking at the graph showing the error
committed on the solution) is that the methods present the expected convergence when
0 goes to zero: all the methods are of the first-order, except the Midpoint rule which is
a second-order integrator. Secondly, we observe that the explicit and implicit EULER
methods behave in the same way except for large §; the explicit approximation diverges,
producing unbounded errors, while the implicit one rapidly loses all the initial energy,

Inot perfectly since the preservation of the symplectic structure implies the exact conservation of
the volume form, not of its integral.
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Figure 1.2 — Deformation of the phase space under the approximate evolution map for
the four methods considered here when applied to the harmonic oscillator problem.
The left column regroups the explicit integrators while the ones on the right column
are implicit; the integrators on the second row are symplectic (those on the first
row are not). The evolution flow is represented in light grey and the volumes
drawn using the same colour represent the exact deformation of the phase space
under the Hamiltonian flow. By volumes we point out the regions of phase space,
initially drawn as squares, but that may be distorted by the integration process.
The filled volumes represent the successive deformation of the phase space obtained
using the numerical integrators; a single time-step of length § = 7'/8 is used to
pass from a volume to the next one. We proceed as follow: we first discretise the
volume in the phase space, then we independently perform a time-step of length
0 = T/8 for each state constituting the initial volume; once done we reconstruct
the transformed volume from these updated samples. The differences between the
different integrators must not be attributed, here, to the fact they have a different
order of approximation; indeed, for such a ¢ all the integrators produce errors of
the same order of magnitude (the higher order of the Midpoint approximation
distinguishes it from the other integrators only when § goes to zero).
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Explicit EULER Implicit EULER

%o,/ | e,

P Partitioned EULER Midpoint rule
4 T T T
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Figure 1.3 — Consequences in phase space of numerically approximating the evolution
of the simple pendulum using each of the four methods considered in this section.
See fig. 1.2 for a description of the content; here the process only differs in that the
numerical evolution between two successive volumes is obtained using two time-
steps of length § = T'(qo,po)/16 (where (qo, po) is the centre of the initial square).
The effective distance in between two successive volumes is still T'(qo, po)/8, how-
ever performing such an evolution in only one step produces too large deviations
with respect to the exact evolution; the comparison becomes impossible, especially
for the less precise integrators.
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max<7 A(Z = Zexact)
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Figure 1.4 — Error committed by the different methods on the solution (top graph)
and on the energy (bottom graph) as a function of the time-step for the harmonic
oscillator problem. The worst error encountered in the course of the numerical
integration of the system over a period of the motion (0 <t < T') is represented
here. Both graphs have the same horizontal axis. The exact integrator stands for
the exact evolution map recursively applied; hence, the obtained solution is exact
in the sense that there are no errors due to the discretisation but it is, however,
subject to the accumulation of truncation errors. This exact integrator represents
the maximum possible accuracy and is directly related to the precision of the
representation employed by the computer to encode real numbers (here double
floating-point).
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Figure 1.5 — Error committed by the different methods on the solution (top graph)
and on the energy (bottom graph) as a function of the time-step for the simple
pendulum problem. See fig. [.4 for a description of the content; here the exact
integrator is not represented since its behaviour is unchanged with respect to
the case of the harmonic oscillator. The exact integrator is not affected by the
nonlinearities; only by the truncation errors that have no reason to be different in
this situation. Moreover, it is extremely expensive in computation time since it
requires to evaluate many JACOBI elliptic functions.
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producing finite errors corresponding to the distance in the phase space between the
origin (the zero energy point) and the exact solution. Regarding the two symplectic
integrators, the same remark holds except that they have a different behaviour in the
limit where § goes to zero since they are of a different approximation order. Hence, we
can conclude that the dynamics with a large time-step is most accurately described
using implicit methods. In contrast, in the limit of small time-steps, the implicit aspect
of the approximation is not decisive. Concerning the exact method, it is exact, and
so it is only subject to the truncation errors due to the finite machine-precision (here
almost 16 significant digits). These truncation errors increase by accumulation as the
number of steps extends and, therefore, as § decreases. All the above remarks hold
for the conservation of the energy as well. However, in addition, there is a notable
property: when applied to a linear problem, the Midpoint rule exactly preserves the
energy (this property disappears with the non-linearity of the theory). This means that
one can control how accurately the Midpoint rule conserves the energy by carefully
analysing the non-linearity of the problem; this fact will be proven later.

Let us now discuss fig. 1.6: it is a reduced-precision version of fig. 1.4, where the
computations were done with only 4 significant digits while all the other numerical
results presented in this thesis were obtained in double floating-point precision (about
16 significant digits). In practice there are two sources of errors:

1. on the one hand, the errors due to the approximation of the equation of motion,
and more precisely, the approximation of the derivative by a finite-difference,

7. on the other hand, the truncation errors due to the fact that real numbers are
represented on the computer with a finite-precision.

In normal circumstances, the errors due to item 7. decrease with d. In contrast, the
value of § has almost no influence on the errors described in item 4i.. Nonetheless,
to reach a given final time, if & decreases the number of steps increases and, with the
latter, the number of times the truncation error will occur. Therefore, for large values
of 0 the errors almost exclusively come from item 4. while, for small values of ¢, the
most significant errors come from item .. Thus, to reach a final given time, there
is a threshold beyond which reducing § will no longer improve the accuracy of the
solution (see the 'V’ shape of the errors plotted on fig. 1.6). The higher the order of
the integrator and the lower the precision of the numbers, the faster this threshold is
reached.

Figures 1.7 and 1.8 represent the dynamic evolution of the errors in the course of a
long integration process. Let us first observe the instantaneous errors; they have a
very different behaviour depending on the symplecticity of the method: for such an
integrator, the instantaneous errors are fluctuating (with some kind of periodicity)
and are, therefore, not trustworthy. For the integrators that are not symplectic, the
instantaneous errors are always the worst encountered ones since the initial time.
Hence, the relevant error estimator is the maximum encountered in the course of the
integration process; not the instantaneous one, which might be much smaller than the
correct estimator. As a second remark, no method can correctly describe the solution
over long time-scales (especially for a non-linear theory). However, the reason depends
on the method: the explicit EULER method diverges, the implicit one is subject to an
energy loss; both approximations are not trustworthy. The symplectic integrators
suffer the same disease but for a different reason: their dynamics are a bit slower
than the expected ones (the periodicity of the motion is not exact). Depending on
the situation this may be a lesser issue or not. Let us now observe how the energy is
conserved: the explicit and implicit EULER methods are absolutely not able to describe
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Figure 1.6 — Error committed in reduced precision by the different methods, on the
solution as well as on the energy, as a function of the time-step for the harmonic
oscillator problem. See fig. 1.4 for a description of the content; here the machine
precision has been artificially reduced to only 4 significant digits with the aim to
feign the possibly significative accumulation of truncation errors that may occur
with the very large number of steps necessary to reach long-times. For the sake
of reducing the computation cost, this aspect is simulated here on much shorter
times by amplifying the effects of the truncation. All the other numerical results
presented in this thesis were obtained in double floating-point precision.

42



1 Introduction and preliminaries

A(z - zexact)
T

10

107!

L1118

1072

T T TTTTIT] T T TTTTI0

®,

)
.

.

.

.

<
.

.

e

.
R

.
.

2
& 2

<

T T T TSI1]
®,
°
*
°
°
*
*
°
°
°*
*
°
°
°
°

°
P

*
*
*

®
®p o
1T
Ll

L

1073

T T TTTTHe
P
*

1074
A(H = Hy)
10 T pram

1072 WM::: xxxxxxxxxx OO0
°A D 00 00 00 00 40 00 00 00 00 00 90 00 40 00 00 40 90 00
&

10—570000009000UOOQQOOQQ—— —

A(L) max<t A(L)

=23 . : 1 7
Explicit EULER
Implicit EULER

-1 0 Partitioned EULER | :

° ° Midpoint rule
10714
10_17 | | | /\ | | |
0 2 4 6 8 10 250 500 750 1000

t/T

Figure 1.7 — long-time behaviour of the error committed by the different methods

when applied to the harmonic oscillator problem, on the solution (top graph) as
well as on the energy (bottom graph). Open and closed symbols show different
ways of measuring the error: they respectively represent the worst encountered
error since the beginning of the integration (open symbols) and the instantaneous
error (closed symbols). Both graphs have the same horizontal axis. Beyond t =T
the horizontal axis is shown in a different linear scale and the curves with closed
symbols are not plotted since they vary too rapidly with respect to this new time-
scale (these represent instantaneous errors that in any case are not relevant on
this time-scale). In order to fairly compare the different methods, ¢ is chosen
independently for each of them such that they all produce the same error on
the solution (1072) at t = T. In every case, J is too small with respect to the
time-scales considered here; there are only a few points represented on the graph,
however, all the steps are taken into account for the worst encountered error.
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Figure 1.8 — long-time behaviour of the error committed by the different methods
when applied to the simple pendulum problem. See fig. 1.7 for a description of
the content. The error committed by the explicit EULER method on the solution
suddenly goes out of range after t/T'(qo, po) ~ 100.
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the evolution of the system since they strongly break the conservation of the energy.
Concerning the symplectic integrators, they quite accurately preserve the energy, but
the most important remark is that the worst errors occur in the very early evolution of
the system: after only a few steps we can estimate the accuracy of the whole integration
process; whatever its duration.

Considering all the elements presented here, the only viable approach to solve a Hamil-
tonian ODE over long time-scales is a symplectic integrator; preferentially an implicit
approximation. We shall show how to generalise this to PDEs in section 3.

However, developing a multi-symplectic integrator requires first to introduce the cor-
rect framework to deal with Hamiltonian field theories. The aim of the next section, is
to introduce a number of necessary concepts of the DE DONDER — WEYL Hamiltonian
formalism.

2 The DE DONDER — WEYL Hamiltonian formulation of
field theories

This section introduces the concept of multi-symplecticity through the framework of
the DE DONDER — WEYL Hamiltonian formulation of field theories [19].

We first introduce the DE DONDER — WEYL formalism and the concept of Hamiltonian
PDEs. Next, we prove that the DW definition of the phase space is a multi-symplectic
manifold, and we establish the conservation of the multi-symplectic structure under
Hamiltonian flow. Afterwards, we discuss a possible issue in this fundamental struc-
ture and we present a way to address it. Finally, we shall discuss the definition and
properties of the stress-energy tensor. This section is treated both in a general setup
and with the example of the non-linear wave equation.

Most of the points presented here are just reminders except for two of them. Firstly,
the link between the DE DONDER — WEYL formulation and multi-symplectic geometry
is not so common (usually, the DE DONDER — WEYL formulation is treated through
the formalism of the poly-symplectic geometry, see footnote 1 page 48). Secondly, as
far as we know, the discussion of the degeneracy of the multi-symplectic structure, and
especially its resolution in any dimension, is completely new. In fact, this issue was
already discussed in [42] for the particular case of the non-linear wave equation in 141
dimensions. However, the argument they propose in this paper does not enable any
generalisation to higher dimensions; the new argument we introduce here naturally
extends in any dimension.

The DE DONDER — WEYL (DW) Hamiltonian formalism is a broad topic that is still

not clearly understood; once again this presentation is not intended to be exhaustive.
See [18-37] for further details.

2.1 From Lagrangian to DW Hamiltonian formulation
Generic field theory

Let us start with a space-time Lorentzian manifold (a manifold endowed with a
Lorentzian metric), M, of dimension D = 1+ d. We assume M to be non-dynamic
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(ie the metric is not subject to an equation of motion) and flat! with metric n :=
diag (1,—1,---,—1). We parameterise M by the local coordinate system {z*}, with
{0, == 0/9z"} a basis of TM, and where y € [0, d].

Next, we consider a field theory on M, described by the action S [{qﬁ’}] , Where {qﬁz} is
a collection of dynamic fields with ¢ € [1, N]. This action originates in a Lagrangian
density, £, which is assumed to depend only on the field and its first derivatives:

S = /d%c({a,aﬁ‘}) , (2.1.1)

where dPz is the measure over M and u € [0,d]. The stationarity of S leads to the
EULER — LAGRANGE equations (ie the equations of motion) for the fields

§S oL oL
0= = G 2.1.2
09’ a¢' M 0(9u9") (21:2)

This is the Lagrangian formulation of a field theory.

The idea of the Hamiltonian formulation of classical mechanics is to substitute the
generalised velocity (¢) by a conjugate momentum (p;). Obviously the same reasoning
can be applied to a field theory but, unfortunately, it breaks the LORENTZ covariance
of the theory. The idea of DE DONDER and WEYL is to reestablish the covariance by
introducing one conjugate momentum per direction of space-time (such that they are
treated on an equal footing). Thus, they define

oL
0(0ue')

as the conjugate momentum of the field ¢’, along the p'" direction of M. Then,
provided that the following LEGENDRE transform is not singular,

Ho= " 00" — L, (2.1.4)

defines the DE DONDER — WEYL Hamiltonian density. Henceforth, the unknowns
are the fields ({qﬁz}) with their conjugate momenta in each direction of space-time
({ei*#}). Together, they are the local coordinates that parameterise a differential
manifold, €, which is the DE DONDER — WEYL definition of phase space (a multi-
symplectic manifold as we shall prove later). The HAMILTON equations generalise to

oH

M
Out;i 967’ and (2.1.5a)
. oM

This is the DW Hamiltonian formulation of a classical field theory.

Equations (2.1.5a) and (2.1.5b) can be rewritten in a more symmetrical way following
the same approach as in the case of the classical mechanics. Let us now parameterise
the phase space, €2, with the generalised coordinates {(*} := {gbl} U {¢;*} where a is
an index conveniently chosen to sweep the collection. Let {8, := O/aga} be a basis of
T, and {d® := d¢*} be the dual basis in T*Q). Following [40,42,43|, we define on T'Q2

Yor, at least, to be reducible to a flat manifold by a bijective transformation of space-time (at the

cost of affecting the equations of motion).
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2 The De Donder — Weyl Hamiltonian formulation of field theories

the state vector, ¢ = (?8,, that allows one to rewrite egs. (2.1.5a) and (2.1.5b) in the
abstract form

M* . 9,¢ = VH | (2.1.6)

where {M*} is a set of constant skew-symmetric matrices of T2

This abstract form, eq. (2.1.6), will be the starting point for the multi-symplectic
integrator in the light-cone coordinates (MSILCC) we shall develop in section 3. This
numerical method is designed to accurately integrate any PDE that can be written in
such a form, and where the underlying multi-symplectic structure is non-degenerate
(see below).

The multi-symplectic structure will directly arise from eq. (2.1.6), and the next step is
now to exhibit it and to prove its conservation. This will be done in the next section,
but let us first clarify the procedure presented above on an example.

The non-linear wave equation example
We consider the dynamics of a real scalar field, ¢, whose Lagrangian density is given
by

L= % D — V() . (2.1.7)

The EULER — LAGRANGE equation reads

0,0t + V' (¢) =0+ V'(¢) =0. (2.1.8)
We introduce now
oL
K= = oM 2.1.9

which is the conjugate momentum of ¢ in the " direction. Then, the DW Hamiltonian
density reads

1
Ho= g 0 — L= St + V(9). (2.1.10)

Defining the state vector

T

C=[p ¢° ' - wd", (2.1.11a)
the equation of motion is given by eq. (2.1.6) provided that

MFyy =84 8) — o 60, (2.1.11h)

where a,b € [0, D].

In dimension D = 1+ 0 (d = 0), aliasing ¢ := ¢, p := ¢° and H := H, we recover the
expected HAMILTON equations of mechanics

0—1_42?;[:‘/’(61)
R A 2112
dp
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In dimension D =1+ 1 (d = 1) the M matrices read

0 —1 0]

M°:=|1 0 0f,and (2.1.13a)
_0 0_
[0 0 —1]

M':=|0 0 O], (2.1.13b)
1 0 0]

and we stress that, for both of them, the eigenvalues are 0 and =i.

In the general case, all the M matrices have the same eigenvalues: +i and 0 (d times
degenerate). As we shall see in the next section, this fact causes some difficulties. For
the moment, we are going to introduce the multi-symplectic structure of 2. Then, we
shall return to the vanishing eigenvalues, and we shall explain how to treat them in
the particular case of the non-linear wave equation.

2.2 Multi-symplectic structure
The multi-symplectic structure

This section will be devoted to the construction of the multi-symplectic structure on
Q, following [40,42,43]; we are going to show how it directly emerges from eq. (2.1.6).

Let us first define what a multi-symplectic manifold is. First, we recall that a
symplectic manifold is defined as being a differentiable manifold equipped with a closed
non-degenerate 2-form. This particular 2-from is called the symplectic form. A possible
generalization! of this, is the concept of multi-symplectic manifold: it is a differential
manifold equipped with several independent symplectic forms (in the present case, it
will be one per space-time direction).

In the previous section we have shown that, for a single scalar field theory, the HAMIL-
TON equation is fully characterised by a Hamiltonian density and a collection of D
(constant and skew-symmetric) matrices ({M*#}); these matrices can be used to de-
fine D 2-forms {w*}:

1
wh = = MFpde Adb . (2.2.1a)
They act on pair of vectors as
wh(*,0) := (M" - %,0) = —(x, M" - ©) | (2.2.1b)
for any *,0 € T, where (_, _) is the scalar product on T2, defined through the metric
N = ned® Vv d’.
All the {w"} are closed (dw" = 0) since all the {M*"} are independent of the fields.

On the other hand, let us assume for the moment (we shall come back to this at the
end of this section) that they are all non-degenerate. Finally, since the {M*} are

'one can also encounter in the literature the concept of poly-symplectic (or n-plectic) manifold;
it is actually a different object: a n-plectic manifold being a differential manifold with a closed non-
degenerate (n + 1)-form (poly-symplectic stands for any n > 1, while symplectic is equivalent to
1-plectic). A multi-symplectic manifold is necessarily poly-symplectic too since the wedge product
of D independent 2-forms is a 2D-form. However, the reciprocal is not necessarily true. Finally, we
want to stress that the meaning of poly-symplectic and multi-symplectic can be exchanged depending
on authors.
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2 The De Donder — Weyl Hamiltonian formulation of field theories

linearly independent (as we shall show shortly) the {w*} are linearly independent as
well. So, (2, {w"}) is a multi-symplectic manifold.

Let us first prove the independence of the {M*} matrices. In order to lighten the
following computation, let us introduce space-time indices which behave differently
under the EINSTEIN summation rule. From now, the g index takes just one value and
does not imply summation (even if repeated), while the o index (o # p) behaves in
the standard way. All other indices are unaffected. Let us now start by supposing
that one of the {M*} is linearly dependent on the others: M¢ = a,M?. Then, in
eq. (2.1.6), the operator on the left hand side becomes

M"-0,,=M?®-0,+ M? -0,
=a;M?-0,+ M -0y
=M’ - (0,0, + 05)
:Ma.ga,

where the “refers to a different coordinate system. As the direction 59 has just disap-
peared from the differential operator, it means that the dynamics along this direction
are trivial. Thus, the {M*} are linearly independent.

To complete the proof of the multi-symplecticity of €2, it remains to discuss the question
of the degeneracy of the {w*}. The 2-forms will be non-degenerate as long as they all
satisfy

det w” :=det M* #0 . (2.2.2)

In other words, the { M*} matrices should not have any zero eigenvalue. Nevertheless,
we have seen in the previous section, that for the example of the non-linear wave
equation, all the { M*} matrices have the same eigenvalues and especially a d times
degenerate zero. So, as it is, the phase space of the non-linear wave equation is multi-
symplectic only for d = 0 (that is to say, for the mechanical problem).

Degeneracy

We are now going to present the resolution of this problem on the particular example
of the non-linear wave equation. The same reasoning can be applied to other theories.

Let us first recall that the aim of the DW Hamiltonian formalism was to preserve
covariance. Thus, it treats all the space-time directions on an equal footing by intro-
ducing a conjugate momentum for each. Still, time is not space, and the conjugate
momentum in time will have a different status. We shall call it the canonical one.

Degeneracy comes from the existence of non-canonical conjugate fields. So, the idea is
to ensure that all the conjugate momenta be canonical (ie the conjugate momentum
along-time of a dynamic field). The solution is to add extra fields, interacting with
each other, such that the new field theory allows a conjugate momentum to be shared
by several fields, and thus to be canonical for someone. Finally, we still want to
preserve covariance, and for each direction of space-time, each momentum needs to be
the conjugate of a field.

Putting these elements together, we can modify the Lagrangian density such that
it describes an equivalent, but non-degenerate, problem. This construction can be
graphically represented by placing both the fields and their conjugate momenta on the
vertices of a D-dimensional hypercube: each direction stands for a space-time direction,
and a line means that one of the fields on the edges is the conjugate momentum (along
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Figure 1.9 — Graphic representation of the construction of a non-degenerate theory in
dimension D =1+0, = 1+1 and = 1+ 2 (the canonical direction is shown with a
thick line while the others are not). The fields in the d = 1 case will be introduced
in egs. (2.2.14a) to (2.2.14d).

this direction) of the other. So, on any path, a dynamic field alternates with a conjugate
field. We have drawn it for the three first dimensions of space-time in fig. 1.9.

Now, to construct the new field theory explicitly, we first consider the collection of

fields
(©) (®)
) =0 , 2.2.3
{{ RS ULI"'W}}“1""’/”6[[0"1]]}ie[[O,D] ( )

where the pair of square brackets denote the anti-symmetrisation defined in section 1.2.

Before going further, we stress that the 3" will not be treated as a tensor field but as
a collection of scalar fields, conveniently assembled in the same object. The collection
(2.2.3) is separated in two (equal) parts: {<I>(21)} contains the dynamical fields, while

{@(QHU} contains the conjugate fields. As a final remark, this collection is composed
of

2. (D

>(7) =7

; i

=0

elements, and will indeed be suitable to populate the vertices of the D-dimensional
hypercube, introduced earlier as a graphic representation of this construction.

Next, we consider the Lagrangian density

IN

D/Q 1 SD/2 1
(25) U e Uos (279)
e Dy By, DR Y o i (cpyl,_,%,) . (2.2.4a)
i=0

Lo = .
= @)

N |

where the v indices are in [0, d], which is nothing else than the concatenation of 2%
independent theories® (note that all these theories need to belong in the class of the
non-linear wave equation, but it is not required that they have the same potential).
Then we add to this Lagrangian two vanishing coupling terms. First, we obviously
have

<D/2
1 1 25) i 25) i
0= 5 2 7 [Putomy s DO = W 00,8
j:

lthe anti-symmetrisation of the indices in the potential is required since the fields are anti-
symmetric objects, and, in particular, Vg (CD((]?) should coincide with V(;? (‘Dg?),
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and then, using an integration by parts (and ignoring the boundary terms!), we claim
that

<D/2

Lo=1 2 @ : [3 QUL QRG] QR 0,0

2 ]—1) (29) HV1v25—1 VLV

]_
(2.2.4b)
will not modify the equations of motion since it is just 0 rewritten in a convenient way.
Secondly, one has

<ot
_ - <2] PHYVIV2j
= Z%(2]')! iy OB
j:

since it contains the contraction of a symmetric tensor (9,,0,) with an anti-symmetric
one (P*¥). Again, using an integration by parts (and forgetting the boundary terms),

we define
<D/a—1

1 (29)
Lo=) — ol 0, 0,8, (2.2.4c)
7=0

and this term does not affect the dynamics either.

We now consider the theory described by the Lagrangian density
L:=Ly+Ly+L_, (2.2.5)

which should be equivalent to the simultaneous treatment of 2¢ independent problems
(that belong in the class of the non-linear wave equation). Let us now construct the
DW Hamiltonian formulation of this theory. We first introduce, for each dynamic field
in the collection (2.2.3), and for each direction of space-time, a conjugate momentum

s ] Yo
pohai 1= ‘Ifﬁg‘i[ff) Hail = ) (2.2.6a)
_ M0 FH1H2i B0 2i - o[ || po2- - pa2s]
=0 @(2 5y T 9, P ity T 2i1] Z q><21 (2.2.6b)
—9;9lm <I>(|Z_())|M2 w2l 4 94(24 — 1) ol gre - 2;;21} 7
where we have used that
€]
8(8110(1)'/1“'7/]') _ '5‘7 5MO 5/J,1 . 6'“1
@ J: w1 il
8(8#0 (bﬂl“'#i)
Then, defining
g = v (2.27a)
— (95 [ u - ph2i) K0 H2i
= (2i 4 1) oo @bl 4 g phro i (2.2.7b)

we can prove that

polp1-pail — gHorp2i b0 (11 @ He e H2)
\Ij<2z+1) (I)2+1) +2“7 q)(Zifl) ’

(2.2.8)

and in consequence, that all the conjugate momenta are indeed already defined in the
collection (2.2.3).

'we ignore the boundary terms since they produce constant terms in the action (ie independent
of the variations of the fields), which do not affect the “position” of least action (ie the solutions of
the EULER — LAGRANGE equations).
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Let us now prove eq. (2.2.8). By substituting the expression of CIWO ”22 and <I>é‘22l 1*;21

(eq. (2.2.7b)) in eq. (2.2.8), and after a straightforward 1dent1ﬁcat10n Wlth eq. (2.2.6b),
it remains to prove that
(2i 4 1) gl (I)(l;)”'lmi] — gHo @@;--um —9;9lm (I)(Igf))luz---uzi} _

On the other hand, one successively obtains

2i4+1
; (o g p1p2:] — (95 (5 G Hg41ep2s ol p - pj—1]
(20 + 1) 9Ho plhal = (2i 4 1) 2i+1Za 1ok J
2i
o . i g o e i — 1]
_6,qu)éli) B2 _i_z:laug (I)(I;Z)Jrl p2ilpo|prpg—1
]:

21
— GrOPHI K2 | Z Ol P lrolpr-pj—1pjp1--pail
(24) (24)

2i
— HHOPHLH2i _ 2 :3[/“ @ |Holpgjpapj—1pej1--poil
(2) (20)

j—l

— GHropH1- uQZ_Z J 23[u1 1)3 2 P lmolpzpj—1pj g1 pail
(21) (21)

_ A0 FH1 M0 (11 & |polpa:-pai]
=0 (I)(zz) Za <I>(2i)

— PHOPHL K2 _ 9 9l P \l{o|#2"-ﬂzi] ) 0
(21) (21)

The EULER — LAGRANGE equation reads

oL _ ! padl
8(1)(22) " (24)

7

oL

=0 -—
" 0Oy Py 1)

=9, \I,uo[m -pr2i]
(2i+1)

_ a 3;@#1 M2y 3 9, v H2i g 9 8[/1«18 (I)Iuluz 2]

(2i+2)

—2i a[ﬂl 8H<I>|;|)“2 vl 4 2i(2i — 1) ok g2 s hed

—2)

— M@H’l ‘24
=0,0 o

= OPHH2 e

H1ph2i 1 p2
D(I)(Qz) = V(Qz) . (2.2.9)

Summarising, we first consider the concatenation of 2¢ independent theories (through
the Lagrangian density Ly). Based on what we introduced in the previous sections,
we know that the DW Hamiltonian formulation of this theory requires the collec-
tion {CI‘@Z) Vo +1)} of 2¢(D + 1) fields, to construct the phase space (2¢ dynamical
fields, and D 2? conjugate momenta). We also know that this phase space is not a
multi-symplectic manifold since the multi-symplectic structure of each “sub”-theory is,
independently, degenerate. As we claimed earlier, this comes from the existence of a
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2 The De Donder — Weyl Hamiltonian formulation of field theories

non-canonical conjugate field. To fix this issue, we introduce the additional coupling
terms L4 and £_. Above all, these couplings do not affect the equations of motion and
each “sub”-theory remains independent. However, these couplings have an interesting
side effect: they allow a conjugate momentum to be shared by several dynamical fields,
and thus enable all the conjugate fields to be canonical. Thus, correctly chosen, £
and L£_ lead to the closed collection {@(2” NS {q)(i)} of 2P fields, equality com-
posed of dynamic fields and canonical conjugate momenta, and where “closed” has two
meanings. On the one hand, all the dynamic fields have all their conjugate momenta in
the collection. On the other hand, all the conjugate fields are, for all the directions of
space-time, the conjugate momentum of a dynamic field that belong in the collection.

Now, from the EULER — LAGRANGE equations and the definitions of the conjugate
momenta, we get the DE DONDER — WEYL — HAMILTON equations

0
-0 @éﬂil)“m —2i9lm @gf 1’)‘21} = GQ)(Q?;[ , and (2.2.10a)
24
) (24) (2i+42) 07—[
(22 + 1) a[uo q)m-"ltzi} + aﬂq)lwow,um = W ) (2'2'10b)
(2i+1)
where
1 <(D-1)/2 1 <D/2 1
_ Voo a4 (20+1) [v1--v2y] (24)
Hi= 3 TV R RS @ vl (q)ylm%_) . (2.2.11)
j=o \* j=o \*

is the Hamiltonian density associated to L.

In order to identify the form of eq. (2.1.6), we need to flatten all these indices (ze
for every configuration of values of all these indices, we associate one, and only one,
index). So, if the list (u7 - - p) is sorted and free of duplicates, we define

i—1 ] —1 d—it+j+1
ﬂ(i,ul"'ﬂi)::1+z< )+Z Z > Z 1e[1,2P], (2212

Vi= o Vit1= vi=
pi—1+1 v+l vi—1+1

with pg := —1, and where the stacking of sums can be re-expressed in term of gener-
alised harmonic numbers as well.

In the following, we assume that both (o - - - ;) and (5 - - - B;) are sorted and duplicate
free. Thus, defining the state vector ¢ as

(24)

¢ = Ca:ﬁ(%’alma%) = (I)al QoY (2.2.13a)
_aﬁ(21+1o¢ Qo4 )_ a1---ao;
¢ R (2.2.13)
egs. (2.2.10a) and (2.2.10b) can be rewritten in the form of eq. (2.1.6), ie
M" 9,00 = 8°H (2.2.13¢c)
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provided that

a=A(,a1- ;) L
MP e (2.2.13d)

(i mod 2 —1) Br—1" B Br+1 Bj

J

6;-+1 Z (71)16715;11 . 60%—15# 60% L. 6042‘
k=1
%
i—1 k—1g¢a1 A1, HOE ¢QR41 Qa;

+5j Z(_l) 5f31 “'6ka177 55k ”'5/53‘]

k=1

i
FED MGV LR

k=1

J
A ]
k=1

+ (i mod 2)

These { M*} matrices are skew-symmetric, linearly independent and non-degenerate
(they all have two eigenvalues, =i, 2¢ times degenerate). The phase space of the
theory, €2, is now a multi-symplectic manifold; we have finally obtained a correct
covariant Hamiltonian formulation of the non-linear wave equation.

Let us illustrate how this construction works in the particular dimension D = 14+1. We
start by considering the collection (2.2.3), and for notational convenience, we create
aliases for these 22 fields as

(0)

o =9, (2.2.14a)

0 _ &0 —.. 0
W= =y, (2.2.14b)

1 _ &l .1
vlo=ol =gt (2.2.14c)
o) = -0l =, (2.2.14d)

001 _ 010 _ 51 _—. 1
Uy =—V, =%, =17, and (2.2.14e)
gl — _gllo— @0 = 0 (2.2.14f)

(3) (3) (1)

Here, we have introduced one new dynamic field, v, independent of ¢. See fig. 1.9 for a
graphical representation of these fields. Then, we consider the concatenation of these
two theories, described by the Lagrangian density

(819)? (B07)* + %(517)2 + 001y — Oy o — V(9) +V(7) ,
(2.2.15)

where V is the potential of the extra theory which can be freely chosen. The (canonical)
conjugate momenta are defined by

—Ligez_ 1 1

oL oL
0.— = =y + 017 , and 2.2.16
VS ed) ~ By~ 0e O am (22.16)

v o oL

From the action,

S = /\(11211j £(¢7 80¢7 alqbv’}/a 8075 817) ) (2217)
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one obtains the two equations of motion for ¢ and « respectively:

0S8 oL oL oL oL

0 1
26" 96 Mo Mo@e) 00 M TN
= —V'(¢) — Bo2p — Body + D1y + D2 = —V'(¢) — O , ie
O¢=-V'(¢), and (2.2.18)
58 oL oL oL oL ) .
T M Paee) oy M W
=V'(7) + 0®y + 90016 — 01006 — 1%y = V'(7) + O , ie
Oy=-V'(y). (2.2.19)

Hence, the equations of motion for ¢ and v are indeed independent since the interaction
terms in the Lagrangian (0p¢ 017y and —0yy 01¢) only produce cross derivatives of the
fields, that cancel thanks to SCHWARZ’s theorem.

The Hamiltonian density is
1 2 1 42 -
Him 9 = e 4 V(9) - V() (2.2.20)

and defining the state vector

Ci=1[¢ ¥ ¥ 4], (2.2.21a)

the dynamics are fully described by eq. (2.1.6) provided that

M = , and (2.2.21b)

O OO O oo

M! = (2.2.21c)

O O O O O O
|
—_

SO RO O~ OOo

These two matrices are no longer degenerate (their eigenvalues are +i, +i, —i and —i),
and they define a multi-symplectic structure on the phase space. The block structure
of these matrices highlight once again the independence of the two theories: there
are no terms coupling the ¢-theory to the y-theory in the DE DONDER — WEYL —
HAMILTON equations.

Recapping, we started with two theories (one for ¢ and one for v); while isolated, they
break the multi-symplectic structure of phase space. Joined together, they complete
each other such that the theory of the coalition restores multi-symplecticity.

Using this construction, we reduced the number of unknowns for each independent
“sub”-theory from 3: {gb, wo,wl} and {’y,wl,wo}; to 2: {¢,w0} and {7,1/)1}. In a
general setup, we reduced the number of unknowns per independent “sub”-theory from
D + 1 (the field and all its conjugate momentums) to 2 (the field and its canonical
conjugate momentum) as in the standard non-covariant Hamiltonian formulation of
field theory.

Returning to the particular setting of the non-linear wave equation in 1+ 1 dimen-
sions, we want to stress that, posing V() = 0, one obtains the same result as in [42].
In this paper, the authors consider v as a LAGRANGE multiplier associated with the
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constraint dgip! 4+ 019° = 0 without further explanations. This constraint is in fact the
equation of motion for «y, but this does not provide any reason why this construction
allows one to solve the problem of degeneracy affecting the multi-symplectic struc-
ture. The constraint imposed by -« can be initially seen as imposing equality of the
cross derivatives! (which is not guaranteed anymore since the derivatives of a field
are regarded as independent variables in the DW Hamiltonian formalism). However,
introducing v affects the definition of ¢ and 1!, and the constraint it imposes (origi-
nally 9901¢ = 010p¢) is no longer exactly the equality of cross derivatives (it becomes
0%y + D1 = D12 + 910p¢). This does not matter, as if one tries to generalise this
constraint in dimensions higher than 1+ 1, it does not work (and the multi-symplectic
structure remains partially degenerated). The issue with this procedure is mainly that
it does not add enough fields; it misses many of the necessary fields to completely
remove the degeneracy of the multi-symplectic structure. This is only achieved (in
any dimension) using the construction we have introduced in this section, and which
deeply relies on the notion of canonical conjugate field.

Finally, we want to stress that from the numerical point of view, to integrate a D-

dimensional theory, we actually need to integrate 2¢ D-dimensional theories. These

“extra” theories can be used in two ways (or a mix of the two):

i. By considering a theory the solution of which is known, we get an error estimate
of the integration process. This feature comes from the fact that the integration
is performed through the conjugate momentum, which is itself shared between
different dynamic fields. If an error occurs during the integration of one of the
fields, it will reverberate on the others, and will be caught by the control field(s).

it. They can be used to integrate, at the same time, several replicas of the theory (in
a statistical approach for example) or even different theories.

In the present section, we have introduced a construction that leads to a phase space
that is a multi-symplectic manifold. In the next sections, we shall first prove the
conservation of the multi-symplectic structure under the Hamiltonian flow. Then, we
shall define the stress-energy tensor, the charges, and discuss their properties.

Conservation of the multi-symplectic structure

To prove the conservation of the multi-symplectic structure, we consider the dual of
eq. (2.1.6) which reads

M#p 8,60 d% = 8,1 d” , e

(2.2.22)
WH(9,¢,-) = dH .

Now, taking the exterior derivative of it, one successively obtains
d(w"(0u¢,-)) =ddH =0
= d (M 8,¢" %)
— M d(8,¢") A
— M*,, ((‘)Mdb) AdY

where we have used that d and 9, commute since they act in different spaces (€ does
not depend on the position on M).

lie SCHWARZ’s theorem.
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2 The De Donder — Weyl Hamiltonian formulation of field theories

On the other hand, one has

@M#:%M%wQ(@AﬂAdV—&A<@A§)
- %M“ab <_ (8ud“) Adl + (audb> A d“)
= My (9,d") Ad® =0

Thus, we have proved (on-shell) the local conservation of the multi-symplectic structure

duw =0 . (2.2.23)

By definition, a multi-symplectic integrator is a numerical method that exactly
preserves the discrete version of eq. (2.2.23).

2.3 Stress-energy tensor and charges
The stress-energy tensor

We define now the stress-energy tensor as the symmetric 2-tensor

T = i[w“(a”c,o +w"(0"¢, Q) + 20" W (¢, 0Q) + " H = T . (2.3.1)

Before proving that it is subject to a local conservation law, we need to make some
remarks. First of all, performing an integration by parts, and provided that boundary
terms vanish (space-time is unbounded, subject to periodic boundary conditions, ... ),
one has

‘/&%w%@WLC%:i/&%w%@QGT):0- (2.3.2)

Indeed, since w* is skew-symmetric in its two arguments, w*(9,¢,0”¢) identically
vanishes. We stress that eq. (2.3.2) holds for any ¢ (ie off-shell), so the integrands are
equal, and hence

w"(0,0"¢,¢) = —w"(0,¢,0"¢) =0 .
Secondly, following the same reasoning, one has
wu(C7 6Z/8HC) = _wu(8MC7 al/C)

— —w (8,6, 9"C) = W (9"¢, 0,C)
=0.

We now have all the necessary ingredients to prove the local conservation of the stress-
energy tensor. Using the relations established above, and egs. (2.2.22) and (2.2.23), it
is straightforward to deduce

8T =9, T =0. (2.3.3)

Therefore, the stress-energy tensor is locally conserved (on-shell).

Furthermore, let us stress that definition (2.3.1) of the stress-energy tensor leads to
the expected result that it is traceless for a bi-dimensional massless free field theory.
Consider the Hamiltonian density of a massless free field theory in any dimension:

Ho = %w“(@uC,C) . (2.3.4)
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Numerical integration of classical conservative field theories

For such a theory, the trace of the stress-energy tensor reduces to

Tom e T =T, " = 1 T = % WH(9,¢,¢) = (2— D) Ho | (2.3.5)

and hence, the stress-energy tensor of a massless free field is indeed traceless (T' = 0)
in two dimensions (D =1+ 1).

Let us now sketch why we have defined the stress-energy tensor as eq. (2.3.1). The
following discussion is taken from [90]. Suppose the action of our theory,

S = /dD:c.c({w,auqsi}) : (2.3.6)
be invariant under the local transformation
at — P =t el (2.3.7)
where € < 1 is constant, while £ may depend on x. The local variation of the field is
€6¢'(z) = ¢ (z') — ¢'(x) , (2.3.8a)
while the global variation is
e AP (x) := ¢ (x) — ¢'(z) . (2.3.8b)

The local variation only depends on the nature of the field (scalar, vector, tensor,
..), while the global variation includes the effect of the local transformation on the
functional form of the fields. They are related by

A=5§—-0"0,+ Ofe) . (2.3.9)
On the other hand, the measure, affected by a Jacobian, reads

/
de/ _ 83:; de — (1 +€8ﬂ£ﬂ —|—O(€2))dD37 . (2310)

Then, the variation of the action is
68 = /d%au/wd%
= /de (6L + LO,0%)
= /de (AL +9,(LeM) .

The global variation of the Lagrangian density reads

oL ; oL ;

= —— A+ —— A0’

o¢t ¢ 0(0,9") hé
oL oL

=0,—— A+ —— 9, A
4300, ~0 T 80,67 W

o8
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2 The De Donder — Weyl Hamiltonian formulation of field theories

(using the EULER — LAGRANGE equation and the fact that the global variation com-
mutes with the space-time derivatives). Hence, the variation of the action, which by
definition vanishes on-shell,

_o0= [qP 0L
550/d ma“(@(auqbi) Ad +£eu) , (2.3.11)

defines a conserved NOETHER current, associated to the symmetry of the action under
transformation (2.3.7):

oL )
Hi= ———— AQ - L 2.3.12
7o, 0T -
oL - oL ,
= _IE s — VP — L), 2.3.12b
50,9 <a<‘ow> v > (23120)

Now, if we restrict ourselves to global transformations only (¢ becomes constant), the
NOETHER current associated with the global translational invariance along ¢ is

oL
O(9ue’)
since all the fields (whatever their nature) have no local variation (the Jacobian is
the identity). Now, the stress-energy tensor is naturally defined as the collection of
the NOETHER currents (each being associated with the global translational invariance
along a direction of space-time). Its definition is then

oL
9(0u9’)

and it is, by construction, subject to a local conservation law

P = <nﬂ”c — a”¢i> l, (2.3.13)

O 1= v [ — ¢t (2.3.14)

0,0" =0 . (2.3.15)
Note that this tensor is not necessarily symmetric but it can be symmetrised following
the popular BELINFANTE procedure (see eg [90]).

Using egs. (2.1.3) and (2.1.4), the stress-energy tensor is expressed in terms of the
Hamiltonian density as

—OM = fVH — ) 0+ it G e (2.3.16)
= %[w”(a”c, ¢) +n"w" (¢, 0xC)] + 0" H (2.3.17)

since wH (0" ¢, ¢)/2 produces terms of the form (W“@”(bi - ¢i6”wi“)/2, which, after in-
tegration by parts, give 1;#0"¢", and w"(0,¢, ¢)/2 produces terms of the form 1;"0,,¢"
(again, after integration by parts). Then, adding a term to restore its symmetry, the
stress-energy tensor is indeed given (up to a sign) by eq. (2.3.1).

Charges

To conclude this section, let us recall the definition of the charges and prove their
conservation. The charges are the conserved quantities associated to the NOETHER
currents. Since the stress-energy tensor is a collection of D NOETHER currents, it will
define D charges as

ot = /dd:c TR (2.3.18)
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Numerical integration of classical conservative field theories

The stress-energy tensor is locally conserved (eq. (2.3.3)) and hence, the charges are
subject to a global conservation law (using STOKES’ theorem, and again, assuming
there are no boundary terms):

dz0

I .

where j runs on [1,d].

2.4 Summary

We have first presented the DE DONDER — WEYL covariant Hamiltonian formulation
of classical field theory, and we have shown that it leads to a multi-symplectic phase
space. We have also introduced (relying on the particular example of the non-linear
wave equation) a construction that allows one to obtain a theory, equivalent to the
original one, but which does not lead to a degeneracy of the multi-symplectic structure
of the phase space. Finally, we have proved the local (on-shell) conservation of multi-
symplecticity. We have also constructed the stress-energy tensor and the charges, and
we proved their local and global conservation (on-shell), respectively.

To do so, following [40,42,43| we introduced the general form (2.1.6) of the DE DON-
DER — WEYL — HAMILTON equations.

Now we claim that, whenever a PDE can be written in the form (2.1.6), and has a non-
degenerate multi-symplectic structure, the multi-symplectic integrator in the light-cone
coordinates (MSILCC) can be applied; we are going to present how to implement it in
the next section.

3 Multi-symplectic integrators

The method we have developed and we are now going to introduce, the multi-symplectic
integrator in the light-cone coordinates (MSILCC), is a mixing of ideas from [42] and [12].
The MSILCC method is a centred box scheme [42] except that we do not implement it
on the traditional hypercubic lattice. Instead, we use a lattice based on light-cone coor-
dinates, inspired from the BOYANOVSKY — DESTRI — DE VEGA (BDDV) method [12],
which has the advantage to restore the locality of the method (ie there is the same
number of unknowns as equations in each cell).

After finishing writing this thesis we were informed that a similar work was already
done in [64]. In this paper, the authors introduce the same method but only in 1+ 1
dimensions; the difference is that they do so with a different discretisation step in
space and time (regardless of preserving the covariance of the theory). Still only in
1 4+ 1 dimensions, they also introduce a high-order approximation (of the RUNGE —
KurTa kind) that extends the centred box scheme. At the end of this section, we
shall discuss the possible ways of improving our generalisation to higher dimensions by
taking advantage of the extra ideas introduced for the 1+ 1 dimensional case in [64].

In this section, we shall present the implementation of the MSILCC method as well as
a review of some of its interesting properties. We shall illustrate it on the example of
the X ¢* theory, mainly in 1 + 1 dimensions.
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3 Multi-symplectic integrators

3.1 Preliminaries
The (partitioned) EULER method

The objective of the method is to generalise the construction presented in section 1.4
to the case of a field theory.

The first step is to split the state vector into several components in such a way that,
approximating the DW HAMILTON equations by mixing explicit and implicit EULER
rules, allows to write the discrete equations of motion at the Midpoint of all derivatives.
The solution is to split the state vector into its n components; all of them are discretised
on a D-dimensional hypercubic lattice of spacing §, but with different origins. The
relative origin of these lattices follow the positioning (modulo a 9/2 factor) of the corre-
sponding field (the component of the state vector) in the hypercube constructed when
resolving the problem of the degeneracy of the multi-symplectic structure (fig. 1.9).
ie in each hypercubic cell of the space-time lattice, the fields are positioned as if the
no-degeneracy hypercube where multiplied by 5/2 and placed in such a way that ¢
coincide with a node of the space-time lattice. Then, in the equations of motion, we
mix the implicit and explicit EULER approximations such that all the derivatives are
expressed by a finite difference that belongs in an hypercube of size §, centred in ¢.

It can be easily proven that this method collapses with the usual approximation of the
Laplacian

A¢ ~ ¢n+1 - 2¢n + ¢n—1 .
52
Later, we shall directly use this approximation without constructing it from the parti-
tioning approach (see section 4.2). It is straightforward to generalise in higher dimen-
sions.

This approximation is an explicit multi-symplectic integrator of first-order in space-
time; the proof can be easily obtained by generalising the results of section 1.4. How-
ever, as we shall observe in section 4.2, this approximation is not robust to the non-
linearity; from the VON NEUMANN linear stability analysis, we know that an equal
lattice spacing in all the directions of space-time (ie that preserves the covariance)
respects the COURANT — FRIEDRICHS — LEWY (CFL) condition |76]. It is actually the
bound imposed by the CFL condition, but it is still in the stability range. Neverthe-
less, due to the non-linearity, the approximation rapidly becomes unstable; leading to
a divergence of the solution. The stronger is the non-linearity, the faster the integrator
diverges. In contrast, taking a different lattice spacing in space and time (ie explic-
itly breaking the covariance), allows one to move away from the bound of the CFL
condition, and the approximation becomes much less sensitive to the non-linearity.
Hence, the only way to make this approximation robust to the non-linearities requires
to explicitly breaking the covariance of the theory; which is unsatisfactory.

The centred box scheme

The centred box scheme, introduced! in [42], is a numerical approximation based on a
concatenation of Midpoint rules. It is the starting point for the MsiLCC method. Let
us now give a sketch of this approximation.

The idea is to discretise the state vector on an hypercubic lattice and to write down all
the approximations at the centre of the elementary cell. It is a natural generalization

Yin the 1 4 1-dimensional case, but the generalization to higher dimensions is straightforward.
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of the Midpoint rule; it expresses all the quantities at the middle of a D-dimensional
hypercube: the value of the field at the centre is obtained by averaging over its values
on the 27 vertices of the cell. The derivative along the p-direction is the finite difference
of two average values, each taken by averaging on the 2¢ vertices of the d-hypercube
at the corresponding end of the p-direction.

This approximation is a second-order multi-symplectic integrator. The proof of multi-
symplecticity can be easily inferred from the demonstration we shall carry out for the
MSILCC method; as well as the proofs of all the others properties as well.

This integrator is very accurate and possesses a number of desirable properties (in
particular, it preserves the covariance of the theory); however, it has a severe draw-
back: its non-locality. The centred box scheme is not well-defined locally: on each
D-hypercube, one has 2¢ n unknowns (the n fields at later time) but only n equations
(the n equations of motion). Nevertheless, this integrator is well-defined at the global
level: each unknown is shared in 2% adjacent cells; hence, there are a total of n N
unknowns (where N is the number of cells in the system) for the same amount of
equations. However, solving at the global level requires much more memory and, if
the problem is treated on a parallel computer, also requires an enormous amount of
communications' between processes. Such an algorithm has a deplorable scalability.
This method will not be treated in the section 4 since it is inapplicable in practice.

The aim of the MSILCC method is to take advantage of the impressive properties of the
centred box scheme (by using the same concatenation of Midpoint rules), but with a
restored locality (by the use an optimised lattice).

3.2 The lattice: sampling the space-time manifold

Let us consider the new coordinate system

9= 3; - \;ié;x] , and (3.2.1a)
i =21 + 830 (3.2.1b)
the inverse of which is
o._ 1 ¢ -
x’ = \/§M§:0$ , and (3.2.2a)
ol = \2(95] — 5 :i;0> . (3.2.2b)

Defining 0, := 9/0i*, the associated vector basis is

Jo = 80\;;‘1 , and (3.2.3a)

d; = 60;/}8]- : (3.2.3b)
and its inverse

A = 30:/%‘% , and (3.2.4a)

9; =V20; -0 . (3.2.4b)

! communications are the bottleneck of supercomputers.
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D=0+1

D=1+1 %

%)

do

o1

D=2+1
o *

Figure 1.10 — A portion of the lattice M in D =0+ 1, 1+ 1 and 2 4+ 1 dimensions
where we have highlighted the elementary cell.

One can remark that (3.2.1) is not the usual light-cone coordinate system (except in
dimension D = 1+1). The difference is mainly that the set {(%} is not an orthogonal
basis (while it is in the usual definition, which mixes the time with only one of the
dimensions of space), allowing one to treat all the directions of space-time in the same
manner inside a cell (see below, eq. (3.2.6) and fig. 1.10).

Let us now sample the space-time manifold, M, using the lattice
M = {nzo—i—&hﬂéﬂ‘n“ez,ne./\/l}, (3.2.5)

where o is arbitrary (chosen such that M respects as much as possible the boundaries
of M) and ¢ is the lattice spacing.

At each point on the lattice (n € M), we define the elementary cell (the definition can
be extended to each point n® € M + §)

8()+Uap

V2

if all the vertices of the cell belong in M (possibly using periodic boundary conditions).

cell(n) = {n +0

o==+1pe |0, d]]} : (3.2.6)

Figure 1.10 represents how the lattice looks like in low dimensions. On this lattice,
the derivatives along the original directions of space-time (highlighted in colours) will
simply be approximated using the Midpoint rule: they only involve two points of M,
and this makes the method local.

Let us now highlight that the direction 9, selects in cell(n) one (and only one) square,
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of width §, with vertices

< Oo+00
R ._ R _ R _ 0 [
n+|5u —n—|—5+|a —ni‘gu —|—58M —n‘i_(sT, (327b)
Oy — o0
L o L _ ., R _ 0 P
n—léu ._n+5_|5 —n+‘5u—a5\/§3p—n+57 , and (3.2.7¢)
L L 3
+|a =n+dy, _n_‘gu+68“_n+6\f280, (3.2.7d)

where the second equation is used to determine o = £1 and p € [0,d]. The centre of
this square (which is the centre of the cell as well),

%
ﬂ 3

is the point where all the approximations are made.

n®:=n+6=n+4 (3.2.8)

3.3 The numerical approximation scheme
Definition

The approximation rules are constructed by applying the centred box scheme into each
square of the elementary cell.

For ¢, or one of its components, and for f smooth enough, the approximation rules
are given by

f({(“}) (nc) ~ f({ ( )} , and (3.3.1a)
0uf ({¢}) (n%) = Dyuf({¢°}) () (3.3.1b)

with n¢ defined in eq. (3.2.8), and where

(¢*) (nc) = % Z ¢*(m) , and (3.3.2a)

mecell(n)

Dt 60) = Hr (e (et) v ()]}
({3 ta) e (2)1)]

For the moment we do not know whether these approximation rules respect the rules
of differential calculus (we shall explore this issue in the following). A priori, the
algebraic manipulations done in the continuous formulation will not be equivalent to
the ones done on the discrete representation. Hence, the MSILCC scheme should be
applied only in the light-cone coordinate system (ie all the derivatives 9, have to be
re-expressed in term of the derivatives 3“ before applying the scheme). When and only
when directly applied on a field, one obtains

(3.3.2b)

8¢ (n) = 80}8%“( x|, and (3.3.3a)
Bjca(nC) — Wca(nC) ~ [ . ] . (3.3.3b)
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After some straightforward algebraic manipulations, we obtain

9,¢*(n%) = D¢ (n%) = \/155 {ga <n0 +4 3’%) ¢ <nC —6 3’%)] . (3.34)

Equation (3.3.4) defines the derivatives of the field along the original directions of
space-time as nothing else than the Midpoint rule. Nevertheless, remember that this
is true only for a linear function of the field, otherwise it is necessary to return to D,,.

The discrete analogue of the equation of motion (2.1.6) in cell(n) at n¢ is

s 5) 25

\/§5V’H<2Z D3 C<n+5ao+\/;ap>) | (3.3.5)

o==%1 pe[0,d]

As expected, the approximation of the equation of motion is indeed a concatenation
of Midpoint rules. Let us illustrate how the procedure works with an example.

Application to the A ¢* theory in 0+ 1 dimension

The mechanical problem is described by the two unknowns, ¢ and p, that only depend
on time. We first sample them through the time lattice M:

qn == q(t =nd) , and (3.3.6a)
pn i=p(t =nd) . (3.3.6b)

Then, applying the MSILCC scheme, we get the discrete version of the equations of
motion

Gn+1+4 Gt + qn |
Pn — Prg1 = 5% 1+ (”“2"> ] , and (3.3.7a)
+
In1—Gn =0 w . (3.3.7b)

This is the Midpoint rule (see section 1.4). In this particular case, one could write down
the explicit expressions for (¢n+1,pn+1) as functions of (g, p,), but these expressions
are quite cumbersome and it is not worth presenting them here.

The A ¢* theory in 1+ 1 dimensions

The lattice is now the same as for the BOYANOVSKY — DESTRI — DE VEGA (BDDV)
method (see [12] or section 4.3).
Defining

opi=2(nmod2)—1==+1, (3.3.8)

we sample the state vector through the space-time lattice as

g“%::g‘“@:ﬂé[j%—lzgn],t::}g) , (3.3.9)
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where n € N and j € [0, N[. Therefore, the discrete version of the equation of motion
is given by the set of algebraic equations

j j j+0n j
d}o gz-i—l - 77[)0 iz—l + on %/)lfz — On ¢li = (3.3.10&)
. . o A ~ . o , 2
V3§ AP T S FAE S S 14 R A Sy S
4 1 ,
0J 0J 0Jton 0J
j : : : a0+ -
ilri’l_ ¢”ZL*1_O-TL 7¥z+an+o-n ’7%:\/551# nl id . f - L4 ntl )
(3.3.10Db)
17 17 1J+on 1J
: : : : Yt 4 -
’Yfz—i-l - 731—1 +on ¢%+0’n — On (b% = _\/55 4 n-l v L f ~ ¢ ntl s
(3.3.10¢)
, , o ,
L~ —on " T 0000, =0 (3.3.10d)

These are the equations used to integrate the A ¢* theory with the MSILCC method in
section 4. Again, they are not implicit but much too complicated to write down in an
explicit form. Hence, we treat them as implicit equations and we solve them using the
LEVENBERG — MARQUARDT algorithm for non-linear least-squares [84, 88|.

3.4 Conservation properties
LEIBNI1Z’s product rule for quadratic forms

Let us now explore how the approximation rules behave with respect to the rules of
differential calculus. We first apply the discrete derivative to a quadratic form. After
a straightforward but tedious calculation, we obtain

0,6°¢"(n€) = D¢ (n€) = (¢ 5, (n€) Duc® (n€) + ()5, (1) D¢ (n€) , e
~ (0,C" (n€) 4¢P, (n€) (3.4.1)

where the average value on the square selected by 6# is

(€7)g, (0°) = gl (np,) + €2 (8, ) + € (k) + € (n5,)] - 342

First of all, eq. (3.4.1) defines the approximation rule for gaa’#gb such that the LEIBNIZ’s
product rule for quadratic forms holds (actually, the MSILCC scheme was designed for
that purpose since it is a simple way to construct an approximation that preserves the
multi-symplectic structure). As a second remark, the LEIBNIZ’s product rule remains
valid on the discrete scheme for quadratic forms only. Finally, this is not true for 9,
(except in D = 1 + 1 dimensions since () 5, coincides with () by definition). Hence,
the necessity to work in the light-cone coordinate system (all the derivative have to be
re-expressed in terms of 9 before making any approximation).
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To conclude this section, we stress that the same relations hold! on the lattice M + §€.

Preservation of SCHWARZ’s theorem

Now, we define the collection {zk} Each 2* lives on M + 6¢ and is linear in the field.
So the collection {zk} is limited to

{e) {cs, Do} } - (34.3)

The average values were defined in the previous section; we add here the definition of
the derivatives

Ouf ({#°}) (n) = Duf ({#*}) (n) =
i[f ({; [ (nh5, = 69) + 2 (g, — )] }) (3.4.4)
B f({; (e, = 69) +(nfhy, - 5°) }ﬂ '

Following the same reasoning as when the field was ¢ defined on M, one has (again,
only when directly applied on a field)

92" (n) ~ D2 (n) = \/1% [zk <n +5 3‘%) ok (n —5 \%)] . (3.4.5)

Using these definitions, one can give meaning to the second derivative of the field. We
have

D, D,¢%(n) = L [D,,ga <n + 6 £ > — D, ¢ <n _—) &

_ a . Oy B a . Oy + 0,
4(" " >+<<” G

1 . 8, of <Oy
m[D“C (”” 2>‘D“< (” 5@)

— D,D,¢%(n) , (3.4.6)

proving the SCHWARZ’s theorem in discrete space-time. Using the relation between
D, and D, we find that the same applies on the light-cone coordinates:

D,D,¢%n) = D,D,(%(n) . (3.4.7)

Lwhen applied on objects of the collection {zk} (defined in section 3.4), the average value on the
square selected by ém as well as the full average value, are defined on M + 6 at n as

(zk)g (n) == i[zk (nf_‘gu — 50) + 2" (nflép — 60) + 2* (nlj‘gu - 50) +2* (nl—%léu - 50)} ; and

yn

() (n) = % S )

m€cell(n760)
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Exact conservation of the multi-symplectic structure

Let us now prove the conservation of the multi-symplectic structure. We first perform
the change of coordinates in the left hand side operator of the equation of motion
(2.1.6):

M" -0, =M"-0,, (3.4.8)

and we obtain the set of skew-symmetric matrices in the new coordinate system

d
. 1 1 .
M= —_M°— — N M’ and 3.4.9a
AM B (34.92)
M :=V2 M + 5, M° . (3.4.9b)

From M*, we define w* that actually behaves as a component of a D-vector in M:

_oar

P
= (3.4.10)

wh

The set {w"} defines the multi-symplectic structure in the light-cone coordinate system
and is subject to the same conservation law

5 P Pl
Gt = g; aﬂ(?iv w") = 9w’ =0 . (3.4.11)

By taking the exterior derivative of the equation of motion (2.1.6), one obtains
M" 4, 9,d® = 8,8, H(¢) d . (3.4.12)

Then, the local conservation of multi-symplecticity is, numerically,

. ; 1. N . §
Du = Dyt = =3 MV (Dd? A (") 5, + ()5, A Dyid”)
= Mg Dpd” A (A,
= 8,0,1((C)) (d") A (dY)

w

=0, (3.4.13)

since the contraction of the symmetric object 8,8, with the skew-symmetry of the
wedge product vanishes.

So, the MSILCC scheme is a multi-symplectic integrator since it exactly preserves the
discrete version of the conservation law of the multi-symplectic structure.

3.5 Conservation of the stress-energy tensor

In this section we investigate the effect of the MSILCC scheme on the stress-energy
tensor.
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Local approximate conservation of the stress-energy tensor

Let us first obtain two preliminary results. On the one hand, one has the commutativity
of the oriented average value (eq. (3.4.2)) with itself:

(65,0, Z RO (n—50+50|8)

U—i X={L,R}

*GZ Zg“( —26% 46X, +5,|a)

o=+ X={L,R}
o=+ X'—{LR}

1Y ¥ @ (n-07+aX,)
o'=+ X'={L,R}
= ("3, )5, () - (3.5.1)

On the other hand, one has the commutativity of the oriented average value with the
derivative:

(Duc")

5. Z 3 Duga<n—5c+5 ‘ay)

J—i X={L,R}

%z S ot (n 26 45, 468 )
X={L,R}
+ X’'={L,R}

S o v<n750+5,|8>

X:LR}

< ) ,(n) - (3.5.2)

Now we consider the non-symmetrised part of the stress-energy tensor,

%‘H

@<

%[w“(a”C,C) " w"(0:¢, C)] + ' H(C) - (3.5.3)

Since 7 is a tensor (7 is a tensor while w and O are vectors), one obtains
OB 02"
OxP 0z°

= % [@H(07¢,¢) — 0™ @" (0x¢, ¢)] + 1 H(C) (3.5.4b)

~ TV
~TH

TH =

(3.5.4a)

where 7 := 0,&" 0P2". The numerical version of T is defined (using the approxima-
tion rules introduced earlier) as

Y 1 ~ 814 vk v
= Lo (DG () — 1" (DuC. (€))] +#°H(C) . (355
Now, we use the exact conservation of the multi-symplectic structure
D (D€ () =0 =& (DuD"C. (), ) + & ((D"€)y Dl
and the dual of the equation of motion (2.1.6) to prove that

@ (D#D”C, <<C>éu>5ﬂ) " <DM<C>3“ <DVC>5#)
= dH(((¢))) [D"(¢)] -
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Numerical integration of classical conservative field theories

Then, using all the preliminary results of this section, the approximation of the local
conservation of the stress-energy tensor reads

DT = [0~ D& (Dt (€)5,)] + DH(C))
= DUHE) — 5 [0 (D7 Dac, (015,05 ) + @ ((DuCgr D015, )|
= DYH((¢)) - %[m(bﬂbvc, <<c>5y>am) + " (DK<C>5W <D”C>s~ﬂ
= D"H((¢)) — dH(((¢))) [D"(C)]
= D"H,((¢)) — A, (((¢))) [D"(Q)] (3.5.6a)
where Hyi=H — M (3.5.6b)

is the non-quadratic part of H (Hq being the quadratic part of the Hamiltonian den-
sity).

Accordingly, the MSILCC scheme exactly preserves the local conservation of the stress-
energy tensor for any linear Hamiltonian PDE. When applied on a non-linear problem,
the MsILCC method breaks the conservation of the stress-energy tensor only because
the chain rule does not hold on the discrete space-time. Nevertheless, if the sampling
is good enough, we expect the MSILCC integrator not generate large violations of this
conservation law.

One can remark that there is no longer any second derivative in eq. (3.5.6a). Hence,
let us approximate D, T*" by removing the lowest level average value:

DT ~ D'H,(C) — dH,((¢)[D¥¢] - (3.5.7)

Obviously, this operation is strictly forbidden! Nevertheless, eq. (3.5.7) is in practice
a very good estimator of eq. (3.5.6a). This can be understood if we remember that
eq. (3.5.6a) mainly evaluates how much the chain rule is violated on the lattice for non-
quadratic functions. Therefore, increasing the averaging is not an essential element.

In practice, on the example of the \¢* theory in 1 4+ 1 dimensions the difference
between eq. (3.5.6a) (or explicitly eq. (3.5.8b)) and eq. (3.5.7) (explicitly eq. (3.5.9)) is
negligible, and it is almost impossible to distinguish the two on the numerical results.

The substantial advantage of the estimator (3.5.7) is that it is simpler to compute,
but first and foremost, that it is more local (it involves only the current cell). Thus,
the accuracy of the integration can be checked regardless of the neighbouring cells.
This ensures a better scalability of the method by reducing the number of necessary
communications.

The ) ¢* theory in 1 + 1 dimensions

In the case of the A ¢* theory in 1 + 1 dimensions, and assuming that the extra field
~v is free (ie used as a control parameter), eq. (3.5.6a) explicitly becomes

e =D, T (3.5.8a)
1 (</>U + ¢i>4 3 (¢D + ¢:F)4]
46 2 2
, (3.5.8b)
_216(¢U+¢i_¢D_¢¥)<¢U+¢il_dm+¢$) 7
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where + selects v = 0 or 1, and where

11 . , . ,

du = 1 _QM +Oh H o+ ¢3¢+2} , (3.5.8¢)
17 j+cn2i1 -,%1 j,%l j,%l

by = ikl +én +éu_1’ F o , and (3.5.8d)
11 . ) . )

op = |0+ 001+ OIT + 0l ) (3.5.80)

while eq. (3.5.7) explicitly becomes

j_,’_an:l:l . 4 . j_,’_anfl 4
6:I:,-\.,i d)n § +¢‘171+1 - '171,1+¢n 2 (359)
44 2 2 e
BN e s SIS Y B R R S
26 n n+1 n—1 n 4

Note on the possibility of an exact conservation of the stress-energy tensor

Let us briefly introduce the idea of the BOYANOVSKY — DESTRI — DE VEGA (BDDV)
method [12]: the discretisation rules are applied on the energy instead of the equation
of motion, then the constrains on the conservation of the energy are used as a pseudo-
equation of motion (see below, section 4.3, for a complete presentation).

The equation of motion and the conservation of the stress-energy tensor are equivalent
in the continuum limit, but they are not on the lattice since the rules of differential
calculus are no longer fulfilled in the latter setting. One can imagine here to proceed
in the same way as in the BDDV method, by applying the discretisation rules on the
stress-energy tensor, and then use its conservation as an equation of motion (hence, an
exact conservation of the stress-energy tensor). However, it would become necessary
to evaluate the error committed on the original equation of motion. This would leads

to evaluate the quantity: D*H,((¢)) — dH,({(¢))) [D*(¢)] (ie eq. (3.5.6a)).

Indeed, the d,(((¢)))[D"(¢)] term being the source of the errors in the equation
of motion, while D"#,((¢)) evaluates the errors produced in the derivatives of the
stress-energy tensor. So, whether the discretisation is performed on the equation of
motion or on the stress-energy tensor, to estimate the quality of the approximation we

have to evaluate how much d#,({(¢)))[D¥(¢)] differs from D"H,((¢)) in both cases.

3.6 Motivation to use the light-cone coordinates

We alluded to this feature earlier, but we now want to stress the importance of the
lattice. It has been chosen such that in each cell, there is only one point at the latest
time. Thus, in each cell, we have as many algebraic equations as unknowns. The
method is well defined locally. Usually, the centred box scheme is implemented on a
hypercubic lattice which is indeed simpler, but leads to more unknowns than equations
in each cell (except in dimension D = 0+ 1 which is the Midpoint rule case). The
method is still globally well defined since each unknown is involved in the equations
of the neighbouring cells. However, at each time step, it requires to solve the whole
system in one block. Therefore, if we want to dispatch the problem on several process
units a huge number of communications are needed (known to be a bottleneck for high
performance computations).
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Numerical integration of classical conservative field theories

The main advantage of the MSILCC method, is that it restores the locality of the
algorithm while most of the expressions (the equation of motion, the conservation
of the stress-energy tensor, ...) remain quite simple as we have shown through the
example of the \ ¢* theory.

We finally want to make a remark concerning the initial conditions: the lattice of the
MSILCC method is such that a cell involves three levels of time. Therefore, at the initial
time, in each cell, one has two unknowns for only one equation. The idea to solve this
tricky problem is to assume (only at the initial point) that the average in space is equal
to the average in time (ie the average over all the points of the cell at ¢ = 0, is equal
to the average of the two points at ¢t = 0 £ §%). In this way, we have removed the
superfluous unknowns. Nevertheless, it requires that the equation of motion contains
a time-derivative of all the fields of the state vector. Hence the necessity to work with
a formulation of the problem that will not lead to a degeneracy of the multi-symplectic
structure. This is the main reason for requiring the multi-symplectic structure to be
non-degenerate.

One can consider to perform the first step of the integration with another procedure,
not requiring to remove the degeneracy of the multi-symplectic structure. However,
this will be at the cost of breaking the local conservation of the multi-symplectic
structure in the first step; hence, producing errors that might have a non-negligible
impact on the rest of the integration process.

3.7 Alternative discretisation in dimensions higher than 1+ 1

In the present section we discuss the limits of the MSILCC method and possible ways
of improvement.

The lattice M, defined in eq. (3.2.5), is an attempt to generalise to higher dimensions
the one introduced in [12] for D = 1+1 (see fig. .15 in section 4.3). However, we have
experienced some instabilities of the method in dimension D > 1 + 1.

Actually, in the linear case, these instabilities can be demonstrated; using the VON NEU-
MANN stability analysis, we have observed that the fastest modes of the linear wave
equation in D = 2 4+ 1 are not stable under the MSILCC approximation scheme (it is
stable in D = 1+ 1). However, this change in the behaviour of our method when
the dimension of space-time increases is a bit astonishing. We suspect two reasons for
that. When the dimension of space-time becomes higher than 1 + 1:

i. On the one hand, the ensemble of the cells of the lattice is no longer a tessellation
of the space-time manifold (ie there are points in space-time that are not contained
in any cell).

it. On the other hand, the oriented average, (- - -) 5, (see eq. (3.4.2)), no longer coincides
with the full average (---) (eq. (3.3.2a)).

One can imagine another generalization of the lattice introduced in [12] which avoids
the two problems mentioned above. This is a hypercubic lattice, oriented in such a
way that there is only one unknown in each cell (cells are now hypercubes). It consists
in starting with another light-cone coordinate system:

« ox”

0, 9, =R}

= @ v u Yv o
where R is a rotation matrix (ie R € SO(D)), such that the direction (1,1,---,1) is
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4 Application: the A ¢* theory in 1+ 1 dimensions

mapped to (1,0,---,0) (in that way, each cell will only contain one unknown). So,
Ry = —. (3.7.2a)

Then, it remains to orthogonalize the remaining rows of R, which can be achieved by
defining

1
R) = —F——— v<p, (3.7.2b)
! p(p+1)
R, = — # v =, and (3.7.2¢)
R, =0 v>p, (3.7.2d)

where p € [1,d] and v € [0, d].

The space-time is now discretised using a hypercubic lattice rotated by R, and the
discretisation rules are simple concatenations of Midpoint rules as introduced in sec-
tion 3.1 (a centred box scheme). All the proofs exposed throughout this section are
still valid for such a lattice (with some adjustments), whatever its orientation. This
alternative approach has therefore the same remarkable properties.

At the initial time, the first D — 1 integration steps pose the same problem as in the
previous version of the lattice: some nodes of the cell are at negative times. This issue
is addressed by progressively increasing the dimension: by applying the centred box
scheme in one dimension for the first step; in two dimensions for the second one; and
so on and so forth, up to the D' step, for which the entire cell is now accessible. This
still requires having a non-degenerate multi-symplectic structure.

Unfortunately, this modification of the method does not address the stability issues;
the fastest modes are still unstable. The problem being that the truncation errors
produce a noise, with no spacial correlation; inevitably leading to populate the fastest
modes and, eventually, to a divergence of the solution.

This instabilities on short distances are not yet understood and an in depth investi-
gation must be done to identify the origin of the problem. Nonetheless, the MSILCC
method remains functional in D < 1+1 and provides accurate solutions as we highlight
in the next section through an applicative example.

A possible way of improvement would be to consider the first generalisation of the
lattice we proposed, but now with a different lattice spacing in space and time, as
proposed in [64] for the 1 + 1 dimensional case. Of course, one have to carefully
analyse the impact that explicitly breaking the covariance will have on the quality
of the method. If successful, a promising second way of improvement could be to
generalise on this lattice the high-order integrators introduced in [64].

4 Application: the X ¢* theory in 1+ 1 dimensions

This last section will be devoted to the comparison of our multi-symplectic integrator
in light-cone coordinates (MSILCC) to two standard methods. The first one is a very
basic scheme based on the partitioned EULER approximation, directly implemented in
the Lagrangian formulation of the PDE. This method is the simplest and, generally, the
fastest to implement, so it is widely used and it is an unavoidable starting point. The
second method, developed by BOYANOVSKY, DESTRI and DE VEGA [12], is designed
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Numerical integration of classical conservative field theories

such that the total energy (a non-local quantity) will be exactly conserved, whatever
the configuration of the field or the size of the integration step.

These two methods will be presented in this section. Now, first of all, let us introduce
the model which will support the comparison.

4.1 The \¢* theory in 1+ 1 dimensions
The equation of motion

The comparison will be preformed on the so-called A ¢* model® in dimension D =
d+1 =1+ 1. The unknown is the real dynamic field, ¢(x,t), governed by the second
order non-linear PDE (the equation of motion):

D¢ =00~ =-V'(¢) = —6(1+¢%) , (4.1.1)

where = and t are space and time respectively, Jy := 8/3615, o = 8/8:6, c is a char-
acteristic speed (eg the speed of light) that we set to one, ¢ := 1, and the derivative
of the potential, V', is given by V'(¢) := av/aqb. The X appearing in the name of the
model is the parameter of the non-linear term; it has been set to one since one can
always rescale the field to achieve this, with no loss of generality.

The other parameter in the potential, the one that accompanies the quadratic term,
r, has also been set to one in such a way that the potential has only one absolute
minimum at ¢ = 0. At the end of this section we shall quickly investigate the influence
of changing this parameter, and especially when it becomes negative.

There is no exact general solution to this equation. Nevertheless, some particular
solutions can be obtained in terms of JACOBI elliptic functions [89]; they can be useful
as a first check of the accuracy of a numerical integrator (see section 4.5).

Boundary and initial conditions

As previously mentioned, a finite-difference method can be decomposed in terms of
two ingredients: the lattice and the discretisation rules.

The notion of lattice is a bit ambiguous and needs to be clarified. First, let us suppose
it to be a regular tiling (since there is, a priori, no reason to take a more complex
structure). Moreover, the spatial part of the lattice should be finite. Otherwise the
integrator would have to solve an infinite number of algebraic equations (with the same
amount of unknowns), which is generally impossible.

Since the spatial part of the support is bounded, the solutions need to be constrained
on the boundaries. In the following, we shall impose periodic boundary conditions
(PBC) (even though this is not a requirement for our method) with a period of length
L:

¢(x+ L,t) = ¢(x,t) , and (4.1.2a)
Oop(z + L,t) = 0pp(z,1) . (4.1.2b)

Lwhich belong in the class of the non-linear wave equation, with the potential

V(g)i= 26+ 30
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4 Application: the A ¢* theory in 1+ 1 dimensions

We use an initial condition that complies with the PBC:

2rx

o(x,0) = Asin<L> , and (4.1.3a)
8o (2,0) =0 . (4.1.3b)

Therefore, the total energy is
L 1 5 1 9 .
Bt == [ o | 5(00(2.0)° + 5 (010(, 0 + V(@ 0)| cie  (41.4a)
0

2 L(8+3A4%)
227
=A (L + D) . (4.1.4b)

The initial amplitude, A, allows us to control the predominance of the non-linearity.
For a sufficiently small amplitude, the non-linear part of the potential will be domi-
nated by its quadratic part, and the initial condition leads to a time-dependent solution
that is close to the second eigenmode of the linear wave equation:

2 2wt
A sin <7IT_JCE) cos (2) .

Conversely, when A increases, the non-linear term becomes predominant, and the
behaviour of the solution turns out to be much more complex.

Figure 1.11 represents the short-time behaviour of the solution obtained using the
MSILCC method for different values of A. As expected, for A = 0.1, the solution remains
very close to the second eigenmode of the linear wave equation. For A = 3, the solution
evolves in two ways: its characteristic time-scale decreases, and the amplitude of the
oscillations becomes a little bit bigger than A (see in fig. I.11, A = 3, the small circles
at the centre of the antinodes where the value of the field exceeds A). The impact of the
non-linearity becomes significant. Then the larger is A, the shorter the characteristic
time. The non-linearity is also destructing the structure of the eigenmode: when A
increases the solution is more and more distorted.

The effect of A is twofold; it will allow us to explore the influence of the non-linearity as
well as the effect of decreasing the quality of the sampling, when the typical variation
scale of the field becomes closer and closer to the lattice spacing.

The stress-energy tensor, its conservation and the charges

As previously mentioned, the most fundamental quantity that the theory shall preserve
is the stress-energy tensor (see section 2.3 for its definition, the one of the charges as
well as the proof of their conservation). For the A ¢* theory in 1 + 1 dimensions, the
symmetric stress-energy tensor is

T = 2006 + (016 + 30" + 1" (4150
T =70 .= _ 90 0.6 , and (4.1.5b)
Tl i= S(@00) + 5(010)° — 56* — 16 (11.50)
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Numerical integration of classical conservative field theories

Figure I.11 — Space-time plots of the solutions of eq. (4.1.1) with initial and boundary
conditions given by eq. (4.1.3) and eq. (4.1.2) respectively. Different panels show
data for different values of A, obtained with the MSILCC method and Z/v2s = 1024.
Lines are iso-levels of the field while colour is constant in between. Figure 1.12
represents a cross-section of these space-time plots for the smallest values of A.
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T T T T T T T T
eigenmode

= —gnd

0.5 —

Figure 1.12 — Cross-sections of the space-time plots in fig. I.11 along the axis = =
L/4. Red line is the cross-section of the second eigenmode of the linear theory:

Acos(2mt/L).

Its local conservation is given by

TP+ T =0, and (4.1.6a)
T +oTH =0, (4.1.6b)
or, in other words,
9o (Do + ¢(14+¢%)] =0, and (4.1.72)
1o [0+ o(1+¢%)] =0, (4.1.7b)

which are satisfied as long as the equation of motion (4.1.1) holds.

Conversely, the numerical equivalents of these local conservation laws (eqs. (4.1.6a)
and (4.1.6b)) will not be exactly satisfied. The violation comes from the fact that, in
the discrete version of these equations, the term in brackets is not the discrete analogue
of the equation of motion. This is precisely due to the fact that the discretisation rules
not always fulfil all the rules of differential calculus (LEIBNIZ, ... ).

Since these two quantities are non-vanishing, they will allow us to control the quality
of the numerical solution: a good numerical approximation should preserve, as closely
as possible, the local conservation of the stress-energy tensor. These residues will be
our first quantities of interest.

Let us now define the charges as

L
o) ;:/0 T%dz (4.1.8)

where v is either 0 or 1. These are global quantities. Integrating over space, the local
conservation of the stress-energy tensor leads to the conservation of the charges,

80" =0 . (4.1.9)
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Again, these quantities are not exactly conserved numerically, and the resulting residues
will be our second quantity of interest.

The testing conditions

In the previous sub-section we highlighted the quantities allowing us to examine the
quality of a numerical approximation (of a Hamiltonian PDE). Let us now introduce
in which context they will be observed.

For each numerical method we shall examine, through two situations, the error com-
mitted on the conservation of the stress-energy tensor (local) as well as the error
committed on the evaluation of the charges (global). Firstly, we shall have a look at
how these errors behave as functions of A. We recall that A has a twofold effect: it
affects the weight of the non-linearity, but also the quality of the sampling (since when
A increases, the characteristic time-scale decreases while the time-step remains fixed).
So, we expect the errors to be lower at small A than at large A. Secondly, we shall
fix A = 10 and observe how the errors behave as a function of time. We shall explore
both short and long-time behaviour.

Let us now define the symbolic operator A. When applied on a continuous equation,
its effect is to extract the residue from the discrete analogue of the equation, and divide
this residue by a characteristic quantity such that the result is not dimensional and
the error can thus be compared to 1.

Before entering into the evaluation of the quality of the numerical methods let us
present their construction in detail.

4.2 The EULER method

The EULER method is probably the simplest finite-difference method one can develop.
Its ease of use and its efficiency make it a classic. However, we shall see that it can be
inaccurate and even unstable. For now, let us describe its construction.

Sampling the space-time manifold

The support of the theory, M, is a flat 1 + 1 dimensional MINKOWSKI space-time
manifold. Taking into account the boundary conditions and the fact that the method
will be used as an integrator, M becomes a flat half cylinder:

M:=T' xRy , (4.2.1)

where T' := S! := R/L7Z is the flat one-dimensional torus of length L, and where,
without loss of generality, the initial condition is supposed to be given at t = 0.

The lattice, M, will then be taken as a regular tiling of M with, as generator, a
square of width § aligned with the space and time coordinates. Therefore, the lattice
is defined by

M :=0Z/NZ xSN=030Zy x 6N, (4.2.2)

where NV § = L. The geometry of M is represented in fig. [.13, and is nothing else than
a square lattice.

Now, the field, ¢ : M — R, can be sampled through the lattice as ¢ : M — R such
that A
ol =¢(x=76,t=nd), (4.2.3)
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? oo

Figure 1.13 — Lattice description of the space-time manifold in the EULER method.
The lattice spacing in space and time are chosen to be equal to preserve covari-
ance. This choice of an equal lattice spacing in space and time respects the CFL
condition (computed from the VON NEUMANN stability analysis) for the linear
wave equation.

where n € N and j € [0, N[.

By this sampling process, at a given time, one has switched from the infinite number of
degrees of freedom of the dynamic field to a representation with only a finite number
(N) of degrees of freedom that can be used in a computer. This achieves the first step
of the construction of the finite-difference approximation.

The EULER scheme

In order to complete the construction of the finite-difference scheme, the second step is
to provide the rules that will indicate how to combine the samples of the field (ie the
elements of ¢) in order to obtain the physical quantities (and especially the equation
of motion).

The derivatives of the field will be approximated using the EULER’s rule

el e

dop(x =76t =nd)~ Dyl = j:"ﬂT , and (4.2.4a)
. IESU

Ovp(x =jo,t =nd)~ Dipl = iw : (4.2.4D)

where the + (respectively —) stands for the forward (respectively backward) approxi-
mation®. These two definitions (+ or —) are inequivalent. The centred EULER’s rule
for the first order derivative (that combines D+ and D- to involve the points # + 1
and # — 1) will not be used since it leads to an inconsistent approximation of the
second order derivative?.

or explicit (respectively implicit).
2to show this fact, let us define the centred EULER’s rule as
D+Q0n + D7§0n _ Pn+1 — Pn—1

D¢ n = =
L4 2 20

The second order derivative, that reads

29071 + Pn—2

Pn+2 —
D€ D€y, =
¥ 152 )
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The equation of motion can be approximated in two ways: using forward then back-
ward rules or vice versa, ie 9> ~ D-D+ or 0> ~ D+D- (either forward — forward
or backward — backward leads to an inconsistent approximation of the second deriva-
tives!). In both cases the discrete version of the equation of motion at time t = n§
and position x = j d reads

j i, j+1 i it
i1 — 2Pt en —20nt : 2
el P SR = o (14 4) (4.2.5)

This algebraic equation is explicit in 90{1 +1- The evolution of a given state can then be
efficiently obtained using

=+l it =5 90%(1 + ¢ ) : (4.2.6)

The nodes of the lattice that appear in this equation are highlighted in fig. 1.13: the
vertex in the left hand side of the equation is represented as @, while the vertices
involved in the right hand side of the equation are represented as @.

This concludes the definition of the EULER method. Let us now use these rules to
obtain the discrete formulation of the stress-energy tensor.

The energy and the stress-energy tensor

As the derivatives can be approximated in two ways (D+ or D), the stress-energy
tensor can be defined in two ways too:

1 1 1 1

T = §(D8ESO)2 + §(Df¢)2 + §<P2 + 1904 : (4.2.7a)

T =T := — DEp Df ¢, and (4.2.7b)
1 1 1 1

TH = §(D§¢)2 + §(D1i<P)2 - 54/32 - ZP4 ; (4.2.7¢)

where the space and time labels were omitted.These two definitions are inequivalent
but both of them are valid and lead to a residue (again omitting the n and j indexes):

DFTY + DFTL0 =: €% , and (4.2.8a)
DT + DFTH =: €L . (4.2.8b)

In practice, the two definitions of these residues behave in the same way and the results

will only present € := ¢? and €' :=€!.

Obviously, the same reasoning can be applied to the conservation of the charges but
we do not detail it here.

thus leads to two independent sub-lattices (the odd one and the even one) and is therefore not a valid
approximation.

Lsince

_ Pnt+2 — 2(;077,+1 + Pn
DT Dt , = 52 ,
involves two unknowns (¢n+2 and ¢ny1) and since
i il i
- d_ ¥ ¥ + ¢
D-D @ = 52 )
requires to have solved the neighbouring equation in space to get ¢, (which is incompatible with the
periodic boundary conditions).
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Figure .14 — Time evolution of the total energy for A = 10 with the EULER integrator
and L/s = 128.

Energy conservation

The general treatment of the energy conservation will be exposed later, but let us
briefly show how the total energy behaves. At time ¢ = nd (again, index n will be
omitted) it can be defined in two ways

F::=QY%, (4.2.9)
where QY. is the charge defined as
N-1
QY =5) TY. (4.2.10)
j=0

One can also envisage to combine these two definitions as

E+ + E-
_ Lt (4.2.11)

Eave : 2

These three definitions are represented as a function of time for A = 10 in fig. 1.14.

We observe that both E+ and E- vary in time with an amplitude of the order of 5%
of their time-averaged value. The amplitude of the variations for F,. is reduced to
~ 1% due to a compensation of the errors in E+ and E-. Nevertheless, F.y does
not correspond to any discretisation rule: it is the average of the energies obtained
using different rules, which differs from the energy that would be obtained from the
combination of the forward and backward rules (that, as already mentioned, leads to
an incorrect approximation of the second order derivatives).

We also notice that there is no apparent change in the amplitude of the deviations as
time elapses up to a time-scale at which the energies rapidly diverge. The divergence of
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Figure .15 — Lattice description of the space-time manifold used in the BDDV method.

the energies is directly due to the divergence of the solution which has been destabilised
by the integration method.

We conclude that, although EULER’s method is straightforward to implement, it is
inaccurate (the total energy conservation up to 1% is not acceptable in most applica-
tions) and can even become unstable. Therefore, EULER’s method will not be a good
choice to integrate a field theory over a long-time. These observations will be confirmed
by the study of the local conservation laws presented in the following sections. Before
presenting the local analysis, let us first introduce another finite-difference method.

4.3 The BOYANOVSKY — DESTRI — DE VEGA (BDDV) method

The BOYANOVSKY — DESTRI — DE VEGA (BDDV) method [12] that we present here,
has been developed such that it exactly preserves the total energy of the system,
making it a good candidate for long-time integrations. However, as previously said,
the conservation of the total energy is not the most fundamental principle for a field
theory that should foremost locally preserve the stress-energy tensor.

The lattice

In the BDDV method the space-time manifold is rotated by 7/4. More precisely, the
space-time manifold, M, is unchanged, and the lattice, M, is still taken as a regular
tilling of M. The generator is still a square of width §, but aligned with the light-cone
coordinates. Therefore, the lattice is defined by

e

op=2(nmod2)—1==1. (4.3.2)

M is represented in fig. 1.15 and is nothing else than a square lattice in the light-cone
coordinate system, which correctly respects the boundary conditions.

neN, je ZN} ) (4.3.1)

where

Finally, in the same way as for the EULER method, the field, ¢ : M — R, can be
sampled through the lattice as ¢ : M — R, such that

o ¢:¢<$=\f25[j+120"],t:n\/;> : (4.3.3)
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4 Application: the A ¢* theory in 1+ 1 dimensions
where n € N and j € [0, N[.

Exact energy preserving approximation

We now provide the rules that allow one to express the discrete analogues of the phys-
ical quantities, respecting the directions imposed by the lattice. Under this constraint,
the derivatives are written along the light-cone coordinates as

D008 (5 = vas [+ 2] 1= 22)

V2 i V2
. j J_,’_onj:l
~ Daigoi""Tn = j:(p”il (;Pn , and (4.3.4a)
. ]+<7nf
(8o + 01)0 N - Pha1 — ¢
75 ) Diey 5 : (4.3.4b)

where the - - - indicate that the field is evaluated at the same point on the space-time
manifold as in the first equation.

The method now differs from previous one since the discretisation rules are not applied
to the equation of motion but to the energy; the constraints imposed by its conservation
are used to derive a modified discrete evolution equation. In the continuum limit, this
equation would be identical to the equation of motion, but in the discrete formulation
it differs from the one we would have obtained had we directly applied the rules to the
equation of motion.

The local energy density (the 00 component of the stress-energy tensor) is approxi-
mated in two ways (following the same principle as for the two possible EULER ap-
proximations of the derivatives):

TOOJ+ <Di J+""> (Di J+””> 1
4

) (4.3.5)
J Jjt+on
+§(1+sonﬂ)(2+<pn + i)

where the n and j indices can no longer be omitted since they are not obvious. The
difference between these two possible definitions reads

003+ o3 00J+% ‘Pi+1 Rz Rﬂ%n
79 B A (4.3.6)
where
g J J 02 jton? Jjton
B ? o= P tona ) (15 (2F oL+ o — ol — it L (4.3.7)

On the other hand, the total energy is given by

N—

Z TS (4.3.8)

7=0

It can be shown (using periodic boundary conditions) that these two definitions are
equivalent,

Q,=Q% . = En, (4.3.9)
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defining the total energy at time t = 10/ V2 with no ambiguity. Now, this energy is
exactly conserved if

Ql, =E,=E,1=Q" |, (4.3.10)
that will be satisfied as soon as
T001+ _ Tgoi':r%" ’
that is to say, if
R =0.

Since R involves the samples of the field at different times this equation is a pseudo-
equation of motion. Moreover, since it is explicit in ¢, 41, the evolution of a given
state can be efficiently followed using

SDn + ¢]+0n

Ppi1 = —Pn1 T 52 (4.3.11)

L+3 (2+go,; + hton )
The nodes of the lattice that are involved in this equation are highlighted in fig. 1.15:
the vertex in the left hand side of the equation is represented as @, and the ones in
the right hand side are represented as @.

The stress-energy tensor

The 00 component of the stress-energy tensor was defined in eq. (4.3.5). The two
remaining independent components are

TYE o (Di J”") (Di J*”") , and (4.3.12a)
L op 1 on 1/ iprenN2 1
T =y (PRl E) (P ) 4y
(4.3.12b)

1 ) 2 o 2
—§<1+905¢1 )(24‘@% + it )

These two definitions (4+ and —) are inequivalent (they only match once integrated
over space) but both of them are valid and each one leads to two residues.

OF (T — T10)? 4 DF(TL + T10) 7 = V2l ! | (4.3.13a)
DF (T2 — 1Y) 4 DF (T2 + TH) ) = v2ek? (4.3.13b)
where

. 1
1224 J_(;Tn _ T/W Jii

D! = £ g T nand (4.3.14a)
W =% _ o i
DT = g Tl 5 Tn (4.3.14D)

with both p and v being either 0 or 1. In practice, the two definitions of the residues

behave in the same way and we shall only present € := €2 and e! := €l .

The same reasoning can be applied to the conservation of the charges and will not be
detailed.
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Figure 1.16 — Time evolution of the total energy for A = 10 using the BDDV method
with L/v25 = 128. Beyond t/L = 1 the horizontal axis is shown in a different linear
scale and data at 255 consecutive instants are skipped between two successive
points.

Energy conservation

Although the energy is defined without ambiguity (since the two definitions of the
stress-energy tensor are equivalent once integrated over space), we still define the total
energy at time ¢t =1 5/\/§ in two ways

Ee,=0QY, | (4.3.15)

and we follow their time evolution independently. The numerical outcome is shown in

fig. 1.16.

We observe, first of all, that the two definitions of the energy behave exactly in the
same way, confirming that there is no ambiguity. Then we stress that the value of the
energy differs from the exact one (the difference is of order 2%g0). This is not surprising
and is due to the discretisation process; the difference decreases with a better sampling
of the initial condition. We also observe that the total energy is exactly conserved, as
expected.

At this point, one could reasonably conclude that the BDDV method is a very good
choice for the short and long-time integration of conservative field theories. However,
as we shall see in section 4.5, this conclusion would be premature. Unfortunately, the
stress-energy tensor is not conserved locally as it is the total energy.

4.4 The MsiLcC method: a short review of properties

The multi-symplectic integrator in light-cone coordinates (MSILCC) has been already
exhaustively described in section 3. However, let us recall that it is designed such
that the discretisation process exactly preserves the multi-symplectic structure of the
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Figure 1.17 — Time evolution of the total energy for A = 10 using the MSILCC method
with L/v2s = 128. The horizontal axis is the same as in fig. .16. The second
part of the graph also shows a histogram of the occurrences of the energy during
the integration process (from t/L = 0 to t/L = 100) with 128 bins uniformly
distributed on the interval [0.999, 1.001].

phase space. It is also implemented in such a way to respect, as much as possible, the
rules of differential calculus. The direct consequence is that the local conservation of
the stress-energy tensor is remarkably good, even on long time-scales. Nevertheless,
the method is not engineered to conserve the global charges and we do not expect to
have the same kind of “magic” compensation of local errors that ensures the BDDV
method.

In fig. 1.17, we show how the total energy (which is here uniquely defined) behaves
in time. We first observe that there seems to be two interlaced curves. Actually, this
is not the case, there is only one energy that jumps from one carrier curve to the
other. This “double” structure is due to the lattice geometry in combination with the
discretisation rules. More precisely, when the time index is odd there is a shift of the
space index and hence the field is not sampled at the same places, leading to a different
energy. Therefore, there are “two curves”, one for odd times and the other one for even
ones.

Having clarified the effect of the time-discretisation we now describe the actual time
variation of the total energy. Firstly, over short time-scales, the deviations are around
1%0 of its value. Secondly, there is no long term trend to increase this deviation.
Accordingly, these two remarks allow us to promote the MSILCC method as a good
candidate for the long-time integration of conservative field theories.

In the following we analyse in details how the different methods exposed here preserve
the local conservation laws as well as the charges.
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4.5 Numerical results

In this Section we compare the performance of the three numerical integrators discussed
so far in a complementary way following what we have already discussed in section 4.1.

Influence of the non-linearity

The first situation will explore the influence of the non-linearities (in coordination with
the influence of the quality of the lattice spacing). Figures 1.18 and 1.19 represent the
error committed on the conservation laws by the different methods as a function of
A (the amplitude of the initial condition). For this test, the system is integrated up
to a time t/L = 1 (ie the solution is obtained over a square), and the error, denoted
A(y = 0), is taken as the largest deviation from the identity y = 0 ever encountered (in
absolute value and divided by a characteristic quantity, as introduced in section 4.1).

Let us start by discussing fig. 1.18. We first observe that all methods improve their
performance for smaller A.

We emphasise that there are some missing data-points for the EULER method (beyond
A ~ 20). This is due to the fact that the approximation becomes unstable before
the final integration time for too strong non-linearity. Beyond that point, the solution
diverges and the errors as well. Behind this feature there is a first important remark:
the largest the effect of the non-linearity, and the worse the quality of the sampling, the
quickest the EULER approximation becomes unstable. This fact is worrying since the
parameter region we want to explore is precisely the one in which the non-linearities
are relevant. Concomitantly, we want to reach long-times and it is not desirable to
have to oversample the field in time with a too small time spacing.

As already mentioned, taking a different lattice spacing in space and time, allows
one to move away from the bound of the CFL condition, and the approximation
becomes much less sensitive to the non-linearity. However, this is unsatisfactory since
it explicitly breaks the covariance.

To pursue the remarks on the EULER method, we stress that it behaves quite well
while it remains stable (local errors are between 1072 and 107!). However, it is at
minimum 3 orders of magnitude worse than the MSILCC method.

Concerning the BDDV method, the violation of the local conservation laws is very
important with an error that ranges between 10! and 10*!. Quite surprisingly, the
exact conservation of the energy is only due to the compensation of these large errors
once integrated over space.

Finally, the MSILCC method produces errors that range from 10 to 1072. They
disappear very abruptly when the non-linearity becomes negligible. This is actually
due to the fact that the method is exact for a linear problem (as we have shown
in section 3.5). So, the MSILCC method appears, for now, as a very good choice to
integrate conservative field theories over long-times.

Let us now look at how the errors on the charges behave and, in particular, the
energy one (see fig. 1.19). First of all, we remark that the errors committed on the
conservation of the energy are in agreement with what we observed earlier when we
showed their evolution in time. The figure shows that the BDDV prescription is better
(actually almost exact since 10™'4 is of the order of the machine precision, here double
floating-point precision) than the MSILCC method which is itself better than the EULER
method. The conservation of the second charge is almost exact for both the BDDV
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Figure 1.18 — Error committed by the different methods on the local conservation of
the stress-energy tensor as a function of the initial amplitude (discretisation is still
on 128 points).

and the MSILCC schemes and is of the order of the conservation of the energy for the
EULER method.

In conclusion, EULER’s method presents a not so bad conservation of the stress-energy
tensor as well as of the charges. However, when implemented such that it respects the
covariance of the theory, it is unfortunately rapidly destabilised by the non-linearities.
Concerning the BDDV method, it presents very poor local conservation properties
that, quite surprisingly, lead to excellent conservation of the charges (due to a deceptive
cancelation of the errors). Finally, the MSILCC method behaves more like EULER’s but
with much better conservation features.

long-time behaviour

We now explore the long-time properties. Figures .20 and [.21 represent the error
committed on the conservation laws as a function of time. Note that for each method
the integration is performed using A = 10 and two errors are displayed: the first one
is the largest deviation ever encountered (in absolute value), and the second one is the
largest deviation at time ¢. The comments made on figs. [.18 and 1.19 still hold and
we shall only describe the time behaviour here.

Firstly, we observe that the EULER method rapidly becomes unstable (after t/L = 4)
and is no longer able to describe the evolution of the field.

Secondly, we remark that the instantaneous error evolves in time (over several orders
of magnitude). So, it is preferable to consider, instead of the instantaneous error, the
worst one ever encountered from the beginning.

Finally, the most interesting comment that applies to the BDDV and the MSIiLCC
method as well is that the worse errors occur during the short-time behaviour: after
a rapid evolution (of the order of the characteristic time-scale of the system, as we
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Figure 1.19 — Error committed by the different methods on the conservation of the
charges as a function of the initial amplitude (discretisation is still on 128 points).

observe by comparing figs. 1.18 and 1.19 with fig. I.11 for A = 10), the error stabilises
to a value which can be hopefully considered as definitive (of the order of 10° for
the BDDV method and 10~ for the MSILCC one). This is particularly true for the
local conservation of the stress-energy tensor but less clear for the conservation of the
charges even though they seem to reach a constant too.

Conclusion

A first element of conclusion is that we need to be extremely wary of methods that
possess remarkable properties on some observables but not necessarily the most fun-
damental objects of the theory.

Within the three methods here presented, the MSILCC is the only one that one could
trust to integrate a conservative field theory over a long-time interval. However, its
implementation has a cost: the discrete equations of motion are implicit and more
expensive to solve (in terms of computational time) than the other two methods.
Fortunately, the scheme remains well-defined locally (ie there is no need to solve the
set of algebraic equations globally) and it can be easily scaled to larger volumes and/or
extended to theories defined on higher dimensions.

Up to now, we have eluded the concrete results in term of the (numerical) solution
of the PDE and one can imagine that all these elements of conservation only have a
negligible influence. This is not true. As an example, over an integration time as short
as t/L = 1, we observe differences of the order of 1% between the solutions obtained
with the different methods (under the same conditions as described in section 4.1 and
for A =10). In some situations the differences can become dramatically larger (up to
20%) as we show on fig. 1.22 that represents the field after an integration time t/L = 1,
still with periodic boundary conditions, but with an initial state that corresponds to
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Figure 1.20 — long-time behaviour of the error committed by the different methods on
the local conservation of the stress-energy tensor for A = 10 (discretisation is still
on 128 points). The upper pair of curves are for the BDDV method (triangles),
the intermediate ones for the EULER method (diamonds), and the lower ones for
the MsiLcC method (circles). Open and closed symbols show different ways of
measuring the error as defined in the text. Beyond ?/L = 1 the horizontal axis is
shown in a different linear scale and the curves with open symbols are not plotted
since they vary too rapidly with respect to this new time-scale (these represent
instantaneous errors that in any case are not relevant on this time-scale).
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Figure .21 — long-time behaviour of the error committed by the different methods on
the conservation of the charges for A = 10 (discretisation is still on 128 points).
Same symbol convention and time axis as in fig. 1.20.
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Figure 1.22 — The red line is the exact solution of eq. (4.1.1) in terms of JACOBI
elliptic functions after a time /L = 1 (a particular solution for different initial
condition from the ones used so far). The data-points represent the field evolved
by the different numerical methods (diamonds for EULER, triangles for BDDV and
circles for MSILCC). On this scale we see no difference between the exact and the
numerical solutions obtained with the EULER and MSILCC methods.

a particular solution of eq. (4.1.1) in term of a JACOBI elliptic function [89]:

o(x,t) p(z+vt)|k*) , where (4.5.1a)
4.5.1b
\/ (1+ k:2 ’ ( )

(4.5.1c)

Symmetry breaking potential

So far we have not considered the influence of r (the parameter that accompanies
the quadratic term in the potential), and we now want to show that the MsiLCC
method behaves just as well for a potential in double well. Figure 1.23 shows the
error committed on the conservations of the charges and of the stress-energy tensor
as a function of r. First of all, we observe that the MSILCC method has the same
conservation properties whatever the shape of the potential (r positive or negative).
Secondly, we remark that the errors do not depend on r (except in the very large |r|
limit). This is a direct consequence of a feature already proven in section 3.5: the
deviations from the conservation of the stress-energy tensor only arise with the non-
linear part of the Hamiltonian. In fact, this feature disappears in the large |r| limit
for numerical reasons: multiplying only certain terms in the equations of motion by a
large value has the tendency to increase the effects of the truncation errors.
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Figure 1.23 — Error committed by the MSILCC method on the conservations of the
charges and stress-energy tensor as a function of the parameter that accompanies
the quadratic term in the potential: r. The initial condition follows eq. (4.1.3)
with A = 10 and the errors are accumulated over an integration time of /L = 1
while we still have L/v2s = 128. The vertical axis is cut between 107> and 10715
while the horizontal axis is in logarithmic scale from —100 to —0.1 and from 0.1
to 100 (scale is linear between —0.1 and 0.1). Positive values of  mean that the
potential has only one minimum at ¢ = 0, while negative values of r mean that
the potential is a double well with two minimum at ¢ = £+/—r. So far r was
settled to 1.
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5 Conclusion

The purpose of this work was to introduce a new numerical method to integrate par-
tial differential equations stemming from the Hamiltonian dynamics of field theories.
The method is a centred box scheme, implemented on the light-cone coordinates, in
such a way to restore the locality of the algorithm without losing its multi-symplectic
properties.

Our method has local conservation properties (and therefore global conservation prop-
erties as well) in agreement with what is generally achieved by multi-symplectic inte-
grators. The errors committed do not strongly accumulate, remaining very small over
very long periods of time. This is important in applications in which the long-time
limit of evolution should be reached with good confidence; especially in the problem
we were initially interested in.

As mentioned earlier, we have recently learnt that a similar method has already been
introduced by a different group [64| with similar results. While they focus on the 1+ 1
dimensional case without any assumptions on the lattice spacing in space and time,
our approach is more focused on a generalisation in any dimension. We also have
imposed an equal lattice spacing in space and time to respect the covariance since it
is an important symmetry of the theory as well as of the underlying multi-symplectic
structure. Combining these two approaches seems to be promising to address the
instability issues we encountered in dimensions higher than 1 + 1.

In the process of comparing the performance of our algorithm to other ones in the liter-
ature we showed that exact global conservation properties, as the ones imposed in the
BDDV technique, do not necessarily guarantee small errors in the local conservation
laws.

We highlighted the link between the DE DONDER — WEYL formalism of field theories
and the multi-symplectic structure of phase space, and we treated the latter on a
rigorous geometric way. We developed the construction of the stress-energy tensor in
the Hamiltonian formalism. We showed that it is exactly conserved in the continuum
and we derived the error committed by the algorithm in its discrete implementation.
In particular, we showed that it is exactly preserved for a linear equation.

Interestingly, depending on the model that we considered, the multi-symplectic struc-
ture was found to be degenerate in spatial dimension larger than zero. We showed how
to solve this problem in any dimension using the particular case of the wave equation
as an example. The generalization to other field equations should follow similar steps.
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Chapter 11

Critical percolation in
ferromagnetic ISING spin models

1 Introduction and preliminaries

1.1 Introduction

Statistical systems can be out-of-equilibrium in many different ways; as already stated,
the non-equilibrium dynamics occurring after an instantaneous quench is particularly
interesting, especially when the quench crosses a second order transition where the
ordered phase spontaneously breaks an internal symmetry of the system. A natural
question to address is how order emerges from the initially disordered state; it the so
called coarsening dynamics, that progressively makes the short length scales to acquire
the properties of the equilibrium target state.

In recent years, the interplay between percolation and coarsening [116, 121, 127] bi-
dimensional spin models was studied in quite some detail. A series of papers proved
that the critical and sub-critical instantaneous quenches of the bi-dimensional ferro-
magnetic ISING model rather quickly approach a critical percolation state! and later
undergo the coarsening phenomenon. More precisely, in the quenches performed, the
evolution starts from a totally random initial configuration mimicking equilibrium at
infinite temperature and later evolve with different microscopic stochastic spin up-
dates. This feature was demonstrated with extensive numerical simulations of the
GLAUBER — ISING model for ferromagnetism [110,112,114,135] and the KAWASAKI
model for phase separation [137,141], quenched into their symmetry broken phases.
The effects of weak disorder were considered in [120, 136]; the voter model dynamics
was investigated in [123,140]; and, especially relevant for the present study, quenches
to the critical point of the bi-dimensional ferromagnetic ISING model were considered
in [113,126]. The early approach to critical percolation also explained why zero tem-
perature quenches of the bi-dimensional ISING model often get blocked in metastable
states with infinitely long-lived flat interfaces [111,131-134,138,139|. Metastable states
in quenches from the critical point to zero temperature were considered in [115].

In statistical physics studies, quenches are assumed to be instantaneous. Indeed, the
relevant time-scales in experimental realisations are such that the cooling time is much
shorter than all other time-scales. Instead, in field theoretical models of cosmology,
there was interest in determining the cooling rate dependencies induced by a very slow

Lin a time-scale that scales as, typically, a small power of the system size.
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quench across a second order phase transition. The original KIBBLE arguments for the
existence of spatial regions that are not causally connected long after going through the
phase transition [149] were complemented by a scaling proposal, by ZUREK [157,158].
This argument allows one to estimate the correlation length reached when the system
falls out-of-equilibrium when approaching a critical point from the symmetric phase
with a weak finite speed. The interest in counting the number of topological defects
left over after crossing the phase transition triggered by cosmology [150], prompted
condensed-matter experimental physicists to try these measurements in the lab. This
kind of experiments were first performed in Helium-3 [160] and liquid crystals [163]
more than twenty years ago. The subject was recently revived by the realisation of
cold atom experiments in which the samples are taken across the critical region with a
finite speed [162,167,169,170]. New studies in ion crystals [164,173,174], bi-dimensional
colloidal suspensions [166,172] have also been recently performed. Two recent reviews
give a more complete summary of the status of this field [142,145].

Studies of cooling rate dependencies in statistical physics models were performed in a
number of papers: for instance, the bi-dimensional ISING model with non-conserved
order parameter dynamics was considered in [143,146|, and the XY model in two dimen-
sions (planar spins) in [148] (the latter is relevant to discuss the recent experimental
activity in BOSE — EINSTEIN condensates and colloidal suspensions). In the former
model, the phase transition is a conventional second order one: from a symmetric to a
symmetry broken phase; in the latter case, the transition is of BEREZINSKII — KOSTER-
LITZ — THOULESS (BKT) kind and the target is a critical phase. The aim of these
papers was to show that, contrary to what was usually claimed in the KIBBLE — ZUREK
literature, the dynamics are not frozen after the system falls out-of-equilibrium close
to the critical point (be it second order or BKT). The critical or subcritical dynamics,
at continuously changing control parameters, let the dynamic correlation length go on
growing in time. Scaling arguments were used in these papers to derive the dependence
of the growing correlation length, and hence the number of topological defects, as a
function of time and cooling rate; they were favourably compared to the outcome of
numerical simulations. Exact results for the one dimensional ISING chain and a variety
of cooling procedures were derived in [151]. The spherical ferromagnetic model with
exponentially fast cooling was treated, also analytically, in [153]. A one-dimensional
non-equilibrium lattice gas model with a phase transition was treated in [147|. Ex-
tensive numerical simulations of models for two dimensional atomic gases were very
recently presented in [144,154-156]. The evolution of the order parameter in the finite
dimensional ISING model slowly cooled to the critical point were studied with different
microscopic stochastic rules in [152].

The aim of the work presented in this chapter is to revisit the slow cooling of the
bi-dimensional ISING model [143,152] paying now special attention to the geometric
properties of the domain structures formed when approaching the critical point with
a finite speed. The outline of the chapter is the following.

The remaining of this preliminary part, sections 1.2 and 1.3, will be devoted, on the
one hand, to recalling some results of site percolation especially relevant for the present
study, and, on the other hand, to briefly introduce the concept of stochastic LOEWNER
evolution so that the tools used to characterise the geometry of the domains will make
sense.

The second part of this chapter, section 2, will be devoted to introducing the model as
well as the observables involved in this study. The model we focus on is the emblematic
kinetic ferromagnetic ISING model in two dimensions and on the square lattice.
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1 Introduction and preliminaries
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Figure I1.1 — Drawing of a random configuration for the site percolation problem on Z2.
Each site is occupied @ with probability p, and unoccupied O with probability 1—p.
In the represented configuration, and assuming periodic boundary conditions, the
largest cluster percolates only if the missing site is occupied (probability p).

In section 3, we establish a reference behaviour for the observables by studying their
properties in equilibrium. Next, in section 4, we recall the essential steps to describe
the dynamics following an instantaneous quench, both to the critical point and to zero
temperature.

Finally, in section 5, we study the effects of a finite cooling rate. We first recall the
KIBBLE — ZUREK mechanism, and how to extend it so that the growth of the dynamic
correlation length is correctly described in the out-of-equilibrium regime. Next, the
fractal geometric properties of the domains walls will be characterised, both when the
system reaches the critical point and in the course of the prior cooling process.

1.2 Some reminders of site percolation

Site percolation [94-97| is a purely geometric problem in which particles are placed
at the sites of a lattice with probability p € [0,1] (see fig. II.1). In particular, the
properties of the site percolation problem on the bi-dimensional square lattice (Z?) are
especially relevant for the present study. The results presented in this section are just
a selection of reminders from the literature.

Let us first recall the definition of the concept of cluster: it is a maximal subset of the
lattice, constituted of occupied sites, pairwise connected by a path. A path being any
sequence of displacements on the lattice from an occupied site to one of its nearest
neighbours (occupied as well).

A representative question of percolation theory is to determine the probability, ¥(p),
of having at least one infinite cluster!. Of course, ¥(0) = 0 while ¥(1) = 1, but
it can also be proven that ¢ is an increasing function of p. In fact, there exists a
percolation threshold, p., below which there are no infinite clusters (with probability 1
ie 9(p < pc) = 0). Above the threshold, the probability of having at least one infinite

!called a percolating cluster.
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cluster becomes strictly positive (J(p > p.) > 0). Hence, for an infinite system, the
site percolation threshold can be defined as

Pc = Sgp{ﬁ(p) =0}, (1.2.1)

and depends on the geometry and dimension of the lattice; here, for the Z? lattice,
pe ~ 0.593.

This model undergoes a phase transition:

1. p < pc is the subcritical regime: the system is constituted of small clusters uni-
formly distributed.

1. p > pc is the supercritical phase: the majority of the system is populated, and it
only remains small islands of unoccupied sites.

141. p = P is the critical point: the behaviour is similar to the one at a thermodynamic
second order critical point with universal critical exponents characterising various
geometric quantities that one can define. It belongs to the same universality class
as a stochastic LOEWNER evolution with x = 6 (SLEg, see section 1.3).

Finally, in the vicinity of the critical point, the typical size of the clusters!, &, diverges
as

E~p—p ™, (1.2.2)
where 1, = 4/3 for the Z? site percolation problem.

To conclude this brief introduction, let us recall some finite size effects. Later, we shall
only consider a L x L square lattice (with periodic boundary conditions). However,
the notion of infinite cluster has no meaning on such a lattice, and the concept of
percolation requires some adjustments. So, on a finite lattice, a cluster is now said to
be percolating as long as it crosses the system (from the left to the right, or/and from
the top to the bottom).

In this situation, ¥(p < p.) does not vanish anymore; however, in practice, it remains
negligible as long as L is sufficiently large. Thus, the site percolation threshold is now
in the region (hopefully, sufficiently thin) where ¥(p) starts to be significant.

An interesting side effect of the finite size of the system is that it reveals a noteworthy
property at the critical point: the largest percolating cluster is always much bigger than
the second largest cluster, of almost one order of magnitude. This is a characteristic
feature of percolation.

Figure I1.2 shows typical snapshots of site percolation for different values of the occu-
pancy probability, and on a finite Z? lattice of size L = 128.

Finally, ISING models (see section 2.1) can