G. Acevedo?hernández, P. León, and L. Herrera?estrella, Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4, The Plant Journal, vol.107, issue.Suppl., pp.506-519, 2005.
DOI : 10.1104/pp.107.1.161

P. Agarwal, S. Kapoor, and A. Tyagi, Transcription factors regulating the progression of monocot and dicot seed development, BioEssays, vol.2, issue.3, pp.189-202, 2011.
DOI : 10.1093/mp/ssp027

J. Allen, W. De-paula, S. Puthiyaveetil, and J. Nield, A structural phylogenetic map for chloroplast photosynthesis, Trends in Plant Science, vol.16, issue.12, pp.645-655, 2011.
DOI : 10.1016/j.tplants.2011.10.004

J. Almeida, M. Da-silva-azevedo, L. Spicher, G. Glauser, K. Vom-dorp et al., strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner, Journal of Experimental Botany, vol.67, issue.3, pp.919-934, 2016.
DOI : 10.1093/jxb/erv504

URL : https://academic.oup.com/jxb/article-pdf/67/3/919/17139516/erv504.pdf

C. Almoguera, J. Personat, P. Prieto-dapena, and J. Jordano, Heat shock transcription factors involved in seed desiccation tolerance and longevity retard vegetative senescence in transgenic tobacco, Planta, vol.50, issue.3, pp.461-475, 2015.
DOI : 10.1111/tpj.12154

C. Almoguera, P. Prieto-dapena, J. Personat, J. Tejedor-cano, M. Lindahl et al., Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco, PLoS ONE, vol.9, issue.12, p.51443, 2012.
DOI : 10.1371/journal.pone.0051443.s004

C. Almoguera, P. Prieto-dapena, J. Díaz-martín, J. Espinosa, R. Carranco et al., The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9, BMC Plant Biology, vol.9, issue.1, p.75, 2009.
DOI : 10.1186/1471-2229-9-75

C. Almoguera, A. Rojas, J. Dí-az-martí-n, P. Prieto-dapena, R. Carranco et al., A Seed-specific Heat-shock Transcription Factor Involved in Developmental Regulation during Embryogenesis in Sunflower, Journal of Biological Chemistry, vol.5, issue.46, pp.277-43866, 2002.
DOI : 10.1073/pnas.112209199

F. Arenas-huertero, A. Arroyo, L. Zhou, J. Sheen, and P. León, Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar, Genes Dev, vol.14, pp.2085-2096, 2000.

I. Armstead, I. Donnison, A. S. Harper, J. Hörtensteiner, S. James et al., Cross-Species Identification of Mendel's I Locus, Science, vol.315, issue.5808, pp.73-73, 2007.
DOI : 10.1126/science.1132912

K. Asada, Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions, PLANT PHYSIOLOGY, vol.141, issue.2, pp.391-396, 2006.
DOI : 10.1104/pp.106.082040

P. Asokanthan, R. Johnson, M. Griffith, and M. Krol, The photosynthetic potential of canola embryos, Physiologia Plantarum, vol.80, issue.2, pp.353-360, 1997.
DOI : 10.1016/0048-3575(78)90014-7

B. Atkinson, M. Raizada, R. Bouchard, J. Frappier, and D. Walden, The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis inZea mays L, Developmental Genetics, vol.32, issue.1, pp.15-26, 1993.
DOI : 10.1016/B978-0-12-066290-6.50006-1

C. Bailly, C. Audigier, F. Ladonne, M. Wagner, F. Coste et al., Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality, Journal of Experimental Botany, vol.52, issue.357, pp.701-708, 2001.
DOI : 10.1093/jexbot/52.357.701

C. Bailly, A. Benamar, F. Corbineau, and D. Come, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging, Physiologia Plantarum, vol.14, issue.1, pp.104-110, 1996.
DOI : 10.1007/978-94-009-5685-8

J. Baker, C. Van-dennsteele, and I. L. Dure, Sequence and characterization of 6 Lea proteins and their genes from cotton, Plant Molecular Biology, vol.7, issue.3, pp.277-291, 1988.
DOI : 10.1007/BF00027385

S. Baniwal, K. Bharti, K. Chan, M. Fauth, A. Ganguli et al., Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors, Journal of Biosciences, vol.21, issue.4, pp.471-487, 2004.
DOI : 10.1128/MCB.18.4.2240

J. Baskin and C. Baskin, A classification system for seed dormancy, Seed Science Research, vol.14, issue.01, pp.1-16, 2004.
DOI : 10.1079/SSR2003150

S. Baud, J. Boutin, M. Miquel, L. Lepiniec, and C. Rochat, An integrated overview of seed development in Arabidopsis thaliana ecotype WS, Plant Physiology and Biochemistry, vol.40, issue.2, pp.151-160, 2002.
DOI : 10.1016/S0981-9428(01)01350-X

S. Bensmihen, S. Rippa, G. Lambert, D. Jublot, V. Pautot et al., The Homologous ABI5 and EEL Transcription Factors Function Antagonistically to Fine-Tune Gene Expression during Late Embryogenesis, THE PLANT CELL ONLINE, vol.14, issue.6, pp.1391-1403, 2002.
DOI : 10.1105/tpc.000869

URL : https://hal.archives-ouvertes.fr/hal-00136608

L. Bentsink, C. Alonso-blanco, D. Vreugdenhil, K. Tesnier, S. Groot et al., Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis, Plant Physiology, vol.124, issue.4, pp.1595-1604, 2000.
DOI : 10.1104/pp.124.4.1595

L. Bentsink, J. Jowett, C. Hanhart, and M. Koornneef, Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis, Proceedings of the National Academy of Sciences, vol.268, issue.2, pp.17042-17047, 2006.
DOI : 10.1006/abio.1998.3045

J. Bewley and M. Black, Seed Germination and Dormancy, THE PLANT CELL ONLINE, vol.9, issue.7, p.1055, 1997.
DOI : 10.1105/tpc.9.7.1055

M. Bienz and H. Pelham, Mechanisms of Heat-Shock Gene Activation in Higher Eukaryotes, Adv Genet, vol.24, pp.31-72, 1987.
DOI : 10.1016/S0065-2660(08)60006-1

N. Bies-etheve, A. Da-silva-conceicao, M. Koornneef, K. Léon-kloosterziel, C. Valon et al., Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation, Plant Molecular Biology, vol.40, issue.6, pp.1045-1054, 1999.
DOI : 10.1023/A:1006252512202

URL : https://hal.archives-ouvertes.fr/hal-00189686

S. Blackman, R. Obendorf, and A. Leopold, Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds, PLANT PHYSIOLOGY, vol.100, issue.1, pp.225-230, 1992.
DOI : 10.1104/pp.100.1.225

W. Bolingue, L. Vu, B. Leprince, O. Buitink, and J. , Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula, Seed Science Research, vol.14, issue.02, p.97, 2010.
DOI : 10.1007/s003440010035

URL : https://hal.archives-ouvertes.fr/hal-00729693

L. Borisjuk, T. Nguyen, T. Neuberger, T. Rutten, H. Tschiersch et al., Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds, New Phytologist, vol.69, issue.3, pp.761-776, 2005.
DOI : 10.2134/agronj1977.00021962006900030037x

L. Borisjuk, H. Rolletschek, S. Walenta, R. Panitz, U. Wobus et al., Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity, The Plant Journal, vol.69, issue.3, pp.318-329, 2003.
DOI : 10.1016/0014-5793(86)80573-7

F. Bossi, E. Cordoba, P. Dupré, M. Mendoza, C. Román et al., during sugar signaling, The Plant Journal, vol.95, issue.3, pp.359-374, 2009.
DOI : 10.1186/gb-2004-5-11-r91

P. Brenac, M. Horbowicz, S. Downer, A. Dickerman, M. Smith et al., Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation, Journal of Plant Physiology, vol.150, issue.4, pp.481-488, 1997.
DOI : 10.1016/S0176-1617(97)80102-2

A. Britt, DNA DAMAGE AND REPAIR IN PLANTS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.47, issue.1, pp.75-100, 1996.
DOI : 10.1146/annurev.arplant.47.1.75

I. Brocard-gifford, Regulatory Networks in Seeds Integrating Developmental, Abscisic Acid, Sugar, and Light Signaling, PLANT PHYSIOLOGY, vol.131, issue.1, pp.78-92, 2003.
DOI : 10.1104/pp.011916

URL : http://www.plantphysiol.org/content/plantphysiol/131/1/78.full.pdf

J. Browne, A. Tunnacliffe, and A. Burnell, Plant desiccation gene found in a nematode, Nature, vol.121, issue.6876, pp.38-38, 2002.
DOI : 10.1017/S0031182099006563

J. Buitink and O. Leprince, Intracellular glasses and seed survival in the dry state, Comptes Rendus Biologies, vol.331, issue.10, pp.788-795, 2008.
DOI : 10.1016/j.crvi.2008.08.002

URL : https://hal.archives-ouvertes.fr/hal-00729873

J. Buitink, J. Leger, I. Guisle, B. Vu, S. Wuillème et al., seeds, The Plant Journal, vol.138, issue.5, pp.735-750, 2006.
DOI : 10.1104/pp.104.056374

URL : https://hal.archives-ouvertes.fr/hal-00729144

J. Buitink and O. Leprince, Glass formation in plant anhydrobiotes: survival in the dry state, Cryobiology, vol.48, issue.3, pp.215-228, 2004.
DOI : 10.1016/j.cryobiol.2004.02.011

J. Buitink, M. Hemminga, and F. Hoekstra, Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability, Plant Physiology, vol.122, issue.4, pp.1217-1224, 2000.
DOI : 10.1104/pp.122.4.1217

J. Buitink, C. Walters-vertucci, F. Hoekstra, and O. Leprince, Calorimetric Properties of Dehydrating Pollen (Analysis of a Desiccation-Tolerant and an Intolerant Species), Plant Physiology, vol.111, issue.1, pp.235-242, 1996.
DOI : 10.1104/pp.111.1.235

C. Cadman, P. Toorop, H. Hilhorst, and W. Finch-savage, Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism, The Plant Journal, vol.39, issue.Suppl., pp.805-822, 2006.
DOI : 10.1093/oxfordjournals.pcp.a029371

M. Canfield, J. Guiamét, and L. Noodén, Alteration of Soybean Seedling Development in Darkness and Light by the Stay-green Mutation cytG and Gd1d2, Annals of Botany, vol.75, issue.2, pp.143-150, 1995.
DOI : 10.1006/anbo.1995.1005

N. Cairns, M. Pasternak, A. Wachter, C. Cobbett, and A. Meyer, Maturation of Arabidopsis Seeds Is Dependent on Glutathione Biosynthesis within the Embryo, PLANT PHYSIOLOGY, vol.141, issue.2, pp.446-455, 2006.
DOI : 10.1104/pp.106.077982

R. Cantoro, C. Crocco, R. Benech-arnold, and M. Rodriguez, In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy, Journal of Experimental Botany, vol.64, issue.18, pp.5721-5735, 2013.
DOI : 10.1093/jxb/ert347

C. Carles, N. Bies-etheve, L. Aspart, K. Léon-kloosterziel, M. Koornneef et al., Regulation of Arabidopsis thaliana Em genes: role of ABI5, The Plant Journal, vol.152, issue.3, pp.373-383, 2002.
DOI : 10.1111/j.1432-1033.1985.tb09224.x

R. Carranco, J. Espinosa, P. Prieto-dapena, C. Almoguera, and J. Jordano, Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity, Proceedings of the National Academy of Sciences, vol.19, issue.8, pp.21908-21913, 2010.
DOI : 10.1105/tpc.107.050963

URL : http://www.pnas.org/content/107/50/21908.full.pdf

M. Chabaud, A. Boisson-dernier, J. Zhang, C. G. Taylor, O. Yu et al., Agrobacterium rhizogenes-mediated root transformation. The Medicago truncatula handbook, 2006.

S. Chakrabortee, C. Boschetti, L. Walton, S. Sarkar, D. Rubinsztein et al., Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function, Proceedings of the National Academy of Sciences, vol.36, issue.10, pp.18073-18078, 2007.
DOI : 10.1074/jbc.M109633200

URL : http://www.pnas.org/content/104/46/18073.full.pdf

E. Châtelain, P. Satour, E. Laugier, B. Vu, N. Payet et al., Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3633-3638, 2013.
DOI : 10.1016/0003-2697(76)90527-3

E. Chatelain, M. Hundertmark, O. Leprince, S. Gall, P. Satour et al., Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity, Plant, Cell & Environment, vol.115, issue.8, pp.1440-1455, 2012.
DOI : 10.1007/s00122-007-0538-9

URL : https://hal.archives-ouvertes.fr/hal-00841823

H. Chauhan, N. Khurana, P. Agarwal, J. Khurana, and P. Khurana, A Seed Preferential Heat Shock Transcription Factor from Wheat Provides Abiotic Stress Tolerance and Yield Enhancement in Transgenic Arabidopsis under Heat Stress Environment, PLoS ONE, vol.35, issue.11, p.79577, 2013.
DOI : 10.1371/journal.pone.0079577.s004

H. Chauhan, N. Khurana, P. Agarwal, and P. Khurana, Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress, Molecular Genetics and Genomics, vol.384, issue.17, pp.171-187, 2011.
DOI : 10.1515/BC.2003.108

K. Cheah and D. Osborne, DNA lesions occur with loss of viability in embryos of ageing rye seed, Nature, vol.193, issue.5654, pp.593-599, 1978.
DOI : 10.1042/bj1020251

H. Chen, J. Zhang, M. Neff, S. Hong, H. Zhang et al., Integration of light and abscisic acid signaling during seed germination and early seedling development, Proceedings of the National Academy of Sciences, vol.17, issue.2, pp.4495-4500, 2008.
DOI : 10.1105/tpc.104.027722

H. K. Choi, D. Kim, T. Uhm, E. Limpens, H. Lim et al., A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa, Genetics, vol.166, issue.3, pp.166-1463, 2004.
DOI : 10.1534/genetics.166.3.1463

J. Cillard and P. Cillard, M??canismes de la peroxydation lipidique et des anti-oxydations, Ol??agineux, Corps gras, Lipides, vol.13, issue.1, pp.24-29, 2006.
DOI : 10.1051/ocl.2006.6666

URL : https://doi.org/10.1051/ocl.2006.6666

E. Clerkx, B. Vries, G. Ruys, S. Groot, and M. Koornneef, Genetic differences in seed longevity of various Arabidopsis mutants, Physiologia Plantarum, vol.14, issue.3, pp.448-461, 2004.
DOI : 10.1046/j.1365-313x.1998.00277.x

J. Colmenero-flores, L. Moreno, C. Smith, and A. Covarrubias, -18, a Member of a New Late-Embryogenesis-Abundant Protein Family That Accumulates during Water Stress and in the Growing Regions of Well-Irrigated Bean Seedlings, Plant Physiology, vol.120, issue.1, pp.93-104, 1999.
DOI : 10.1104/pp.120.1.93

L. Colville, C. Sáez, G. Lewis, and I. Kranner, The distribution of glutathione and homoglutathione in leaf, root and seed tissue of 73 species across the three sub-families of the Leguminosae, Phytochemistry, vol.115, pp.175-183, 2015.
DOI : 10.1016/j.phytochem.2015.01.011

F. Corbineau, M. Picard, J. Fougereux, F. Ladonne, and D. Côme, Effects of dehydration conditions on desiccation tolerance of developing pea seeds as related to oligosaccharide content and cell membrane properties, Seed Science Research, vol.10, issue.03, pp.329-339, 2000.
DOI : 10.1017/S0960258500000374

F. Corbineau, S. Bagniol, and D. Côme, Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene, Isr J Bot, vol.39, pp.313-325, 1990.

M. Coumans, D. Come, and T. Gaspar, Stabilized Dormancy in Sugarbeet Fruits. I. Seed Coats as a Physicochemical Barrier to Oxygen, Botanical Gazette, vol.137, issue.3, pp.274-278, 1976.
DOI : 10.1086/336870

J. Crowe, F. Hoekstra, and L. Crowe, Anhydrobiosis, Annual Review of Physiology, vol.54, issue.1, pp.579-599, 1992.
DOI : 10.1146/annurev.ph.54.030192.003051

L. Crowe, Lessons from nature: the role of sugars in anhydrobiosis, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.131, issue.3, pp.505-513, 2002.
DOI : 10.1016/S1095-6433(01)00503-7

M. Dalmais, J. Schmidt, L. Signor, C. Moussy, F. Burstin et al., UTILLdb, a Pisum sativum in silico forward and reverse genetics tool, Genome Biology, vol.9, issue.2, p.1, 2008.
DOI : 10.1186/gb-2008-9-2-r43

D. Giorgi, J. Piskurewicz, U. Loubery, S. Utz-pugin, A. Bailly et al., An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis, PLOS Genet Plant Physiol, vol.11, issue.122, pp.403-414, 2000.

B. Dekkers, H. He, J. Hanson, L. Willems, D. Jamar et al., during Arabidopsis seed development, The Plant Journal, vol.61, issue.4, pp.451-465, 2016.
DOI : 10.1111/j.1365-313X.2009.04092.x

URL : https://hal.archives-ouvertes.fr/hal-01563912

B. Dekkers, J. Schuurmans, and S. Smeekens, Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis, Plant Molecular Biology, vol.95, issue.1-2, pp.151-167, 2008.
DOI : 10.1104/pp.102.4.1185

URL : https://link.springer.com/content/pdf/10.1007%2Fs11103-008-9308-6.pdf

J. Delahaie, M. Hundertmark, J. Bove, O. Leprince, H. Rogniaux et al., LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance, Journal of Experimental Botany, vol.64, issue.14, pp.4559-4573, 2013.
DOI : 10.1093/jxb/ert274

URL : https://hal.archives-ouvertes.fr/hal-01209949

D. Dellapenna and B. Pogson, VITAMIN SYNTHESIS IN PLANTS: Tocopherols and Carotenoids, Annual Review of Plant Biology, vol.57, issue.1, pp.711-738, 2006.
DOI : 10.1146/annurev.arplant.56.032604.144301

F. Delmas, S. Sankaranarayanan, S. Deb, E. Widdup, C. Bournonville et al., ABI3 controls embryo degreening through Mendel's I locus, Proceedings of the National Academy of Sciences, vol.50, issue.6, pp.3888-3894, 2013.
DOI : 10.1111/j.1365-313X.2007.03111.x

URL : http://www.pnas.org/content/110/40/E3888.full.pdf

J. Delouche and W. Caldwell, Seed vigor and vigor tests, Proc. Assoc. Off. Seed Anal. JSTOR, pp.124-129, 1960.

J. Díaz-martín, C. Almoguera, P. Prieto-dapena, J. Espinosa, and J. Jordano, Functional Interaction between Two Transcription Factors Involved in the Developmental Regulation of a Small Heat Stress Protein Gene Promoter, PLANT PHYSIOLOGY, vol.139, issue.3, pp.1483-1494, 2005.
DOI : 10.1104/pp.105.069963

N. Djemel, D. Guedon, A. Lechevalier, C. Salon, M. Miquel et al., Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex, Plant Physiology and Biochemistry, vol.43, issue.6, pp.557-566, 2005.
DOI : 10.1016/j.plaphy.2005.04.005

K. Vom-dorp, G. Hölzl, C. Plohmann, M. Eisenhut, M. Abraham et al., Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis, The Plant Cell, vol.27, pp.2846-2859, 2015.
DOI : 10.1105/tpc.15.00395

J. Du, L. Wang, X. Zhang, X. Xiao, F. Wang et al., Heterologous expression of two Physcomitrella patens group 3 late embryogenesis abundant protein (LEA3) genes confers salinity tolerance in arabidopsis, Journal of Plant Biology, vol.53, issue.2, pp.182-193, 2016.
DOI : 10.1146/annurev.arplant.53.091401.143329

Z. Du, X. Zhou, Y. Ling, Z. Zhang, Z. Su et al., agriGO: a GO analysis toolkit for the agricultural community Recent developments in the intracellular degradation of oxidized proteins 1, 2, Nucleic Acids Res Free Radic Biol Med, vol.33, pp.894-906, 2002.

R. Ellis, T. Hong, and M. Jackson, Seed Production Environment, Time of Harvest, and the Potential Longevity of Seeds of Three Cultivars of Rice (Oryza sativa L.), Annals of Botany, vol.72, issue.6, pp.583-590, 1993.
DOI : 10.1006/anbo.1993.1148

R. Ellis, The longevity of seeds, HortScience, vol.26, pp.1119-1125, 1991.

S. Gonzalez-jorge, P. Mehrshahi, M. Magallanes-lundback, A. Lipka, R. Angelovici et al., ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing Arabidopsis seed, Plant Physiol, vol.00604, 2016.
DOI : 10.1104/pp.16.00604

URL : http://www.plantphysiol.org/content/plantphysiol/171/3/1837.full.pdf

P. Grappin, D. Bouinot, B. Sotta, E. Miginiac, and M. Jullien, Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance, Planta, vol.210, issue.2, pp.279-285, 2000.
DOI : 10.1007/PL00008135

J. Gregorio, A. Hernández-bernal, E. Cordoba, and P. León, Characterization of Evolutionarily Conserved Motifs Involved in Activity and Regulation of the ABA-INSENSITIVE (ABI) 4 Transcription Factor, Molecular Plant, vol.7, issue.2, pp.422-436, 2014.
DOI : 10.1093/mp/sst132

J. Grelet, A. Benamar, E. Teyssier, M. Avelange-macherel, D. Grunwald et al., Identification in Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying, PLANT PHYSIOLOGY, vol.137, issue.1, pp.157-167, 2005.
DOI : 10.1104/pp.104.052480

URL : https://hal.archives-ouvertes.fr/inserm-00764327

S. Groot and C. Karssen, Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants, Planta, vol.72, issue.4, pp.525-531, 1987.
DOI : 10.1007/BF00392302

M. Grusak and D. Dellapenna, IMPROVING THE NUTRIENT COMPOSITION OF PLANTS TO ENHANCE HUMAN NUTRITION AND HEALTH, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.133-161, 1999.
DOI : 10.1146/annurev.arplant.50.1.133

S. Gurusinghe and K. Bradford, Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds, Seed Sci Res, vol.11, pp.121-134, 2001.

L. Gutierrez, O. Van-wuytswinkel, M. Castelain, and C. Bellini, Combined networks regulating seed maturation, Trends in Plant Science, vol.12, issue.7, pp.294-300, 2007.
DOI : 10.1016/j.tplants.2007.06.003

M. Hara, M. Fujinaga, and T. Kuboi, Metal binding by citrus dehydrin with histidine-rich domains, Journal of Experimental Botany, vol.56, issue.420, pp.2695-2703, 2005.
DOI : 10.1093/jxb/eri262

URL : https://academic.oup.com/jxb/article-pdf/56/420/2695/1417947/eri262.pdf

P. Hare, W. Cress, and J. Van-staden, Dissecting the roles of osmolyte accumulation during stress, Plant, Cell and Environment, vol.98, issue.6, pp.535-553, 1998.
DOI : 10.1016/S0168-9452(97)00174-X

M. Haslbeck and J. Buchner, Assays to Characterize Molecular Chaperone Function In Vitro, Stress Responses Methods Protoc, pp.39-51, 2015.
DOI : 10.1007/978-1-4939-2522-3_3

F. Hay, S. Timple, and B. Van-duijn, Abstract, Seed Science Research, vol.31, issue.03, pp.321-334, 2015.
DOI : 10.1071/BT06046

H. Hilhorst and C. Karssen, Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants, Plant Growth Regulation, vol.41, issue.3, pp.225-238, 1992.
DOI : 10.1007/BF00024561

D. Hincha, E. Zuther, and A. Heyer, The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1612, issue.2, pp.172-177, 2003.
DOI : 10.1016/S0005-2736(03)00116-0

. Hoekstra, Mechanisms of plant desiccation tolerance, Trends in Plant Science, vol.6, issue.9, p.431, 2001.
DOI : 10.1016/S1360-1385(01)02052-0

F. Hoekstra, A. Haigh, F. Tetteroo, and T. Van-roekel, Changes in soluble sugars in relation to desiccation tolerance in cauliflower seeds, Seed Science Research, vol.88, issue.02, pp.143-147, 1994.
DOI : 10.1111/j.1399-3054.1992.tb04758.x

S. Hörtensteiner, Update on the biochemistry of chlorophyll breakdown, Plant Molecular Biology, vol.136, issue.Suppl. 1, pp.505-517, 2012.
DOI : 10.1104/pp.104.046367

S. Hörtensteiner, Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence, Trends in Plant Science, vol.14, issue.3, pp.155-162, 2009.
DOI : 10.1016/j.tplants.2009.01.002

C. Howarth, Heat shock proteins in Sorghum bicolor and Pennisetum americanum I. genotypic and developmental variation during seed germination, Plant, Cell and Environment, vol.314, issue.5, pp.471-477, 1989.
DOI : 10.1016/0092-8674(83)90299-4

C. Howitt and B. Pogson, Carotenoid accumulation and function in seeds and non-green tissues, Plant, Cell and Environment, vol.179, issue.3, pp.435-445, 2006.
DOI : 10.1021/jf049214g

J. Hsu and J. Sung, Antioxidant role of glutathione associated with accelerated aging and hydration of triploid watermelon seeds, Physiologia Plantarum, vol.14, issue.4, pp.967-974, 1997.
DOI : 10.1016/0168-9452(95)04183-U

C. Huijser, A. Kortstee, J. Pego, P. Weisbeek, E. Wisman et al., The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses, The Plant Journal, vol.12, issue.5, pp.577-585, 2000.
DOI : 10.1046/j.1365-313X.1997.12040921.x

M. Hundertmark and D. Hincha, LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana, BMC Genomics, vol.9, issue.1, p.1, 2008.
DOI : 10.1186/1471-2164-9-118

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-9-118?site=bmcgenomics.biomedcentral.com

M. Hundertmark, J. Buitink, O. Leprince, and D. Hincha, The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana, Seed Science Research, vol.10, issue.03, pp.165-173, 2011.
DOI : 10.1093/aob/mcq067

URL : https://hal.archives-ouvertes.fr/hal-00729324

T. Isaacson, Cloning of tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of beta-Carotene and Xanthophylls in Plants, THE PLANT CELL ONLINE, vol.14, issue.2, pp.333-342, 2002.
DOI : 10.1105/tpc.010303

M. Jakoby, B. Weisshaar, W. Dröge-laser, J. Vicente-carbajosa, J. Tiedemann et al., bZIP transcription factors in Arabidopsis, Trends in Plant Science, vol.7, issue.3, pp.106-111, 2002.
DOI : 10.1016/S1360-1385(01)02223-3

URL : https://hal.archives-ouvertes.fr/hal-00140514

H. Jalink, R. Van-der-schoor, A. Frandas, J. Van-pijlen, and R. Bino, Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance, Seed Science Research, vol.75, issue.04, pp.437-443, 1998.
DOI : 10.4141/cjps95-069

. Jonhson-flanagan, Humidification of Green Canola Seed Leads to Pigment Degradation in the Absence of Germination, Crop Science, vol.34, issue.6, pp.1618-1623, 1994.
DOI : 10.2135/cropsci1994.0011183X003400060035x

S. Kagale and K. Rozwadowski, EAR motif-mediated transcriptional repression in plants, Epigenetics, vol.59, issue.2, pp.141-146, 2011.
DOI : 10.1111/j.1365-313X.2010.04112.x

URL : http://www.tandfonline.com/doi/pdf/10.4161/epi.6.2.13627?needAccess=true

T. Katagiri, K. Ishiyama, T. Kato, S. Tabata, M. Kobayashi et al., An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana, The Plant Journal, vol.97, issue.Suppl., pp.107-117, 2005.
DOI : 10.1016/S1388-1981(99)00091-8

K. Keith, M. Kraml, N. Dengler, and P. Mccourt, fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis, THE PLANT CELL ONLINE, vol.6, issue.5, pp.589-600, 1994.
DOI : 10.1105/tpc.6.5.589

F. Keller and D. Pharr, Metabolism of carbohydrates in sinks and sources: galactosylsucrose oligosaccharides. Photoassimilate Distrib Plants Crops Source-Sink Relatsh Marcel Dekker, pp.157-183, 1996.

W. Kim, Y. Lee, J. Park, N. Lee, and G. Choi, HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis, Plant and Cell Physiology, vol.54, issue.4, p.17, 2013.
DOI : 10.1093/pcp/pct017

M. Koag, S. Wilkens, R. Fenton, J. Resnik, E. Vo et al., The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1503-1514, 2009.
DOI : 10.1104/pp.109.136697

Y. Kong, S. Chen, Y. Yang, and C. An, seedlings under stress, FEBS Letters, vol.38, issue.18, pp.3076-3082, 2013.
DOI : 10.1111/j.1365-313X.2004.02028.x

M. Koornneef, G. Reuling, and C. Karssen, The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana, Physiologia Plantarum, vol.5, issue.3, pp.377-383, 1984.
DOI : 10.1007/BF00386409

K. Koster and A. Leopold, Sugars and Desiccation Tolerance in Seeds, PLANT PHYSIOLOGY, vol.88, issue.3, pp.829-832, 1988.
DOI : 10.1104/pp.88.3.829

URL : http://www.plantphysiol.org/content/plantphysiol/88/3/829.full.pdf

S. Kotak, M. Port, A. Ganguli, F. Bicker, and V. Koskull?döring, heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization, The Plant Journal, vol.5, issue.1, pp.98-112, 2004.
DOI : 10.1128/MCB.11.9.4555

S. Kotak, E. Vierling, H. Baumlein, and P. V. Koskull-doring, A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis, THE PLANT CELL ONLINE, vol.19, issue.1, pp.182-195, 2007.
DOI : 10.1105/tpc.106.048165

S. Koussevitzky, A. Nott, T. Mockler, F. Hong, G. Sachetto-martins et al., Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression, Science, vol.316, issue.5825, pp.715-719, 2007.
DOI : 10.1126/science. 1140516

D. Kovacs, B. Agoston, and P. Tompa, Disordered plant LEA proteins as molecular chaperones, Plant Signaling & Behavior, vol.11, issue.9, pp.710-713, 2008.
DOI : 10.1146/annurev.bi.60.070191.001541

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634567/pdf

I. Kranner, S. Birti?, K. Anderson, and H. Pritchard, Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death?, Free Radical Biology and Medicine, vol.40, issue.12, pp.2155-2165, 2006.
DOI : 10.1016/j.freeradbiomed.2006.02.013

B. Kucera, M. Cohn, and G. Leubner-metzger, Plant hormone interactions during seed dormancy release and germination, Seed Science Research, vol.15, issue.4, pp.281-307, 2005.
DOI : 10.1079/SSR2005218

S. Kurup, H. Jones, and M. Holdsworth, Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds, The Plant Journal, vol.21, issue.2, pp.143-155, 2000.
DOI : 10.1046/j.1365-313x.2000.00663.x

R. Laby, M. Kincaid, D. Kim, and S. Gibson, The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response, The Plant Journal, vol.61, issue.5, pp.587-596, 2000.
DOI : 10.1073/pnas.95.17.10294

J. Lapinski and A. Tunnacliffe, Anhydrobiosis without trehalose in bdelloid rotifers, FEBS Letters, vol.43, issue.388, pp.387-390, 2003.
DOI : 10.1006/cryo.2001.2357

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(03)01062-7/pdf

G. Lazarova, Y. Zeng, and A. Kermode, Cloning and expression of an ABSCISIC ACID???INSENSITIVE 3 (ABI3) gene homologue of yellow???cedar (Chamaecyparis nootkatensis), Journal of Experimental Botany, vol.53, issue.371, pp.1219-1221, 2002.
DOI : 10.1093/jexbot/53.371.1219

K. Lee, U. Piskurewicz, V. Tureckova, S. Carat, R. Chappuis et al., Spatially and genetically distinct control of seed germination by phytochromes A and B, Genes & Development, vol.26, issue.17, pp.1984-1996, 2012.
DOI : 10.1101/gad.194266.112

V. Lefebvre, H. North, A. Frey, B. Sotta, M. Seo et al., genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy, The Plant Journal, vol.11, issue.3, pp.309-319, 2006.
DOI : 10.1111/j.1365-313X.2005.02622.x

P. León, J. Gregorio, and E. Cordoba, ABI4 and its role in chloroplast retrograde communication, Frontiers in Plant Science, vol.3, p.304, 2013.
DOI : 10.3389/fpls.2012.00304

K. Leon-kloosterziel, C. Keijzer, and M. Koornneef, A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development, THE PLANT CELL ONLINE, vol.6, issue.3, pp.385-392, 1994.
DOI : 10.1105/tpc.6.3.385

D. Li, W. Mou, Z. Luo, L. Li, J. Limwachiranon et al., Developmental and stress regulation on expression of a novel miRNA, Fan-miR73 and its target ABI5 in strawberry, Scientific Reports, vol.36, issue.1, 2016.
DOI : 10.1007/s11738-014-1617-6

L. Li, Y. Song, K. Wang, P. Dong, X. Zhang et al., TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis, Frontiers in Plant Science, vol.82, issue.14, 2015.
DOI : 10.1016/0092-8674(95)90058-6

URL : http://journal.frontiersin.org/article/10.3389/fpls.2015.00861/pdf

P. Li, J. Wind, X. Shi, H. Zhang, J. Hanson et al., Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.3436-3441, 2011.
DOI : 10.1093/bioinformatics/btg157

C. Liao, Z. Lai, S. Lee, D. Yun, and T. Mengiste, Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin, The Plant Cell, 2016.
DOI : 10.1105/tpc.16.00105

H. Lichtenthaler and C. Buschmann, Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy, Curr. Protoc. Food Anal. Chem, vol.33, 2001.
DOI : 10.1002/0471142913.faf0403s01

A. Linkies and G. Leubner-metzger, Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination, Plant Cell Reports, vol.416, issue.6882, pp.253-270, 2011.
DOI : 10.1038/416703a

C. Lohmann, G. Eggers-schumacher, M. Wunderlich, and F. Schöffl, Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis, Molecular Genetics and Genomics, vol.271, issue.1, pp.11-21, 2004.
DOI : 10.1007/s00438-003-0954-8

L. Lopez-molina and N. Chua, A Null Mutation in a bZIP Factor Confers ABA-Insensitivity in Arabidopsis thaliana, Plant and Cell Physiology, vol.41, issue.5, pp.541-547, 2000.
DOI : 10.1093/pcp/41.5.541

L. Lopez-molina, S. Mongrand, and N. Chua, A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis, Proceedings of the National Academy of Sciences, vol.24, issue.5, pp.4782-4787, 2001.
DOI : 10.1046/j.1365-313x.2000.00899.x

L. Lopez-molina, S. Mongrand, N. Kinoshita, and N. Chua, AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation, Genes & Development, vol.17, issue.3, pp.410-418, 2003.
DOI : 10.1101/gad.1055803

L. Lopez-molina, S. Mongrand, D. Mclachlin, B. Chait, and N. Chua, ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination, The Plant Journal, vol.51, issue.3, pp.317-328, 2002.
DOI : 10.1093/pcp/41.5.541

T. Lotan, M. Ohto, K. Yee, M. West, R. Lo et al., Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells, Cell, vol.93, issue.7, pp.1195-1205, 1998.
DOI : 10.1016/S0092-8674(00)81463-4

URL : https://doi.org/10.1016/s0092-8674(00)81463-4

J. Maia, B. Dekkers, M. Dolle, W. Ligterink, and H. Hilhorst, Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds, New Phytologist, vol.61, issue.189, pp.81-93, 2014.
DOI : 10.1111/j.1365-313X.2009.04092.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/nph.12785/pdf

R. Mailer, B. Orchard, M. Vonarx, and N. Wratten, The influence of cultivar and environment on the chlorophyll concentration of Australian canola seed, Australian Journal of Experimental Agriculture, vol.43, issue.2, pp.169-176, 2003.
DOI : 10.1071/EA02056

A. Manfre, G. Lahatte, C. Climer, and W. Marcotte, Seed Dehydration and the Establishment of Desiccation Tolerance During Seed Maturation is Altered in the Arabidopsis thaliana Mutant atem6-1, Plant and Cell Physiology, vol.50, issue.2, pp.243-253, 2009.
DOI : 10.1093/pcp/pcn185

J. Mascarenhas and D. Crone, Pollen and the heat shock response, Sexual Plant Reproduction, vol.3, issue.6, pp.370-374, 1996.
DOI : 10.1111/1365-3040.ep11572397

P. Matile, S. Hortensteiner, H. Thomas, and B. Krautler, Chlorophyll Breakdown in Senescent Leaves, Plant Physiology, vol.112, issue.4, p.1403, 1996.
DOI : 10.1104/pp.112.4.1403

D. Mccarty, C. Carson, P. Stinard, and D. Robertson, Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize, THE PLANT CELL ONLINE, vol.1, issue.5, pp.523-532, 1989.
DOI : 10.1105/tpc.1.5.523

J. Medford and I. Sussex, Regulation of chlorophyll and Rubisco levels in embryonic cotyledons of Phaseolus vulgaris, Planta, vol.48, issue.3, pp.309-315, 1989.
DOI : 10.1007/BF00391075

D. Meinke, L. Franzmann, T. Nickle, and E. Yeung, Leafy Cotyledon Mutants of Arabidopsis, THE PLANT CELL ONLINE, vol.6, issue.8, pp.1049-1064, 1994.
DOI : 10.1105/tpc.6.8.1049

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160500/pdf

K. Miura, J. Lee, J. Jin, C. Yoo, T. Miura et al., Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling, Proceedings of the National Academy of Sciences, vol.20, issue.10, pp.5418-5423, 2009.
DOI : 10.1105/tpc.108.061515

G. Mönke, L. Altschmied, A. Tewes, W. Reidt, H. Mock et al., Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA, Planta, vol.219, issue.1, pp.158-166, 2004.
DOI : 10.1007/s00425-004-1206-9

M. Monma, M. Ito, M. Saito, and K. Chikuni, Carotenoid Components in Soybean Seeds Varying with Seed Color and Maturation Stage, Bioscience, Biotechnology, and Biochemistry, vol.58, issue.5, pp.926-930, 1994.
DOI : 10.1271/bbb.58.926

URL : http://www.tandfonline.com/doi/pdf/10.1271/bbb.58.926?needAccess=true

R. Moran, Formulae for Determination of Chlorophyllous Pigments Extracted with N,N-Dimethylformamide, PLANT PHYSIOLOGY, vol.69, issue.6, pp.1376-1381, 1982.
DOI : 10.1104/pp.69.6.1376

F. Morscher, I. Kranner, E. Arc, C. Bailly, and T. Roach, Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing, Annals of Botany, vol.116, issue.4, pp.669-678, 2015.
DOI : 10.1093/aob/mcv108

URL : https://hal.archives-ouvertes.fr/hal-01537948

P. Müller, X. Li, and K. Niyogi, Non-Photochemical Quenching. A Response to Excess Light Energy, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1558-1566, 2001.
DOI : 10.1104/pp.125.4.1558

M. Nagel, I. Kranner, K. Neumann, H. Rolletschek, C. Seal et al., Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley, Plant, Cell & Environment, vol.119, issue.6, pp.1011-1022, 2015.
DOI : 10.1007/s00122-009-1015-4

K. Nakabayashi, M. Okamoto, T. Koshiba, Y. Kamiya, and E. Nambara, Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed, The Plant Journal, vol.124, issue.5, pp.697-709, 2005.
DOI : 10.1093/pcp/41.5.541

S. Nakajima, H. Ito, R. Tanaka, and A. Tanaka, Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds, PLANT PHYSIOLOGY, vol.160, issue.1, pp.261-273, 2012.
DOI : 10.1104/pp.112.196881

S. Nakamura, T. Lynch, and R. Finkelstein, Physical interactions between ABA response loci of Arabidopsis, The Plant Journal, vol.7, issue.6, pp.627-635, 2001.
DOI : 10.1105/tpc.7.9.1511

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2001.01069.x/pdf

E. Nambara and A. Marion-poll, ABA action and interactions in seeds, Trends in Plant Science, vol.8, issue.5, pp.213-217, 2003.
DOI : 10.1016/S1360-1385(03)00060-8

E. Nambara and A. Marion-poll, ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM, Annual Review of Plant Biology, vol.56, issue.1, pp.165-185, 2005.
DOI : 10.1146/annurev.arplant.56.032604.144046

E. Nambara, S. Naito, and P. Mccourt, A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele, The Plant Journal, vol.1, issue.4, pp.435-441, 1992.
DOI : 10.1007/BF00019521

E. Nambara, M. Okamoto, K. Tatematsu, R. Yano, M. Seo et al., Abscisic acid and the control of seed dormancy and germination, Seed Science Research, vol.35, issue.02, pp.55-67, 2010.
DOI : 10.1104/pp.106.093435

C. Ndong, J. Danyluk, K. Wilson, T. Pocock, N. Huner et al., Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses, PLANT PHYSIOLOGY, vol.129, issue.3, pp.1368-1381, 2002.
DOI : 10.1104/pp.001925

T. Nguyen, G. Cueff, D. Hegedus, L. Rajjou, L. Bentsink et al., A role for seed storage proteins in Arabidopsis seed longevity Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis, J, vol.160, issue.4, pp.2083-2092, 2012.

C. Nicolle, G. Simon, E. Rock, P. Amouroux, and C. Rémésy, Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars, Journal of the American Society for Horticultural Science, vol.129, issue.4, pp.523-529, 2004.

A. Nishizawa, Y. Yabuta, and S. Shigeoka, Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage, PLANT PHYSIOLOGY, vol.147, issue.3, pp.1251-1263, 2008.
DOI : 10.1104/pp.108.122465

X. Niu, T. Helentjaris, and N. Bate, Maize ABI4 Binds Coupling Element1 in Abscisic Acid and Sugar Response Genes, THE PLANT CELL ONLINE, vol.14, issue.10, pp.2565-2575, 2002.
DOI : 10.1105/tpc.003400

S. Norris, T. Barrette, and D. Dellapenna, Genetic Dissection of Carotenoid Synthesis in Arabidopsis Defines Plastoquinone as an Essential Component of Phytoene Desaturation, THE PLANT CELL ONLINE, vol.7, issue.12, pp.2139-2149, 1995.
DOI : 10.1105/tpc.7.12.2139

L. Nover, K. Bharti, P. Döring, S. Mishra, A. Ganguli et al., &cestflwr; Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?, Cell Stress & Chaperones, vol.273, issue.3, p.177, 2001.
DOI : 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2

R. Obendorf, Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance, Seed Science Research, vol.3, issue.02, pp.63-74, 1997.
DOI : 10.1104/pp.104.4.1333

L. Oge, G. Bourdais, J. Bove, B. Collet, B. Godin et al., Protein Repair L-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.11, pp.3022-3037, 2008.
DOI : 10.1105/tpc.108.058479

URL : https://hal.archives-ouvertes.fr/hal-01455979

M. Okamoto, A. Kuwahara, M. Seo, T. Kushiro, T. Asami et al., CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8'-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis, PLANT PHYSIOLOGY, vol.141, issue.1, pp.97-107, 2006.
DOI : 10.1104/pp.106.079475

J. Okamuro, B. Caster, R. Villarroel, M. Van-montagu, and K. Jofuku, The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis, Proceedings of the National Academy of Sciences, vol.68, issue.4, pp.7076-7081, 1997.
DOI : 10.1016/0092-8674(92)90145-3

Y. Olvera-carrillo, F. Campos, J. Reyes, A. Garciarrubio, and A. Covarrubias, Functional Analysis of the Group 4 Late Embryogenesis Abundant Proteins Reveals Their Relevance in the Adaptive Response during Water Deficit in Arabidopsis, Plant Physiology, vol.154, issue.1, pp.373-390, 2010.
DOI : 10.1104/pp.110.158964

O. Neill, C. Gill, S. Hobbs, D. Morgan, C. Bancroft et al., Natural variation for seed oil composition in Arabidopsis thaliana, Phytochemistry, vol.64, issue.6, pp.1077-1090, 2003.
DOI : 10.1016/S0031-9422(03)00351-0

J. Ooms, K. Leon-kloosterziel, D. Bartels, M. Koornneef, and C. Karssen, Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants), Plant Physiology, vol.102, issue.4, pp.1185-1191, 1993.
DOI : 10.1104/pp.102.4.1185

G. Pádua, J. França-neto, M. Carvalho, F. Krzyzanowski, and R. Guimarães, Incidence of green soybean seeds as a function of environmental stresses during seed maturation, Revista Brasileira de Sementes, vol.31, issue.3, pp.150-159, 2009.
DOI : 10.1590/S0101-31222009000300017

F. Parcy, C. Valon, M. Raynal, P. Gaubier-comella, M. Delseny et al., Regulation of Gene Expression Programs during Arabidopsis Seed Development: Roles of the ABI3 Locus and of Endogenous Abscisic Acid, THE PLANT CELL ONLINE, vol.6, issue.11, pp.1567-1582, 1994.
DOI : 10.1105/tpc.6.11.1567

R. Patel, H. Nahal, R. Breit, and N. Provart, BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species, The Plant Journal, vol.86, issue.6, pp.1038-1050, 2012.
DOI : 10.1073/pnas.86.16.6201

A. Pellizzaro, T. Clochard, C. Cukier, C. Bourdin, M. Juchaux et al., The Nitrate Transporter MtNPF6.8 (MtNRT1.3) Transports Abscisic Acid and Mediates Nitrate Regulation of Primary Root Growth in Medicago truncatula, PLANT PHYSIOLOGY, vol.166, issue.4, pp.2152-2165, 2014.
DOI : 10.1104/pp.114.250811

URL : https://hal.archives-ouvertes.fr/hal-01209996

S. Penfield, Y. Li, A. Gilday, S. Graham, and I. Graham, Arabidopsis ABA INSENSITIVE4 Regulates Lipid Mobilization in the Embryo and Reveals Repression of Seed Germination by the Endosperm, THE PLANT CELL ONLINE, vol.18, issue.8, pp.1887-1899, 2006.
DOI : 10.1105/tpc.106.041277

E. Perruc, N. Kinoshita, and L. Lopez?molina, The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination, The Plant Journal, vol.268, issue.5, pp.927-936, 2007.
DOI : 10.1093/pcp/41.5.541

T. Peterbauer, L. Lahuta, A. Blöchl, J. Mucha, D. Jones et al., Analysis of the Raffinose Family Oligosaccharide Pathway in Pea Seeds with Contrasting Carbohydrate Composition, PLANT PHYSIOLOGY, vol.127, issue.4, pp.1764-1772, 2001.
DOI : 10.1104/pp.010534

B. Pogson, N. Woo, B. Förster, and I. Small, Plastid signalling to the nucleus and beyond, Trends in Plant Science, vol.13, issue.11, pp.602-609, 2008.
DOI : 10.1016/j.tplants.2008.08.008

V. Poiatti, F. Dalmas, and L. Astarita, Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria, Biological Research, vol.42, issue.2, pp.205-215, 2009.
DOI : 10.4067/S0716-97602009000200009

A. Popova, S. Rausch, M. Hundertmark, Y. Gibon, and D. Hincha, The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1854, issue.10, pp.1517-1525, 2015.
DOI : 10.1016/j.bbapap.2015.05.002

H. Potts, J. Duangpatra, W. Hairston, and J. Delouche, Some Influences of Hardseededness on Soybean Seed Quality1, Crop Science, vol.18, issue.2, pp.221-224, 1978.
DOI : 10.2135/cropsci1978.0011183X001800020006x

L. Pourcel, J. Routaboul, L. Kerhoas, M. Caboche, L. Lepiniec et al., TRANSPARENT TESTA10 Encodes a Laccase-Like Enzyme Involved in Oxidative Polymerization of Flavonoids in Arabidopsis Seed Coat, THE PLANT CELL ONLINE, vol.17, issue.11, pp.2966-2980, 2005.
DOI : 10.1105/tpc.105.035154

P. Prieto-dapena, R. Castano, C. Almoguera, and J. Jordano, Improved Resistance to Controlled Deterioration in Transgenic Seeds, PLANT PHYSIOLOGY, vol.142, issue.3, pp.1102-1112, 2006.
DOI : 10.1104/pp.106.087817

P. Prieto?dapena, R. Castaño, C. Almoguera, and J. Jordano, The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs, The Plant Journal, vol.1760, issue.6, pp.1004-1014, 2008.
DOI : 10.1038/nrg2063

R. Probert, M. Daws, and F. Hay, Ecological correlates of ex situ seed longevity: a comparative study on 195 species, Annals of Botany, vol.104, issue.1, pp.57-69, 2009.
DOI : 10.1093/aob/mcp082

R. Probert, J. Adams, J. Coneybeer, A. Crawford, and F. Hay, Seed quality for conservation is critically affected by pre-storage factors, Australian Journal of Botany, vol.55, issue.3, pp.326-335, 2007.
DOI : 10.1071/BT06046

A. Pru?inská, I. Anders, A. S. Schenk, N. Tapernoux-lüthi, E. Müller et al., In Vivo Participation of Red Chlorophyll Catabolite Reductase in Chlorophyll Breakdown, THE PLANT CELL ONLINE, vol.19, issue.1, pp.369-387, 2007.
DOI : 10.1105/tpc.106.044404

L. Rajjou, K. Gallardo, I. Debeaujon, J. Vandekerckhove, C. Job et al., The Effect of ??-Amanitin on the Arabidopsis Seed Proteome Highlights the Distinct Roles of Stored and Neosynthesized mRNAs during Germination, PLANT PHYSIOLOGY, vol.134, issue.4, pp.1598-1613, 2004.
DOI : 10.1104/pp.103.036293

URL : https://hal.archives-ouvertes.fr/hal-01508727

W. Reeves, T. Lynch, R. Mobin, and R. Finkelstein, Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors, Plant Molecular Biology, vol.61, issue.4-5, pp.347-363, 2011.
DOI : 10.1111/j.1365-313X.2009.04092.x

J. Reyes, R. M. , C. Jm, G. J. , G. A. Campos et al., Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro, Plant, Cell and Environment, vol.127, issue.6, pp.709-718, 2005.
DOI : 10.1093/oxfordjournals.jbchem.a022648

K. Righetti, J. Vu, S. Pelletier, B. Vu, E. Glaab et al., Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways, The Plant Cell, vol.15, p.632, 2015.
DOI : 10.1105/tpc.15.00632

URL : https://hal.archives-ouvertes.fr/hal-01392707

L. Rivera-najera, G. Saab-rincón, M. Battaglia, C. Amero, N. Pulido et al., A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties, Journal of Biological Chemistry, vol.35, issue.46, pp.31995-32009, 2014.
DOI : 10.1104/pp.106.094581

M. Rodríguez, G. Mendiondo, L. Maskin, G. Gudesblat, N. Iusem et al., Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages Isolation and expression analysis of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) homologue from Populus trichocarpa, Ann Bot J Exp Bot, vol.49, pp.1059-1060, 1998.

A. Rojas, C. Almoguera, and J. Jordano, Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors, The Plant Journal, vol.240, issue.5, pp.601-610, 1999.
DOI : 10.1146/annurev.cellbio.11.1.441

H. Rolletschek, R. Radchuk, C. Klukas, F. Schreiber, U. Wobus et al., Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds, New Phytologist, vol.120, issue.3, pp.777-786, 2005.
DOI : 10.1271/bbb1961.51.1227

H. Rolletschek, W. Weschke, H. Weber, U. Wobus, and L. Borisjuk, Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains, Journal of Experimental Botany, vol.55, issue.401, pp.1351-1359, 2004.
DOI : 10.1093/jxb/erh130

E. Romanel, C. Schrago, R. Couñago, C. Russo, and M. Alves-ferreira, Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes, PloS One Plant Physiol, vol.4, issue.136, pp.2700-2709, 2004.

Y. Sakuraba, S. Han, S. Lee, S. Hörtensteiner, and N. Paek, Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription, Plant Cell Reports, vol.157, issue.1, pp.155-166, 2016.
DOI : 10.1104/pp.111.185140

Y. Sakuraba, S. Park, and N. Paek, The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation, Molecules and Cells, vol.38, issue.5, pp.390-395, 2015.
DOI : 10.14348/molcells.2015.0039

Y. Sakuraba, J. Jeong, M. Kang, J. Kim, N. Paek et al., Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis, Nature Communications, vol.75, 2014.
DOI : 10.1104/pp.107.115592

M. Santos-mendoza, B. Dubreucq, S. Baud, F. Parcy, M. Caboche et al., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, The Plant Journal, vol.8, issue.4, pp.608-620, 2008.
DOI : 10.1101/gad.1318705

URL : https://hal.archives-ouvertes.fr/hal-00297574

S. Sattler, Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination, THE PLANT CELL ONLINE, vol.16, issue.6, pp.1419-1432, 2004.
DOI : 10.1105/tpc.021360

URL : http://www.plantcell.org/content/plantcell/16/6/1419.full.pdf

K. Scharf, T. Berberich, I. Ebersberger, and L. Nover, The plant heat stress transcription factor (Hsf) family: Structure, function and evolution, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1819, issue.2, pp.104-119, 2012.
DOI : 10.1016/j.bbagrm.2011.10.002

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.2, issue.6, pp.1101-1108, 2008.
DOI : 10.1593/neo.07916

F. Schöffl, R. Prändl, and A. Reindl, Regulation of the Heat-Shock Response: Fig. 1., Plant Physiology, vol.117, issue.4, pp.1135-1141, 1998.
DOI : 10.1104/pp.117.4.1135

M. Schwarzländer, A. König, L. Sweetlove, and I. Finkemeier, The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses, Journal of Experimental Botany, vol.63, issue.4, pp.1735-1750, 2012.
DOI : 10.1093/jxb/err374

J. Schwender, F. Goffman, J. B. Ohlrogge, and Y. Shachar-hill, Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature, vol.25, issue.7018, pp.432-779, 2004.
DOI : 10.1016/S0167-7799(98)01290-6

J. Shen-miller, M. Mudgett, J. Schopf, S. Clarke, and R. Berger, Exceptional Seed Longevity and Robust Growth: Ancient Sacred Lotus from China, American Journal of Botany, vol.82, issue.11, p.1367, 1995.
DOI : 10.2307/2445863

D. Shkolnik-inbar and D. Bar-zvi, ABI4 Mediates Abscisic Acid and Cytokinin Inhibition of Lateral Root Formation by Reducing Polar Auxin Transport in Arabidopsis, THE PLANT CELL ONLINE, vol.22, issue.11, pp.3560-3573, 2010.
DOI : 10.1105/tpc.110.074641

T. Schmittgen and K. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.2, issue.6, pp.1101-1108, 2008.
DOI : 10.1593/neo.07916

K. Shu, Q. Chen, Y. Wu, R. Liu, H. Zhang et al., transcription, Journal of Experimental Botany, vol.67, issue.1, pp.195-205, 2016.
DOI : 10.1093/jxb/erv459

K. Shu, H. Zhang, S. Wang, M. Chen, Y. Wu et al., ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis, PLoS Genetics, vol.879, issue.6, p.1003577, 2013.
DOI : 10.1371/journal.pgen.1003577.s009

U. Sinniah, R. Ellis, and P. John, Irrigation and Seed Quality Development in Rapid-cycling Brassica: Soluble Carbohydrates and Heat-stable Proteins, Annals of Botany, vol.82, issue.5, pp.647-655, 1998.
DOI : 10.1006/anbo.1998.0738

N. Soares-cavalcanti, L. Belarmino, E. Kido, V. Pandolfi, F. Marcelino-guimarães et al., Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus and Medicago truncatula, Genetics and Molecular Biology, vol.282, issue.1 suppl 1, pp.247-259, 2012.
DOI : 10.1074/jbc.M707168200

E. Söderman, I. Brocard, T. Lynch, and R. Finkelstein, Gene in Seed and Abscisic Acid Response Signaling Networks, Plant Physiology, vol.124, issue.4, pp.1752-1765, 2000.
DOI : 10.1104/pp.124.4.1752

D. De-souza-vidigal, L. Willems, J. Van-arkel, B. Dekkers, H. Hilhorst et al., Galactinol as marker for seed longevity, Plant Science, vol.246, pp.112-118, 2016.
DOI : 10.1016/j.plantsci.2016.02.015

S. Stone, L. Kwong, K. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proceedings of the National Academy of Sciences, vol.99, issue.10, pp.11806-11811, 2001.
DOI : 10.1105/tpc.5.10.1411

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58812/pdf

S. Stone, L. Williams, L. Farmer, R. Vierstra, and J. Callis, KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling, THE PLANT CELL ONLINE, vol.18, issue.12, pp.3415-3428, 2006.
DOI : 10.1105/tpc.106.046532

M. Sugliani, L. Rajjou, E. J. Clerkx, M. Koornneef, and W. J. Soppe, Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3), New Phytologist, vol.122, issue.4, pp.898-908, 2009.
DOI : 10.1104/pp.122.4.1099

W. Sun, M. Van-montagu, and N. Verbruggen, Small heat shock proteins and stress tolerance in plants, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1577, issue.1, pp.1-9, 2002.
DOI : 10.1016/S0167-4781(02)00417-7

M. Suzuki, H. Wang, and D. Mccarty, Repression of the LEAFY COTYLEDON 1/B3 Regulatory Network in Plant Embryo Development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 Genes, PLANT PHYSIOLOGY, vol.143, issue.2, pp.902-911, 2007.
DOI : 10.1104/pp.106.092320

A. Tanaka and R. Tanaka, Chlorophyll metabolism, Current Opinion in Plant Biology, vol.9, issue.3, pp.248-255, 2006.
DOI : 10.1016/j.pbi.2006.03.011

R. Tanaka and A. Tanaka, Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.8, pp.968-976, 2011.
DOI : 10.1016/j.bbabio.2011.01.002

R. Teixeira, W. Ligterink, J. França-neto, B. De, H. Hilhorst et al., Gene expression profiling of the green seed problem in Soybean, BMC Plant Biology, vol.52, issue.1, 2016.
DOI : 10.1016/j.plaphy.2011.12.007

J. Tejedor-cano, P. Prieto-dapena, C. Almoguera, R. Carranco, K. Hiratsu et al., Loss of function of the HSFA9 seed longevity program. Plant Cell Environ no-no Terrasson E An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison, Front Plant Sci, 2010.

H. Thomas and C. Howarth, Five ways to stay green, Journal of Experimental Botany, vol.51, issue.suppl_1, pp.329-337, 2000.
DOI : 10.1093/jexbot/51.suppl_1.329

URL : https://academic.oup.com/jxb/article-pdf/51/suppl_1/329/18025932/510329.pdf

A. To, C. Valon, G. Savino, J. Guilleminot, M. Devic et al., A Network of Local and Redundant Gene Regulation Governs Arabidopsis Seed Maturation, THE PLANT CELL ONLINE, vol.18, issue.7, pp.1642-1651, 2006.
DOI : 10.1105/tpc.105.039925

URL : https://hal.archives-ouvertes.fr/hal-00164401

D. Tolleter, M. Jaquinod, C. Mangavel, C. Passirani, P. Saulnier et al., Structure and Function of a Mitochondrial Late Embryogenesis Abundant Protein Are Revealed by Desiccation, THE PLANT CELL ONLINE, vol.19, issue.5, pp.1580-1589, 2007.
DOI : 10.1105/tpc.107.050104

URL : https://hal.archives-ouvertes.fr/hal-00146361

J. Trent, A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea, FEMS Microbiology Reviews, vol.18, issue.2-3, pp.249-258, 1996.
DOI : 10.1111/j.1574-6976.1996.tb00241.x

K. Upendra, S. Shekhawat, L. Srinivas, and T. Ganapathi, MusaDHN-1, a novel multiple stress-inducible SK^ sub 3^-type dehydrin gene, contributes affirmatively to droughtand salt-stress tolerance in banana, Planta, vol.234, p.915, 2011.

C. Vandecasteele, B. Teulat-merah, M. Morère-le-paven, O. Leprince, L. Vu et al., Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula, Plant, Cell & Environment, vol.56, issue.9, pp.1473-1487, 2011.
DOI : 10.1146/annurev.arplant.56.032604.144201

URL : https://hal.archives-ouvertes.fr/hal-00729316

J. Verdier, D. Lalanne, S. Pelletier, I. Torres-jerez, K. Righetti et al., A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds, PLANT PHYSIOLOGY, vol.163, issue.2, pp.757-774, 2013.
DOI : 10.1104/pp.113.222380

URL : https://hal.archives-ouvertes.fr/hal-01209940

E. Vierling, The Roles of Heat Shock Proteins in Plants, Annual Review of Plant Physiology and Plant Molecular Biology, vol.42, issue.1, pp.579-620, 1991.
DOI : 10.1146/annurev.pp.42.060191.003051

W. Wang, B. Vinocur, O. Shoseyov, and A. Altman, Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends in Plant Science, vol.9, issue.5, pp.244-252, 2004.
DOI : 10.1016/j.tplants.2004.03.006

Z. Wang, K. Cheng, L. Wan, L. Yan, H. Jiang et al., Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes, BMC Genomics, vol.125, issue.3, p.1053, 2015.
DOI : 10.1007/s10265-011-0448-4

E. Waters, G. Lee, and E. Vierling, Evolution, structure and function of the small heat shock proteins in plants, Journal of Experimental Botany, vol.47, issue.3, pp.325-338, 1996.
DOI : 10.1093/jxb/47.3.325

W. Waterworth, C. Bray, C. West, W. Waterworth, G. Masnavi et al., The importance of safeguarding genome integrity in germination and seed longevity A plant DNA ligase is an important determinant of seed longevity: Characterization of Arabidopsis DNA ligase 6, J Exp Bot Plant J, vol.080, issue.63, pp.848-860, 2010.

N. Wehmeyer, L. Hernandez, R. Finkelstein, and E. Vierling, Synthesis of Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed Maturation, Plant Physiology, vol.112, issue.2, pp.747-757, 1996.
DOI : 10.1104/pp.112.2.747

N. Wehmeyer and E. Vierling, The Expression of Small Heat Shock Proteins in Seeds Responds to Discrete Developmental Signals and Suggests a General Protective Role in Desiccation Tolerance, Plant Physiology, vol.122, issue.4, pp.1099-1108, 2000.
DOI : 10.1104/pp.122.4.1099

K. Weitbrecht, K. Müller, and G. Leubner-metzger, First off the mark: early seed germination, Journal of Experimental Botany, vol.62, issue.10, pp.3289-3309, 2011.
DOI : 10.1093/jxb/err030

G. Whistance and D. Threlfall, Biosynthesis of phytoquinones. Homogentisic acid: a precursor of plastoquinones, tocopherols and ??-tocopherolquinone in higher plants, green algae and blue???green algae, Biochemical Journal, vol.117, issue.3, pp.593-600, 1970.
DOI : 10.1042/bj1170593

M. Wise and A. Tunnacliffe, POPP the question: what do LEA proteins do?, Trends in Plant Science, vol.9, issue.1, pp.13-17, 2004.
DOI : 10.1016/j.tplants.2003.10.012

W. Wolkers, S. Mccready, W. Brandt, G. Lindsey, and F. Hoekstra, Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1544, issue.1-2, pp.196-206, 2001.
DOI : 10.1016/S0167-4838(00)00220-X

J. Woodson and J. Chory, Coordination of gene expression between organellar and nuclear genomes, Nature Reviews Genetics, vol.8, issue.5, pp.383-395, 2008.
DOI : 10.1128/MCB.16.4.1543

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854206/pdf

R. Woodward, The total synthesis of chlorophyll, Pure Appl Chem, vol.2, pp.383-404, 1961.

J. Wu, S. Seng, J. Sui, E. Vonapartis, X. Luo et al., Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy, Frontiers in Plant Science, vol.66, issue.85, 2015.
DOI : 10.1007/s11103-008-9298-4

URL : https://www.frontiersin.org/articles/10.3389/fpls.2015.00960/pdf

D. Xu, J. Li, S. Gangappa, C. Hettiarachchi, F. Lin et al., Convergence of Light and ABA Signaling on the ABI5 Promoter, Convergence of Light and ABA Signaling on the ABI5 Promoter, p.1004197, 2014.
DOI : 10.1371/journal.pgen.1004197.s004

X. Xu, C. W. Sun, X. Feng, P. Guo, H. Li et al., Convergence of light and chloroplast signals for de-etiolation through ABI4???HY5 and COP1, Nature Plants, vol.252, issue.6, pp.16066-16066, 2015.
DOI : 10.1016/j.virol.2011.10.001

K. Yamasaki, T. Kigawa, M. Seki, K. Shinozaki, and S. Yokoyama, DNA-binding domains of plant-specific transcription factors: structure, function, and evolution, Trends in Plant Science, vol.18, issue.5, pp.267-276, 2013.
DOI : 10.1016/j.tplants.2012.09.001

F. Yan, W. Deng, X. Wang, C. Yang, and Z. Li, Maize (Zea mays L.) homologue of ABA-insensitive (ABI) 5 gene plays a negative regulatory role in abiotic stresses response, Plant Growth Regulation, vol.66, issue.3, pp.383-393, 2012.
DOI : 10.1007/s11103-008-9298-4

Y. Yang, X. Yu, L. Song, and C. An, ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency, PLANT PHYSIOLOGY, vol.156, issue.2, pp.873-883, 2011.
DOI : 10.1104/pp.111.175950

URL : http://www.plantphysiol.org/content/plantphysiol/156/2/873.full.pdf

T. Yoshida, Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama et al., AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation, The Plant Journal, vol.136, issue.Suppl, pp.672-685, 2010.
DOI : 10.1093/pcp/41.5.541

A. Young, The photoprotective role of carotenoids in higher plants, Physiologia Plantarum, vol.51, issue.4, pp.702-708, 1991.
DOI : 10.1016/0005-2728(87)90190-3

B. Yu, M. Gruber, S. Wei, R. Zhou, D. Hegedus et al., over-expression lines, Botany, vol.4, issue.5, 2016.
DOI : 10.1242/dev.016873

F. Yu, Y. Wu, and Q. Xie, Precise protein post-translational modifications modulate ABI5 activity, Trends in Plant Science, vol.20, issue.9, pp.569-575, 2015.
DOI : 10.1016/j.tplants.2015.05.004

L. Zhang, M. Kusaba, A. Tanaka, and W. Sakamoto, Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant, Front. Plant Sci, vol.7, 2016.

X. Zhou, F. Yuan, M. Wang, A. Guo, Y. Zhang et al., Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea, Biochemical and Biophysical Research Communications, vol.430, issue.3, pp.1140-1146, 2013.
DOI : 10.1016/j.bbrc.2012.12.023

M. Zou, Y. Guan, H. Ren, F. Zhang, and F. Chen, A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance, Plant Molecular Biology, vol.360, issue.Suppl, pp.675-683, 2008.
DOI : 10.1093/oxfordjournals.pcp.a029319

J. Bewley, K. Bradford, H. Hilhorst, and H. Nonogaki, Longevity, Storage, and Deterioration. Seeds Physiol. Dev. Germination Dormancy 3rd Ed, pp.341-376, 2013.
DOI : 10.1007/978-1-4614-4693-4_8

E. Chatelain, Contribution à la caractérisation des phases tardives de la maturation des graines de Medicago truncatula : une étude physiologique et biochimique pour comprendre la longévité, Thèse. Université d'Angers, Angers Terrasson E (2013) Régulation des qualités physiologique et sanitaire de la graine de Medicago truncatula: rôles de MtABI5 et transmission des Xanthomonas aux semences, 2012.