G. R. Irwin and J. Kies, Fracturing and fracture dynamics, Welding Journal -Research Supplement, p.95100, 1952.

J. P. Berry, Some kinetic considerations of the grith criterion of fracture-i ; eqns of motion at constant deformation, J. Mech. Phys. Solids, vol.8, p.207223, 1960.

M. Berer and G. Pinter, Determination of crack growth kinetics in non-reinforced semi-crystalline thermoplastics using the linear elastic fracture mechanics (LEFM) approach, Polymer Testing, vol.32, issue.5, p.879, 2013.
DOI : 10.1016/j.polymertesting.2013.03.022

J. W. Marc, L. E. Stolk, and . Govaert, Direct comparison of the compliance method with optical tracking of fatigue crack propagation in polymers, Polymer Testing, vol.46, pp.98-107, 2015.

R. D. Campilho, J. P. Monteiro, and E. A. Marques, Experimental estimation of the mechanical and fracture properties of a new epoxy adhesive, Appl. Adhes. Sci, p.325, 2015.

C. J. Constante, R. D. Campilho, and D. C. Moura, Tensile fracture characterization of adhesive joints by standard and optical techniques, Engineering Fracture Mechanics, vol.136, pp.292-304, 2015.
DOI : 10.1016/j.engfracmech.2015.02.010

G. R. Cowper, The shear coecient in timoshenko's beam theory, J. Appl. Mechanics, vol.33, p.125131, 1922.

S. Mostovoy and E. J. Ripling, Fracture toughness of an epoxy system, Journal of Applied Polymer Science, vol.10, issue.9
DOI : 10.1002/app.1966.070100913

J. G. William, Large displacement and end block eects in the dcb interlaminar test in modes i and ii, J. Compos. Mater, vol.21, p.330377, 1987.

A. Leski, Implementation of the virtual crack closure technique in engineering {FE} calculations. Finite Elements in Analysis and Design, pp.261-268, 2007.

Z. Wang, L. Ma, L. Wu, and H. Yu, Numerical simulation of crack growth in brittle matrix of particle reinforced composites using the xfem technique, Acta Mechanica Solida Sinica, vol.25, issue.1
DOI : 10.1016/S0894-9166(12)60002-0

J. Jokinen, M. Wallin, and O. Saarela, Applicability of VCCT in mode I loading of yielding adhesively bonded joints???a case study, International Journal of Adhesion and Adhesives, vol.62, pp.85-91, 2015.
DOI : 10.1016/j.ijadhadh.2015.07.004

D. A. Florin-adrian-stuparu, D. M. Apostol, C. R. Constantinescu, M. Picu, S. Sandu et al., Cohesive and {XFEM} evaluation of adhesive failure for dissimilar single-lap joints, Procedia Structural Integrity 21st European Conference on Fracture, pp.316-325, 2016.

J. Wang and C. Zhang, Three-parameter, elastic foundation model for analysis of adhesively bonded joints, International Journal of Adhesion and Adhesives, vol.29, issue.5, pp.495-502, 2009.
DOI : 10.1016/j.ijadhadh.2008.10.002

J. Jumel, M. K. Budzik, and M. E. Shanahan, Beam on elastic foundation with anticlastic curvature: Application to analysis of mode I fracture tests, Engineering Fracture Mechanics, vol.78, issue.18, pp.783253-3269, 2011.
DOI : 10.1016/j.engfracmech.2011.09.014

M. M. Shokrieh, M. Heidari-rarani, and M. R. Ayatollahi, Calculation of for a multidirectional composite double cantilever beam on two-parametric elastic foundation, Aerospace Science and Technology, vol.15, issue.7
DOI : 10.1016/j.ast.2010.10.001

Z. Jiang, S. Wan, Z. Zhong, M. Li, and K. Shen, Determination of mode-I fracture toughness and non-uniformity for GFRP double cantilever beam specimens with an adhesive layer, Engineering Fracture Mechanics, vol.128, pp.139-156, 2014.
DOI : 10.1016/j.engfracmech.2014.07.011

Z. Jiang, S. Wan, M. Li, and L. Ma, Analytical solutions for non-uniformity of energy release rate of orthotropic double cantilever beam specimens with an adhesive layer, Engineering Fracture Mechanics, vol.164, pp.46-59, 2016.
DOI : 10.1016/j.engfracmech.2016.07.011

M. Cabello, J. Zurbitu, J. Renart, A. Turon, and F. Martãnez, A general analytical model based on elastic foundation beam theory for adhesively bonded {DCB} joints either with exible or rigid adhesives, International Journal of Solids and Structures, pp.94-95, 2016.

A. A. Grith, The phenomena of rupture and ow in solids, Philosophical Transaction of the Royal Society of London, vol.221, pp.582-593163198, 1921.

G. R. Irwin, Analysis of stresses ans strains near the end of a crack traversing a plate

J. R. Reeder and J. H. Crews, Mixed-mode bending method for delamination testing, AIAA Journal, vol.28, issue.7, p.12701276, 1990.

P. Y. Jar, C. Fan, and J. J. Cheng, Cohesive zone with continuum damage properties for simulation of delamination development in ber composites and failure of adhesive joints, Eng. Fracture Mechanics, issue.13, p.7538663880, 2008.

K. Shahin and F. Taheri, The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints, International Journal of Solids and Structures, vol.45, issue.25-26, pp.25-2662846300, 2008.
DOI : 10.1016/j.ijsolstr.2008.07.030

H. L. Groth, Stress singularities and fracture at interface corners in bonded joints

Y. H. Liu, J. Q. Xu, and X. G. Wang, Numerical methods for the determination of multiple stress singularities and related stress intensity coecients, Eng. Fracture Mechanics, vol.63, issue.6, p.775790, 2008.

J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, vol.35, p.379386, 1968.

J. W. Hutchinson, Singular behaviour at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, vol.16, issue.1, p.1331, 1968.
DOI : 10.1016/0022-5096(68)90014-8

G. F. Rosengreen and J. R. Rice, Plane strain deformation near a crack tip in a power-law hardening material, Journal of the mechanics and physics solids, vol.16, p.112, 1968.

L. M. Kachanov, Time of the rupture process under creep conditions, Izv Akad Nauk S.S.R. Otd. Tekh Nauk, issue.8, p.2631, 1958.

Y. N. Rabotnov, Creep rupture, Proc.XII Int. Cong. Appl. Mech. StandFord- Springer, 1969.
DOI : 10.1007/978-3-642-85640-2_26

J. Lemaitre and R. Desmorat, Engineering Damage Mechanics, 2005.

M. E. Gurtin, An Introduction to Continuum Mechanics, Journal of Applied Mechanics, vol.51, issue.4, 1981.
DOI : 10.1115/1.3167763

A. Needleman, Micromechanical modeling of interfacial decohesion, UltraMicroscopy, vol.40, issue.3, p.203214, 1992.

J. R. Roesler, K. Park, and G. H. Paulino, A unied potential-based cohesive model of mixed-mode fracturel, J. Mech. Phys. Solids, vol.57, issue.6, p.891908, 2009.

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, Journal of Applied Mechanics, vol.54, issue.3
DOI : 10.1115/1.3173064

L. Banks-sills and Y. Freed, A new cohesive zone model for mixed mode interface fracture in bimaterials, Eng. Frac. Mech, issue.15, p.7545834593, 2008.

K. Park and G. H. Paulino, Computational implementation of the PPR potential-based cohesive model in ABAQUS: Educational perspective, Engineering Fracture Mechanics, vol.93, pp.239-262, 2012.
DOI : 10.1016/j.engfracmech.2012.02.007

A. Needleman, An analysis of decohesion along an imperfect interface, Int. J. Fract, vol.42, issue.1, p.2140, 1990.

A. Needleman, An analysis of tensile decohesion along an interface, Journal of the Mechanics and Physics of Solids, vol.38, issue.3, p.289324, 1990.
DOI : 10.1016/0022-5096(90)90001-K

J. R. Rice and G. E. Beltz, Dislocation nucleation versus cleavage decohesion at crack tips. The Minerals, Metals and Materials Society, p.457480, 1991.

A. Needleman and X. P. Xu, Void nucleation by inclusion debondind in a crystal matrix, Model. Simul. Mater. Sci. Eng, vol.1, issue.2, p.111132, 1993.

P. J. Schreurs, Fracture mechanics, lecture notes, 2011.

G. Alfano, On the inuence of the shape of the interface law on the application of cohesive zone models, Composites Science and Technology, vol.66, issue.6, p.723730, 2006.

A. Turon, Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models, 2006.

H. M. Jensen and P. Feraren, Cohesive zone modeling of interface fracture near ows in adhesive joints, Eng. Fract. Mech, vol.71, p.21252142, 2004.

M. F. Kanninen and C. H. Popelar, Advanced fracture mechanics, 1985.

Z. P. Bazant and L. Cedolin, Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories, Journal of Applied Mechanics, vol.60, issue.2, 1991.
DOI : 10.1115/1.2900839

T. L. Anderson, Fracture Mechanics : Fundamentals and Applications, 1995.

S. Suresh, Fatigue of Materials, 1998.
DOI : 10.1017/CBO9780511806575

K. B. Broberg, Cracks and Fracture, 1999.

H. A. Elliot, An analysis of the conditions for rupture due to grith cracks, Proc. Phys. Soc, p.208223, 1947.

G. I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, Journal of Applied Mathematics and Mechanics, vol.23, issue.3, p.622636, 1959.
DOI : 10.1016/0021-8928(59)90157-1

G. I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
DOI : 10.1016/S0065-2156(08)70121-2

D. S. Dudgale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, vol.8, issue.2, p.100104, 1960.

B. A. Bilby and K. H. Swinden, Representation of Plasticity at Notches by Linear Dislocation Arrays, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.285, issue.1400, p.2852233, 1400.
DOI : 10.1098/rspa.1965.0086

J. R. Rice, Mathematical analysis in the mechanics of fracture. Fracture : An Advanced Treatise, p.191311, 1968.

E. Smith, The structure in the vicinity of a crack tip: A general theory based on the cohesive zone model, Engineering Fracture Mechanics, vol.6, issue.2, p.213222, 1974.
DOI : 10.1016/0013-7944(74)90019-8

L. M. Keer, Stress distribution at the edge of an equilibrium crack, Journal of the Mechanics and Physics of Solids, vol.12, issue.3, p.149163, 1964.
DOI : 10.1016/0022-5096(64)90015-8

J. L. Cribb and B. Tomkins, On the nature of the stress at the tip of a perfectly brittle crack, Journal of the Mechanics and Physics of Solids, vol.15, issue.2, p.135140, 1967.
DOI : 10.1016/0022-5096(67)90023-3

E. Smith, A generalization of Elliott's model of a crack tip, International Journal of Fracture, vol.2, issue.2, pp.295-299, 1975.
DOI : 10.1007/BF00038896

. Seong-hyeok, G. H. Song, W. G. Paulino, and . Buttlar, A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Engineering Fracture Mechanics, issue.18, pp.732829-2848, 2006.

Y. Yao, L. Liu, and L. M. Keer, Pore pressure cohesive zone modeling of hydraulic fracture in quasi-brittle rocks, Mechanics of Materials, vol.83, pp.17-29, 2015.
DOI : 10.1016/j.mechmat.2014.12.010

H. Wang, Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method, Journal of Petroleum Science and Engineering, vol.135, pp.127-140, 2015.
DOI : 10.1016/j.petrol.2015.08.010

URL : https://hal.archives-ouvertes.fr/hal-01626428

K. Park, K. Ha, H. Choi, and C. Lee, Prediction of interfacial fracture between concrete and ber reinforced polymer (frp) by using cohesive zone modeling. Cement and Concrete Composites, pp.122-131, 2015.

M. Haddad and K. Sepehrnoori, Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: Stimulation controlling factors, Journal of Unconventional Oil and Gas Resources, vol.9, pp.65-83, 2015.
DOI : 10.1016/j.juogr.2014.10.001

Y. Gui, H. H. Bui, and J. Kodikara, An application of a cohesive fracture model combining compression, tension and shear in soft rocks, Computers and Geotechnics, vol.66, pp.142-157, 2015.
DOI : 10.1016/j.compgeo.2015.01.018

W. Zhou, L. Tang, X. Liu, G. Ma, and M. Chen, Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model, International Journal of Impact Engineering, vol.95, pp.165-175, 2016.
DOI : 10.1016/j.ijimpeng.2016.05.003

Y. Gui, H. H. Bui, J. Kodikara, Q. Zhang, J. Zhao et al., Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model, SI : Experimental Testing and Computational Modeling of Dynamic Fracture, pp.146-155, 2016.
DOI : 10.1016/j.ijimpeng.2015.04.010

R. Long, C. Y. Hui, A. Ruina, and A. Jagota, Cohesive zone models and fracture

S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, Use of a cohesive-zone model to analyze the fracture of a ber-reinforced polymer-matrix composite, Composites Science and Technology, issue.3â4, pp.65537-549, 2005.

J. Rodriguez, A. Salazar, F. J. Gomez, Y. Patel, and J. G. Williams, Fracture of notched samples in epoxy resin: Experiments and cohesive model, Engineering Fracture Mechanics, vol.149, p.402411, 2015.
DOI : 10.1016/j.engfracmech.2015.06.058

E. Van-der-giessen, M. G. Tijssens, and L. J. Sluys, Modeling of crazing using a cohesive surface methodology, Mech. Mater, vol.32, issue.1, p.1935, 2000.

M. G. Tijssens, R. Estevez, and E. V. Der-giessen, Modeling of the competition between shear yielding and crazing in glassy polymers, J. Mech. Phys. Solids, issue.12, p.4825852617, 2000.

C. R. Searcy and D. H. Allen, A micromechanical model for a viscoelastic cohesive zone, International Journal of Fracture, vol.107, p.159176, 2001.

J. E. Bolander and N. Sukumar, Irregular lattice model for quasistatic crack propagation, Physical Review B, vol.117, issue.9, p.94106, 2005.
DOI : 10.1016/S0013-7944(97)00010-6

S. Li and S. Ghosh, Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials, International Journal for Numerical Methods in Engineering, vol.58, issue.7, pp.1028-1067, 2006.
DOI : 10.1115/1.3656897

J. E. Bishop, Simulating the pervasive fracture of materials and structures using randomly close packed voronoi tessellations, Comput. Mech, vol.44, issue.4, p.455471, 2009.

K. Bentang-arief-budiman, K. Takahashi, K. Inaba, and . Kishimoto, Evaluation of interfacial strength between ber and matrix based on cohesive zone modeling, Composites Part A : Applied Science and Manufacturing, vol.90, p.211217, 2016.

A. Needleman and X. P. Xu, Void nucleation by inclusion debonding in a crystal matrix, Model. Simul. Mater. Sci. Eng, vol.1, issue.2, p.111132, 1993.

M. Ortiz, M. E. Walter, and G. Ravichandran, Computational modeling of damage evolution in unidirectional ber reinforced ceramic matrix composites, Comput. Mech, vol.20, issue.12, p.192198, 1997.

M. Paggi, A. Carpinteri, and G. Zavarise, Snap-back instability in micro-structured composites and its connection with superplasticity, Strength, Fract. complexity, vol.3, issue.24, p.6172, 2005.

L. Brinson, A. Needleman, T. L. Borders, and V. M. Ores, Eect of an interphase region on debonding of a cnt reinforces polymer composite, Compos. Sci. Technol, vol.70, issue.15, p.22072215, 2010.

G. H. Paulino, D. Ngo, K. Park, and Y. Huang, On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction

K. K. Kar, P. K. Agnihotri, and S. Basu, Cohesive zone model of carbon nanotubecoated carbon ber/polyester composites, Modelling Simul. Mater. Sci. Eng, issue.7, pp.77-2012

W. Brocks and A. Comec, Guest editorial, Engineering Fracture Mechanics, vol.70, issue.14, p.17411742, 2003.
DOI : 10.1016/S0013-7944(03)00121-8

F. Moroni and A. Pirondi, A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on a cohesive zone model and various mixed-mode propagation criteria, Engineering Fracture Mechanics, vol.89, p.129138, 2012.

. Huck-beng and . Chew, Cohesive zone laws for fatigue crack growth : Numerical eld projection of the micromechanical damage process in an elasto-plastic medium, International Journal of Solids and Structures, vol.51, issue.6, pp.1410-1420, 2014.

G. Giuliese, A. Pirondi, and F. Moroni, A Cohesive Zone Model for Three-dimensional Fatigue Debonding/Delamination, Procedia Materials Science, vol.3, pp.1473-1478, 2014.
DOI : 10.1016/j.mspro.2014.06.238

S. Roth and M. Kuna, Fatigue Modelling with a Cyclic Cohesive Zone Approach, Procedia Materials Science, vol.3, pp.325-330, 2014.
DOI : 10.1016/j.mspro.2014.06.056

M. F. De-moura and J. P. GonãŸalves, Cohesive zone model for high-cycle fatigue of composite bonded joints under mixed-mode I+II loading, Engineering Fracture Mechanics, vol.140, pp.31-42, 2015.
DOI : 10.1016/j.engfracmech.2015.03.044

S. Jimenez and R. Duddu, On the parametric sensitivity of cohesive zone models for high-cycle fatigue delamination of composites, International Journal of Solids and Structures, vol.82, pp.111-124, 2016.
DOI : 10.1016/j.ijsolstr.2015.10.015

A. Amiri-rad, M. Mashayekhi, and F. P. Van-der-meer, Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials, Composite Structures, vol.160, pp.61-69, 2017.
DOI : 10.1016/j.compstruct.2016.10.041

W. H. Gerstle, A. R. Ingraea, and P. Gergely, Fracture mechanics of bond in reinforced concrete, J. Struct. Eng, vol.110, issue.4, p.871890, 1984.

M. V. Prasad and C. S. Krishnamoorthy, Computational model for discrete crack growth in plain and reinforced concrete, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.25-26, pp.25-2626992725, 2002.
DOI : 10.1016/S0045-7825(02)00210-4

J. Wang, Debonding of FRP-plated reinforced concrete beam, a bond-slip analysis. I. Theoretical formulation, International Journal of Solids and Structures, vol.43, issue.21, pp.436649-6664, 2006.
DOI : 10.1016/j.ijsolstr.2006.01.014

T. K. Jacobsen and B. F. Sorensen, Determination of cohesive laws by the j integral approach, Engineering Fracture Mechanics, vol.70, p.18411858, 2003.

S. Goutianos, F. Bent, and . Sãrensen, The application of J integral to measure cohesive laws under large-scale yielding, Engineering Fracture Mechanics, vol.155, pp.145-165, 2016.
DOI : 10.1016/j.engfracmech.2016.01.004

C. Lundsgaard-larsen, B. F. Sãrensen, C. Berggreen, and R. C. Ãstergaard, A modied {DCB} sandwich specimen for measuring mixedmode cohesive laws, Engineering Fracture Mechanics, issue.8, pp.752514-2530, 2008.

B. Villmann, V. Slowik, and N. Bretscheider, Computational aspects of inverse analyses for determining softening curves of concretes, Comput. Methods Appl. Mech. Eng, vol.195, issue.52, p.72237236, 2006.

J. L. De-oliveira-e-sousa and R. Gettu, Determining the Tensile Stress-Crack Opening Curve of Concrete by Inverse Analysis, Journal of Engineering Mechanics, vol.132, issue.2, p.141148, 2006.
DOI : 10.1061/(ASCE)0733-9399(2006)132:2(141)

Z. Zhao, S. H. Kwon, and S. P. Shah, Eect of specimen size on fracture energy and softening curve of concrete : Part ii. inverse analysis and softening curve

J. Wang, Q. H. Qin, Y. L. Kang, X. Q. Li, and Q. Q. Rong, Viscoelastic adhesive interfacial model and experimental characterization for interfacial parameters, Mechanics of Materials, vol.42, issue.5, p.537547, 2010.
DOI : 10.1016/j.mechmat.2010.03.002

N. Valoroso, S. Sessa, M. Lepore, and G. Cricri, Identication of mode i cohesive parameters for bonded interfaces based on {DCB} test, Engineering Fracture Mechanics, vol.104, p.5679, 2013.

Y. Xu, X. Li, X. Wang, and L. Liang, Inverse parameter identication of cohesive zone model for simulating mixed-mode crack propagation, International Journal of Solids and Structures, issue.13, p.5124002410, 2014.

X. Chen, X. Deng, M. A. Sutton, and P. Zavattieri, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, International Journal of Mechanical Sciences, vol.79, pp.206-215, 2014.
DOI : 10.1016/j.ijmecsci.2013.12.006

H. B. Chew, S. Hong, and K. S. Kim, Cohesive zone laws for void growth i experimental eld projection of crack-tip crazing in glassy polymers, J. Mech. Phys. Solids, issue.8, p.5713571373, 2009.

J. Abanto-bueno and J. Lambros, Experimental determination of cohesive failure properties of a photodegradable copolymer, Experimental Mechanics, vol.48, issue.(12), p.144152, 2005.
DOI : 10.1179/146580100101541283

C. Liu, H. Tan, and P. H. Geubelle, The cohesive law for the particle/matrix interfaces in high explosives, J. Mech. Phys. Solids, issue.8, p.5318921917, 2005.

B. Shen and G. H. Paulino, Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique, Experimental Mechanics, vol.7, issue.349, p.143163, 2011.
DOI : 10.1093/comjnl/7.4.308

J. Rethore and R. Estevez, Identication of a cohesive zone model from digital images at the micron-scale, Journal of the Mechanics and Physics of Solids, issue.6, pp.611407-1420, 2013.

J. Oh and H. Kim, Inverse estimation of cohesive zone laws from experimentally measured displacements for the quasi-static mode I fracture of PMMA, Engineering Fracture Mechanics, vol.99, pp.118-131, 2013.
DOI : 10.1016/j.engfracmech.2012.11.002

B. Blaysat, J. P. Hoefnagels, G. Lubineau, M. Alfano, and M. G. Geers, Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics, International Journal of Solids and Structures, vol.55, pp.79-91, 2015.
DOI : 10.1016/j.ijsolstr.2014.06.012

M. Alfano, G. Lubineau, and G. H. Paulino, Global sensitivity analysis in the identification of cohesive models using full-field kinematic data, International Journal of Solids and Structures, vol.55, pp.66-78, 2013.
DOI : 10.1016/j.ijsolstr.2014.06.006

V. Shanmugam, R. Penmetsa, E. Tuegel, and S. Clay, Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models, Composite Structures, vol.102, pp.38-60, 2013.
DOI : 10.1016/j.compstruct.2013.01.020

M. A. Hariri-ardebili and V. E. Saouma, Sensitivity and uncertainty quantification of the cohesive crack model, Engineering Fracture Mechanics, vol.155, pp.18-35, 2016.
DOI : 10.1016/j.engfracmech.2016.01.008

M. Alfano, Mode I fracture of adhesive joints using tailored cohesive zone models, International Journal of Fracture, vol.21, issue.16, 2009.
DOI : 10.1016/S0143-7496(02)00062-3

A. M. Waas and P. A. Gustafson, The inuence of adhesive constitutive parameters in cohesive zone nite element models of adhesively bonded joints, International Journal of Solids and Structures, vol.46, p.22012215, 2009.

P. Kirkegaard and B. F. Sorensen, Determination of mixed mode cohesive laws, Engineering Fracture Mechanics, vol.73, p.26422661, 2006.

R. J. Ward and V. C. Li, A novel testing technique for post-peak tensile behavior of cementitious materials. Fracture Toughness and Fracture Energy, p.183195, 2000.

N. Valoroso, Identication of mode-i cohesive parameters for bonded interfaces based on dcb test, Engineering Fracture Mechanics, vol.104, p.5679, 2013.

K. Ravi-chandar, Y. Zhu, and K. M. Lietchi, Direct extraction of rate-dependent traction separation laws for polyurea / steel interfaces, Int.J.Solids Struct, vol.46, issue.1, p.3151, 2009.

S. Mostovoy, E. J. Ripling, and R. L. Patrick, Measuring fracture toughness of adhesive joints, Materials Research and Standards, vol.4, p.129134, 1964.

Y. Meziere, Etude de delaminage dans les materiaux composites a matrice organique, these : Genie mecanique, 2000.

D. S. Schnur and N. Zabaras, An inverse method for determining elastic material properties and a material interface, International Journal for Numerical Methods in Engineering, vol.1, issue.10, 1992.
DOI : 10.1115/1.3151899

X. Deng, X. Chen, and M. A. Sutton, An inverse analysis of cohesive zone model parameter for ductile crack growth simulations, Int. J. Numer Mechs. Sciences, vol.79, pp.206-215, 1992.

S. Sessa, N. Valoroso, and M. Lepore, Identication of mode-i cohesive parameters for bonded interfaces based on dcb test, Eng. Fract. Mechs, vol.104, p.5679, 2013.

X. Li, Y. Xu, and L. Liang, Inverse parameter identication of cohesive zone model for simulating mixed-mode crack propagation, Int. J. Solids and Struct, vol.51, p.24002410, 2014.

R. J. Waard and V. C. Li, A novel testing technique for post-peak tensile behavior of cementitious materials, Fract. Toughness and Fract. Energy, Mihashi et al, p.183195, 1989.

R. L. Fernandes and R. D. Campilho, Numerical evaluation of dissimilar cohesive models to predict the behavior of Double-Cantilever Beam specimens, Procedia Structural Integrity, vol.1, p.4249, 2016.
DOI : 10.1016/j.prostr.2016.02.007

J. Jumel, M. K. Budzik, and M. E. Shanahan, An in situ technique for the assessment of adhesive properties of a joint under load, Int. J. Fract, vol.78, p.32533269, 2011.

J. Jumel, M. K. Budzik, and M. E. Shanahan, Process zone in the single cantilever beam under transverse loading part ii : Experimental. Theoretical and Applied Fract, Mechanics, vol.56, p.1321, 2011.

J. J. Orteu, M. A. Sutton, and H. W. Schreier, Image correlation for shape, motion and deformation measurements : Basic concepts, theory and application, 2009.

P. Mahalanobis and . Chandra, On the generalized distance in statistics, Proceedings of the National Institute of Sciences of India, p.4955, 1936.

S. Roy, A Multi-Scale Viscoelastic Cohesive Layer Model for Predicting Delamination in HTPMC, Volume 1: Advances in Aerospace Technology, pp.1-01, 2014.
DOI : 10.1115/IMECE2014-36397

G. A. Alfano and M. Musto, A fractional rate-dependent cohesive-zone model, Int. J. Numer. Meth. Engng, vol.103, p.313341, 2015.

G. Spada and F. Mainardi, Creep, relaxation and viscosity properties for basic fractional models in rheology, The European Physical Journal, vol.193, p.133160, 2011.

F. Cazes, M. Coret, A. Combescure, and A. Gravouil, A thermodynamic method for the construction of a cohesive law from a nonlocal damage model, International Journal of Solids and Structures, vol.46, issue.6, p.14761490, 2009.
DOI : 10.1016/j.ijsolstr.2008.11.019

URL : https://hal.archives-ouvertes.fr/hal-01004956

L. Benabou, Z. Sun, and P. R. Dahoo, A thermo-mechanical cohesive zone model for solder joint lifetime prediction, International Journal of Fatigue, vol.49, p.1830, 2013.
DOI : 10.1016/j.ijfatigue.2012.12.008

URL : https://hal.archives-ouvertes.fr/hal-00783124

A. Ammar, . Alsheghri, and K. Rashid, Abu Al-Rub. Thermodynamic-based cohesive zone healing model for self-healing materials, Mechanics Research Communications, vol.70, p.102113, 2015.

R. Serpieri, E. Sacco, and G. Alfano, A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with dierent mode i and mode {II} fracture energies, European Journal of Mechanics -A/Solids, vol.49, p.1325, 2015.

D. W. Spring, O. Giraldo-londono, and G. H. Paulino, A study on the thermodynamic consistency of the parkâpaulinoâroesler (ppr) cohesive fracture model, Mechanics Research Communications, 2016.

F. Parrinello, G. Marannano, and G. Borino, A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination, Engineering Fracture Mechanics, vol.153, p.6179, 2016.
DOI : 10.1016/j.engfracmech.2015.12.001

J. Lamaitre and J. L. Jaboche, Phenomenological approach of damage rupture, Journal of applied mechanics, vol.2, issue.3, p.317367, 1978.