T. N°-i-1 and E. , 29 FIGURE N° I-13, p.30

T. N°-i-3, D. Structures, D. Du-ptb7, D. De, . Entre et al., 35 FIGURE N° I-17 : 36 FIGURE N° I-18 38 FIGURE N° I-19: REPRESENTATION 38 FIGURE N° I-20 39 FIGURE N° I-21 : 42 FIGURE N° I-22 : EVOLUTION 43 FIGURE N° I-23: SCHEMA D'UNE 44 FIGURE N° I-24, ARCHITECTURE STRUCTURE CELLULE EN CONFIGURATION PIN (A) ET NIP, vol.87, p.45

F. N°-i-25, R. Sur, L. Stabilite-d-'une, . Cellule, . Obtenus et al., 58 FIGURE N° II-13 : DETERMINATION 68 FIGURE N° II-14 : 68 FIGURE N° II-15 : 69 TABLEAU N° II-5 : CALCULS 70 FIGURE N° III-1: SPECTRES 75 FIGURE N° III-2: ARCHITECTURE, 46 TABLEAU N° II-4: 80 FIGURE N° III-8: SPECTRE D'ABSORPTION (A).. 81 FIGURE N° III-9 : MESURES J(V) SOUS ILLUMINATION AM1.5G 1000 W/M² ET DANS L'OBSCURITE D'UNE CELLULE SIMPLE HBG2, p.82

T. N° and I. , 82 FIGURE N° III-10 83 TABLEAU N° III-3 : 84 FIGURE N° III-11 84 TABLEAU N° III-4 : 85 FIGURE N° III-12, 85 FIGURE N° III-13 : MESURES J(V) 86 TABLEAU N° III-5 : PERFORMANCES MOYENNES ET MAXIMALES OBTENUES POUR UNE CELLULE SIMPLE HBG2:IC60BA.......................................... 86 FIGURE N° III-14 : POSITIONNEMENT DES HOMO ET LUMO DU LBG1 ET DES PC61-71BM ET IC60

T. N°-iii-10, C. De, and C. , 93 FIGURE N° III-19, pp.71-94

T. N°-iii-12, C. De, . Simples, and . D. Base, A DE 1:1,5, 95 FIGURE N° III-20 : MESURES J(V) DANS LE NOIR ET SOUS ILLUMINATION (A) ET EQE ET SPECTRE D'ABSORPTION (B) D'UNE CELLULE LBG1:PC71BM. . 96

T. N° and I. , 96 FIGURE N° III-21 97 FIGURE N° III-22 98 TABLEAU N° III-14, 102 FIGURE N° III-26 : ARCHITECTURE TANDEM DEFINIE POUR LA SIMULATION 103 FIGURE N° III-27: SIMULATION OPTIQUE D'UNE ARCHITECTURE TANDEM HG1:PC61BM AVEC LE LBG1:PC71BM (A) ET LBG2, pp.71-104

T. N°-iii-17, M. Theoriquement, . Atteignables, . Les, . Tandem et al., 105 FIGURE N° III-29, 106 FIGURE N° III-30 : SIMULATION OPTIQUE (A GAUCHE) ET COURBES J(V) DE CELLULE TANDEM HBG1/LBG1 ET DES CELLULES SIMPLES, p.107

T. N°-iii-18, C. De, and C. , 107 FIGURE N° III-31

T. N°-iii-19, C. De, and C. , 108 FIGURE N° III-32, p.109

T. N°-iii-20, C. De, and C. , 109 FIGURE N° III-33, p.110

T. N°-iii-22, R. Sous, . Continue-am1-/, T. M², I. Ambiante-et-atmosphere et al., 116 FIGURE N° IV-2 : EVOLUTION 116 FIGURE N° IV-3 : EVOLUTION 117 FIGURE N° IV-4 : SPECTRES 119 FIGURE N° IV-5 : SPECTRES 119 FIGURE N° IV-6 : EVOLUTION, 111 FIGURE N° IV-1: EVOLUTION 123 FIGURE N° IV-10 : SPECTRES UV-VISIBLE DU HBG1: IV.125 FIGURE N° IV-12 : STRUCTURE CHIMIQUE DU PC61BM (A GAUCHE) ET DU BIS-PC61BM, pp.124-135

T. N° and I. Iv, IV.126 FIGURE N° IV-13, p.128
URL : https://hal.archives-ouvertes.fr/hal-00993354

T. N°-iv-4 and E. Iv, 129 FIGURE N° IV-15, IV.132 FIGURE N° IV-17: SPECTRE UV-VISIBLE DE LA COUCHE ACTIVE HBG2, pp.60-132

T. N° and I. Iv, IV.133 FIGURE N° IV-18, p.135
URL : https://hal.archives-ouvertes.fr/hal-00993354

T. N°-iv-11, R. M², T. Ambiante-et-atmosphere, and I. Iv, IV.142 FIGURE N° IV-27 : SPECTRES IV.143 FIGURE N° IV-28, IV.146 FIGURE N° IV-30 : MESURES J(V) SOUS ILLUMINATION AM1.5G 1000 W/M² (A GAUCHE) ET EVOLUTION DU PCE (A DROITE) DE CELLULES TANDEM HBG1:PC61BM/LBG1, p.147

T. N°-iv-14, D. Vco, . Cellules, . Et, .. Tandem-calculees-et-mesurees et al., IV.148 FIGURE N° IV-31 : IV.148 FIGURE N° IV-32, IV.150 FIGURE N° IV-34 : MESURES D'IMPEDANCE DE CELLULES TANDEM HBG1:PC61BM/LBG1:PC71BM, p.151

T. N°-iv-15 and D. Iv, IV.152 FIGURE N° IV-35 IV.152 FIGURE N° IV-36 : REPRESENTATION IV.153 FIGURE N° IV-37, IV.155 FIGURE N° IV-41 : MESURES J(V) SOUS ILLUMINATION AM1.5G 1000 W/M² (A GAUCHE) ET EVOLUTION DU PCE (A DROITE) DE CELLULES TANDEM HBG2:IC60BA/LBG1, p.156

T. N°-iv-17, D. Produit, D. Sous, . Continue-am1-/, T. M² et al., IV.160 FIGURE N° IV-47 : EVOLUTION IV.161 FIGURE N° IV-48 IV.162 FIGURE N° IV-50 IV.163 FIGURE N° 0-1 : MOBILITE µN, IV.159 FIGURE N° IV-45 : EVOLUTIONPC61BM/LBG1:PC71BM APRESPC61BM/LBG1:PC71BM APRESIC60BA/LBG1:PC71BM APRES, pp.159-44160

N. Tanaka, Technology roadmap: Electric and plug-in hybrid electric vehicles, Int. Energy Agency Tech Rep, 2011.

A. E. Becquerel, Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, p.1839

A. Einstein, ??ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, vol.12, issue.6, pp.132-148, 1905.
DOI : 10.1002/andp.19053220607

D. M. Chapin, C. S. Fuller, and G. L. Pearson, Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, vol.25, issue.5, p.676, 1954.
DOI : 10.1063/1.1697593

F. Dimroth, Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Progress in Photovoltaics: Research and Applications, vol.98, issue.25, pp.277-282, 2014.
DOI : 10.1063/1.3601472

URL : http://onlinelibrary.wiley.com/doi/10.1002/pip.2475/pdf

C. K. Chiang, Electrical Conductivity in Doped Polyacetylene, Physical Review Letters, vol.43, issue.17, p.1098, 1977.
DOI : 10.1063/1.1661065

A. K. Ghosh and T. Feng, Merocyanine organic solar cells, Journal of Applied Physics, vol.29, issue.12, p.5982, 1978.
DOI : 10.1063/1.88870

C. W. Tang, Two???layer organic photovoltaic cell, Applied Physics Letters, vol.38, issue.2, p.183, 1986.
DOI : 10.1063/1.1743311

G. Conibeer, Third-generation photovoltaics, Materials Today, vol.10, issue.11, pp.42-50, 2007.
DOI : 10.1016/S1369-7021(07)70278-X

URL : https://doi.org/10.1016/s1369-7021(07)70278-x

B. O. Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.
DOI : 10.1038/353737a0

S. Mathew, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, vol.110, issue.3, pp.242-247, 2014.
DOI : 10.1021/jp062761f

T. W. Hamann, The end of iodide? Cobalt complex redox shuttles in DSSCs, Dalton Transactions, vol.112, issue.11, p.3111, 2012.
DOI : 10.1021/jp802216p

G. Boschloo and A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells, Accounts of Chemical Research, vol.42, issue.11, pp.1819-1826, 2009.
DOI : 10.1021/ar900138m

Z. Sun, K. Zheng, Q. Li, and Z. Li, Rational design of Co-based redox mediators for dye-sensitized solar cells by density functional theory, RSC Adv., vol.12, issue.60, p.31544, 2014.
DOI : 10.1038/nmat3568

N. Heo, Y. Jun, and J. H. Park, Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells, Scientific Reports, vol.3, issue.1, 2013.
DOI : 10.1038/ncomms1655

L. Etgar, Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte, Journal of Materials Chemistry A, vol.32, issue.10, p.10142, 2013.
DOI : 10.5012/bkcs.2011.32.10.3644

C. Hsu, Y. Chen, R. Y. Lin, K. Ho, and J. T. Lin, Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials, Physical Chemistry Chemical Physics, vol.14, issue.41, p.14099, 2012.
DOI : 10.1039/C2CP23026G

M. A. Green, A. Ho-baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics, vol.528, issue.7, pp.506-514, 2014.
DOI : 10.1021/jp036039i

S. D. Stranks, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, vol.201, issue.17, pp.341-344, 2013.
DOI : 10.1016/0921-4526(94)91130-4

J. Berry, Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges, Advanced Materials, vol.9, issue.137, pp.5102-5112, 2015.
DOI : 10.1038/nphoton.2014.284

J. M. Ball, Optical properties and limiting photocurrent of thin-film perovskite solar cells, Energy & Environmental Science, vol.3, issue.2, pp.602-609, 2015.
DOI : 10.1038/nphoton.2009.69

Q. Lin, A. Armin, P. L. Burn, and P. Meredith, Filterless narrowband visible photodetectors, Nature Photonics, vol.1, issue.10, pp.687-694, 2015.
DOI : 10.1002/adma.201500099

H. Wei, electron blocking layer for hole-transporting material-free perovskite solar cell, Physical Chemistry Chemical Physics, vol.136, issue.7, pp.4937-4944, 2015.
DOI : 10.1021/ja411014k

J. Shi, Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property, Applied Physics Letters, vol.104, issue.6, p.63901, 2014.
DOI : 10.1002/9783527633708

L. Etgar, Heterojunction Solar Cells, Journal of the American Chemical Society, vol.134, issue.42, pp.17396-17399, 2012.
DOI : 10.1021/ja307789s

C. Tao, 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells, Energy & Environmental Science, vol.2, issue.8, pp.2365-2370, 2015.
DOI : 10.1039/C4MH00238E

W. Ke, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nature Communications, vol.6, p.6700, 2015.
DOI : 10.1021/am4059155

URL : http://www.nature.com/articles/ncomms7700.pdf

D. Liu, J. Yang, and T. L. Kelly, Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency, Journal of the American Chemical Society, vol.136, issue.49, pp.17116-17122, 2014.
DOI : 10.1021/ja508758k

J. Zhou, Small Molecules Based on Benzo[1,2-b:4,5-b???]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells, Journal of the American Chemical Society, vol.134, issue.39, pp.16345-16351, 2012.
DOI : 10.1021/ja306865z

V. Gupta, A. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan et al., Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells, Scientific Reports, vol.14, issue.1, 2013.
DOI : 10.1002/adfm.200305049

URL : http://www.nature.com/articles/srep01965.pdf

T. S. Van-der-poll, J. A. Love, T. Nguyen, and G. C. Bazan, Non-Basic High-Performance Molecules for Solution-Processed Organic Solar Cells, Advanced Materials, vol.1, issue.27, pp.3646-3649, 2012.
DOI : 10.1002/aenm.201100040

C. Duan, F. Huang, and Y. Cao, Recent development of push???pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures, Journal of Materials Chemistry, vol.133, issue.21, p.10416, 2012.
DOI : 10.1021/ja207543g

G. H. Wannier, The Structure of Electronic Excitation Levels in Insulating Crystals, Physical Review, vol.8, issue.3, p.191, 1937.
DOI : 10.1103/RevModPhys.8.294

N. S. Sariciftci and A. J. Heeger, Conjugated polymer-acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells. Patents, 1995.
DOI : 10.1063/1.108863

M. T. Dang, Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent, Solar Energy Materials and Solar Cells, vol.95, issue.12, pp.3408-3418, 2011.
DOI : 10.1016/j.solmat.2011.07.039

URL : https://hal.archives-ouvertes.fr/hal-00639110

M. T. Dang, L. Hirsch, G. Wantz, and J. D. Wuest, -butyric Acid Methyl Ester System, Chemical Reviews, vol.113, issue.5, pp.3734-3765, 2013.
DOI : 10.1021/cr300005u

S. Lin, S. Lan, J. Sun, and C. Lin, Influence of mixed solvent on the morphology of the P3HT:Indene-C60 bisadduct (ICBA) blend film and the performance of inverted polymer solar cells, Organic Electronics, vol.14, issue.1, pp.26-31, 2013.
DOI : 10.1016/j.orgel.2012.10.015

S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks et al., Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells, Journal of the American Chemical Society, vol.133, issue.51, pp.20661-20663, 2011.
DOI : 10.1021/ja2085564

B. Lim, J. Jo, S. Na, J. Kim, S. Kim et al., A morphology controller for high-efficiency bulk-heterojunction polymer solar cells, Journal of Materials Chemistry, vol.9, issue.48, p.10919, 2010.
DOI : 10.1039/c0jm01178a

V. Djara and J. C. Bernède, Effect of the interface morphology on the fill factor of plastic solar cells, Thin Solid Films, vol.493, issue.1-2, pp.273-277, 2005.
DOI : 10.1016/j.tsf.2005.06.098

R. Mauer, I. A. Howard, and F. Laquai, Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells, The Journal of Physical Chemistry Letters, vol.1, issue.24, pp.3500-3505, 2010.
DOI : 10.1021/jz101458y

B. Qi and J. Wang, Fill factor in organic solar cells, Physical Chemistry Chemical Physics, vol.104, issue.404, p.8972, 2013.
DOI : 10.1063/1.2973199

D. Gupta, S. Mukhopadhyay, and K. S. Narayan, Fill factor in organic solar cells, Solar Energy Materials and Solar Cells, vol.94, issue.8, pp.1309-1313, 2010.
DOI : 10.1016/j.solmat.2008.06.001

W. Tress, A. Merten, M. Furno, M. Hein, K. Leo et al., Correlation of Absorption Profile and Fill Factor in Organic Solar Cells: The Role of Mobility Imbalance, Advanced Energy Materials, vol.101, issue.5, pp.631-638, 2013.
DOI : 10.1016/S0379-6779(98)00313-0

L. Wu, H. Zang, Y. Hsiao, X. Zhang, and B. Hu, Origin of the fill factor loss in bulk-heterojunction organic solar cells, Applied Physics Letters, vol.104, issue.15, p.153903, 2014.
DOI : 10.1103/PhysRevB.78.113201

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.6, issue.17, p.510, 1961.
DOI : 10.1109/JRPROC.1957.278348

M. C. Scharber, Design Rules for Donors in Bulk-Heterojunction Solar Cells???Towards 10???% Energy-Conversion Efficiency, Advanced Materials, vol.215, issue.6, pp.789-794, 2006.
DOI : 10.1016/0022-0728(86)87026-7

A. D. Vos, Detailled balance limit of the efficiency of tandem solar cells, J. Appl. Phys, vol.13, pp.839-885, 1980.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, Organic tandem solar cells: A review, Energy & Environmental Science, vol.16, issue.12, p.347, 2009.
DOI : 10.1002/adma.200600160

. Heliatek, 13,2% efficiency -triple junction

S. Esiner, H. Van-eersel, M. M. Wienk, and R. A. Janssen, Triple Junction Polymer Solar Cells for Photoelectrochemical Water Splitting, Advanced Materials, vol.109, issue.21, pp.2932-2936, 2013.
DOI : 10.1021/jp050745x

C. Chen, An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%, Advanced Materials, vol.38, issue.32, pp.5670-5677, 2014.
DOI : 10.1016/j.progpolymsci.2013.04.005

Y. Gao, >1.8 V for Efficient PV-Driven Water Splitting, Advanced Materials, vol.135, issue.17, pp.3366-3373, 2016.
DOI : 10.1021/ja407115p

URL : https://hal.archives-ouvertes.fr/in2p3-00420482

A. Hadipour, B. De-boer, and P. W. Blom, Device operation of organic tandem solar cells, Organic Electronics, vol.9, issue.5, pp.617-624, 2008.
DOI : 10.1016/j.orgel.2008.03.009

M. Hiramoto, M. Suezaki, and M. Yokoyama, Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell, Chemistry Letters, vol.19, issue.3, pp.327-330, 1990.
DOI : 10.1246/cl.1990.327

C. E. Small, High-efficiency inverted dithienogermole???thienopyrrolodione-based polymer solar cells, Nature Photonics, vol.252, issue.2, pp.115-120, 2011.
DOI : 10.1016/S0022-0248(02)02481-8

B. P. Rand, P. Peumans, and S. R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, Journal of Applied Physics, vol.96, issue.12, p.7519, 2004.
DOI : 10.1063/1.370757

A. Yakimov and S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Applied Physics Letters, vol.80, issue.9, p.1667, 2002.
DOI : 10.1016/S1566-1199(00)00002-1

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Applied Physics Letters, vol.85, issue.23, p.5757, 2004.
DOI : 10.1002/pip.533

H. Zhou, Polymer Homo-Tandem Solar Cells with Best Efficiency of 11, Adv. Mater, vol.3, issue.27 10, pp.1767-1773, 2015.

H. Kang, Simplified Tandem Polymer Solar Cells with an Ideal Self-Organized Recombination Layer, Advanced Materials, vol.51, issue.8, pp.1408-1413, 2015.
DOI : 10.7567/JJAP.51.122301

G. Dennler, H. Prall, R. Koeppe, M. Egginger, R. Autengruber et al., Enhanced spectral coverage in tandem organic solar cells, Applied Physics Letters, vol.89, issue.7, p.73502, 2006.
DOI : 10.1063/1.1889240

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, Organic tandem solar cells comprising polymer and small-molecule subcells, Applied Physics Letters, vol.6192, issue.20, p.203506, 2006.
DOI : 10.1007/s00339-003-2494-9

A. Hadipour, Solution-Processed Organic Tandem Solar Cells, Advanced Functional Materials, vol.16, issue.136, pp.1897-1903, 2006.
DOI : 10.1002/adfm.200600138

A. G. Janssen, T. Riedl, S. Hamwi, H. Johannes, and W. Kowalsky, Highly efficient organic tandem solar cells using an improved connecting architecture, Applied Physics Letters, vol.91, issue.7, p.73519, 2007.
DOI : 10.1063/1.1384001

J. Gilot, M. M. Wienk, and R. A. Janssen, Double and triple junction polymer solar cells processed from solution, Applied Physics Letters, vol.90, issue.14, p.143512, 2007.
DOI : 10.1063/1.2345612

J. Y. Kim, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science, vol.18, issue.5243, pp.222-225, 2007.
DOI : 10.1246/cl.1990.327

Y. Liang, For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Advanced Materials, vol.17, issue.20, pp.135-138, 2010.
DOI : 10.1002/adma.200903528

Z. He, C. Zhong, S. Su, M. Xu, H. Wu et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nature Photonics, vol.16, issue.9, pp.593-597, 2012.
DOI : 10.1002/adfm.200600489

B. A. Collins, Z. Li, J. R. Tumbleston, E. Gann, C. R. Mcneill et al., BM Solar Cells, Advanced Energy Materials, vol.6, issue.1, pp.65-74, 2013.
DOI : 10.1039/B920979D

F. Liu, Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics, Advanced Energy Materials, vol.10, issue.5, 2013.
DOI : 10.1107/S0909049502017739

L. Dou, Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nature Photonics, vol.11, issue.3, pp.180-185, 2012.
DOI : 10.1002/pip.514

J. Yang, A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells, Advanced Materials, vol.90, issue.30, pp.3465-3470, 2011.
DOI : 10.1063/1.2709519

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. Janssen, Solution Processed Polymer Tandem Solar Cell Using Efficient Small and Wide bandgap Polymer:Fullerene Blends, Advanced Materials, vol.20, issue.16, pp.2130-2134, 2012.
DOI : 10.1002/adfm.200900931

A. Donges, The coherence length of black-body radiation, European Journal of Physics, vol.19, issue.3, p.245, 1998.
DOI : 10.1088/0143-0807/19/3/006

H. Mashaal and J. M. Gordon, Efficiency limits for the rectification of solar radiation, Journal of Applied Physics, vol.113, issue.19, p.193509, 2013.
DOI : 10.1364/OL.37.003516

L. A. Pettersson, L. S. Roman, and O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics, vol.86, issue.1, p.487, 1999.
DOI : 10.1103/PhysRevB.56.4573

S. G. Davison and M. St??licka, Basic Theory of Surface States, 1992.

J. S. Prentice, Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures, Journal of Physics D: Applied Physics, vol.33, issue.24, p.3139, 2000.
DOI : 10.1088/0022-3727/33/24/302

K. Norrman and F. C. Krebs, Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms, Solar Energy Materials and Solar Cells, vol.90, issue.2, pp.213-227, 2006.
DOI : 10.1016/j.solmat.2005.03.004

M. O. Reese, Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory, Advanced Functional Materials, vol.126, issue.1, pp.3476-3483, 2010.
DOI : 10.1002/adfm.201001079

A. Rivaton, S. Chambon, M. Manceau, J. Gardette, N. Lemaître et al., Light-induced degradation of the active layer of polymer-based solar cells, Polymer Degradation and Stability, vol.95, issue.3, pp.278-284, 2010.
DOI : 10.1016/j.polymdegradstab.2009.11.021

URL : https://hal.archives-ouvertes.fr/hal-00512154

M. Manceau, A. Rivaton, J. Gardette, S. Guillerez, and N. Lemaître, The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered, Polymer Degradation and Stability, vol.94, issue.6, pp.898-907, 2009.
DOI : 10.1016/j.polymdegradstab.2009.03.005

URL : https://hal.archives-ouvertes.fr/hal-00402056

R. Grisorio, G. Allegretta, P. Mastrorilli, and G. P. Suranna, On the Degradation Process Involving Polyfluorenes and the Factors Governing Their Spectral Stability, Macromolecules, vol.44, issue.20, pp.7977-7986, 2011.
DOI : 10.1021/ma2015003

G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials, vol.105, issue.244, pp.1323-1338, 2009.
DOI : 10.1063/1.2777724

URL : http://onlinelibrary.wiley.com/doi/10.1002/adma.200801283/pdf

C. J. Schaffer, A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells, Advanced Materials, vol.19, issue.46, pp.6760-6764, 2013.
DOI : 10.1107/S0909049512016895

D. H. Wang, A. Pron, M. Leclerc, and A. J. Heeger, Additive-Free Bulk-Heterojuction Solar Cells with Enhanced Power Conversion Efficiency, Comprising a Newly Designed Selenophene-Thienopyrrolodione Copolymer, Advanced Functional Materials, vol.4, issue.10, pp.1297-1304, 2013.
DOI : 10.1039/c0ee00643b

A. Tournebize, A. Rivaton, H. Peisert, and T. Chassé, The Crucial Role of Confined Residual Additives on the Photostability of P3HT:PCBM Active Layers, The Journal of Physical Chemistry C, vol.119, issue.17, pp.9142-9148, 2015.
DOI : 10.1021/acs.jpcc.5b01733

URL : https://hal.archives-ouvertes.fr/hal-01205528

A. Distler, The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells, Advanced Energy Materials, vol.99, issue.1, p.1300693, 2014.
DOI : 10.1063/1.2198930

W. Kim, J. K. Kim, E. Kim, T. K. Ahn, D. H. Wang et al., BM Bulk Heterojunction Solar Cells, The Journal of Physical Chemistry C, vol.119, issue.11, pp.5954-5961, 2015.
DOI : 10.1021/jp510996w

M. Helgesen, M. V. Madsen, B. Andreasen, T. Tromholt, J. W. Andreasen et al., Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells, Polymer Chemistry, vol.19, issue.11, p.2536, 2011.
DOI : 10.1002/pip.963

M. Glatthaar, Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy, Solar Energy Materials and Solar Cells, vol.91, issue.5, pp.390-393, 2007.
DOI : 10.1016/j.solmat.2006.10.020

K. Norrman, S. A. Gevorgyan, and F. C. Krebs, O Labeling, ACS Applied Materials & Interfaces, vol.1, issue.1, pp.102-112, 2009.
DOI : 10.1021/am800039w

V. M. Drakonakis, A. Savva, M. Kokonou, and S. A. Choulis, Investigating electrodes degradation in organic photovoltaics through reverse engineering under accelerated humidity lifetime conditions, Solar Energy Materials and Solar Cells, vol.130, pp.544-550, 2014.
DOI : 10.1016/j.solmat.2014.07.051

J. Lee, Long-Term Stable Recombination Layer for Tandem Polymer Solar Cells Using Self-Doped Conducting Polymers, ACS Applied Materials & Interfaces, vol.8, issue.9, pp.6144-6151, 2016.
DOI : 10.1021/acsami.5b11742

J. Adams, Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes, Energy & Environmental Science, vol.3, issue.1, pp.169-176, 2015.
DOI : 10.1002/aenm.201300402

P. B. Lechêne, Conception, caractérisation et durée de vie de cellules photovoltaïques organiques tandems à base de PCDTBT, 2013.

B. Arredondo, B. Romero, G. Del-pozo, M. Sessler, C. Veit et al., Impedance spectroscopy analysis of small molecule solution processed organic solar cell, Solar Energy Materials and Solar Cells, vol.128, pp.351-356, 2014.
DOI : 10.1016/j.solmat.2014.05.050

M. Vasilopoulou, E. Polydorou, A. M. Douvas, L. C. Palilis, S. Kennou et al., Annealing-free highly crystalline solution-processed molecular metal oxides for efficient single-junction and tandem polymer solar cells, Energy & Environmental Science, vol.26, issue.8, pp.2448-2463, 2015.
DOI : 10.1002/adma.201402072

Z. Li, The Performance Enhancement of Polymer Solar Cells by Introducing Cadmium-Free Quantum Dots, The Journal of Physical Chemistry C, vol.119, issue.47, pp.26747-26752, 2015.
DOI : 10.1021/acs.jpcc.5b08692

A. Kovalenko, Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells, International Journal of Photoenergy, vol.133, issue.21, pp.1-8, 2015.
DOI : 10.1063/1.113780

URL : http://doi.org/10.1155/2015/238981

X. Guo, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy & Environmental Science, vol.20, issue.7, p.7943, 2012.
DOI : 10.1021/ja00106a027

Y. Lin, Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA, Organic Electronics, vol.13, issue.11, pp.2333-2341, 2012.
DOI : 10.1016/j.orgel.2012.07.023

D. Bartesaghi, M. Turbiez, and L. J. Koster, Charge transport and recombination in PDPP5T:[70]PCBM organic solar cells: The influence of morphology, Organic Electronics, vol.15, issue.11, pp.3191-3202, 2014.
DOI : 10.1016/j.orgel.2014.08.064

A. Moujoud and S. H. Oh, On the mechanism of conductivity enhancement and work function control in PEDOT:PSS film through UV-light treatment, physica status solidi (a), vol.102, issue.7, pp.1704-1707, 2010.
DOI : 10.1007/978-0-387-21720-8

C. Sah and B. B. Jie, A history of electronic traps on silicon surfaces and interfaces, 2007.

W. J. Da-silva, F. K. Schneider, A. R. Bin-mohd-yusoff, and J. Jang, High performance polymer tandem solar cell, Scientific Reports, vol.33, issue.1, p.18090, 2015.
DOI : 10.1109/LED.2012.2207877

G. E. Eperon and H. J. Snaith, Perovskite-perovskite tandem photovoltaics with optimized bandgaps, Science, vol.20, 2016.
DOI : 10.1126/science.aaf9717

K. Masuko, Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell, IEEE Journal of Photovoltaics, vol.4, issue.6, pp.1433-1435, 2014.
DOI : 10.1109/JPHOTOV.2014.2352151

C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen et al., Advances in Perovskite Solar Cells, Advanced Science, vol.7, issue.7, p.1500324, 2016.
DOI : 10.1039/C4EE01546K

URL : http://onlinelibrary.wiley.com/doi/10.1002/advs.201500324/pdf

D. P. Mcmeekin, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, vol.5, issue.6240, pp.151-155, 2016.
DOI : 10.1038/ncomms6757

J. Werner, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area &gt, J. Phys. Chem. Lett, vol.1, issue.7 1, pp.161-166, 2016.
DOI : 10.1021/acs.jpclett.5b02686

S. Albrecht, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy & Environmental Science, vol.6, issue.1, pp.81-88, 2016.
DOI : 10.1021/jz502471h

M. Ye, X. Hong, F. Zhang, and X. Liu, Recent advancements in perovskite solar cells: flexibility, stability and large scale, Journal of Materials Chemistry A, vol.27, issue.18, pp.6755-6771, 2016.
DOI : 10.1002/adma.201502586