F. Les, 105 g) sont mis à gonfler dans 480 mL d'une solution aqueuse de soude (23,34 g) pendant 15 min sous forte agitation mécanique. Une fois que les FC sont suffisamment gonflés, l'agitation est retirée, p.10

P. Henrique, F. Pereira, M. D. Rosa, M. Odila, H. Cioffi et al., Vegetal fibers in polymeric composites : a review, Polimeros, pp.25-34, 2015.

H. Staudinger, ??ber Polymerisation, Berichte der deutschen chemischen Gesellschaft (A and B Series), vol.I, issue.I, pp.1073-1085, 1920.
DOI : 10.1002/jlac.18932730107

C. L. Mccormick and B. H. Hutchinson, Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide, Macromolecules, vol.18, issue.12, pp.2394-2401, 1985.
DOI : 10.1021/ma00154a010

F. Pierre-antoine, Valorisation des fibres lignocellulosiques de la pâte à papier

C. Pouteau, P. Dole, B. Cathala, L. Averous, and N. Boquillon, Antioxidant properties of lignin in polypropylene, Polymer Degradation and Stability, vol.81, issue.1, pp.9-18, 2003.
DOI : 10.1016/S0141-3910(03)00057-0

Y. Wu, S. Zhang, X. Guo, and H. Huang, Adsorption of chromium(III) on lignin, Bioresource Technology, vol.99, issue.16, pp.7709-7715, 2008.
DOI : 10.1016/j.biortech.2008.01.069

H. Tran and E. K. Vakkilainnen, The Kraft Chemical Recovery Process, TAPPI Kraft Recover. Course, issue.1, 2012.

T. N. Kleinert, Organosolv pulping and recovery process, 1968.

E. Pierre-henri, Réticulation de fibres lignocellulosiques et d'amidon : Vers de nouveaux matériaux pour l'industrie papetière, Thèse de doctorat : chimie appliquée chimie des substances naturelles, 2013.

G. Siqueira, J. Bras, and A. Dufresne, Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Polymers, vol.6, issue.4, pp.728-765, 2010.
DOI : 10.1016/j.carbpol.2009.03.039

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci: Appl. Polym. Symp, pp.37-815, 1983.

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, vol.10, issue.250, pp.40-3941, 2011.
DOI : 10.1016/S0079-6700(01)00025-9

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci: Appl. Polym. Symp, pp.37-797, 1983.

T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi et al., Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, issue.7, pp.10-1992, 2009.
DOI : 10.1021/bm900414t

URL : https://hal.archives-ouvertes.fr/hal-00413875

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, vol.110, issue.6, pp.3479-3500, 2010.
DOI : 10.1021/cr900339w

S. Wang, Q. Cheng, T. G. Rials, and S. H. Lee, Cellulose microfibril/nanofibril and its nanocompsites, Proc. 8th Pacific Rim Bio-Based Compos. Symp, pp.20-23, 2006.

P. Wambua, J. Ivens, and I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics?, Composites Science and Technology, vol.63, issue.9, pp.1259-1264, 2003.
DOI : 10.1016/S0266-3538(03)00096-4

X. Hua, M. Laleg, and T. Owston, Cellulose nanofilaments and method to produce same, Brevet US, pp.20110277947-1, 2011.

I. N. De-recherche and . De-sécurité, Fibres d'aramide : éléments pour l'évaluation des risques, pp.295-306, 2003.

D. Nabi-saheb and J. P. Jog, Natural fiber polymer composites: A review, Advances in Polymer Technology, vol.Jan, issue.2, pp.351-363, 1999.
DOI : 10.1080/07366578608081970

J. Li, Z. Song, D. Li, S. Shang, and Y. Guo, Cotton cellulose nanofiber-reinforced high density polyethylene composites prepared with two different pretreatment methods, Industrial Crops and Products, vol.59, pp.59-318, 2014.
DOI : 10.1016/j.indcrop.2014.05.033

S. Nathalie, Comparaison entre les polyéthylènes haute et basse densité PEhd et PEbd, 2010.

N. M. Barkoula, S. K. Garkhail, and T. Peijs, Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate, Industrial Crops and Products, vol.31, issue.1, pp.31-34, 2010.
DOI : 10.1016/j.indcrop.2009.08.005

N. Graupner, A. S. Herrmann, and J. Müssig, Natural and man-made cellulose fibrereinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Compos. Part A Appl. Sci. Manuf, pp.40-810, 2009.

K. Oksman, M. Skrifvars, and J. F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science and Technology, vol.63, issue.9, pp.1317-1324, 2003.
DOI : 10.1016/S0266-3538(03)00103-9

M. John and S. Thomas, Biofibres and biocomposites, Carbohydrate Polymers, vol.71, issue.3, pp.343-364, 2008.
DOI : 10.1016/j.carbpol.2007.05.040

K. G. Satyanarayana, G. G. Arizaga, and F. Wypych, Biodegradable composites based on lignocellulosic fibers???An overview, Progress in Polymer Science, vol.34, issue.9, pp.982-1021, 2009.
DOI : 10.1016/j.progpolymsci.2008.12.002

A. Shalwan and B. F. Yousif, In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres, Materials & Design, vol.48, pp.14-24, 2013.
DOI : 10.1016/j.matdes.2012.07.014

H. P. Khalil, Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers, vol.87, issue.2, pp.963-979, 2012.
DOI : 10.1016/j.carbpol.2011.08.078

Y. Habibi, W. K. El-zawawy, M. M. Ibrahim, and A. Dufresne, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues, Composites Science and Technology, vol.68, issue.7-8, pp.68-1877, 2008.
DOI : 10.1016/j.compscitech.2008.01.008

URL : https://hal.archives-ouvertes.fr/hal-00575236

F. Zhang, T. Endo, W. Qiu, L. Yang, and T. Hirotsu, Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene, Journal of Applied Polymer Science, vol.33, issue.11, pp.1971-1980, 2002.
DOI : 10.1002/pola.1995.080330509

S. B. Brahim and R. B. Cheikh, Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite, Composites Science and Technology, vol.67, issue.1, pp.140-147, 2007.
DOI : 10.1016/j.compscitech.2005.10.006

J. M. Felix and P. Gatenholm, The nature of adhesion in composites of modified cellulose fibers and polypropylene, Journal of Applied Polymer Science, vol.42, issue.3, pp.609-620, 1991.
DOI : 10.1002/app.1991.070420307

A. Alawar, A. M. Hamed, and K. , Characterization of treated date palm tree fiber as composite reinforcement, Composites Part B: Engineering, vol.40, issue.7, pp.601-606, 2009.
DOI : 10.1016/j.compositesb.2009.04.018

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.14, issue.13, pp.459-494, 2010.
DOI : 10.1016/j.carbpol.2007.11.015

Q. Cheng, S. Wang, T. G. Rials, and S. H. Lee, Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers, Cellulose, vol.6, issue.9, pp.14-593, 2007.
DOI : 10.1007/s10570-007-9141-0

S. Iwamoto, S. Yamamoto, S. Lee, and T. Endo, Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose, Composites Part A: Applied Science and Manufacturing, vol.59, pp.59-85, 2014.
DOI : 10.1016/j.compositesa.2013.12.011

K. Suzuki, Y. Homma, Y. Igarashi, H. Okumura, T. Semba et al., Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins, Cellulose, vol.30, issue.1, pp.23-623, 2016.
DOI : 10.1678/rheology.30.27

S. Tanpichai, W. W. Sampson, and S. J. Eichhorn, Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy, Composites Part A: Applied Science and Manufacturing, vol.43, issue.7, pp.43-1145, 2012.
DOI : 10.1016/j.compositesa.2012.02.006

L. Suryanegara, A. N. Nakagaito, and H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Composites Science and Technology, vol.69, issue.7-8, pp.69-1187, 2009.
DOI : 10.1016/j.compscitech.2009.02.022

Y. Song, K. Tashiro, D. Xu, J. Liu, and Y. Bin, Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite, Polymer, vol.54, issue.13, pp.54-3417, 2013.
DOI : 10.1016/j.polymer.2013.04.054

M. Marchetti and S. Laurenzi, Advanced Composite Materials by Resin Transfer Molding for Aerospace Applications, pp.197-226, 2012.

J. K. Pandey, H. Takagi, A. N. Nakagaito, D. R. Saini, and S. Ahn, An overview on the cellulose based conducting composites, Composites Part B: Engineering, vol.43, issue.7, pp.43-2822, 2012.
DOI : 10.1016/j.compositesb.2012.04.045

D. Zhang, Q. Sun, and L. C. Wadsworth, Mechanism of corona treatment on polyolefin films, Polymer Engineering & Science, vol.40, issue.6, pp.965-970, 1998.
DOI : 10.1002/pen.10264

M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini, Surface characterization of cellulose fibres by XPS and inverse gas chromatography, Cellulose, vol.1, issue.3, pp.145-157, 1995.
DOI : 10.1103/PhysRevB.5.4709

J. Gassan and V. S. Gutowski, Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites, Composites Science and Technology, vol.60, issue.15, pp.2857-2863, 2000.
DOI : 10.1016/S0266-3538(00)00168-8

M. Ragoubi, D. Bienaimé, S. Molina, B. George, and A. Merlin, Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof, Industrial Crops and Products, vol.31, issue.2, pp.31-344, 2010.
DOI : 10.1016/j.indcrop.2009.12.004

S. Dong, S. Sapieha, and H. P. Schreiber, Mechanical properties of corona-modified cellulose/polyethylene composites, Polymer Engineering and Science, vol.60, issue.6, pp.343-346, 1993.
DOI : 10.1021/bk-1989-0391.ch014

S. Marais, F. Gouanvé, A. Bonnesoeur, J. Grenet, F. Poncin-epaillard et al., Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties, Composites Part A: Applied Science and Manufacturing, vol.36, issue.7, pp.36-975, 2005.
DOI : 10.1016/j.compositesa.2004.11.008

Y. Seki and K. Sever, The influence of oxygen plasma treatment of jute fibres on mechanical properties of jute fibre reinforced thermoplastic composites, 5th Int, Adv. Technol. Symp, 2009.

M. S. Sreekala and S. Thomas, Effect of fibre surface modification on water-sorption characteristics of oil palm fibres, Composites Science and Technology, vol.63, issue.6, pp.861-869, 2003.
DOI : 10.1016/S0266-3538(02)00270-1

R. A. Haydaruzzaman, M. A. Khan, A. H. Khan, M. A. Khan, and . Hossain, Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites, Radiation Physics and Chemistry, vol.78, issue.11, pp.78-986, 2009.
DOI : 10.1016/j.radphyschem.2009.06.011

R. Chollakup, W. Smitthipong, W. Kongtud, and R. Tantatherdtam, Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content, Journal of Adhesion Science and Technology, vol.119, issue.12, pp.27-1290, 2013.
DOI : 10.1002/app.32910

M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas, Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance, Applied Composite Materials, vol.7, issue.5/6, pp.295-329, 2000.
DOI : 10.1023/A:1026534006291

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous et al., Cellulose-Based Bio- and Nanocomposites: A Review, International Journal of Polymer Science, vol.3, issue.8, p.2011, 2011.
DOI : 10.1097/00006534-198805000-00004

C. Vaca-garcia, S. Thiebaud, M. E. Borredon, and G. Gozzelino, Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium, Journal of the American Oil Chemists' Society, vol.11, issue.2, pp.75-315, 1998.
DOI : 10.1246/nikkashi1898.70.5_770

B. Verneuil, P. Branland, R. Granet, P. Krausz, J. Rozier et al., Rapid homogeneous esterification of cellulose induced by microwave irradiation, Carbohydr. Polym, pp.49-52, 2002.

H. Sehaqui, T. Zimmermann, and P. Tingaut, Hydrophobic cellulose nanopaper through a mild esterification procedure, Cellulose, vol.79, issue.4, pp.367-382, 2014.
DOI : 10.1016/j.carbpol.2009.10.045

A. K. Mohanty, A. Wibowo, M. Misra, and L. T. , Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites, Composites Part A: Applied Science and Manufacturing, vol.35, issue.3, pp.35-363, 2004.
DOI : 10.1016/j.compositesa.2003.09.015

A. C. Wibowo, M. Misra, H. M. Park, L. T. Drzal, R. Schalek et al., Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties, Composites Part A: Applied Science and Manufacturing, vol.37, issue.9, pp.37-1428, 2006.
DOI : 10.1016/j.compositesa.2005.06.019

T. B. Mbarek, L. Robert, H. Sammouda, B. Charrier, J. Orteu et al., Effect of acetylation and additive on the tensile properties of wood fiber???high-density polyethylene composite, Journal of Reinforced Plastics and Composites, vol.471, issue.3, pp.32-1646, 2013.
DOI : 10.1016/j.tca.2008.02.009

C. S. Freire, A. J. Silvestre, C. P. Neto, M. N. Belgacem, and . Gandini, Controlled heterogeneous modification of cellulose fibers with fatty acids: Effect of reaction conditions on the extent of esterification and fiber properties, Journal of Applied Polymer Science, vol.59, issue.2, pp.1093-1102, 2006.
DOI : 10.1002/app.23454

C. S. Freire, A. J. Silvestre, C. P. Neto, A. Gandini, L. Martin et al., Composites based on acylated cellulose fibers and low-density polyethylene: Effect of the fiber content, degree of substitution and fatty acid chain length on final properties, Composites Science and Technology, vol.68, issue.15-16
DOI : 10.1016/j.compscitech.2008.09.008

D. Pasquini, E. D. Teixeira, A. A. Curvelo, M. N. Belgacem, and A. Dufresne, Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites, Composites Science and Technology, vol.68, issue.1, pp.68-193, 2008.
DOI : 10.1016/j.compscitech.2007.05.009

URL : https://hal.archives-ouvertes.fr/hal-00524472

D. M. Hall and J. R. Horne, Model compounds of cellulose: Trityl ethers substituted exclusively at C-6 primary hydroxyls, Journal of Applied Polymer Science, vol.17, issue.9, pp.17-2891, 1973.
DOI : 10.1002/app.1973.070170925

T. Erdmenger, C. Haensch, R. Hoogenboom, and U. S. Schubert, Homogeneous Tritylation of Cellulose in 1-Butyl-3-methylimidazolium Chloride, Macromolecular Bioscience, vol.13, issue.4, pp.440-445, 2007.
DOI : 10.1080/07366579008050914

P. Faugeras, P. Elchinger, F. Brouillette, D. Montplaisir, and R. Zerrouki, Advances in cellulose chemistry - microwave-assisted synthesis of propargylcellulose in aqueous medium, Green Chemistry, vol.86, issue.3, p.598, 2012.
DOI : 10.1016/j.carbpol.2011.04.031

URL : https://hal.archives-ouvertes.fr/hal-00935694

P. Elchinger, P. Faugeras, C. Zerrouki, D. Montplaisir, F. Brouillette et al., Tosylcellulose synthesis in aqueous medium, Green Chemistry, vol.118, issue.11, p.3126, 2012.
DOI : 10.1063/1.2511890

URL : https://hal.archives-ouvertes.fr/hal-00935686

H. Awada, P. H. Elchinger, P. A. Faugeras, C. Zerrouki, D. Montplaisir et al., Chemical Modification of Kraft Cellulose Fibres: Influence of Pretreatment on Paper Properties, BioResources, vol.10, issue.2, pp.10-2044, 2015.
DOI : 10.15376/biores.10.2.2044-2056

URL : https://hal.archives-ouvertes.fr/hal-01200622

C. Chen, M. Cho, B. W. Kim, J. Nam, and Y. Lee, Thermo plasticization and characterization of kenaf fiber by benzylation, Journal of Industrial and Engineering Chemistry, vol.18, issue.3, pp.1107-1111, 2012.
DOI : 10.1016/j.jiec.2011.12.012

Y. Hirai, H. Hamada, and J. J. Kim, Impact response of woven glass-fabric composites - I. Effect of fibre surface treatment, Compos. Sci. Technol, pp.58-91, 1998.

M. Abdelmouleh, S. Boufi, A. B. Salah, M. N. Belgacem, and A. Gandini, Interaction of Silane Coupling Agents with Cellulose, Langmuir, vol.18, issue.8, pp.3203-3208, 2002.
DOI : 10.1021/la011657g

M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufresne, Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading, Composites Science and Technology, vol.67, issue.7-8, pp.67-1627, 2007.
DOI : 10.1016/j.compscitech.2006.07.003

J. George, R. Janardhan, J. S. Anand, S. S. Bhagawan, and S. Thomas, Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites, Polymer (Guildf), pp.37-5421, 1996.

R. G. Raj, B. Kokta, D. Maldas, and C. Daneault, Use of wood fibers in thermoplastic composites: VI. Isocyanate as a bonding agent for polyethylene-wood fiber composites, Polymer Composites, vol.24, issue.6, pp.404-411, 1988.
DOI : 10.1021/ba-1984-0207.ch010

D. Roy, M. Semsarilar, J. T. Guthrie, and S. Perrier, Cellulose modification by polymer grafting: a review, Chemical Society Reviews, vol.40, issue.1, pp.2046-64, 2009.
DOI : 10.1295/polymj.20.243

S. Kalia and M. W. Sabaa, Polysaccharide based graft copolymers, 2013.
DOI : 10.1007/978-3-642-36566-9

Y. F. Huang, B. N. Zhao, G. Z. Zheng, S. J. He, and J. Gao, Graft copolymerization of methyl methacrylate on stone ground wood using the H2O2???Fe2 method, Journal of Applied Polymer Science, vol.45, issue.1, pp.45-71, 1992.
DOI : 10.1002/app.1992.070450108

S. Kalia, V. K. Kaushik, and R. K. Sharma, Effect of Benzoylation and Graft Copolymerization on Morphology, Thermal Stability, and Crystallinity of Sisal Fibers, Journal of Natural Fibers, vol.7, issue.1, pp.27-38, 2011.
DOI : 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

V. K. Thakur, M. K. Thakur, and R. K. Gupta, Graft copolymers of natural fibers for green composites, Carbohydrate Polymers, vol.104, pp.87-93, 2014.
DOI : 10.1016/j.carbpol.2014.01.016

O. Paquet, M. Krouit, J. Bras, W. Thielemans, and M. N. Belgacem, Surface modification of cellulose by PCL grafts, Acta Materialia, vol.58, issue.3, pp.792-801, 2010.
DOI : 10.1016/j.actamat.2009.09.057

URL : https://hal.archives-ouvertes.fr/hal-00511934

A. J. De-menezes, D. Pasquini, A. A. Da, S. Curvelo, and A. Gandini, Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 1. Characterization of the materials obtained with different types of fibers, Carbohydrate Polymers, vol.76, issue.3, pp.76-437, 2009.
DOI : 10.1016/j.carbpol.2008.11.006

R. Huisgen, Kinetics and Mechanism of 1,3-Dipolar Cycloadditions, Angew. Chem. Int

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chemie -Int, pp.40-2004, 2001.

M. Krouit, J. Bras, and M. N. Belgacem, Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry, European Polymer Journal, vol.44, issue.12, pp.4074-4081, 2008.
DOI : 10.1016/j.eurpolymj.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00448983

D. M. Laura, H. Keskkula, J. W. Barlow, and D. R. Paul, Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6, Polymer (Guildf), pp.43-4673, 2002.

H. Warth, R. Mülhaupt, J. Schätzle, and R. Mu, Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing, Journal of Applied Polymer Science, vol.64, issue.2, pp.231-242, 1997.
DOI : 10.1002/(SICI)1097-4628(19970411)64:2<231::AID-APP4>3.0.CO;2-S

M. Boustani, F. Brouillette, G. Lebrun, and A. Belfkira, Solvent-free acetylation of lignocellulosic fibers at room temperature: Effect on fiber structure and surface properties, Journal of Applied Polymer Science, vol.51, issue.29, p.42247, 2015.
DOI : 10.1021/jf034370t

A. Biswas, G. Selling, M. Appell, K. K. Woods, J. L. Willett et al., Iodine catalyzed esterification of cellulose using reduced levels of solvent, Carbohydrate Polymers, vol.68, issue.3, pp.68-555, 2007.
DOI : 10.1016/j.carbpol.2006.10.018

J. Li, L. P. Zhang, F. Peng, J. Bian, T. Q. Yuan et al., Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst, Molecules, vol.14, issue.9, pp.14-3551, 2009.
DOI : 10.3390/molecules14093551

A. Memmi, R. Granet, Y. Champavier, and P. Krausz, Abstract, e-Polymers, vol.5, issue.1, pp.1-5, 2005.
DOI : 10.1515/epoly.2005.5.1.885

S. C. Fox, B. Li, D. Xu, and K. J. Edgar, Regioselective Esterification and Etherification of Cellulose: A Review, Biomacromolecules, vol.12, issue.6, pp.1956-1972, 2011.
DOI : 10.1021/bm200260d

P. Faugeras, R. Zerrouki, and F. Brouillette, Selective crosslinking of Kraft pulp fibres by click chemistry ? Characterisation of the properties of reaction intermediates and final product, Nord. Pulp Pap. Res. J, pp.29-673, 2014.

P. Elchinger, D. Montplaisir, and R. Zerrouki, Starch???cellulose crosslinking???Towards a new material, Carbohydrate Polymers, vol.87, issue.2, pp.1886-1890, 2012.
DOI : 10.1016/j.carbpol.2011.09.027

URL : https://hal.archives-ouvertes.fr/hal-00935696

P. H. Elchinger, H. Awada, C. Zerrouki, D. Montplaisir, and R. Zerrouki, Kraft Pulp???Starch Covalent Linking: A Promising Route to a New Material, Industrial & Engineering Chemistry Research, vol.53, issue.18, pp.53-7604, 2014.
DOI : 10.1021/ie500555g

URL : https://hal.archives-ouvertes.fr/hal-01103017

D. Gilles and D. Gray, The surface analysis of paper and wood fibers by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin, Cellulose Chem. Technol, vol.12, pp.9-23, 1978.

M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini, Surface characterization of cellulose fibres by XPS and inverse gas chromatography, Cellulose, vol.1, issue.3, pp.145-157, 1995.
DOI : 10.1103/PhysRevB.5.4709

C. Hagiopol and J. W. Johnston, Chemistry of modern papermaking, 2011.

M. A. Hubbe, Paper's resistance to wetting -A review of internal sizing chemicals and their effects, BioResources, issue.2, pp.106-145, 2007.

J. Lindfors, J. Salmi, J. Laine, and P. Stenius, AKD and ASA model surfaces: Preparation and characterization, BioResources, issue.2, pp.652-670, 2007.

H. Zhang, D. Kannangara, M. Hilder, R. Ettl, and W. Shen, The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.297, issue.1-3, pp.297-203, 2007.
DOI : 10.1016/j.colsurfa.2006.10.059

W. J. Wang, W. W. Wang, and Z. Q. Shao, Surface modification of cellulose nanowhiskers for application in thermosetting epoxy polymers, Cellulose, vol.7, issue.3, pp.2529-2538, 2014.
DOI : 10.1021/bm050828j

A. Sato, D. Kabusaki, H. Okumura, T. Nakatani, F. Nakatsubo et al., Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement, Composites Part A: Applied Science and Manufacturing, vol.83, pp.83-72, 2016.
DOI : 10.1016/j.compositesa.2015.11.009

B. Ellis, Polymers ? a property database, Boca Raton (FL, p.147, 2000.