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partagent mon parcours et beaucoup de mes souvenirs. Merci Yohann, Orianne, Olivier,

Thomas et Jessica, pour les moments passés que je n’oublierai pas, et pour toutes les
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Chapter 1

Introduction

The topic of dynamics in the presence of quenched randomness is one of long-standing

interest in the field of nonequilibrium statistical mechanics, as demonstrated by a number

of extensive and monumental reviews (Havlin and Ben-Avraham, 1987; Bouchaud and

Georges, 1990; Dean et al., 2007; Höfling and Franosch, 2013). The reason is obvious:

disorder is present and unavoidable in many systems of practical interest, such as natural

or synthetic porous solids (Gelb et al., 1999; Alcoutlabi and McKenna, 2005; Alba-

Simionesco et al., 2006; Havlin and Ben-Avraham, 1987). In these instances, however,

the nature and strength of the disorder is not easily controlled, so that the development of

systematic studies is seriously impeded. Recently, a novel class of experimental systems

has been put forward, which is based on the interaction of colloids with light and clears

up many of these difficulties. It provided the motivation for the present work.

1.1 Experimental studies of colloids in random

light fields

At the core of the present work lies an experimental concern, well summarized by Evers

et al. (2013a). In the studies described in this paper, a complex system of mirrors, filters

and lenses has been used to generate, control and measure the properties of a random

coherent light pattern, also called a laser speckle pattern. In practice, this patern can be

realized in many different ways: as a linear superposition of random sinusoidal waves,

Kraichnan (1976) as a sum of interactions with randomly placed impurities, Lifshits

et al. (1988) or through coarse-graining of a random field, not necessarily Gaussian in

nature, over large enough regions Chudnovsky and Dickman (1998). The latter scheme

is directly relevant to polarizable colloids in speckle patterns, which is the case to be

treated here (Hanes et al., 2012; Hanes and Egelhaaf, 2012; Evers et al., 2013b; Hanes

et al., 2013; Bewerunge and Egelhaaf, 2016; Bewerunge et al., 2016a,b).

7



8 INTRODUCTION

Figure 1.1: Schematic representation of the setup used to create a speckle pattern.
(left) A laser beam is shone through a diffusive plate and the resulting speckle
pattern is then imaged. Reproduced from Bewerunge and Egelhaaf (2016). (right)
Intensity distribution of a typical speckle pattern recorded with a CCD camera.
Reproduced from Fallani et al. (2008).

Figure 1.1 schematically shows a way of producing such a light pattern using coarse-

graining of a random field, and a visual representation of an actual speckle.

A laser speckle typically consists of light spots randomly dispatched on a surface and can

be easily obtained by beaming coherent light on or through a rough surface. Controlling

and measuring it however requires a much more complex setup, as explained by Evers

et al. (2013a). The aim of the experimental work however is not the study of the

speckle pattern in itself, but rather its effect on a fluid of Brownian particles, which can

interact with light under certain conditions. In this context, the nature of the particles

is important, because it conditions the nature of their interactions with the speckle

pattern. The particles were chosen to be surfactant-free sulfonated polystyrene spheres,

and were plunged in a heavy water solution, before being beamed with the said speckle.

Due to their composition, the particles have a higher refractive index compared to the

solvent. Furthermore, they are surrounded by solvent molecules, which allows them to

experience Brownian motion. These two facts lead us to consider the two different forces

felt by the particles and coming from the laser speckle, as shown in figure 1.2.

The first force is the radiative pressure force, that particles with a refractive index higher

than that of their solvent may experience in the presence of a light beam. This force

has the effect of pulling the particles towards the high intensity regions, and keeping

them in place, in the same way an optical tweezer would. The second force is related

to the immediate environment of the particles: heating of the solvent particles by light



1.1. COLLOIDS IN RANDOM LIGHT FIELDS 9

Figure 1.2: Forces exerted by light on a colloidal particle. (a) The radiative
pressure force, which is the dominant force experienced by non-absorbing particles,
results from the transfer of momentum from photons scattered by a particle. The
radiative pressure force can be divided into a scattering force, which tends to push
the particle along the direction of light propagation, and a gradient force, which
tends to pull the particle toward the highest intensity region. The gradient force
enables trapping in a focused laser beam. (b) The photophoretic force, which is
the dominant force experienced by strongly absorbing particles, results from the
transfer of heat to surrounding fluid molecules from a non-uniformly heated and/or
non-uniformly heat-emitting particle. Reproduced from Redding et al. (2015).

absorption creates a pushing force on the illuminated side of the particle. This force

has the effect of pushing the particle in the direction of the light beam (Ashkin, 1997;

Molloy and Padgett, 2002; Bowman and Padgett, 2013). Therefore, a bunch of particles

of a size of the same order of magnitude as the light spots and presenting the properties

above mentioned will interact with the speckle, and the latter is to be considered as

generating a random energy landscape.

One effect the speckle can have on a fluid of such particles, as studied by Evers et al.

(2013a), is a dynamical slowing down. Figure 1.3 shows in the left panel a schematic

figure taken from the experiments of this group, that presents the dynamics of particles

inside a laser speckle in a very intuitive way. In the right panel, a corresponding mean

squared displacement (MSD) shows in more details the way dynamics are changing when

the power used to generate the laser speckle increases.

Looking at the left panel in figure 1.3, one can already start to imagine some dynamical

scenarios. Circled in red is represented the trajectory of what is probably a single

particle. That particle seems to spend some time in one limited area in the bottom

left of the highlighted zone, before eventually exiting it and wandering around. We

can postulate that the particle is first located inside a light spot of the speckle, i.e.,

a minimum of the potential, before finding a saddle point or reaching enough thermal
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Figure 1.3: Colloidal motion in a speckle pattern. (left) Trajectories of particles
undergoing diffusion in a two-dimensional plane, part of which contains a random
potential (green disk). (right) Normalized mean squared displacements. Curves
from top to bottom are drawn for increasing laser power. Adapted from Evers
et al. (2013a).

energy to exit that area, and start to explore more space. A second scenario can be

seen highlighted in blue, where one or more particles are spending the whole time of

the experiment in one localized area of the experimental setup, which ought to be a

very deep minimum those particles cannot get out of. In summary, the laser speckle,

by trapping the particles for more or less time, has the property of slowing down the

dynamics of the fluid. Furthermore, as it can be seen in the right panel of figure 1.3, the

shape of the MSD changes when the laser power is increased. The MSD being a measure

of the amount of space explored by the particles, a slope of one for this function means

a diffusive motion, and conversely a slope lower than one means a subdiffusive motion.

We can see in the right panel that with an increase of the laser power, comes a decrease

of the slope of the MSD for intermediate to long times, hinting to an increase of the

dynamical slowing down.

A similar scenario can be seen in figure 1.4 by Volpe et al. (2014), where a single Brownian

particle is allowed to undergo its dynamics in a speckle pattern. From left to right, the

power used to generate a same laser speckle is increased. The trajectory of the particle,

represented by the green line, shows that at first the dynamics are diffusive in the

common sense of the term: the particle undergoes a random walk, almost undisturbed

by the presence of the weak speckle. Then, as the intensity of light increases, the

particle finds itself more and more constrained to the regions of high intensity, only

passing through low intensity regions as crossing saddle points to reach the more stable

regions. At high light intensity, the particle is totally localized inside a light spot, unable

to cross the high barriers created by the optical potential.
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Figure 1.4: Particle diffusion in a speckle pattern. The background represents a
speckle pattern generated by a circular aperture. From left to right, the trajectories
(green solid lines) show progressive confinement of a polystyrene bead in water as
a function of the increasing speckle intensity. Reproduced from Volpe et al. (2014).

Another experimental approach comes from Shvedov et al. (2010). This experimental

setup is at first glance very similar: a laser speckle is generated, and particles are allowed

to undergo their dynamics in the optical potential created by that speckle. One difference

however is the dimensionality: the experimental setup accounts for a three dimensional

laser speckle, and the particles have one more dimension at their disposal as well. This,

as it will become obvious a bit later, may be the root of a lot of discrepancies when

comparing systems that present different dimensionalities. The goal of the experiment

is different in this case as well. While for Evers et al. (2013a), the goal is the study of

the dynamical slowing down of the particles in the presence of an external disorder, and

to analyze the different scenarios responsible for this, the work of Shvedov et al. (2010)

is aimed as a proof of concept of the ability to trap particles with a laser speckle. Thus,

a three-dimensional laser speckle is generated, and carbon nanofoam particles floating

freely in air are allowed to interact with it, while being recorded. In figure 1.5 one can

see different views of particles being trapped in the random light pattern.

The different pictures in the bottom panels are taken at different times, and it is obvious

that the more time passes, the higher the number of particles that are trapped inside

the laser speckle. In this experiment, the particles have been shown to remain trapped

for more than 24 hours, which is a very long time for Brownian particles. Thus, one can

imagine that with enough laser power, particles that exhibit subdiffusive behavior like in

the work of Evers et al. (2013a), can eventually be trapped ad infinitum. The particles

trapped in this way are actually experiencing a dynamical arrest due to the presence of

the potential.

This is however an uncommon way to induce such a dynamical phenomenon in a colloidal

system. A more common way a fluid can experience a dynamical arrest is by an increase
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Figure 1.5: Geometry and dynamics of particle trapping in a three-dimensional
speckle pattern. (top) Image of the laser light scattered from the particles trapped
in a speckled bottle beam. (bottom) Snapshots showing the progressive filling
of the optical trap (time increases from left to right). Reproduced from Shvedov
et al. (2010).

of its density, leading through overcrowding to the phenomenon called density driven

glass transition. In the case of the work of Shvedov et al. (2010), the dynamical arrest is

driven by the presence of the external potential, leading the fluid, through sub-diffusion

phenomena similar to those described by Evers et al. (2013a), to a case where the

particles are trapped in the energy landscape created by the spots of the laser speckle.

Obviously, such a simple scenario is not able to render the full picture of what may

happen when the laser power is increased. If more than one particle is present, interplay

between density driven and potential driven dynamical slowing down exists and makes

the whole problem a lot more complicated.

One possible application of the above-mentioned phenomena is given by Volpe et al.

(2014). Figure 1.6 shows simulation results of Brownian particles of two species (small

and big particles) passing through a speckle-like random potential. The speckle is static

in the left panels and ratcheting perpendicular to the flow in the right panels. In both

cases, the random potential is used to discriminate the bigger from the smaller particles.

These examples have the purpose of convincing the reader that these kinds of systems,

though not very well studied yet, have many potential applications. The process of

dynamical slowing down through interaction with disorder, until a possible localization

or arrest, gives rise to many interesting and probably complex dynamical phenomena

that could be exploited if well enough understood.

Concerning the experimental works, two last studies have to be mentionned. The work
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Figure 1.6: Separation of colloidal mixtures with speckle patterns. (a) Lapse-time
snapshots of the motion of polystyrene particles with small (green dots) and large
(black dots) radii in a microfluidic speckle sieve, where a static speckle pattern
(shaded area) traps the smaller particles while it lets the larger ones go away with
the flow. (b) Same as (a), but with the speckle pattern ratcheting in the direction
orthogonal to the flow. Reproduced from Volpe et al. (2014).
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of Pinçe et al. (2016) and Paoluzzi et al. (2014) cover the dyamics of two-dimensional

respectively active particles and run-and-tumble crowds in speckle patterns. These stud-

ies aim to understand the behaviour of more natural systems such as bacterias in the

smooth biological environment, or the dynamics of human crowds.

1.2 Theoretical studies of tracers in random po-

tential energy landscapes

As much as the experimental setups may be difficult to put together due to practical

concerns, this is not the case for theoretical studies, for when computer power is not the

problem, only human brain is. Therefore, theoretical studies have been undergone on

the subject, starting with the early work of Zallen and Scher (1971) on the percolation

transition. In this paper, the authors describe a thought experiment presented as an

approximation for a “real (i.e., quantum mechanical) system”. In this picture, a random

potential V (r) is defined, as well as a density φ(E) that specifies the fraction of space

available to particles of energy E. The system consists of a single particle following

Newtonian dynamics, the energy is therefore conserved, meaning that a particle with a

strictly lower energy than E will not be able to pass a potential barrier of height E.

To a low value of the energy E of the system corresponds a low value of φ(E), which

means that the space available to the particle is very low, as one can see in the first panel

of figure 1.7. In panel (a), indeed, the gray available regions are all separated one from

another, and surely, a particle located in one of them will not be able to reach another

gray region, being as it is, not able to cross the barriers. This case can be compared to

the third picture of figure 1.4, where the particles are isolated in high-intensity spots of

light.

On the other hand, panel (c) of figure 1.7 shows a case where φ(E) has been increased

to the point where the particles have an infinite ocean of space available to them, and

can therefore diffuse in any direction, which can be compared to the first panel of figure

1.4.

Between these two extremes lies an intermediate state, where the infinite available space

just starts forming. This intermediate state happens at a critical energy Ec, correspond-

ing to a density of available space φc = φ(Ec), and is called the percolation transition.

In two dimensions, as it is the case for example in the experiments of Evers et al.

(2013a) and Volpe et al. (2014), the emergence of the infinite ocean of available space

coincides exactly with the vanishing of the infinite ocean of unavailable space. This is

a very important point to keep in mind, since this fact changes dramatically with the

dimensionality, as can be seen in figure 1.8.

Two things can be readily seen from this figure. First, looking at the φ(E) curve, the

critical volume density decreases dramatically with the dimensionality, which means

that the threshold for the existence of an infinite available region is much lower in three
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Figure 1.7: Percolation in a two-dimensional potential. The contour lines represent
equipotentials of V (r). The gray regions in (a),(b) and (c) indicate allowed regions
(V (r) < E) for three successively increasing values of E. Adapted from Zallen and
Scher (1971).

dimensions than in two dimensions (we will not be concerned with the one-dimensional

case, which is more a toy system than anything close to a real one).

Second, looking at the R(E) curves, one can clearly see that in the case of a two-

dimensional system, the emergence of an infinite available space (the beginning of the full

line) exactly coincides with the disappearance of an infinite unavailable space (the end

of the dashed line). In the case of a three-dimensional system however, the two curves

overlap in one small region of R(E). This means that there is a certain energy span

where both the infinite regions of available and unavailable space exist together. One

more dimension (and especially one more than two dimensions) allows the system to have

two infinite objects existing side to side without interpenetration, by simply avoiding and

circumventing each other. Aditionnal theoretical studies about the percolation model

can be found in (Ziman, 1968; Isichenko, 1992).

Concerning numerical experiments, we must cite the work of Pezzé et al. (2011), who have

undertaken a simulation study of the diffusion of Newtonian tracers in an anisotropic

disordered two-dimensional potential. In figure 1.9, pictures of the generated potential,

with corresponding MSD, are shown for three different available/unavailable space ratios.

The MSD have been traced by simulating the diffusion of a single tracer in the disordered

environment.

The three pictures and MSD correspond to the same system and the same potential, but

with different ratios of available/unavailable space (quantified by the parameter E/VR).

From left to right, this ratio is increasing.



16 INTRODUCTION

Figure 1.8: Dimensionality dependence of continuum percolation processes. φ(E)
is the fraction of allowed (V (r) < E) space and R(E) is the fraction of space
contained in infinitely extended allowed regions. The dashed curves represent
functions opposite to R(E), specifying the fraction of space contained in infinitely
extended forbidden regions. Reproduced from Zallen and Scher (1971).

For high ratios of available/unavailable space, and at short times, the MSD exhibits

what is called a ballistic regime, characterized by a slope of the MSD equal to two. This

regime occurs when the particle, starting from its initial position, moves but has not

yet had the time to experience its immediate surroundings (i.e., the random potential),

and is therefore diffusing very rapidly. After some time, the particle starts to experience

scattering by the disorder, and the motion slows down to what is called the diffusive

regime, characterized by a slope of the MSD equal to one. Because the particle has an

infinite amount of space available, it does not get stuck in some limited region of space,

and therefore the diffusive state lasts for an infinite amount of time.

When the amount of unavailable space increases, the MSD starts to change shape. By

looking closely, we can see that, on the middle panel which shows the system closer to

the percolation transition, between the initial ballistic regime and the long time diffusive

regime, an intermediate regime starts to develop. This regime is characterized by a slope
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Figure 1.9: Topography and transport regimes of classical particles in a 2D
anisotropic speckle potential (anisotropy factor σx/σy = 2). Panels (a)–(c) show
the allowed (white; V (r) < E) and forbidden (gray; V (r) > E) regions for a
classical particle of energy E in the disordered potential V (r). Different columns
correspond to the same realization of the disordered potential and different ener-
gies. VR is the average amplitude of the disordered potential. Panels (d)–(f) show
the mean square displacements along the directions x and y (respectively the blue
and red lines) as a function of time. Reproduced from Pezzé et al. (2011).

of the MSD lower than one, as already seen in figure 1.3, and is called a subdiffusive

regime. As the amount of unavailable space increases further, the subdiffusive regime

gives rise, at very long times, to another dynamical state of the tracer: the localized

state, where the particles, after having explored and experienced collisions with their

surroundings, get stuck in some region of space they cannot escape. This state is char-

acterized by a plateau of the MSD at long times.

This very last study can be seen as a confirmation of the percolation model in the case

of a system in which the Newtonian model of the dynamics is considered. Furthermore,

Yang and Zhao (2010); Skinner et al. (2013); Schnyder et al. (2015, 2017) show that the

percolation model also applies to the case of a fluid that interacts with its potetial with

smooth interactions, as it is the cas in the system developped by Evers et al. (2013a).
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The preceding results were derived considering that the fluid under study follows New-

tonian dynamics, i.e., a system whose energy is conserved, leading to the phenomenon

called localization, where a particle, or a group of particles are trapped in a localized re-

gion of space, due to the fact that they do not have enough energy to climb up the wells

created by the potential. However, in the experimental systems discussed above, the

natural framework to be used to study the dynamics is the one of the Brownian motion,

in which the energy of the system is not conserved. Therefore, in a system like that of

Zallen and Scher (1971) but set in a Brownian motion framework, a particle stuck in a

localized region of space might eventually be able to escape it, thanks to thermal energy

fluctuations due to the bath. This last fact makes the Browian framework much more

difficult to tackle, as it generaly requires more sophisticated approaches to understand

(De Gennes, 1975; Zwanzig, 1988; De Masi et al., 1989; Chakraborty et al., 1994; Deem

and Chandler, 1994; Dean et al., 2007; Touya and Dean, 2007; Dean and Touya, 2008).

This mçodel can lead to a great variety of scenarios depending on the dimensionality,

and the disorder configuration.

The work of De Masi et al. (1989) on the diffusion coefficient sets this last statement in

a rigorous way. The main result of this paper is the following :

Ds
1-dim(βε) ≤ Ds

2-dim(βε) ≤ · · · ≤ Ds
(D−1)-dim(βε) ≤ Ds

D-dim(βε) ≤ Ds(0), (1.1)

where Ds
d-dim(βε) is the diffusion coefficient of a tracer in a d-dimensional disordered po-

tential. βε is a measure of the amplitude of the random potential relative to the thermal

energy kBT = β−1, as defined in chapter 2, for instance. It translates experimentally to

the power of the laser used to generate the speckle. Ds(0) is the diffusion coefficient of

a tracer without the presence of an external disordered potential and is invariant with

respect to the dimensionality of the system. Equation 1.1 states that the diffusion coef-

ficient of a tracer only goes up with the dimensionality, and that there is an upper limit

to that parameter, which is the value for an undisturbed system.

Another result, discussed in the review of Dean et al. (2007), is to be combined with this

one to gain crucial insight. It consists of analytic expressions for the diffusion coefficients

of tracers in Gaussian random potentials in one and two dimensions:

Ds
1-dim(βε) = Ds(0)e−(βε)

2

, Ds
2-dim(βε) = Ds(0)e−(βε)

2/2. (1.2)

With these results, equation (1.1) not only gives an upper bound [Ds(0)] to the diffusion

coefficient, but also a lower bound with the term Ds
1-dim(βε) as defined in equation (1.2).

Therefore, due to the inequalities of equation (1.1), Ds
d-dim(βε) is always strictly positive

for a system following Brownian dynamics in a Gaussian random potential, which means

that a localization of the particles as discussed before cannot exist in this framework.
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However, as one will see in chapter 5, not only a localization transition is to be found

using the mode-coupling theory (MCT), but a liquid-glass transition also occurs at higher

amplitudes of the potential. When the system is in a glass state, the particles experience

a complete dynamical arrest, and this occurs at low densities if the amplitude of the

potential is increased higher above the localization transition. The overestimation of the

localization is a known issue of the MCT, but the actual existence of the localization

and the liquid-glass transition is still to be proved, since it has not yet been observed

experimentally. Some hints to the existence of a dynamical arrest can be found, for

example in the work of Shvedov et al. (2010) mentioned above, where particles can be

trapped for more than 24 hours in a three-dimensional laser speckle. However, this study

is more a proof of concept than an extensive review of the dynamics, as done by Evers

et al. (2013a). A more in-depth experimental study of the trapping of particles in a

laser speckle would give us the tools to decide whether or not an actual localization or

transition exists in nature, despite what the Newtonian and the Brownian theoretical

frameworks have to say.

1.3 Description of the model studied in this work

Now that the state of the art in studies of particles in random potentials has been

introduced, it is time to detail the specificities of the present work, and present the

system in more depth. One novelty of the system we aim to study is that the number of

particles constituting the fluid is very large, compared to other theoretical studies where

mostly, a single tracer has been considered. These particles having to interact with an

optical potential in a very specific way, we ought to define the potential rigorously, as

well as the fluid itself.

From the work of Evers et al. (2013b), which has been the basis of this work, it is known

that the distribution of the light intensity follows a Γ law. However, in that study, a

typical particle is larger than the size of a light spot in the speckle. Therefore, the

effective potential felt by that particle does not exactly follow that distribution. To get

the effective potential, one must convolute the potential over the volume of the particle.

The result of such a process is shown in figure 1.10. It can be seen that the effective

potential felt by that particle takes the form of a Gaussian-distributed variable. This

process, by convoluting the volume of the particle, also removes the extended character

of its interaction with light, leaving only a point-wise interaction with a Gaussian random

potential. This point of view greatly simplifies the problem, both by giving an easier

way to look at it, and by allowing the use of an easy-to-manipulate Gaussian model for

the potential. Therefore, this will be the basis of the development of our model.

In order to model the fluid of colloids, we choose a system of N hard spheres whose

interactions will only be excluded-volume ones, that effectively prevent the distance

between two particles to be less than the sum of their radii. The interaction is thus fully
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Figure 1.10: Statistics of the random potential in a speckle pattern. (a) Micro-
graph of the observed intensity I(x, y) on a disk taken at very low laser power,
and corresponding distribution of values of the intensity of the light field, p(I).
(b) Potential U(x, y) as experienced by a pointlike test particle obtained by con-
voluting I(x, y) with the volume of a spherical particle, and distribution of values
of the potential as felt by a pointlike test particle, p(U). Full lines are fits based
on Γ and Gaussian distributions, respectively. Adapted from Evers et al. (2013b).

a hard core one, with no extra potential originating from the particles. The hard spheres

are all of the same size, no polydispersity has been introduced in the model.

Furthermore, the interaction of the particle with the potential only takes place at the

center of the former, meaning that the only effect the bulk of the particle has is to prevent

the approach of another particle at a distance smaller than a diameter. This echoes well

with the fact that in the experiments of Evers et al. (2013b), the whole system can be

thought of as point-like particles interacting with a Gaussian random potential.

One of the most critical parts when modeling this kind of systems is to get a correct
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picture of the external potential. Using what has previously been said concerning the

effective interaction, we choose to model the speckle-induced potential as a Gaussian

random potential. This kind of potential seems the simplest way to model a speckle

pattern (Menon and Dasgupta, 1994; Thalmann et al., 2000).

Since this potential is not simply a white noise, a certain correlation function has to be

included in order to account for the alternating light and dark spots. For simplicity,

this correlation function is chosen to be Gaussian as well. A quick overview of other

correlation functions, such as an exponential, a Lorentzian squared, an exponential of a

Gaussian minus one, and a hyperbolic secant showed that the difference is not significant

as long as the correlation function is smooth, which seems to be the case in the system

that we aim to model.

The Hamiltonian of such a system can be written as follows:

H[udis](r
N ) =

N−1∑
i=1

N∑
j=i+1

w(|ri − rj |) +

N∑
i=1

udis(ri), (1.3)

where w(|ri− rj |) is the pair interaction between two hard spheres i and j, and udis is a

Gaussian random field, i.e., for any integer k ≥ 1 and positions x1, ...,xk, udis(x1), ..., udis(xk)

is a collection of k random variables that obey a Gaussian distribution with zero average:

udis(xi) = 0, (1.4)

where . . . represents the average over disorder. The correlation function of the potential

is a Gaussian of the form:

udis(xi)udis(xj) = k(|xi − xj |), k(r) = ε2e−(
r/σ)2 . (1.5)

In the latter expression, the two variables ε2 and σ can be considered as full descriptors of

the statistics of the potential. ε gives the amplitude of the fluctuations of the potential,

i.e., the typical depth and height of the minima and the maxima. Or to make the

link with the precedent experimental work, ε represents the power of the laser used to

generate the speckle. σ is the correlation length of the random field, or the typical size

of the potential wells in the experimental picture. Two other variables are to be taken

into account, that describe the fluid plunged in the disordered potential, i.e., the number

density of the fluid ρ, and its temperature T . Taking into account the hard-core diameter

of the particules d, we end up with the following set of parameters to fully describe the

system:

(d, ε, σ, ρ, T ). (1.6)

We might then define three dimensionless parameters fully characterizing the system,

(ρd3, σ/d, δ = (ε/kBT)2). (1.7)
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The formation of the parameter δ reflects some simple physical facts. As ε increases,

the depth of the minima of the potential increases, and a particle trapped inside one of

them will need more and more energy to escape, or said otherwise: a higher and higher

temperature is needed. Therefore, decreasing the temperature has the same effect as

increasing the amplitude of the potential. Both cases being tackled by an increase of δ,

the use of this parameter in the theory is justified.

This work is presented as follows. Chapter 2 contains developments of quantities and

relations needed to calculate the structural properties of simple fluids. The main quan-

tities and theories will be presented, with varying degrees of development. In chapter

3, some major results are presented concerning the structural properties, comprising a

quick overview of the effect of different parameters on the density correlations of the

fluid. Chapter 4 contains a fully detailed derivation of the Mode Coupling Theory, the

theoretical framework used to calculate different dynamical descriptors of the fluid, pre-

sented in chapter 5. In that chapter, a ”dive into complexity and specificity” of the

variables described is made, with the first results concerning phase diagrams, followed

by simple dynamical descriptors such as the MSD and the intermediate scattering func-

tion (ISF), followed by more specific variables such as the non-Gaussian parameter and

the local exponent, and more complex scenarios. Next, an annex-like section, chapter

6, presents the main algorithms and some tricks used during the implementation and

the resolution of the relations presented in chapters 2 and 4. Practical details about the

size of the variables and the arrays are also given, as keys to fully reproduce the results.

Finally, chapter 7 is about a Monte Carlo simulation project that has been undertaken

by the end of the PhD work. This chapter is rather short, but has the purpose to outline

future developments of the project, that can be looked forward to very soon, since the

main tools have already been implemented and validated.



Chapter 2

Structure of simple fluids in
randomness: Theory

The structural properties of simple fluids in randomness have an obvious interest of their

own. They are also required as input in dynamical studies within the framework of the

Mode Coupling Theory, for instance. They are therefore discussed in the present chapter

devoted to their general theory, and in the next one reporting actual quantitative results.

2.1 A few words about averages

The beginning of this chapter is dedicated to properly defining the concept of averaging,

which allows one to manipulate complex quantities involving many objects in the forms

of averages. Let us take the example of a system of particles without external potential

at first, to keep the simplicity of the picture. A microstate of such a system is defined as

a particular set of positions the particles occupy. Different microstates can be generated

by creating different configurations of particles, and in a continuous space, there exists

virtually an infinite amount of them. A physical quantity, say, A is usually not defined

for a particular microstate, but rather as an average 〈A〉 of many quantities ai where i

denotes a specific microstate. This allows one to characterize the system in a way that

covers the different microstates the system can have. An ensemble average is therefore

mathematically expressed as

〈A〉 =

∫
A(rN )P(rN )drN , (2.1)

where P(rN ) is the probability density of the realizations, expressed as

P(rN ) =
e−βH(rN )

Z
. (2.2)

23
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Z is the partition function of the system :

Z =

∫
e−βH(rN )drN . (2.3)

This concept is closely linked to that of ergodicity, which states that an ergodic process

follows the rule

〈A〉 =

∫
A(rN )P(rN )drN = lim

T→∞

1

T

∫ T

0
A(rN (t))dt. (2.4)

An ergodic process is therefore defined as a process in which the average over an ensemble

of static configurations is equivalent to the average over time in a single dynamically

evolving system. If we consider ensembles of particular configurations of particles in the

system, and we assume that the system evolves with time, i.e., the particles move, if one

waits an infinite time, each configuration of the system will be eventually created by the

motion of the particles. Therefore, assuming that both the number of microstates and

the time tend towards infinity, doing an average over the former is equivalent to doing an

average over the latter. This condition is the very one that is ruled out when a system

undergoes a liquid-glass transition. A glass phase is characterized by the dynamics of

the system being so slow that they reach arrest. In those conditions, iteration of time

does not lead to all configurations of the system, and the equality (2.4) does not hold

anymore. Thus, a glass transition is often called an ergodicity breaking.

When working with systems that present any kind of frozen disorder, usual statistical

mechanical tools are often unusable as such. The reason for this is that the presence

of the disorder induces a loss of translational and rotational invariance, leading to a

system essentially inhomogeneous after an ensemble average. However, the homogeneity

of the system is important to get meaningful quantities, and a new type of averaging

has therefore to be introduced in order to restore this condition: the disorder average.

The average over disorder follows a very similar scheme as that of the ensemble average.

The difference lies in the fact that the realizations over which the average is made do not

concern particle position microstates, but realizations of a given disordered environment.

This average, for a certain disorder dependent quantity A[udis], can be formalized in the

following way:

A[udis] =

∫
Pdis[udis]A[udis]d[udis], (2.5)

where Pdis[udis] is the probability density of the realizations of the disorder, defined such

that ∫
d[udis]Pdis[udis] = 1. (2.6)

From this naturally follows the concept of ergodicity with respect to disorder. Again,

this concept is very similar to the usual ergodicity concept, in that it links a configuration
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driven equality with a more physical one. The ergodicity with respect to disorder can

be written as

A[udis](r) =

∫
Pdis[udis]A[udis](r)d[udis] = lim

V→∞

1

V

∫
V
A[udis](r)dr, (2.7)

where V is the volume of the system. This relation states that in a system that is ergodic

with respect to the disorder, doing an average over different realizations of the disorder

and doing an average over the volume of the system leads to the same result. This

can be understood by virtually splitting the system in many microsystems over which

the average will be done separately. Eventually, if the size of the system tends towards

infinity, each realization of the disorder will be found in one of the microsystems, hence

equality (2.7).

One can furthermore define the concept of self-averaging quantity. A self-averaging

quantity is an additive physical quantity, which can be obtained with a good approxi-

mation for the whole system, by calculating it for one of the realizations described above.

Furthermore, this quantity has to have short range correlations, that typically do not

exceed the size of the microsystems. This statement can be expressed as

A = A[udis] = A[udis] (2.8)

and will be an important one for future developments.

Therefore, to be a meaningful observable in a system with quenched disorder, a physical

quantity has to be averaged over both the realizations of a same ensemble, and the

realizations of a same disorder. The problem that arises with this statement is logically

about the priority of the averages: should the average over disorder be done before

or after the ensemble average? In other words, should we calculate 〈A〉 or 〈A〉? This

question will be tackled in more detail further in this chapter, but an intuitive answer

can be formulated already.

In the experimental work of Evers et al. (2013a), Bewerunge et al. (2016b), and Be-

werunge and Egelhaaf (2016), which are the base comparison of the present work, mea-

surements are undertaken in a specific way. A laser speckle is generated and Brownian

particles are introduced in the environment. Dynamics and structure are recorded on

subpopulations of particles that are chosen so to be separated enough not to interract

with each other. In this way, a single potential is sampled almost completely, in a rigor-

ous way, while allowing for reasonable experimental times. A time average allows one,

due to the principle of ergodicity, to have an ensemble average valid on one particle po-

tential. Then, a new laser speckle is generated and the process starts over. At the end,

all the values are averaged and the result is the desired physical quantity. Therefore, a

first idea on what order the averages have to be done can be deduced from it: first the

ensemble average, then the disorder average : 〈A〉.
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Figure 2.1: Radial distribution function of a system at a high density (ρ = 1.00)
with the presence of an external Gaussian random potential of relative amplitude
δ = 2.53 and Gaussian correlation function of correlation length σ = 0.50.

2.2 Density correlations and how to calculate them

The structural information on a fluid without the presence of an external potential is

mainly contained in the function called the radial distribution function, g(r12). This

function gives the probability to find a particle labeled 2 at a given distance of a particle

labeled 1, normalized by this same probability in an ideal gas, i.e., a fluid without any

correlation between the constituting particles. In a crystal, g(r) presents characteristic

peaks that mirror the regular disposition of the molecules on the primitive cell. In

the case of a liquid, however, which has the essential characteristics of having no order

at short nor long range, the radial distribution function presents a damping at long

distances, characteristic of the loss of correlations, as one can see on figure 2.1. The

function thus naturally tends towards 1 at long distances, where the said probability

equals that of an ideal gas.

The radial distribution function is linked to the so-called total correlation function by

the following simple relation:

h(r12) = g(r12)− 1. (2.9)

This subtraction simply allows the manipulation of a function that tends towards zero

at long distance, which facilitates many calculations. For simplicity the subscripts will

be omitted when possible in the following.
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The total correlation function h(r) is furthermore formally defined as

h(|r− r′|) =
〈ρ(2)(r, r′)〉 − ρ2

ρ2
, (2.10)

where ρ is the average density, and ρ(2)(r, r′) is the two-point density, and can thetefore

be seen as a density correlation function.

Like the radial distribution function, the total correlation function h(r) tends to have a

particularly complex shape and cannot in many cases be expressed in simple terms. This

is the main problem concerning the characterization of the structure of simple liquids,

and even more concerning the characterization of confined simple liquids. The solution

starts with rewriting this complex function in simpler terms, which is the point of the

Ornstein-Zernike (OZ) relation. This relation states the total correlation function as a

chain of correlations that have a supposedly simpler expression. It reads

h(r12) = c(r12) + ρ

∫
c(r13)h(r32)dr3, (2.11)

where ρ is the density of the fluid. The OZ equation serves also as a definition of the

direct correlation function c(r12), in terms of h(r12). The second part of the equation

(2.11) is a convolution over the position of a particle labeled 3, and has thus the purpose

of scanning over all the particles constituting the fluid. A convolution, which is a quite

complex operation in real space, can be rewritten in reciprocal space by simply taking

its Fourier transform. The advantage of this new form is that a convolution becomes a

simple product in reciprocal space,

h(q) = c(q) + ρc(q)h(q), (2.12)

which greatly simplifies the calculations.

However, the OZ relation only provides a way of rewriting the total correlation function

and to define the direct correlation function accordingly. It provides no new information,

and the calculation of h(r) and c(r) cannot be done without the use of another relation

linking the two terms. This other relation has to close the set of equations, and is there-

fore called a closure relation. They come in many flavors and levels of approximation.

Those used during this work will be spelled out later on.

The presence of an external disordered potential, as the one studied here, can have a

dramatic influence on both the structure and the dynamics of the fluid. However, the

usual OZ equation does not take into account the presence of this external potential,

and some modifications have to be done in order to get the correct correlation functions.

With this in mind, the replica trick developed by Edwards and Anderson (1975) gives a
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convenient theoretical framework to include the presence of an external disorder in the

structural calculations. This method has had many developments and applications until

Menon and Dasgupta (1994) extended it to liquids in presence of an external disorder.

It is on this theoretical basis that we will calculate the correlations needed to understand

the system.

The replica trick starts with a simple relation :

xs = 1 + s lnx+O(s2). (2.13)

The knowledge of the canonical partition function allows one to get the corresponding

free energy of the system, and thus its whole thermodynamics. The usual relation linking

the canonical partition function and the free energy is the following:

F = −kBT lnZ, (2.14)

where Z, presenting no dependence on udis, is the partition function of the system

without external disorder. However, if we include the presence of the external potential,

we have to take the average over disorder of the latter expression in order to obtain a

meaningful expression of the free energy. At first glance, there are two ways of doing

this:

F1 = −kBT lnZ[udis], (2.15)

F2 = −kBT lnZ[udis]. (2.16)

This has quickly been tackled by experimental arguments, but an actual analysis of these

two expression can bring further confirmation. Let us first consider the first option,

equation (2.15).

We can give the expression for Z[udis]:

Z[udis] =

∫
d[udis]Pdis[udis]Z[udis]

=

∫
drNd[udis]e

−β(H[udis](rN )−kBT lnPdis[udis]). (2.17)

In the last expression of equation (2.17), we notice that udis is actually taken as a

variable, and integrated over in the same way rN is. From a mathematical point of vue

this means that the potential is taken to be a dynamical potential, which is obviously not

the case in the present system. If we go back to the comparison with the experimental

work, we could imagine particles undergoing their dynamics in a moving laser speckle.

The behavior of this system is expected to be very different from the one we are studying

here, whose essential feature is the difference between quenched and annealed degrees of

freedom.
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Furthermore, thanks to the homogeneity of the external disorder, it is possible to cut the

system into many microsystems without losing the properties of this potential. It also

happens that the free energy is an additive function whose correlations are short-ranged,

effectively classifying it as a self-averaging quantity, as defined above. Due to (2.8), the

following statement is true:

F = F [udis] = −kBT lnZ[udis], (2.18)

which is precisely the second writing proposed in equation (2.16). Hence, this version

of the disorder averaged free energy is the one that captures correctly the frozen nature

of the potential, while also taking advantage of the fact that the free energy is a self-

averaging quantity.

Using expression (2.13), we can write the following :

lnZ[udis] = lim
s→0

lnZ[udis]s

s
, (2.19)

which we then plug into (2.16) to get

F = −kBT lnZ[udis] = −kBT lim
s→0

lnZ[udis]s

s
. (2.20)

We can detail the expression of Z[udis]
s to find its actual physical meaning, assuming

there is one:

Z[udis]
s =

∫ s∏
a=1

drN,ae−β
∑s
a=1H[udis](rN,a). (2.21)

The latter expression is that of the partition function of s identical and noninteracting

systems, that are copies of the same original one, hence the name of the trick. Taking

the disorder average of this partition function is done by

Z[udis]s =

∫
d[udis]Pdis[udis]Z[udis]

s

=

∫
d[udis]Pdis[udis]

∫ s∏
a=1

drN,ae−β
∑s
a=1H[udis](rN,a)

=

∫
d[udis]Pdis[udis]

∫ s∏
a=1

drN,ae−β
∑s
a=1[V (rN,a)+Udis[udis](rN,a)]

=

∫ s∏
a=1

drN,ae−β
∑s
a=1 V (rN,a)

∫
d[udis]Pdis[udis]e−β

∑s
a=1 Udis[udis](r

N,a)

=

∫ s∏
a=1

drN,ae
−β

[∑s
a=1 V (rN,a)−kBT ln

∫
d[udis]Pdis[udis]e−β

∑s
a=1 Udis[udis](r

N,a)
]

=

∫ s∏
a=1

drN,ae−β[
∑s
a=1 V (rN,a)+W av

s (rN,1,...,rN,s)].

(2.22)
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We can define the replicated Hamiltonian as

Hrep
s (rN,1, . . . , rN,s) =

s∑
a=1

V (rN,a) +W av
s (rN,1, . . . , rN,s). (2.23)

One can notice that by averaging out the external potential, the initially independent

replicas now have an effective interaction coming from the term W av
s (rN,1, . . . , rN,s).

This effective interaction can be thought to come from the presence of a potential, or

rather the fact that it has been averaged out.

In the case of Gaussian disorder, all interactions can be decomposed as sums of pairwise

interactions. We get

V (rN ) =

N−1∑
i=1

N∑
j=i+1

w(|ri − rj |), (2.24)

and, for the disordered potential,

W av
s (rN,1, . . . , rN,s) = −β

2

s∑
a,b=1

N∑
i,j=1

k(|ri,a − rj,b|), (2.25)

where k(r) is the covariance of the Gaussian random potential and has been chosen as

a Gaussian function as well:

k(r) = ε2e−(
r/σ)2 . (2.26)

Using the above-mentioned expressions, and equation (2.20), the free energy can now be

written

F = F [udis] = −kBT lnZ[udis] = lim
s→0

F rep
s

s
. (2.27)

The calculation of the disorder-averaged free energy sums up to creating s replicas of the

initial system, finding a good approximation for the effective Hamiltonian, and taking

the limit s→ 0 of the number of replicas. This last part involves analytic continuation.

It can be highly non-trivial and lead to breaking of the symmetry of the replicas. These

subtleties will not be covered here, but one can refer to Menon and Dasgupta (1994)

and Mezard et al. (1987) for further information.

The latter method can be applied not only to the free energy, but also to a whole other

class of dynamical variables. The case that is of particular interest here is that of the

correlation functions, which includes g(r), h(r) and c(r) defined above. Following the

scheme of equation (2.27), one can write, for a configurational variable denoted by A(rN ),
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〈A(rN )〉 =

∫
d[udis]Pdis[udis]

∫
drN

e−βH[udis](rN )

Z[udis]
A(rN )

= lim
s→0

∫
d[udis]Pdis[udis]Z[udis]

s−1
∫
drNe−βH[udis](rN )A(rN )

= lim
s→0

∫ s∏
b=1

drN,be−βH
rep
s (rN,1,...,rN,s)A(rN,a),

(2.28)

where the replica symmetry allows the choice of the value of a to be arbitrary. Using

that lims→0 Z[udis]s = 1 we get

〈A(rN )〉 = lim
s→0

∫ s∏
b=1

drN,b
e−βH

rep(rN,1,...,rN,s)

Z[udis]s
A(rN,a), (2.29)

and finally we arrive at the replicated form of the average :

〈A(rN )〉 = lim
s→0
〈A(rN,a)〉reps . (2.30)

One can also define

〈A(rN )B(rN )〉 = lim
s→0
〈A(rN,a)B(rN,a)〉reps , (2.31)

〈A(rN )〉〈B(rN )〉 = lim
s→0
〈A(rN,a)〉reps 〈B(rN,b)〉reps , a 6= b, (2.32)

where in the first expression the thermal average is to be taken over the product of

these variables, leading to the correlations of these two variables taking place in the

same replica. The second expression gives the same kind of correlations, except that the

thermal average is taken over each variable separately. This translates to having the two

variables arising from two different replicas. The power of the replica trick is to give

a way from a system with a quenched disorder in which the usual tools of statistical

mechanics cannot be put in good use, to s replicated systems interacting indirectly

through the presence of the disordered potential, in which variables with a standard

physical meaning can be calculated.

Looking at the previous equations, one can notice that, in the case where A(rN ) =

B(rN ) = ρ(1)(r), we get (omitting a trivial self term)

〈ρ(1)(r)ρ(1)(r′)〉 = ρ2g(|r− r′|), (2.33)

〈ρ(1)(r)〉〈ρ(1)(r′)〉 = ρ2gd(|r− r′|). (2.34)

The latter development of the replica theory can now help us to express the total corre-

lation function h(r) in the framework of a system with an external disorder, by simply
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rewriting it in terms of correlation functions in different replicas. One can write the OZ

equations applied to an unconstrained system containing s different species of particles:

hab(r) = cab(r) +
∑
c

ρchac(r)ccb(r). (2.35)

The case of an s component fluid is a general case of the replicated system. The main

difference is obviously that the replicated systems are the exact same as the original,

and this translates to simple relations in terms of correlation functions:

haa(r) = hbb(r), (2.36)

caa(r) = cbb(r). (2.37)

In equation (2.35), no restriction is imposed on the values of a and b. One might want

to separate the terms which belong to the same species (or replicas in our case) from

the terms which describe an inter replica interaction in order to get an OZ equation for

the terms described in equations (2.33) and (2.34). The following notation will be used:

h(r) = haa(r),

hd(r) = hab(r),

c(r) = caa(r),

cd(r) = cab(r),

where the subscript d means disconnected (a subscript c for connected will appear later).

Now, rewriting equation (2.35) to separate the total and the disconnected components,

we get: haa(r12) = caa(r12) + ρ
∫
dr3caa(r13)haa(r32) + (s− 1)ρ

∫
dr3cab(r13)hab(r32),

hab(r12) = cab(r12) + ρ
∫
dr3caa(r13)hab(r32) + ρ

∫
dr3cab(r13)haa(r32)

+(s− 2)ρ
∫
dr3cab(r13)hab(r32).

(2.38)

And finally, taking the s → 0 limit and using the just defined notation, we get the

replicated OZ equation for a system with an external disorder:
h(r12) = c(r12) + ρ

∫
dr3c(r13)h(r32)− ρ

∫
dr3c

d(r13)h
d(r32),

hd(r12) = cd(r12) + ρ
∫
dr3c(r13)h

d(r32) + ρ
∫
dr3c

d(r13)h(r32)
−2ρ

∫
dr3c

d(r13)h
d(r32),

hc(r12) = h(r12)− hd(r12) = cc(r12) + ρ
∫
dr3c

c(r13)h
c(r32).

(2.39)

The total correlation function is the sum of the connected and disconnected parts, and

in order to get a full structural description of the system, both need to be calculated.

Furthermore, these two types of correlation functions can be related to a physical reality:

the disconnected correlation function brings the correlations between the particles that
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mainly go through the external potential, and the total correlation function (h(r)) brings

all the correlations, considering as well those coming through the fluid interactions.

Obviously interplay between the density-related and potential-related effects leads to a

much more complicated picture. However, considering this simple separation can help

a lot in the understanding of the complexity the potential can bring on the structural

properties of the fluid.

2.3 Closure relations and how to actually get re-

sults out of the OZ equations

As stated above, the OZ relations, which are exact equations expressing the total cor-

relation functions, rather complex quantities, in terms of chains of direct and simpler

correlations between all the particles constituting the system, do not give in themselves

any more information about the structure than the total correlation functions do. In

order to calculate the latter, other relations must be introduced to close the set and

calculate the structural properties: the closure relations. The OZ equations themselves

include no approximations, but this is not the case for these new relations. In each case,

the bulk relations will be derived. The replica trick will then be applied to them, to

get the closure relation adapted to the presence of disorder. In that way, the closure

relations can be used together with the replicated OZ relations to get the full correlation

functions needed to describe our system.

2.3.1 Percus-Yevick

One of the first closure relations to be developed and used extensively in liquid state

theory is the Percus-Yevick (PY) relation, developed by Percus and Yevick (1958), hence

the name. This relation will be systematically taken as the starting point for the devel-

opment of the other closure relations hereafter. The derivation of the PY relation starts

from the idea that the direct correlation function, c(r) as introduced in the previous

chapter, can be simply defined as:

c(r) = gtot(r)− gind(r) (2.40)

where the terms can be empirically understood as: gtot is the standard radial distribution

function that gives the total correlation between two particles, and gind only takes into

account the correlations through the other particles of the system, i.e., the indirect

correlations. We can approximately rewrite the latter in the following way:

c(r) ≈ e−βw(r) − e−β[w(r)−u(r)] (2.41)

where w(r) denotes the potential of mean force and u(r) denotes the pair potential.
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The point to raise here is that the actual correlations are not only consisting of direct

pairwise interactions, but also contain a lot of more complicated contributions like chains

of interactions. Thus, equation (2.41) is to be considered as an approximation.

Further developing and rearranging:

c(r) = gtot(r)− eβu(r)gtot(r) = eβu(r)gtot(r)(e
−βu(r) − 1), (2.42)

leading to

e−βu(r)c(r) = (1 + h(r))(e−βu(r) − 1), (2.43)

and eventually

c(r) = (1 + h(r)− c(r))(e−βu(r) − 1). (2.44)

This is the essence of the PY approximation. It is therefore simply a way to relate c(r),

h(r), and the pair potential. An iterative numerical solution is now possible, combining

the PY and the OZ equations, but, up to now, this only holds for bulk systems. In

order to take into account the disorder in the calculation, and use the closure and the

replicated OZ relation together, we must apply the replica trick to the closure as well.

The route to do this is the exact same as has been done with the OZ relation in the

previous section: extend the closure relation to the case of a bulk multicomponent

mixture and take the limit of the special case when the different species represent different

replicas. For the multicomponent PY closure we get

cab(r) = (1 + hab(r)− cab(r))(e−βuab(r) − 1). (2.45)

Taking the particular case when the components of the mixture are but replicated ver-

sions of the original system, it is possible to distinguish between the intra-replica corre-

lations and the inter-replica correlations,

caa(r) = (haa(r)− caa(r) + 1)(euaa(r) − 1),

cab(r) = (hab(r)− cab(r) + 1)(euab(r) − 1).
(2.46)

Furthermore, from the form of the effective potential energy, equation (2.25), one gets

an effective pair interaction as

uaa(r) = w(r)− βk(r),

uab(r) = −βk(r),
(2.47)

where w(r) is the hard-sphere interaction, and k(r) is the Gaussian covariance of the

disordered potential. The replicated PY relation takes therefore the final form

c(r) = (1 + h(r)− c(r))(e−βw(r)+β2k(r) − 1),

cd(r) = (1 + hd(r)− cd(r))(eβ2k(r) − 1).
(2.48)
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2.3.2 HyperNetted Chain

Starting with the PY relation (2.44) for the bulk system, we might rewrite it in the

following way :

c(r) = (1 + h(r)− c(r))e−βu(r) − 1− h(r) + c(r),

h(r) = e−βu(r) (1 + h(r)− c(r))︸ ︷︷ ︸−1,

where the bracketted term can be seen as the first term of a Taylor expansion of eh(r)−c(r).

Therefore, we can rewrite the last equation as

h(r) ≈ e−βu(r)+h(r)−c(r) − 1. (2.49)

This equation is called the HyperNetted Chain (HNC) closure relation for the bulk fluids.

The HNC closure relation is an other way of rewriting h(r) in terms of c(r), and will

obviously lead to different results compared to the PY relation. The reason for this is

their very expression, and the way the correlations are treated in each one of them.

In order to specialize this equation to systems with a frozen disorder, we follow the

scheme used for the PY relation, in which the first step consists in writing the equation

for a multicomponent system:

hab(r) = e−βuab(r)+hab(r)−cab(r) − 1. (2.50)

Separating the intra and the inter replica components, we get :

haa(r) = e−βuaa(r)+haa(r)−caa(r) − 1,

hab(r) = e−βuab(r)+hab(r)−cab(r) − 1,
(2.51)

with a 6= b. And finally using the notation defined above, we get the HNC closure

relation for systems with a quenched disorder:

h(r) = e−βw(r)+β
2k(r)+h(r)−c(r) − 1,

hd(r) = eβ
2k(r)+hd(r)−cd(r) − 1.

(2.52)

2.3.3 Mean Spherical Approximation

Starting with the HNC equation, and considering a case where u(r) = w(r) +φ(r), with

w(r) the hard-sphere potential and φ(r) a weak long-range tail, we might tentatively

write

h(r) = e−βw(r)−βφ(r)+h(r)−c(r) − 1

= e−βw(r)e−βφ(r)+h(r)−c(r) − 1

≈ e−βw(r)(1− βφ(r) + h(r)− c(r))− 1,

(2.53)
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where the last line results from a Taylor expansion on the second exponential on the

r.h.s. The resulting equation is called the Mean Spherical Approximation, developped

by Lebowitz and Percus (1966). A better and clearer way to look at the MSA closure is

the following, for the case treated here:{
h(r) = −1 inside the core,
c(r) = −βφ(r) outside the core.

(2.54)

This closure relation takes a much simpler form compared to HNC and PY, developed

heretofore, but its validity is nonetheless to be tested. Particularly in this kind of

problems, it seems that a more complicated expression, including more terms, does not

lead to especially improved results.

Following the same scheme as previously, one may derive the replicated MSA equation:

h(r) = e−βw(r)(1 + β2k(r) + h(r)− c(r))− 1,

cd(r) = β2k(r).
(2.55)

The last expression follows from the lack of an inter-replica hard-core interaction.

2.3.4 Exponential

Developed by Andersen et al. (1972) the exponential closure relation takes the form

of a renormalized perturbation theory. The method has initially been developed to

account for attractive interparticle Lennard-Jones potentials, and considers the latter as

a perturbation over a reference system. This closure relation is applicable here as well,

by setting the reference system as the bulk one, and the potential as the perturbation.

Therefore, this method contrary to PY, HNC, and MSA, does take its roots from a

physical argument.

In the framework of this closure relation, the correlation functions are approximated

through means of diagrammatic methods. The advantage of a diagrammatic method

is the possibility to classify and distinguish integrals, represented by the diagrams, ac-

cording to symmetry and topology criteria. Following a separation of the correlation

functions in short and long range contributions, each of them is approximated in a dif-

ferent way. The diagrams of both contributions are classified using a parameter γ such

that γ−1 measures the range of the external potential. The short range correlations are

then approximated using the MSA closure relation, which aims to represent the reference

system in the following way:  href(r) = −1, r < d,
cref(r) = 0, r > d,
hd,ref(r) = 0, ∀r,

(2.56)
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where the disconnected correlation functions are obviously equal to zero, since the ref-

erence system does not consider any external potential. In an alternative scheme, which

is actually the original one, the reference system is treated exactly, but the use of the

MSA results instead is generically found to represent a minor approximation.

In a first step, the MSA is used for the full system as well, which reads hMSA(r) = −1, r < d,
cMSA(r) = β2k(r), r > d,
cd,MSA(r) = β2k(r), ∀r.

(2.57)

Several ways have been designed to take a further step, and the first one leads to the

EXP approximation. In this approximation, we define the chain sums C∗(r) and C∗d(r)
as

C∗(r) = gMSA(r)− gref(r),
C∗d(r) = gd,MSA(r)− gd,ref(r).

(2.58)

The chain sum takes the form of a potential applied to the reference system. As this

potential is applied on top of a hard-core one, it is said to be ”renormalized”. Due to

the previous approximations, and the fact that the long range parts of the correlation

functions are screened by the short ranged parts, this potential is said to be ”renor-

malized”. The essential step to obtain the higher order approximation EXP, is done

by a careful understanding of the nature of the diagrams included, and those that are

neglected. Adding the so-called ”ring” diagrams, and retaining all the diagrams with a

nodal order of two or less, and performing additional manipulations using the properties

of the diagrams leads to the following expression for the radial distribution functions:

g(r) = gref(r)eC
∗(r),

gd(r) = gd,ref(r)eC
∗d(r).

(2.59)

Inserting the expressions for the reference system calculated using the MSA, this leads

to 
hEXP(r) = −1, r < d,

hEXP(r) = (1 + href(r))eh
MSA(r)−href(r) − 1, r > d,

hd,EXP(r) = eh
d,MSA(r) − 1, ∀r,

(2.60)

which is the form of the EXP closure relation that has been used in this work, though

as one may see in chapter 3, this closure relation did not give the expected results.
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Chapter 3

Structural properties of a fluid in
a random potential

The structural properties of a fluid are a very important step in understanding the dy-

namics of the system. Indeed, as one can see in chapter 4, the memory function of the

generalized Langevin equation contains a term called the memory function, which en-

codes the critical and difficult part of the dynamics. Therefore, on the proper calculation

of this term lies the validity of the results, and this term is solely expressed in the frame-

work of MCT in terms of the structural functions, total and disconnected as described in

chapter 2. Soling the structural properties is done through solving the Ornstein-Zernike

(OZ) equation together with a chosen closure relation. Those that have been tested are

presented in chapter 2, and the results are presented in this very chapter.

3.1 General results with HNC

The bulk of the calculations have been undertaken using the HyperNetted Chain (HNC)

closure relation (see chapter 2) for the structural calculations. This closure relation is

known to perform very well for fluids that present a smooth interaction. This at first

glance seem not to be the case here, but the external potential can be seen as an effec-

tive interaction between the particles, and this becomes clear if one looks at the effective

Hamiltonian that can be derived using the replica trick (chapter 2). In this way, HNC

came out at a first good choice, and showed later on to be the best among all the other

closure relations. Therefore, the more general results will be presented using this very

closure relation.

One first and easy to interpret result that we may compute is that of the bulk system,

i.e. δ = 0.0 which sets the amplitude of the potential uniformly to zero. In this case, the

disconnected correlation functions will all yield a expected zero result. This is of course

39
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Figure 3.1: Total correlation function h(r) of a fluid of N hard-spheres, calculated
with the OZ equation together with the HNC closure relation. The density of the
fluid goes up with the saturation of the color of the curves, the lowest density
being ρ = 0.0 and the highest ρ = 1.0.

to be expected, since the disconnected functions are giving the correlations between two

particles that are conveyed through the disordered potential. The usual total correlation

function can however be calculated, and is presented in figure 3.1.

As the density increases, different peaks become more and more visible in the total corre-

lation function. The value of h(r) is closely linked to the probability of finding a particle

at a distance r of the reference particle, normalized with that value in an ideal gas, i.e. a

fluid in which particles have no interaction. One peak rises very fast with the increase in

density at r = 1, and therefore corresponds to the first neighbor of the reference particle,

the unit of length being the diameter of a particle, and no polydispersity having been

introduced. A second peak grows as well around r = 2 and corresponds to the second

neighbors, and then a third around r = 3. The height of the peaks is decreasing, and

the probability of finding a particle at that precise distance with respect to a ideal gas

as well. At infinite distance eventually, no precise correlation can be monitored, and the

fluctuations decrease to zero, which is therefore the value they have in an ideal gas.

On the other hand, one can chooses to keep a constant value of δ and instead increase

the value of the density. The simplest case of this option is when ρ = 0.0, which means
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Figure 3.2: Total disconnected correlation function hd(r) usual total correlation
function (graphs in inset, the right picture is a zoom of the left one) of a fluid of
N hard-spheres in a disordered potential of amplitude δ, calculated with the OZ
equation and the HNC closure relation. The amplitude of the fluid goes up with
the saturation of the color of the curves by steps of ∆δ = 0.1, the lowest amplitude
being δ = 0.0 and the highest δ = 2.0.

that either only one particle is present in the system, or the particles are at virtually

infinite distance from one another. In this case, the usual total correlation function is of

little to no interest, since no correlation between the particles is expected to be observed.

The disconnected total correlation function however is a quantity that might bring some

insight about the correlations, since it represents the correlations between the particles

that is conveyed through the disordered potential.

Contrary to the total correlation function, the disconnected total correlation function

does not have the hard-sphere core potential that prevents any correlation from happen-

ing below the distance of a diameter. Therefore, even though particles are supposedly

not in contact in the case of ρ = 0.0, correlations can be found at small distances, as is

can be seen from figure 3.2. In this figure, the large graphs shows a disconnected total

correlation function, and each curve is drawn for a different value of δ, with an increase

of the saturation meaning an increase of the value of that parameter, in order to keep

the picture intuitive. The graphs in inset shows the total correlation function h(r).

The first thing that is noticeable is the the short distance values of hd(r) increases with
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Figure 3.3: Total correlation function of a fluid of N hard-spheres in a disordered
potential of amplitude δ = 2.0 and density ρ = 0.0, calculated with the OZ equa-
tion and the HNC closure relation. The four graphs are calculated for increasing
values of σ, ranging from 0.25 to 1.00.

an increase of the amplitude of the potential, which is expected, since this function de-

scribe the correlations that come through the potential. The correlation are increasing

steadily, and no anomalous behavior seems to happen in this case.

One other thing to be seen here, is that h(r) which was expected to be flat outside the

hard-sphere core, presents very small but noticeable correlations around r = 1. The

reason for this is that since all the correlation of the system is brought solely by the

disorder, we can write h(r) = e−β(k(r)−w(r)) − 1 where u(r) is the covariance of the

disordered potential, and w(r) is the hard-sphere potential, in the case of the HNC clo-

sure relation. In h(r) the hard-sphere core overwrites the inside correlations brought by

hd(r), and the remaining outside correlations are therefore due to the tail of hd(r). This

means that two particles that cannot enter in contact due to he too low density, are still

having correlations, that are the correlations the disordered potential has between the

points the particles occupy. This effect is therefore expected to increase with the value

of the correlation length of the potential σ. And indeed, as shown by figure 3.3, the total

correlation at constant δ and density increases with the value of the correlation length

of the potential σ.

The most interesting structural feature of a system with a disordered potential is when

a constant value of the amplitude of the potential δ is maintained, and the density of the

system increased steadily. The result of such a process on the disordered total correlation

function can be seen in figure 3.4.

As the density increases, the correlations due to the potential are decreasing, and this
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Figure 3.4: Total disconnected correlation function of a fluid of N hard-spheres
in a disordered potential of amplitude δ = 2.0, a correlation length of σ = 0.50,
and an increasing density ranging from 0.0 to 1.0 by steps of ∆ρ = 0.1. The
saturation of the color is proportional to the value of ρ. The graph in inset shows
the variation of the value of hd(r) at distance r = 0 in function of the density.
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Figure 3.5: Fourier transform of the total disconnected correlation function of a
fluid of N hard-spheres in a disordered potential of amplitude δ = 2.0, a correlation
length of σ = 0.50, and an increasing density ranging from 0.0 to 1.0 by steps of
∆ρ = 0.1. The saturation of the color is proportional to the value of ρ.

is due to the fact that a higher value of ρ leads the steric interactions to have more

ad more importance. The steric interaction leading to a strong hard-sphere potential,

its influence therefore quickly takes over the softer influence of the disordered potential,

which leads to a quick decrease of the value of hd(r). However, this is only true for low

to mid value of ρ, and one can see that at high values of the density the density, hd(r)

starts to increase again. This may not be clear from the highly overlapping graphs, but

can be more clearly seen if one plots hd(r = 0) in function of ρ, which gives a good idea of

this behavior. This has been done in the inset graph of figure 3.4, and the trend is clear

: the potential-induced correlations diminish from low to mid densities, and increase

from mid to high values of this parameter. This phenomenon reflects the one treated

in chapter 5, where the dynamics of the system is accelerating as the density increases,

before decelerating again at high density. Therefore, the non monotonous behavior of the

dynamics are very probably caused by the non monotonous behavior of the structure.

The Fourier transform of the disconnected total correlation function hd(q), as shown in

figure 3.5 gives a different insight on this phenomenon.

As expected in this case, the initially high peak the correlation function presents at the

vicinity of q = 0 is decreasing dramatically with an increase of the density. For high

values of the density however, a new peak starts to grow around q = 7. The growth
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Figure 3.6: Total disconnected correlation function of fluids of N hard-spheres in
disordered potentials of amplitude δ = 2.0, 4.0, 6.0, 8.0 with a correlation length of
σ = 0.50. The different curves are for increasing density ranging from 0.0 to 1.0
by steps of ∆ρ = 0.1. The saturation of the color is proportional to the value of
ρ. The curves representing ρ = 0.0 have been cut for the sake of readability.

of this new peaks makes the overall correlations to increase again, and also pinpoints

the start of a new regime. This shows that the correlations that arise at high values

of the density are of a different nature than those present at low values of the density.

We could postulate that at low value of the density, the potential plays a huge role in

positioning the particles, those having not many collisions with rest of the fluid. How-

ever, as the density increases, the hard-sphere density related interactions take over the

much smoother potential, leading to a decrease of hd(r). At high value of the density

however the crowding becomes so intense that the fluid starts to slow down leading in

turn to a reduced importance of the density related effects. In this case, the fluid is very

dense and slow and small deviations of the position of a particle can be caused by the

presence of a minimum or a maximum of the potential in its vicinity. TO sum up, at low

density the potential can shape the structure of the fluid on large scales due to the rare

interactions the particles have with the recite of the fluid. At high values of the density,

crowing lets the potential to shape the correlations on a much more smaller level, due

to the dense crowding. Of course these suppositions have to be verified with simulations

and actual studies of the behavior of the fluid and its correlations.

This loss of correlation at mid values of the density is a phenomenon that becomes more

important as the amplitude of the potential increases, as it can be seen from figure 3.6.

The values at r = 0 are known analytically as hd(r = 0)|ρ=0.0 = eδ − 1, and have
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Figure 3.7: Total disconnected correlation function at a zero distance hd(r = 0) in
function of the density ρ of fluids of N hard-spheres in disordered potentials with
correlation lengths of σ = 0.50. The different curves are for increasing amplitudes
δ = 2, 4, 6, 8. The value of hd(r = 0)|ρ=0 has been cut out for the sake of readability,
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therefore not been plotted, to keep the figure readable. We get for the different values

of δ presented in figure 3.6:

hd(r = 0)|δ=2.0,ρ=0.0 ≈ 6.39

hd(r = 0)|δ=4.0,ρ=0.0 ≈ 53.60

hd(r = 0)|δ=2.0,ρ=0.0 ≈ 402.43

hd(r = 0)|δ=2.0,ρ=0.0 ≈ 2979.96

These values are in striking contrast with the values of hd(r = 0)|ρ=0.1 that can be seen

on the figure, for which the influence of δ is much smaller. Therefore, as the amplitude of

the potential increases, the loss of correlations with the increase of the density increases

dramatically, by factors of thousands. The following resurgence of correlations at high

values of the density however does not follow this rather extreme trend. In figure 3.7

the value of hd(r = 0) is plotted in function of the density of the fluid.

It can be seen that, although the correlations increase again with an increase of the

density, the effect responsible for this does not lead the correlations to meet the values
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they have at low values of the density. This seems to work with the assumption that

the potential induced correlations at high density induces only minor and short range

influence on the structure of the fluid.

3.2 Comparisons with other closure relations

These last very general features of the correlations are not specific to HNC, but are a

common feature of all the closure relations and can therefore be thought to have some

kind of universality built into them. Something however that is not invariant is the

strength with which the different closure relations treat the correlations, both coming

from the potential and coming from the fluid. This will have dramatic consequences as

for the way the dynamics is treated because, as stated before, the dynamics are fully

dependent on the structure.

Figure 3.8 shows a comparison of the HNC ans the MSA closure relations in terms of

total correlation functions, both usual and disconnected. It is clear that the MSA closure

relation treats the correlations in a lighter way. The reason for this is not obvious at

first, but can be seen from the equations of the closure relations themselves, in which the

HNC treats the interparticle interactions inside a exponential, while MSA has a linear

construction, leading to a softer treatment of the correlations.

This happens in a similar way concerning the PY closure relation, as seen in figure 3.9.

The PY closure relation underestimates the correlations, both disconnected and usual,

compared to the HNC closure relation in a way that is very reminiscent of what happens

with MSA. This time, the equations themselves do not lead to an easy answer as to

why, PY and HNC both being constructed around an exponentiation of the correlations

between the particles.

Finally, looking at figure 3.10, we can see that the EXP closure relation is underesti-

mating the usual total correlation function, while overestimating the disconnected total

correlation function, compared to HNC.
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Figure 3.8: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a fluid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and MSA closures rela-
tions (plain black and dotted pink curves respectively) at a density of ρ = 0.50,
an amplitude of the potential of δ = 2.0 and a correlation length of the potential
of σ = 0.5.
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Figure 3.9: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a fluid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and PY closures rela-
tions (plain black and dotted pink curves respectively) at a density of ρ = 0.50,
an amplitude of the potential of δ = 2.0 and a correlation length of the potential
of σ = 0.5.
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Figure 3.10: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a fluid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and EXP closures rela-
tions (plain black and dotted pink curves respectively) at a density of ρ = 0.50,
an amplitude of the potential of δ = 2.0 and a correlation length of the potential
of σ = 0.5.

3.3 Unfortunate outcomes and unphysical solu-

tions

3.3.1 HNC

Overall even small discrepancies, many of these closure relations give very similar results

concerning h(r) and hd(r). These small discrepancies however can lead to massive dif-

ferent outcomes concerning dynamics, and without possible experimental comparison,

selecting a ”more accurate” closure relation is not possible. However, one of the reasons

why HNC has been kept as the closure relation of choice in this work, is because of the

unreliability of most of all the other closures that have been tested.

As interesting as HNC is as a closure relation, it does present its fair share of issues

as well, but they mainly occur at extreme values of the correlation length. As showed

previously, the increase in correlation length leads to changes in the behavior of the

structural functions. The study mainly focuses on σ = 0.5, being close to what has been

experimentally measured. Small increments around this value have been undertaken, but

in order to be fully rigorous, a study of the structural functions beyond this arbitrary

limit has to be undertaken. Unfortunately, a quick glance to what happens beyond

σ = 1.0, tells us that the limits of the HNC closure relation is exactly the one that has
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Figure 3.11: Total disconnected correlation function in real (left panel) and re-
ciprocal space (right panel) of a fluid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation together with the HNC closure rela-
tion at a density of ρ = 0.08, an amplitude of the potential of δ = 26.95156 (plain
line) and δ = 26.95157 (dashed line), and a correlation length of the potential of
σ = 1.25.

been arbitrarily set. Indeed, if one proceeds to explore the variable space (ρ, δ, σ) further,

the structural functions seem to reach very quickly a new branch of solutions. In order to

stay consistent with the rest of the calculations, a value of σ = 1.25 has been tested. The

structural functions have then been used as inputs for the calculation of a phase diagram,

as described in chapters 4 and 5. At a low value of of the density of ρ = 0.08, and an

amplitude of δ = 26, which has been later on refined to δ = 26.95156, the dynamical

calculations seemed to meet a new branch of solutions, that had physically no sense. This

phenomenon could be traced down to its structural origins, as an unexpected behavior

of hdq. In figure 3.11 is shown the disconnected total correlation function in real and

reciprocal space at the precise point where this new branch of solutions is met.

As it can be seen from the right panel, the disconnected total correlation function changes

very suddenly, passing the value δ = 26.95156, and present afterwards a negative peak

around q = 7. The corresponding change in the real space behavior is even more dra-

matic, with a disconnected total correlation function presenting very clear oscillations

where it previously was simply monotonically decreasing.

Such a behavior is physically unrealistic, and is prohibited by the very definition of the

disconnected total correlation function in reciprocal space :

hdq(t) = 〈ρq(t)〉〈ρ∗q(t)〉 (3.1)
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which has the symmetry of the square of the complex function ρq(t), and cannot therefore

be negative. A positive Fourier component is by definition a property of the disconnected

total correlation function, and an essential characteristic of all correlation functions in

general. This requirement is however not taken into account by the OZ equation nor

by the HNC closure relation. Therefore, the mathematical structure of these relations

leads, after multiple iterations and at extreme values of the correlation length, to the

consequence that the disconnected total correlation function does not present anymore

the main characteristic of a correlation function. This is unfortunate, and because it is

purely a mathematical artifact without any physical explanation, nothing can be really

done to circumvent the problem. This new branch of solution, event though mathe-

matically allowed, is unrealistic and leads the dynamical calculations in a dead end.

Increasing the value of σ further leads to the same result.

3.3.2 Percus-Yevick

The PY closure relation, which is one of the most used relations and is well known for

its accuracy concerning hard-sphere systems has been tested on the present system as

well. Unfortunately, its failures are even more dramatic than those of the HNC closure.

Considering that the purpose of calculating the structural properties is being able to

calculate the phase diagram and other dynamical properties, PY fails almost entirely.

Figure 3.12 shows the Fourier component of the disconnected total correlation function

at a given low value of the density ρ = 0.15, and respectively δ = 2.0 and δ = 4.0.

nfigure As one can see, a small increase of the amplitude from δ = 2.0 to δ = 2.0 leads

hdq to present an unwelcome negative minimum around q = 13. This minimum leads

to a total failure of the MCT equations, that require only positive values to calculate

the dynamical variables and the phase diagram. An increase of the amplitude of the

potential beyond δ = 4.0 leads to a failure of the iterative resolution of the OZ equation

and the PY closure relation as well. Furthermore, an increase of the density at low

values of the amplitude leads to the apparition of the same negative minimum. It seems

that the PY relation fails very early, both in terms of density and of amplitude of the

potential. Its the area of exploitability is therefore confined to the bottom left of the

phase diagram, and to the regions of high density.

3.3.3 EXP

On the other hand, the EXP closure relation has a good performance, for the low values

of the density. But the high densities are the issue with this closure relation. Figure

3.13 shows the Fourier component of the connected static structure factor Sdq for a high

density of ρ = 1.0 and an amplitude of δ = 0.5. The static structure factor is defined as
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;

Scq = 1 + ρhcq (3.2)

where hcq is the connected total correlation function, and is subject to the same limita-

tions than hdq concerning the fact that it cannot have negative values, in order to be a

proper correlation function. Therefore, as one can see on the graph in inset, which is

simply a zoom of the first values of Scq , this function presents a negative peak around

q = 0, which increases with the increase of the amplitude of the potential. This negative

peak leads here again unfortunately the dynamical calculations to encounter a dead end.

All these problems should be seen as further justifications of why the HNC closure

relation has been chosen as the relation of choice : PY does not allow for calculations at

low values of the density, EXP encounters similar problems at high values of the density.

And finally, while HNC and EXP lead to similar results when calculation is possible,

MSA and PY leads extreme values of the phase diagram. While this is not necessarily

an issue, the fact that HNC is known to be very accurate, and that MSA is known to be

a simplistic closure relation contributes to push MSA aside, and consider HNC as our

closure relation of choice.



Chapter 4

Dynamics of a hard-sphere fluid
in a disordered environment:
Mode Coupling Theory

The original eponymous Langevin equation developed in 1908 (Lemons and Gythiel,

1997) takes the simple assumption of a particle, said to be Brownian, in a solvent itself

composed of smaller particles. This development came from the need to understand

observations made by Jan Ingenhousz and Robert Brown of respectively coal dust par-

ticles in an alcohol solution and pollen grains in water, that were seemingly moving in

a random fashion. In those cases, the pollen and the dust are the Brownian particles,

whose size compared to the solvent molecules is huge. This very difference in sizes and

therefore of timescales leads to an actual separation of these two types of particles, that

allows for an efficient treatment of the forces in action in this system. The first force felt

by the Brownian particle takes the form of an isotropic random force with a Gaussian

distribution that pushes the particle in a different direction at every moment. This force

is due to the presence of the multiple solvent particles around the big particle, and their

collisions with the latter are at the origin of the observed effect. The second force to

be accounted for takes the form of a friction force that appears when the big particle

attempts to pass through a bulk of solvent particles. Hence, the solvent particles are

responsible both for the dynamics and the damping of the dynamics of the big particle

(Haw, 2002; Hänggi and Marchesoni, 2005; Frey and Kroy, 2005; Babič et al., 2005).

The Langevin equation takes the following form:

mẍ(t) = −λẋ(t) + η(t), (4.1)

where m is the mass of the big particle, x(t) its position, λ is the friction coefficient and

η is the random force that pushes the particle around.

The presence of a random isotropic force in the Langevin equation accounts for the so-

55
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called Markovian processes in Brownian systems. A process is called Markovian when,

if this process is stochastic, the probability of obtaining a certain outcome at time, say,

t + 1 only depends on the immediate past of the process, i.e., its state at time t. In

more rigorous terms, one can write, for a random variable X that follows a Markovian

scheme,

P (Xt+1 = x|X0, X1, X2, ..., Xt) = P (Xt+1 = x|Xt), (4.2)

where x is the outcome of the process.

A Markovian process is thus characterizing phenomena with a very small correlation

time, virtually none, which is precisely the case of the collisions of the solvent particles

against the big particle. The latter point seems obvious, but specifying the underlying

reasons can be of some utility. We can distinguish two major time scales that are at

play in Brownian motion, namely τs ≈ 10−12 s, the relaxation time of a solvent particle,

and τb ≈ 10−3 s the relaxation time of the Brownian particle. Clearly the difference in

timescales is huge, and its origin can be traced back to the difference in size between

the two types of particles. The Markov property of Brownian motion thus comes from

the fact that, due to the humongous difference in timescales, the number of collisions

experienced by the Brownian particle is of the order of 1014 per second. Clearly, after

1014 collisions, no memory of the first one can be kept, and the whole process can be

thought as being a memoryless random process.

Is the Langevin equation still valid when one wants to calculate the properties of a

fluid like the one described in chapter 1? As a reminder, we consider a fluid made of

N identical sized particles with a hard-sphere potential, undergoing their dynamics in

a three dimensional Gaussian random potential with a Gaussian correlation function.

Clearly, we are far from the considerations of Einstein, von Smoluchovski and Langevin,

since each particle is plunged in a bath of other identical particles, and both the scales

of size and time are of the same order of magnitude. The essential hallmark of the

historical Langevin equation is the clear separation of those scales: the forces arising

from the solvent particles are the ”fast” variables, and are therefore treated altogether

as a white noise; the position of the big particle is the ”slow” variable and the one we want

to get the behavior of. The absence of a clear timescale separation makes it impossible

to treat the present system in such a simple way. In order to recover an equation of

motion in the form of a Langevin equation, one has to separate ”slow” variables from

”fast” variables in a way that correctly represents the physical nature of the system.

The whole problem stands on the basis of a good definition for the fast and slow variables,

and this is very dependent on the system under study. A good definition leads then to

the development of a new equation of motion, that accounts for the new variables. Such

an equation is called a Generalized Langevin Equation (GLE), and its development will

be the point of this chapter. A lot of quantities used in this development are defined
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and explained in chapter 2, one can refer to there for more information. In order to keep

the derivation as straightforward as possible, the generalized Langevin equation for N

hard-spheres in a Gaussian random potential will be directly derived: the bulk system

will be considered as a particular case of this one. After having defined and derived

the generalized Langevin equation, approximations will be made that will lead to the

derivation of the Mode Coupling Theory (MCT), that allows for an actual solution of the

GLE, and more importantly accounts for the non-Markovian processes in an accurate

way Götze (1991, 2009).

Knowing the strengths and the weaknesses of a theory is important, and MCT has it

fair share of both of them. This theory is mostly known to correctly predict nontrivial

dynamical scenarios, such as the reentry phenomenon and logarithmic relaxations in the

slow dynamics of fluids with short-ranged attractions (Foffi et al., 2002; Zaccarelli et al.,

2002; Sciortino et al., 2003; Pham et al., 2004). More recent studies show its ability

to reproduce strong non-monotonic variations of the dynamics of fluids confined in slit

pores (Lang et al., 2010; Mandal et al., 2014).

On the other hand, MCT tends to consisteltly overestimating the dynamical slowing

down of the liquid, which leads to the usual prediction of sharp ergodicity beaking

(Götze and Sjögren, 1992; Götze, 1999). This will lead natuarally to the calculation of

transition lines with a great precision, and to the subsequent building of phase diagrams,

which even though being issued from a known anomaly of the theory, can lead to fruitful

discussion about the behavior of the dynamics for different kind of systems.

The following development relies on a version of the MCT that specializes the theory to

systems with quenched-annealed degees of freedom. In particular, it is dealt with a ma-

trix of frozen particles, that aims to represent streamlined models of amorphous porous

solids. Single particle system (Götze et al., 1981b,a; Leutheusser, 1983a; Szamel, 2004)

and extensions to fluids of nonzero density has been made Krakoviack (2005a,b, 2007,

2009, 2011). The corresponding theoretical predictions have been compared with com-

puter simulation results (Kurzidim et al., 2009, 2010, 2011; Kim et al., 2009, 2010, 2011;

Spanner et al., 2013) and show to outline a good picture of the dynamics of the system.

This supports the idea that this version of the MCT can indeed be put to good use in

studies of fluids in ”pure” randomness. The connection with the present problem follows

from the observation that the MCT equations for the random fluid-matrix systems make

no reference at all to the particulate character of the disorder Krakoviack (2007, 2009).

Therefore, whether the disorder is originated from a quenched-annealed matrix, or from

an external potential as the one described in chapter 2, does not change the applicability

of this theory. This naturally suggests that this framework might have a broader domain

of application, encompassing many system that present frozen disorder, to which MCT

can be systematically applied after calculation of the structural correlations using the

relations presented in chapter 2.
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The following presents a detailed derivation of the MCT framework extended to the case

of a system with disorder originating from an external potential. One has to keep in

mind that this derivation concerns a three-dimensional system ; it has been found that

derivation from first principles of this theory in less than three dimensions gives rise

to serious difficulties (Götze, 1978, 1979; Götze et al., 1979; Götze, 1981; Leutheusser,

1983b; Schnyder et al., 2011).

4.1 Collective dynamics

4.1.1 Generalized Langevin equation

We consider a fluid made of N spherically symmetric and identical particles of mass

m in a Gaussian random potential with a Gaussian correlation function as defined in

chapter 1. The volume of the system is given as V , and the total density of the fluid

accordingly, as ρ = N/V .

We choose to consider the set of slow variables δρq(t) = ρq(t)− 〈ρq〉, with

ρq(t) =

N∑
j=1

eiqrj(t), (4.3)

and gq(t) =
∑N

j=1
q
q · pj(t)eiq rj(t), where rj(t) is the position of fluid particle j at time

t and pj(t) its momentum.

We have the following static correlations:〈[
δρq
gq

]
·
[
δρ−q g−q

]〉
=

〈δρqδρ−q〉 〈δρqg−q〉
〈gqδρ−q〉 〈gqg−q〉

 =

[
NSc(q) 0

0 NkBTm

]
, (4.4)

and〈[
δρ̇q
ġq

]
·
[
δρ−q g−q

]〉
=

〈δρ̇qδρ−q〉 〈δρ̇qg−q〉
〈ġqδρ−q〉 〈ġqg−q〉

 =

[
0 iNqkBT

iNqkBT 0

]
, (4.5)

where 〈. . . 〉 denotes the thermal average, . . . is the disorder average, as defined in chapter

2. Sc(q) is the connected static structure factor, defined as Sc(q) = 1 + ρhcq, where hcq is

the Fourier transform of the connected total correlation function.

We define the autocorrelation matrix C(q, t) of the set of slow variables that have been

chosen as

C(q, t) =
1

N

〈[
δρq(t)
gq(t)

]
·
[
δρ−q g−q

]〉

=
1

N

〈δρq(t)δρ−q〉 〈δρq(t)g−q〉

〈gq(t)δρ−q〉 〈gq(t)g−q〉

 =

[
F (q, t) Cρg(q, t)

Cgρ(q, t) Cgg(q, t)

]
,

(4.6)
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where the specific quantity F (q, t) at the top left of the matrix is the density fluctuation

autocorrelation function, and its behavior is an indicator of the relaxation undergone

by the fluid. Its behavior in time is an indicator of how much correlations the density

fluctuations have with their value at initial time. Furthermore, its infinite time value is

of great interest as well, since it defines the phase of the fluid, and allows for the building

of phase diagrams. It is therefore the main focus in studying the slow dynamics of fluids,

hence in the present work.

Using a projection operator denoted as P, that has the property of extracting the slow

component of a given variable, we arrive at a generalized Langevin equation for the

matrix C(q, t):

Ċ(q, t) = iΩ(q)C(q, t)−
∫ t

0
dτK(q, t− τ)C(q, τ), (4.7)

which is an exact equation for the matrix of correlation functions C(q, t). K(q, t) is

called the memory function. As it can be seen from the structure of the integral on the

r.h.s. of equation (4.7), the memory function accounts for an effect that happens at a

time prior to the present moment. It is defined as

K(q, t) =

〈[
0

Rq(t)

]
·
[
0 R−q

]〉[〈[δρq
gq

]
·
[
δρ−q g−q

]〉]−1

=

0 0

0 〈Rq(t)R−q〉

[(NSc(q))−1 0

0 (NkBTm)−1

]

=

0 0

0
〈Rq(t)R−q〉
NkBTm

 =

[
0 0

0 M(q, t)

]
(4.8)

This term accounts for the non-Markovian processes that are expected to be very im-

portant in a fluid made of identical particles, and is therefore crucial in the calculation

of the time behavior of the said fluid. Furthermore, the term Rq(t) is defined as

Rq(t) = eiQL QtiQL gq,

which is the force described earlier as the fluctuating and random effect coming through

the many collisions experienced by the particles from their environment. L is the

Liouville operator of the system, and Q is the projector on the space orthogonal to the

slow variables, i.e., it effectively projects a given quantity on the subspace of the fast

variables. Therefore we have

QRq = I − 〈Rqδρ−q〉
NSc(q)

δρq −
〈Rqg−q〉
NkBTm

gq,
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where I is the identity operator.

Finally, we define Ω(q) as an intrinsic frequency of the system, characterizing the short

time dynamics:

iΩ(q) =

〈[
δρ̇q
ġq

]
·
[
δρ−q g−q

]〉[〈[δρq
gq

]
·
[
δρ−q g−q

]〉]−1

=

[
0 iNqkBT

iNqkBT 0

][
NSc(q) 0

0 NkBTm

]−1

=

[
0 iNqkBT

iNqkBT 0

][
(NSc(q))−1 0

0 (NkBTm)−1

]

=

 0
iq

m

iqkBTS
c(q)−1 0

 .

(4.9)

The point is here to derive an equation of motion for F (q, t), the top left component of

C(q, t) (equation (4.6). This function, otherwise called the density fluctuation autocor-

relation function, or the ISF gives precious information about the relaxation process a

fluid undergoes towards its final phase. Ultimately, the infinite time behavior of F (q, t)

defines the phase of the fluid, which is the main concern in the present work.

Inserting the expressions of C(q, t), Ω(q, t) and K(q, t) into (4.7) leads to a matrix equa-

tion, whose evaluation would in theory enable the calculation of the top left component

F (q, t). However, the presence of a convolution product in the r.h.s. of equation (4.7)

renders the latter extremely difficult. The solution comes from introducing the Laplace

transform in the form of

f̃(z) = i

∫ ∞
0

dteizt f(t). (4.10)

Applying it to equation (4.7), we find that

− iz

 F̃ (q, z) C̃ρg(q, z)

C̃gρ(q, z) C̃gg(q, z)

− i[Sc(q) 0

0 kBTm

]
=

 0
iq

m

iqkBTS
c(q)−1 0

 F̃ (q, z) C̃ρg(q, z)

C̃gρ(q, z) C̃gg(q, z)


+ i

[
0 0

0 M̃(q, z)

] F̃ (q, z) C̃ρg(q, z)

C̃gρ(q, z) C̃gg(q, z)

 , (4.11)
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which can be solved for F̃ (q, z):

−izF̃ (q, z)− iSc(q) =
iq

m
C̃ρg(q, z). (4.12)

This expression presents the term C̃ρg(q, z) in its r.h.s., which can also be calculated

using the Laplace transform of equation (4.11):

−izC̃ρg(q, z) = iqkBTS
c(q)−1F̃ (q, z) + iM̃(q, z)C̃ρg(q, z), (4.13)

and ultimately, gathering these two equations,

−iz
[
−izF̃ (q, z)− iSc(q)

]
=
iq

m

[
−izC̃ρg(q, z)

]
= −q

2kBT

m
Sc(q)−1F̃ (q, z) + iM̃(q, z)

[
−izF̃ (q, z)− iSc(q)

]
.

(4.14)

After inverting the Laplace transforms of equation (4.14), one gets a Generalized Langevin

Equation (GLE) for the density fluctuation autocorrelation function F (q, t) alone:

F̈ (q, t) + Ω2(q)F (q, t) +

∫ t

0
dτM(q, t− τ)Ḟ (q, τ) = 0, (4.15)

with Ω2(q) = q2kBT/mS
c(q) and initial conditions F (q, 0) = Sc(q) and Ḟ (q, 0) = 0.

4.1.2 Mode Coupling Theory

The equation of motion that has just been derived takes the form of a GLE, and lies on

the basis of a separation of the slow and fast variables. However, defining what is slow and

what is fast solely on the basis of our intuition will not lead to a very rigorous separation.

Therefore, the supposedly fast parts of the dynamics contained in the fluctuating random

force Rq(t) will not necessarily be the fastest objects in the problem, and this can affect

the quality of the calculated dynamics. The point of the Mode Coupling Theory (MCT)

is to get a better separation of the fast and slow variables by considering quadratic

contributions of the slow variables. These quadratic contributions are thought to contain

some slow parts as well, though not as slow as the linear slow variables. The point is

then to extract these quadratic slow variables from the random force, in order to include

them in the memory function, and in this way proceed towards a better separation of

fast and slows modes of the system.

We here define two terms quadratic with respect to the slow variables, in the form of

Bq,k = δρkδρq−k,

Cq,k = δρk〈ρq−k〉.
(4.16)
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The random force Rq and quadratic variables Bq,k and Cq,k have similar symmetry

properties, and coupling them will allow to extract a remaining slow part of the random

force (i.e., the slower parts of the fast term).

One might ask why the initial slow variable gq has not been used to create quadratic

variables in the form of either Dq,k = δρkgq,k or Eq,k = gkgq,k. The reason for this lies

in the symmetry of the slow variables in question. Indeed, gq(t) =
∑N

j=1
q
q ·pj(t)eiq rj(t)

takes the form of a current, or a momentum, which under time reversal changes sign. δρq,

however, remains unchanged under time reversal, as does the random force Rq. There-

fore, there is no coupling between Dq,k and the random force. Furthermore, the variable

Eq,k = gkgq,k can be shown to be always ergodic, and therefore cannot contribute to a

glass transition, which is still the main purpose of the MCT.

The corresponding slow part of Rq is obtained using the projection operator P, defined

as

PRq =
∑
k

′〈RqB−q,−k〉G(q,k)Bq,k +
∑
k

〈RqC−q,−k〉H(q,k)Cq,k, (4.17)

where we have anticipated the fact that, within the mode-coupling approximation, P
is diagonal in k and the subspaces spanned by B and C are orthogonal. The matrices

G(q,k) and H(q,k) insure the normalization of the projector:

PBq,k = Bq,k,

PCq,k = Cq,k.
(4.18)

In the following, a mode coupling approximation is performed, in order to compute the

following expressions:

〈eiQL QtBq,kB−q,−k〉 = N2F (k, t)F (|q− k|, t), (4.19)

〈eiQL QtCq,kC−q,−k〉 = N2F (k, t)Sd(|q− k|), (4.20)

〈eiQL QtBq,kC−q,−k〉 = 0, (4.21)

where Sd(q) is the disconnected structure factor, defined as Sd(q) = ρhd(q).

This allows for the calculation of the normalization functions G(q,k) and H(q,k):

G(q,k) =N−2Sc(k)−1Sc(|q− k|)−1, (4.22)

H(q,k) =N−2Sc(k)−1Sd(|q− k|)−1. (4.23)

It remains to obtain 〈RqB−q,−k〉 and 〈RqC−q,−k〉. Using the definition of Bq,k and Cq,k,

and the fact that Q = 1−P, we can rewrite these two terms as

〈RqB−q,−k〉 = 〈iQL gqB−q,−k〉 = 〈iL gqB−q,−k〉 − 〈iPL gqB−q,−k〉, (4.24)

〈RqC−q,−k〉 = 〈iQL gqC−q,−k〉 = 〈iL gqC−q,−k〉 − 〈iPL gqC−q,−k〉. (4.25)
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Using that {gq, δρ−k} = iq·kq ρq−k and {gq, 〈ρ−k〉} = 0, where {. . . } denotes the Poisson

brackets, let us calculate the first term on the r.h.s. of equation (4.24):

〈iL gqB−q,−k〉 = kBT 〈{gq, B−q,−k}〉
= kBT

(
〈{gq, δρ−k}δρ−q+k〉+ 〈{gq, δρ−q+k}δρ−k〉

)
= ikBT

q

q
·
[
k〈ρq−kδρ−q+k〉+ (q− k)〈ρkδρ−k〉

]
= iNqkBT

[
q · k
q2

Sc(|q− k|) +
q · (q− k)

q2
Sc(k)

]
.

And similarly for equation (4.25):

〈iL gqC−q,−k〉 = kBT 〈{gq, C−q,−k}〉 = kBT 〈{gq, δρ−k}〈ρ−q+k〉〉
= ikBT

q

q
· k〈ρq−k〉〈ρ−q+k〉

= iNqkBT
q · k
q2

Sd(|q− k|).

Terms of the form 〈δρqδρ−kδρ−q+k〉 are three body structure factors. Using the con-

volution approximation, these complex quantities can be expressed as products of two

body structure factors that were defined in chapter 2:

〈δρqδρ−kδρ−q+k〉 = NSc(q)Sc(k)Sc(|q− k|), (4.26)

〈δρqδρ−k〉〈ρ−q+k〉 = NSc(q)Sc(k)Sd(|q− k|). (4.27)

The second terms on the r.h.s. of equation (4.24) and (4.25) is calculated as

〈iPL gqB−q,−k〉 = 〈iL gqδρ−q〉N−1Sc(q)−1〈δρqδρ−kδρ−q+k〉
= iNqkBTS

c(k)Sc(|q− k|),
(4.28)

〈iPL gqC−q,−k〉 = 〈iL gqδρ−q〉N−1Sc(q)−1〈δρqδρ−k〈ρ−q+k〉〉
= iNqkBTS

c(k)Sd(|q− k|),
(4.29)

using that

〈iL gqδρ−q〉 = 〈ġqδρ−q〉 = −〈gqδρ̇−q〉 =
iq

m
〈gqg−q〉 = iNqkBT.

We define the vertices V (2)(q,k) and V (1)(q,k) as

V (2)(q,k) = 〈RqB−q,−k〉G(q,k), (4.30)

V (1)(q,k) = 〈RqC−q,−k〉H(q,k), (4.31)



64 MODE COUPLING THEORY

such that

PRq =
∑
k

′
V (2)(q,k)Bq,k +

∑
k

V (1)(q,k)Cq,k, (4.32)

which can now be computed:

V (2)(q,k) =
iqkBT

N

[
q · k
q2

Sc(|q− k|) +
q · (q− k)

q2
Sc(k)− Sc(k)Sc(|q− k|)

]
Sc(k)−1Sc(|q− k|)−1

=
iqkBT

N

[
q · k
q2

Sc(k)−1 +
q · (q− k)

q2
Sc(|q− k|)−1 − 1

]
=− iqkBT

N
ρ

[
q · k
q2

cc(k) +
q · (q− k)

q2
cc(|q− k|)

]
,

V (1)(q,k) =
iqkBT

N

∑[
q · k
q2

Sd(|q− k|)− Sc(k)Sd(|q− k|)
]
Sc(k)−1Sd(|q− k|)−1

=
iqkBT

N

[
q · k
q2

Sc(k)−1 − 1

]
=− iqkBT

N
ρ

[
q · k
q2

cc(k) +
q · (q− k)

q2
1

ρ

]
.

We have now the expression of PRq,

PRq = − iqkBT
N

ρ
∑
k

′∑[
q · k
q2

cc(k) +
q · (q− k)

q2
cc(|q− k|)

]
Bq,k

− iqkBT

N
ρ
∑
k

∑[
q · k
q2

cc(k) +
q · (q− k)

q2
1

ρ

]
Cq,k, (4.33)

and we can complete the calculation of M (MC)(q, t),

M (MC)(q, t) =
〈PRq(t)PR−q〉

NkBTm
, (4.34)

which can be split into two parts,

M (MC)(q, t) = M (2)(q, t) +M (1)(q, t), (4.35)

with

M (2)(q, t) =
1

2
ρ
q2kBT

m

1

V

∑
k

[
q · k
q2

cc(k) +
q · (q− k)

q2
cc(|q− k|)

]2
F (k, t)F (|q− k|, t) (4.36)
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and

M (1)(q, t) = ρ
q2kBT

m

1

V

∑
k

[
q · k
q2

cc(k) +
q · (q− k)

q2
1

ρ

]2
F (k, t)Sd(|q− k|). (4.37)

Dividing the generalized Langevin equation (4.15) by Sc(q), we get the equation for the

normalized ISF φ(q, t):

φ̈(q, t) + Ω(q)2φ(q, t) + Ω(q)2
∫ t

0
dτm(q, t− τ)φ̇(q, τ) = 0, (4.38)

with initial conditions φ(q, 0) = 1 and φ̇(q, 0) = 0, and

Ω(q)2 =
q2kBT

mSc(q)
. (4.39)

Taking advantage of the fact that the long time dynamics predicted by the MCT are

essentially independent from the short time dynamics, the overdamped limit (Franosch

et al., 1997a; Fuchs et al., 1998; Franosch et al., 1997b) is adopted for simplicity. It

allows for a rewriting of the generalized Langevin equation applied to the case of the

Brownian dynamics, effectively ruling out the friction coefficient as a parameter of the

equation:

τ(q)φ̇(q, t) + φ(q, t) +

∫ t

0
dτm(q, t− τ)φ̇(q, τ) = 0, (4.40)

with initial condition φ(q, 0) = 1 and

τq =
Sc(q)

D0q2
, (4.41)

where D0 is the short time diffusivity, and the memory functions:

m(2)(q, t) =
1

2
ρSc(q)

1

V

∑
k

[
q · k
q2

cc(k) +
q · (q− k)

q2
cc(|q− k|)

]2
Sc(k)Sc(|q− k|)φ(k, t)φ(|q− k|, t),

(4.42)

m(1)(q, t) = ρSc(q)
1

V

∑
k

[
q · k
q2

cc(k) +
q · (q− k)

q2
1

ρ

]2
Sc(k)Sd(|q− k|)φ(k, t).

(4.43)

Often in the case of dynamical slowing down, one might be interested in the infinite time

limit of the ISF. As it will be explicited in chapter 5, by giving the simple picture of the
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fully relaxed fluid, this quantity is used to define its phase, and ultimately draw a phase

diagram. The infinite time limit of the ISF is denoted by

f(q) = lim
t→∞

φ(q, t), (4.44)

which can be expressed, by manipulating equation (4.40), as

f(q)

1− f(q)
= lim

t→∞
m(q, t) = m(q). (4.45)

4.2 Self dynamics

4.2.1 Generalized Langevin Equation

The case of the self dynamics, or tagged particle dynamics, can be a particularly illu-

minating one, bringing informations about the phenomena happening at the scale of

one specific particle rather than the whole fluid. Furthermore, the self ISF is the basis

for the development of more complex dynamical quantities, such as the mean squared

displacement (MSD), the local exponent and the non-Gaussian parameter, which will be

used to characterize the dynamics in the following chapter.

One possible development of a GLE for this type of quantity follows the same path as

for the collective ISF, considering the tagged particle density instead of the collective

one, for a particle of the same species as previously:

ρsq(t) = eiqr(t), (4.46)

and

gsq(t) =
q

q
· p(t)eiq r(t), (4.47)

where r is the position of the tagged particle and p is its momentum.

We obtain the Fourier transforms of the total correlation functions as

〈ρsqδρ−q〉 = ρhc(q),

〈ρsq〈ρ−q〉〉 = ρhd(q).

The self density fluctuation autocorrelation function (or self ISF) is expressed as

φs(q, t) = 〈ρsq(t)ρs−q〉, (4.48)

and finally, the GLE is obtained as

φ̈s(q, t) + ω2(q)φs(q, t) +

∫ t

0
dτM s(q, t− τ)φ̇s(q, τ) = 0, (4.49)
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with initial conditions φs(q, 0) = 1, φ̇s(q, 0) = 0, and

ω2(q) =
q2kBT

m
.

The memory function M s(q, t) is given by

M s(q, t) =
〈rq(t) r−q〉
mkBT

,

where

rq(t) = eiQsLsQstiQsLsg
s
q

is the random force. Ls is the Liouville operator of the system and Qs is the projector

on the space of the fast variables, i.e., orthogonal to ρsq and gsq:

Qsrq = I − 〈rqρs−q〉ρsq −
〈rqgs−q〉
mkBT

gsq,

where I is the identity operator.

4.2.2 Mode coupling Theory

We define the quadratic terms in form of

bq,k = ρskδρq−k,

cq,k = ρsk〈ρq−k〉.
(4.50)

The random force rq and quadratic variables have similar symmetry properties and

might therefore be coupled.

Knowing that within the mode-coupling approximation, Ps is diagonal in k and that the

subspaces spanned by the bs and cs are orthogonal, the corresponding slow part of rq
can be obtained using the projector operator Ps:

Psrq =
∑
k

〈rqb−q,−k〉g(q,k)bq,k +
∑
k

〈rqc−q,−k〉h(q,k)cq,k

The matrices g(q,k) and h(q,k) insure normalization:

Psbq,k = bq,k,

Pscq,k = cq,k.
(4.51)

A mode coupling approximation is performed by setting

〈eiQsLsQstbq,kb−q,−k〉 = NSc(|q− k|)φs(k, t)φ(|q− k|, t),
〈eiQsLsQstcq,kc−q,−k〉 = NSd(|q− k|)φs(k, t).
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This allows to calculate g(q,k) and h(q,k),

g(q,k) = [NSc(|q− k|)]−1,
h(q,k) = [NSd(|q− k|)]−1.

It remains to obtain

〈rqb−q,−k〉 = 〈iQsLsgsqb−q,−k〉 = 〈iLsgsqb−q,−k〉 − 〈iPsLsgsqb−q,−k〉, (4.52)

〈rqc−q,−k〉 = 〈iQsLsgsqc−q,−k〉 = 〈iLsgsqc−q,−k〉 − 〈iPsLsgsqc−q,−k〉. (4.53)

Using that {gsq, ρs−k} = iq·kq ρ
s
q−k and {gsq, δρ−k} = {gsq, 〈ρ−k〉} = 0, we calculate the

first term on the r.h.s. of equations (4.52) and (4.53):

〈iLsgsqb−q,−k〉 = kBT 〈{gsq, b−q,−k}〉 = kBT
(
〈{gsq, ρs−k}δρ−q+k〉+ 〈{gsq, δρ−q+k}ρs−k〉

)
= ikBT

q · k
q
〈ρsq−kδρ−q+k〉 = iqkBTρ

q · k
q2

hc(|q− k|),

〈iLsgsqc−q,−k〉 = kBT 〈{gsq, c−q,−k}〉 = kBT 〈{gsq, ρs−k}〈ρ−q+k〉〉

= iqkBTρ
q · k
q2

hd(|q− k|).

And using that 〈iLsgsqρ
s
−q〉 = 〈ġsqρs−q〉 = −〈gsqρ̇s−q〉 = iq

ms
〈gsqgs−q〉 = iqkBT , we calculate

the second terms as well:

〈iPsLsgsqb−q,−k〉 = 〈iLsgsqρ
s
−q〉 · 〈ρsqρs−kδρ−q+k〉 = iqkBTρh

c(|q− k|),
〈iPsLsgsqc−q,−k〉 = 〈iLsgsqρ

s
−q〉 · 〈ρsqρs−k〈ρ−q+k〉〉 = iqkBTρh

d(|q− k|).

We define the vertices

v(2)(q,k) = 〈rqb−q,−k〉g(q,k),

v(1)(q,k) = 〈rqc−q,−k〉h(q,k),

such that

Psrq =
∑
k

v(2)(q,k)bq,k +
∑
k

v(1)(q,k)cq,k.

They can be computed as

v(2)(q,k) = iqkBT
1

V

[
q · k
q2
− 1

]
hc(|q− k|)
Sc(|q− k|)

v(1)(q,k) = iqkBT
1

V

[
q · k
q2
− 1

]
hd(|q− k|)
Sd(|q− k|) ,
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and one completes the calculation of M s(MC)(q, t), which can be split into two parts:

M s(MC)(q, t) = M s(2)(q, t) +M s(1)(q, t).

The quadratic part M s(2)(q, t) is given by

M s(2)(q, t) =
q2kBTρ

m

1

V

∑
k

[
q · (q− k)

q2

]2 [hc(|q− k|)]2
Sc(|q− k|) φ(|q− k|, t)φs(k, t),

and the linear part M s(1)(q, t) by

M s(1)(q, t) =
q2kBT

m

1

V

∑
k

[
q · (q− k)

q2

]2
hd(|q− k|)φs(k, t).

Now, using the replica Ornstein-Zernike equations, defined in chapter 2, we can write

the kernels as

M s(2)(q, t) =
q2kBTρ

m

1

V

∑
k

[
q · (q− k)

q2
cc(|q− k|)

]2
Sc(|q− k|)φ(|q− k|, t)φs(k, t)

and

M s(1)(q, t) =
q2kBT

m

1

V

∑
k

[
q · (q− k)

q2

]2
hd(|q− k|)φs(k, t).

Applying the overdamped limit to equation (4.49), its Brownian version reads

τ s(q)φ̇s(q, t) + φs(q, t) +

∫ t

0
dτms(q, t− τ)φ̇s(q, τ) = 0, (4.54)

where τ s(q) = 1/D0q
2 and the memory kernels are

ms(2)(q, t) = ρ
1

V

∑
k

[
q · (q− k)

q2
cc(|q− k|)

]2
Sc(|q− k|)φ(|q− k|, t)φs(k, t)

and

ms(1)(q, t) =
1

V

∑
k

[
q · (q− k)

q2

]2
hd(|q− k|)φs(k, t).

Finally, the infinite time limit of the self ISF can be computed as

fs(q)

1− fs(q) = lim
t→∞

ms(q, t) = ms(q), (4.55)

where

fs(q) = lim
t→∞

φs(q, t). (4.56)
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4.3 Mean squared and quartic displacements

We start with equation (4.48) for the self-dynamics, where the self ISF can actually be

expanded in the following way, in the limit of q → 0:

φs(q, t) = 1− q2

6
δr2(t) +

q4

120
δr4(t) + o(q4), (4.57)

where δr2(t) is the MSD, and δr4(t) is the mean quartic displacement (MQD). These

two quantities allow the evaluation of the non-Gaussian parameter (NGP) as

α =
3

5

δr4(t)

(δr2(t))2
− 1. (4.58)

The NGP and the MSD are two very important indicators of the diffusivity regime of the

system, and will be at the core of the understanding of the results presented in chapter

5.

The point of the following is to be able to expand the memory function in the limit of

q → 0 as well in order to adapt the GLE, and by suitably identifying the terms, derive

a GLE that, within the MCT framework will allow for a calculation of the MSD, the

MQD and the NGP. We define the quantity M s(q, t) = q2ms(q, t), and get

M s(q, t) = q2
∫
k

[
v(2)(q,k)φs(k, t)φ(|q− k|, t) + v(1)(q,k)φs(k, t)

]
, (4.59)

such that

M s(q, t) =q2
∫
k

{
ρ

[
q · (q− k)

q2

]2
[cc(|q− k|)]2 Sc(|q− k|)φs(k, t)φ(|q− k|, t)

+

[
q · (q− k)

q2

]2
hd(|q− k|)φs(k, t)

}

=q2
∫
k

[
q · (q− k)

q2

]2 {
ρ [cc(|q− k|)]2 Sc(|q− k|)φ(|q− k|, t)

+hd(|q− k|)
}
φs(k, t).

(4.60)

By exchanging k and q− k, we get

M s(q, t) =

∫
k

[
q · k
q

]2 {
ρ [cc(k)]2 Sc(k)φ(k, t) + hd(k)

}
φs(|q− k|, t)

=

∫
k

(eq · k)2
{
ρ [cc(k)]2 Sc(k)φ(k, t) + hd(k)

}
φs(|q− k|, t)

=

∫
k

(eq · ek)2W (k, t)φs(|q− k|, t),

(4.61)
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with W (k, t) = k2
{
ρ [cc(k)]2 Sc(k)φ(k, t) + hd(k)

}
.

The integral on the r.h.s. of equation (4.61) presents the term φs(|q− k|, t), that we

need to expand in the limit q → 0, in order to expand M s(q, t) as well:

φs(|q− k|, t) =φs(|k− q|, t) = φs

√∑
γ

(kγ − qγ)2, t


=φs(k, t) +

∑
α

(−qα)
∂φs(k, t)

∂kα
+

1

2

∑
α

∑
β

qαqβ
∂2φs(k, t)

∂kα∂kβ
+ o(q2).

(4.62)

Using that
∂k

∂kα
=
kα
k

, we get

∂φs(k, t)

∂kα
=

∂k

∂kα

∂φs(k, t)

∂k
=
kα
k

∂φs(k, t)

∂k
, (4.63)

∂2φs(k, t)

∂kα∂kβ
=

∂

∂kα

[
kβ
k

∂φs(k, t)

∂k

]
=

[
δαβ
k
− kβ
k2

∂k

∂kα

]
∂φs(k, t)

∂k
+
kβ
k

∂

∂kα

∂φs(k, t)

∂k

=

[
δαβ
k
− kαkβ

k3

]
∂φs(k, t)

∂k
+
kβ
k

∂k

∂kα

∂2φs(k, t)

∂k2

=

[
δαβ
k
− kαkβ

k3

]
∂φs(k, t)

∂k
+
kαkβ
k2

∂2φs(k, t)

∂k2
,

(4.64)

which allows one to compute φs(|q− k|, t):

φs(|q− k|, t) =

φs(k, t)−
∑
α

qα
kα
k

∂φs(k, t)

∂k

+
1

2

∑
α

∑
β

qαqβ

{[
δαβ
k
− kαkβ

k3

]
∂φs(k, t)

∂k
+
kαkβ
k2

∂2φs(k, t)

∂k2

}
+ o(q2)

=φs(k, t)− q · k
k

∂φs(k, t)

∂k

+
1

2

{[
q2

k
− (q · k)2

k3

]
∂φs(k, t)

∂k
+

(q · k)2

k2
∂2φs(k, t)

∂k2

}
+ o(q2)

=φs(k, t)− qeq · ek
∂φs(k, t)

∂k

+
1

2
q2
[

1− (eq · ek)2

k

∂φs(k, t)

∂k
+ (eq · ek)2

∂2φs(k, t)

∂k2

]
+ o(q2),

(4.65)
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that we can insert into equation (4.61):

M s(q, t) =

∫
k

(eq · ek)2W (k, t)

{
φs(k, t)− qeq · ek

∂φs(k, t)

∂k

+
1

2
q2
[

1− (eq · ek)2

k

∂φs(k, t)

∂k
+ (eq · ek)2

∂2φs(k, t)

∂k2

]
+ o(q2)

}
=

1

D

∫
k
W (k, t)φs(k, t) +

1

2
q2
∫
k
W (k, t)

[(
1

D
− 3

D(D + 2)

)
1

k

∂φs(k, t)

∂k

+
3

D(D + 2)

∂2φs(k, t)

∂k2

]
+ o(q2)

=
1

D

∫
k
W (k, t)φs(k, t) +

1

2
q2

1

D(D + 2)

∫
k
W (k, t)

[
D − 1

k

∂φs(k, t)

∂k

+3
∂2φs(k, t)

∂k2

]
+ o(q2)

=M0(t) +
1

2
q2M2(t) + o(q2),

(4.66)

where D is the dimensionality of the system, here set to D = 3.

Finally, putting together equations (4.66) and (4.57), setting the right value for the

dimensionality, and simplifying a bit, we get

¨δr2(t) +
kBT

m

∫ t

0
dτ M0(t− τ) ˙δr2(τ) = 6

kBT

m
,

¨δr4(t) +
kBT

m

∫ t

0
dτ M0(t− τ) ˙δr4(τ) = 20

kBT

m
δr2(t) + 10

kBT

m

∫ t

0
dτ M2(t− τ) ˙δr2(τ).

Both equations might be integrated once,

˙δr2(t) +
kBT

m

∫ t

0
dτ M0(t− τ)δr2(τ) = 6

kBT

m
t,

˙δr4(t) +
kBT

m

∫ t

0
dτ M0(t− τ)δr4(τ) = 20

kBT

m

∫ t

0
dτ δr2(τ)

+10
kBT

m

∫ t

0
dτ M2(t− τ)δr2(τ).

Moving to Brownian dynamics by taking the overdamped limit, as previously, we arrive

at

˙δr2(t) +D0

∫ t

0
dτ M0(t− τ) ˙δr2(τ) = 6D0, (4.67)

˙δr4(t) +D0

∫ t

0
dτ M0(t− τ) ˙δr4(τ) = 20D0δr

2(t) + 10D0

∫ t

0
dτ M2(t− τ) ˙δr2(τ),

(4.68)
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and

δr2(t) +D0

∫ t

0
dτ M0(t− τ)δr2(τ) = 6D0t, (4.69)

δr4(t) +D0

∫ t

0
dτ M0(t− τ)δr4(τ) = 20D0

∫ t

0
dτ δr2(τ) + 10D0

∫ t

0
dτ M2(t− τ)δr2(τ).

(4.70)
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Chapter 5

Phase diagrams and dynamical
scenarios

Understanding the dynamics of the system heretofore described is at the core of this

work. The structural functions are calculated in the aim of being able to process the

Mode Coupling Theory, which can give us insights about the phenomena responsible for

the dynamical slow down. This chapter is dedicated to the results of this very crucial

part. The approach taken here is to go in more and more depth as for the precision and

complexity of the tools used to explore the dynamics. The first section will review the

phase diagrams, and explore the many scenarios one can imagine when simply looking

at the broad picture they offer. The phase diagrams only offer a view of what the system

is at infinite time, and a lot of information is therefore missed, but a general look is very

useful. Then, the intermediate scattering function and the mean squared displacement

will be analyzed, in order to understand the relaxation process the fluid is going through

before reaching its final state. And finally, the local exponent and the non-Gaussian

parameter will be discussed, in the hope to get a bit more insight about the complex

phenomena in play during relaxation.

5.1 Phase diagrams

A phase diagram is a summary of the different phases the system can be in, delimited by

transition lines. Crossing a transition line by increasing one or the other parameter leads

the system to a new state, in essence different from the first one. A phase transition thus

characterizes an essential change in the nature of the fluid. The usual phase transition

that is encountered in a bulk system is characterized by a sudden and discontinuous

change in the long time limit of the Intermediate Scattering Function (ISF), and is due

to the system reaching a critical density at which the particles are in dynamical arrest,

due to the steric hindering of the other particles. However, the presence of a disordered

75
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potential as described in chapter 2 leads to a change of the structure of the equations of

the Mode Coupling Theory (MCT), and more precisely of the memory functions: new

phases and transition types are therefore to be encountered in the following.

5.1.1 Defining the phases and transition lines

The whole problematic in defining a phase transition is how to distinguish the different

phases. From the point of vue of the structural functions, no distinction can be made:

both in the case of the liquid, the localized phase and the glass, no long range order can

be detected, which is an essential hallmark of fluids.

The difference between these phases lies in the dynamical correlations the fluid is able to

keep at long, or virtually infinite times, which is measured by the long time behavior of

the self and collective ISF that have been defined in chapter 4. Their behavior is obtained

by solving iteratively the structural integral equations, followed by a numerical resolution

of the MCT equations. The development of the equations, and a discussion about the

theory has been made in chapter 2 for the structural functions and the approximations

used to calculate them, and in chapter 4 for the dynamical variables and the discussion

around the MCT framework. Calculating the infinite time value of the ISF can be done

in a straightforward way by manipulating the equations of MCT, and directly calculating

limt→∞ φ(q, t) = f(q) Götze (1991, 2009); Franosch (2014).

The liquid phase is characterized by an ergodic behavior of the fluid at long times. From

the perspective of the MCT, this means that a density fluctuation at infinite time has

lost all correlations with its initial value. Thus, the collective ISF eventually reaches

zero in the liquid phase:

lim
t→∞

φ(q, t) = f(q) = 0. (5.1)

Another variable commonly used to characterize the phase of a system is the MSD. In

a diffusive or liquid phase, the MSD increases linearly with time. In other words, if its

slope is equal to one at very long times, the system is in a diffusive phase. A slope that

presents a higher value defines a system in a superdiffusive state, which is characteristic

for example of the ballistic regime appearing at very small times. A slope lower than

one means a system in a subdiffusive state, which is characteristic of a system with a

high density, a quenched-annealed system, or in general systems that present any kind

of hindering.

On the other hand, if the collective ISF does not reach zero at infinite time, the system

is assumed to be in a glass phase:

lim
t→∞

φ(q, t) = f(q) 6= 0. (5.2)
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This can be understood as the density fluctuation keeping correlations with its initial

time ad infinitum. In that case, the system stopped being ergodic at one point of the

relaxation process and is in a state of dynamical arrest, which is the definition of a glass.

In that phase, the MSD reaches a plateau at infinite times: the subdiffusion is such that

the slope is equal to zero.

The liquid and the glass phase are the two common phases a fluid can adopt, but mainly

due to the presence of a new vertex in the equations of MCT, an intermediate phase can

be found for fluids in disorder: the localized phase. Finding the limit between liquid,

glass and the localized phase requires to look at the self ISF as well as the collective

one. The localized phase is defined by the fact that the self dynamics have reached an

arrested state while the collective dynamics are still in an ergodic (i.e., liquid) state,

meaning that

lim
t→∞

φ(q, t) = f(q) = 0,

lim
t→∞

φs(q, t) = fs(q) 6= 0,
(5.3)

which naturally defines the localized phase as an intermediate state between liquid and

glass. As has been quickly stated in the introduction, the localized phase can be thought

of as many pockets of fluid trapped and isolated by deep minima created by the potential.

The particles constituting these isolated populations are trapped, a fact made clear by

the nonzero value of fs(q). However the collective dynamics are still globally ergodic

meaning that the accessible space is explored constantly and that even though the fluid

is localized, no real dynamical arrest has yet occurred.

The phase diagram lies in the three dimensional space defined by (ρ, δ, σ), but in order

to show a comprehensible diagram, one parameter has to be kept constant. In the exper-

imental work (Evers et al., 2013a,b; Bewerunge et al., 2016b; Bewerunge and Egelhaaf,

2016; Bewerunge et al., 2016a), the most difficult parameter to stabilize and measure

is the correlation length of the potential σ, due to the technical difficulty of generating

a controlled laser speckle. The correlation length of the potential is thus consistently

chosen as a parameter for the theoretical phase diagrams, ρ and δ being considered as

variables. In order to stay consistent with the experimental reference work, in which the

correlation length is measured as about half the diameter of a particle, we first choose

to set σ = 0.50, i.e., half the diameter of a particle. However, a study of the effect of

a variation of the correlation length has been undertaken, with very interesting results,

and is presented in section 5.2.

The choice of the closure relation is of course another variable that has to be taken into

account, the dynamics being dependent on the structural functions in the MCT frame-

work, as can be clearly seen from the construction of the memory function in particular.
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An extensive comparison of the closure relations will be made and critically discussed as

well. For now, the choice has been made to consider HNC as the most realistic closure

relation, for the reasons exposed in chapter 3 and reasons that will become obvious later

on. Thus, keeping the value of σ constant, and choosing an adequate closure relation,

the phase diagram consists of transition lines in the two-dimensional space of the cou-

ple of variables (ρ, δ) that delimit the liquid (f(q) = 0, fs(q) = 0), the localized phase

(f(q) = 0, fs(q) 6= 0) and the glass (f(q) 6= 0, fs(q) 6= 0).

5.1.2 What phase diagrams can tell us about the dynamics

Figure 5.1 is a phase diagram calculated for a value of σ = 0.5, and structural functions

calculated using the HNC closure relation. Because all the scenarios that we will discuss

take place in the variable space spanned in figure 5.1, it will be taken as a basis for the

discussions concerning the dynamical scenarios discussed hereafter.

A few things are immediately noticeable from the phase diagram.

If we look at the simple behavior of the system when no potential is involved (i.e., δ = 0)

and the density increases (which is equivalent to tracing a horizontal line at the bottom

of the phase diagram, and is represented by a dashed gray arrow on figure 5.1), we notice

that the system stays in a liquid phase until it reaches a density of about ρ = 1.0 and

undergoes a discontinuous phase transition to the glass phase. This obviously describes

the behavior of the bulk system, and the discontinuous liquid-glass transition occurs

at the critical packing fraction. The phenomenon responsible for the phase transition

here is called the cage effect: at high density, particles find themselves trapped inside

cages created by the body of other particles. At the critical value of the density, the

particles are trapped so tightly, any Brownian motion is prohibited, leading to what is

called a glass phase. The discontinuous transition line, even though still being present

in the case of a system with a disordered potential is mainly still caused by the cage

effect. Interplay between the potential and the local density of the fluid causes the

increase of the amplitude to have a small but noticeable effect on this transition line,

as it will be explicited later on. The fact that, compared to the continuous and the

diffusion-localization transitions lines, the discontinuous one is very vertical indicates

the rather small influence of the potential on the effects causing it. This further justifies

the attribution of the cage effect as a main cause to this transition line.

At zero density, meaning that only one particle is placed in the disordered potential, an

increase of the amplitude (which is represented by a dashed gray line on figure 5.1) leads

to crossing the continuous and the diffusion-localization transition lines together at the

same value of δc = 1.143. This fact can be understood by noticing that when the fluid

consists of only one particle, the self and collective dynamics are obviously overlapping:

φ(q, t) = φs(q, t). Thus, a change in the self dynamics automatically means a change in
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the collective dynamics as well. From a more intuitive point of vue, if the fluid is made

out of only one particle, a localization of this particle means a nonergodic system, which

in this case means a glass phase.

A second thing that we may notice is the nonmonotonic behavior of the continuous

and the diffusion-localization transition lines. Indeed, if the system is set at a constant

value of the amplitude, for example δ = 1, and the density is steadily increased, the

first thing to happen is that the diffusion-localization line pulls away. This means that

the system is less likely to be localized as the density increases. Then, at higher values

of the density, the diffusion-localization line experiences a reentrance until its junction

with the discontinuous transition line. Therefore, it seems that as the density increases,

the system first experiences an acceleration of its dynamics (recession of the diffusion-

localization line), and at high values of the density, a slowing down (reentrance of the

line). In a bulk hard-sphere fluid, when the density is increased, the dynamics are slowing

down more and more, due to the cage effect and steric interactions, until an eventual

dynamical arrest occurs at a critical density. Why is this not the case when a disordered

potential is present?

In order to understand this rather strange phenomenon, one has to look at the potential

in an other way. Figure 5.2 shows a Gaussian random potential with a Gaussian cor-

relation function, generated for the Monte-Carlo simulations. For obvious reasons, the

picture has to be presented as a two dimensional potential, but one has to keep in mind

that this work concerns three dimensional particles and a three dimensional disordered

potential. It seems that the external random field actually takes the form of spots of

positive and negative potential, which effectively represent the random light spots cre-

ated by a speckle pattern. The particles are attracted by the spots of negative potential

(in blue) and repulsed by the spots of positive potential (in red).

If only one particle is present in the system (i.e., the case of ρ = 0 explored previously),

a given value of the amplitude may localize the particle, and lead though the continuous

transition line to the glass phase. However, as the density increases, particles start to

have interactions with one another. At low values of the density, the hard-sphere inter-

actions allow particles to exchange kinetic energy. This happens by collision, and may

contribute to dislodge a particle trapped in a minimum of the potential, thus effectively

accelerating the dynamics. Then, as the density increases towards higher values, another

phenomenon may take place: the steric hindering starts to have a big importance on

the dynamics of the system as a whole. The presence of the potential might lead to

several particles being trapped inside a minimum with other particles, leading them to

be closer in average, and therefore experience more collisions. But this time, the system

is overcrowded in general, and more collisions do not simply mean more kinetic energy,

but rather a higher influence of the cage effect, which explains also that as the amplitude

increases, the discontinuous transition line recesses in density.
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The phase diagram is built as lines separating different long time (typically infinite)

behaviors. The domains that these lines separate (liquid, localized and glass) can be

linked to isodiffusivity lines, in which the fluid will have a given value of the diffusion

coefficient. An isodiffusivity diagram is the closest an experimental picture can get to

a theoretical phase diagram. Luckily, this has been done by Jörg Bewerunge as part of

his PhD thesis (Bewerunge, 2016), and is shown in figure 5.3. The system studied in

the experimental work has been presented in chapter 1. It is very similar to the one

studied in this work, with the notable difference however that the experimental work is

in two dimensions. This can lead the comparison to be tricky, as any discrepancy can be

attributed either to the dimensionality, to the experimental uncertainties, or to possible

artifacts of the theory. However, any similarity between the results can be seen as a

good validation of both the theory and the experiment.

Comparing figure 5.3 with the phase diagram presented in figure 5.1 (the correlation

length of the speckle light spots has been consistently measured to be close to 0.5), we

can see one major similarity: the isodiffusivity lines, as well as the transition lines both

increase with the density. This corroborates the point stated earlier: an increase of

the density leads to an exchange of kinetic energy between particles, allowing trapped

populations to escape energy minima, and therefore accelerates the dynamics. The

reentrance of the isodiffusivity line is however not observed, but the densities scanned

may not allow for this observation to happen. There is an other quantity that can give

us insights about the reentrance: the long time diffusion coefficient itself. This quantity

is inversely proportional to the distance to the diffusion-localization line in the context

of the theory, and to the isodiffusivity lines in the experimental context. Therefore, a

reentrance of the diffusion-localization line will be accompanied by a reentrance of the

long time diffusion coefficient.

This quantity can be calculated, through the MSD as

DL = lim
t→∞

δr2(t)

6t
, (5.4)

where DL is the long time diffusion coefficient and δr2(t) is the MSD. For the sake of

comparison with the experiments, DL has been calculated by taking constant values of

the amplitude, and varying the density regularly until reaching the phase transition.

Both the calculated and experimental long time diffusion coefficients are presented in

figure 5.4.

The comparison here is quite straightforward, as the figures are very similar: as the

amplitude of the potential increases, the long time diffusion coefficient globally decreases.

A same reentrant behavior is observed as well on all the curves, which hints at the

probable presence of a reentrant behavior concerning the isodiffusivity lines as well, that

potential future experiments done at high values of the density will probably observe.
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Figure 5.2: 10 × 10 (unit is the
size of a particle) box contain-
ing a two dimensional Gaussian
random potential with Gaussian
correlation function. An arbi-
trary amplitude has been chosen,
and a correlation length of σ =
0.5. The blue spots represent
negative areas and the red spots
represent positive areas. Peri-
odic boundary conditions have
been applied.

Figure 5.3: Long-term diffusion coefficient DL of a Brownian fluid of packing
fraction ΦA in a two-dimensional random Potential Energy Landscape (rPEL) of
power PL (equivalent to the amplitude of the potential δ). Filled circles and squares
are measured conditions in the presence and absence of a rPEL, respectively. The
values of DL are represented by a color scale, where the gradient from purple to
dark red indicates increasing values. Grey dash-dotted lines indicate possible iso-
diffusivity lines between suggested colored iso-diffusivity areas. Reproduced from
Bewerunge (2016).
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Figure 5.4: (left panel) Normalized long-time diffusion coefficientDlong/D0 shown
for increasing strength of a two-dimensional speckle potential, indicated by ma-
genta squares, purple circles, light blue triangles and dark blue stars, respectively.
Experimental data corresponding to the case of no potential and taken from (Ma
et al., 2013) is included as black crosses. Lines are guides to the eye. (right panel)
Normalized long-time diffusion coefficient of a three-dimensional hard-sphere fluid
of density ρ, in a Gaussian random field with Gaussian covariance of amplitude δ,
and given correlation length σ = 0.5. The lines are guides for the eye.
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5.2 Influence of the correlation length

For a matter of consistency with the experiments, most of the calculations and qualitative

studies have been made in a system with a potential that presented a correlation length

of half the size of the particle, this being roughly the value that has been calculated in

the experiments. However, increasing or decreasing the value of σ may be interesting

from a theoretical point of vue. It might also give a guideline to experimentalists on

how to trust the determined value of the correlation length. In order to see the effect of

the variation of the correlation length on the overall dynamics, a full phase diagram has

to be drawn. But testing a continuum of values for σ is near impossible, and anyway

probably useless. Thus, a constant step of ∆σ = 0.25 has been taken, and a phase

diagram calculated for each value of the correlation length. The result concerning the

HNC closure relation is presented in figure 5.5.

By many aspects the phase diagrams are similar, but one thing they do not share is their

height, i.e., the critical set of variables (ρc, δc) at which the continuous or discontinuous

glass transitions occur. Except for the extremes of the phase diagrams, all the critical

amplitudes are increasing dramatically with the increase of the correlation length.

This can be easily explained in the following way: a bigger correlation length means

bigger positive and negative spots. Thus, with an increase of σ, more particles fit inside

the attractive spots, which means more collisions between them, and subsequently a

higher amplitude is required to trap the particles in the potential, and reach a complete

dynamical arrest.

Some differences can be noticed between the shapes of the phase diagrams at different

values of the correlation length as well. First, the variation of the junction between

the continuous and the discontinuous transition lines: between σ = 0.25 and σ = 0.50,

this junction seems to occur at higher density as the correlation length increases, but

between σ = 0.50 and σ = 1.00, the junction recesses in density as the correlation length

increases. In other words, as we increase the correlation length, the cage effect and steric

phenomena play a role at lower and lower density in creating a glass transition. This

can be seen more easily by plotting the density at the junction between the continuous

and the discontinuous transition ρ⊥cont-disc as a function of the correlation length σ, as

shown in figure 5.6.

How can this behavior be explained? As often in the framework of the MCT, giving a

precise quantitative explanation for such a phenomenon is difficult, as the equations do

not provide information about the specific phenomena occurring at the level of a particle,

but rather give information about the behavior of the fluid as a whole. We can only

postulate some scenarios and hope to be one day able to verify them using experimental

setups or simulations.

As for the behavior of the continuous-discontinuous junction, the following scenario can

be imagined: an increase in σ means an increase of the size of the positive and negative
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Figure 5.5: Phase diagrams of hard-sphere fluids of density ρ in a Gaussian random
potential with Gaussian correlation function of amplitude δ and correlation length
σ. Each phase diagram corresponds to a value of the correlation length of the
potential σ (from bottom to top one has σ = 0.25, 0.50, 0.75, 1.00). The structural
correlation functions have been calculated using the OZ equation together with the
HNC closure relation, and the transition lines have been calculated using MCT.

spots that the potential is essentially made out of. Here, we need to recall that only

the center of the particle interacts with the potential, its bulk only preventing it from

penetrating other particles.

To make the understanding easy, some schematic dynamical scenarios have been drawn

in figure 5.7. By looking at the top left panel of this figure (corresponding to σ = 0.25),

one can see that the size of the spots is quite small compared to that of a particle, which

in turn leads to the fact that when a particle sits in a favorable position, the whole

attractive spot is covered by the bulk of the particle, leaving no room for another one.

Thus, around σ = 0.25, an increase in δ does not lead to more particles sitting close

to each other, but rather that each particle is more and more pinned in one precise

position, which is the location of the lowest point of the minimum. In turn, the pinning

of the particles leads to a system very close to a quenched-annealed one, where some

particles sit in the favorable positions and are immobile, and some particles wander in

the matrix of these quenched particles. Thus, the change of the density here needs to
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Figure 5.6: Fluid density ρ⊥cont-disc at which the junction between the continuous
and the discontinuous glass transition lines happens, as a function of the correlation
length σ of the Gaussian random potential with a Gaussian correlation function.

be very important to see any effect, an increase of the amplitude of the potential having

the only effect of pinning more and more the already quite quenched particles.

However, starting from σ = 0.50, up until σ = 1.00, the junction between these con-

tinuous and discontinuous lines occurs at a lower density as σ increases. This can be

explained using the same arguments the other way around: starting from σ = 0.50 more

than one particle start to fit inside a minimum. Therefore, as δ increases, these small

populations of particles get isolated from the rest of the system, and the size of the

populations increases with the correlation length. This probably means that they will

experience a lot more collisions between themselves, than with the surrounding parti-

cles, a phenomenon that increases with δ. Thus, at high values of the correlation length,

increasing the amplitude of the potential will lead to cage-effect-induced glass transi-

tions at low densities, due to this property that the potential has, to group two or more

particles inside one minimum.

While this dramatic influence of the correlation length on the shape of the phase diagrams

can seem surprising at first, a more intuitive explanation can be given by considering

that the correlation length is a defining lengthscale of the system. Hence, we temporarily

take it as the unit of length and plot the data of figure 5.5 using ρσ3 as the x-axis. The

effects coming from the different values of the correlation length are then accounted for

in a more specific picture.
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As one can see on figure 5.8, by simply introducing this change, the diffusion-localization

transition lines seem to follow a very similar trend, with the only difference of the length

of the transition lines. This seems to put the previous problem of the shape of the phase

diagrams in function of the correlation length of the potential in a more natural and

understandable shrine.
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Figure 5.7: Gaussian random potentials with a Gaussian correlation function,
generated using the method described in chapter 7. The original potential has
been generated in a three dimensional box of 10× 10× 10, and the present picture
is a cross section of the middle of the box. Particles have been represented in
a schematic fashion, not accounting for their respective position on the z-axis.
Correlation length is taken as σ = 0.25, 0.50, 0.75, 1.00 from left to right and top
to bottom. Red parts represent high values of the potential, and blue parts low
values, the amplitude having been chosen arbitrarily.
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Figure 5.8: Phase diagrams of hard-sphere fluids of density ρ in a random Gaussian
potential with Gaussian correlation function of amplitude δ and correlation length
σ. Each phase diagram corresponds to a value of the correlation length of the
potential σ (from bottom to top one has σ = 0.25, 0.50, 0.75, 1.00). The x-axis has
been chosen as ρσ3, and y-axis is plotted using a logarithmic scale. The structural
correlation functions have been calculated using the OZ equation together with the
HNC closure relation, and the transition lines have been calculated using MCT.
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5.3 Influence of the closure relation

5.3.1 Building upon sand

Due to the structure of the vertices in the MCT framework, the dynamics of the system

is fully determined by the structural functions calculated using the Ornstein-Zernike and

the closure relations. The latter being the only approximation at that level, it can be

considered as a parameter as well. Indeed, closure approximations exist in many flavors,

and those that have been tested have been quickly developed and discussed in chapter

3. A quick comparison of these closure relations can be seen in figure 5.9.

First and foremost, only the HNC and MSA closure relations allow for the calculation of a

full phase diagram. Concerning PY and EXP, the calculations either could not converge,

found new and unphysical solutions to the MCT or outright crashed. The reasons for

this have been detailed in chapter 3, and are the result of the closure relations bringing

up unphysical solutions, in the form of negative structure factors needed to calculate the

dynamics. As a result, as PY fails at low densities, only the discontinuous transition line

could be calculated, and EXP failing at high densities allows for a calculation of only

the continuous transition.

However, by looking at the shape of the diagrams, it seems that we can separate them

into two classes: on one hand, HNC and EXP lead to phase diagrams of low heights,

while PY and MSA have overall higher critical parameters. It seems interesting that

the closure relations are separated in two classes in this way, and further study of other

relations would probably give insights about a fundamental reason for this. Anyway,

comparison can be made between the MSA and HNC based phase diagrams, assuming

that the PY and EXP respectively would behave in similar ways.

5.3.2 Mean Spherical Approximation

Figure 5.10 shows the phase diagrams of a fluid in a disordered potential, with the

structural functions calculated using the MSA closure relation, defined in chapter 2. As

reported in chapter 3, the MSA closure relation treats the correlations, both coming

from the density and from the potential, in a much lighter way compared to HNC. This

leads to the phase diagram being excessively higher concerning the parameter δ.

Another thing one might notice is the fact that the junction between the continuous

and the discontinuous transition lines does not lead to the end of the discontinuous

transition line, which might extend beyond this point. This is not a perk of the MSA

closure relation, and can be observed in the phase diagrams based on HNC as well, al-

though concerning HNC, the overtaking is much smaller, and therefore invisible without

zooming. This effect increases with the correlation length of the potential. By crossing

the discontinuous transition line while being already in the glass phase, the system un-
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Figure 5.9: Phase diagrams of a fluid in a Gaussian random potential with Gaus-
sian correlation function, calculated using the OZ equation together with the HNC,
EXP, PY and MSA closure relations. The x-axis represents the density of the fluid
ρ, the y-axis is the amplitude of the potential δ, and the correlation length is taken
as a constant for all the phase diagrams as σ = 0.5.

dergoes a transition between two glass phases. This is shown hereafter in the section

dedicated to explicit analysis of the dynamic variables.
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Figure 5.10: Phase diagrams of hard-sphere fluids of density ρ in a Gaussian ran-
dom potential with Gaussian correlation function of amplitude δ and correlation
length σ. Each phase diagram corresponds to a value of the correlation length of
the potential σ (from bottom to top one has σ = 0.25, 0.50, 0.75, 1.00). The struc-
tural correlation functions have been calculated using the OZ equation together
with the MSA closure relation, and the transition lines have been calculated using
MCT.

5.4 Intermediate scattering function and mean

squared displacement

While the phase diagram can lead to some interesting results and lead us to imagine

general scenarios based on the behavior of the transition lines, a lot of information is

missed by not looking at the actual behavior of the ISF, whose infinite time limit only

is used to generate a transition line. The collective and self ISF, the MSD and other

related parameters as the local exponent and the non-Gaussian parameter can all lead

us to scenarios of how the dynamics of the fluid actually behaves before total relaxation

to either liquid, localized or glass phase. In the following, the phase diagram of figure

5.1 will be taken as a reference for the results exposed. This phase diagram can be

considered as a mere map, but the interesting part of the journey is revealed by looking

at the road itself.

In the following, dynamical variables will be traced, so to frame a given transition line and

highlight the critical phenomena taking place in its vicinity. As the critical phenomena
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appear more clearly when looking at the dynamical variable very close to the transition

line, and on both sides, one of the variables (ρ or δ) will be taken constant, the other

one varied in the following way:

γi = γc(1 + ε),

γ = ρ Y δ,

ε = ±10−
n/3, n ∈ NNN,

(5.5)

where γ is either δ or ρ, γi is the value at which the given curve is plotted, and γc is

the critical value of the parameter, at which the phase transition happens. Choosing

ε < 0 or ε > 0 will lead to values respectively below and above the critical amplitude,

and a higher value of n allows for arbitrary refinement. The value of this parameter will

be typically chosen in the range n ∈ [1, 3, 6, 9, 12]. This scheme has been taken from

Franosch et al. (1997a). The following results will take this route, and as a guide, one

can refer to figure 5.1, where dashed colored arrows have been traced to hint to the exact

locations on the phase diagram where the calculations have been performed.

One can refer to chapter 4 for the theoretical developments, and to chapter 6 for the

actual implementation of the MCT equations.

5.4.1 Around the diffusion-localization transition line

Let us start in the liquid phase, and explore the variable space around the diffusion-

localization line. The density of the system is kept constant at ρ = 0.5, and the values

of the amplitude have been varied following equation (5.5).

First, one has to look at the curves traced for ε < 0, which are located in the liquid phase.

In that case, the ISF tends to zero at long times, which is the principal characteristic

of the liquid phase. Another characteristic is the behavior of the MSD. At short times,

the MSD presents a slope of one, which signifies that the system is totally diffusive.

This is the case for all the curves, and is a characteristic of the short time dynamics:

the particles are simply exploring their immediate environment, and no interaction with

other objects has yet happened. At intermediate times, this slope decreases and the

system experiences a subdiffusive regime: the particles interact with their environment,

either by collisions with other particles, or with the potential. If the system is in a liquid

phase, it eventually goes back to diffusive again at long times. As the amplitude of the

potential increases, the ISF takes more and more time to reach zero, and the MSD more

and more time to reach its final slope.

The critical amplitude is represented by the red line, above which the behavior of the

MSD changes: after a period of subdiffusion, it reaches a plateau at long times, which

means that the system does not explore anymore space, which is a characteristic of
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Figure 5.11: (left) collective ISF and (right) MSD of a fluid of density ρ = 0.5, in
a Gaussian random potential with Gaussian correlation function of amplitude δ and
correlation length σ = 0.5. The amplitude has been chosen, following equation
(5.5), to frame the diffusion-localization transition line (see the pink arrows on
figure 5.1). The red curve is taken at the critical amplitude δ = δc (n → ∞).
The structural correlation functions have been calculated using the OZ equation
together with the HNC closure relation.

a localized system. On the other hand, the collective ISF still reaches zero, which is

characteristic of a liquid.

This paradoxical state of the fluid is called the localized phase: the fluid as a whole is

still ergodic, but the full space is not explored anymore by individual particles. One

possible explanation of this state is that the minima of the potential are so deep that

the populations of particles trapped inside them are virtually isolated from one another.

However, the amplitude is not high enough so to create a dynamical arrest, which would

be the case in a glass phase. Therefore, inside these pockets created by the potential the

system is still relaxing, but the area explored is limited to the pocket itself.

Further increase of the amplitude of the potential leads to a decrease of the value of the

plateau of the MSD. The ISF on the other hand takes more and more time to reach zero.

These two facts mean that the dynamics of the liquid become slower as the amplitude

increases: the potential localizes and further restrains the space available to the particles.

5.4.2 Around the continuous transition line

Increasing again the amplitude of the potential from the localized phase eventually leads

the system to the glassy phase, by crossing the continuous transition line at densities
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Figure 5.12: (left) collective ISF and (right) MSD of a fluid of density ρ = 0.5,
in a Gaussian random potential with Gaussian correlation function of amplitude δ
and correlation length σ = 0.5. The amplitude has been chosen, following equation
(5.5), to frame the continuous transition line (see the orange arrows on figure 5.1).
The red curve is taken at the critical amplitude δ = δc (n → ∞). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

lower that ρ ≈ 0.90. Figure 5.12 shows the collective ISF and the MSD in the process

of crossing the continuous transition line from a localized liquid to a glass.

This time, the ISF is the interesting observable, the MSD having reached its plateau

does not fundamentally change its behavior, except for a further lowering of the value of

this plateau, which means a further localization of the particles. In the localized phase

(ε < 0) the collective ISF reaches zero, but as we approach the continuous transition

line, the time taken to reach that value is longer and longer. On the transition line,

represented by the red line, the time taken to reach zero is infinite, and above it the

collective ISF does reach a nonzero plateau instead. The ISF therefore continuously

transitions from one regime (limt→∞ φ(q, t) = 0) to another (limt→∞ φ(q, t) 6= 0). This

last regime is the characteristic of a fluid in dynamical arrest: a glass.

5.4.3 Around the discontinuous transition line

The continuous transition line gives way to the discontinuous transition line around

ρ = 0.90. This is expected, and has been treated previously with the scenarios coming

from the shape of the phase diagrams. The behavior of the ISF and the MSD when

crossing the discontinuous transition line is showed in figure 5.13, where the amplitude

of the potential has been kept constant at δ = 1.0, and the density varied in the same
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Figure 5.13: Collective ISF (left) and (right) MSD of a fluid of density ρ, in a
Gaussian random potential with Gaussian correlation function of amplitude δ =
1.0 and correlation length σ = 0.5. The density has been chosen, following equation
(5.5), to frame the discontinuous transition line (see the blue arrows on figure 5.1).
The red curve is taken at the critical density ρ = ρc (n → ∞). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

way as previously done, around the transition line.

The behavior of the collective ISF here is fundamentally different from the continuous

case. In the liquid phase, the ISF still reaches zero at long times, meaning that the

relaxation of the system brings it in an ergodic state eventually. However at intermediate

times, the ISF develops a plateau, that lasts longer and longer as the critical density

is approached. The discontinuous transition line takes its name from the fact that the

dynamical variables are undergoing a sudden and discontinuous change in their behavior

when crossing that line. Therefore, when the critical density is reached, the plateau

developed by the ISF lasts for an infinite amount of time leading to a nonzero value for

the long time limit of the ISF. The difference with the case of the continuous transition

line of figure 5.12 is that the nonzero value of f(q) is reached in a discontinuous way,

as a sudden plateau appearing after a precise value of the density is crossed. A further

increase of the density leads to the value of the plateau tending towards one.

The MSD behaves in a related way: in the liquid state eventually the slope of the function

reaches one which characterizes a diffusive regime, after passing through a longer and

longer subdiffusive regime as the density gets close to ρc. After having reached a critical

density represented by the red curve, the MSD reaches a plateau at infinite time, meaning

that the particles are trapped. If the density is increased further, the plateau of the MSD
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decreases, which means that the particles are more and more localized. Conversely, the

value of the long time ISF gets closer to one meaning that the system is at an almost

complete dynamical arrest.

5.4.4 A glass-glass discontinuous transition line?

One special feature that the MCT predicts is the possibility for the system to undergo a

glass-glass transition. This has been introduced earlier with the phase diagram calculated

using the MSA closure relation, on which the discontinuous transition line dramatically

extends beyond its junction with the continuous transition line. This perk is not spe-

cific to the MSA closure relation, but can be observed using basically all the closure

relations. MSA however has the property to lead to almost excessively big phase dia-

grams, and this phenomenon can be observed more easily in this case. This has not been

observed experimentally, the power necessary to generate a speckle that would create

a liquid-glass transition having not yet been achieved. However, theory leaves us free

to postulate the consequences of this phenomenon, which will hopefully be observed in

future experiments.

A discontinuous transition line extending in the glass phase means that by crossing that

line, the fluid can go from one type of glass to another. This has been represented in

figure 5.14, where the density is kept constant at ρ = 0.6, and the amplitude of the

potential varied so to frame closely that transition line, using (5.5) as previously.

It so happens that some of the curves have been set in the localized phase, below the

continuous transition line, which is therefore traced in dashed red line. In this case,

what has been said for figure 5.12 still holds: the ISFs calculated below the continuous

transition line reach zero at long times, but as the amplitude is increased this time

increases as well, and the continuous transition line is met when the time taken to reach

zero is infinite. When the amplitude is increased further, the values of the ISF at long

time increase, and seem to converge towards a limit. This limit is overcame when the

discontinuous transition line is crossed, at which the long time value of the ISF jumps

discontinuously from one limit to a higher value. Further increase of the amplitude leads

this value to increase as well, seemingly without limit. This also happens concerning the

MSD: even though the system is in a glassy phase a limit seems to be reached. This limit

is overcame with an increase of the amplitude of the potential, causing a discontinuous

jump for the long time values of the MSD as well.

This indicates that there are two types of glasses present in this system: the one that is

located between the continuous and the discontinuous transition line, and the one that

is located above the latter. By nature, these two types of glasses do not seem to differ:

they both lead the ISF and the MSD to a nonzero plateau at long times, except the value

of the plateau is different. The system could go from one type of glass to another by
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Figure 5.14: (left) collective ISF and (right) MSD of a fluid of density ρ = 0.6,
in a Gaussian random potential with Gaussian correlation function of amplitude δ
and correlation length σ = 0.5. The amplitude has been chosen, following equation
(5.5), to frame the discontinuous transition line (see figure 5.10). The red curve
is taken at the critical amplitude δ = δc (n → ∞). The structural correlation
functions have been calculated using the OZ equation together with the MSA
closure relation.

simply circumventing the discontinuous transition line. In that case, we would observe

that the plateaus of the ISF and the MSD undergo a continuous variation to the new

value. The ISF and the MSD do not seem to offer much insights about the nature of

these two glasses, and they indeed seem of a similar nature, but more complex dynamical

observables could highlight some differences between them. The local exponent and the

non-Gaussian parameter will be traced as well, after some discussion, in the following.

5.5 Local exponent and non-Gaussian parameter

A normal diffusion is characterized by two features: the MSD increases linearly with

time, and the mean distance from the origin of the particles after a given time follows a

Gaussian distribution, whose width is given by the MSD. Therefore, the probability of

finding a given particle at a distance r away from its origin at time t follows the rule

P (r, t) ∝ e−~r
2
/2δr2(t). (5.6)

Starting from this fact, there are several ways one can analyze an anomalous diffusion by

looking at its time and space variations. This leads to the definition of more refined tools

compared to the ISF and the MSD. However, more refined tools means more difficult

analysis, the following will therefore consist of surface analysis, with a few conjectures.
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The first one of these tools is the local exponent: by defining the MSD as a function of

time, its slope can be considered as an indicator of the way the diffusion of the system

varies in time. The MSD can be written as

δr2(t) = tµ(t), (5.7)

where µ(t) is called the local exponent, and in the case of a normal diffusion is equal

to one. The local exponent can be extracted by taking the logarithmic derivative of the

MSD as

µ(t) =
d log δr2(t)

d log t
. (5.8)

This function informs about the specific way the diffusion is changing in time, and might

give insights about behavior that are missed by simply looking at the large picture the

MSD gives us. In case of subdiffusion, the local exponent presents a value lower than

one, and in case of superdiffusion (which will not be encountered here), it presents a

value higher than one.

The second parameter we may look at is the Non-Gaussian Parameter (NGP). Recalling

that a normal diffusion leads the distance of the constituent particles from their origin to

follow a Gaussian distribution, any deviation from this may be an interesting character-

istic of anomalous diffusion. The development of the MCT specialized to the NGP has

been done in chapter 4, and requires the calculation of the mean quartic displacement

as well as the mean squared displacement. The NGP is then obtained as

α(t) =
3

5

δr4(t)

(δr2(t))2
− 1, (5.9)

where α(t) is the NGP, and δr4(t) is the mean quartic displacement.

To sum up, the local exponent gives clues about the way anomalous diffusion unfolds

in time, and the NGP informs about how it unfolds in space. However, a slowing down

of the dynamics (lower values of µ(t)) does not automatically lead to a lower distance

traveled by the particles (lower values of α(t)) and vice versa. Therefore, while these two

parameters are related to the gaussianity of the diffusion, they may not be correlated,

leading to a rather cumbersome interpretation.

5.5.1 Around the diffusion-localization transition line

Figure 5.15 shows the local exponent and the NGP around the diffusion-localization line,

at a constant density of ρ = 0.5, and amplitude of the potential varied in the same way

as in figure 5.11, framing the transition line.

Let us first look at the local exponent, for which the first curve on the top is located far

in the liquid phase at an amplitude of δ = 1.2. At short times (of which most has been
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Figure 5.15: (left) local exponent and (right) NGP of a fluid of density ρ = 0.5,
in a Gaussian random potential with Gaussian correlation function of amplitude δ
and correlation length σ = 0.5. The amplitude has been chosen, following equation
(5.5), to frame the diffusion-localization transition line (see the pink arrows on
figure 5.1). The red curve is taken at the critical amplitude δ = δc (n → ∞).
The structural correlation functions have been calculated using the OZ equation
together with the HNC closure relation.

cut) we have µ(t) = 1.0, which is a common characteristic of all the curves, and of short

time dynamics in general. At intermediate times, the first curve shows a minimum that

appears around t = 1 hinting to a subdiffusive behavior, which then resorbs leading to

µ(t) = 1.0 at long times: the system is diffusive and therefore in a liquid phase.

However as the amplitude of the potential increases, a new minimum starts to appear

around t = 104. The width of this minimum increases with the increase of the amplitude,

which means that the particles are slowing down more and for longer times, until the

diffusion-localization line at which the width of the minimum is infinite. The value

reached by the local exponent here is known in the framework of MCT to be exactly

limt→∞ µ(t) = 0.5.

The emergence of this new minimum does not lead the first one to disappear however.

The first minimum being present at low values of the amplitude, we may postulate

that the subdiffusive regime it hints at is due to the cage effect and density related

phenomena. The second minimum, emerging and deepening with the increase of the

amplitude, can be thought to be caused by the external disordered potential. As this

last minimum leads into the diffusion-localization line, we can assess for sure that the

phase transition is here cause mainly by the potential.

With a further increase of δ, the time taken to reach zero is reduced, meaning that the
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time until localization of the fluid is shorter, the potential being deeper and trapping

the particles more easily.

Two things are to be learnt from this. First, the density related subdiffusive phenomena

and the potential related phenomena are two separate things. The interplay between

the two phenomena exists however, as it can be seen from the deepening of the first

minimum with the increase of the potential, but the effect seems overall small. Second

the density related phenomena occur before the potential related ones. This latter fact

is furthermore systematic: all local exponent examples show the same behavior.

The NGP, though not being an easy-to-understand variable, might anyway give some

insights about the subdiffusion phenomena. Looking at the lowest curve, corresponding

to the highest for the local exponent, we can see that it starts at zero, then grows a peak

around t = 102, to finally go back to zero. This means that the diffusion is at short

times a Gaussian one, which is expected at short times. Around intermediate times the

particles start to travel further as we can see from the higher value of the NGP, before

eventually going back to a Gaussian diffusion again. As the amplitude increases, the

said peak grows, and another one starts to appear, very much like the second minimum

of the local exponent does. The times are however not exactly corresponding, and we

cannot assess for sure that a specific non-Gaussianity of the diffusion is related to a

specific subdiffusive regime, but the temptation is big. Again, in the same way than for

the local exponent, the second peak appearing only when the amplitude increases, the

potential can be thought to be its main cause, and the first peak therefore seems to be

caused by density related effects. At the diffusion-localization transition, the width of

the second peak is infinite, leading to a discontinuous jump of the infinite time NGP

to a nonzero value. In the framework of the MCT, the value reached by the NGP

at the very critical amplitude δc is known to be limt→∞ α(t)|δ=δc = π
2 − 1. A further

increase of δ leads to another discontinuous jump of the infinite value of the NGP towards

limt→∞ α(t)|δ→δ+c = 1.

5.5.2 Around the discontinuous transition line

From the perspective of the local exponent and the NGP, crossing the continuous transi-

tion line is rather uninteresting. Both these variables are dependent on the MSD, whose

essential changes of regime occur when the fluid exits the liquid phase, either to the

localized phase through the diffusion-localization transition line, or to the glass phase

through the discontinuous transition line. The continuous transition case will therefore

not be shown here, bringing no interesting features nor discussions. The case of the

discontinuous transition line is shown in figure 5.16, where the local exponent and the

NGP have been plotted at a constant value of δ = 1.0, and density framing the transition

line in the way adopted previously.
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Figure 5.16: (left) local exponent and (right) NGP of a fluid of density ρ, in a
Gaussian random potential with Gaussian correlation function of amplitude δ =
1.0 and correlation length σ = 0.5. The density has been chosen, following equation
(5.5), to frame the discontinuous transition line (see the blue arrows on figure 5.1).
The red curve is taken at the critical density ρ = ρc (n → ∞). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

The first curve of the local exponent on the top is located in the liquid phase at a

quite high density of ρ = 0.89. At short times, as in figure 5.15, this function equals

one meaning that the system is diffusive. At intermediate times, a minimum develops

around t = 102 which, as the density increases, broadens, deepens, and shifts to the

right. This indicates that the system develops a subdiffusive regime that intensifies and

lasts for longer and longer time with an increase of the density. When the discontinuous

transition line is met, the minimum reaches zero and its width is infinite. The system has

therefore reached a nondiffusive state at long times: the system is in a state of dynamical

arrest, the glass phase. Subsequent increase of the density leads the local exponent to

reach zero earlier.

In comparison with figure 5.15, only one minimum is present in this case, which by

looking at the apparition time, can be identified to the density related one. Furthermore,

this minimum increases as a result of the increase of the density, and is the one leading

to the dynamical arrest through the discontinuous transition line, which corroborates

the latter fact.

The case of the NGP here is somewhat trickier to analyze. All the curves of the NGP

present a value of zero at short times, meaning that the distribution of the particles

around their initial position follows a Gaussian distribution. At a density of ρ = 0.89
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(the first curve), the NGP starts to increase at t = 1 and reaches a peak around t = 103,

times at which the particles travel further compared to a normal distribution. The

system being in the liquid phase, this peak is followed by a decrease to zero at long

times. As the density increases towards the discontinuous transition line, the peak

described previously shifts to the longer times, while a minimum appears at short to

intermediate times. At the transition line, the second peak disappears, leaving only

a plateau, and with subsequent increase of the density, the value of the plateau shifts

down. In this case, we can assume that the said peak has simply shifted towards infinite

time. The sudden apparition of a minimum at short times seems to indicate a change

of regime of the system, that persists after the phase transition. This minimum cannot

be correlated to a change in the local exponent, nor in the ISF or the MSD, so any

attempt of interpretation would lead to unclear conclusions. We hope that in the future

experimental studies would observe this phenomenon and trace it back to a probable

cause, is there is any.

5.5.3 Around the glass-glass transition

The case of the glass-glass transition mentioned earlier left a quit unsatisfying taste, the

conclusions from the study of the ISF and the MSD being that even though this strange

phenomenon happens, no real distinction can be made between the two types of glasses.

However, tracing the local exponent and the NGP at the same set of parameters leads to

interesting observations. This is shown in figure 5.17, where the density has been kept

at a constant value of ρ = 0.6, and the amplitude varied following equation (5.5).

Many phenomena are at play in this case: the continuous transition line is very close and

probably influencing the dynamics a lot, and the transition from one glass to another

seems to bring a lot of complex phenomena to play, concerning both the local exponent

and the NGP. Therefore, no interpretation will be attempted.

At low values of the amplitude, the local exponent has a bump, seemingly inherited

from the continuous transition, that shifts to the right as the amplitude increases. On

the other hand, the NGP develops a minimum at short times, that converges towards a

limit as the amplitude increases. As the discontinuous transition line is approached, a

plateau forms at intermediate times, before the value goes up at infinite time to another

plateau. At the transition line, the plateau jumps to a lower value, indicating a new

regime.

This time, by looking at more complex values like the local exponent and the NGP,

it seems clear that the dynamical phenomena leading to the two glasses are different

in nature. However, these scenarios are extremely complex, and the times very long.

Observing these phenomena in experiments is therefore very improbable.
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Figure 5.17: (left) local exponent and (right) NGP of a fluid of density ρ = 0.6,
in a Gaussian random potential with Gaussian correlation function of amplitude δ
and correlation length σ = 0.5. The amplitude has been chosen, following equation
(5.5), to frame the discontinuous transition line (see figure 5.10). The red curve
is taken at the critical amplitude δ = δc (n → ∞). The structural correlation
functions have been calculated using the OZ equation together with the MSA
closure relation.

5.5.4 Unusual shape of the local exponent

The last phenomenon that we may discuss in this work concerns the shape of the second

minimum observed in the local exponent. As it has been dicussed earlier, this minimum

finds its origin in the action of the potential on the dynamical slowing down of the

dynamics, and it systematically happens at a later time than the minimum caused by

the cage effect. The shape of this minimum has been observed to be quite characteristic of

this type of phenomenon, however no in-depth discussion has been undertaken. Figure

5.18, top panel, shows the local exponent at zero density for a correlation length of

σ = 0.75, and an increasing amplitude of the potential until δc, where the liquid gives

way to the glass by crossing both the continuous and diffusion-localization transition

lines at the same time. The bottom panel shows a simulation result from Schnyder et al.

(2015) where a single tracer is set to move in a two-dimensional landscape of quenched

particles with a Weeks-Chandler-Andersen (WCA) potential.

First, looking at the top panel of figure 5.18, we can see that as the amplitude of the

potential increases, a minimum of the local exponent appears at intermediate to long

times, as described previously. This minimum however seems to be the sum of two

minima located at different times. The first one appears at δ = 0.0+ around t = 101,

while the second one appears at higher values of δ around t = 102 and shifts to later

times as δ increases. At high values of δ, and as we approach the transition line, the
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second minimum takes over the first one and eventually leads to the transition. The first

minimum is then reduced to a simple shoulder on the left side of the second one. The

presence of these two minima hints to the existence of two distinct dynamical phenomena

that are both linked to the presence of the external disordered potential.

At first, the presence of these two minima has been mistaken for a mere artifact of

the MCT, but the simulation study of which a picture is presented on the bottom

panel of figure 5.18 hints to physical reality. On this figure the curves are plotted for

increasing values of the reduced number density n∗WCA. As this parameter increases, a

minimum first appears around t = 101, and the second one appears at higher values of

the reduced number density at later times and shifts in the same way as described for

the second minimum seen on the top panel. The WCA potential is a Lennard-Jones

like type of potential and provides therefore with a smooth interaction between the

quenched particles and the tracer. Similarly, the disordered potential studied throughout

this work creates a smooth energy landscape for the hard spheres that constitute the

fluid. Therefore, despite many differences (namely the dimensionality, the nature of the

potential and the method of study) the two systems have in common the fact that the

potential experienced by the particle is smooth. The existence of two minima, linked to

the action of two distinct dynamical phenomena, can be thought to be a characteristic

of dynamics with smooth interactions. The very nature of the dynamical phenomena

is yet to be uncovered, and we hope that future simulation studies could pinpoint the

causes of this complex behaviour.
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Figure 5.18: (top) Local exponent of a fluid at zero density, in a Gaussian random
potential with Gaussian correlation function of amplitude δ and correlation length
σ = 0.75. The amplitude has been steadily increased so that ten curves are
traced between δ = 0.0 and δ = δc. The value of the amplitude is proportionnal
to the saturation of the colors. (bottom) Local exponent of a single particle
in a quenched matrix of particles with a WCA potential. The parameter n∗WCA

defines both the density of the quenched particles and the range of their potential.
Reproduced from Schnyder et al. (2015).



Chapter 6

Numerical details

6.1 Structural calculations

6.1.1 Description of the algorithm

The calculation of the structural functions is done using the Ornstein-Zernike equations,

together with a chosen closure relation. The developments leading to the suited equations

have been presented in chapter 2, but the actual implementation and solving of these

equations requires methods and precisions that are the point of this very chapter.

We recall the form of the OZ equations:{
h(r) = c(r) + ρ

∫
c(r)h(r)− ρ

∫
cd(r)hd(r),

hd(r) = cd(r) + ρ
∫
c(r)hd(r) + ρ

∫
cd(r)h(r)− 2ρ

∫
cd(r)hd(r),

(6.1)

{
h(q) = c(q) + ρc(q)h(q)− ρcd(q)hd(q),
hd(q) = cd(q) + ρc(q)hd(q) + ρcd(q)h(q)− 2ρcd(q)hd(q),

(6.2)

where equations (6.1) are the OZ relations in real space and equations (6.2) are in

reciprocal space. By working in the reciprocal space, the terms on the r.h.s of the

equations which are convolutions in real space become simple products. This has the

advantage of both simplifying the structure of this very important function and making

the numerical evaluation far simpler. Therefore during the calculation, a back and forth

trip is done at each iteration between the real and the reciprocal space.

The numerical calculation of the structural functions h, hd, c and cd, from which one

can compute all the other structural functions, needs the definition of an intermediate

term, as

γ(r) = h(r)− c(r),
γd(r) = hd(r)− cd(r),

(6.3)

107
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γ(q) = h(q)− c(q) =
cc(q)

1− ρcc(q) +
cd(q)

(1− ρcc(q))2 − c(q),

γd(q) = hd(q)− cd(q) =
cd(q)

(1− ρcc(q))2 − c
d(q).

(6.4)

thence respectively defined in real and reciprocal space. γ and γd are simply expressed

as functions of the total and the direct correlation functions.

Using what has just been defined, the algorithm to calculate iteratively the structural

functions is

1. Find reasonable guesses c(r) = cguess(r) and cd(r) = cdguess(r) for the direct corre-

lation functions.

2. Fourier transform to get c(q) and cd(q).

3. Calculate γ(q) and γd(q) using equation 6.4.

4. Inverse Fourier transform to get γ(r) and γd(r).

5. Calculate cnew(r) and cdnew(r) using a closure relation.

6. Mix the new function with the previous one using cnew(r) = αcnew(r)+(1−α)c(r)

and cdnew(r) = αcdnew(r) + (1− α)cd(r) with α ∈ [0, 1].

7. Go back to 2, unless ||cnew(r) − c(r)|| < ε and ||cdnew(r) − cd(r)|| < ε where ε is

small.

The step number 6 of the algorithm incorporates a mixing parameter α that has the

purpose of keeping the stability of the calculated functions in the process of convergence.

At each iteration, a certain percentage of the newly calculated function is mixed with

the old one, and this allows the spontaneous changes in the shape of the functions not to

have a too dramatic effect on the calculation, while still being taken into account. This

is done at the expense of calculation time.

6.1.2 Practical details

All the structural calculations have been performed using FORTRAN 90 and storing the

real numbers in double precision type variables, whose precision reaches the fifteenth

digit. For calculation time reasons, the choice has been made to use a well tested Fast

Fourier Transform (FFT) subroutine to do the back and forth route in the reciprocal

space. This subroutine has the particularity, on top of being very efficient, of being only
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able to process arrays with a number of cells that follows the rule Nstruct = 2p where

p ∈ N+. This number has been chosen as p = 12, leading to arrays ofNstruct = 212 = 4096

cells. The distance between two values has been chosen as ∆r = 0.01. We therefore have

∆q = π
dr×Nstruct

≈ 0.077.

The mixing parameter is chosen as α = 0.05, a quite low value that has proved to

keep the convergence on tracks. Furthermore, the calculation of the structural functions

is extremely fast compared to the dynamical functions. Therefore, a little more time

allocated to make sure the structural calculation are performed correctly every time,

does not fundamentally change the overall calculation time. Finally, the convergence

parameter as been chosen as ε = 10−12.

6.2 Phase diagrams

6.2.1 Description of the algorithm

We start with the expression that allows the calculation of the infinite time limit of the

ISF, f(q) = limt→∞ φ(q, t) :

f(q)

1− f(q)
= m(q;V (2), V (1), f(q)), (6.5)

where m(q;V (2), V (1), f(q)) is the memory function, in which the dependence on the

vertices V (2) and V (1) as well as f(q) has been made explicit. As explained in chapter 5,

the different phases of the fluid are characterized by different values of f(q) (in the case

of the liquid and the glass) and f s(q) (in the case of the localized phase). The general

example of f(q) will be taken in the following, but everything is applicable to fs(q) as

well.

f(q) is the parameter defining the phase of the system, otherwise called the order pa-

rameter. The limit between two phases or domains corresponds to critical values of the

infinite time ISF f c(q) and of the vertices V (2),c and V (1),c, so that the following equation

presents at least one singular solution:

f c(q)

1− f c(q) = mc(q)(V (2),c, V (1),c, f c(q)), (6.6)

and the condition of singularity of the Jacobian matrix is met:

det

[
1

(1− f c(qi))2
δij −

∂m(qi)

∂f(qj)
(V (2),c, V (1),c, f c(q))

]
= 0. (6.7)

Let us approach the liquid-glass transition line from the glass phase, i.e., the system

is set in a state (V (2), V (1)) = (V (2),c + v(2), V (1),c + v(1)) so that the solution f(q) to
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equation (6.5) is nonzero. We set f(qi) = f c(qi) + (1−f c(qi))2g(qi), inject it in equation

(6.5) and perform a Taylor expansion in the following way:∑
j

[δij −
∂m(qi)

∂f(qj)
(v(2), v(1), f c(q))(1− f c(qi))2

]
g(qj) = m(qi)(v

(2), v(1), f c(q))

− (1− f c(qi))g(qi)
2 +

1

2

∑
j,k

∂2m(qi)

∂f(qj)f(qk)
(v(2), v(1), f c(q))(1− f c(qj))2

(1− f c(qk))2g(qj)g(qk) +O(v(2)g, v(1)g, g3).

(6.8)

The matrix on the l.h.s. is equivalent to the Jacobian of equation (6.5), and has therefore

a unique zero eigenvalue. We define the two eigenvectors e(qi) and ê(qi) respectively on

the right and on the left of this matrix, and both associated to the zero eigenvalue. We

apply them the following constraints:

e(qi) > 0 ê(qi) > 0
∑
i

ê(qi)e(qi) = 1
∑
i

ê(qi)(1− f c(qi))e(qi)2 = 1. (6.9)

A solution exists only if∑
i

ê(qi) [ m(qi)(v
(2), v(1), f c(q))− (1− f c(qi))g(qi)

2

+
1

2

∂2m(qi)

∂f(qj)f(qk)
(v(2), v(1), f c(q))(1− f c(qj))2(1− f c(qk))2gjgk

]
= 0.

(6.10)

This solution is of the form g(qi) = e(qi)g at the main order.

Finally, we define λ as

λ =
1

2

∑
i,j,k

ê(qi)
∂2m(qi)

∂f(qj)f(qk)
(v(2), v(1), f c(q))(1− f c(qj))2(1− f c(qk))2e(qj)e(qk) (6.11)

This parameter is called the exponent parameter and is extremely important in the

calculation of the transition lines. When this parameter is calculated on a transition

line, its value defines the way the dynamical variables decay towards their final value.

Furthermore, and this is the feature that will be interesting in the case of the calculation

of the phase diagram, the value of λ indicates the end of a transition line. Usually,

this parameter is expected to be 0 ≤ λ ≤ 1 for a continuous or diffusion-localization

transition line, and 0.5 ≤ λ ≤ 1 for a discontinuous transition line. In any cases, when

λ = 1, the transition line is known to reach its end.

A phase diagram consists of transition lines separating the different phases the fluid can

adopt, and the calculation of the transition lines is done by evaluating the infinite time

limit of the ISF f(q), and subsequent calculations of the eigenvalue of the Jacobian and

of the parameter λ to quantify the position on the transition line.
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Concerning the phase diagrams presented in chapter 5, the x-axis has been chosen as

the density of the fluid ρ, and the y-axis as the amplitude of the potential δ, and the

correlation length of the potential taken as a constant. Therefore due to the way they

behave, the continuous and the localization transition lines were created by varying δ at

constant values of ρ and of the correlation length of the potential σ. This example will

be taken in the following, but the procedure is applicable to the discontinuous transition

line as well by varying the density instead of the amplitude.

The algorithm used to calculate the transition lines is a dichotomy over the value of a

varying parameter, here taken as δ for the example :

Initialization

1 For a given value of ρ, make an educated guess of a value of δ that is likely

to be close to the critical value δc.

2 Calculate the vertices, and by an iteration process evaluate both the memory

function and the order parameter f(q).

3 Use power iteration to calculate the eigenvalue E of the Jacobian of the

system.

4 If E < 0 (resp. E > 0) we have δ < δc (resp. δ > δc). Increment (resp.

decrement) δ by an arbitrary value and repeat step 2 until E > 0 (resp.

E < 0). The two values of δ that are respectively below and above δc are

denoted δliq and δglass.

Refinement

5 Set δ = δliq+δglass

2 and calculate the vertices, memory function, order param-

eter and finally the eigenvalue E.

6 If E < 0 (resp. E > 0) set δliq = δ (resp. δglass = δ) and go back to step 4

until |E| < ε where ε is chosen small.

7 Evaluate the value of λ. If λ > 1, the end of the transition line has been

met and the calculation is stopped. Otherwise, increment ρ and start over

at step 1. A refinement of the position of the end of the transition line can

be done after the whole transition line has been drawn.

6.2.2 Practical details

The evaluation of f(q), fs(q), the eigenvalue, and λ has been performed using FORTRAN

90 and double precision type variables for the evaluation of the real numbers and arrays.

The number of iterations, especially to calculate the value of the order parameter f(q) can

be huge, this part of the calculation is one of the most time-consuming ones. Therefore,
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in order to make the calculations faster, and as concern for memory consumption, all

the functions have been stored and calculated on arrays of Nd = 300d cells, where d is

the dimension of the array. Knowing that the structural functions have been evaluated

on arrays of Ndynamics = 4096 cells, calculating the vertices is done with an obvious loss

of information. Every two values until Nstructure = 600 is sampled out to calculate the

vertices in order to account for the short distance correlations, which contain most of

the information.

The iteration over f(q) is done until |f i(q)− f i+1(q)| ≤ εf where i denotes the iteration

and we choose εf = 10−12. The continuous and diffusion-localization transition lines

are calculated by varying ρ regularly by steps of ∆ρ = 0.01, and for each value of ρ,

the critical amplitude δc is framed using dichotomy until |Eliquid −Eglass| ≤ 10−6 where

Eliquid and Eglass are respectively the eigenvalues calculated in the liquid and the glass

side of the transition line.

The discontinuous transition is calculated by first varying δ regularly and choosing the

number of steps according to the expected height of the phase diagram, until |Eliq −
Eglass| ≤ 10−4. The calculation of the transition line is stopped when the value of λ = 1

is reached. When the transition line becomes horizontal for certain closure relations and

values of σ (typically the high values), the discontinuous transition line is calculated by

varying the density.

Due to the structure of the solutions, two types of junctions are expected to happen

between the continuous and the discontinuous transition lines. The first way these two

lines can intersect is by connecting at the very point where λ = 1 for both of them,

which is only encountered in this work for the low values of the correlation length. Most

of the time however, the discontinuous transition line cuts through the continuous one,

which is discarded beyond this point. The reasons for this lies again in the structure

of the solutions and the demonstration will not be explicited here. The discontinuous

transition line always prevails over the continuous transition line.

The precision chosen to frame the discontinuous transition line is much lower compared

to the continuous case, because the convergence of f(q) is slower, and becomes even

slower as the point λ = 1 is approached. The typical convergence of a calculation when

the point is taken in the liquid phase is very different from the case of the glass phase,

and both are represented in figure 6.1.
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Figure 6.1: Convergence of the calculation of the location of a critical value ρc at
a value of the amplitude δ = 1.0 in the liquid phase (plain black line) and the
glass phase (dashed red line) as a function of the number of iterations. The double
arrow indicates a turning point.

In the glass, the difference between f i(q) ad f i+1(q) decreases steadily until convergence

is reached, while the pattern in the case of the liquid phase presents a minimum followed

quickly by a maximum and a fast decrease to convergence. The main difference lies

in the fact that the convergence in the liquid phase presents a turning point, which is

pinpointed in figure 6.1 by a tangent line. In the course of the calculation, this turning

point can be very easily found. Since it is a feature of only the liquid phase, a convergence

process can be stopped as soon as a turning point is found, and the phase of the fluid

determined on this sole criteria, which speeds up the calculation of the transition line.

Moreover, taking the value of the f(q) array on the turning point to calculate the vertices

and the eigenvalue allows for a greater precision on the calculation of λ than usual

convergence. This allows for a very good refinement of this important parameter without

the cost of carrying a calculation to full convergence.
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6.3 Dynamical functions

6.3.1 Description of the algorithm

The calculation of the dynamical variables such as the intermediate scattering function

(ISF), the mean squared displacement (MSD), and the non-Gaussian parameter is done

by iteratively solving the MCT equations presented in chapter 4, using standart methods

developped in (Fuchs et al., 1991; Franosch et al., 1997b; Fuchs et al., 1998). The

evaluation of these functions goes through the evaluation of the memory kernel, which in

turn is defined in terms of the structural functions presented in chapter 2. For calculation

time reasons, the dynamical functions have been defined on arrays of Ndynamics = 300

cells. The structural functions therefore have to be sampled on the same array, and

this can be therefore only done by loosing information, the initial structural functions

being sampled on a Nstructure = 4096 array. Therefore, one of two values has been taken,

effectively stopping the sampling at Nstructure = 600, which did not seem to create

numerical discrepancies.

The calculation of the dynamical variables has been made as follows.

Let us consider the following generalized Langevin equation for the collective ISF, as

described in chapter 4:

τ(q)φ̇(q, t) + φ(q, t) +

∫ t

0
m(q, t− τ)φ̇(q, τ)dτ = 0. (6.12)

The following will focus first on a discretization of this equation, followed by the de-

scription of the iterative algorithm used to solve it. This is done for the example with

the generalized Langevin equation for the collective ISF, but the same scheme can be

applied to solve its self counterpart, and the mean squared and quartic displacements,

whose equations follow similar rules.

We can rewrite this equation in the following way:

φ(q, t) = m(q, t)− d

dt

∫ t

0
m(q, τ)φ(q, t− τ)dτ − τ(q)φ̇(q, t). (6.13)

First we rewrite the integral I(q, t) = d
dt

∫ t
0 m(q, τ)φ(q, t− τ)dτ , introducing T ≈ t/2 :

I(q, t) = m(q, T )φ(q, t−T )+

∫ t−T

0
ṁ(q, t−τ)φ(q, τ)dτ+

∫ T

0
φ̇(q, t−τ)m(q, τ)dτ (6.14)

Defining t1 < t2 < t and developing at the third order for any two dummy variables

A(q, t) and B(q, t) :∫ t2

t1

Ȧ(t− τ)B(τ)dτ ≈ A(t− t1)−A(t− t2)
t2 − t1

∫ t2

t1

B(τ)dτ, (6.15)
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which allows to rewrite equation (6.14) in a way that can be discretized. We define

t = nh, T = Nh and tk = kh, where n,N, k ∈ NNN+, and h ∈ RRR+. This allows to represent

all the functions we want to compute on arrays of N values, where n and k label cells

of the arrays and h is to be chosen small in order to have a good precision. We define

the discretized ISFs as follows:

φk = φ(q, kh),

Φk =
1

h

∫ kh

(k−1)h
φ(q, t)dt,

(6.16)

and the discretized memory functions:

mk = m(q, kh),

Mk =
1

h

∫ kh

(k−1)h
m(t)dt.

(6.17)

We apply (6.15) and use the notation just defined on (6.14):

In = mNφn−N +

N∑
k=1

(φn−k+1 − φn−k)Mk +

n−N∑
k=1

(mn−k+1 −mn−k)Φk. (6.18)

We define Cn as

Cn = mNφn−N−mn−1Φ1−φn−1M1+

N∑
k=2

(φn−k+1−φn−k)Mk+

n−N∑
k=2

(mn−k+1−mn−k)Φk,

(6.19)

and finally, we write (6.18) as

mn − In = mn(1− Φ1)− φnM1 − Cn, (6.20)

which is the first term on the r.h.s. of equation (6.13). In order to fully discretize this

expression, we need to define the derivative of the ISF, using a common approximation:

φ̇n =
3φn − 4φn−1 + φn−2

2h
(6.21)

Finally, plugging these expressions in equation (6.13) and rearranging, we get

φn =
mn(1− Φ1)−Dn

1 +M1 + 3 τ(q)2h

, (6.22)

with

Dn = Cn −
τ(q)

2h
(4φn−1 − φn−2). (6.23)
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The times spanned by the relaxation of the dynamical variables is huge, usually of

the order of 1012, but sometimes longer, when the calculation is performed close to a

transition line, where the dynamics of the system is by definition very slow. Storing all

the values of φ(q, t) would require a quantity of memory that computer at the time this

work is put together cannot support. Therefore, the calculation has to be done in an

iterative manner, and information has to be lost carefully at each step.

Initialization

The ISF is stored on an array of N = 2p cells, and the time step h0 is chosen so that

t0 = Nh0 � minq τ(q), where the subscript 0 indicates that the value of h is meant to

change at each iteration. The first N/2 values of the array are initialized using a Taylor

expansion of the ISF:

φ(q, t) = 1− t

τ(q)
, (6.24)

and the integrals are calculated using the trapezoidal rule:

Φk =
1

2
(φk−1 + φk), with the initial condition φ0 = 1,

Mk =
1

2
(mk−1 +mk), where m0 has to be explicitly calculated.

(6.25)

Concerning the NGP, the first and the second derivatives of the self ISF with respect to

the wavevector have to be calculated at this step for the initialized array, using simple

numerical derivation:

d

dq
φsk,q =

φsk,q−1 − φsk,q+1

2hq
,

d2

d2q
φsk,q =

φsk,q−1 − 2φsk,q + φsk,q+1

h2q
.

(6.26)

The integrals and the derivatives have to be stored in Ndynamics sized arrays as well.

Propagation

The following propagation has to be done for N/2 + 1 ≤ k ≤ N , and sums up to

calculating the values of the ISF and the memory function (possibly the derivatives of

the self ISF in the case of the mean quartic displacement) for the second half of the

array.

1. Calculate Cn and Dn, which requires values of the ISF and the memory functions

and the integrals at times 1 ≤ k ≤ N/2.

2. Take a guess φin, and calculate the memory function as

mi
n(q1) =

∑
(q1, q2, q3)V

(2)(q1, q2, q3)φ
i
n(q2)φ

i
n(q3) + V (1)φin(q2). (6.27)
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3. Calculate a new value of φi+1
n (q) using equation (6.22), which will be taken as a

guess for the next iteration.

4. Start over at step 2 until |φin − φi+1
n | < ε, where ε is a small real number.

5. Calculate mi
n(q1) one last time.

The guess at the first step of this propagation is chosen as φin = φn−1. After the first

propagation, the values calculated for N/2 + 1 ≤ k ≤ N have to be written down.

Reduction

Because of the fact that Cn has to be calculated using all the previous values of the

ISF and the memory function, one would need, in order to get a theoretically perfect

calculation of the dynamical variables, to dynamically allocate the arrays after each first

propagation. However as stated above, the times spanned by the MCT calculation are

usually very long, due to the fact that the phenomena that we aim to observe happen at

critical values of the parameters describing the system. Therefore, such a simple solution

would lead to a huge amount of information to be stored, and therefore be impossible.

We can however take advantage from the fact that the long time dynamics shows less

and less dependence over the short time dynamics as the time increases: this second

propagation aims to reduce the information in a smart way.

First, for all 1 ≤ k ≤ N/2, we do the following:

φk = φ2k,

Φk =
1

2
(Φ2k−1 + Φ2k),

mk = m2k,

Mk =
1

2
(M2k−1 +M2k).

(6.28)

Then, for all N/2 + 1 ≤ k ≤ N , we calculate the integrals using the Simpson formula:

Φk =
φ2k + 4φ2k−1 + φ2k−1

6

Mk =
m2k + 4m2k−1 +m2k−1

6

(6.29)

and finally, we set h′ = 2h as the new time step. This whole process has the purpose of

effectively doubling the time step h. Starting up again with a propagation will lead to a

new series of values calculated in a much faster way. Propagation followed by reduction

is to be applyied as much as needed, typically until convergence is met, or a certain

number of values have been calculated.
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6.3.2 Practical details

The calculation of the dynamical variables has been performed using FORTRAN 90

and double precision type variables for the evaluation of the real numbers and arrays.

The functions have been stored in arrays of size Q × 2T where Q = 300 and T = 200.

The functions are calculated for each value of q one time with the initialization and

propagation steps, and are written down in files, followed by a reduction step. The

propagation is performed again and the newly calculated values written down in the

same files. This process is followed until |φ(q)t − φ(q)t+1| < ε with ε = 10−12.



Chapter 7

Preliminary simulation study

When working with the Mode Coupling Theory, the problem one immediately runs into

is the comparison with experiments, which is something that could be done to an extent

with the work of Evers et al. (2013a), Evers et al. (2013b), Bewerunge et al. (2016b),

and Bewerunge (2016). Unfortunately, due to the difficulties pertaining to the difference

in dimensionality, and the inability to span the very long and very short time scales

experimentally, useful comparison was often considered only as a way to confirm the

existence of general trends that MCT could sometimes capture. Moreover, it is unlikely

that experiments could measure the critical dynamics happening at long times any soon,

due to the technical difficulty of doing so.

When the MCT had seemingly been milked out of all meaningful results, the logical

step forward has been clearing up the way for potential future results. These future

results have to come from simulation studies which do have but little constrains on the

time scales measured and the precision of the outcome, at least for not too extreme

situations. As a way of simplifying the implementation, the method has been chosen to

be a Monte Carlo method performed on hard spheres placed in a three-dimensional box

with periodic boundary conditions, where the positions of the particles as well as the

Gaussian random potential defined in chapters 1 and 2 are set on a fine grid.

The diameter of the particles is taken as unity, and the simulations done in a L×L×L
box with L = 10, divided into P×P×P points with P = 200, over which N particles are

placed. The arrangement of the particles at the beginning of the simulation is done by

creating a crystal of N particles with lattice constant d = b P 3

N
1/3
c. Placing the particles

in this way requires a step of relaxation before starting any actual data collection, so

that the rather practical but unrealistic starting crystal does not bring any contribution

to final structural results.

119
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7.1 Generation of a random potential

The reliability of the Monte-Carlo simulations stands on the quality of the potential

generated, which contrary to the case of the theoretical work cannot be included in the

study through its covariance alone. This time, the potential has to have a value on

each point of the grid, which in part simplifies the problem by requiring only a finite

number of well defined points, on which the potential has a known value that can be

used throughout the entire calculation. The scheme developed by Bertschinger (2001)

for cosmological large scale calculations provides an easy and quick way to generate

such a potential on a grid that presents periodic boundary conditions. The potential is

generated according to

ζ(r) =

∫
d3keik.rT (k)ξ(k), (7.1)

where ξ(k) is the Fourier transform of a Gaussian white noise, and T (k) is related to

the covariance of the random potential as

T (k) =
√
K(k), (7.2)

where K(k) is the Fourier transform of the covariance of the potential, here chosen as a

Gaussian function of the form

k(r) = ε2e−( rσ )
2

(7.3)

which can be Fourier transformed into

K(k) = ε2(πσ2)3/2e−k
2σ2/4. (7.4)

The discretized process starts with the generation of one random number per point of

the grid, i.e., P 3 points. These random numbers have to follow a Gaussian distribution,

and the Box-Muller algorithm gives a quick and efficient way to do this. First, two

random numbers u and v are generated using a uniform random number generator. We

then calculate u′ = 2u− 1, v′ = 2v − 1, and

w = u′1 + u′2, (7.5)

and finally, a couple of Gaussian random numbers is generated as

z1 = u′
√
−2 logw

w
,

z2 = v′
√
−2 logw

w
.

(7.6)

One such number is generated on each point of the grid. The variance of this Gaussian

distribution has to be N3 and therefore every random number is scaled accordingly.
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Equation (7.1), which can be rewritten as a convolution product (Salmon, 1996), can be

discretized as

ζ(r) =
∑
κ

e
i2π

N
κ.rT (κ)ξ(κ), (7.7)

where κ = kL
2π has three components, each in [−N/2,N/2[.

The correct generation of the disordered potential is at the core of the validity of the

results, and is thus a step of major importance. Its validation will therefore be the object

of the first results presented in this chapter.

7.2 Calculation of the disconnected structural

quantities

The calculation of the total correlation function and associated quantities is done in a

straightforward way, by sampling the positions of the particles on a regular basis during

the calculation. However, separating the connected from the disconnected requires the

use of a more sophisticated method, adapted from Meroni et al. (1996).

The disconnected total correlation function is expressed as a function of the two-point

density correlation function Ψ(r1, r2) = 〈ρ(r1)〉〈ρ(r2)〉. We note that in that expression

only the ensemble average is taken. The disorder average is to be evaluated later on. In

the context of a Monte Carlo simulation, the one-point density can be calculated as

ρ(R) =
1

v

N∑
i=1

∆R−ri , (7.8)

where v is the volume of a single cell of the discretized box, and ∆R−ri acts like a

Kronecker delta in the way that it equals 1 if ri = R and 0 otherwise. The two-point

density correlation can be discretized as

Ψ(r) =
1

N3

∑
R

〈ρ(R + r)〉〈ρ(R)〉, (7.9)

which can be evaluated by taking the inverse Fourier transform of the following expres-

sion:

ψ(k) = ρ(k)∗ρ(k), (7.10)

with ρ(k) the Fourier transform of 〈ρ(R)〉.
Taking the average over different disorder realizations allows one to recover to disorder

averaged quantity, and finally Ψ(r) is obtained by regrouping all Ψ(r) with the same r.

We eventually calculate the disconnected total correlation function hd(r) as

hd(r) =
Ψ(r)

ρ2
− 1. (7.11)
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7.3 Some results

As a validation of the generation of the potential and as a way to introduce results from

this simulation study, we may calculate the usual and disconnected total correlation

functions h(r) and hd(r). These functions were described in chapter 2, and in the case of

a system with no hard core, i.e., an ideal gas, they are strictly equal. Furthermore, the

exact result for these functions is known and coincides with the result of the HNC closure

relation as h(r) = hd(r) = eβ
2k(r) − 1. Comparison between the simulated disconnected

and usual total correlation functions, and the analytic result is presented in figure 7.1,

for varying values of the relative amplitude from δ = 0.5 to δ = 2.0.
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Figure 7.1: Disconnected (green curves) and usual (red curves) total correla-
tion functions evaluated by a Monte Carlo simulation of an ideal gas (no in-
teraction between the particles) in a Gaussian random potential with amplitude
δ = 0.5, 1.0, 1.5, 2.0 and correlation length σ = 0.5. 250000 Monte Carlo itera-
tions have been performed, and the positions of the particles have been sampled
every 50 iterations to calculate the correlation functions. 50 potentials have been
generated with the same parameters to get the disorder averaged quantities. The
dashed black curves represent the analytic result.

The simulated functions have not been calculated at r = 0, where they are prone to

large normalization errors. Furthermore, it can be noticed that the result at r = ∆r

concerning the disconnected total correlation function is very imprecise, compared to the



7.3. SOME RESULTS 123

usual total correlation function. This is entirely an artifact of the method, due to the

discretization of the simulation box, creating a self contribution of the two-point density

correlation function at that distance. This contribution vanishes very slowly when the

refinement of the discretization and the number of potentials sampled increase.

Clearly, apart from the discrepancy at short distance for the simulated disconnected

total correlation function, the curves are very similar. This constitutes therefore both

a confirmation of the proper generation of the potential, and of the algorithm used to

evaluate h(r) and hd(r). The curves are expected to approach the analytic solutions

more and more, as more iterations are done, and more potentials are sampled.

As interesting as the ideal gas is in order to validate the generation of the potential

and the calculation of the structural properties, the real interest lies in the study of

a hard-sphere fluid at different densities. During the short time that the calculations

could be ran, we managed to increase the density until ρ = 0.2 while keeping reasonable

calculation times. Figure 7.2 shows a comparison of the usual and disconnected total

correlation function for a hard-sphere fluid of densities ρ = 0.1 and ρ = 0.2. This short

range of densities obviously does not constitute an extensive study, but it allows a few

quick and general conclusions.

Concerning the usual total correlation function, a first conclusion is that the influence

of the potential grows very slowly when the amplitude increases. Second, it appears

that the total correlations are more important when the density is higher, due to the

increased particle-particle interactions. This is all expected.

Concerning the disconnected total correlation function, the influence of the potential

is much bigger, and grows very fast with the increase of the amplitude. We note the

apparition of a negative peak around r = 1, a fact that can be seen in the theoretical

calculations in chapter 3 as well. Comparing the cases of ρ = 0.1 and ρ = 0.2, we

see that the potential has a greater influence on the disconnected correlations at lower

values of the density. When the density increases, it seems that the density related

correlations erase the potential related correlations, and this points to the reentrance of

the diffusion-localization line observed in chapter 5. Which, as it has been discussed in

that chapter, is caused exactly by this phenomenon. The reentrance, which has already

been compared to experimental isodiffusivity lines, receives here a further confirmation.

We therefore expect the disconnected correlations to collapse even more with an increase

of the density, until a certain high value of the density where they would start to grow

again.
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Figure 7.2: (left) Usual and (right) disconnected total correlation functions eval-
uated by a Monte Carlo simulation of a hard-sphere fluid in a Gaussian random
potential with amplitude δ = 0.0 to δ = 2.0 and correlation length σ = 0.5. The
amplitude of the potential is proportional to the saturation of the color of the
curve. 250000 Monte-Carlo iterations have been performed, and the positions of
the particles have been sampled every 50 iterations to calculate the correlation
functions. 50 potentials have been generated with the same parameters to get the
disorder averaged quantities.

Among the dynamical variables, the MSD is one that is very easy to evaluate in the

context of a simulation, since it only needs the position of the particles with almost
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Figure 7.3: (left) MSD evaluated by a Monte Carlo simulation of an ideal gas in
a Gaussian random potential with increasing amplitude δ = 0.0 to δ = 2.0 and
correlation length σ = 0.5. 250000 Monte-Carlo iterations have been performed,
and 50 potentials have been generated with the same parameters to get the disorder
averaged MSD. (right) MSD calculated for the same parameters using MCT, and
the OZ equation together with the HNC closure relation to get the structural
correlation functions.

no treatment. Figure 7.3 shows a comparison between the simulated MSD and the one

calculated using the MCT framework.

Quite strikingly, the two pictures show very different results for sets of parameters that

are identical. Clearly, the shape of the MSD in the case of the MCT calculation is

ruled by the presence of the diffusion-localization transition line, located at δc = 1.14

at zero density, leading to the apparition of a plateau of the MSD at δ > δc. This

informs us about the fact that MCT overestimates the correlations of the fluid, leading

to an underestimation of the value of the critical values, a fact that is very well known

concerning this theory. In the case of the simulated MSD, an increase of δ leads to the

slight but noticeable apparition of a subdiffusive regime at intermediate times, followed

by a return to a diffusive regime at long times, no plateau is observed. In this way,

the simulation result better compares with the second panel of figure 1.3, which shows

the experimental result from Evers et al. (2013a). Both in the case of the simulation

and the experimental result, a simple subdiffusive regime followed by a return to normal

diffusion is observed.

However, no quantitative comparison can be made, since the dimensionality is different,

and it is unclear how the power of the laser used to generate the speckle and the theoret-
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Figure 7.4: MSD evaluated by a Monte Carlo simulation of a hard-sphere fluid
of density ρ = 0.0, 0.1, 0.2 in a Gaussian random potential of amplitude δ = 1.0
and correlation length σ = 0.5. The value of the density is proportional to the
saturation of the curve. 250000 Monte-Carlo iterations have been performed, and
50 potentials have been generated with the same parameters to get the disorder
averaged MSD. The inset curve is a zoom.

ical parameter δ exactly relate to each other. In the future, exploration of higher values

of the amplitude will be necessary, in order to eventually observe a transition to arrest,

and a study of the links that δ and the laser power have will be necessary to get the full

picture. The local exponent is too noisy to be exploited: a bigger set of potentials will

have to be tested in order to create an exploitable picture.

Finally, the case of a hard-sphere fluid at low densities (ρ = 0.0 to ρ = 0.2) has been

investigated, in an amplitude range identical to what has been done in figure 7.3. Figure

7.4 shows the MSD calculated at the same value of the amplitude δ = 1.0, and increasing

density ρ = 0.0, 0.1, 0.2.

As the density increases, the value of the MSD at a given time decreases, while keeping

the slope of one, characteristic of a liquid phase. The density scanned here are very low,

and no significant change was to be expected. However, the trend is good, and high

densities will very probably yield to a liquid-glass transition through cage effect. It is

furthermore expected that the density of transition decreases with an increase of δ. This



7.3. SOME RESULTS 127

would be an indicator of the recession of the discontinuous transition line, as seen from

the MCT calculations.

Building a full phase diagram in this way would be very difficult, as it appears that the

critical amplitudes needed to create a continuous liquid-glass transition are very high.

We postulate that the diffusion-localization transition line (see chapter 5) is the ultimate

limit that an experiment or a simulation can reach, and that the amplitude and laser

power needed to do so is very high. The reason for this is that in the context of Brownian

dynamics, a particle is able to borrow virtually an infinite amount of energy from the

bath. Therefore, a Gaussian potential will never be able to trap a particle for an infinite

time, and dynamical arrest may never be possible for the same reason. However, it may

be observed that a particle experiences trapping, and even a glass phase, for times that

are, given any human consideration, infinite. Considering this, hope remains as for an

experimental phase diagram can be one day built. In the mean time, simulation remains

the best option, and we hope for interesting outcomes to be observed.
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Chapter 8

Conclusion

Throughout this work, the focus has been set on finding a new way to explore the dynam-

ics of a fluid plunged in a smooth disordered potential. The early theoretical research

on the percolation transition and the development of experimental approaches to track

and measure the diffusion of individual particles has led to the discovery of complex

anomalous diffusion phenomena. These studies were supported by a few numerical ex-

periments, but lacked a theoretical understanding, which is the point of the present work.

Furthermore, the previous studies often only considered the case of a two-dimensional

fluid. In this work, the system has been modeled as a hard-sphere fluid in a Gaussian

random potential with Gaussian correlation function, in order to account for the size of

the light spots in a real laser speckle. Furthermore the system is three-dimensional, a

constraint inherent to the theory, that hopefully opens new perspectives in the field.

The first results account for the structural properties of the fluid, that have been calcu-

lated using the OZ equation and closure relations. General and expected results such as

the increase of the disorder-induced and density-induced correlations with the increase

of, respectively, the amplitude of the potential and the density of the system have been

checked. It has been found that the correlation length of the potential plays a role in

increasing the density correlations, which is interpreted in terms of structural scenarios.

Furthermore, the disorder-induced correlations experience a change of regime at high

values of the density, compared to low values. This result hints to a reentrant behaviour

that is observed concerning the dynamics of this system. All these results have been ob-

tained using the HNC closure relation, which has been, for many reasons, chosen as the

most realistic one. In order to be complete, a comparison of the different closure relations

that have been tried is necessary. Study shows surprisingly similar results between HNC,

PY, MSA and EXP. As has been observed later on, the dynamics are quantitatively very

different in these cases, which shows a great sensitivity of the latter to changes in the

structure of the fluid. Finally, the major discrepancies of two of the closure relations,

PY and EXP, have been studied. Due to uncontrolled approximations, the calculation
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of the structural properties using these closure relations leads to unwanted nonphysical

results at respectively low and high densities, and this for low values of the correlation

length. These failures in the calculation of the structure will lead the calculation of

the dynamics to undergo serious breakdowns, when EXP and PY are being used as a

closure relation. HNC and MSA seemingly do not present any breakdowns at this level.

The structural results, as interesting as they are, can only be fully interpreted with the

associated dynamical results, which was the point of the second part of this work.

A full development of the MCT for fluids in randomness is presented, that allows the

calculation of the collective and self ISF, the MSD, the non-Gaussian parameter, and the

local exponent. These quantities have been computed and used to understand the dy-

namics and relaxation of the fluids in a speckle-like smooth disordered potential. First,

phase diagrams have been created, which show in a general picture, transition lines sep-

arating the different phases the fluid can be in, as a result of steric interaction and/or

perturbation by the potential. The shape of the phase diagrams is discussed and brings

an overall understanding of the relaxation of the fluid. A particularly interesting feature

consists in the reentrance of some of the transition lines. This nonmonotonic character-

istic is an essential feature of this system and can be related to the change of regime of

the correlation functions, as observed in the dedicated section. As expected, the dynam-

ics calculated using the PY and EXP closure relations fail due to the aforementionned

issues with the structural correlation functions. It has been found that HNC reaches a

new branch of solutions at values of the correlation length of the order of the diameter

of a particle. This new branch of solutions is non-physical, and leads the calculations

to reach a dead end. However, since the experimental results focused on a correlation

length of half a diameter, this issue does not undermine the fundamental comparison

with reality inherent to every theoretical study. In order to be extensive, a quick overview

of the phase diagrams calculated using MSA has been made, and compared with HNC.

Next, the ISFs are calculated around the transition lines. This quantity allows for a

study of the relaxation processes and a refinement of the scenarios developped by simply

looking at the phase diagrams. Finally, the non-Gaussian parameter and the local expo-

nent are studied and discussed as much as their complexity allows it. Throughout the

chapter dedicated to the dynamics of the fluid, comparison with experiments has been

made. Even though the differences between the theoretical results and the experimen-

tal counterpart can be dramatic (dimensionality, time scales, etc.), features such as the

reentrance of the transition lines and the behavior of the long-time diffusion coefficient

are very similar, and can be thought to be of some universality among systems of fluids

in smooth disordered potential.

The end of this thesis is devoted to more down-to-earth considerations, as the numerical

tricks and treatment of the structural and MCT equations are detailed. Around the

end of the PhD, it seemed clear that the resources of pure theory had been exploited
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extensively, and that the artifacts deeply built into the core of the MCT framework

are a barrier to the full understanding of this complex system. Therefore, as a way of

circumventing both the issues of theory and of experiments, a Monte-Carlo simulation

tool has been developped. The preliminary results are presented at the very end and look

promising for the future of the project. Many complex predictions made by the MCT

are still waiting for a comparison, and hopefully, with enough time the precision and the

timescales spanned by the Monte-Carlo calculations will allow for such a juxtaposition.

Moreover, the simulations are not bound to their dimensionality. Therefore, simulations

would allow for a comparison both with the theory and with the experiments, which

would kill two birds with one stone.

As a concluding remark, we must say that the difficulty of the interpretation of the

results could only be compared to the simplicity of the system from which they arise. It

is probable that many more studies are to be undertaken before reaching a full under-

standing of all the phenomena at play both in the structure and the dynamics.
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Recent experimental studies of the dynamics oàf colloids beamed by a random light

pattern (speckle) whowed the existence of subdiffusion, trapping, or mixture separation

phenomena, under the action of that disordered environment. To this end, a verison of

the Mode Coupling Theory (MCT), initially developed for fluids in confinement in solid

porous matrices has been applied to the case of a fluid plunged in a random Gaussian

potential with a Gaussian correlation function. The aim of this PhD work is to further

improve the understanding of these phenoma by the addition of a theoretical study. The

numerical resultion of the asymptotic equations of this theory leads to the construction

of phase diagrams, which reproduce for example the non trivial reentrent behaviour

of the diffusivity, observed in related experiments, for which a physical interpretation

is proposed. Furthermore, results suggest a strong dependence of the dynamics on the

disorder correlation length. A detailed study of the relaxation of the fluid has been made,

in order to bring an understanding of the dynamics at all timescales. Simultaneously, it

has been showed that a number of common approximations used in the calculation of the

structural properties of fluids lead in the present case to non-physical results. Finally, a

Monte-Carlo simulation program has been developed, and the first results are compared

to theory and experiments.

De récentes études expérimentales de la dynamique de collöıdes illuminés par une fig-

ure d’interférence optique aléatoire (tavelures ou speckle) ont montré l’existence de

phénomènes de sous-diffusion, de piégeage, ou de ségrégation dans le cas de mélanges,

sous l’effet de cet environnement désordonné. L’objet de ce travail de doctorat est

d’approfondir la compréhension de ces phénomènes par une étude théorique. Dans ce

but, une version de la théorie de couplage de modes (MCT), initialement développée pour

les fluides confinés dans des solides poreux désordonnés, a été appliquée au cas d’un flu-

ide plongé dans un potentiel aléatoire gaussien de covariance gaussienne. La résolution

numérique des équations asymptotiques de cette théorie a permis la construction de dia-

grammes d’état, lesquels reproduisent, par exemple, le comportement réentrant non triv-

ial de la diffusivité observé dans les expériences, dont une interprétation physique simple

est proposée. Les résultats suggèrent en outre une forte dépendance de la dynamique

du système par rapport à la longueur de corrélation du désordre. Une étude détaillée

de la relaxation du fluide a été effectuée, dans le but d’apporter une compréhension

de la dynamique à toutes les échelles de temps. En parallèle, il a été montré que de

nombreuses approximations classiques utilisées dans le calcul des propriétés structurales

des fluides conduisent à des résultats non physiques dans le cas présent. Finalement, un

programme de simulation Monte Carlo a été développé, et les premiers résultats sont

comparés à la théorie et aux expériences.
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