K. Jake, . Aggarwal, S. Michael, and . Ryoo, Human activity analysis: A review, In: ACM Computing Surveys (CSUR), vol.433, p.16, 2011.

K. Jake, L. Aggarwal, and . Xia, Human activity recognition from 3d data: A review, Pattern Recognition Letters, vol.48, pp.70-80, 2014.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Geometric Means in a Novel Vector Space Structure on Symmetric Positive???Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.29, issue.1, pp.328-347, 2007.
DOI : 10.1137/050637996

URL : https://hal.archives-ouvertes.fr/inria-00616031

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors, Magnetic resonance in medicine 56, pp.411-421, 2006.
DOI : 10.1002/mrm.20965

URL : https://hal.archives-ouvertes.fr/inria-00502678

S. Belongie, K. Branson, P. Dollar, and V. Rabaud, Monitoring animal behavior in the smart vivarium " . In: Measuring Behavior. Wageningen The Netherlands, pp.70-72, 2005.

V. Bettadapura, G. Schindler, T. Plötz, and I. Essa, Augmenting Bag-of-Words: Data-Driven Discovery of Temporal and Structural Information for Activity Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2619-2626, 2013.
DOI : 10.1109/CVPR.2013.338

V. Bloom, D. Makris, and V. Argyriou, G3D: A gaming action dataset and real time action recognition evaluation framework, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.7-12
DOI : 10.1109/CVPRW.2012.6239175

E. Bondi, L. Seidenari, D. Andrew, A. D. Bagdanov, and . Bimbo, Real-time people counting from depth imagery of crowded environments, 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.337-342
DOI : 10.1109/AVSS.2014.6918691

K. Boukharouba, L. Bako, and S. Lecoeuche, Temporal video segmentation using a switched affine models identification technique, 2010 2nd International Conference on Image Processing Theory, Tools and Applications, pp.157-160, 2010.
DOI : 10.1109/IPTA.2010.5586767

N. Bourbaki, Lie groups and Lie algebras: chapters 7-9, 2008.

L. Brun, G. Percannella, A. Saggese, and M. Vento, Action recognition by using kernels on aclets sequences, Computer Vision and Image Understanding, vol.144, pp.3-13, 2016.
DOI : 10.1016/j.cviu.2015.09.003

X. Cai, W. Zhou, L. Wu, J. Luo, and H. Li, Effective Active Skeleton Representation for Low Latency Human Action Recognition, IEEE Transactions on Multimedia 18, pp.141-154, 2016.
DOI : 10.1109/TMM.2015.2505089

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, p.27, 2011.
DOI : 10.1145/1961189.1961199

Y. Chang, S. Chen, and J. Huang, A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities, Research in developmental disabilities 32, pp.2566-2570, 2011.
DOI : 10.1016/j.ridd.2011.07.002

C. Chen, K. Liu, and N. Kehtarnavaz, Real-time human action recognition based on depth motion maps Journal of real-time image processing 12, pp.155-163, 2016.

S. Cherla, K. Kulkarni, A. Kale, and V. Ramasubramanian, Towards fast, view-invariant human action recognition, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.1-8, 2008.
DOI : 10.1109/CVPRW.2008.4563179

URL : http://www.cfar.umd.edu/~kale/activity1.pdf

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

H. Scott and M. Coxeter, Regular polytopes. Courier Corporation, 1973. [20] Koby Crammer and Yoram Singer On the algorithmic implementation of multiclass kernel-based vector machines, Journal of machine learning research 2, pp.265-292, 2001.

J. Walter and . Culver, On the existence and uniqueness of the real logarithm of a matrix, Proceedings of the American Mathematical Society, pp.1146-1151, 1966.

P. Naresh, R. Cuntoor, and . Chellappa, Key frame-based activity representation using antieigenvalues, Asian Conference on Computer Vision, pp.499-508, 2006.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.886-893, 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

S. Das, M. Koperski, F. Bremond, and G. Francesca, Action recognition based on a mixture of RGB and depth based skeleton, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017.
DOI : 10.1109/AVSS.2017.8078548

URL : https://hal.archives-ouvertes.fr/hal-01639504

C. De-boor, Spline toolbox for use with MATLAB: user's guide, version 3, 2005.

M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi et al., 3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold, IEEE transactions on cybernetics 45, pp.1340-1352, 2015.
DOI : 10.1109/TCYB.2014.2350774

URL : https://hal.archives-ouvertes.fr/hal-01056397

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition via Sparse Spatio-Temporal Features, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp.65-72, 2005.
DOI : 10.1109/VSPETS.2005.1570899

R. Dubey, B. Ni, and P. Moulin, A Depth Camera Based Fall Recognition System for the Elderly, International Conference Image Analysis and Recognition, pp.106-113, 2012.
DOI : 10.1007/978-3-642-31298-4_13

. Vinayak-elangovan, K. Vinod, A. Bandaru, and . Shirkhodaie, Team activity analysis and recognition based on Kinect depth map and optical imagery techniques, Signal Processing, Sensor Fusion, and Target Recognition XXI, pp.83920-83920
DOI : 10.1117/12.919946

G. Evangelidis, G. Singh, and R. Horaud, Skeletal Quads: Human Action Recognition Using Joint Quadruples, 2014 22nd International Conference on Pattern Recognition, p.2014
DOI : 10.1109/ICPR.2014.772

URL : https://hal.archives-ouvertes.fr/hal-00989725

I. Sean-ryan-fanello, G. Gori, F. Metta, and . Odone, Keep it simple and sparse: Real-time action recognition, The Journal of Machine Learning Research, vol.141, pp.2617-2640, 2013.

P. Foggia, G. Percannella, A. Saggese, and M. Vento, Recognizing Human Actions by a Bag of Visual Words, 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp.2910-2915
DOI : 10.1109/SMC.2013.496

W. Förstner and B. Moonen, A Metric for Covariance Matrices, pp.299-309, 2003.
DOI : 10.1007/978-3-662-05296-9_31

B. Fosty, C. F. Crispim-junior, J. Badie, F. Bremond, and M. Thonnat, Event recognition system for older people monitoring using an rgb-d camera " . In: ASROB-workshop on assistance and service robotics in a human environment, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904002

S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin, Instructing people for training gestural interactive systems, Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI '12, pp.1737-1746
DOI : 10.1145/2207676.2208303

URL : http://research.microsoft.com/en-us/um/people/pkohli/papers/fmkn_chi2012.pdf

D. Gehrig and T. Schultz, Selecting relevant features for human motion recognition, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761290

URL : http://csl.ira.uka.de/fileadmin/media/publication_files/icpr2008_final.pdf

E. Ghorbel, R. Boutteau, J. Boonaert, X. Savatier, and S. Lecoeuche, 3D real-time human action recognition using a spline interpolation approach, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), 2015.
DOI : 10.1109/IPTA.2015.7367097

A. Gilbert, J. Illingworth, and R. Bowden, Fast realistic multi-action recognition using mined dense spatio-temporal features, 2009 IEEE 12th International Conference on Computer Vision, pp.925-931, 2009.
DOI : 10.1109/ICCV.2009.5459335

URL : http://www.ee.surrey.ac.uk/Personal/R.Bowden/publications/ICCV09/PID950588.pdf

A. Goh and R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2008.
DOI : 10.1109/CVPR.2008.4587422

S. Hadfield and R. Bowden, Hollywood 3D: Recognizing Actions in 3D Natural Scenes, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.3398-3405, 2013.
DOI : 10.1109/CVPR.2013.436

M. Hammouche, E. Ghorbel, A. Fleury, and S. Ambellouis, Toward a Real Time View-invariant 3D Action Recognition, Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2016.
DOI : 10.5220/0005843607450754

URL : https://hal.archives-ouvertes.fr/hal-01332468

L. Hamoudi, Application de techniques d'apprentissage pour la détection et la reconnaissance d'individus, 2011.

M. Harville and D. Li, Fast, integrated person tracking and activity recognition with plan-view templates from a single stereo camera, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., p.II?II, 2004.
DOI : 10.1109/CVPR.2004.1315191

Y. Hou, Z. Li, P. Wang, and W. Li, Skeleton Optical Spectra Based Action Recognition Using Convolutional Neural Networks, IEEE Transactions on Circuits and Systems for Video Technology, 2016.
DOI : 10.1109/TCSVT.2016.2628339

E. Mohamed, M. Hussein, M. A. Torki, M. Gowayyed, and . El-saban, Human Action Recognition Using a Temporal Hierarchy of Covariance Descriptors on 3D Joint Locations, In: IJCAI, vol.13, pp.2466-2472, 2013.

S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.73-80, 2013.
DOI : 10.1109/CVPR.2013.17

G. Johansson, Visual perception of biological motion and a model for its analysis, Perception & Psychophysics, vol.4, issue.2, pp.201-211, 1973.
DOI : 10.1007/BF00410640

H. Kim, S. Lee, Y. Kim, S. Lee, D. Lee et al., Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system, Expert Systems with Applications, vol.45, pp.131-141, 2016.
DOI : 10.1016/j.eswa.2015.09.035

A. Klaser, M. Marsza?ek, and C. Schmid, A Spatio-Temporal Descriptor Based on 3D-Gradients, Procedings of the British Machine Vision Conference 2008, pp.275-276, 2008.
DOI : 10.5244/C.22.99

URL : https://hal.archives-ouvertes.fr/inria-00514853

C. Peter and K. , Cranial integration and modularity: insights into evolution and development from morphometric data, Hystrix, the Italian Journal of Mammalogy, vol.241, pp.43-58, 2013.

I. Kviatkovsky, E. Rivlin, and I. Shimshoni, Online action recognition using covariance of shape and motion, Computer Vision and Image Understanding, vol.129, pp.15-26, 2014.
DOI : 10.1016/j.cviu.2014.08.001

C. Lea, D. Gregory, R. Hager, and . Vidal, An Improved Model for Segmentation and Recognition of Fine-Grained Activities with Application to Surgical Training Tasks, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.2015-1123
DOI : 10.1109/WACV.2015.154

W. Li, Z. Zhang, and Z. Liu, Action recognition based on a bag of 3D points, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, pp.9-14, 2010.
DOI : 10.1109/CVPRW.2010.5543273

L. Liu and L. Shao, Learning Discriminative Representations from RGB-D Video Data, In: IJCAI, vol.1, p.3, 2013.

Z. Liu, C. Zhang, and Y. Tian, 3D-based Deep Convolutional Neural Network for action recognition with depth sequences, Image and Vision Computing, vol.55, pp.93-100, 2016.
DOI : 10.1016/j.imavis.2016.04.004

Y. Lu, K. Boukharouba, J. Boonaert, A. Fleury, and S. Lecoeuche, Application of an incremental SVM algorithm for on-line human recognition from video surveillance using texture and color features, Neurocomputing, vol.126, pp.132-140, 2014.
DOI : 10.1016/j.neucom.2012.08.071

URL : https://hal.archives-ouvertes.fr/hal-00988202

F. Lv and R. Nevatia, Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost, European conference on computer vision, pp.359-372, 2006.
DOI : 10.1109/CVPR.2005.58

C. Syed-zain-masood, . Ellis, F. Marshall, J. J. Tappen, L. Jr et al., Exploring the trade-off between accuracy and observational latency in action recognition, International Journal of Computer Vision, vol.1013, pp.420-436, 2013.

G. Mastorakis and D. Makris, Fall detection system using Kinect???s infrared sensor, Journal of Real-Time Image Processing 9, pp.635-646, 2014.
DOI : 10.1016/S0021-9290(00)00117-2

L. Miranda, T. Vieira, D. Martinez, T. Lewiner, W. Antonio et al., Real-Time Gesture Recognition from Depth Data through Key Poses Learning and Decision Forests, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp.268-275, 2012.
DOI : 10.1109/SIBGRAPI.2012.44

N. Neverova, C. Wolf, W. Graham, F. Taylor, and . Nebout, Multiscale deep learning for gesture detection and localization, pp.474-490, 2014.
DOI : 10.1007/978-3-319-16178-5_33

URL : https://hal.archives-ouvertes.fr/hal-01419792

F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, Sequence of the most informative joints (smij): A new representation for human skeletal action recognition, Journal of Visual Communication and Image Representation, vol.251, pp.24-38, 2014.

E. Ohn-bar and M. Trivedi, Joint Angles Similarities and HOG2 for Action Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.465-470
DOI : 10.1109/CVPRW.2013.76

URL : http://cvrr.ucsd.edu/eshed/papers/OhnBarHAU3D13.pdf

K. Onuma, C. Faloutsos, and J. K. Hodgins, FMDistance: A fast and effective distance function for motion capture data, Short Papers Proceedings of EUROGRAPHICS 2, 2008.

O. Oreifej and Z. Liu, HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.716-723
DOI : 10.1109/CVPR.2013.98

A. A. José-ramón-padilla-lópez, F. Chaaraoui, and . Flórez-revuelta, A discussion on the validation tests employed to compare human action recognition methods using the MSR action3d dataset, 2014.

Y. Pang, Y. Yuan, and X. Li, Gabor-based region covariance matrices for face recognition, IEEE Transactions on Circuits and Systems for Video Technology, pp.989-993, 2008.

G. Th-papadopoulos, A. Axenopoulos, and P. Daras, Real-Time Skeleton-Tracking-Based Human Action Recognition Using Kinect Data, pp.473-483, 2014.
DOI : 10.1007/978-3-319-04114-8_40

R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol.28, issue.6, pp.976-990, 2010.
DOI : 10.1016/j.imavis.2009.11.014

R. Qiao, L. Liu, C. Shen, and A. Van, Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition, Pattern Recognition, vol.66, 2017.
DOI : 10.1016/j.patcog.2017.01.015

H. Rahmani, A. Mahmood, D. Huynh, and A. Mian, Histogram of Oriented Principal Components for Cross-View Action Recognition, IEEE transactions, pp.2430-2443, 2016.
DOI : 10.1109/TPAMI.2016.2533389

M. Raptis, D. Kirovski, and H. Hoppe, Real-time classification of dance gestures from skeleton animation, Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, pp.147-156, 2011.
DOI : 10.1145/2019406.2019426

M. Rosenberg, A. L. Thornton, S. Brendan, B. Lay, D. Ward et al., Development of a Kinect Software Tool to Classify Movements during Active Video Gaming, PLOS ONE, vol.4, issue.1, p.159356, 2016.
DOI : 10.1371/journal.pone.0159356.s001

J. Aq-md-sabri, S. Boonaert, E. Lecoeuche, and . Mouaddib, Human action classification using surf based spatio-temporal correlated descriptors, 2012 19th IEEE International Conference on Image Processing, pp.1401-1404
DOI : 10.1109/ICIP.2012.6467131

H. Sarbolandi, D. Lefloch, and A. Kolb, Kinect range sensing: Structured-light versus Time-of-Flight Kinect, Computer Vision and Image Understanding, vol.139, pp.1-20, 2015.
DOI : 10.1016/j.cviu.2015.05.006

J. Isaac and . Schoenberg, Metric spaces and positive definite functions, In: Transactions of the American Mathematical Society, vol.443, pp.522-536, 1938.

J. Shan and S. Akella, 3D human action segmentation and recognition using pose kinetic energy, 2014 IEEE International Workshop on Advanced Robotics and its Social Impacts, pp.69-75, 2014.
DOI : 10.1109/ARSO.2014.7020983

A. Sharaf, M. Torki, E. Mohamed, M. Hussein, and . El-saban, Real-Time Multi-scale Action Detection from 3D Skeleton Data, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.998-1005
DOI : 10.1109/WACV.2015.138

Y. Shen and H. Foroosh, View-invariant action recognition using fundamental ratios, Computer Vision and Pattern Recognition, pp.1-6, 2008.

Y. Shi and Y. Wang, A Local Feature Descriptor Based on Energy Information for Human Activity Recognition, Advanced Intelligent Computing Theories and Applications, pp.311-317, 2015.
DOI : 10.1007/978-3-319-22053-6_34

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, Communications of the ACM, vol.561, pp.116-124, 2013.

P. Shukla, . Kanad-kishore-biswas, K. Prem, and . Kalra, Action Recognition using Temporal Bag-of-Words from Depth Maps, pp.41-44

R. Slama, H. Wannous, and M. Daoudi, Grassmannian Representation of Motion Depth for 3D Human Gesture and Action Recognition, 2014 22nd International Conference on Pattern Recognition, pp.3499-3504
DOI : 10.1109/ICPR.2014.602

URL : https://hal.archives-ouvertes.fr/hal-00968260

S. Sra, Positive definite matrices and the symmetric Stein divergence, 2011.

C. Tang, W. Li, C. Hou, P. Wang, Y. Hou et al., Online Action Recognition based on Incremental Learning of Weighted Covariance Descriptors, 2015.

B. Tippetts, K. Dah-jye-lee, J. Lillywhite, and . Archibald, Review of stereo vision algorithms and their suitability for resource-limited systems, Journal of Real-Time Image Processing, vol.75, issue.1, pp.5-25, 2016.
DOI : 10.1145/1186562.1015766

P. Turaga, R. Chellappa, S. Venkatramana, O. Subrahmanian, and . Udrea, Machine Recognition of Human Activities: A Survey, IEEE Transactions on Circuits and Systems for Video Technology, pp.1473-1488, 2008.
DOI : 10.1109/TCSVT.2008.2005594

O. Tuzel, F. Porikli, and P. Meer, Region Covariance: A Fast Descriptor for Detection and Classification, European conference on computer vision, pp.589-600, 2006.
DOI : 10.1109/ICCV.2003.1238382

R. Urtasun and P. Fua, 3D tracking for gait characterization and recognition, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings., pp.17-22, 2004.
DOI : 10.1109/AFGR.2004.1301503

URL : http://icwww.epfl.ch/publications/documents/IC_TECH_REPORT_200404.pdf

R. Vemulapalli, F. Arrate, and R. Chellappa, Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.588-595
DOI : 10.1109/CVPR.2014.82

R. Vidal, S. Soatto, and A. Chiuso, Applications of hybrid system identification in computer vision, Control Conference (ECC), pp.4853-4860, 2007.

J. Wang, X. Nie, Y. Xia, Y. Wu, and S. Zhu, Cross-View Action Modeling, Learning, and Recognition, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.2649-2656, 2014.
DOI : 10.1109/CVPR.2014.339

J. Wang, Z. Liu, Y. Wu, and J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1290-1297
DOI : 10.1109/CVPR.2012.6247813

P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang et al., Action Recognition From Depth Maps Using Deep Convolutional Neural Networks, IEEE Transactions on Human-Machine Systems 46, pp.498-509, 2016.
DOI : 10.1109/THMS.2015.2504550

R. Wang, H. Guo, S. Larry, Q. Davis, and . Dai, Covariance discriminative learning: A natural and efficient approach to image set classification, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp.2496-2503

D. Weinland, R. Ronfard, and E. Boyer, A survey of vision-based methods for action representation, segmentation and recognition, Computer vision and image understanding 115, pp.224-241, 2011.
DOI : 10.1016/j.cviu.2010.10.002

URL : https://hal.archives-ouvertes.fr/inria-00459653

D. Wu and L. Shao, Leveraging Hierarchical Parametric Networks for Skeletal Joints Based Action Segmentation and Recognition, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.724-731, 2014.
DOI : 10.1109/CVPR.2014.98

URL : http://lshao.staff.shef.ac.uk/pub/DBN_HMM_CVPR2014.pdf

L. Xia and J. Aggarwal, Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition Using Depth Camera, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2834-2841
DOI : 10.1109/CVPR.2013.365

URL : http://cvrc.ece.utexas.edu/lu/CVPR2013_Lu_20130918.pdf

L. Xia, C. Chen, and J. Aggarwal, View invariant human action recognition using histograms of 3D joints, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.20-27
DOI : 10.1109/CVPRW.2012.6239233

X. Yang and Y. Tian, Eigenjoints-based action recognition using naivebayes-nearest-neighbor, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on. IEEE. 2012, pp.14-19
DOI : 10.1109/cvprw.2012.6239232

X. Yang and Y. Tian, Super Normal Vector for Activity Recognition Using Depth Sequences, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.804-811
DOI : 10.1109/CVPR.2014.108

URL : http://yangxd.org/publications/papers/SNV.pdf

X. Yang, C. Zhang, and Y. Tian, Recognizing actions using depth motion maps-based histograms of oriented gradients, Proceedings of the 20th ACM international conference on Multimedia, MM '12, pp.1057-1060
DOI : 10.1145/2393347.2396382

T. Yu, T. Kim, and R. Cipolla, Real-time Action Recognition by Spatiotemporal Semantic and Structural Forests, Procedings of the British Machine Vision Conference 2010, p.6, 2010.
DOI : 10.5244/C.24.52

M. Zanfir, M. Leordeanu, and C. Sminchisescu, The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection, 2013 IEEE International Conference on Computer Vision, pp.2752-2759
DOI : 10.1109/ICCV.2013.342

X. Zhao, X. Li, C. Pang, Z. Quan, S. Sheng et al., Structured Streaming Skeleton -- A New Feature for Online Human Gesture Recognition, ACM Transactions on Multimedia Computing, Communications, and Applications, vol.11, issue.1s, pp.1-22, 2014.
DOI : 10.1109/TPAMI.2011.157

Y. Zhao, Z. Liu, L. Yang, and H. Cheng, Combing rgb and depth map features for human activity recognition, Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific. IEEE. 2012, pp.1-4

F. Zhu, L. Shao, J. Xie, and Y. Fang, From handcrafted to learned representations for human action recognition: A??survey, Image and Vision Computing, vol.55, pp.42-52, 2016.
DOI : 10.1016/j.imavis.2016.06.007

W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li et al., Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp.3697-3703, 2016.

Y. Zhu, W. Chen, and G. Guo, Fusing Spatiotemporal Features and Joints for 3D Action Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.486-491
DOI : 10.1109/CVPRW.2013.78