C. Ehret, R. Aid-launais, T. Sagardoy, R. Siadous, S. Bareille et al., Bone-graft substitutes: facts, fictions, and applications, J Bone Joint Surg Am, pp.83-98, 2001.

C. Delloye, Bone allografts: WHAT THEY CAN OFFER AND WHAT THEY CANNOT, Journal of Bone and Joint Surgery - British Volume, vol.89, issue.5, pp.574-583, 2007.
DOI : 10.1302/0301-620X.89B5.19039

URL : http://bjj.boneandjoint.org.uk/content/jbjsbr/89-B/5/574.full.pdf

L. Polo-corrales, M. Latorre-esteves, and J. E. Ramirez-vick, Scaffold Design for Bone Regeneration, Journal of Nanoscience and Nanotechnology, vol.14, issue.1, pp.15-56, 2014.
DOI : 10.1166/jnn.2014.9127

D. W. Hutmacher, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, Journal of Tissue Engineering and Regenerative Medicine, vol.28, issue.4, pp.245-60, 2007.
DOI : 10.1002/jbm.b.30331

M. A. Fernandez-yague, Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies, Advanced Drug Delivery Reviews, vol.84, pp.1-29, 2015.
DOI : 10.1016/j.addr.2014.09.005

R. A. Carano and E. H. Filvaroff, Angiogenesis and bone repair, Drug Discovery Today, vol.8, issue.21, pp.980-989, 2003.
DOI : 10.1016/S1359-6446(03)02866-6

D. C. Beachler, Bone Morphogenetic Protein Use and Cancer Risk Among Patients Undergoing Lumbar Arthrodesis, The Journal of Bone and Joint Surgery, vol.98, issue.13, pp.98-1064, 2016.
DOI : 10.2106/JBJS.15.01106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928039/pdf

Y. Basha, R. , T. S. Kumar, and M. Doble, Design of biocomposite materials for bone tissue regeneration, Materials Science and Engineering: C, vol.57, pp.452-63, 2015.
DOI : 10.1016/j.msec.2015.07.016

P. J. Kondiah, A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering, Molecules, vol.100, issue.11, p.21, 2016.
DOI : 10.1016/j.msec.2016.08.018

K. Kim and J. P. Fisher, Nanoparticle technology in bone tissue engineering, Journal of Drug Targeting, vol.300, issue.1, pp.241-52, 2007.
DOI : 10.1016/S0142-9612(02)00635-X

J. Venkatesan and S. K. Kim, Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering???A Review, Journal of Biomedical Nanotechnology, vol.10, issue.10, pp.3124-3164, 2014.
DOI : 10.1166/jbn.2014.1893

F. Munarin, Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites, International Journal of Biological Macromolecules, vol.72, pp.199-209, 2015.
DOI : 10.1016/j.ijbiomac.2014.07.050

N. Vandecandelaere, C. Rey, C. Drouet, and S. , Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature, J Mater Sci Mater Med IRBM, vol.23, issue.114, pp.31-226, 2010.

E. Tayton, A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study, J Biomed Mater Res A, issue.8, pp.102-2613, 2014.

M. Roy, Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption, Biomater. Sci., vol.5, issue.1, 2013.
DOI : 10.1016/j.actbio.2008.11.032

S. C. Cox, Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation, Materials Science and Engineering: C, vol.35, pp.106-120, 2014.
DOI : 10.1016/j.msec.2013.10.015

P. Nielsen and S. E. , The biological role of strontium The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Bone Biomaterials, vol.35, issue.314, pp.31-3949, 2004.

P. J. Marie, Strontium Ranelate in Osteoporosis and Beyond: Identifying Molecular Targets in Bone Cell Biology, Molecular Interventions, vol.10, issue.5, pp.305-317, 2010.
DOI : 10.1124/mi.10.5.7

Z. Saidak and P. J. Marie, Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis, Pharmacology & Therapeutics, vol.136, issue.2, pp.216-242, 2012.
DOI : 10.1016/j.pharmthera.2012.07.009

E. Landi, Sr-substituted hydroxyapatites for osteoporotic bone replacement, Acta Biomaterialia, vol.3, issue.6, pp.961-970, 2007.
DOI : 10.1016/j.actbio.2007.05.006

Y. Li, Cancellous bone response to strontium-doped hydroxyapatite in osteoporotic rats, Journal of Applied Biomaterials & Functional Materials, vol.13, issue.1, pp.28-34, 2015.
DOI : 10.5301/jabfm.5000168

W. Zhang, Effects of strontium in modified biomaterials, Acta Biomaterialia, vol.7, issue.2, pp.800-808, 2011.
DOI : 10.1016/j.actbio.2010.08.031

C. Lindahl, Incorporation of active ions into calcium phosphate coatings, their release behavior and mechanism, Biomedical Materials, vol.7, issue.4, p.45018, 2012.
DOI : 10.1088/1748-6041/7/4/045018

C. Lindahl, The influence of Sr content in calcium phosphate coatings, Materials Science and Engineering: C, vol.53, pp.322-352, 2015.
DOI : 10.1016/j.msec.2015.04.015

V. Aina, Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells, Materials Science and Engineering: C, vol.33, issue.3, pp.1132-1174, 2013.
DOI : 10.1016/j.msec.2012.12.005

D. Gopi, Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells, Colloids and Surfaces B: Biointerfaces, vol.114, pp.234-274, 2014.
DOI : 10.1016/j.colsurfb.2013.10.011

V. Nardone, In Vitro Effects of Strontium on Proliferation and Osteoinduction of Human Preadipocytes 2015: p. 871863. 30 Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities, Stem Cells Int Acta Biomater, pp.31-388, 2015.

Y. W. Chen, In??vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs, Journal of Materials Science: Materials in Medicine, vol.109, issue.Suppl 1, pp.2655-62, 2008.
DOI : 10.1089/ten.2004.10.1536

Z. Gu, Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering, Journal of Materials Science: Materials in Medicine, vol.99, issue.41, pp.1251-60, 2013.
DOI : 10.1073/pnas.152324099

I. Elgali, Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events, Acta Biomaterialia, vol.29, pp.409-432, 2016.
DOI : 10.1016/j.actbio.2015.10.005

URL : https://doi.org/10.1016/j.actbio.2015.10.005

M. Frasnelli, Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration, Materials Science and Engineering: C, vol.71, pp.653-662, 2017.
DOI : 10.1016/j.msec.2016.10.047

J. C. Fricain, A nano-hydroxyapatite ??? Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials, vol.34, issue.12, pp.34-2947, 2013.
DOI : 10.1016/j.biomaterials.2013.01.049

D. Robert, Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells, Biomaterials, vol.31, issue.7, pp.31-1586, 2010.
DOI : 10.1016/j.biomaterials.2009.11.014

A. Autissier, Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process, Acta Biomaterialia, vol.6, issue.9, pp.3640-3648, 2010.
DOI : 10.1016/j.actbio.2010.03.004

J. Guerrero, Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis, Acta Biomaterialia, vol.9, issue.9, pp.8200-8213, 2013.
DOI : 10.1016/j.actbio.2013.05.025

A. R. Boyd, The deposition of strontium-substituted hydroxyapatite coatings, Materials science & engineering. C, Materials for biological applications, pp.65-290, 2015.
DOI : 10.1016/j.biomaterials.2010.01.002

C. I. Boissard, Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering, Acta Biomaterialia, vol.5, issue.9, pp.3316-3343, 2009.
DOI : 10.1016/j.actbio.2009.05.001

S. Tadier, Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.5, issue.195, pp.378-90, 2012.
DOI : 10.1016/j.actbio.2008.11.032

E. Boanini, Osteopenic bone cell response to strontium-substituted hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol.20, issue.9, pp.2079-88, 2011.
DOI : 10.1007/s00198-008-0728-6

U. Thormann, Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats, Biomaterials, vol.34, issue.34, pp.8589-98, 2013.
DOI : 10.1016/j.biomaterials.2013.07.036

H. Valiense, evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.86, issue.2, pp.274-82, 2016.
DOI : 10.1016/j.biomaterials.2004.10.032

S. Chandran, Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model, Journal of Biomaterials Applications, vol.93, issue.4, pp.499-509, 2016.
DOI : 10.1002/jbmr.141

K. Lin, Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics, Biomaterials, vol.34, issue.38, pp.10028-10070, 2013.
DOI : 10.1016/j.biomaterials.2013.09.056

X. Luo, Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits, Acta Biomaterialia, vol.26, pp.331-338, 2015.
DOI : 10.1016/j.actbio.2015.07.044

A. Le, A) Marquage au Trichrome de Masson du tissu néoformé à l'intérieur des trois types de matrices dopées ou non en strontium après 4 (W4) et 8 semaines (W8) Les lésions sont mises en évidence par les cercles jaunes en pointillés. (B) Analyse quantitative de la surface du tissu ostéoïde néoformé en mm². Les résultats sont exprimés en moyenne ± déviation standard. Les symboles*; et *** représentent p < 0.05 and p < 0.001, respectivement, C) Immunomarquage du vWF dans le tissu nouvellement formé. (D) La quantification du nombre de vaisseaux par mm² a été réalisée à l'aide du logiciel NDP view. Les résultats sont exprimés en moyenne ± déviation standard

R. Hertel, A. Gerber, U. Schlegel, C. J. Rüegsegger, P. Rahn et al., 10. Cancellous bone graft for skeletal reconstruction Muscular versus periosteal bed ??? Preliminary report, Injury, vol.25, p.59, 1994.
DOI : 10.1016/0020-1383(94)90263-1

A. Weiland, T. Phillips, and M. Randolph, Bone Grafts, Plastic and Reconstructive Surgery, vol.74, issue.3, p.368, 1984.
DOI : 10.1097/00006534-198409000-00006

A. Gerber and S. Gogolewski, Reconstruction of large segmental defects in the sheep tibia using polylactide membranes. A clinical and radiographic report, Injury, vol.33, 2002.
DOI : 10.1016/S0020-1383(02)00132-8

K. Klaue, U. Knothe, C. Anton, D. Pfluger, M. Stoddart et al., Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep, Injury, vol.40, p.95, 2009.
DOI : 10.1016/j.injury.2009.10.043

A. Masquelet, F. Fitoussi, T. Begue, and G. Muller, [Reconstruction of the long bones by the induced membrane and spongy autograft], Ann Chir Plast Esthet, vol.45, issue.346, 2000.

T. Apard, N. Bigorre, P. Cronier, F. Duteille, P. Bizot et al., Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing, Orthopaedics & Traumatology: Surgery & Research, vol.96, issue.5, 2010.
DOI : 10.1016/j.otsr.2010.02.010

C. Karger, T. Kishi, L. Schneider, F. Fitoussi, and A. Masquelet, Treatment of posttraumatic bone defects by the induced membrane technique, Orthopaedics & Traumatology: Surgery & Research, vol.98, issue.1, p.97, 2012.
DOI : 10.1016/j.otsr.2011.11.001

N. Zwetyenga, S. Catros, A. Emparanza, C. Deminiere, F. Siberchicot et al., Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-betaTCP: animal model study and preliminary results in patients, Int. J. Oral Maxillofac. Surg. [Internet], issue.12, pp.38-1289, 2009.

F. Jin, Y. Xie, N. Wang, X. Qu, J. Lu et al., Poor osteoinductive potential of subcutaneous bone cementinduced membranes for tissue engineered bone, Connect. Tissue Res, vol.54, pp.4-5, 2013.

D. Henrich, C. Seebach, C. Nau, S. Basan, B. Relja et al., Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model, Journal of Tissue Engineering and Regenerative Medicine, vol.13, issue.1, 2013.
DOI : 10.3727/000000004772664851

V. Viateau, G. Guillemin, Y. Calando, D. Logeart, K. Oudina et al., Induction of a Barrier Membrane to Facilitate Reconstruction of Massive Segmental Diaphyseal Bone Defects: An Ovine Model, Veterinary Surgery, vol.10, issue.5, p.445, 2006.
DOI : 10.1097/00003086-199910001-00008

P. Pelissier, Y. Lefevre, S. Delmond, F. Villars, and J. Vilamitjana-amedee, Influences of induced membranes on heterotopic bone formation within an osteo-inductive complex. Experimental study in rabbits], Ann Chir Plast Esthet, vol.54, issue.16, 2009.

T. Sorin, L. Mansuy, T. Colson, C. Minetti, M. Brix et al., Ewing's sarcoma of the mandible in children: reconstruction by induced membrane], Rev. Stomatol. Chir. Maxillofac. Chir. Orale [Internet], vol.115, issue.5, p.318, 2014.

H. Liu, G. Hu, P. Shang, Y. Shen, P. Nie et al., Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect, Orthopaedics & Traumatology: Surgery & Research, vol.99, issue.8, p.959, 2013.
DOI : 10.1016/j.otsr.2013.08.009

S. Catros, N. Zwetyenga, R. Bareille, B. Brouillaud, R. M. Amedee et al., Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo, Journal of Orthopaedic Research, vol.40, issue.2, 2009.
DOI : 10.1002/jbm.a.30712

P. Pelissier, A. Masquelet, R. Bareille, S. Pelissier, and J. Amedee, Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration, Journal of Orthopaedic Research, vol.102, issue.1, p.73, 2004.
DOI : 10.1152/ajpcell.00310.2001

R. Gouron, L. Petit, C. Boudot, I. Six, M. Brazier et al., Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique, Journal of Tissue Engineering and Regenerative Medicine, vol.38, issue.2, 2014.
DOI : 10.1016/j.ijom.2009.07.018

C. Mégevand, P. Pasche, and B. Jaques, [Long-term complications of radiotherapy after mandibular reconstruction with vascularized bnoe graft], Schweiz. Med. Wochenschr. [Internet], 2000.

R. Freund, T. Wolff, and B. Freund, Silicone block interposition for traumatic bone loss, Orthopedics [Internet], vol.23, issue.8, p.795, 2000.

E. Katzel, P. Koltz, R. Tierney, J. Williams, H. Awad et al., A Novel Animal Model for Studying Silicone Gel???Related Capsular Contracture, Plastic and Reconstructive Surgery, vol.126, issue.5, p.1483, 2010.
DOI : 10.1097/PRS.0b013e3181ef8b8e

F. Monje, L. Mercuri, L. Villanueva-alcojol, and J. De-mera, Synovial Metaplasia Found in Tissue Encapsulating a Silicone Spacer During 2-Staged Temporomandibular Joint Replacement for Ankylosis, Journal of Oral and Maxillofacial Surgery, vol.70, issue.10, p.2290, 2012.
DOI : 10.1016/j.joms.2012.06.177

G. Jacobson, W. Sause, J. Thomson, and H. Plenk, Breast irradiation following silicone gel implants, International Journal of Radiation Oncology*Biology*Physics, vol.12, issue.5, 1986.
DOI : 10.1016/0360-3016(86)90044-1

J. Ryu, J. Yahalom, B. Shank, T. Chaglassian, B. Mccormick et al., Radiation therapy after breast augmentation or reconstruction in early or recurrent breast cancer Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy, Cancer [Internet]. Acta Biomater, vol.66, issue.844, 1990.

H. Stone, C. Coleman, M. Anscher, and W. Mcbride, Effects of radiation on normal tissue: consequences and mechanisms, The Lancet Oncology, vol.4, issue.9, p.529, 2003.
DOI : 10.1016/S1470-2045(03)01191-4

F. Paris, Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice. Science (80-. ). [Internet], p.293, 2001.

M. Hauer-jensen, F. Kong, L. Fink, and M. Anscher, Circulating thrombomodulin during radiation therapy of lung cancer, Radiation Oncology Investigations, vol.92, issue.4, p.238, 1999.
DOI : 10.1016/S0016-5085(97)70086-6

P. Rubin, C. Johnston, J. Williams, S. Mcdonald, J. Finkelstein et al., A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis Human bone marrow stromal cells express an osteoblastic phenotype in culture Use of the induced membrane technique for bone tissue engineering purposes: animal studies, Int. J. Radiat. Oncol. Biol. Phys. [Internet]. In Vitro Cell. Dev. Biol. Anim. [Internet]. Orthop. Clin. North Am. [Internet], vol.33, issue.411, p.49, 1993.

K. Lye, H. Tideman, J. Wolke, M. Merkx, F. Chin et al., Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue, Clinical Oral Implants Research, vol.5, issue.100, 2013.
DOI : 10.1007/s00784-001-0140-5

S. Schützenberger, M. Kaipel, A. Schultz, T. Nau, H. Redl et al., Non-union site debridement increased the efficacy of rhBMP-2 in a rodent model, Injury, vol.45, issue.8, p.1165, 2014.
DOI : 10.1016/j.injury.2014.05.004

E. Collen and M. Mayer, Acute effects of radiation treatment: skin reactions, Can. Vet. J. [Internet]. Canadian Veterinary Medical Association, vol.47, issue.9, p.931, 2006.

E. Lerouxel, A. Moreau, J. Bouler, B. Giumelli, G. Daculsi et al., Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering The effects of therapeutic x-ray doses on mechanical, chemical and physical properties of poly methyl methacrylate, Br J Oral Maxillofac Surg. Acta Odontol Scand, vol.47, issue.71, p.45, 2009.

I. Al-qaradawi, D. Abdulmalik, N. Madi, M. Almaadeed, H. Gruber et al., Gamma irradiation effects on polymethyl methacrylate Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects, Phys. status solidi [Internet], 2007.

P. Pelissier, A. Masquelet, R. Bareille, S. Pelissier, and J. Amedee, Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration, Journal of Orthopaedic Research, vol.102, issue.1, p.73, 2004.
DOI : 10.1152/ajpcell.00310.2001

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0736-0266(03)00165-7/pdf

R. Ehret, T. Aid-launais, . Sagardoy, R. Siadous, S. Bareille et al., Amedee Vilamitjana PLoS One, 2017.

F. Journée and . Tecsan-bordeaux, Juin 2016 A composite matrix containing various ratios of hydroxyapatite doped with strontium for bone tissue regeneration

M. Maisani, S. Ziane, C. Ehret, L. Lesvesque, R. Siadous et al., Available from: https://siteman.wustl, Center, S.C. Bone marrow, vol.1, issue.0000045622, 2014.

M. Sadat-shojai, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomaterialia, vol.9, issue.8, pp.7591-621
DOI : 10.1016/j.actbio.2013.04.012

D. M. Cooper, Comparison of Microcomputed Tomographic and Microradiographic Measurements of Cortical Bone Porosity, Calcified Tissue International, vol.74, issue.5, pp.437-484, 2004.
DOI : 10.1007/s00223-003-0071-z

F. Barrère, Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions, Materials Science and Engineering: R: Reports, vol.59, issue.1-6, 2008.
DOI : 10.1016/j.mser.2007.12.001

S. L. Dallas, M. Prideaux, and L. F. Bonewald, The Osteocyte: An Endocrine Cell ??? and More, Endocrine Reviews, vol.34, issue.5, pp.658-90, 2013.
DOI : 10.1210/er.2012-1026

A. L. Boskey, Bone composition: relationship to bone fragility and antiosteoporotic drug effects, BoneKEy Reports, vol.2, issue.2, p.447, 2013.
DOI : 10.1038/bonekey.2013.181

J. Kular, An overview of the regulation of bone remodelling at the cellular level, Clinical Biochemistry, vol.45, issue.12, pp.45-863, 2012.
DOI : 10.1016/j.clinbiochem.2012.03.021

J. J. Lataillade, [Are stem cells as old as their niches? The quest for eternal life, Med Sci, pp.2010-2036

T. Sugiyama and T. Nagasawa, Bone Marrow Niches for Hematopoietic Stem Cells and Immune Cells, Inflammation & Allergy-Drug Targets, vol.11, issue.3, pp.201-207, 2012.
DOI : 10.2174/187152812800392689

R. Tamma, D. Ribatti, and B. Niches, Hematopoietic Stem Cells, and Vessel Formation, Int J Mol Sci, vol.18, issue.1, 2017.

R. Recker, Bone Remodeling Increases Substantially in the Years After Menopause and Remains Increased in Older Osteoporosis Patients, Journal of Bone and Mineral Research, vol.87, issue.Suppl, pp.19-1628, 2004.
DOI : 10.7326/0003-4819-114-11-919

G. Li, Influence of age and gender on microarchitecture and bone remodeling in subchondral bone of the osteoarthritic femoral head, Bone, vol.77, pp.91-98, 2015.
DOI : 10.1016/j.bone.2015.04.019

M. Jevon, Gender- and age-related differences in osteoclast formation from circulating precursors, Journal of Endocrinology, vol.172, issue.3, pp.673-81, 2002.
DOI : 10.1677/joe.0.1720673

T. Negishi-koga, H. Takayanagi-raggatt, L. J. , N. C. Partridge, and D. , Bone cell communication factors and Semaphorins, BoneKEy Reports, vol.1, issue.33, pp.285-363, 2010.
DOI : 10.1038/bonekey.2012.183

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810552/pdf

A. G. Robling, T. Bellido, C. H. Turner-heino, T. J. , T. A. Hentunen et al., Mechanical stimulation in vivo reduces osteocyte expression of sclerostin Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen, J Musculoskelet Neuronal Interact J Cell Biochem, vol.6, issue.851, pp.354-185, 2002.

X. Chen, Osteoblast???osteoclast interactions, Connective Tissue Research, vol.123, pp.1-9, 2017.
DOI : 10.1038/nm.2793

P. J. Marie, Mechanisms of Action and Therapeutic Potential of Strontium in Bone, Calcified Tissue International, vol.69, issue.3, pp.121-130, 2001.
DOI : 10.1007/s002230010055

P. J. Marie, Strontium ranelate: a novel mode of action optimizing bone formation and resorption, Osteoporosis International, vol.350, issue.S01, pp.7-10, 2005.
DOI : 10.1007/s00198-004-1753-8

Z. Saidak and P. J. Marie, Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis, Pharmacology & Therapeutics, vol.136, issue.2, pp.216-242, 2012.
DOI : 10.1016/j.pharmthera.2012.07.009

Y. Wittrant, OPG: new therapeutic targets in bone tumours and associated osteolysis, Biochim Biophys Acta, issue.2, pp.1704-1753, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00669006

S. S. Kohli and V. S. Kohli, Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications, Indian Journal of Endocrinology and Metabolism, vol.15, issue.3, pp.175-81, 2011.
DOI : 10.4103/2230-8210.83401

A. Oryan, Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells, Biofactors Stem Cells Dev, vol.40, issue.56, pp.459-81, 2005.

C. Y. Chen, Overexpression of Insulin-Like Growth Factor 1 Enhanced the Osteogenic Capability of, Aging Bone Marrow Mesenchymal Stem Cells. Theranostics, vol.7, issue.6, pp.1598-1611, 2017.

P. Garg, Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts, Orthopaedic Surgery, vol.84, issue.1, pp.13-19
DOI : 10.2106/00004623-200212000-00001

J. L. Crane, IGF-1 Signaling is Essential for Differentiation of Mesenchymal Stem Cells for Peak Bone Mass, Bone Research, vol.12, issue.2, pp.186-94, 2013.
DOI : 10.1186/1471-2202-12-64

J. L. Crane and X. Cao, Bone marrow mesenchymal stem cells and TGF-?? signaling in bone remodeling, Journal of Clinical Investigation, vol.124, issue.2, pp.466-72, 2014.
DOI : 10.1172/JCI70050

T. Tondreau, Bone marrow???derived mesenchymal stem cells already express specific neural proteins before any differentiation, Differentiation, vol.72, issue.7, pp.72-319, 2004.
DOI : 10.1111/j.1432-0436.2004.07207003.x

H. Cheng, Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs), J Bone Joint Surg Am, issue.8, pp.85-1544, 2003.

O. P. Gautschi, S. P. Frey, and R. Zellweger, BONE MORPHOGENETIC PROTEINS IN CLINICAL APPLICATIONS, ANZ Journal of Surgery, vol.85, issue.3, pp.77-626, 2007.
DOI : 10.1302/0301-620X.81B4.9311

S. Govender, RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN-2 FOR TREATMENT OF OPEN TIBIAL FRACTURES, The Journal of Bone and Joint Surgery-American Volume, vol.84, issue.12, pp.84-2123, 2002.
DOI : 10.2106/00004623-200212000-00001

L. G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects, Journal of Clinical Investigation, vol.115, issue.12, pp.3318-3343, 2005.
DOI : 10.1172/JCI27071

X. Feng and J. M. Mcdonald, Disorders of bone remodeling Bone Quality in Paget's Disease of Bone, Annu Rev Pathol Curr Osteoporos Rep, issue.62, pp.121-166, 2011.

E. Jimi, The current and future therapies of bone regeneration to repair bone defects 2012: p. 148261. 39. Guerado, E. and E. Caso, Challenges of bone tissue engineering in orthopaedic patients, Int J Dent World J Orthop, vol.8, issue.2, pp.87-98, 2012.

L. Pacifici, METALS USED IN MAXILLOFACIAL SURGERY, Oral & Implantology, vol.9, issue.Suppl. 1, pp.107-111, 2016.
DOI : 10.11138/orl/2016.9.1S.107

E. García-gareta, M. J. Coathup, and G. W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone, vol.81, pp.112-133, 2015.
DOI : 10.1016/j.bone.2015.07.007

B. J. Cole, T. R. Carter, S. A. Chim, and H. , Allograft Meniscal Transplantation, The Journal of Bone & Joint Surgery, vol.84, issue.7, pp.24-188, 2002.
DOI : 10.2106/00004623-200207000-00023

G. I. Taylor, R. J. Corlett, and M. W. Ashton, The Evolution of Free Vascularized Bone Transfer, Plastic and Reconstructive Surgery, vol.137, issue.4, pp.1292-305, 2016.
DOI : 10.1097/PRS.0000000000002040

E. Okoturo, Non-vascularised iliac crest bone graft for immediate reconstruction of lateral mandibular defect, Oral and Maxillofacial Surgery, vol.67, issue.4, pp.425-429, 2016.
DOI : 10.1016/j.joms.2009.04.013

G. I. Taylor, G. D. Miller, and F. J. Ham, The free vascularized bone graft. A clinical extension of microvascular techniques, Plast Reconstr Surg, issue.5, pp.55-533, 1975.

D. A. Hidalgo, Fibula Free Flap, Plastic and Reconstructive Surgery, vol.84, issue.1, pp.71-80, 1989.
DOI : 10.1097/00006534-198907000-00014

C. Zhang, Microsurgical free flap reconstructions of the head and neck region: Shanghai experience of 34 years and 4640 flaps, International Journal of Oral and Maxillofacial Surgery, vol.44, issue.6, pp.44-675, 2015.
DOI : 10.1016/j.ijom.2015.02.017

M. Bak, Contemporary reconstruction of the mandible, Oral Oncology, vol.46, issue.2, pp.71-77, 2010.
DOI : 10.1016/j.oraloncology.2009.11.006

S. Almubarak, Tissue engineering strategies for promoting vascularized bone regeneration, Bone, vol.83, pp.197-209, 2016.
DOI : 10.1016/j.bone.2015.11.011

B. P. Kumar, Mandibular Reconstruction: Overview, Journal of Maxillofacial and Oral Surgery, vol.78, issue.6, pp.425-441, 2004.
DOI : 10.1016/0030-4220(94)90085-X

B. Spiegelberg, Ilizarov principles of deformity correction [Reconstruction of the long bones by the induced membrane and spongy autograft] Available from: https://clinicaltrials.gov/. 56 Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration Masquelet technique for the treatment of bone defects: tips-tricks and future directions, Ann R Coll Surg Engl Ann Chir Plast Esthet Trials, C. J Orthop Res Injury, vol.92, issue.2216, pp.101-106, 2000.

U. K. Olesen, The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases, Injury, vol.46, issue.8, pp.44-51, 2015.
DOI : 10.1016/S0020-1383(15)30054-1

C. Nau, Alteration of Masquelet's induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat's femur, Injury, vol.47, issue.2, pp.47-325, 2016.
DOI : 10.1016/j.injury.2015.10.079

P. Bosemark, H. Isaksson, M. Tägil, and E. , Influence of systemic bisphosphonate treatment on mechanical properties of BMP-induced calluses in a rat fracture model: Comparison of three-point bending and twisting test, Journal of Orthopaedic Research, vol.43, issue.5, pp.721-727, 2014.
DOI : 10.1016/j.bone.2008.05.019

D. Jia, Rapid Loss of Bone Mass and Strength in Mice after Abdominal Irradiation, Radiation Research, vol.176, issue.5, pp.624-659, 2011.
DOI : 10.1667/RR2505.1

B. J. Costello, P. Kumta, and C. S. Sfeir, Regenerative Technologies for Craniomaxillofacial Surgery, Journal of Oral and Maxillofacial Surgery, vol.73, issue.12, pp.116-141, 2012.
DOI : 10.1016/j.joms.2015.04.036

S. Konopnicki and M. J. Troulis, Mandibular Tissue Engineering: Past, Present, Future, Journal of Oral and Maxillofacial Surgery, vol.73, issue.12, pp.136-182, 2012.
DOI : 10.1016/j.joms.2015.05.037

M. A. Fernandez-yague, Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies Adv Drug Deliv Rev, 2015.

J. R. Woodard, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, vol.28, issue.1, pp.45-54, 2007.
DOI : 10.1016/j.biomaterials.2006.08.021

F. Bai, The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study, Tissue Eng Part A, issue.12, pp.16-3791, 2010.

X. Xiao, The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep, 2015. 5: p. 9409. 71. Malhotra, A. and P. Habibovic, Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering, Trends Biotechnol Int J Biol Macromol, vol.34, issue.121, pp.47-48, 2010.

M. T. Vestermark, Strontium in the bone-implant interface The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite, Dan Med Bull Nat Mater, vol.58, issue.58, pp.11-724, 2011.

S. M. Oliveira, An improved collagen scaffold for skeletal regeneration, Journal of Biomedical Materials Research Part A, vol.17, issue.2, pp.371-380, 2010.
DOI : 10.1007/BF02577528

Y. Basha, R. , T. S. Kumar, and M. Doble, Design of biocomposite materials for bone tissue regeneration, Materials Science and Engineering: C, vol.57, pp.452-63, 2015.
DOI : 10.1016/j.msec.2015.07.016

F. Ezoddini-ardakani, Histologic evaluation of chitosan as an accelerator of bone regeneration in microdrilled rat tibias, Dent Res J, vol.2012, issue.96, pp.694-703

C. Chatelet, O. Damour, A. D. Singh, and R. S. , Influence of the degree of acetylation on some biological properties of chitosan films Recent insights on applications of pullulan in tissue engineering, Biomaterials Carbohydr Polym, vol.22, issue.79 153, pp.261-269, 2001.

H. Aydogdu, Pullulan microcarriers for bone tissue regeneration, Materials Science and Engineering: C, vol.63, pp.439-488, 2016.
DOI : 10.1016/j.msec.2016.03.002

A. Autissier, D. Letourneur, and C. L. Visage, Pullulan-based hydrogel for smooth muscle cell culture, Journal of Biomedical Materials Research Part A, vol.27, issue.2, pp.336-378, 2007.
DOI : 10.1002/jbm.a.30998

K. C. Cheng, A. Demirci, J. M. Huh, and M. S. , Pullulan: biosynthesis, production, and applications Polysaccharide-based Nanoparticles for Gene Delivery A chitosan/dextran-based hydrogel as a delivery vehicle of human bone-marrow derived mesenchymal stem cells The evaluation of a small-diameter polysaccharide-based arterial graft in rats, Appl Microbiol Biotechnol Top Curr Chem (J) Biomed Mater Biomaterials, vol.92, issue.12332, pp.29-44, 2006.

S. Frasca, Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats, Bone tissue engineering: state of the union, pp.35-6100, 2014.
DOI : 10.1016/j.ymeth.2015.03.002

A. C. Lorenzo and E. R. Caffarena, Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics, Journal of Biomechanics, vol.38, issue.7, pp.38-1527, 2005.
DOI : 10.1016/j.jbiomech.2004.07.011

Y. Liu, J. Lim, and S. H. Teoh, Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering, Biotechnology Advances, vol.31, issue.5, pp.31-688, 2013.
DOI : 10.1016/j.biotechadv.2012.10.003

J. Henkel, Bone Regeneration Based on Tissue Engineering Conceptions ??? A 21st Century Perspective, Bone Research, vol.2013, issue.3, pp.216-264, 2013.
DOI : 10.1155/2013/153640

D. Mondal, M. Griffith, and S. S. Venkatraman, Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges, International Journal of Polymeric Materials and Polymeric Biomaterials, vol.10, issue.5, pp.65-255, 2016.
DOI : 10.1021/am501714k

J. M. Williams, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials, vol.26, issue.23, pp.4817-4844, 2005.
DOI : 10.1016/j.biomaterials.2004.11.057

C. Makarov, In??situ synthesis of calcium phosphate-polycaprolactone nanocomposites with high ceramic volume fractions, Journal of Materials Science: Materials in Medicine, vol.81, issue.6, pp.1771-1780, 2010.
DOI : 10.1038/labinvest.3780385

S. Ghanaati, Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts, Journal of Tissue Engineering and Regenerative Medicine, vol.28, issue.27, pp.136-179, 2011.
DOI : 10.1016/j.biomaterials.2007.05.032

S. Konopnicki, Tissue-engineered bone with 3-dimensionally printed ?-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model Effects of strontium in modified biomaterials, J Oral Maxillofac Surg Acta Biomater, vol.73, issue.72, pp.800-808, 2011.

H. Autefage, S. Rôle-ostéoinducteur, A. R. Whittington, A. S. Goldstein-sun, and L. , apatite carbonatée nanocristalline sur des céramiques de phosphate de calcium biphasiqueRôle ostéoinducteur d'un revêtement d'apatite carbonatée nanocristalline sur des céramiques de phosphate de calcium biphasique, in Sciences de la matière Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs, Acta Biomater Acta Biomater, vol.2013, issue.42, pp.8037-8082, 2010.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: An update, Injury, vol.36, issue.3, pp.20-27, 2005.
DOI : 10.1016/j.injury.2005.07.029

H. Autefage, Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics, J Biomed Mater Res B Appl Biomater, issue.2, pp.91-706, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410432

S. Cazalbou, Poorly crystalline apatites: evolution and maturation in vitro and in vivo, Journal of Bone and Mineral Metabolism, vol.22, issue.4, pp.310-317, 2004.
DOI : 10.1007/s00774-004-0488-0

S. Miguel and B. , Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds, Journal of Biomedical Materials Research Part A, vol.86, issue.4, pp.1023-1056, 2010.
DOI : 10.1002/jbm.a.32773

A. R. Silva, Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells, Journal of Biomedical Materials Research Part A, vol.15, issue.1, pp.818-845, 2014.
DOI : 10.1089/ten.tec.2007.0334

F. Baino, G. Novajra, C. Vitale-brovarone, and L. L. Hench, Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering Bonding mechanisms at the interface of ceramic prosthetic materials, Front Bioeng Biotechnol Journal of Biomedical Materials Research, vol.3, issue.5 6, pp.202-117, 1971.

V. Krishnan and T. Lakshmi, Bioglass: A novel biocompatible innovation, Journal of Advanced Pharmaceutical Technology & Research, vol.4, issue.2, pp.78-83, 2013.
DOI : 10.4103/2231-4040.111523

M. Niinomi, Biomedical titanium alloys with Young???s moduli close to that of cortical bone, Regenerative Biomaterials, vol.3, issue.3, pp.173-85, 2016.
DOI : 10.1093/rb/rbw016

S. Amin-yavari, Bone regeneration performance of surface-treated porous titanium, Biomaterials, vol.35, issue.24, pp.6172-81, 2014.
DOI : 10.1016/j.biomaterials.2014.04.054

F. Matassi, Porous metal for orthopedics implants Clin Cases Miner Bone Metab Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration, Dent Mater, vol.10, issue.1123, pp.111-116, 2013.

A. Dupret-bories, Development of surgical protocol for implantation of tracheal prostheses in sheep, The Journal of Rehabilitation Research and Development, vol.48, issue.7, pp.851-64, 2011.
DOI : 10.1682/JRRD.2010.10.0194

G. Ryan, A. Pandit, and D. P. , Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, issue.13, pp.27-2651, 2006.

J. P. Li, Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials, vol.28, issue.18, pp.2810-2830, 2007.
DOI : 10.1016/j.biomaterials.2007.02.020

S. Bose, M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology, vol.30, issue.10, pp.546-54, 2012.
DOI : 10.1016/j.tibtech.2012.07.005

K. Y. Lee, E. Alsberg, and D. J. Mooney, Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering, Journal of Biomedical Materials Research, vol.31, issue.2, pp.228-261, 2001.
DOI : 10.1016/S0169-409X(97)00126-9

J. L. Drury and D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, vol.24, issue.24, pp.4337-51, 2003.
DOI : 10.1016/S0142-9612(03)00340-5

B. H. Fellah, Bone repair using a new injectable self-crosslinkable bone substitute, Journal of Orthopaedic Research, vol.254, issue.4, pp.628-663, 2006.
DOI : 10.1159/000419232

URL : https://hal.archives-ouvertes.fr/inserm-00170238

G. Daculsi, Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels, Journal of Materials Science: Materials in Medicine, vol.396, issue.398, pp.855-61, 2010.
DOI : 10.1533/9781845694227.2.438

M. Maisani, Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? 8: p. 2041731417712073. 123 Freeze-casting for PLGA/carbonated apatite composite scaffolds: Structure and properties Nano-hydroxyapatite composite biomaterials for bone tissue engineering-a review, J Tissue Eng Mater Sci Eng C Mater Biol Appl J Biomed Nanotechnol, vol.77, issue.12410, pp.731-738, 2014.

C. B. Danoux, Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials, Acta Biomaterialia, vol.17, pp.1-15, 2015.
DOI : 10.1016/j.actbio.2015.02.003

J. C. Fricain, A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering, Biomaterials PLoS One Int J Biol Macromol, vol.34, issue.2014 910, pp.2947-59, 2013.

M. Fritz, Flat pearls from biofabrication of organized composites on inorganic substrates, Nature, vol.371, issue.6492, pp.371-420, 1994.
DOI : 10.1038/371049a0

H. Kang, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity 131. NIH. Regenerative Medicine Program Available from: https://commonfund.nih.gov/stemcells. 132 The scaffold microenvironment for stem cell based bone tissue engineering Cell therapy for bone repair, Biomater Sci, 2017. 133. Rosset, P., F. Deschaseaux, and P. Layrolle, pp.312-319, 2014.

Y. Watanabe, Stem cell therapy: is there a future for reconstruction of large bone defects? Injury, 2016, pp.47-51

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Critical Reviews?? in Biomedical Engineering, vol.40, issue.5, pp.40-363, 2012.
DOI : 10.1615/CritRevBiomedEng.v40.i5.10

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766369/pdf

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-76, 2006.
DOI : 10.1016/j.cell.2006.07.024

F. Bastami, Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review, Cell Proliferation, vol.134, issue.2, p.50, 2017.
DOI : 10.1242/dev.02880

D. Sheyn, Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects, STEM CELLS Translational Medicine, vol.20, issue.(Nov):, pp.1447-1460, 2016.
DOI : 10.1038/sj.onc.1204962

G. Mathilde and I. , Cellules pluripotentes induites (IPS) Available from: https://www.inserm.fr/thematiques/biologie-cellulaire-developpement-et-evolution/dossiers-d- information/cellules-pluripotentes-induites-ips, 2013.

W. L. Grayson, Stromal cells and stem cells in clinical bone regeneration, Nature Reviews Endocrinology, vol.86, issue.3, pp.140-50, 2015.
DOI : 10.1016/j.biomaterials.2008.09.065

R. Pytlík, Efficacy and safety of human mesenchymal stromal cells in healing of critical-size bone defects in immunodeficient rats, Physiol Res, vol.66, issue.1, pp.113-123, 2017.

C. S. Soltanoff, Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells, Critical Reviews??? in Eukaryotic Gene Expression, vol.19, issue.1, pp.1-46, 2009.
DOI : 10.1615/CritRevEukarGeneExpr.v19.i1.10

J. Stanovici, Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery, Current Research in Translational Medicine, vol.64, issue.2, pp.83-90, 2016.
DOI : 10.1016/j.retram.2016.04.006

V. Tirino, Identification, Isolation, Characterization, and Banking of Human Dental Pulp Stem Cells, Methods Mol Biol, vol.879, pp.443-63, 2012.
DOI : 10.1007/978-1-61779-815-3_26

F. Paino, Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering, Clinical Science, vol.131, issue.8, pp.131-699, 2017.
DOI : 10.1042/CS20170047

H. Aksel and G. T. Huang, Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells In??Vitro, Journal of Endodontics, vol.43, issue.6, pp.43-930, 2017.
DOI : 10.1016/j.joen.2017.01.036

N. Wongsupa, Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(?-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: a comparative study Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts, ): p. 77. 148. Zajdel, pp.365-369, 2010.

F. Saxer, Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study, STEM CELLS, vol.35, issue.12, pp.34-2956, 2016.
DOI : 10.1016/j.biomaterials.2014.05.016

P. Monsarrat, Comprehensive Mapping and Multiscale Analysis of Registered Trials for Stem Cell-Based Regenerative Medicine The role of vasculature in bone development, regeneration and proper systemic functioning The vascular contribution to osteogenesis. I. Studies by the injection method, 155. BROOKES, M., CORTICAL VASCULARIZATION AND GROWTH IN FOETAL TUBULAR BONES, pp.826-861, 1960.

T. J. Thompson, P. D. Owens, and D. J. Wilson, Intramembranous osteogenesis and angiogenesis in the chick embryo, J Anat, issue.166, pp.55-65, 1989.

M. Marenzana and T. R. Arnett, The Key Role of the Blood Supply to Bone, Bone Research, vol.9, issue.3, pp.203-218, 2013.
DOI : 10.1161/ATVBAHA.110.203935

S. Stegen, N. Van-gastel, and G. Carmeliet, Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration, Bone, vol.70, pp.19-27, 2015.
DOI : 10.1016/j.bone.2014.09.017

M. W. Laschke and M. D. Menger, Prevascularization in tissue engineering: Current concepts and future directions, Biotechnology Advances, vol.34, issue.2, pp.112-133, 2016.
DOI : 10.1016/j.biotechadv.2015.12.004

J. N. Guerrero, Devenir des cellules souches mésenchymateuses humaines dans un environnement tridimensionnel : application à l'ingénierie du tissu osseux, in Biologie Cellulaire The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs, Tissue Eng Part A, issue.7, pp.16-2355, 2010.

M. Grellier, Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells, Journal of Cellular Biochemistry, vol.158, issue.3, pp.390-398, 2009.
DOI : 10.1016/S0002-9440(10)64058-8

J. Guerrero, The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis, Tissue Engineering Part A, vol.21, issue.5-6, pp.5-6, 2015.
DOI : 10.1089/ten.tea.2014.0367

W. L. Fu, Coculture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress, Tissue Eng Part A Bone, vol.21, issue.166 2, pp.5-6, 2011.

M. R. Urist, Bone: Formation by Autoinduction, Science, vol.150, issue.3698, pp.893-902, 1965.
DOI : 10.1126/science.150.3698.893

L. Schorn, Vertical bone regeneration using rhBMP-2 and VEGF. Head Face Med Strategies for delivering bone morphogenetic protein for bone healing, Mater Sci Eng C Mater Biol Appl, vol.13, issue.1, pp.70-856, 2017.
DOI : 10.1186/s13005-017-0146-0

URL : https://doi.org/10.1186/s13005-017-0146-0

S. Kargozar, Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7, Materials Science and Engineering: C, vol.75, pp.75-688, 2017.
DOI : 10.1016/j.msec.2017.02.097

D. Gothard, Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man, European Cells and Materials, vol.28, pp.166-207, 2014.
DOI : 10.22203/eCM.v028a13

A. W. James, A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2, Tissue Engineering Part B: Reviews, vol.22, issue.4, pp.284-97, 2016.
DOI : 10.1089/ten.teb.2015.0357

R. Guillot, Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle, Acta Biomaterialia, vol.36, pp.310-332, 2016.
DOI : 10.1016/j.actbio.2016.03.010

URL : https://hal.archives-ouvertes.fr/hal-01465575

K. Hu and B. R. Olsen, The roles of vascular endothelial growth factor in bone repair and regeneration, Bone, vol.91, pp.30-38, 2016.
DOI : 10.1016/j.bone.2016.06.013

A. Koç, Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies, J Biomater Appl, issue.5, pp.29-748, 2014.

D. Kaigler, Transplanted Endothelial Cells Enhance Orthotopic Bone Regeneration, Journal of Dental Research, vol.85, issue.7, pp.633-640, 2006.
DOI : 10.1177/154405910608500710

F. Liu, In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering, Journal of Materials Science: Materials in Medicine, vol.281, issue.3, pp.683-92, 2011.
DOI : 10.1359/jbmr.2003.18.10.1813

H. Peng, VEGF Improves, Whereas sFlt1 Inhibits, BMP2-Induced Bone Formation and Bone Healing Through Modulation of Angiogenesis, Journal of Bone and Mineral Research, vol.83, issue.Suppl 1, pp.2017-2044, 2005.
DOI : 10.1097/00003086-199801000-00006

D. L. Cochran, A Randomized Clinical Trial Evaluating rh-FGF-2/??-TCP in Periodontal Defects, Journal of Dental Research, vol.18, issue.1, pp.95-523, 2016.
DOI : 10.1177/00220345010800121001

Z. Gu, Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering, Journal of Materials Science: Materials in Medicine, vol.99, issue.41, pp.1251-60, 2013.
DOI : 10.1073/pnas.152324099

M. Supová, Isolation and Preparation of Nanoscale Bioapatites from Natural Sources: A Review, Journal of Nanoscience and Nanotechnology, vol.14, issue.1, pp.546-63, 2014.
DOI : 10.1166/jnn.2014.8895

L. Bertinetti, Surface Characteristics of Nanocrystalline Apatites: Effect of Mg Surface Enrichment on Morphology, Surface Hydration Species, and Cationic Environments, Langmuir, vol.25, issue.10, pp.25-5647, 2009.
DOI : 10.1021/la804230j

A. Mansour, Extracellular Matrices for Bone Regeneration: A Literature Review, Manipulation of Mg(2+)-Ca(2+) Switch on the Development of Bone Mimetic Hydroxyapatite, pp.15698-15710, 2017.
DOI : 10.1089/ten.tea.2017.0026

B. Huang, Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface. Sci Rep An in vitro study into the effect of zinc substituted hydroxyapatite on osteoclast number and activity, J Biomed Mater Res A, issue.11, pp.102-4136, 2014.

E. S. Thian, Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, Journal of Materials Science: Materials in Medicine, vol.19, issue.2, pp.437-482, 2013.
DOI : 10.1007/s10856-008-3444-z

D. Hu, Different response of osteoblastic cells to Mg(2+) Zn(2+) and Sr(2+) doped calcium silicate coatings Synthesis, characterization and biological evaluation of strontium/magnesium-cosubstituted hydroxyapatite, J Mater Sci Mater Med J Biomater Appl, vol.27, issue.31, pp.31-140, 2016.

W. Querido, A. L. Rossi, and M. Farina, The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches, Micron, vol.80, pp.122-156, 2016.
DOI : 10.1016/j.micron.2015.10.006

M. M. Almeida, Strontium ranelate increases osteoblast activity, Tissue and Cell, vol.48, issue.3, pp.183-191, 2016.
DOI : 10.1016/j.tice.2016.03.009

A. D. Bakker, B. Zandieh-doulabi, and J. Klein-nulend, Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts, Bone, vol.53, issue.1, pp.112-121, 2013.
DOI : 10.1016/j.bone.2012.11.044

D. P. Wornham, Strontium potently inhibits mineralisation in bone-forming primary rat osteoblast cultures and reduces numbers of osteoclasts in mouse marrow cultures, Osteoporosis International, vol.25, issue.7, pp.25-2477, 2014.
DOI : 10.1007/s00198-013-2583-3

M. Pilmane, Strontium and strontium ranelate: Historical review of some of their functions, Materials Science and Engineering: C, vol.78, pp.1222-1230, 2017.
DOI : 10.1016/j.msec.2017.05.042

D. Goltzman and G. N. Hendy, The calcium-sensing receptor in bone???mechanistic and therapeutic insights, Nature Reviews Endocrinology, vol.80, issue.5, pp.298-307, 2015.
DOI : 10.1016/j.beem.2013.02.008

L. Cianferotti, The calcium-sensing receptor in bone metabolism: from bench to bedside and back, Osteoporosis International, vol.157, issue.Suppl 1, pp.26-2055, 2015.
DOI : 10.1111/j.1476-5381.2009.00305.x

N. Takahashi, S 12911-2 Inhibits Osteoclastic Bone Resorption In Vitro, Journal of Bone and Mineral Research, vol.251, issue.Suppl 1, pp.1082-1089, 2003.
DOI : 10.1359/jbmr.2003.18.6.1082

E. Bonnelye, Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone, vol.42, issue.1, pp.129-167, 2008.
DOI : 10.1016/j.bone.2007.08.043

A. S. Hurtel-lemaire, The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro, J Biol Chem Bone, vol.284, issue.16, pp.18-517, 1996.

Y. Li, Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells, Biochemical and Biophysical Research Communications, vol.418, issue.4, pp.725-755, 2012.
DOI : 10.1016/j.bbrc.2012.01.088

J. Zhou, L. Zhao, M. Sr, and Y. , Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles Methodological Consideration of Various Intraosseous and Heterotopic Bone Grafts Implantation in Animal Models: the development of bones, Mater Sci Eng C Mater Biol Appl J Tissue Sci Eng, vol.207, 2015.

I. Valdivia-gandur, Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes The genetic basis for skeletal diseases, Head Face Med Nature, vol.12, issue.16937, pp.423-343, 2003.

P. Habibovic and K. De-groot, Osteoinductive biomaterials???properties and relevance in bone repair, Journal of Tissue Engineering and Regenerative Medicine, vol.9, issue.1, pp.25-32, 2007.
DOI : 10.2330/joralbiosci1965.32.190

Z. Yang, Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals, Biomaterials, vol.17, issue.22, pp.17-2131, 1996.
DOI : 10.1016/0142-9612(96)00044-0

M. A. Scott, Brief Review of Models of Ectopic Bone Formation, Stem Cells and Development, vol.21, issue.5, pp.655-67, 2012.
DOI : 10.1089/scd.2011.0517

S. Wechsler, A novel, tissue occlusive poly(ethylene glycol) hydrogel material, Journal of Biomedical Materials Research Part A, vol.31, issue.2, pp.285-92, 2008.
DOI : 10.1021/bk-1997-0680.ch004

M. R. Urist and B. S. Strates, Bone Morphogenetic Protein, Journal of Dental Research, vol.28, issue.6, pp.1392-406, 1971.
DOI : 10.1136/ard.28.3.213

G. Asatrian, L. Chang, and A. W. James, Muscle Pouch Implantation: An Ectopic Bone Formation Model, Methods Mol Biol, pp.185-91, 1213.
DOI : 10.1007/978-1-4939-1453-1_15

V. F. Véronique, Caractérisation d'un modèle de résection segmentaire diaphysaire de grande taille chez la brebis Application à l'étude de deux matériaux de substitution osseuse Ecole nationale vétérinaire d'Alfort. p. 101. 218. van Griensven, M., Preclinical testing of drug delivery systems to bone Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow, Adv Drug Deliv Rev J Orthop Res, vol.21, issue.3, pp.521-529, 1997.

J. Zheng, Systematic modification and evaluation of a canine model for elevation of the floor of the maxillary sinus Available from Functional reconstruction of the non-human primate mandible using recombinant human bone morphogenetic protein-2, Br J Oral Maxillofac Surg Sakl?d?r, T.H. Sinus Lifting. Int J Oral Maxillofac Surg, vol.52, issue.2213, pp.784-792, 2002.

B. Du, Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo, Int J Nanomedicine, issue.10, pp.2555-65, 2015.

A. H. Dorafshar, Reconstruction of Porcine Critical-Sized Mandibular Defects with Free Fibular Flaps: The Development of a Craniomaxillofacial Surgery Model, Journal of Reconstructive Microsurgery, vol.30, issue.04, pp.241-249, 2014.
DOI : 10.1055/s-0033-1356552

M. Abu-serriah, Mechanical evaluation of mandibular defects reconstructed using osteogenic protein-1 (rhOP-1) in a sheep model: a critical analysis, International Journal of Oral and Maxillofacial Surgery, vol.34, issue.3, pp.287-93, 2005.
DOI : 10.1016/j.ijom.2004.09.008

X. Struillou, Experimental animal models in periodontology: a review, Open Dent J, issue.4, pp.37-47, 2010.

L. Gallego, Repair of segmental mandibular bone defects in sheep using bone marrow stromal cells and autologous serum scaffold: a pilot study, Journal of Clinical Periodontology, vol.20, issue.Suppl. 1, pp.42-1143, 2015.
DOI : 10.22203/eCM.v020a10

A. I. Pearce, Animal models for implant biomaterial research in bone: a review, Eur Cell Mater, vol.13, pp.1-10, 2007.

Y. Li, Bone defect animal models for testing efficacy of bone substitute biomaterials, Journal of Orthopaedic Translation, vol.3, issue.3, pp.95-104, 2006.
DOI : 10.1016/j.jot.2015.05.002

E. Newman, A. S. Turner, and J. D. Wark, The potential of sheep for the study of osteopenia: Current status and comparison with other animal models, Bone, vol.16, issue.4, pp.277-284, 1995.
DOI : 10.1016/S8756-3282(95)80121-9

M. Aido, Effect of in vivo loading on bone composition varies with animal age, Experimental Gerontology, vol.63, pp.48-58, 2015.
DOI : 10.1016/j.exger.2015.01.048

C. Lalande, N. J. Macintyre, A. L. Lorbergs, and A. M. , Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms Relations between radiograph texture analysis and microcomputed tomography in two rat models of bone metastases, Sciences Physiother Can Eur Cell Mater Cells Tissues Organs, vol.235, issue.182, pp.191-202, 2006.

L. Nihouannen and D. , Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite, Journal of Materials Science: Materials in Medicine, vol.22, issue.Suppl 1, pp.667-75, 2008.
DOI : 10.1016/S1010-5182(02)00143-9

G. M. Campbell, A. Sophocleous, and H. , Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation, Acta Biomater, vol.54, pp.377-385, 2017.

A. Lee, Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D An Improved Immunostaining and Imaging Methodology to Determine Cell and Protein Distributions within the Bone Environment, Biomater Sci J Histochem Cytochem, issue.3, pp.64-168, 2016.

M. Yang, Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy. Sci Rep A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials, vol.7, issue.112, pp.34-2947, 2013.

C. I. Boissard, Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering, Acta Biomaterialia, vol.5, issue.9, pp.3316-3343, 2009.
DOI : 10.1016/j.actbio.2009.05.001

K. Maji, Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength, Journal of Biomaterials Science, Polymer Edition, vol.15, issue.16, pp.26-1190, 2015.
DOI : 10.1016/j.biomaterials.2006.07.034

F. Ghorbani, H. Nojehdehian, and A. Zamanian, Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications, Materials Science and Engineering: C, vol.69, pp.208-228, 2016.
DOI : 10.1016/j.msec.2016.06.079

J. Guerrero, Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis, Acta Biomaterialia, vol.9, issue.9, pp.8200-8213, 2013.
DOI : 10.1016/j.actbio.2013.05.025

M. Roy, Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption, Biomater. Sci., vol.5, issue.1, 2013.
DOI : 10.1016/j.actbio.2008.11.032

P. Nielsen and S. , The biological role of strontium, Bone, vol.35, issue.3, pp.583-591, 2004.
DOI : 10.1016/j.bone.2004.04.026

A. S. Greenwald, Bone-Graft Substitutes: Facts, Fictions, and Applications, The Journal of Bone and Joint Surgery-American Volume, vol.83, issue.2 2, pp.98-103, 2001.
DOI : 10.2106/00004623-200100022-00007

C. Delloye, Bone allografts: What they can offer and what they cannot Scaffold design for bone regeneration, J Bone Joint Surg Br J Nanosci Nanotechnol, vol.89, issue.141, pp.574-583, 2007.

D. W. Hutmacher, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, Journal of Tissue Engineering and Regenerative Medicine, vol.28, issue.4, pp.245-60, 2007.
DOI : 10.1002/jbm.b.30331

R. A. Carano and E. H. Filvaroff, Angiogenesis and bone repair, Drug Discovery Today, vol.8, issue.21, pp.980-989, 2003.
DOI : 10.1016/S1359-6446(03)02866-6

D. C. Beachler, Bone Morphogenetic Protein Use and Cancer Risk Among Patients Undergoing Lumbar Arthrodesis, The Journal of Bone and Joint Surgery, vol.98, issue.13, pp.98-1064, 2016.
DOI : 10.2106/JBJS.15.01106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928039/pdf

K. Kim and J. P. Fisher, Nanoparticle technology in bone tissue engineering, Journal of Drug Targeting, vol.300, issue.1, pp.241-52, 2007.
DOI : 10.1016/S0142-9612(02)00635-X

F. Munarin, Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites, International Journal of Biological Macromolecules, vol.72, pp.199-209, 2015.
DOI : 10.1016/j.ijbiomac.2014.07.050

N. Vandecandelaere, C. Rey, C. Drouet, and S. , Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature, J Mater Sci Mater Med IRBM, vol.23, issue.114, pp.31-226, 2010.

E. Tayton, A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study, J Biomed Mater Res A, issue.8, pp.102-2613, 2014.

S. C. Cox, Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation, Materials Science and Engineering: C, vol.35, issue.14, pp.106-120, 2010.
DOI : 10.1016/j.msec.2013.10.015

P. J. Marie, Strontium Ranelate in Osteoporosis and Beyond: Identifying Molecular Targets in Bone Cell Biology, Molecular Interventions, vol.10, issue.5, pp.305-317, 2010.
DOI : 10.1124/mi.10.5.7

E. Landi, Sr-substituted hydroxyapatites for osteoporotic bone replacement, Acta Biomaterialia, vol.3, issue.6, pp.961-970, 2007.
DOI : 10.1016/j.actbio.2007.05.006

Y. Li, Cancellous bone response to strontium-doped hydroxyapatite in osteoporotic rats, Journal of Applied Biomaterials & Functional Materials, vol.13, issue.1, pp.28-34, 2015.
DOI : 10.5301/jabfm.5000168

C. Lindahl, Incorporation of active ions into calcium phosphate coatings, their release behavior and mechanism, Biomedical Materials, vol.7, issue.4, p.45018, 2012.
DOI : 10.1088/1748-6041/7/4/045018

C. Lindahl, The influence of Sr content in calcium phosphate coatings, Materials Science and Engineering: C, vol.53, pp.322-352, 2015.
DOI : 10.1016/j.msec.2015.04.015

V. Aina, Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells, Materials Science and Engineering: C, vol.33, issue.3, pp.1132-1174, 2013.
DOI : 10.1016/j.msec.2012.12.005

D. Gopi, Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells, Colloids and Surfaces B: Biointerfaces, vol.114, pp.234-274, 2014.
DOI : 10.1016/j.colsurfb.2013.10.011

V. Nardone, In Vitro Effects of Strontium on Proliferation and Osteoinduction of Human Preadipocytes Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities, Stem Cells Int Acta Biomater, pp.31-388, 2015.

Y. W. Chen, In??vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs, Journal of Materials Science: Materials in Medicine, vol.109, issue.Suppl 1, pp.2655-62, 2008.
DOI : 10.1089/ten.2004.10.1536

I. Elgali, Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events, Acta Biomaterialia, vol.29, pp.409-432, 2016.
DOI : 10.1016/j.actbio.2015.10.005

URL : https://doi.org/10.1016/j.actbio.2015.10.005

M. Frasnelli, Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration, Materials Science and Engineering: C, vol.71, pp.653-662, 2017.
DOI : 10.1016/j.msec.2016.10.047

D. Robert, Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells, Biomaterials, vol.31, issue.7, pp.31-1586, 2010.
DOI : 10.1016/j.biomaterials.2009.11.014

A. Autissier, Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process, Acta Biomaterialia, vol.6, issue.9, pp.3640-3648, 2010.
DOI : 10.1016/j.actbio.2010.03.004

A. R. Boyd, The deposition of strontium-substituted hydroxyapatite coatings, Materials science & engineering. C, Materials for biological applications, pp.65-281, 2015.
DOI : 10.1016/j.biomaterials.2010.01.002

S. Tadier, Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.5, issue.195, pp.378-90, 2012.
DOI : 10.1016/j.actbio.2008.11.032

E. Boanini, Osteopenic bone cell response to strontium-substituted hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol.20, issue.9, pp.2079-88, 2011.
DOI : 10.1007/s00198-008-0728-6

U. Thormann, Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats, Biomaterials, vol.34, issue.34, pp.8589-98, 2013.
DOI : 10.1016/j.biomaterials.2013.07.036

H. Valiense, evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.86, issue.2, pp.274-82, 2016.
DOI : 10.1016/j.biomaterials.2004.10.032

S. Chandran, Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model, Journal of Biomaterials Applications, vol.93, issue.4, pp.499-509, 2016.
DOI : 10.1002/jbmr.141

K. Lin, Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics, Biomaterials, vol.34, issue.38, pp.10028-10070, 2013.
DOI : 10.1016/j.biomaterials.2013.09.056

X. Luo, Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits, Acta Biomaterialia, vol.26, pp.331-338, 2015.
DOI : 10.1016/j.actbio.2015.07.044

S. Chandran, Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model, Journal of Biomaterials Applications, vol.93, issue.4, pp.499-509, 2016.
DOI : 10.1002/jbmr.141

P. Gao, Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo, Scientific Reports, vol.33, issue.1, p.23367, 2016.
DOI : 10.1016/j.msec.2012.12.041

M. Schumacher, A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA- TCP in vivo Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-betaTCP: animal model study and preliminary results in patients, Acta Biomater J Orthop Res Int J Oral Maxillofac Surg, vol.27, issue.29412, pp.9547-57, 2009.

C. Mégevand, P. Pasche, and B. Jaques, [Long-term complications of radiotherapy after mandibular reconstruction with vascularized bnoe graft], Schweiz Med Wochenschr, pp.109-111, 2000.

D. Letourneur, L. V. Catherine, and S. M. Derkaoui, <invention-title lang="EN" load-source="patentoffice" mxw-id="PT183583861" style="color: rgb(34, 34, 34); font-family: Arial, sans-serif; font-size: 21px; font-weight: bold; background-color: rgb(255, p.255, 2016.

R. L. Whalen, The Effects of Radiation Therapy on the Tissue Capsule of Soft Tissue Implants, ASAIO Journal, vol.40, issue.3, pp.365-70, 1994.
DOI : 10.1097/00002480-199407000-00024

J. Glienke, Differential gene expression by endothelial cells in distinct angiogenic states, European Journal of Biochemistry, vol.284, issue.Suppl. 3, pp.2820-2850, 2000.
DOI : 10.1126/science.284.5420.1664

D. Liu, Distinct molecular basis for endothelial differentiation: Gene expression profiles of human mesenchymal stem cells versus umbilical vein endothelial cells, Cellular Immunology, vol.289, issue.1-2, pp.7-14, 2014.
DOI : 10.1016/j.cellimm.2014.01.007

N. Healing and . Bone, Soft Tissue to Different Abutment Biomaterials and the Impact on Marginal Bone Loss dental implants| Zirconia abutments| Titanium Abutments| cad-cam acrylic abutments| Subcrestal| platform-switch| one-time one-abutment| Torque 20 n/cm2 2016, 2005.

. Aluspray, . Vetoquinol, and F. ). Lure, Animals were given a subcutaneous injection of a cephalosporin antibiotic (cefazoline 006 mg/kg) and an opioid painkiller (buprenorphine 005 mg/kg) during the procedure and the day after. The group was split in two In these preliminarydata, the irradiation started 3 weeks after spacer insertion External Beam RadioTherapy (EBRT) was delivered at PRECI, an experimental veterinary radiotherapy platform (Villeneuve d'ASCQ, France.). An orthovoltage X-ray source (PANTAK, THERAPAX DXT 300, Gulmay Medical, Camberley, Surrey, UK) was used for the delivery of a 100kV low-energy photon beam. Rats were treated individually, under isoflurane anaesthesia, in a dorsal recumbency. A 5-cm circular applicator (SSD 30cm; 3-cm efficient field width) was directed, as a single field, on the bone defect over the medial aspect of each left and right hind limb. For each field, a 3-mm sheet of lead blocked the ipsilateral aspect of the pelvis, The skin was closed with Michel staples and then covered with aluminum spray Twenty-five daily fractions (5-day week) of 2 Gray were administered to the implant (skin dose of 2.2 Gy) for a total dose, p.50

. Gray, During EBRT procedure and the period between EBRT and euthanasia, rats were evaluated every day, and weighted weekly. Irradiation related complications were screened: local skin inflammation, wound complication

H. and H. Matrix, After the EBRT procedure defects were opened and spacers were removed. Cavities were filled with the beads of The defect has been closed following the same procedure than for the first step of surgery. Rats were sacrificed 12 weeks after the second surgery with a CO2 overdose. Samples were placed in a 4% (w/v) paraformaldehyde solution for 24 hours, then kept in 0.1 M PBS pH 7.4 at 4°C for µCT and histological analysis. The chronological processus of this technique is presented in Figure 53