M. D. Raabe and O. G. , Synthère des connaissances sur les particules en suspension dans l'air et des travaux d'airparis sur ces polluants Re-evaluation of millikan's oil drop data for the motion of small particles in air, AIRPARIF Journal of Aerosol Science, vol.13, issue.6, pp.537-547, 1982.

N. Anantharamaiah, S. Verenich, and B. Pourdeyhimi, Durable Nonwoven Fabrics via Fracturing Bicomponent Islands-in-the-Sea Filaments, Journal of Engineered Fibers and Fabrics, vol.3, issue.3, pp.1-9, 2008.

S. A. Arvidson, Modification of Melt-Spun Isotactic Polypropylene and Poly(lactic acid) Bicomponent Filaments with a Premade Block Copolymer, Macromolecules, vol.45, issue.2, 2012.
DOI : 10.1021/ma202246h

E. Ayad, Influence of Rheological and Thermal Properties of Polymers During Melt Spinning on Bicomponent Fiber Morphology, Journal of Materials Engineering and Performance, vol.93, issue.4, pp.11665-11681, 2016.
DOI : 10.1002/app.20683

V. Bansal and R. L. Shambaugh, On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene, Industrial & Engineering Chemistry Research, vol.37, issue.5, pp.1799-1806, 1998.
DOI : 10.1021/ie9709042

R. S. Barhate and S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials, Journal of Membrane Science, vol.296, issue.1-2, pp.1-8, 2007.
DOI : 10.1016/j.memsci.2007.03.038

J. H. Bear, On-line Measurement of Fiber Motion During Melt Blowing, Industrial & Engineering Chemistry Research, vol.46, issue.22, pp.7340-7352, 2007.
DOI : 10.1021/ie070588j

G. S. Bhat and S. R. Malkan, Polymer-laid web formation, Handbook of Nonwoven, pp.143-200, 2006.
DOI : 10.1201/9781439823453.ch4

Z. Bo, Production of polypropylene melt blown nonwoven fabrics: Part I-numerical simulation and prediction of fibre diameter, Indian Journal of Fibre and Textile Research, vol.37, issue.3, pp.280-286, 2012.

R. Bresee and W. Ko, Fiber Formation During Melt Blowing, 2003.

R. Bresee and U. Qureshi, Influence Of Process Conditions On Melt Blown Web Structure . Part IV -Fiber Diameter, Journal of Engineered Fabrics & Fibers, vol.1, issue.1, pp.32-46, 2006.

R. R. Bresee, U. A. Qureshi, and M. C. Pelham, Influence of processing conditions on melt blown web structure: Part 2 ? Primary airflow rate, International Nonwovens Journal, issue.2, pp.11-18, 2005.

R. R. Bresee and U. Qureshi, Fiber Motion Near The Collector During Melt Blowing: Part 2 - Fly formation, International Nonwoven, pp.21-38, 2002.

D. Brunnschweiler, G. Swarbrick, and S. J. Russell, Chapter 5: Mechanical bonding, Handbook of Nonwoven, pp.201-297, 2006.

R. L. Buckley and S. K. Loyalka, Cunningham correction factor and accommodation coefficient: Interpretation of Millikan's data, Journal of Aerosol Science, vol.20, issue.3, pp.347-349, 1989.
DOI : 10.1016/0021-8502(89)90009-8

P. Carman, Flow of gases through porous media, Academic P, 1956.

R. E. Chapman, Handbook of nonwoven for technical textile, 2010.

T. Chen, L. Li, and X. Huang, Fiber diameter of polybutylene terephthalate melt-blown nonwovens, Journal of Applied Polymer Science, vol.37, issue.4, pp.1750-1752, 2005.
DOI : 10.1002/app.21932

K. Choi, J. E. Spruiell, and J. F. Fellers, Strength properties of melt blown nonwoven webs, Polymer Engineering and Science, vol.34, issue.2, pp.81-89, 1988.
DOI : 10.2115/fiber.38.9_P418

T. R. Crompton, Chapter 1: Mechanical Properties of Polymers, Physical Testing of Plastics, pp.1-148, 2012.

E. Cunningham, On the Velocity of Steady Fall of Spherical Particles through Fluid Medium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.83, issue.563, pp.357-365, 1910.
DOI : 10.1098/rspa.1910.0024

A. Dahiya, M. G. Kamath, and R. R. Hegde, Meltblown Technology Available at: http://www.engr.utk, 2004.

H. Darcy, Les fontaines publiques de la ville de Dijon : exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau Dalmont., France. Available at, 1856.

S. Dhaniyala and B. Y. Liu, Theoretical Modeling of Filtration by Nonuniform Fibrous Filters, Aerosol Science and Technology, vol.34, issue.2, pp.170-178, 2001.
DOI : 10.1080/027868201300034763

J. Dooley and L. Rudolph, Viscous and Elastic Effects in Polymer Coextrusion, Journal of Plastic Film & Sheeting, vol.43, issue.6, pp.111-122, 2003.
DOI : 10.1122/1.551058

J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, vol.35, issue.2-3, pp.151-160, 1995.
DOI : 10.1016/0304-3886(95)00041-8

J. E. Drummond and M. I. Tahir, Laminar viscous flow through regular arrays of parallel solid cylinders, International Journal of Multiphase Flow, vol.10, issue.5, pp.515-540, 1984.
DOI : 10.1016/0301-9322(84)90079-X

J. S. Dugan, Novel properties of PLA fibers, international Nonwovens Journal, vol.10, issue.3, pp.29-33, 2001.

A. Durany, N. Anantharamaiah, and B. Pourdeyhimi, High surface area nonwovens via fibrillating spunbonded nonwovens comprising Islands-in-the-Sea bicomponent filaments: structure???process???property relationships, Journal of Materials Science, vol.42, issue.1, pp.5926-5934, 2009.
DOI : 10.1007/s10853-009-3841-9

K. Dutton, Overview and analysis of the meltblown process and parameters Available at, Journal of Textile and Apparel, Technology and Management, vol.6, issue.1, p.25342, 2008.

E. , 2. Glossary-nonwovens-terms, and C. J. Ellison, Correction : Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer, issue.11, pp.483306-3316, 2007.

C. J. Ellison, Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer, vol.48, issue.11, pp.483306-3316, 2007.
DOI : 10.1016/j.polymer.2007.04.005

D. W. Farrington, Poly(lactic acid) fibers Biodegradable and Sustainable Fibres, pp.191-220, 2006.

N. Fedorova, Investigation of the utility of islands-in-the-sea bicomponent fiber technology in the spunbond process, 2006.

N. Fedorova and B. Pourdeyhimi, High strength nylon micro- and nanofiber based nonwovens via spunbonding, Journal of Applied Polymer Science, vol.92, issue.5, pp.1763-1772, 2006.
DOI : 10.1002/app.25939

P. Forchheimer, Wasserbewegung durch boden, Z. Vereines Deutscher Ingenieure Biochemical and Biological Engineering, vol.45, pp.1736-1741, 1901.

T. Frising, Etude de la filtration des aérosols liquides et de mélanges d'aérosols liquides et solides, 2004.

P. Gervais, Etude experimentale et numerique du colmatage de filtres plisses, 2013.

R. Gougeon, Filtration des aérosols liquides par les filtres à fibres en régime d'interception et d'inertie, 1994.

R. Hammonds, W. Gazzola, and R. Benson, Physical and thermal characterization of polylactic acid meltblown nonwovens, Journal of Applied Polymer Science, vol.52, issue.15, pp.1-7, 2014.
DOI : 10.1002/pen.23079

W. Han, X. Wang, and G. S. Bhat, Molecular Nanotechnology Structure and Air Permeability of Melt Blown Nanofiber Webs, Journal of Nanomaterials & Molecular Nanotechnology, pp.1-5, 2013.

J. Happel, Viscous flow relative to arrays of cylinders, AIChE Journal, vol.5, issue.2, pp.174-177, 1959.
DOI : 10.1002/aic.690050211

F. G. Harold, J. R. Wagner-jr, E. M. Mount, and M. A. Hassan, Extrusion: The Definitive Processing Guide and Handbook William An Fabrication of nanofiber meltblown membranes and their filtration properties, Journal of Membrane Science, vol.427, pp.336-344, 2013.

M. A. Hassan, Structure-Property-Process Relationships for meltblown fibrous media, 2013.

R. Hedge, A. Dahiya, and M. G. Kamath, Bicomponent fiber Available at: http://www.engr.utk, 2004.

F. Henry and T. Ariman, AN EVALUATION OF THE KUWABARA MODEL, Particulate Science and Technology, vol.97, issue.1, pp.1-20, 1983.
DOI : 10.1017/S0022112080002480

. Hills, Hills Nano-Technology Available at: http://www.hillsinc.net/documents, 2016.

K. Hiokki, Leatherlike materials. Kirk-Othmer Encyclopedia of Chemical Technology, pp.1-15, 1990.

Z. M. Huang, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, vol.63, issue.15, pp.2223-2253, 2003.
DOI : 10.1016/S0266-3538(03)00178-7

C. H. Hung and W. W. Leung, Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime, Separation and Purification Technology, vol.79, issue.1, pp.34-42, 2011.
DOI : 10.1016/j.seppur.2011.03.008

D. K. Hutchins, Slip Correction Measurements for Solid Spherical Particles by Modulated Dynamic Light Scattering, Aerosol Science and Technology, vol.46, issue.2, pp.202-218, 1995.
DOI : 10.1016/0021-8502(76)90024-0

URL : http://www.tandfonline.com/doi/pdf/10.1080/02786829408959741?needAccess=true

I. M. Hutten, S. Ilias, and P. L. Douglas, Handbook of nonwoven filter media 2nd edition Intertial impaction of aerosol particles on cylinders at intermediate and high reynolds numbers, Chemical Engineering Science, vol.44, issue.1, pp.81-99, 1989.

G. W. Jackson and D. F. James, The permeability of fibrous porous media, The Canadian Journal of Chemical Engineering, vol.22, issue.177, pp.365-374, 1986.
DOI : 10.1115/1.3423571

T. Jaroszczyk, S. L. Fallon, and S. W. Schwartz, Development of high dust capacity, high efficiency engine air filter with nanofibers, 34th International Congress on Powertrain and Transport Means KONES, 2008.

T. Jerbi, P. Vroman, and X. Zeng, A MULTICRITERIA APPROACH FOR THE CHARACTERIZATION OF FIBER SPATIAL DISTRIBUTION IN WEBS USING IMAGE ANALYSIS, Uncertainty Modelling in Knowledge Engineering and Decision Making, 2016.
DOI : 10.1142/9789813146976_0179

H. Jun, S. E. Paramonov, and J. D. Hartgerink, Biomimetic self-assembled nanofibers, Soft Matter, vol.38, issue.3, 2006.
DOI : 10.1039/b516805h

J. H. Kim, Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83, Journal of Research of the National Institute of Standards and Technology, vol.110, issue.1, p.31, 2005.
DOI : 10.6028/jres.110.005

S. C. Kim, M. S. Harrington, and D. Y. Pui, Experimental study of nanoparticles penetration through commercial filter media, Journal of Nanoparticle Research, vol.22, issue.4, pp.117-125, 2007.
DOI : 10.1007/s11051-006-9176-4

A. A. Kirsch and N. A. Fuchs, Studies on fibrous aerosol filters -III diffusional deposition of aerosols in fibrous filters, Ann. Occup. Hyg, vol.11, issue.1, pp.299-304, 1968.

A. A. Kirsch and U. V. Zhulanov, Measurement of aerosol penetration through high efficiency filters, Journal of Aerosol Science, vol.9, issue.4, pp.291-298, 1978.
DOI : 10.1016/0021-8502(78)90031-9

J. Kozeny, H. M. Krutka, R. L. Shambaugh, and D. Papavassiliou, Über kapillare leitung des wassers im boden Effects of temperature and geometry on the flow field of the melt blowing process, Sitzungsberichte der Akademie der Wissenschaften in Wien Industrial & Engineering Chemistry Research, vol.136, issue.15, pp.271-306, 1927.

S. Kuwabara, The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers, Journal of the Physical Society of Japan, vol.14, issue.4, pp.527-532, 1959.
DOI : 10.1143/JPSJ.14.527

M. Lalagiri, Filtration Efficiency of Submicrometer Filters, Industrial & Engineering Chemistry Research, vol.52, issue.46, pp.16513-16518, 2013.
DOI : 10.1021/ie403093t

H. D. Landahl, R. G. Herrmann, . Sampling, . Of, . Aerosols et al., Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets, Journal of Colloid Science, vol.4, issue.2, pp.103-136, 1949.
DOI : 10.1016/0095-8522(49)90038-0

I. Langmuir and I. Langmuir, THE PRODUCTION OF RAIN BY A CHAIN REACTION IN CUMULUS CLOUDS AT TEMPERATURES ABOVE FREEZING, Journal of Meteorology, vol.5, issue.5, pp.175-1921520, 1942.
DOI : 10.1175/1520-0469(1948)005<0175:TPORBA>2.0.CO;2

K. W. Lee and B. Y. Liu, Theoretical Study of Aerosol Filtration by Fibrous Filters, Aerosol Science and Technology, vol.5, issue.2, pp.147-161, 1982.
DOI : 10.1016/0021-8502(74)90050-0

Y. Lee and L. C. Wadsworth, Structure and filtration properties of melt blown polypropylene webs, Polymer Engineering and Science, vol.15, issue.22, pp.1413-1419, 1990.
DOI : 10.1002/pen.760302202

Z. Lewandowski, A. Ziabicki, and L. Jarecki, The Nonwovens Formation in the Melt-blown Process. Fibers & Textiles in Eastern Europe, pp.77-81, 2007.

H. Li, Y. Ke, and Y. Hu, Polymer nanofibers prepared by template melt extrusion, Journal of Applied Polymer Science, vol.268, issue.3, pp.1018-1023, 2006.
DOI : 10.1002/app.22597

B. Y. Liu and K. L. Rubow, Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media, Vth World Filtration Congress. Nice, pp.112-119, 1990.

R. Liu, Template synthesis Available at, 2016.

Y. Liu, B. Cheng, and G. Cheng, Development and Filtration Performance of Polylactic Acid Meltblowns, Textile Research Journal, vol.21, issue.12, pp.771-779, 2009.
DOI : 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

K. Loewenstein, K. Lozano, and S. Kamalaksha, The Manufacturing Technology of Continuous Glass Fibers Superfine Fiber Creating Spinneret and Uses Thereof Methods and Apparatuses for Making Superfine Fibers, 1973.

P. X. Ma and R. Zhang, Synthetic nano-scale fibrous extracellular matrix, Journal of Biomedical Materials Research, vol.17, issue.1, pp.60-72, 1999.
DOI : 10.1016/0142-9612(96)85754-1

N. Mao, S. J. Russell, and B. Pourdeyhimi, Chapter 9: characterization, testing and modelling of nonwoven fabrics, Handbook of Nonwoven, pp.401-514, 2006.

V. T. Marla, R. L. Shambaugh, and D. V. Papavassiliou, Online Measurement of Fiber Diameter and Temperature in the Melt-Spinning and Melt-Blowing Processes, Industrial & Engineering Chemistry Research, vol.48, issue.18, pp.8736-8744, 2009.
DOI : 10.1021/ie900615n

J. Mcculloch, The history of the development of melt blowning technology, International Nonwoven Journal, vol.8, issue.1, pp.139-149, 1999.

G. Miecret and J. Gustavsson, Mathematic expression of HEPA and ULPA filters efficiency experimental verification -Pratical alliance to new efficiency test methods, Contaminexpert, 1989.

M. W. Milligan, R. R. Buntin, and L. C. Wadsworth, The use of crossflow to improve nonwoven melt-blown fibers, Journal of Applied Polymer Science, vol.44, issue.2, pp.279-288, 1992.
DOI : 10.1002/app.1992.070440212

R. A. Millikan, Coefficients of Slip in Gases and the Law of Reflection of Molecules from the Surfaces of Solids and Liquids, Physical Review, vol.28, issue.3, pp.217-238, 1923.
DOI : 10.1103/PhysRev.21.217

. Mortelecque, Manche filtrante Available at: http://www.mortelecque.com/pochemanche-filtrante-depoussierage .html#, 2016.

G. L. Natanson, Filtration: principles and practices, 1987.

R. Nayak, Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids, Journal of Materials Science, vol.41, issue.1, pp.273-281, 2013.
DOI : 10.1016/j.eurpolymj.2004.08.011

R. Nayak, Recent advances in nanofibre fabrication techniques, Textile Research Journal, vol.27, issue.21, pp.129-147, 2012.
DOI : 10.1002/pen.760272208

M. S. Ndaro, Splitting of islands-in-the-sea fibers ( PA6/COPET ) during hydroentangling of nonwovens, Journal of Engineered Fibers and Fabrics, vol.2, issue.4, pp.1-9, 2007.

J. Payen, Médias fibreux nontissés : techniques de fabrication, caractérisation et performances, pp.65-72, 2009.

S. Payet, Filtration stationnaire et dynamique des aérsols liquides submicroniques, 1991.

J. Pich, Pressure characteristics of fibrous aerosol filters, Journal of Colloid and Interface Science, vol.37, issue.4, pp.912-917, 1971.
DOI : 10.1016/0021-9797(71)90372-9

A. Podgórski, A. Ba?azy, and L. Grado?, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chemical Engineering Science, vol.61, issue.20, pp.616804-6815
DOI : 10.1016/j.ces.2006.07.022

B. Pourdeyhimi and N. Fedorova, High strength, durable micro and nano-fiber fabrics bicomponent islands in the sea -US Patent 8, p.556, 2013.

J. Prigneaux, Challenges & Opportunities for Nonwovens Global & Regional Market Trends, ITFM Annual conference, 2012.

M. Pritchard, R. W. Sarsby, and S. C. Anand, Handbook of Technical Textiles, Available at: http://www.sciencedirect.com/science, 2000.

D. J. Rader, . Factor, . Small, . In, . Common et al., Momentum slip correction factor for small particles in nine common gases, Journal of Aerosol Science, vol.21, issue.2, pp.161-168, 1990.
DOI : 10.1016/0021-8502(90)90001-E

B. Raghavan, H. Soto, and K. Lozano, Fabrication of Melt Spun Polypropylene Nanofibers by Forcespinning, Journal of Engineered Fibers and Fabrics, vol.8, issue.1, pp.52-60, 2013.

N. Rao and M. Faghri, Computer Modeling of Aerosol Filtration by Fibrous Filters, Aerosol Science and Technology, vol.9, issue.2, pp.133-156, 1988.
DOI : 10.1093/annhyg/9.2.59

F. Rouquerol and L. Luciani, Texture des matériaux pulvérulents ou poreux. Techniques de l')ngénieur, pp.10501-10525, 2003.

T. Sakano, Particle collection of medium performance air filters consisting of binary fibers under dust loaded conditions, Separation and Purification Technology, vol.19, issue.1-2, pp.145-152, 2000.
DOI : 10.1016/S1383-5866(99)00086-6

K. Sarkar, Electrospinning to Forcespinning???, Materials Today, vol.13, issue.11, pp.12-14, 2010.
DOI : 10.1016/S1369-7021(10)70199-1

URL : https://doi.org/10.1016/s1369-7021(10)70199-1

. Science, La Chine entame 2017 sous une chape de pollution Available at: http://www.sciencesetavenir.fr/nature-environnement/pollution/la-chine-entame-2017- sous-une-chape-de-pollution_109403, 2017.

M. Shapiro, An analytical model for aerosol filtration by nonuniform filter media, Journal of Aerosol Science, vol.27, issue.2, pp.263-280, 1996.
DOI : 10.1016/0021-8502(95)00542-0

K. Singha, Effects of Fiber Diameter Distribution of Nonwoven Fabrics on its Properties, International Journal of Textile Science, vol.1, issue.1, pp.7-14, 2012.

E. K. Skomra, Production and characterization of novel air filtration media, 2011.

H. Song, Fiber Splitting of Bicomponet Melt Blown Microfiber Nonwovens by Chemical and Water Treatment, 2002.

I. B. Stechkina and N. A. Fuchs, Studies of fibrous aerosol filters -I. Calculation of diffusional deposition of aerosols in fibrous filters, Ann. Occup. Hyg, vol.9, pp.59-64, 1966.

I. B. Stechkina, A. A. Kirsch, and N. A. Fuchs, Studies on Fibrous Aerosol Filters ? IV. Calculation of Aerosol Deposition ion Model Filters in the Range of Maximum Penetration, Annals of Occupational Hygiene, vol.12, issue.3, pp.1-8, 1969.

S. K. Suneja and C. H. Lee, Aerosol filtration by fibrous filters at intermediate Reynolds numbers (< 100) Atmospheric Environment, pp.1081-1094, 1967.
DOI : 10.1016/0004-6981(74)90043-2

F. Suvari, Acoustical absorptive properties of spunbonded nonwovens made from islands-in-the-sea bicomponent filaments, Journal of the Textile Institute, vol.28, issue.3, pp.438-445, 2013.
DOI : 10.1177/0040517507078743

D. H. Tan, Meltblown fibers: Influence of viscosity and elasticity on diameter distribution, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.15-16, pp.15-16892, 2010.
DOI : 10.1016/j.jnnfm.2010.04.012

S. Tarleton and R. Wakeman, Dictionnary of Filtration and Separation, The Nonwoven Institute, 2001.

J. Wang, S. C. Kim, and D. Y. Pui, Investigation of the figure of merit for filters with a single nanofiber layer on a substrate, Journal of Aerosol Science, vol.39, issue.4, pp.323-334, 2004.
DOI : 10.1016/j.jaerosci.2007.12.003

X. Wang, J. Yao, and X. Pan, Fiber Splitting of Bicomponent Meltblown Nonwovens by Ultrasonic Wave, International Journal of Chemistry, vol.1, issue.2, pp.26-33, 2009.
DOI : 10.5539/ijc.v1n2p26

C. White, Chapter 3: Wet-laid web formation, Handbook of Nonwoven, pp.112-142, 2006.
DOI : 10.1201/9781439823453.ch3

. Wikipedia, Air filter for automobile Available at: https://en.wikipedia.org/wiki/Air_filter#/media/File:Air_filter, JPG [Accessed October 6, 2016]. Wikipedia, 2005. Smog. Available at: https://upload.wikimedia.org/wikipedia, 2016.

A. Wilson, Chapter 1: Development of the nonwoven industry, Handbook of Nonwoven, pp.1-14, 2006.

D. Wyart, Les polymères biodégradables polylactides (PLA) et polyvinyliques alcools PVA : transformation, façonnage, recyclage PLA et PVA : transformation, façonnage, recyclage, pp.33-1311, 2014.

H. Yeh and B. Y. Liu, Aerosol filtration by fibrous filters???II. experimental, Journal of Aerosol Science, vol.5, issue.2, pp.205-217, 1974.
DOI : 10.1016/0021-8502(74)90050-0

H. Yeh and B. Y. Liu, Aerosol filtration by fibrous filters???II. experimental, Journal of Aerosol Science, vol.5, issue.2, pp.205-217, 1974.
DOI : 10.1016/0021-8502(74)90050-0

B. Yeom and B. Pourdeyhimi, Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets, Journal of Materials Science, vol.75, issue.1, pp.5761-5767, 2011.
DOI : 10.1177/0040517505053955

B. Y. Yeom and B. Pourdeyhimi, Web fabrication and characterization of unique winged shaped, area-enhanced fibers via a bicomponent spunbond process, Journal of Materials Science, vol.53, issue.2, pp.3252-3257, 2011.
DOI : 10.1002/aic.11056

D. Zhang, C. Sun, . Qin, and H. Song, An investigation of fiber splitting of bicomponent meltblown/microfiber nonwovens by water treatment, Journal of Applied Polymer Science, vol.28, issue.3, pp.1218-1226, 2004.
DOI : 10.1177/004051750107100404

R. Zhao, Polymer distribution during bicomponent melt blowing of poly(propylene)/poly(ethylene terephthalate) and its improvement, Journal of Applied Polymer Science, vol.17, issue.14, 2002.
DOI : 10.1002/app.10908

B. Tableau, 6 -Modélisation de l'efficacité avec correction (dp: 0,3 µm Vf: 5 cm/s) pour les échantillons spunbond îles- en-mer