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Résumé

L’océan Austral aux moyennes latitudes est I'un des endroits les plus tempétueux sur Terre.
On y trouve d’intenses dépressions traversant cet océan sur de grandes distances. C’est
aussi une zone de 'océan qui se caractérise par une énergie cinétique turbulente parmi les
plus élevées du globe due a une intense variabilité a méso- et sous-mésoéchelle. On peut
donc supposer que le passage de ces tempétes intenses sur cette variabilité océanique intense
peut avoir un impact fort sur la variabilité intra-saisonniere des couches de surface ou vit
le phytoplancton. Pour autant, cet impact sur le taux de croissance du phytoplancton et
sa variabilité reste encore trés méconnu. C’est a cette question que s’efforce de répondre ce
travail de these visant a faire progresser la compréhension de la variabilité intra-saisonniere
de la production primaire de 'océan Austral. Les vecteurs possibles de cette variabilité intra-
saisonniere sont d’abord explorés a I’échelle locale, puis a grande échelle par 'utilisation d'un
ensemble de simulations couplées physique-biogéochimie (NEMO-PISCES) de complexité

variable.

A Déchelle locale, nos expériences de modélisation suggérent que les apports en Fer dissous
(DFe) dans les eaux de surface a I’échelle intra-saisonniere par les tempétes jouent un role
bien plus actif et déterminant qu’on ne le pensait pour expliquer la productivité estivale

importante de I'océan Austral. Deux idées importantes ressortent:

1. Les interactions tempéte-tourbillon peuvent fortement augmenter 'amplitude et
I'extension du mélange vertical agissant sur des couches traditionnellement considérées
comme superficielles, mais également en subsurface. Ces deux régimes de mélange
possedent des dynamiques différentes mais agissent de concert pour augmenter les flux

de DFe a la surface des océans.

2. Les tempétes génerent des courants inertiels qui peuvent considérablement renforcer
les vitesses verticales w par interaction avec les tourbillons. Cela favorise I'advection
verticale de DFe a la surface de l'océan, et avoir un effet plusieurs jours apres la
tempéte. A Déchelle locale, ces interactions entre les tempétes et les tourbillons peuvent
considérablement intensifier la variabilité intra-saisonniére de la production primaire,
ce qui permet d’apporter des premiers éléments de réponse en vue d’expliquer pourquoi

cette variabilité est si forte dans de vastes régions de 'océan Austral.

A grande échelle, V'effet cumulatif de ces interactions tempéte-tourbillon & haute fréquence
a des conséquences inattendues sur les flux moyens de grande échelle et son influence sur
Iefficacité des flux intra-saisonniers de DFe. Contre-intuitivement, une rétroaction conduit
a une réduction de la variabilité intra-saisonniere de la production primaire, malgré ce qui
a été montré a 1’échelle locale. De plus, les tempétes intensifient la principale cellule de la
circulation thermohaline méridienne, en particulier la branche vers le bas provoquant une

réduction des stocks de DFe des couches supérieures de 'océan. Un tel impact pourrait
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étre renforcé dans le futur avec 'augmentation de l'intensité des tempétes suggérée par les

projections climatiques.

La compréhension de ces réponses locales et de grande échelle de la productivité primaire
liées aux tempétes et leur interaction avec la turbulence océanique de mésoéchelle sous-
jacente peut étre la clé pour mieux comprendre les sensibilités du cycle du carbone a la

variabilité a court terme, ainsi qu’aux tendances a long terme de ’atmosphere.
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Abstract

The Southern Ocean is one of the stormiest places on earth; here strong mid-latitude storms
frequently traverse large distances of this ocean. Underlying these passing storms, the South-
ern Ocean is characterized by having some of the highest eddy kinetic energy ever measured
(eddies occupying the meso to sub-mesoscale). The presence of the passage of intense storms
and meso to sub-mesoscale eddy variability has the potential to strongly impact the intra-
seasonal variability of the upper ocean environment where phytoplankton live. Yet, ex-
actly how phytoplankton growth rates and its variability are impacted by the dominance
of such features is not clear. Herein, lies the problem addressed by the core of this thesis,
which seeks to advance the understanding of intra-seasonal variability of Southern Ocean
primary production. The drivers of this intra-seasonal variability have been explored from
two points of view: the local-scale and the remote-scale perspectives, with a suite of physical-

biogeochemical (NEMO-PISCES) numerical models of varying complexity.

At the local-scale, these model experiments have suggested that intra-seasonal storm-
linked physical supplies of dissolved iron (DFe) during the summer played a considerably
more active and influential role in explaining the sustained summer productivity in the
surface waters of the Southern Ocean than what was thought previously. This was through

two important insights:

1. Storm-eddy interactions may strongly enhance the magnitude and extent of upper-
ocean vertical mixing in both the surface mixed layer as traditionally understood as
well as in the subsurface ocean. These two mixing regimes have different dynamics but

act in concert to amplify the DFe fluxes to the surface ocean.

2. Storm initiated inertial motions may, through interaction with eddies, greatly rein-
force w and thus, enhance the vertical advection of DFe to the surface ocean, an effect
that may last several days after the storm. At the local-scale, such storm-eddy dy-
namics may greatly increase the intra-seasonal variability of primary production, a
step towards helping to explain why this variability is so strong in large regions of the

Southern Ocean.

At the remote-scale, the cumulative impact of these short-term storm-eddy interactions
have unexpected implications in respect of the larger-scale mean flow and its influence on
the effectiveness of intra-seasonal forcing of DFe fluxes. This counter intuitive feedback is
a reduced strength of the intra-seasonal variability in primary production despite what was
shown at the local-scale. Moreover, the addition of storms intensified the main clockwise cell
of the meridional overturning circulation particularly the downward branch thus, reducing
DFe inventory from the upper-ocean. Such an impact could potentially be enhanced with

increasing storm intensities as suggested by climate projections.
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Understanding these remote-scale and local-scale responses of primary productivity to
storms and their interaction with the underlying ocean mesoscale turbulence may be key
to better understanding the sensitivities of the carbon cycle to short-term variability and

long-term trends in atmospheric forcing.
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Introduction

The Southern Ocean is notorious for its harsh environment. In this part of the world, the
passage of strong and frequent mid-latitude storms dominate large areas (horizontal scales
of hundreds to thousands of kilometres, Patoux et al. [2009]) potentially leaving behind
enormous wakes of perturbed upper-ocean. This region is also known among oceanographers
as having the highest levels of mesoscale eddy kinetic energy due to strong baroclinically-
induced instabilities of the Antarctic Circumpolar Current (ACC) [Daniault and Ménard,
1985, Frenger et al., 2015]. While research in other oceans (e.g., North Atlantic) have shown
that these two characteristics may modulate the light and nutrient environments influencing
phytoplankton living there [Lévy et al., 2001b, Mahadevan et al., 2012, Klein and Coste, 1984,
Rumyantseva et al., 2015], much less is known about their impact in the Southern Ocean.
Despite the similar latitudinal positioning, Southern Ocean blooms have been observed to
behave differently to the quasi-zonally propagating blooms in the North Atlantic [Siegel,
2002, Henson et al., 2009], in that they are characterised by strong zonal asymmetries and
latitudinal variations [Thomalla et al., 2011].

High-latitude ocean environments are characterised by strong seasonal cycles, particularly
in stratification and convective mixing, which have key influences on shaping the annual
cycles of phytoplankton [Sverdrup, 1953]. The short-term mechanisms of storms and meso-
scale turbulence are not just superimposed onto this background seasonal forcing but rather
interact with it. For example Lévy et al. [1998], Mahadevan et al. [2012] showed how meso-
scale eddies could induce an earlier onset of seasonal stratification. The impact of storms
and mesoscale interactions on the seasonal forcing and how this impacts phytoplankton is
not well understood. Further, there are complex interaction between mesoscale turbulence
and the storms themselves, which have rarely been observed in the Southern Ocean up until

recently [Forryan et al., 2015].

Satellite observations and studies based on in situ observations have shown that phyto-
plankton in the surface waters of the Southern Ocean have distributions that display high
temporal and regional variability [Moore and Abbott, 2000, 2002, Arrigo et al., 2008,
Thomalla et al., 2011, Frants et al., 2013, Carranza and Gille, 2014]. Understanding, the
drivers of this high temporal and spatial variability require more attention. Some of the

difficulties lie in understanding the complex network of mechanisms that supply the limit-
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ing nutrient dissolved iron to these waters [Bowie et al., 2001, Blain et al., 2007, Boyd and
Ellwood, 2010, Tagliabue et al., 2014]. While, further difficulties have been encountered in
making long-term observations at the appropriate short temporal scales that link the phys-
ical forcing mechanisms of climate drivers to the biogeochemical responses [Thomalla et al.,
2015].

Nevertheless, a great deal of effort has been made in understanding the seasonal variability
of Southern Ocean phytoplankton biomass and some progress has been made there [John-
ston and Gabric, 2011, Dufour et al., 2013, Llort et al., 2015, Sallée et al., 2015]. What has
received significantly less attention is an understanding of the drivers of variability occurring
at intra-seasonal scales!. In the Southern Ocean, the intra-seasonal mode of chlorophyll vari-
ability is strong and may dominate over the seasonal mode in large areas [Thomalla et al.,
2011, Carranza and Gille, 2014]. High-latitude primary production plays a significant role in
the global carbon cycle [Falkowski, 1994, 1998, Sabine, 2004, Mikaloff Fletcher et al., 2006]
through mechanisms described by the "biological carbon pump' [Longhurst and Glen Har-
rison, 1989]. If we are to understand sensitivities of the biological carbon pump to changes in
the environment and to long-term climate forcing, there is a need to understand the drivers
of such fine-scale variability in primary production [Resplandy et al., 2014, Monteiro et al.,
2015].

The aim of this dissertation is to improve our understanding of the drivers of intra-seasonal
variability in primary production in the open-ocean regions of the Southern Ocean. In par-
ticular we focus on understanding how passing atmospheric storms and mesoscale turbu-
lence may modulate the intra-seasonal scales of the upper-ocean nutrient environment, how
primary production responds to these changes and lastly, how important these short-term

process are in terms of larger-scale mean state.

'We refer to "intra-seasonal variability" as variability occurring within a seasonal cycle, or more precisely
as variability occurring on time-scales that are larger than 1 day and shorter than 10 days [Monteiro et al.,
2015].
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1.1 Southern Ocean Primary Production

1.1.1 The role in global carbon cycle

Almost all light when entering the ocean is absorbed by the upper 100m. It is in these
sunlit surface-layers that single celled plants known as phytoplankton thrive. It is now well
established that phytoplankton are an important component of the earth system, a result
of their contribution to the oceanic carbon cycle [Falkowski, 1994, 1998, Sabine, 2004, Mi-
kaloff Fletcher et al., 2006]. One of the most fundamental processes in the global carbon
cycle is the transformation of inorganic carbon to organic carbon by photosynthetic organ-
isms such as these [Post et al., 1999]. In the Southern Ocean (south of 40°S), this primary
production (PP) and its relation to biogenic flux of COy may be responsible for the draw-
down of 40% of the global anthropogenic carbon [Mikaloff Fletcher et al., 2007, Khatiwala
et al., 2009]. As seen in satellite observations, Southern Ocean phytoplankton blooms' may
spread over vast surface areas of the ocean (e.g., the CROZEX bloom in Pollard et al. [2009]
reached scales of 90,000km?) and may be present for extended durations (e.g., up to four
months in Swart et al. [2014]). The amount of carbon drawdown of such a bloom is de-
pendent on the fate of the phytoplankton in the surface ocean. Phytoplankton may either
stay in the surface layers where they form part of the regenerative nutrient cycle [Eppley and
Peterson, 1979]. Or a fraction may die and sink to greater depths, which may be regenerated
into inorganic carbon once again by bacteria. This biological mediated drawdown of CO,
from the atmosphere into the deep ocean is typically referred to as the "biological pump"
[Longhurst and Glen Harrison, 1989].

Understanding the necessary conditions for phytoplankton growth and bloom develop-
ment in the Southern Ocean is therefore critical in constraining uncertainties in the global
carbon cycle. The large uncertainties in the Southern Ocean carbon budget are attributed
to unresolved spatiotemporal variability of CO, uptake and high wind speeds [Resplandy
et al., 2014, Monteiro et al., 2015]. Despite the role Southern Ocean phytoplankton play in
the carbon cycle, a complete understanding of the temporal and spatial links between the
physical, ecological and physiological mechanisms influencing their distribution is lacking
[Thomalla et al., 2011]. Even less is known about the associated rates of primary production
[Arrigo et al., 1998, 2008]. Without better constraining these uncertainties we will be unable

to understand the future role of the Southern Ocean in the carbon-climate system.

1.1.2 The central role of dissolved iron

The Southern Ocean is one of the few regions where the supply of nutrients (e.g., nitrate and
phosphate) to the surface waters is much higher than the demand required by phytoplankton

[Levitus et al., 1993]. On average, the Southern Ocean annual net primary production is low

'We refer to a "bloom" as a rapid enhancement of the population of phytoplankton
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[Arrigo et al., 1998, Moore and Abbott, 2000]. It is for these unique aspects that the Southern
Ocean has become widely recognised as a "High Nutrient Low-Chlorophyll" (HNCL) region.
There is substantial support showing that this is primarily due to the limited availability of
surface dissolved iron [Gran, 1931, Martin, 1990] and limited light availability [Mitchell et al.,
1991]. Access to dissolved iron (DFe) and light is fundamental to the growth and maintenance
of phytoplankton. During photosynthesis, iron plays a crucial role as an electron carrier and
catalyst [Behrenfeld and Milligan, 2013], while access to sufficient light provides the energy
for it to take place [Mitchell et al., 1991].

Despite the HNLC conditions in the Southern Ocean, intense phytoplankton blooms are
observed to occur, creating spatially and temporally complex distribution in chlorophyll,
Figure 1.1a. These regions of high chlorophyll are associated with regions of high primary
production [Arrigo et al., 1998, 2008]. During austral spring and summer months, the daily
net rates of primary production vary regionally between 159 mg C m~2 d~! and 500 mg C
m~2 d~! [Arrigo et al., 2008] (Figure 1.1b). Such intense blooms are generally consistent with
an increase in dissolved iron into the surface waters [de Baar et al., 1995, Blain et al., 2007,
Pollard et al., 2009], a large proportion of the spatial and temporal heterogeneity observed

in maps of chlorophyll may be explained by the complex mechanisms delivering dissolved

iron to the surface ocean.

0.1 0 100 200 300 400 500

Figure 1.1: January climatology (2002-2012) of (a) satellite based surface logl0(chlorophyll) in
mg.m~> using the Johnson et al. [2013] algorithm for MODIS-Aqua data and (b) depth integrated
primary productivity estimates from the Vertically Generalised Production Model (VGPM) of
Behrenfeld and Falkowski [1997] in mg C m~2 d—1.

However, dissolved iron occurs in the Southern Ocean at vastly minute quantities making
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it difficult to observe (i.e., ranges from low-iron regions ~0.06 nmol.L. ™! to high-iron regions
~0.6 nmol.L.™! in Boyd et al. [2015]). Due to the complexities in measuring iron, uncertainties
prevail in its distribution spatially and temporally, throughout the water column. Since the
realisation of its importance, an extensive effort of observational (e.g., Boyd et al. [2005],
Bowie et al. [2009, 2015]) and numerical studies (e.g., Tagliabue et al. [2009], Lancelot et al.

[2009]) have endeavoured to constrain these uncertainties.

1.2 Southern Ocean iron supplies

Dissolved iron supply is typically divided into new sources and regenerated sources. In
terms of new sources, dissolved iron is supplied to the surface waters of the Southern Ocean
through a number of physical mechanisms, summarised by Boyd and Ellwood [2010] and
shown in Figure 1.2. The upper range of observed surface DFe (~0.6 nmol.L. ™) is typically
associated with the location (and downstream) of Sub-Antarctic islands (e.g., Blain et al.
[2007]), sea-mounts, hydrothermal activity [Tagliabue et al., 2010, Klunder et al., 2011] and
coastal boundaries which shed-off sediments or upwell iron rich waters [Boyd and Ellwood,
2010]. Atmospheric dust supplies are another potential supply, but are considered to be small
due to the remoteness of the Southern Ocean [Wagener et al., 2008]. Others include lateral
advection of DFe from iron rich Agulhas eddies and seasonal ice melt. These different supply
mechanisms create complex patterns of surface iron distributions. However, in general,
surface dissolved iron is found to be higher in the Antarctic region compared with the Sub-
Antarctic. This is hypothesised to be due to the varying physical supply and biological
uptake of iron between the two regions [Tagliabue et al., 2012, Boyd et al., 2012] i.e., the
Sub-Antarctic, which has several continental sources of iron (i.e., Sub-Antarctic islands),
is therefore generally a region of high productivity [Arrigo et al., 2008] and thus high iron
utilisation (Boyd et al. [2012], Figure 1.1).

In low-iron HNCL regions of the Southern Ocean, where access to a new source of DFe
is limited, the regeneration of iron has been demonstrated to play an important role in
maintaining a resupply of biogenic iron in the mixed-layer [Strzepek et al., 2005, Boyd et al.,
2010a, Boyd and Ellwood, 2010]. Iron upon entering the upper ocean is rapidly consumed
and transferred into the particulate biogenic pool (PFe). Herbivory [Barbeau et al., 1996],
bacterivory [Boyd et al., 2010a] and virally-mediated microbial mortality mediates the PFe
turnover rate making it available for a second round of production. In the upper surface
mixed-layer the rate of PFe mobilisation is rapid (e.g., hours to days) while, in the underlying
waters beneath, this rate may be up to ten times reduced (e.g., weeks to months) [Boyd et al.,
2010a]. The difference between these two ocean layers is that the surface waters have ample
light (i.e., photochemical influences are important) and have the highest load of PFe [Boyd
et al., 2010a].
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Dust deposition

Lateral transport of iron
sediments

Eddy shedding/sediment
entrainment

Bathymetric interactions

Iceberg drift and melt

Seasonal ice melt

Island-wake effect

Figure 1.2: A schematic of currently known physical supply mechanisms of new dissolved iron
to the surface waters of the Southern Ocean. This includes atmospheric dust deposition, lateral
transport of iron sediments, eddy shedding/sediment entrainment, Bathymetric interactions, Ice-
berg drift and melt and seasonal ice melt from Boyd and Ellwood [2010]

Such biological processes along with new iron supply mechanism play an important role
in shaping the vertical distribution of iron in the Southern Ocean [Boyd and Ellwood, 2010].
As discussed in Tagliabue et al. [2014], like other nutrient profiles such as nitrate, surface
concentrations are low due to high biological consumption and subsurface concentrations
are higher due to remineralisation of organic sinking material. However, there are other
factors influencing the subsurface supplies of iron, which do not affect nitrate and other
nutrient profiles, such as scavenging, hydrothermal vent and ocean sediment inputs and
slower subsurface remineralisation. Thus, the ferricline (described here as the depth at
which 0DFe/0z is maximal, Figure A.1) is often considerably deeper than the nitricline.
Likewise, the ferricline is often deeper than the mixed-layer depth (MLD), however why this
offset occurs remains less certain [Tagliabue et al., 2014]. The fact that the ferricline is often
deeper than the MLD is thought to have an important influence on two seasonally varying
physical supplies of DFe (entrainment flux and diapycnal mixing flux) to the surface waters,
which have not been mentioned in the supply synthesis in Figure 1.2. While, the supply
mechanisms in Figure 1.2 certainly may play a role on primary production on an integrated
annual scale, they do not necessarily help to explain the observed seasonality of primary

production in the Southern Ocean.

To this extent, a seasonal conceptual model of surface water iron supplies of the Southern
Ocean, which ties together seasonal physical and biological supplies, has been proposed by
Tagliabue et al. [2014] (Figure 1.3). In which, during winter, deep mixing due to convective
processes maximises the surface iron concentrations through vertical entrainment of subsur-

face waters with higher concentrations of iron. During spring months, as the mixed-layer
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shoals and light becomes available, iron is readily taken up by the proliferation of phyto-
plankton resulting in the depletion of DFe over a period of days to weeks. Another physical
supply mechanism of iron is via diapycnal diffusion, which occurs throughout the year.
However, during summer, after the winter entrainment stock has been consumed, diapycnal
diffusion fluxes were too low to meet the observed utilisation rates of phytoplankton. As
mentioned previously, the magnitudes of the supplies of DFe by winter entrainment and
the background diapycnal diffusion are controlled by the depth of the ferricline (i.e., where
0DFe/0z is maximum) relative to the MLD. Tagliabue et al. [2014] showed that over most
of the SO, throughout the year, these two are largely offset. Therefore, the once off supply
of iron from winter entrainment (9.5-33.2 p.mol.DFe.m™2.yr™!) is significantly more than
the continuous supply by diapycnal diffusion (0.25-7.7 g.mol.DFe.m™2.yr~!) due to weak
0DFe/0zMLD. Furthermore, during summer, Tagliabue et al. [2014] found that any small
transient deviations in the MLD resulted in negligible entrainment relative to the winter

once off supply.
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Figure 1.3: A seasonal conceptual model of surface water iron supplies from Tagliabue et al.
[2014]. The seasonal changes in the physical supply (blue arrows), the magnitude of biological
recycling of iron (yellow, orange and red arrows). Tagliabue et al. [2014] noted some recycling of
iron may occur beneath the mixed-layer in summer, which may also be entrained in winter.
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This led Tagliabue et al. [2014], along with observations of low fe-ratios (i.e., the pro-
portion of DFe uptake from "new" sources, Boyd et al. [2005]) in summer, to propose that
biological recycling of iron is key to support any observed productivity beyond the spring
bloom, which will gradually decline until late summer. As DFe regulates primary production
in the Southern Ocean, an understanding of the spatial and temporal variability of dissolved
iron supply mechanisms is key in accounting for the observed various scales of variability in

primary production, discussed next.

1.3 Variability of phytoplankton biomass

Strong seasonal cycles of solar radiation and mixed-layer depths occur in regions of the
Southern Ocean. The seasonal cycle of phytoplankton biomass in such regions may typically
be characterised by a period of rapid accumulation in spring (after the winter entrainment
of DFe, Tagliabue et al. [2014]) when light limitations are alleviated and a rapid decline in
summer due to iron limitations [Boyd et al., 2010b]. However, observations of surface (and
integrated) chlorophyll satellite data show how Southern Ocean blooms do not conform to
just one overarching seasonal cycle, but in fact there are many which vary both regionally
and annually [Moore and Abbott, 2002, Thomalla et al., 2011, Johnston and Gabric, 2011,
Carranza and Gille, 2014, Sallée et al., 2015]. Thomalla et al. [2011] computed the seasonal
reproducibility of 9 years of surface chlorophyll data, showing that large regions of the
Southern Ocean are characterised with high inter-annual variability? (i.e., low seasonal cycle
reproducibility). A regional study by Park et al. [2010] in the southwest Atlantic showed
that regular seasonal phytoplankton blooms were rarely observed, largely due to variability
driven by the ACC. Such, inter-annual variability of phytoplankton biomass has also been
shown to be linked to a range of drivers including climate variability mechanisms, such as
the Southern Annular Mode (SAM), as well as physical forcing mechanisms, such as wind-
stress, SST and MLD [Johnston and Gabric, 2011]. On the other hand, Thomalla et al.
[2011] showed how regions of high chlorophyll-a inter-annual variability also corresponded
to high intra-seasonal variability and thus proposed that fine-scale dynamics and short-term
wind events, which enhance upwelling and mixing of nutrients, are likely to be responsible
for some of this inter-annual variability in regions of the Southern Ocean. An example of
variability, which falls out of phase lock with the seasonal cycle, is the observed summer

sustained® production discussed below.

2We refer to "inter-annual variability" as variability in the seasonal cycle from year to year

3In the context of the thesis, "sustained" productivity refers to productivity that is not continuing longer
than what is expected by the winter iron reservoir but rather is being prolonged after all winter iron as been
consumed and is maintained by additional iron supply mechanisms through summer.
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Observations of elevated summer phytoplankton biomass and

primary production

During the austral summer of 2012-2013, a glider experiment (Southern Ocean Seasonal
Cycle Experiment - SOSCEx; Swart et al. [2012]) was carried out in the Atlantic sector
of the Sub-Antarctic Zone (SAZ). Transects of optical fluorescence showed the occurrence
of high chlorophyll-a events (~0.6mg.m™3) for an extended period from October to mid-
February (Swart et al. [2014], Figure 1.4). With the same dataset, Thomalla et al. [2015]
estimated the rates of integrated PP demonstrating how towards the end summer, integrated
PP rates were high and fluctuated rapidly (4 - 6 days) between ~200 to ~400 mg C m~2
d=! from mid-December to mid-January and between ~100 to ~200 mg C m~2 d~! from
mid-January to mid-February. In Swart et al. [2014] these intra-seasonal enhancements of
chlorophyll-a in summer where linked to variations in the summer MLD, which as a result
of enhanced stratification remained fluctuating about a mean depth of 40m (with maximum
depths < 90m). This variability in the MLD has also been noted in Sallée et al. [2012] who
found summer MLD’s to have large standard deviations of 20m computed over the entire

Southern Ocean.
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Figure 1.4: A glider transect of depth and time of upper-ocean summer chlorophyll-a [mg.m—3|
with the highly variable MLD, where A T1g,, = 0.2 °C, is overlaid (white line). These observations
have been provided by [Swart et al., 2014] for the summer of 2012-2013. (b) Modelled NPP [mg C
m~2 d~!] using the same glider time series of Swart et al. [2014] integrated over the MLD (PP,,4)
solid black line and the water column (PP,,.) dashed grey line adapted from Thomalla et al. [2015