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Chapter 1

Introduction

The topic of dynamics in the presence of quenched randomness is one of long-standing
interest in the �eld of nonequilibrium statistical mechanics, as demonstrated by a number
of extensive and monumental reviews (Havlin and Ben-Avraham, 1987; Bouchaud and
Georges, 1990; Deanet al., 2007; H•oing and Franosch, 2013). The reason is obvious:
disorder is present and unavoidable in many systems of practical interest, such as natural
or synthetic porous solids (Gelb et al., 1999; Alcoutlabi and McKenna, 2005; Alba-
Simionescoet al., 2006; Havlin and Ben-Avraham, 1987). In these instances, however,
the nature and strength of the disorder is not easily controlled, so that the development of
systematic studies is seriously impeded. Recently, a novel class of experimental systems
has been put forward, which is based on the interaction of colloids with light and clears
up many of these di�culties. It provided the motivation for the present work.

1.1 Experimental studies of colloids in random
light �elds

At the core of the present work lies an experimental concern, well summarized by Evers
et al. (2013a). In the studies described in this paper, a complex system of mirrors, �lters
and lenses has been used to generate, control and measure the properties of a random
coherent light pattern, also called alaser speckle pattern. In practice, this patern can be
realized in many di�erent ways: as a linear superposition of random sinusoidal waves,
Kraichnan (1976) as a sum of interactions with randomly placed impurities, Lifshits
et al. (1988) or through coarse-graining of a random �eld, not necessarily Gaussian in
nature, over large enough regions Chudnovsky and Dickman (1998). The latter scheme
is directly relevant to polarizable colloids in speckle patterns, which is the case to be
treated here (Haneset al., 2012; Hanes and Egelhaaf, 2012; Everset al., 2013b; Hanes
et al., 2013; Bewerunge and Egelhaaf, 2016; Bewerungeet al., 2016a,b).
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8 INTRODUCTION

Figure 1.1: Schematic representation of the setup used to create a speckle pattern.
(left) A laser beam is shone through a di�usive plate and the resulting speckle
pattern is then imaged. Reproduced from Bewerunge and Egelhaaf (2016).(right)
Intensity distribution of a typical speckle pattern recorded with a CCD camera.
Reproduced from Fallaniet al. (2008).

Figure 1.1 schematically shows a way of producing such a light pattern using coarse-
graining of a random �eld, and a visual representation of an actual speckle.
A laser speckle typically consists of light spots randomly dispatched on a surface and can
be easily obtained by beaming coherent light on or through a rough surface. Controlling
and measuring it however requires a much more complex setup, as explained by Evers
et al. (2013a). The aim of the experimental work however is not the study of the
speckle pattern in itself, but rather its e�ect on a uid of Brownian particles, which can
interact with light under certain conditions. In this context, the nature of the particles
is important, because it conditions the nature of their interactions with the speckle
pattern. The particles were chosen to be surfactant-free sulfonated polystyrene spheres,
and were plunged in a heavy water solution, before being beamed with the said speckle.
Due to their composition, the particles have a higher refractive index compared to the
solvent. Furthermore, they are surrounded by solvent molecules, which allows them to
experience Brownian motion. These two facts lead us to consider the two di�erent forces
felt by the particles and coming from the laser speckle, as shown in �gure 1.2.
The �rst force is the radiative pressure force, that particles with a refractive index higher
than that of their solvent may experience in the presence of a light beam. This force
has the e�ect of pulling the particles towards the high intensity regions, and keeping
them in place, in the same way an optical tweezer would. The second force is related
to the immediate environment of the particles: heating of the solvent particles by light
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Figure 1.2: Forces exerted by light on a colloidal particle.(a) The radiative
pressure force, which is the dominant force experienced by non-absorbing particles,
results from the transfer of momentum from photons scattered by a particle. The
radiative pressure force can be divided into a scattering force, which tends to push
the particle along the direction of light propagation, and a gradient force, which
tends to pull the particle toward the highest intensity region. The gradient force
enables trapping in a focused laser beam.(b) The photophoretic force, which is
the dominant force experienced by strongly absorbing particles, results from the
transfer of heat to surrounding uid molecules from a non-uniformly heated and/or
non-uniformly heat-emitting particle. Reproduced from Reddinget al. (2015).

absorption creates a pushing force on the illuminated side of the particle. This force
has the e�ect of pushing the particle in the direction of the light beam (Ashkin, 1997;
Molloy and Padgett, 2002; Bowman and Padgett, 2013). Therefore, a bunch of particles
of a size of the same order of magnitude as the light spots and presenting the properties
above mentioned will interact with the speckle, and the latter is to be considered as
generating a random energy landscape.

One e�ect the speckle can have on a uid of such particles, as studied by Everset al.
(2013a), is a dynamical slowing down. Figure 1.3 shows in the left panel a schematic
�gure taken from the experiments of this group, that presents the dynamics of particles
inside a laser speckle in a very intuitive way. In the right panel, a corresponding mean
squared displacement (MSD) shows in more details the way dynamics are changing when
the power used to generate the laser speckle increases.
Looking at the left panel in �gure 1.3, one can already start to imagine some dynamical
scenarios. Circled in red is represented the trajectory of what is probably a single
particle. That particle seems to spend some time in one limited area in the bottom
left of the highlighted zone, before eventually exiting it and wandering around. We
can postulate that the particle is �rst located inside a light spot of the speckle, i.e.,
a minimum of the potential, before �nding a saddle point or reaching enough thermal
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Figure 1.3: Colloidal motion in a speckle pattern.(left) Trajectories of particles
undergoing di�usion in a two-dimensional plane, part of which contains a random
potential (green disk). (right) Normalized mean squared displacements. Curves
from top to bottom are drawn for increasing laser power. Adapted from Evers
et al. (2013a).

energy to exit that area, and start to explore more space. A second scenario can be
seen highlighted in blue, where one or more particles are spending the whole time of
the experiment in one localized area of the experimental setup, which ought to be a
very deep minimum those particles cannot get out of. In summary, the laser speckle,
by trapping the particles for more or less time, has the property of slowing down the
dynamics of the uid. Furthermore, as it can be seen in the right panel of �gure 1.3, the
shape of the MSD changes when the laser power is increased. The MSD being a measure
of the amount of space explored by the particles, a slope of one for this function means
a di�usive motion, and conversely a slope lower than one means a subdi�usive motion.
We can see in the right panel that with an increase of the laser power, comes a decrease
of the slope of the MSD for intermediate to long times, hinting to an increase of the
dynamical slowing down.

A similar scenario can be seen in �gure 1.4 by Volpeet al. (2014), where a single Brownian
particle is allowed to undergo its dynamics in a speckle pattern. From left to right, the
power used to generate a same laser speckle is increased. The trajectory of the particle,
represented by the green line, shows that at �rst the dynamics are di�usive in the
common sense of the term: the particle undergoes a random walk, almost undisturbed
by the presence of the weak speckle. Then, as the intensity of light increases, the
particle �nds itself more and more constrained to the regions of high intensity, only
passing through low intensity regions as crossing saddle points to reach the more stable
regions. At high light intensity, the particle is totally localized inside a light spot, unable
to cross the high barriers created by the optical potential.
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Figure 1.4: Particle di�usion in a speckle pattern. The background represents a
speckle pattern generated by a circular aperture. From left to right, the trajectories
(green solid lines) show progressive con�nement of a polystyrene bead in water as
a function of the increasing speckle intensity. Reproduced from Volpeet al. (2014).

Another experimental approach comes from Shvedovet al. (2010). This experimental
setup is at �rst glance very similar: a laser speckle is generated, and particles are allowed
to undergo their dynamics in the optical potential created by that speckle. One di�erence
however is the dimensionality: the experimental setup accounts for a three dimensional
laser speckle, and the particles have one more dimension at their disposal as well. This,
as it will become obvious a bit later, may be the root of a lot of discrepancies when
comparing systems that present di�erent dimensionalities. The goal of the experiment
is di�erent in this case as well. While for Evers et al. (2013a), the goal is the study of
the dynamical slowing down of the particles in the presence of an external disorder, and
to analyze the di�erent scenarios responsible for this, the work of Shvedovet al. (2010)
is aimed as a proof of concept of the ability to trap particles with a laser speckle. Thus,
a three-dimensional laser speckle is generated, and carbon nanofoam particles oating
freely in air are allowed to interact with it, while being recorded. In �gure 1.5 one can
see di�erent views of particles being trapped in the random light pattern.
The di�erent pictures in the bottom panels are taken at di�erent times, and it is obvious
that the more time passes, the higher the number of particles that are trapped inside
the laser speckle. In this experiment, the particles have been shown to remain trapped
for more than 24 hours, which is a very long time for Brownian particles. Thus, one can
imagine that with enough laser power, particles that exhibit subdi�usive behavior like in
the work of Evers et al. (2013a), can eventually be trappedad in�nitum . The particles
trapped in this way are actually experiencing a dynamical arrest due to the presence of
the potential.

This is however an uncommon way to induce such a dynamical phenomenon in a colloidal
system. A more common way a uid can experience a dynamical arrest is by an increase
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Figure 1.5: Geometry and dynamics of particle trapping in a three-dimensional
speckle pattern.(top) Image of the laser light scattered from the particles trapped
in a speckled bottle beam.(bottom) Snapshots showing the progressive �lling
of the optical trap (time increases from left to right). Reproduced from Shvedov
et al. (2010).

of its density, leading through overcrowding to the phenomenon called density driven
glass transition. In the case of the work of Shvedovet al. (2010), the dynamical arrest is
driven by the presence of the external potential, leading the uid, through sub-di�usion
phenomena similar to those described by Everset al. (2013a), to a case where the
particles are trapped in the energy landscape created by the spots of the laser speckle.
Obviously, such a simple scenario is not able to render the full picture of what may
happen when the laser power is increased. If more than one particle is present, interplay
between density driven and potential driven dynamical slowing down exists and makes
the whole problem a lot more complicated.

One possible application of the above-mentioned phenomena is given by Volpeet al.
(2014). Figure 1.6 shows simulation results of Brownian particles of two species (small
and big particles) passing through a speckle-like random potential. The speckle is static
in the left panels and ratcheting perpendicular to the ow in the right panels. In both
cases, the random potential is used to discriminate the bigger from the smaller particles.
These examples have the purpose of convincing the reader that these kinds of systems,
though not very well studied yet, have many potential applications. The process of
dynamical slowing down through interaction with disorder, until a possible localization
or arrest, gives rise to many interesting and probably complex dynamical phenomena
that could be exploited if well enough understood.
Concerning the experimental works, two last studies have to be mentionned. The work
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Figure 1.6: Separation of colloidal mixtures with speckle patterns.(a) Lapse-time
snapshots of the motion of polystyrene particles with small (green dots) and large
(black dots) radii in a microuidic speckle sieve, where a static speckle pattern
(shaded area) traps the smaller particles while it lets the larger ones go away with
the ow. (b) Same as(a) , but with the speckle pattern ratcheting in the direction
orthogonal to the ow. Reproduced from Volpeet al. (2014).
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of Pin�ce et al. (2016) and Paoluzziet al. (2014) cover the dyamics of two-dimensional
respectively active particles and run-and-tumble crowds in speckle patterns. These stud-
ies aim to understand the behaviour of more natural systems such as bacterias in the
smooth biological environment, or the dynamics of human crowds.

1.2 Theoretical studies of tracers in random po-
tential energy landscapes

As much as the experimental setups may be di�cult to put together due to practical
concerns, this is not the case for theoretical studies, for when computer power is not the
problem, only human brain is. Therefore, theoretical studies have been undergone on
the subject, starting with the early work of Zallen and Scher (1971) on the percolation
transition. In this paper, the authors describe a thought experiment presented as an
approximation for a \real (i.e., quantum mechanical) system". In this picture, a random
potential V (r ) is de�ned, as well as a density� (E ) that speci�es the fraction of space
available to particles of energy E. The system consists of a single particle following
Newtonian dynamics, the energy is therefore conserved, meaning that a particle with a
strictly lower energy than E will not be able to pass a potential barrier of height E .
To a low value of the energyE of the system corresponds a low value of� (E ), which
means that the space available to the particle is very low, as one can see in the �rst panel
of �gure 1.7. In panel (a), indeed, the gray available regions are all separated one from
another, and surely, a particle located in one of them will not be able to reach another
gray region, being as it is, not able to cross the barriers. This case can be compared to
the third picture of �gure 1.4, where the particles are isolated in high-intensity spots of
light.
On the other hand, panel (c) of �gure 1.7 shows a case where� (E ) has been increased
to the point where the particles have an in�nite ocean of space available to them, and
can therefore di�use in any direction, which can be compared to the �rst panel of �gure
1.4.
Between these two extremes lies an intermediate state, where the in�nite available space
just starts forming. This intermediate state happens at a critical energyEc, correspond-
ing to a density of available space� c = � (Ec), and is called the percolation transition.
In two dimensions, as it is the case for example in the experiments of Everset al.
(2013a) and Volpeet al. (2014), the emergence of the in�nite ocean of available space
coincides exactly with the vanishing of the in�nite ocean of unavailable space. This is
a very important point to keep in mind, since this fact changes dramatically with the
dimensionality, as can be seen in �gure 1.8.
Two things can be readily seen from this �gure. First, looking at the � (E ) curve, the
critical volume density decreases dramatically with the dimensionality, which means
that the threshold for the existence of an in�nite available region is much lower in three



1.2. TRACERS IN RANDOM ENERGY LANDSCAPES 15

Figure 1.7: Percolation in a two-dimensional potential. The contour lines represent
equipotentials ofV(r ). The gray regions in(a) ,(b) and(c) indicate allowed regions
(V(r ) < E ) for three successively increasing values ofE. Adapted from Zallen and
Scher (1971).

dimensions than in two dimensions (we will not be concerned with the one-dimensional
case, which is more a toy system than anything close to a real one).
Second, looking at the R(E) curves, one can clearly see that in the case of a two-
dimensional system, the emergence of an in�nite available space (the beginning of the full
line) exactly coincides with the disappearance of an in�nite unavailable space (the end
of the dashed line). In the case of a three-dimensional system however, the two curves
overlap in one small region ofR(E). This means that there is a certain energy span
where both the in�nite regions of available and unavailable space exist together. One
more dimension (and especially one more than two dimensions) allows the system to have
two in�nite objects existing side to side without interpenetration, by simply avoiding and
circumventing each other. Aditionnal theoretical studies about the percolation model
can be found in (Ziman, 1968; Isichenko, 1992).

Concerning numerical experiments, we must cite the work of Pezz�eet al. (2011), who have
undertaken a simulation study of the di�usion of Newtonian tracers in an anisotropic
disordered two-dimensional potential. In �gure 1.9, pictures of the generated potential,
with corresponding MSD, are shown for three di�erent available/unavailable space ratios.
The MSD have been traced by simulating the di�usion of a single tracer in the disordered
environment.
The three pictures and MSD correspond to the same system and the same potential, but
with di�erent ratios of available/unavailable space (quanti�ed by the parameter E=VR ).
From left to right, this ratio is increasing.
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Figure 1.8: Dimensionality dependence of continuum percolation processes.� (E)
is the fraction of allowed (V(r ) < E ) space andR(E) is the fraction of space
contained in in�nitely extended allowed regions. The dashed curves represent
functions opposite toR(E), specifying the fraction of space contained in in�nitely
extended forbidden regions. Reproduced from Zallen and Scher (1971).

For high ratios of available/unavailable space, and at short times, the MSD exhibits
what is called a ballistic regime, characterized by a slope of the MSD equal to two. This
regime occurs when the particle, starting from its initial position, moves but has not
yet had the time to experience its immediate surroundings (i.e., the random potential),
and is therefore di�using very rapidly. After some time, the particle starts to experience
scattering by the disorder, and the motion slows down to what is called thedi�usive
regime, characterized by a slope of the MSD equal to one. Because the particle has an
in�nite amount of space available, it does not get stuck in some limited region of space,
and therefore the di�usive state lasts for an in�nite amount of time.
When the amount of unavailable space increases, the MSD starts to change shape. By
looking closely, we can see that, on the middle panel which shows the system closer to
the percolation transition, between the initial ballistic regime and the long time di�usive
regime, an intermediate regime starts to develop. This regime is characterized by a slope
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Figure 1.9: Topography and transport regimes of classical particles in a 2D
anisotropic speckle potential (anisotropy factor� x=� y = 2). Panels (a){(c) show
the allowed (white; V(r ) < E ) and forbidden (gray; V(r ) > E ) regions for a
classical particle of energyE in the disordered potentialV(r ). Di�erent columns
correspond to the same realization of the disordered potential and di�erent ener-
gies. VR is the average amplitude of the disordered potential. Panels(d){(f ) show
the mean square displacements along the directionsx and y (respectively the blue
and red lines) as a function of time. Reproduced from Pezz�eet al. (2011).

of the MSD lower than one, as already seen in �gure 1.3, and is called a subdi�usive
regime. As the amount of unavailable space increases further, the subdi�usive regime
gives rise, at very long times, to another dynamical state of the tracer: the localized
state, where the particles, after having explored and experienced collisions with their
surroundings, get stuck in some region of space they cannot escape. This state is char-
acterized by a plateau of the MSD at long times.

This very last study can be seen as a con�rmation of the percolation model in the case
of a system in which the Newtonian model of the dynamics is considered. Furthermore,
Yang and Zhao (2010); Skinneret al. (2013); Schnyderet al. (2015, 2017) show that the
percolation model also applies to the case of a uid that interacts with its potetial with
smooth interactions, as it is the cas in the system developped by Everset al. (2013a).
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The preceding results were derived considering that the uid under study follows New-
tonian dynamics, i.e., a system whose energy is conserved, leading to the phenomenon
called localization, where a particle, or a group of particles are trapped in a localized re-
gion of space, due to the fact that they do not have enough energy to climb up the wells
created by the potential. However, in the experimental systems discussed above, the
natural framework to be used to study the dynamics is the one of the Brownian motion,
in which the energy of the system is not conserved. Therefore, in a system like that of
Zallen and Scher (1971) but set in a Brownian motion framework, a particle stuck in a
localized region of space might eventually be able to escape it, thanks to thermal energy
uctuations due to the bath. This last fact makes the Browian framework much more
di�cult to tackle, as it generaly requires more sophisticated approaches to understand
(De Gennes, 1975; Zwanzig, 1988; De Masiet al., 1989; Chakraborty et al., 1994; Deem
and Chandler, 1994; Deanet al., 2007; Touya and Dean, 2007; Dean and Touya, 2008).
This m�codel can lead to a great variety of scenarios depending on the dimensionality,
and the disorder con�guration.

The work of De Masi et al. (1989) on the di�usion coe�cient sets this last statement in
a rigorous way. The main result of this paper is the following :

D s
1-dim (�" ) � D s

2-dim (�" ) � � � � � D s
(D � 1)-dim (�" ) � D s

D -dim (�" ) � D s(0); (1.1)

whereD s
d-dim (�� ) is the di�usion coe�cient of a tracer in a d-dimensional disordered po-

tential. �" is a measure of the amplitude of the random potential relative to the thermal
energykB T = � � 1, as de�ned in chapter 2, for instance. It translates experimentally to
the power of the laser used to generate the speckle.D s(0) is the di�usion coe�cient of
a tracer without the presence of an external disordered potential and is invariant with
respect to the dimensionality of the system. Equation 1.1 states that the di�usion coef-
�cient of a tracer only goes up with the dimensionality, and that there is an upper limit
to that parameter, which is the value for an undisturbed system.

Another result, discussed in the review of Deanet al. (2007), is to be combined with this
one to gain crucial insight. It consists of analytic expressions for the di�usion coe�cients
of tracers in Gaussian random potentials in one and two dimensions:

D s
1-dim (�" ) = D s(0)e� (�" )2

; D s
2-dim (�" ) = D s(0)e� (�" )2 =2: (1.2)

With these results, equation (1.1) not only gives an upper bound [D s(0)] to the di�usion
coe�cient, but also a lower bound with the term D s

1-dim (�" ) as de�ned in equation (1.2).
Therefore, due to the inequalities of equation (1.1),D s

d-dim (�� ) is always strictly positive
for a system following Brownian dynamics in a Gaussian random potential, which means
that a localization of the particles as discussed before cannot exist in this framework.
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However, as one will see in chapter 5, not only a localization transition is to be found
using the mode-coupling theory (MCT), but a liquid-glass transition also occurs at higher
amplitudes of the potential. When the system is in a glass state, the particles experience
a complete dynamical arrest, and this occurs at low densities if the amplitude of the
potential is increased higher above the localization transition. The overestimation of the
localization is a known issue of the MCT, but the actual existence of the localization
and the liquid-glass transition is still to be proved, since it has not yet been observed
experimentally. Some hints to the existence of a dynamical arrest can be found, for
example in the work of Shvedovet al. (2010) mentioned above, where particles can be
trapped for more than 24 hours in a three-dimensional laser speckle. However, this study
is more a proof of concept than an extensive review of the dynamics, as done by Evers
et al. (2013a). A more in-depth experimental study of the trapping of particles in a
laser speckle would give us the tools to decide whether or not an actual localization or
transition exists in nature, despite what the Newtonian and the Brownian theoretical
frameworks have to say.

1.3 Description of the model studied in this work

Now that the state of the art in studies of particles in random potentials has been
introduced, it is time to detail the speci�cities of the present work, and present the
system in more depth. One novelty of the system we aim to study is that the number of
particles constituting the uid is very large, compared to other theoretical studies where
mostly, a single tracer has been considered. These particles having to interact with an
optical potential in a very speci�c way, we ought to de�ne the potential rigorously, as
well as the uid itself.
From the work of Evers et al. (2013b), which has been the basis of this work, it is known
that the distribution of the light intensity follows a � law. However, in that study, a
typical particle is larger than the size of a light spot in the speckle. Therefore, the
e�ective potential felt by that particle does not exactly follow that distribution. To get
the e�ective potential, one must convolute the potential over the volume of the particle.
The result of such a process is shown in �gure 1.10. It can be seen that the e�ective
potential felt by that particle takes the form of a Gaussian-distributed variable. This
process, by convoluting the volume of the particle, also removes the extended character
of its interaction with light, leaving only a point-wise interaction with a Gaussian random
potential. This point of view greatly simpli�es the problem, both by giving an easier
way to look at it, and by allowing the use of an easy-to-manipulate Gaussian model for
the potential. Therefore, this will be the basis of the development of our model.

In order to model the uid of colloids, we choose a system ofN hard spheres whose
interactions will only be excluded-volume ones, that e�ectively prevent the distance
between two particles to be less than the sum of their radii. The interaction is thus fully
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Figure 1.10: Statistics of the random potential in a speckle pattern.(a) Micro-
graph of the observed intensityI (x; y) on a disk taken at very low laser power,
and corresponding distribution of values of the intensity of the light �eld,p(I ).
(b) Potential U(x; y) as experienced by a pointlike test particle obtained by con-
voluting I (x; y) with the volume of a spherical particle, and distribution of values
of the potential as felt by a pointlike test particle,p(U). Full lines are �ts based
on � and Gaussian distributions, respectively. Adapted from Everset al. (2013b).

a hard core one, with no extra potential originating from the particles. The hard spheres
are all of the same size, no polydispersity has been introduced in the model.

Furthermore, the interaction of the particle with the potential only takes place at the
center of the former, meaning that the only e�ect the bulk of the particle has is to prevent
the approach of another particle at a distance smaller than a diameter. This echoes well
with the fact that in the experiments of Evers et al. (2013b), the whole system can be
thought of as point-like particles interacting with a Gaussian random potential.

One of the most critical parts when modeling this kind of systems is to get a correct
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picture of the external potential. Using what has previously been said concerning the
e�ective interaction, we choose to model the speckle-induced potential as a Gaussian
random potential. This kind of potential seems the simplest way to model a speckle
pattern (Menon and Dasgupta, 1994; Thalmannet al., 2000).

Since this potential is not simply a white noise, a certain correlation function has to be
included in order to account for the alternating light and dark spots. For simplicity,
this correlation function is chosen to be Gaussian as well. A quick overview of other
correlation functions, such as an exponential, a Lorentzian squared, an exponential of a
Gaussian minus one, and a hyperbolic secant showed that the di�erence is not signi�cant
as long as the correlation function is smooth, which seems to be the case in the system
that we aim to model.

The Hamiltonian of such a system can be written as follows:

H [udis](r N ) =
N � 1X

i =1

NX

j = i +1

w(jr i � r j j) +
NX

i =1

udis(r i ); (1.3)

where w(jr i � r j j) is the pair interaction between two hard spheresi and j , and udis is a
Gaussian random �eld, i.e., for any integerk � 1 and positionsx1; :::; xk , udis(x1); :::; udis(xk )
is a collection ofk random variables that obey a Gaussian distribution with zero average:

udis(x i ) = 0 ; (1.4)

where : : : represents the average over disorder. The correlation function of the potential
is a Gaussian of the form:

udis(x i )udis(x j ) = k(jx i � x j j); k(r ) = "2e� ( r =� )2

: (1.5)

In the latter expression, the two variables"2 and � can be considered as full descriptors of
the statistics of the potential. " gives the amplitude of the uctuations of the potential,
i.e., the typical depth and height of the minima and the maxima. Or to make the
link with the precedent experimental work, " represents the power of the laser used to
generate the speckle.� is the correlation length of the random �eld, or the typical size
of the potential wells in the experimental picture. Two other variables are to be taken
into account, that describe the uid plunged in the disordered potential, i.e., the number
density of the uid � , and its temperature T. Taking into account the hard-core diameter
of the particules d, we end up with the following set of parameters to fully describe the
system:

(d; "; �; �; T ): (1.6)

We might then de�ne three dimensionless parameters fully characterizing the system,

(�d 3; �=d; � = ( "=kB T )2): (1.7)
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The formation of the parameter � reects some simple physical facts. As" increases,
the depth of the minima of the potential increases, and a particle trapped inside one of
them will need more and more energy to escape, or said otherwise: a higher and higher
temperature is needed. Therefore, decreasing the temperature has the same e�ect as
increasing the amplitude of the potential. Both cases being tackled by an increase of� ,
the use of this parameter in the theory is justi�ed.

This work is presented as follows. Chapter 2 contains developments of quantities and
relations needed to calculate the structural properties of simple uids. The main quan-
tities and theories will be presented, with varying degrees of development. In chapter
3, some major results are presented concerning the structural properties, comprising a
quick overview of the e�ect of di�erent parameters on the density correlations of the
uid. Chapter 4 contains a fully detailed derivation of the Mode Coupling Theory, the
theoretical framework used to calculate di�erent dynamical descriptors of the uid, pre-
sented in chapter 5. In that chapter, a "dive into complexity and speci�city" of the
variables described is made, with the �rst results concerning phase diagrams, followed
by simple dynamical descriptors such as the MSD and the intermediate scattering func-
tion (ISF), followed by more speci�c variables such as the non-Gaussian parameter and
the local exponent, and more complex scenarios. Next, an annex-like section, chapter
6, presents the main algorithms and some tricks used during the implementation and
the resolution of the relations presented in chapters 2 and 4. Practical details about the
size of the variables and the arrays are also given, as keys to fully reproduce the results.
Finally, chapter 7 is about a Monte Carlo simulation project that has been undertaken
by the end of the PhD work. This chapter is rather short, but has the purpose to outline
future developments of the project, that can be looked forward to very soon, since the
main tools have already been implemented and validated.



Chapter 2

Structure of simple uids in
randomness: Theory

The structural properties of simple uids in randomness have an obvious interest of their
own. They are also required as input in dynamical studies within the framework of the
Mode Coupling Theory, for instance. They are therefore discussed in the present chapter
devoted to their general theory, and in the next one reporting actual quantitative results.

2.1 A few words about averages

The beginning of this chapter is dedicated to properly de�ning the concept of averaging,
which allows one to manipulate complex quantities involving many objects in the forms
of averages. Let us take the example of a system of particles without external potential
at �rst, to keep the simplicity of the picture. A microstate of such a system is de�ned as
a particular set of positions the particles occupy. Di�erent microstates can be generated
by creating di�erent con�gurations of particles, and in a continuous space, there exists
virtually an in�nite amount of them. A physical quantity, say, A is usually not de�ned
for a particular microstate, but rather as an averagehAi of many quantities ai where i
denotes a speci�c microstate. This allows one to characterize the system in a way that
covers the di�erent microstates the system can have. An ensemble average is therefore
mathematically expressed as

hAi =
Z

A(r N )P(r N )dr N ; (2.1)

where P(r N ) is the probability density of the realizations, expressed as

P(r N ) =
e� �H (r N )

Z
: (2.2)

23
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Z is the partition function of the system :

Z =
Z

e� �H (r N )dr N : (2.3)

This concept is closely linked to that of ergodicity, which states that an ergodic process
follows the rule

hAi =
Z

A(r N )P(r N )dr N = lim
T !1

1
T

Z T

0
A(r N (t))dt: (2.4)

An ergodic process is therefore de�ned as a process in which the average over an ensemble
of static con�gurations is equivalent to the average over time in a single dynamically
evolving system. If we consider ensembles of particular con�gurations of particles in the
system, and we assume that the system evolves with time, i.e., the particles move, if one
waits an in�nite time, each con�guration of the system will be eventually created by the
motion of the particles. Therefore, assuming that both the number of microstates and
the time tend towards in�nity, doing an average over the former is equivalent to doing an
average over the latter. This condition is the very one that is ruled out when a system
undergoes a liquid-glass transition. A glass phase is characterized by the dynamics of
the system being so slow that they reach arrest. In those conditions, iteration of time
does not lead to all con�gurations of the system, and the equality (2.4) does not hold
anymore. Thus, a glass transition is often called an ergodicity breaking.

When working with systems that present any kind of frozen disorder, usual statistical
mechanical tools are often unusable as such. The reason for this is that the presence
of the disorder induces a loss of translational and rotational invariance, leading to a
system essentially inhomogeneous after an ensemble average. However, the homogeneity
of the system is important to get meaningful quantities, and a new type of averaging
has therefore to be introduced in order to restore this condition: the disorder average.

The average over disorder follows a very similar scheme as that of the ensemble average.
The di�erence lies in the fact that the realizations over which the average is made do not
concern particle position microstates, but realizations of a given disordered environment.
This average, for a certain disorder dependent quantityA[udis ], can be formalized in the
following way:

A[udis ] =
Z

Pdis[udis ]A[udis ]d[udis ]; (2.5)

wherePdis[udis ] is the probability density of the realizations of the disorder, de�ned such
that Z

d[udis ]Pdis[udis ] = 1 : (2.6)

From this naturally follows the concept of ergodicity with respect to disorder. Again,
this concept is very similar to the usual ergodicity concept, in that it links a con�guration
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driven equality with a more physical one. The ergodicity with respect to disorder can
be written as

A[udis ](r ) =
Z

Pdis[udis ]A[udis ](r )d[udis ] = lim
V !1

1
V

Z

V
A[udis ](r )dr ; (2.7)

whereV is the volume of the system. This relation states that in a system that is ergodic
with respect to the disorder, doing an average over di�erent realizations of the disorder
and doing an average over the volume of the system leads to the same result. This
can be understood by virtually splitting the system in many microsystems over which
the average will be done separately. Eventually, if the size of the system tends towards
in�nity, each realization of the disorder will be found in one of the microsystems, hence
equality (2.7).

One can furthermore de�ne the concept of self-averaging quantity. A self-averaging
quantity is an additive physical quantity, which can be obtained with a good approxi-
mation for the whole system, by calculating it for one of the realizations described above.
Furthermore, this quantity has to have short range correlations, that typically do not
exceed the size of the microsystems. This statement can be expressed as

A = A[udis ] = A[udis ] (2.8)

and will be an important one for future developments.

Therefore, to be a meaningful observable in a system with quenched disorder, a physical
quantity has to be averaged over both the realizations of a same ensemble, and the
realizations of a same disorder. The problem that arises with this statement is logically
about the priority of the averages: should the average over disorder be done before
or after the ensemble average? In other words, should we calculatehAi or hAi ? This
question will be tackled in more detail further in this chapter, but an intuitive answer
can be formulated already.

In the experimental work of Evers et al. (2013a), Bewerungeet al. (2016b), and Be-
werunge and Egelhaaf (2016), which are the base comparison of the present work, mea-
surements are undertaken in a speci�c way. A laser speckle is generated and Brownian
particles are introduced in the environment. Dynamics and structure are recorded on
subpopulations of particles that are chosen so to be separated enough not to interract
with each other. In this way, a single potential is sampled almost completely, in a rigor-
ous way, while allowing for reasonable experimental times. A time average allows one,
due to the principle of ergodicity, to have an ensemble average valid on one particle po-
tential. Then, a new laser speckle is generated and the process starts over. At the end,
all the values are averaged and the result is the desired physical quantity. Therefore, a
�rst idea on what order the averages have to be done can be deduced from it: �rst the
ensemble average, then the disorder average :hAi .
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Figure 2.1: Radial distribution function of a system at a high density (� = 1:00)
with the presence of an external Gaussian random potential of relative amplitude
� = 2:53 and Gaussian correlation function of correlation length� = 0:50.

2.2 Density correlations and how to calculate them

The structural information on a uid without the presence of an external potential is
mainly contained in the function called the radial distribution function, g(r12). This
function gives the probability to �nd a particle labeled 2 at a given distance of a particle
labeled 1, normalized by this same probability in an ideal gas, i.e., a uid without any
correlation between the constituting particles. In a crystal, g(r ) presents characteristic
peaks that mirror the regular disposition of the molecules on the primitive cell. In
the case of a liquid, however, which has the essential characteristics of having no order
at short nor long range, the radial distribution function presents a damping at long
distances, characteristic of the loss of correlations, as one can see on �gure 2.1. The
function thus naturally tends towards 1 at long distances, where the said probability
equals that of an ideal gas.

The radial distribution function is linked to the so-called total correlation function by
the following simple relation:

h(r12) = g(r12) � 1: (2.9)

This subtraction simply allows the manipulation of a function that tends towards zero
at long distance, which facilitates many calculations. For simplicity the subscripts will
be omitted when possible in the following.
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The total correlation function h(r ) is furthermore formally de�ned as

h(jr � r 0j) =
h� (2) (r ; r 0)i � � 2

� 2 ; (2.10)

where � is the average density, and� (2) (r ; r 0) is the two-point density, and can thetefore
be seen as a density correlation function.

Like the radial distribution function, the total correlation function h(r ) tends to have a
particularly complex shape and cannot in many cases be expressed in simple terms. This
is the main problem concerning the characterization of the structure of simple liquids,
and even more concerning the characterization of con�ned simple liquids. The solution
starts with rewriting this complex function in simpler terms, which is the point of the
Ornstein-Zernike (OZ) relation. This relation states the total correlation function as a
chain of correlations that have a supposedly simpler expression. It reads

h(r12) = c(r12) + �
Z

c(r13)h(r32)dr 3; (2.11)

where � is the density of the uid. The OZ equation serves also as a de�nition of the
direct correlation function c(r12), in terms of h(r12). The second part of the equation
(2.11) is a convolution over the position of a particle labeled 3, and has thus the purpose
of scanning over all the particles constituting the uid. A convolution, which is a quite
complex operation in real space, can be rewritten in reciprocal space by simply taking
its Fourier transform. The advantage of this new form is that a convolution becomes a
simple product in reciprocal space,

h(q) = c(q) + �c (q)h(q); (2.12)

which greatly simpli�es the calculations.

However, the OZ relation only provides a way of rewriting the total correlation function
and to de�ne the direct correlation function accordingly. It provides no new information,
and the calculation of h(r ) and c(r ) cannot be done without the use of another relation
linking the two terms. This other relation has to close the set of equations, and is there-
fore called a closure relation. They come in many avors and levels of approximation.
Those used during this work will be spelled out later on.

The presence of an external disordered potential, as the one studied here, can have a
dramatic inuence on both the structure and the dynamics of the uid. However, the
usual OZ equation does not take into account the presence of this external potential,
and some modi�cations have to be done in order to get the correct correlation functions.
With this in mind, the replica trick developed by Edwards and Anderson (1975) gives a



28 STRUCTURE OF SIMPLE FLUIDS IN RANDOMNESS: THEORY

convenient theoretical framework to include the presence of an external disorder in the
structural calculations. This method has had many developments and applications until
Menon and Dasgupta (1994) extended it to liquids in presence of an external disorder.
It is on this theoretical basis that we will calculate the correlations needed to understand
the system.

The replica trick starts with a simple relation :

xs = 1 + s ln x + O(s2): (2.13)

The knowledge of the canonical partition function allows one to get the corresponding
free energy of the system, and thus its whole thermodynamics. The usual relation linking
the canonical partition function and the free energy is the following:

F = � kB T ln Z; (2.14)

where Z , presenting no dependence onudis , is the partition function of the system
without external disorder. However, if we include the presence of the external potential,
we have to take the average over disorder of the latter expression in order to obtain a
meaningful expression of the free energy. At �rst glance, there are two ways of doing
this:

F1 = � kB T ln Z [udis ]; (2.15)

F2 = � kB Tln Z [udis ]: (2.16)

This has quickly been tackled by experimental arguments, but an actual analysis of these
two expression can bring further con�rmation. Let us �rst consider the �rst option,
equation (2.15).

We can give the expression forZ [udis ]:

Z [udis ] =
Z

d[udis ]Pdis [udis ]Z [udis ]

=
Z

dr N d[udis ]e� � (H [udis ]( r N )� kB T ln Pdis [udis ]) : (2.17)

In the last expression of equation (2.17), we notice thatudis is actually taken as a
variable, and integrated over in the same wayr N is. From a mathematical point of vue
this means that the potential is taken to be a dynamical potential, which is obviously not
the case in the present system. If we go back to the comparison with the experimental
work, we could imagine particles undergoing their dynamics in a moving laser speckle.
The behavior of this system is expected to be very di�erent from the one we are studying
here, whose essential feature is the di�erence between quenched and annealed degrees of
freedom.
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Furthermore, thanks to the homogeneity of the external disorder, it is possible to cut the
system into many microsystems without losing the properties of this potential. It also
happens that the free energy is an additive function whose correlations are short-ranged,
e�ectively classifying it as a self-averaging quantity, as de�ned above. Due to (2.8), the
following statement is true:

F = F [udis ] = � kB Tln Z [udis ]; (2.18)

which is precisely the second writing proposed in equation (2.16). Hence, this version
of the disorder averaged free energy is the one that captures correctly the frozen nature
of the potential, while also taking advantage of the fact that the free energy is a self-
averaging quantity.

Using expression (2.13), we can write the following :

ln Z [udis ] = lim
s! 0

ln Z [udis ]s

s
; (2.19)

which we then plug into (2.16) to get

F = � kB Tln Z [udis ] = � kB T lim
s! 0

ln Z [udis ]s

s
: (2.20)

We can detail the expression ofZ [udis ]s to �nd its actual physical meaning, assuming
there is one:

Z [udis ]s =
Z sY

a=1

dr N;a e� �
P s

a =1 H [udis ]( r N;a ) : (2.21)

The latter expression is that of the partition function of s identical and noninteracting
systems, that are copies of the same original one, hence the name of the trick. Taking
the disorder average of this partition function is done by

Z [udis ]s =
Z

d[udis ]Pdis [udis ]Z [udis ]s

=
Z

d[udis ]Pdis [udis ]
Z sY

a=1

dr N;a e� �
P s

a =1 H [udis ]( r N;a )

=
Z

d[udis ]Pdis [udis ]
Z sY

a=1

dr N;a e� �
P s

a =1 [V (r N;a )+ Udis [udis ]( r N;a )]

=
Z sY

a=1

dr N;a e� �
P s

a =1 V (r N;a )
Z

d[udis ]Pdis [udis ]e� �
P s

a =1 Udis [udis ]( r N;a )

=
Z sY

a=1

dr N;a e� �
hP s

a =1 V (r N;a )� kB T ln
R

d[udis ]Pdis [udis ]e� �
P s

a =1 U dis [u dis ]( r N;a )
i

=
Z sY

a=1

dr N;a e� � [
P s

a =1 V (r N;a )+ W av
s (r N; 1 ;:::;r N;s )] :

(2.22)
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We can de�ne the replicated Hamiltonian as

H rep
s (r N;1; : : : ; r N;s ) =

sX

a=1

V(r N;a ) + W av
s (r N;1; : : : ; r N;s ): (2.23)

One can notice that by averaging out the external potential, the initially independent
replicas now have an e�ective interaction coming from the term W av

s (r N;1; : : : ; r N;s ).
This e�ective interaction can be thought to come from the presence of a potential, or
rather the fact that it has been averaged out.

In the case of Gaussian disorder, all interactions can be decomposed as sums of pairwise
interactions. We get

V (r N ) =
N � 1X

i =1

NX

j = i +1

w(jr i � r j j); (2.24)

and, for the disordered potential,

W av
s (r N;1; : : : ; r N;s ) = �

�
2

sX

a;b=1

NX

i;j =1

k(jr i;a � r j;b j); (2.25)

where k(r ) is the covariance of the Gaussian random potential and has been chosen as
a Gaussian function as well:

k(r ) = "2e� ( r =� )2

: (2.26)

Using the above-mentioned expressions, and equation (2.20), the free energy can now be
written

F = F [udis ] = � kB Tln Z [udis ] = lim
s! 0

F rep
s

s
: (2.27)

The calculation of the disorder-averaged free energy sums up to creatings replicas of the
initial system, �nding a good approximation for the e�ective Hamiltonian, and taking
the limit s ! 0 of the number of replicas. This last part involves analytic continuation.
It can be highly non-trivial and lead to breaking of the symmetry of the replicas. These
subtleties will not be covered here, but one can refer to Menon and Dasgupta (1994)
and Mezard et al. (1987) for further information.

The latter method can be applied not only to the free energy, but also to a whole other
class of dynamical variables. The case that is of particular interest here is that of the
correlation functions, which includes g(r ), h(r ) and c(r ) de�ned above. Following the
scheme of equation (2.27), one can write, for a con�gurational variable denoted byA(r N ),
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hA(r N )i =
Z

d[udis ]Pdis[udis ]
Z

dr N e� �H [udis ]( r N )

Z [udis ]
A(r N )

= lim
s! 0

Z
d[udis ]Pdis[udis ]Z [udis ]s� 1

Z
dr N e� �H [udis ]( r N )A(r N )

= lim
s! 0

Z sY

b=1

dr N;be� �H rep
s (r N; 1 ;:::;r N;s )A(r N;a );

(2.28)

where the replica symmetry allows the choice of the value ofa to be arbitrary. Using
that lim s! 0 Z [udis ]s = 1 we get

hA(r N )i = lim
s! 0

Z sY

b=1

dr N;b e� �H rep (r N; 1 ;:::;r N;s )

Z [udis ]s
A(r N;a ); (2.29)

and �nally we arrive at the replicated form of the average :

hA(r N )i = lim
s! 0

hA(r N;a )i rep
s : (2.30)

One can also de�ne

hA(r N )B (r N )i = lim
s! 0

hA(r N;a )B (r N;a )i rep
s ; (2.31)

hA(r N )ihB (r N )i = lim
s! 0

hA(r N;a )i rep
s hB (r N;b)i rep

s ; a 6= b; (2.32)

where in the �rst expression the thermal average is to be taken over the product of
these variables, leading to the correlations of these two variables taking place in the
same replica. The second expression gives the same kind of correlations, except that the
thermal average is taken over each variable separately. This translates to having the two
variables arising from two di�erent replicas. The power of the replica trick is to give
a way from a system with a quenched disorder in which the usual tools of statistical
mechanics cannot be put in good use, tos replicated systems interacting indirectly
through the presence of the disordered potential, in which variables with a standard
physical meaning can be calculated.

Looking at the previous equations, one can notice that, in the case whereA(r N ) =
B (r N ) = � (1) (r ), we get (omitting a trivial self term)

h� (1) (r )� (1) (r 0)i = � 2g(jr � r 0j); (2.33)

h� (1) (r )ih� (1) (r 0)i = � 2gd(jr � r 0j): (2.34)

The latter development of the replica theory can now help us to express the total corre-
lation function h(r ) in the framework of a system with an external disorder, by simply



32 STRUCTURE OF SIMPLE FLUIDS IN RANDOMNESS: THEORY

rewriting it in terms of correlation functions in di�erent replicas. One can write the OZ
equations applied to an unconstrained system containings di�erent species of particles:

hab(r ) = cab(r ) +
X

c

� chac(r )ccb(r ): (2.35)

The case of ans component uid is a general case of the replicated system. The main
di�erence is obviously that the replicated systems are the exact same as the original,
and this translates to simple relations in terms of correlation functions:

haa(r ) = hbb(r ); (2.36)

caa(r ) = cbb(r ): (2.37)

In equation (2.35), no restriction is imposed on the values ofa and b. One might want
to separate the terms which belong to the same species (or replicas in our case) from
the terms which describe an inter replica interaction in order to get an OZ equation for
the terms described in equations (2.33) and (2.34). The following notation will be used:

h(r ) = haa(r );

hd(r ) = hab(r );

c(r ) = caa(r );

cd(r ) = cab(r );

where the subscriptd means disconnected (a subscriptc for connected will appear later).
Now, rewriting equation (2.35) to separate the total and the disconnected components,
we get:

8
<

:

haa(r12) = caa(r12) + �
R

dr 3caa(r13)haa(r32) + ( s � 1)�
R

dr 3cab(r13)hab(r32);
hab(r12) = cab(r12) + �

R
dr 3caa(r13)hab(r32) + �

R
dr 3cab(r13)haa(r32)

+( s � 2)�
R

dr 3cab(r13)hab(r32):
(2.38)

And �nally, taking the s ! 0 limit and using the just de�ned notation, we get the
replicated OZ equation for a system with an external disorder:

8
>><

>>:

h(r12) = c(r12) + �
R

dr 3c(r13)h(r32) � �
R

dr 3cd(r13)hd(r32);
hd(r12) = cd(r12) + �

R
dr 3c(r13)hd(r32) + �

R
dr 3cd(r13)h(r32)

� 2�
R

dr 3cd(r13)hd(r32);
hc(r12) = h(r12) � hd(r12) = cc(r12) + �

R
dr 3cc(r13)hc(r32):

(2.39)

The total correlation function is the sum of the connected and disconnected parts, and
in order to get a full structural description of the system, both need to be calculated.
Furthermore, these two types of correlation functions can be related to a physical reality:
the disconnected correlation function brings the correlations between the particles that
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mainly go through the external potential, and the total correlation function ( h(r )) brings
all the correlations, considering as well those coming through the uid interactions.
Obviously interplay between the density-related and potential-related e�ects leads to a
much more complicated picture. However, considering this simple separation can help
a lot in the understanding of the complexity the potential can bring on the structural
properties of the uid.

2.3 Closure relations and how to actually get re-
sults out of the OZ equations

As stated above, the OZ relations, which are exact equations expressing the total cor-
relation functions, rather complex quantities, in terms of chains of direct and simpler
correlations between all the particles constituting the system, do not give in themselves
any more information about the structure than the total correlation functions do. In
order to calculate the latter, other relations must be introduced to close the set and
calculate the structural properties: the closure relations. The OZ equations themselves
include no approximations, but this is not the case for these new relations. In each case,
the bulk relations will be derived. The replica trick will then be applied to them, to
get the closure relation adapted to the presence of disorder. In that way, the closure
relations can be used together with the replicated OZ relations to get the full correlation
functions needed to describe our system.

2.3.1 Percus-Yevick

One of the �rst closure relations to be developed and used extensively in liquid state
theory is the Percus-Yevick (PY) relation, developed by Percus and Yevick (1958), hence
the name. This relation will be systematically taken as the starting point for the devel-
opment of the other closure relations hereafter. The derivation of the PY relation starts
from the idea that the direct correlation function, c(r ) as introduced in the previous
chapter, can be simply de�ned as:

c(r ) = gtot (r ) � gind (r ) (2.40)

where the terms can be empirically understood as:gtot is the standard radial distribution
function that gives the total correlation between two particles, and gind only takes into
account the correlations through the other particles of the system, i.e., the indirect
correlations. We can approximately rewrite the latter in the following way:

c(r ) � e� �w (r ) � e� � [w(r )� u(r )] (2.41)

where w(r ) denotes the potential of mean force andu(r ) denotes the pair potential.
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The point to raise here is that the actual correlations are not only consisting of direct
pairwise interactions, but also contain a lot of more complicated contributions like chains
of interactions. Thus, equation (2.41) is to be considered as an approximation.

Further developing and rearranging:

c(r ) = gtot (r ) � e�u (r )gtot (r ) = e�u (r )gtot (r )(e� �u (r ) � 1); (2.42)

leading to
e� �u (r )c(r ) = (1 + h(r ))( e� �u (r ) � 1); (2.43)

and eventually
c(r ) = (1 + h(r ) � c(r ))( e� �u (r ) � 1): (2.44)

This is the essence of the PY approximation. It is therefore simply a way to relatec(r ),
h(r ), and the pair potential. An iterative numerical solution is now possible, combining
the PY and the OZ equations, but, up to now, this only holds for bulk systems. In
order to take into account the disorder in the calculation, and use the closure and the
replicated OZ relation together, we must apply the replica trick to the closure as well.
The route to do this is the exact same as has been done with the OZ relation in the
previous section: extend the closure relation to the case of a bulk multicomponent
mixture and take the limit of the special case when the di�erent species represent di�erent
replicas. For the multicomponent PY closure we get

cab(r ) = (1 + hab(r ) � cab(r ))( e� �u ab (r ) � 1): (2.45)

Taking the particular case when the components of the mixture are but replicated ver-
sions of the original system, it is possible to distinguish between the intra-replica corre-
lations and the inter-replica correlations,

caa(r ) = ( haa(r ) � caa(r ) + 1)( euaa (r ) � 1);

cab(r ) = ( hab(r ) � cab(r ) + 1)( euab (r ) � 1):
(2.46)

Furthermore, from the form of the e�ective potential energy, equation (2.25), one gets
an e�ective pair interaction as

uaa(r ) = w(r ) � �k (r );

uab(r ) = � �k (r );
(2.47)

where w(r ) is the hard-sphere interaction, and k(r ) is the Gaussian covariance of the
disordered potential. The replicated PY relation takes therefore the �nal form

c(r ) = (1 + h(r ) � c(r ))( e� �w (r )+ � 2 k(r ) � 1);

cd(r ) = (1 + hd(r ) � cd(r ))( e� 2 k(r ) � 1):
(2.48)
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2.3.2 HyperNetted Chain

Starting with the PY relation (2.44) for the bulk system, we might rewrite it in the
following way :

c(r ) = (1 + h(r ) � c(r ))e� �u (r ) � 1 � h(r ) + c(r );

h(r ) = e� �u (r ) (1 + h(r ) � c(r ))
| {z }

� 1;

where the bracketted term can be seen as the �rst term of a Taylor expansion ofeh(r )� c(r ) .
Therefore, we can rewrite the last equation as

h(r ) � e� �u (r )+ h(r )� c(r ) � 1: (2.49)

This equation is called the HyperNetted Chain (HNC) closure relation for the bulk uids.
The HNC closure relation is an other way of rewriting h(r ) in terms of c(r ), and will
obviously lead to di�erent results compared to the PY relation. The reason for this is
their very expression, and the way the correlations are treated in each one of them.

In order to specialize this equation to systems with a frozen disorder, we follow the
scheme used for the PY relation, in which the �rst step consists in writing the equation
for a multicomponent system:

hab(r ) = e� �u ab (r )+ hab (r )� cab (r ) � 1: (2.50)

Separating the intra and the inter replica components, we get :

haa(r ) = e� �u aa (r )+ haa (r )� caa (r ) � 1;

hab(r ) = e� �u ab (r )+ hab (r )� cab (r ) � 1;
(2.51)

with a 6= b. And �nally using the notation de�ned above, we get the HNC closure
relation for systems with a quenched disorder:

h(r ) = e� �w (r )+ � 2 k(r )+ h(r )� c(r ) � 1;

hd(r ) = e� 2 k(r )+ hd (r )� cd (r ) � 1:
(2.52)

2.3.3 Mean Spherical Approximation

Starting with the HNC equation, and considering a case whereu(r ) = w(r ) + � (r ), with
w(r ) the hard-sphere potential and � (r ) a weak long-range tail, we might tentatively
write

h(r ) = e� �w (r )� �� (r )+ h(r )� c(r ) � 1

= e� �w (r )e� �� (r )+ h(r )� c(r ) � 1

� e� �w (r ) (1 � �� (r ) + h(r ) � c(r )) � 1;

(2.53)
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where the last line results from a Taylor expansion on the second exponential on the
r.h.s. The resulting equation is called the Mean Spherical Approximation, developped
by Lebowitz and Percus (1966). A better and clearer way to look at the MSA closure is
the following, for the case treated here:

�
h(r ) = � 1 inside the core;
c(r ) = � �� (r ) outside the core:

(2.54)

This closure relation takes a much simpler form compared to HNC and PY, developed
heretofore, but its validity is nonetheless to be tested. Particularly in this kind of
problems, it seems that a more complicated expression, including more terms, does not
lead to especially improved results.

Following the same scheme as previously, one may derive the replicated MSA equation:

h(r ) = e� �w (r ) (1 + � 2k(r ) + h(r ) � c(r )) � 1;

cd(r ) = � 2k(r ):
(2.55)

The last expression follows from the lack of an inter-replica hard-core interaction.

2.3.4 Exponential

Developed by Andersenet al. (1972) the exponential closure relation takes the form
of a renormalized perturbation theory. The method has initially been developed to
account for attractive interparticle Lennard-Jones potentials, and considers the latter as
a perturbation over a reference system. This closure relation is applicable here as well,
by setting the reference system as the bulk one, and the potential as the perturbation.
Therefore, this method contrary to PY, HNC, and MSA, does take its roots from a
physical argument.

In the framework of this closure relation, the correlation functions are approximated
through means of diagrammatic methods. The advantage of a diagrammatic method
is the possibility to classify and distinguish integrals, represented by the diagrams, ac-
cording to symmetry and topology criteria. Following a separation of the correlation
functions in short and long range contributions, each of them is approximated in a dif-
ferent way. The diagrams of both contributions are classi�ed using a parameter such
that  � 1 measures the range of the external potential. The short range correlations are
then approximated using the MSA closure relation, which aims to represent the reference
system in the following way:

8
<

:

href(r ) = � 1; r < d;
cref(r ) = 0 ; r > d;
hd;ref(r ) = 0 ; 8r;

(2.56)
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where the disconnected correlation functions are obviously equal to zero, since the ref-
erence system does not consider any external potential. In an alternative scheme, which
is actually the original one, the reference system is treated exactly, but the use of the
MSA results instead is generically found to represent a minor approximation.

In a �rst step, the MSA is used for the full system as well, which reads
8
<

:

hMSA (r ) = � 1; r < d;
cMSA (r ) = � 2k(r ); r > d;
cd;MSA (r ) = � 2k(r ); 8r:

(2.57)

Several ways have been designed to take a further step, and the �rst one leads to the
EXP approximation. In this approximation, we de�ne the chain sums C� (r ) and C� d(r )
as

C� (r ) = gMSA (r ) � gref(r );

C� d(r ) = gd;MSA (r ) � gd;ref(r ):
(2.58)

The chain sum takes the form of a potential applied to the reference system. As this
potential is applied on top of a hard-core one, it is said to be "renormalized". Due to
the previous approximations, and the fact that the long range parts of the correlation
functions are screened by the short ranged parts, this potential is said to be "renor-
malized". The essential step to obtain the higher order approximation EXP, is done
by a careful understanding of the nature of the diagrams included, and those that are
neglected. Adding the so-called "ring" diagrams, and retaining all the diagrams with a
nodal order of two or less, and performing additional manipulations using the properties
of the diagrams leads to the following expression for the radial distribution functions:

g(r ) = gref(r )eC� (r ) ;

gd(r ) = gd;ref(r )eC� d (r ) :
(2.59)

Inserting the expressions for the reference system calculated using the MSA, this leads
to 8

<

:

hEXP (r ) = � 1; r < d;
hEXP (r ) = (1 + href(r ))ehMSA (r )� href (r ) � 1; r > d;
hd;EXP (r ) = ehd; MSA (r ) � 1; 8r;

(2.60)

which is the form of the EXP closure relation that has been used in this work, though
as one may see in chapter 3, this closure relation did not give the expected results.
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Chapter 3

Structural properties of a uid in
a random potential

The structural properties of a uid are a very important step in understanding the dy-
namics of the system. Indeed, as one can see in chapter 4, the memory function of the
generalized Langevin equation contains a term called the memory function, which en-
codes the critical and di�cult part of the dynamics. Therefore, on the proper calculation
of this term lies the validity of the results, and this term is solely expressed in the frame-
work of MCT in terms of the structural functions, total and disconnected as described in
chapter 2. Soling the structural properties is done through solving the Ornstein-Zernike
(OZ) equation together with a chosen closure relation. Those that have been tested are
presented in chapter 2, and the results are presented in this very chapter.

3.1 General results with HNC

The bulk of the calculations have been undertaken using the HyperNetted Chain (HNC)
closure relation (see chapter 2) for the structural calculations. This closure relation is
known to perform very well for uids that present a smooth interaction. This at �rst
glance seem not to be the case here, but the external potential can be seen as an e�ec-
tive interaction between the particles, and this becomes clear if one looks at the e�ective
Hamiltonian that can be derived using the replica trick (chapter 2). In this way, HNC
came out at a �rst good choice, and showed later on to be the best among all the other
closure relations. Therefore, the more general results will be presented using this very
closure relation.

One �rst and easy to interpret result that we may compute is that of the bulk system,
i.e. � = 0 :0 which sets the amplitude of the potential uniformly to zero. In this case, the
disconnected correlation functions will all yield a expected zero result. This is of course
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Figure 3.1: Total correlation functionh(r ) of a uid of N hard-spheres, calculated
with the OZ equation together with the HNC closure relation. The density of the
uid goes up with the saturation of the color of the curves, the lowest density
being � = 0:0 and the highest� = 1:0.

to be expected, since the disconnected functions are giving the correlations between two
particles that are conveyed through the disordered potential. The usual total correlation
function can however be calculated, and is presented in �gure 3.1.

As the density increases, di�erent peaks become more and more visible in the total corre-
lation function. The value of h(r ) is closely linked to the probability of �nding a particle
at a distancer of the reference particle, normalized with that value in an ideal gas, i.e. a
uid in which particles have no interaction. One peak rises very fast with the increase in
density at r = 1, and therefore corresponds to the �rst neighbor of the reference particle,
the unit of length being the diameter of a particle, and no polydispersity having been
introduced. A second peak grows as well aroundr = 2 and corresponds to the second
neighbors, and then a third around r = 3. The height of the peaks is decreasing, and
the probability of �nding a particle at that precise distance with respect to a ideal gas
as well. At in�nite distance eventually, no precise correlation can be monitored, and the
uctuations decrease to zero, which is therefore the value they have in an ideal gas.

On the other hand, one can chooses to keep a constant value of� and instead increase
the value of the density. The simplest case of this option is when� = 0 :0, which means
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Figure 3.2: Total disconnected correlation functionhd(r ) usual total correlation
function (graphs in inset, the right picture is a zoom of the left one) of a uid of
N hard-spheres in a disordered potential of amplitude� , calculated with the OZ
equation and the HNC closure relation. The amplitude of the uid goes up with
the saturation of the color of the curves by steps of �� = 0:1, the lowest amplitude
being � = 0:0 and the highest� = 2:0.

that either only one particle is present in the system, or the particles are at virtually
in�nite distance from one another. In this case, the usual total correlation function is of
little to no interest, since no correlation between the particles is expected to be observed.
The disconnected total correlation function however is a quantity that might bring some
insight about the correlations, since it represents the correlations between the particles
that is conveyed through the disordered potential.

Contrary to the total correlation function, the disconnected total correlation function
does not have the hard-sphere core potential that prevents any correlation from happen-
ing below the distance of a diameter. Therefore, even though particles are supposedly
not in contact in the case of � = 0 :0, correlations can be found at small distances, as is
can be seen from �gure 3.2. In this �gure, the large graphs shows a disconnected total
correlation function, and each curve is drawn for a di�erent value of � , with an increase
of the saturation meaning an increase of the value of that parameter, in order to keep
the picture intuitive. The graphs in inset shows the total correlation function h(r ).
The �rst thing that is noticeable is the the short distance values of hd(r ) increases with
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Figure 3.3: Total correlation function of a uid of N hard-spheres in a disordered
potential of amplitude � = 2:0 and density� = 0:0, calculated with the OZ equa-
tion and the HNC closure relation. The four graphs are calculated for increasing
values of� , ranging from 0:25 to 1:00.

an increase of the amplitude of the potential, which is expected, since this function de-
scribe the correlations that come through the potential. The correlation are increasing
steadily, and no anomalous behavior seems to happen in this case.
One other thing to be seen here, is thath(r ) which was expected to be at outside the
hard-sphere core, presents very small but noticeable correlations aroundr = 1. The
reason for this is that since all the correlation of the system is brought solely by the
disorder, we can write h(r ) = e� � (k(r )� w(r )) � 1 where u(r ) is the covariance of the
disordered potential, and w(r ) is the hard-sphere potential, in the case of the HNC clo-
sure relation. In h(r ) the hard-sphere core overwrites the inside correlations brought by
hd(r ), and the remaining outside correlations are therefore due to the tail ofhd(r ). This
means that two particles that cannot enter in contact due to he too low density, are still
having correlations, that are the correlations the disordered potential has between the
points the particles occupy. This e�ect is therefore expected to increase with the value
of the correlation length of the potential � . And indeed, as shown by �gure 3.3, the total
correlation at constant � and density increases with the value of the correlation length
of the potential � .
The most interesting structural feature of a system with a disordered potential is when
a constant value of the amplitude of the potential � is maintained, and the density of the
system increased steadily. The result of such a process on the disordered total correlation
function can be seen in �gure 3.4.
As the density increases, the correlations due to the potential are decreasing, and this
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Figure 3.4: Total disconnected correlation function of a uid ofN hard-spheres
in a disordered potential of amplitude� = 2:0, a correlation length of� = 0:50,
and an increasing density ranging from 0:0 to 1:0 by steps of � � = 0:1. The
saturation of the color is proportional to the value of� . The graph in inset shows
the variation of the value ofhd(r ) at distance r = 0 in function of the density.
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Figure 3.5: Fourier transform of the total disconnected correlation function of a
uid of N hard-spheres in a disordered potential of amplitude� = 2:0, a correlation
length of � = 0:50, and an increasing density ranging from 0:0 to 1:0 by steps of
� � = 0:1. The saturation of the color is proportional to the value of� .

is due to the fact that a higher value of � leads the steric interactions to have more
ad more importance. The steric interaction leading to a strong hard-sphere potential,
its inuence therefore quickly takes over the softer inuence of the disordered potential,
which leads to a quick decrease of the value ofhd(r ). However, this is only true for low
to mid value of � , and one can see that at high values of the density the density,hd(r )
starts to increase again. This may not be clear from the highly overlapping graphs, but
can be more clearly seen if one plotshd(r = 0) in function of � , which gives a good idea of
this behavior. This has been done in the inset graph of �gure 3.4, and the trend is clear
: the potential-induced correlations diminish from low to mid densities, and increase
from mid to high values of this parameter. This phenomenon reects the one treated
in chapter 5, where the dynamics of the system is accelerating as the density increases,
before decelerating again at high density. Therefore, the non monotonous behavior of the
dynamics are very probably caused by the non monotonous behavior of the structure.
The Fourier transform of the disconnected total correlation function hd(q), as shown in
�gure 3.5 gives a di�erent insight on this phenomenon.
As expected in this case, the initially high peak the correlation function presents at the
vicinity of q = 0 is decreasing dramatically with an increase of the density. For high
values of the density however, a new peak starts to grow aroundq = 7. The growth



3.1. GENERAL RESULTS WITH HNC 45

Figure 3.6: Total disconnected correlation function of uids ofN hard-spheres in
disordered potentials of amplitude� = 2:0; 4:0; 6:0; 8:0 with a correlation length of
� = 0:50. The di�erent curves are for increasing density ranging from 0:0 to 1:0
by steps of � � = 0:1. The saturation of the color is proportional to the value of
� . The curves representing� = 0:0 have been cut for the sake of readability.

of this new peaks makes the overall correlations to increase again, and also pinpoints
the start of a new regime. This shows that the correlations that arise at high values
of the density are of a di�erent nature than those present at low values of the density.
We could postulate that at low value of the density, the potential plays a huge role in
positioning the particles, those having not many collisions with rest of the uid. How-
ever, as the density increases, the hard-sphere density related interactions take over the
much smoother potential, leading to a decrease ofhd(r ). At high value of the density
however the crowding becomes so intense that the uid starts to slow down leading in
turn to a reduced importance of the density related e�ects. In this case, the uid is very
dense and slow and small deviations of the position of a particle can be caused by the
presence of a minimum or a maximum of the potential in its vicinity. TO sum up, at low
density the potential can shape the structure of the uid on large scales due to the rare
interactions the particles have with the recite of the uid. At high values of the density,
crowing lets the potential to shape the correlations on a much more smaller level, due
to the dense crowding. Of course these suppositions have to be veri�ed with simulations
and actual studies of the behavior of the uid and its correlations.

This loss of correlation at mid values of the density is a phenomenon that becomes more
important as the amplitude of the potential increases, as it can be seen from �gure 3.6.

The values at r = 0 are known analytically as hd(r = 0) j � =0 :0 = e� � 1, and have
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Figure 3.7: Total disconnected correlation function at a zero distancehd(r = 0) in
function of the density � of uids of N hard-spheres in disordered potentials with
correlation lengths of� = 0:50. The di�erent curves are for increasing amplitudes
� = 2; 4; 6; 8. The value ofhd(r = 0) j � =0 has been cut out for the sake of readability,
but can be found above. The saturation of the color is proportional to the value
of � .

therefore not been plotted, to keep the �gure readable. We get for the di�erent values
of � presented in �gure 3.6:

hd(r = 0) j � =2 :0;� =0 :0 � 6:39

hd(r = 0) j � =4 :0;� =0 :0 � 53:60

hd(r = 0) j � =2 :0;� =0 :0 � 402:43

hd(r = 0) j � =2 :0;� =0 :0 � 2979:96

These values are in striking contrast with the values ofhd(r = 0) j � =0 :1 that can be seen
on the �gure, for which the inuence of � is much smaller. Therefore, as the amplitude of
the potential increases, the loss of correlations with the increase of the density increases
dramatically, by factors of thousands. The following resurgence of correlations at high
values of the density however does not follow this rather extreme trend. In �gure 3.7
the value of hd(r = 0) is plotted in function of the density of the uid.
It can be seen that, although the correlations increase again with an increase of the
density, the e�ect responsible for this does not lead the correlations to meet the values
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they have at low values of the density. This seems to work with the assumption that
the potential induced correlations at high density induces only minor and short range
inuence on the structure of the uid.

3.2 Comparisons with other closure relations

These last very general features of the correlations are not speci�c to HNC, but are a
common feature of all the closure relations and can therefore be thought to have some
kind of universality built into them. Something however that is not invariant is the
strength with which the di�erent closure relations treat the correlations, both coming
from the potential and coming from the uid. This will have dramatic consequences as
for the way the dynamics is treated because, as stated before, the dynamics are fully
dependent on the structure.

Figure 3.8 shows a comparison of the HNC ans the MSA closure relations in terms of
total correlation functions, both usual and disconnected. It is clear that the MSA closure
relation treats the correlations in a lighter way. The reason for this is not obvious at
�rst, but can be seen from the equations of the closure relations themselves, in which the
HNC treats the interparticle interactions inside a exponential, while MSA has a linear
construction, leading to a softer treatment of the correlations.

This happens in a similar way concerning the PY closure relation, as seen in �gure 3.9.
The PY closure relation underestimates the correlations, both disconnected and usual,
compared to the HNC closure relation in a way that is very reminiscent of what happens
with MSA. This time, the equations themselves do not lead to an easy answer as to
why, PY and HNC both being constructed around an exponentiation of the correlations
between the particles.

Finally, looking at �gure 3.10, we can see that the EXP closure relation is underesti-
mating the usual total correlation function, while overestimating the disconnected total
correlation function, compared to HNC.
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Figure 3.8: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a uid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and MSA closures rela-
tions (plain black and dotted pink curves respectively) at a density of� = 0:50,
an amplitude of the potential of � = 2:0 and a correlation length of the potential
of � = 0:5.

Figure 3.9: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a uid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and PY closures rela-
tions (plain black and dotted pink curves respectively) at a density of� = 0:50,
an amplitude of the potential of � = 2:0 and a correlation length of the potential
of � = 0:5.
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Figure 3.10: Total correlation function (left panel) and disconnected total corre-
lation function (right panel) of a uid of N hard spheres in a random Gaussian
potential, calculated using the OZ equation and the HNC and EXP closures rela-
tions (plain black and dotted pink curves respectively) at a density of� = 0:50,
an amplitude of the potential of � = 2:0 and a correlation length of the potential
of � = 0:5.

3.3 Unfortunate outcomes and unphysical solu-
tions

3.3.1 HNC

Overall even small discrepancies, many of these closure relations give very similar results
concerning h(r ) and hd(r ). These small discrepancies however can lead to massive dif-
ferent outcomes concerning dynamics, and without possible experimental comparison,
selecting a "more accurate" closure relation is not possible. However, one of the reasons
why HNC has been kept as the closure relation of choice in this work, is because of the
unreliability of most of all the other closures that have been tested.

As interesting as HNC is as a closure relation, it does present its fair share of issues
as well, but they mainly occur at extreme values of the correlation length. As showed
previously, the increase in correlation length leads to changes in the behavior of the
structural functions. The study mainly focuses on� = 0 :5, being close to what has been
experimentally measured. Small increments around this value have been undertaken, but
in order to be fully rigorous, a study of the structural functions beyond this arbitrary
limit has to be undertaken. Unfortunately, a quick glance to what happens beyond
� = 1 :0, tells us that the limits of the HNC closure relation is exactly the one that has
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Figure 3.11: Total disconnected correlation function in real (left panel) and re-
ciprocal space (right panel) of a uid ofN hard spheres in a random Gaussian
potential, calculated using the OZ equation together with the HNC closure rela-
tion at a density of � = 0:08, an amplitude of the potential of� = 26:95156 (plain
line) and � = 26:95157 (dashed line), and a correlation length of the potential of
� = 1:25.

been arbitrarily set. Indeed, if one proceeds to explore the variable space (�; �; � ) further,
the structural functions seem to reach very quickly a new branch of solutions. In order to
stay consistent with the rest of the calculations, a value of� = 1 :25 has been tested. The
structural functions have then been used as inputs for the calculation of a phase diagram,
as described in chapters 4 and 5. At a low value of of the density of� = 0 :08, and an
amplitude of � = 26, which has been later on re�ned to � = 26:95156, the dynamical
calculations seemed to meet a new branch of solutions, that had physically no sense. This
phenomenon could be traced down to its structural origins, as an unexpected behavior
of hd

q . In �gure 3.11 is shown the disconnected total correlation function in real and
reciprocal space at the precise point where this new branch of solutions is met.

As it can be seen from the right panel, the disconnected total correlation function changes
very suddenly, passing the value� = 26:95156, and present afterwards a negative peak
around q = 7. The corresponding change in the real space behavior is even more dra-
matic, with a disconnected total correlation function presenting very clear oscillations
where it previously was simply monotonically decreasing.
Such a behavior is physically unrealistic, and is prohibited by the very de�nition of the
disconnected total correlation function in reciprocal space :

hd
q (t) = h� q (t)ih� �

q (t)i (3.1)
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which has the symmetry of the square of the complex function� q (t), and cannot therefore
be negative. A positive Fourier component is by de�nition a property of the disconnected
total correlation function, and an essential characteristic of all correlation functions in
general. This requirement is however not taken into account by the OZ equation nor
by the HNC closure relation. Therefore, the mathematical structure of these relations
leads, after multiple iterations and at extreme values of the correlation length, to the
consequence that the disconnected total correlation function does not present anymore
the main characteristic of a correlation function. This is unfortunate, and because it is
purely a mathematical artifact without any physical explanation, nothing can be really
done to circumvent the problem. This new branch of solution, event though mathe-
matically allowed, is unrealistic and leads the dynamical calculations in a dead end.
Increasing the value of� further leads to the same result.

3.3.2 Percus-Yevick

The PY closure relation, which is one of the most used relations and is well known for
its accuracy concerning hard-sphere systems has been tested on the present system as
well. Unfortunately, its failures are even more dramatic than those of the HNC closure.
Considering that the purpose of calculating the structural properties is being able to
calculate the phase diagram and other dynamical properties, PY fails almost entirely.
Figure 3.12 shows the Fourier component of the disconnected total correlation function
at a given low value of the density � = 0 :15, and respectively � = 2 :0 and � = 4 :0.
n�gure As one can see, a small increase of the amplitude from� = 2 :0 to � = 2 :0 leads
hd

q to present an unwelcome negative minimum aroundq = 13. This minimum leads
to a total failure of the MCT equations, that require only positive values to calculate
the dynamical variables and the phase diagram. An increase of the amplitude of the
potential beyond � = 4 :0 leads to a failure of the iterative resolution of the OZ equation
and the PY closure relation as well. Furthermore, an increase of the density at low
values of the amplitude leads to the apparition of the same negative minimum. It seems
that the PY relation fails very early, both in terms of density and of amplitude of the
potential. Its the area of exploitability is therefore con�ned to the bottom left of the
phase diagram, and to the regions of high density.

3.3.3 EXP

On the other hand, the EXP closure relation has a good performance, for the low values
of the density. But the high densities are the issue with this closure relation. Figure
3.13 shows the Fourier component of the connected static structure factorSd

q for a high
density of � = 1 :0 and an amplitude of � = 0 :5. The static structure factor is de�ned as
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Figure 3.12: Fourier component of the total disconnected correlation function of
a uid of N hard spheres in a random Gaussian potential, calculated using the
OZ equation together with the PY closure relation at a density of� = 0:15, an
amplitude of the potential of � = 2:0 (plain line) and � = 4:0 (dashed line), and a
correlation length of the potential of� = 0:5.
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Figure 3.13: Fourier component of the connected static structure factor of a uid of
N hard spheres in a random Gaussian potential, calculated using the OZ equation
and the HNC closure relation at a density of� = 1:0, an amplitude of the potential
of � = 0:5 and � = 4:0, and a correlation length of the potential of� = 0:5.
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;
Sc

q = 1 + �h c
q (3.2)

where hc
q is the connected total correlation function, and is subject to the same limita-

tions than hd
q concerning the fact that it cannot have negative values, in order to be a

proper correlation function. Therefore, as one can see on the graph in inset, which is
simply a zoom of the �rst values of Sc

q, this function presents a negative peak around
q = 0, which increases with the increase of the amplitude of the potential. This negative
peak leads here again unfortunately the dynamical calculations to encounter a dead end.

All these problems should be seen as further justi�cations of why the HNC closure
relation has been chosen as the relation of choice : PY does not allow for calculations at
low values of the density, EXP encounters similar problems at high values of the density.
And �nally, while HNC and EXP lead to similar results when calculation is possible,
MSA and PY leads extreme values of the phase diagram. While this is not necessarily
an issue, the fact that HNC is known to be very accurate, and that MSA is known to be
a simplistic closure relation contributes to push MSA aside, and consider HNC as our
closure relation of choice.



Chapter 4

Dynamics of a hard-sphere uid
in a disordered environment:
Mode Coupling Theory

The original eponymous Langevin equation developed in 1908 (Lemons and Gythiel,
1997) takes the simple assumption of a particle, said to be Brownian, in a solvent itself
composed of smaller particles. This development came from the need to understand
observations made by Jan Ingenhousz and Robert Brown of respectively coal dust par-
ticles in an alcohol solution and pollen grains in water, that were seemingly moving in
a random fashion. In those cases, the pollen and the dust are the Brownian particles,
whose size compared to the solvent molecules is huge. This very di�erence in sizes and
therefore of timescales leads to an actual separation of these two types of particles, that
allows for an e�cient treatment of the forces in action in this system. The �rst force felt
by the Brownian particle takes the form of an isotropic random force with a Gaussian
distribution that pushes the particle in a di�erent direction at every moment. This force
is due to the presence of the multiple solvent particles around the big particle, and their
collisions with the latter are at the origin of the observed e�ect. The second force to
be accounted for takes the form of a friction force that appears when the big particle
attempts to pass through a bulk of solvent particles. Hence, the solvent particles are
responsible both for the dynamics and the damping of the dynamics of the big particle
(Haw, 2002; H•anggi and Marchesoni, 2005; Frey and Kroy, 2005; Babi�cet al., 2005).
The Langevin equation takes the following form:

m•x(t) = � � _x(t) + � (t); (4.1)

where m is the mass of the big particle,x(t) its position, � is the friction coe�cient and
� is the random force that pushes the particle around.

The presence of a random isotropic force in the Langevin equation accounts for the so-
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called Markovian processes in Brownian systems. A process is called Markovian when,
if this process is stochastic, the probability of obtaining a certain outcome at time, say,
t + 1 only depends on the immediate past of the process, i.e., its state at timet. In
more rigorous terms, one can write, for a random variableX that follows a Markovian
scheme,

P(X t+1 = xjX 0; X 1; X 2; :::; X t ) = P(X t+1 = xjX t ); (4.2)

where x is the outcome of the process.

A Markovian process is thus characterizing phenomena with a very small correlation
time, virtually none, which is precisely the case of the collisions of the solvent particles
against the big particle. The latter point seems obvious, but specifying the underlying
reasons can be of some utility. We can distinguish two major time scales that are at
play in Brownian motion, namely � s � 10� 12 s, the relaxation time of a solvent particle,
and � b � 10� 3 s the relaxation time of the Brownian particle. Clearly the di�erence in
timescales is huge, and its origin can be traced back to the di�erence in size between
the two types of particles. The Markov property of Brownian motion thus comes from
the fact that, due to the humongous di�erence in timescales, the number of collisions
experienced by the Brownian particle is of the order of 1014 per second. Clearly, after
1014 collisions, no memory of the �rst one can be kept, and the whole process can be
thought as being a memoryless random process.

Is the Langevin equation still valid when one wants to calculate the properties of a
uid like the one described in chapter 1? As a reminder, we consider a uid made of
N identical sized particles with a hard-sphere potential, undergoing their dynamics in
a three dimensional Gaussian random potential with a Gaussian correlation function.
Clearly, we are far from the considerations of Einstein, von Smoluchovski and Langevin,
since each particle is plunged in a bath of other identical particles, and both the scales
of size and time are of the same order of magnitude. The essential hallmark of the
historical Langevin equation is the clear separation of those scales: the forces arising
from the solvent particles are the "fast" variables, and are therefore treated altogether
as a white noise; the position of the big particle is the "slow" variable and the one we want
to get the behavior of. The absence of a clear timescale separation makes it impossible
to treat the present system in such a simple way. In order to recover an equation of
motion in the form of a Langevin equation, one has to separate "slow" variables from
"fast" variables in a way that correctly represents the physical nature of the system.

The whole problem stands on the basis of a good de�nition for the fast and slow variables,
and this is very dependent on the system under study. A good de�nition leads then to
the development of a new equation of motion, that accounts for the new variables. Such
an equation is called a Generalized Langevin Equation (GLE), and its development will
be the point of this chapter. A lot of quantities used in this development are de�ned
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and explained in chapter 2, one can refer to there for more information. In order to keep
the derivation as straightforward as possible, the generalized Langevin equation forN
hard-spheres in a Gaussian random potential will be directly derived: the bulk system
will be considered as a particular case of this one. After having de�ned and derived
the generalized Langevin equation, approximations will be made that will lead to the
derivation of the Mode Coupling Theory (MCT), that allows for an actual solution of the
GLE, and more importantly accounts for the non-Markovian processes in an accurate
way G•otze (1991, 2009).

Knowing the strengths and the weaknesses of a theory is important, and MCT has it
fair share of both of them. This theory is mostly known to correctly predict nontrivial
dynamical scenarios, such as the reentry phenomenon and logarithmic relaxations in the
slow dynamics of uids with short-ranged attractions (Fo� et al., 2002; Zaccarelliet al.,
2002; Sciortino et al., 2003; Pham et al., 2004). More recent studies show its ability
to reproduce strong non-monotonic variations of the dynamics of uids con�ned in slit
pores (Langet al., 2010; Mandalet al., 2014).

On the other hand, MCT tends to consisteltly overestimating the dynamical slowing
down of the liquid, which leads to the usual prediction of sharp ergodicity beaking
(G•otze and Sj•ogren, 1992; G•otze, 1999). This will lead natuarally to the calculation of
transition lines with a great precision, and to the subsequent building of phase diagrams,
which even though being issued from a known anomaly of the theory, can lead to fruitful
discussion about the behavior of the dynamics for di�erent kind of systems.

The following development relies on a version of the MCT that specializes the theory to
systems with quenched-annealed degees of freedom. In particular, it is dealt with a ma-
trix of frozen particles, that aims to represent streamlined models of amorphous porous
solids. Single particle system (G•otzeet al., 1981b,a; Leutheusser, 1983a; Szamel, 2004)
and extensions to uids of nonzero density has been made Krakoviack (2005a,b, 2007,
2009, 2011). The corresponding theoretical predictions have been compared with com-
puter simulation results (Kurzidim et al., 2009, 2010, 2011; Kimet al., 2009, 2010, 2011;
Spanneret al., 2013) and show to outline a good picture of the dynamics of the system.
This supports the idea that this version of the MCT can indeed be put to good use in
studies of uids in "pure" randomness. The connection with the present problem follows
from the observation that the MCT equations for the random uid-matrix systems make
no reference at all to the particulate character of the disorder Krakoviack (2007, 2009).
Therefore, whether the disorder is originated from a quenched-annealed matrix, or from
an external potential as the one described in chapter 2, does not change the applicability
of this theory. This naturally suggests that this framework might have a broader domain
of application, encompassing many system that present frozen disorder, to which MCT
can be systematically applied after calculation of the structural correlations using the
relations presented in chapter 2.
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The following presents a detailed derivation of the MCT framework extended to the case
of a system with disorder originating from an external potential. One has to keep in
mind that this derivation concerns a three-dimensional system ; it has been found that
derivation from �rst principles of this theory in less than three dimensions gives rise
to serious di�culties (G•otze, 1978, 1979; G•otze et al., 1979; G•otze, 1981; Leutheusser,
1983b; Schnyderet al., 2011).

4.1 Collective dynamics

4.1.1 Generalized Langevin equation

We consider a uid made of N spherically symmetric and identical particles of mass
m in a Gaussian random potential with a Gaussian correlation function as de�ned in
chapter 1. The volume of the system is given asV , and the total density of the uid
accordingly, as� = N=V.
We choose to consider the set of slow variables�� q (t) = � q (t) � h � q i , with

� q (t) =
NX

j =1

ei qr j (t ) ; (4.3)

and gq (t) =
P N

j =1
q
q � p j (t)ei q r j (t ) , where r j (t) is the position of uid particle j at time

t and p j (t) its momentum.
We have the following static correlations:
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whereh: : : i denotes the thermal average,: : : is the disorder average, as de�ned in chapter
2. Sc(q) is the connected static structure factor, de�ned asSc(q) = 1 + �h c

q, where hc
q is

the Fourier transform of the connected total correlation function.
We de�ne the autocorrelation matrix C(q; t) of the set of slow variables that have been
chosen as

C(q; t) =
1
N

��
�� q (t)
gq (t)

�
�
�
�� � q g� q

�
�

=
1
N

2

4
h�� q (t)�� � q i h�� q (t)g� q i

hgq (t)�� � q i hgq (t)g� q i

3

5 =

"
F (q; t) C �g (q; t)

Cg� (q; t) Cgg(q; t)

#

;

(4.6)
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where the speci�c quantity F (q; t) at the top left of the matrix is the density uctuation
autocorrelation function, and its behavior is an indicator of the relaxation undergone
by the uid. Its behavior in time is an indicator of how much correlations the density
uctuations have with their value at initial time. Furthermore, its in�nite time value is
of great interest as well, since it de�nes the phase of the uid, and allows for the building
of phase diagrams. It is therefore the main focus in studying the slow dynamics of uids,
hence in the present work.

Using a projection operator denoted asP , that has the property of extracting the slow
component of a given variable, we arrive at a generalized Langevin equation for the
matrix C(q; t):

_C(q; t) = i 
 (q)C(q; t) �
Z t

0
d� K (q; t � � )C(q; � ); (4.7)

which is an exact equation for the matrix of correlation functions C(q; t). K (q; t) is
called the memory function. As it can be seen from the structure of the integral on the
r.h.s. of equation (4.7), the memory function accounts for an e�ect that happens at a
time prior to the present moment. It is de�ned as

K (q; t) =
��

0
Rq (t)

�
�
�
0 R� q

�
� " ��

�� q
gq

�
�
�
�� � q g� q

�
� #� 1

=

2

4
0 0

0 hRq (t)R� q i

3

5

"
(NSc(q)) � 1 0

0 (NkB Tm) � 1

#

=

2

6
4

0 0

0
hRq (t)R� q i

NkB Tm

3

7
5 =

"
0 0

0 M (q; t)

#

(4.8)

This term accounts for the non-Markovian processes that are expected to be very im-
portant in a uid made of identical particles, and is therefore crucial in the calculation
of the time behavior of the said uid. Furthermore, the term Rq (t) is de�ned as

Rq (t) = ei QL Q t iQL gq ;

which is the force described earlier as the uctuating and random e�ect coming through
the many collisions experienced by the particles from their environment. L is the
Liouville operator of the system, and Q is the projector on the space orthogonal to the
slow variables, i.e., it e�ectively projects a given quantity on the subspace of the fast
variables. Therefore we have

QRq = I �
hRq �� � q i
NSc(q)

�� q �
hRqg� q i
NkB Tm

gq ;
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where I is the identity operator.

Finally, we de�ne 
 (q) as an intrinsic frequency of the system, characterizing the short
time dynamics:

i 
 (q) =
��

� _� q
_gq

�
�
�
�� � q g� q

�
� " ��

�� q
gq

�
�
�
�� � q g� q

�
� #� 1

=

"
0 iNqkB T

iNqkB T 0

# "
NSc(q) 0

0 NkB Tm

#� 1

=

"
0 iNqkB T

iNqkB T 0

# "
(NSc(q)) � 1 0

0 (NkB Tm) � 1

#

=

2

4 0
iq
m

iqkB TSc(q) � 1 0

3

5 :

(4.9)

The point is here to derive an equation of motion forF (q; t), the top left component of
C(q; t) (equation (4.6). This function, otherwise called the density uctuation autocor-
relation function, or the ISF gives precious information about the relaxation process a
uid undergoes towards its �nal phase. Ultimately, the in�nite time behavior of F (q; t)
de�nes the phase of the uid, which is the main concern in the present work.

Inserting the expressions ofC(q; t), 
 (q; t) and K (q; t) into (4.7) leads to a matrix equa-
tion, whose evaluation would in theory enable the calculation of the top left component
F (q; t). However, the presence of a convolution product in the r.h.s. of equation (4.7)
renders the latter extremely di�cult. The solution comes from introducing the Laplace
transform in the form of

~f (z) = i
Z 1

0
dteizt f (t): (4.10)

Applying it to equation (4.7), we �nd that

� iz

2

4
~F (q; z) ~C �g (q; z)

~Cg� (q; z) ~Cgg(q; z)

3

5 � i

"
Sc(q) 0

0 kB Tm

#

=

2

4 0
iq
m

iqkB TSc(q) � 1 0

3

5

2

4
~F (q; z) ~C �g (q; z)

~Cg� (q; z) ~Cgg(q; z)

3

5

+ i

"
0 0

0 ~M (q; z)

# 2

4
~F (q; z) ~C �g (q; z)

~Cg� (q; z) ~Cgg(q; z)

3

5 ; (4.11)
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which can be solved for ~F (q; z):

� iz ~F (q; z) � iS c(q) =
iq
m

~C �g (q; z): (4.12)

This expression presents the term ~C �g (q; z) in its r.h.s., which can also be calculated
using the Laplace transform of equation (4.11):

� iz ~C �g (q; z) = iqkB TSc(q) � 1 ~F (q; z) + i ~M (q; z) ~C �g (q; z); (4.13)

and ultimately, gathering these two equations,

� iz
h
� iz ~F (q; z) � iS c(q)

i
=

iq
m

h
� iz ~C �g (q; z)

i

= �
q2kB T

m
Sc(q) � 1 ~F (q; z) + i ~M (q; z)

h
� iz ~F (q; z) � iS c(q)

i
:

(4.14)

After inverting the Laplace transforms of equation (4.14), one gets a Generalized Langevin
Equation (GLE) for the density uctuation autocorrelation function F (q; t) alone:

•F (q; t) + 
 2(q)F (q; t) +
Z t

0
d�M (q; t � � ) _F (q; � ) = 0 ; (4.15)

with 
 2(q) = q2kB T=mSc(q) and initial conditions F (q;0) = Sc(q) and _F (q;0) = 0.

4.1.2 Mode Coupling Theory

The equation of motion that has just been derived takes the form of a GLE, and lies on
the basis of a separation of the slow and fast variables. However, de�ning what is slow and
what is fast solely on the basis of our intuition will not lead to a very rigorous separation.
Therefore, the supposedly fast parts of the dynamics contained in the uctuating random
force Rq (t) will not necessarily be the fastest objects in the problem, and this can a�ect
the quality of the calculated dynamics. The point of the Mode Coupling Theory (MCT)
is to get a better separation of the fast and slow variables by considering quadratic
contributions of the slow variables. These quadratic contributions are thought to contain
some slow parts as well, though not as slow as the linear slow variables. The point is
then to extract these quadratic slow variables from the random force, in order to include
them in the memory function, and in this way proceed towards a better separation of
fast and slows modes of the system.

We here de�ne two terms quadratic with respect to the slow variables, in the form of

Bq;k = �� k �� q� k ;

Cq;k = �� k h� q� k i :
(4.16)
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The random force Rq and quadratic variables Bq;k and Cq;k have similar symmetry
properties, and coupling them will allow to extract a remaining slow part of the random
force (i.e., the slower parts of the fast term).
One might ask why the initial slow variable gq has not been used to create quadratic
variables in the form of either Dq;k = �� k gq;k or Eq;k = gk gq;k . The reason for this lies
in the symmetry of the slow variables in question. Indeed,gq (t) =

P N
j =1

q
q � p j (t)ei q r j (t )

takes the form of a current, or a momentum, which under time reversal changes sign.�� q ,
however, remains unchanged under time reversal, as does the random forceRq . There-
fore, there is no coupling betweenDq;k and the random force. Furthermore, the variable
Eq;k = gk gq;k can be shown to be always ergodic, and therefore cannot contribute to a
glass transition, which is still the main purpose of the MCT.
The corresponding slow part ofRq is obtained using the projection operatorP, de�ned
as

PRq =
X

k

0
hRqB � q;� k i G(q; k)Bq;k +

X

k

hRqC� q;� k i H (q; k)Cq;k ; (4.17)

where we have anticipated the fact that, within the mode-coupling approximation, P
is diagonal in k and the subspaces spanned byB and C are orthogonal. The matrices
G(q; k) and H (q; k) insure the normalization of the projector:

PBq;k = Bq;k ;

PCq;k = Cq;k :
(4.18)

In the following, a mode coupling approximation is performed, in order to compute the
following expressions:

hei QL Q t Bq;k B � q;� k i = N 2F (k; t )F (jq � k j; t); (4.19)

hei QL Q t Cq;k C� q;� k i = N 2F (k; t )Sd(jq � k j); (4.20)

hei QL Q t Bq;k C� q;� k i = 0 ; (4.21)

where Sd(q) is the disconnected structure factor, de�ned asSd(q) = �h d(q).
This allows for the calculation of the normalization functions G(q; k) and H (q; k):

G(q; k) = N � 2Sc(k) � 1Sc(jq � k j) � 1; (4.22)

H (q; k) = N � 2Sc(k) � 1Sd(jq � k j) � 1: (4.23)

It remains to obtain hRqB � q;� k i and hRqC� q;� k i . Using the de�nition of Bq;k and Cq;k ,
and the fact that Q = 1 � P , we can rewrite these two terms as

hRqB � q;� k i = hiQL gqB � q;� k i = hiL gqB � q;� k i � hiPL gqB � q;� k i ; (4.24)

hRqC� q;� k i = hiQL gqC� q;� k i = hiL gqC� q;� k i � hiPL gqC� q;� k i : (4.25)
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Using that f gq ; �� � k g = i q�k
q � q� k and f gq ; h� � k ig = 0, where f : : : g denotes the Poisson

brackets, let us calculate the �rst term on the r.h.s. of equation (4.24):

hiL gqB � q;� k i = kB Thfgq ; B � q;� k gi

= kB T
�

hfgq ; �� � k g�� � q+ k i + hfgq ; �� � q+ k g�� � k i
�

= ik B T
q
q

�
h
kh� q� k �� � q+ k i + ( q � k)h� k �� � k i

i

= iNqkB T
�

q � k
q2 Sc(jq � k j) +

q � (q � k)
q2 Sc(k)

�
:

And similarly for equation (4.25):

hiL gqC� q;� k i = kB Thfgq ; C� q;� k gi = kB Thfgq ; �� � k gh� � q+ k ii

= ik B T
q
q

� kh� q� k ih� � q+ k i

= iNqkB T
q � k
q2 Sd(jq � k j):

Terms of the form h�� q �� � k �� � q+ k i are three body structure factors. Using the con-
volution approximation, these complex quantities can be expressed as products of two
body structure factors that were de�ned in chapter 2:

h�� q �� � k �� � q+ k i = NSc(q)Sc(k)Sc(jq � k j); (4.26)

h�� q �� � k ih� � q+ k i = NSc(q)Sc(k)Sd(jq � k j): (4.27)

The second terms on the r.h.s. of equation (4.24) and (4.25) is calculated as

hiPL gqB � q;� k i = hiL gq �� � q i N � 1Sc(q) � 1h�� q �� � k �� � q+ k i

= iNqkB TSc(k)Sc(jq � k j);
(4.28)

hiPL gqC� q;� k i = hiL gq �� � q i N � 1Sc(q) � 1h�� q �� � k h� � q+ k ii

= iNqkB TSc(k)Sd(jq � k j);
(4.29)

using that

hiL gq �� � q i = h_gq �� � q i = � hgq � _� � q i =
iq
m

hgqg� q i = iNqkB T:

We de�ne the vertices V (2) (q; k) and V (1) (q; k) as

V (2) (q; k) = hRqB � q;� k i G(q; k); (4.30)

V (1) (q; k) = hRqC� q;� k i H (q; k); (4.31)
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such that
PRq =

X

k

0
V (2) (q; k)Bq;k +

X

k

V (1) (q; k)Cq;k ; (4.32)

which can now be computed:

V (2) (q; k) =
iqkB T

N

�
q � k
q2 Sc(jq � k j) +

q � (q � k)
q2 Sc(k) � Sc(k)Sc(jq � k j)

�

Sc(k) � 1Sc(jq � k j) � 1

=
iqkB T

N

�
q � k
q2 Sc(k) � 1 +

q � (q � k)
q2 Sc(jq � k j) � 1 � 1

�

= �
iqkB T

N
�

�
q � k
q2 cc(k) +

q � (q � k)
q2 cc(jq � k j)

�
;

V (1) (q; k) =
iqkB T

N

X �
q � k
q2 Sd(jq � k j) � Sc(k)Sd(jq � k j)

�
Sc(k) � 1Sd(jq � k j) � 1

=
iqkB T

N

�
q � k
q2 Sc(k) � 1 � 1

�

= �
iqkB T

N
�

�
q � k
q2 cc(k) +

q � (q � k)
q2

1
�

�
:

We have now the expression ofPRq ,

PRq = �
iqkB T

N
�
X

k

0X �
q � k
q2 cc(k) +

q � (q � k)
q2 cc(jq � k j)

�
Bq;k

�
iqkB T

N
�

X

k

X �
q � k
q2 cc(k) +

q � (q � k)
q2

1
�

�
Cq;k ; (4.33)

and we can complete the calculation ofM (MC) (q; t),

M (MC) (q; t) =
hPRq (t) PR� q i

NkB Tm
; (4.34)

which can be split into two parts,

M (MC) (q; t) = M (2) (q; t) + M (1) (q; t); (4.35)

with

M (2) (q; t) =
1
2

�
q2kB T

m
1
V

X

k

�
q � k
q2 cc(k) +

q � (q � k)
q2 cc(jq � k j)

� 2

F (k; t )F (jq � k j; t) (4.36)
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and

M (1) (q; t) = �
q2kB T

m
1
V

X

k

�
q � k
q2 cc(k) +

q � (q � k)
q2

1
�

� 2

F (k; t )Sd(jq � k j): (4.37)

Dividing the generalized Langevin equation (4.15) bySc(q), we get the equation for the
normalized ISF � (q; t):

•� (q; t) + 
( q)2� (q; t) + 
( q)2
Z t

0
d�m (q; t � � ) _� (q; � ) = 0 ; (4.38)

with initial conditions � (q;0) = 1 and _� (q;0) = 0, and


( q)2 =
q2kB T
mSc(q)

: (4.39)

Taking advantage of the fact that the long time dynamics predicted by the MCT are
essentially independent from the short time dynamics, the overdamped limit (Franosch
et al., 1997a; Fuchset al., 1998; Franoschet al., 1997b) is adopted for simplicity. It
allows for a rewriting of the generalized Langevin equation applied to the case of the
Brownian dynamics, e�ectively ruling out the friction coe�cient as a parameter of the
equation:

� (q) _� (q; t) + � (q; t) +
Z t

0
d�m (q; t � � ) _� (q; � ) = 0 ; (4.40)

with initial condition � (q;0) = 1 and

� q =
Sc(q)
D0q2 ; (4.41)

where D0 is the short time di�usivity, and the memory functions:

m(2) (q; t) =
1
2

�S c(q)
1
V

X

k

�
q � k
q2 cc(k) +

q � (q � k)
q2 cc(jq � k j)

� 2

Sc(k)Sc(jq � k j)� (k; t )� (jq � k j; t);

(4.42)

m(1) (q; t) = �S c(q)
1
V

X

k

�
q � k
q2 cc(k) +

q � (q � k)
q2

1
�

� 2

Sc(k)Sd(jq � k j)� (k; t ):

(4.43)

Often in the case of dynamical slowing down, one might be interested in the in�nite time
limit of the ISF. As it will be explicited in chapter 5, by giving the simple picture of the
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fully relaxed uid, this quantity is used to de�ne its phase, and ultimately draw a phase
diagram. The in�nite time limit of the ISF is denoted by

f (q) = lim
t !1

� (q; t); (4.44)

which can be expressed, by manipulating equation (4.40), as

f (q)
1 � f (q)

= lim
t !1

m(q; t) = m(q): (4.45)

4.2 Self dynamics

4.2.1 Generalized Langevin Equation

The case of the self dynamics, or tagged particle dynamics, can be a particularly illu-
minating one, bringing informations about the phenomena happening at the scale of
one speci�c particle rather than the whole uid. Furthermore, the self ISF is the basis
for the development of more complex dynamical quantities, such as the mean squared
displacement (MSD), the local exponent and the non-Gaussian parameter, which will be
used to characterize the dynamics in the following chapter.

One possible development of a GLE for this type of quantity follows the same path as
for the collective ISF, considering the tagged particle density instead of the collective
one, for a particle of the same species as previously:

� s
q (t) = ei qr (t ) ; (4.46)

and
gs

q (t) =
q
q

� p(t)ei q r (t ) ; (4.47)

where r is the position of the tagged particle andp is its momentum.

We obtain the Fourier transforms of the total correlation functions as

h� s
q �� � q i = �h c(q);

h� s
qh� � q ii = �h d(q):

The self density uctuation autocorrelation function (or self ISF) is expressed as

� s(q; t) = h� s
q (t)� s

� q i ; (4.48)

and �nally, the GLE is obtained as

•� s(q; t) + ! 2(q)� s(q; t) +
Z t

0
d�M s(q; t � � ) _� s(q; � ) = 0 ; (4.49)
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with initial conditions � s(q;0) = 1, _� s(q;0) = 0, and

! 2(q) =
q2kB T

m
:

The memory function M s(q; t) is given by

M s(q; t) =
hrq (t) r � q i

mkB T
;

where
rq (t) = ei Q s L s Q s t iQsL sgs

q

is the random force. L s is the Liouville operator of the system andQs is the projector
on the space of the fast variables, i.e., orthogonal to� s

q and gs
q :

Qsrq = I � hrq � s
� q i � s

q �
hrqgs

� q i

mkB T
gs

q ;

where I is the identity operator.

4.2.2 Mode coupling Theory

We de�ne the quadratic terms in form of

bq;k = � s
k �� q� k ;

cq;k = � s
k h� q� k i :

(4.50)

The random force rq and quadratic variables have similar symmetry properties and
might therefore be coupled.
Knowing that within the mode-coupling approximation, Ps is diagonal in k and that the
subspaces spanned by thebs and cs are orthogonal, the corresponding slow part ofrq

can be obtained using the projector operatorPs:

Psrq =
X

k

hrqb� q;� k i g(q; k)bq;k +
X

k

hrqc� q;� k i h(q; k)cq;k

The matrices g(q; k) and h(q; k) insure normalization:

Psbq;k = bq;k ;

Pscq;k = cq;k :
(4.51)

A mode coupling approximation is performed by setting

hei Q s L s Q s t bq;k b� q;� k i = NSc(jq � k j)� s(k; t )� (jq � k j; t);

hei Q s L s Q s t cq;k c� q;� k i = NSd(jq � k j)� s(k; t ):
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This allows to calculate g(q; k) and h(q; k),

g(q; k) = [ NSc(jq � k j)] � 1;

h(q; k) = [ NSd(jq � k j)] � 1:

It remains to obtain

hrqb� q;� k i = hiQsL sgs
qb� q;� k i = hiL sgs

qb� q;� k i � hiP sL sgs
qb� q;� k i ; (4.52)

hrqc� q;� k i = hiQsL sgs
qc� q;� k i = hiL sgs

qc� q;� k i � hiP sL sgs
qc� q;� k i : (4.53)

Using that f gs
q ; � s

� k g = i q�k
q � s

q� k and f gs
q ; �� � k g = f gs

q ; h� � k ig = 0, we calculate the
�rst term on the r.h.s. of equations (4.52) and (4.53):

hiL sgs
qb� q;� k i = kB Thfgs

q ; b� q;� k gi = kB T
�

hfgs
q ; � s

� k g�� � q+ k i + hfgs
q ; �� � q+ k g� s

� k i
�

= ik B T
q � k

q
h� s

q� k �� � q+ k i = iqkB T �
q � k
q2 hc(jq � k j);

hiL sgs
qc� q;� k i = kB Thfgs

q ; c� q;� k gi = kB Thfgs
q ; � s

� k gh� � q+ k ii

= iqkB T �
q � k
q2 hd(jq � k j):

And using that hiL sgs
q � s

� q i = h_gs
q � s

� q i = � hgs
q _� s

� q i = iq
m s

hgs
qgs

� q i = iqkB T, we calculate
the second terms as well:

hiP sL sgs
qb� q;� k i = hiL sgs

q � s
� q i � h� s

q � s
� k �� � q+ k i = iqkB T �h c(jq � k j);

hiP sL sgs
qc� q;� k i = hiL sgs

q � s
� q i � h� s

q � s
� k h� � q+ k ii = iqkB T �h d(jq � k j):

We de�ne the vertices

v(2) (q; k) = hrqb� q;� k i g(q; k);

v(1) (q; k) = hrqc� q;� k i h(q; k);

such that
Psrq =

X

k

v(2) (q; k)bq;k +
X

k

v(1) (q; k)cq;k :

They can be computed as

v(2) (q; k) = iqkB T
1
V

�
q � k
q2 � 1

�
hc(jq � k j)
Sc(jq � k j)

v(1) (q; k) = iqkB T
1
V

�
q � k
q2 � 1

�
hd(jq � k j)
Sd(jq � k j)

;
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and one completes the calculation ofM s(MC) (q; t), which can be split into two parts:

M s(MC) (q; t) = M s(2) (q; t) + M s(1) (q; t):

The quadratic part M s(2) (q; t) is given by

M s(2) (q; t) =
q2kB T �

m
1
V

X

k

�
q � (q � k)

q2

� 2 [hc(jq � k j)]2

Sc(jq � k j)
� (jq � k j; t)� s(k; t );

and the linear part M s(1) (q; t) by

M s(1) (q; t) =
q2kB T

m
1
V

X

k

�
q � (q � k)

q2

� 2

hd(jq � k j)� s(k; t ):

Now, using the replica Ornstein-Zernike equations, de�ned in chapter 2, we can write
the kernels as

M s(2) (q; t) =
q2kB T �

m
1
V

X

k

�
q � (q � k)

q2 cc(jq � k j)
� 2

Sc(jq � k j)� (jq � k j; t)� s(k; t )

and

M s(1) (q; t) =
q2kB T

m
1
V

X

k

�
q � (q � k)

q2

� 2

hd(jq � k j)� s(k; t ):

Applying the overdamped limit to equation (4.49), its Brownian version reads

� s(q) _� s(q; t) + � s(q; t) +
Z t

0
d�m s(q; t � � ) _� s(q; � ) = 0 ; (4.54)

where � s(q) = 1 =D0q2 and the memory kernels are

ms(2) (q; t) = �
1
V

X

k

�
q � (q � k)

q2 cc(jq � k j)
� 2

Sc(jq � k j)� (jq � k j; t)� s(k; t )

and

ms(1) (q; t) =
1
V

X

k

�
q � (q � k)

q2

� 2

hd(jq � k j)� s(k; t ):

Finally, the in�nite time limit of the self ISF can be computed as

f s(q)
1 � f s(q)

= lim
t !1

ms(q; t) = ms(q); (4.55)

where
f s(q) = lim

t !1
� s(q; t): (4.56)
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4.3 Mean squared and quartic displacements

We start with equation (4.48) for the self-dynamics, where the self ISF can actually be
expanded in the following way, in the limit of q ! 0:

� s(q; t) = 1 �
q2

6
�r 2(t) +

q4

120
�r 4(t) + o(q4); (4.57)

where �r 2(t) is the MSD, and �r 4(t) is the mean quartic displacement (MQD). These
two quantities allow the evaluation of the non-Gaussian parameter (NGP) as

� =
3
5

�r 4(t)
(�r 2(t))2 � 1: (4.58)

The NGP and the MSD are two very important indicators of the di�usivity regime of the
system, and will be at the core of the understanding of the results presented in chapter
5.

The point of the following is to be able to expand the memory function in the limit of
q ! 0 as well in order to adapt the GLE, and by suitably identifying the terms, derive
a GLE that, within the MCT framework will allow for a calculation of the MSD, the
MQD and the NGP. We de�ne the quantity M s(q; t) = q2ms(q; t), and get

M s(q; t) = q2
Z

k

h
v(2) (q; k)� s(k; t )� (jq � k j; t) + v(1) (q; k)� s(k; t )

i
; (4.59)

such that

M s(q; t) = q2
Z

k

(

�
�

q � (q � k)
q2

� 2

[cc(jq � k j)]2 Sc(jq � k j)� s(k; t )� (jq � k j; t)

+
�

q � (q � k)
q2

� 2

hd(jq � k j)� s(k; t )

)

= q2
Z

k

�
q � (q � k)

q2

� 2 n
� [cc(jq � k j)]2 Sc(jq � k j)� (jq � k j; t)

+ hd(jq � k j)
o

� s(k; t ):

(4.60)

By exchanging k and q � k, we get

M s(q; t) =
Z

k

�
q � k

q

� 2 n
� [cc(k)]2 Sc(k)� (k; t ) + hd(k)

o
� s(jq � k j; t)

=
Z

k
(eq � k )2

n
� [cc(k)]2 Sc(k)� (k; t ) + hd(k)

o
� s(jq � k j; t)

=
Z

k
(eq � ek )2 W (k; t )� s(jq � k j; t);

(4.61)
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with W (k; t ) = k2
n

� [cc(k)]2 Sc(k)� (k; t ) + hd(k)
o

.

The integral on the r.h.s. of equation (4.61) presents the term� s(jq � k j; t), that we
need to expand in the limit q ! 0, in order to expand M s(q; t) as well:

� s(jq � k j; t) = � s(jk � qj; t) = � s

0

@
s X



(k � q )2; t

1

A

= � s(k; t ) +
X

�

(� q� )
@�s(k; t )

@k�
+

1
2

X

�

X

�

q� q�
@2� s(k; t )
@k� @k�

+ o(q2):

(4.62)

Using that
@k
@k�

=
k�

k
, we get

@�s(k; t )
@k�

=
@k
@k�

@�s(k; t )
@k

=
k�

k
@�s(k; t )

@k
; (4.63)

@2� s(k; t )
@k� @k�

=
@

@k�

�
k�

k
@�s(k; t )

@k

�

=
�

� ��

k
�

k�

k2

@k
@k�

�
@�s(k; t )

@k
+

k�

k
@

@k�

@�s(k; t )
@k

=
�

� ��

k
�

k� k�

k3

�
@�s(k; t )

@k
+

k�

k
@k
@k�

@2� s(k; t )
@k2

=
�

� ��

k
�

k� k�

k3

�
@�s(k; t )

@k
+

k� k�

k2

@2� s(k; t )
@k2

;

(4.64)

which allows one to compute� s(jq � k j; t):

� s(jq � k j; t) =

� s(k; t ) �
X

�

q�
k�

k
@�s(k; t )

@k

+
1
2

X

�

X

�

q� q�

��
� ��

k
�

k� k�

k3

�
@�s(k; t )

@k
+

k� k�

k2

@2� s(k; t )
@k2

�
+ o(q2)

= � s(k; t ) �
q � k

k
@�s(k; t )

@k

+
1
2

��
q2

k
�

(q � k)2

k3

�
@�s(k; t )

@k
+

(q � k)2

k2

@2� s(k; t )
@k2

�
+ o(q2)

= � s(k; t ) � qeq � ek
@�s(k; t )

@k

+
1
2

q2
�

1 � (eq � ek )2

k
@�s(k; t )

@k
+ ( eq � ek )2 @2� s(k; t )

@k2

�
+ o(q2);

(4.65)
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that we can insert into equation (4.61):

M s(q; t) =
Z

k
(eq � ek )2 W (k; t )

�
� s(k; t ) � qeq � ek

@�s(k; t )
@k

+
1
2

q2
�

1 � (eq � ek )2

k
@�s(k; t )

@k
+ ( eq � ek )2 @2� s(k; t )

@k2

�
+ o(q2)

�

=
1
D

Z

k
W (k; t )� s(k; t ) +

1
2

q2
Z

k
W (k; t )

��
1
D

�
3

D(D + 2)

�
1
k

@�s(k; t )
@k

+
3

D(D + 2)
@2� s(k; t )

@k2

�
+ o(q2)

=
1
D

Z

k
W (k; t )� s(k; t ) +

1
2

q2 1
D(D + 2)

Z

k
W (k; t )

�
D � 1

k
@�s(k; t )

@k

+3
@2� s(k; t )

@k2

�
+ o(q2)

= M 0(t) +
1
2

q2M 2(t) + o(q2);

(4.66)

where D is the dimensionality of the system, here set toD = 3.
Finally, putting together equations (4.66) and (4.57), setting the right value for the
dimensionality, and simplifying a bit, we get

•�r 2(t) +
kB T
m

Z t

0
d� M 0(t � � ) _�r 2(� ) = 6

kB T
m

;

•�r 4(t) +
kB T
m

Z t

0
d� M 0(t � � ) _�r 4(� ) = 20

kB T
m

�r 2(t) + 10
kB T
m

Z t

0
d� M 2(t � � ) _�r 2(� ):

Both equations might be integrated once,

_�r 2(t) +
kB T
m

Z t

0
d� M 0(t � � )�r 2(� ) = 6

kB T
m

t;

_�r 4(t) +
kB T
m

Z t

0
d� M 0(t � � )�r 4(� ) = 20

kB T
m

Z t

0
d� �r 2(� )

+10
kB T
m

Z t

0
d� M 2(t � � )�r 2(� ):

Moving to Brownian dynamics by taking the overdamped limit, as previously, we arrive
at

_�r 2(t) + D0

Z t

0
d� M 0(t � � ) _�r 2(� ) = 6 D0; (4.67)

_�r 4(t) + D0

Z t

0
d� M 0(t � � ) _�r 4(� ) = 20D0�r 2(t) + 10D0

Z t

0
d� M 2(t � � ) _�r 2(� );

(4.68)
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and

�r 2(t) + D0

Z t

0
d� M 0(t � � )�r 2(� ) = 6 D0t; (4.69)

�r 4(t) + D0

Z t

0
d� M 0(t � � )�r 4(� ) = 20D0

Z t

0
d� �r 2(� ) + 10D0

Z t

0
d� M 2(t � � )�r 2(� ):

(4.70)



74 MODE COUPLING THEORY



Chapter 5

Phase diagrams and dynamical
scenarios

Understanding the dynamics of the system heretofore described is at the core of this
work. The structural functions are calculated in the aim of being able to process the
Mode Coupling Theory, which can give us insights about the phenomena responsible for
the dynamical slow down. This chapter is dedicated to the results of this very crucial
part. The approach taken here is to go in more and more depth as for the precision and
complexity of the tools used to explore the dynamics. The �rst section will review the
phase diagrams, and explore the many scenarios one can imagine when simply looking
at the broad picture they o�er. The phase diagrams only o�er a view of what the system
is at in�nite time, and a lot of information is therefore missed, but a general look is very
useful. Then, the intermediate scattering function and the mean squared displacement
will be analyzed, in order to understand the relaxation process the uid is going through
before reaching its �nal state. And �nally, the local exponent and the non-Gaussian
parameter will be discussed, in the hope to get a bit more insight about the complex
phenomena in play during relaxation.

5.1 Phase diagrams

A phase diagram is a summary of the di�erent phases the system can be in, delimited by
transition lines. Crossing a transition line by increasing one or the other parameter leads
the system to a new state, in essence di�erent from the �rst one. A phase transition thus
characterizes an essential change in the nature of the uid. The usual phase transition
that is encountered in a bulk system is characterized by a sudden and discontinuous
change in the long time limit of the Intermediate Scattering Function (ISF), and is due
to the system reaching a critical density at which the particles are in dynamical arrest,
due to the steric hindering of the other particles. However, the presence of a disordered
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potential as described in chapter 2 leads to a change of the structure of the equations of
the Mode Coupling Theory (MCT), and more precisely of the memory functions: new
phases and transition types are therefore to be encountered in the following.

5.1.1 De�ning the phases and transition lines

The whole problematic in de�ning a phase transition is how to distinguish the di�erent
phases. From the point of vue of the structural functions, no distinction can be made:
both in the case of the liquid, the localized phase and the glass, no long range order can
be detected, which is an essential hallmark of uids.
The di�erence between these phases lies in the dynamical correlations the uid is able to
keep at long, or virtually in�nite times, which is measured by the long time behavior of
the self and collective ISF that have been de�ned in chapter 4. Their behavior is obtained
by solving iteratively the structural integral equations, followed by a numerical resolution
of the MCT equations. The development of the equations, and a discussion about the
theory has been made in chapter 2 for the structural functions and the approximations
used to calculate them, and in chapter 4 for the dynamical variables and the discussion
around the MCT framework. Calculating the in�nite time value of the ISF can be done
in a straightforward way by manipulating the equations of MCT, and directly calculating
lim t !1 � (q; t) = f (q) G•otze (1991, 2009); Franosch (2014).

The liquid phase is characterized by an ergodic behavior of the uid at long times. From
the perspective of the MCT, this means that a density uctuation at in�nite time has
lost all correlations with its initial value. Thus, the collective ISF eventually reaches
zero in the liquid phase:

lim
t !1

� (q; t) = f (q) = 0 : (5.1)

Another variable commonly used to characterize the phase of a system is the MSD. In
a di�usive or liquid phase, the MSD increases linearly with time. In other words, if its
slope is equal to one at very long times, the system is in a di�usive phase. A slope that
presents a higher value de�nes a system in a superdi�usive state, which is characteristic
for example of the ballistic regime appearing at very small times. A slope lower than
one means a system in a subdi�usive state, which is characteristic of a system with a
high density, a quenched-annealed system, or in general systems that present any kind
of hindering.

On the other hand, if the collective ISF does not reach zero at in�nite time, the system
is assumed to be in a glass phase:

lim
t !1

� (q; t) = f (q) 6= 0 : (5.2)
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This can be understood as the density uctuation keeping correlations with its initial
time ad in�nitum . In that case, the system stopped being ergodic at one point of the
relaxation process and is in a state of dynamical arrest, which is the de�nition of a glass.
In that phase, the MSD reaches a plateau at in�nite times: the subdi�usion is such that
the slope is equal to zero.

The liquid and the glass phase are the two common phases a uid can adopt, but mainly
due to the presence of a new vertex in the equations of MCT, an intermediate phase can
be found for uids in disorder: the localized phase. Finding the limit between liquid,
glass and the localized phase requires to look at the self ISF as well as the collective
one. The localized phase is de�ned by the fact that the self dynamics have reached an
arrested state while the collective dynamics are still in an ergodic (i.e., liquid) state,
meaning that

lim
t !1

� (q; t) = f (q) = 0 ;

lim
t !1

� s(q; t) = f s(q) 6= 0 ;
(5.3)

which naturally de�nes the localized phase as an intermediate state between liquid and
glass. As has been quickly stated in the introduction, the localized phase can be thought
of as many pockets of uid trapped and isolated by deep minima created by the potential.
The particles constituting these isolated populations are trapped, a fact made clear by
the nonzero value off s(q). However the collective dynamics are still globally ergodic
meaning that the accessible space is explored constantly and that even though the uid
is localized, no real dynamical arrest has yet occurred.

The phase diagram lies in the three dimensional space de�ned by (�; �; � ), but in order
to show a comprehensible diagram, one parameter has to be kept constant. In the exper-
imental work (Evers et al., 2013a,b; Bewerungeet al., 2016b; Bewerunge and Egelhaaf,
2016; Bewerungeet al., 2016a), the most di�cult parameter to stabilize and measure
is the correlation length of the potential � , due to the technical di�culty of generating
a controlled laser speckle. The correlation length of the potential is thus consistently
chosen as a parameter for the theoretical phase diagrams,� and � being considered as
variables. In order to stay consistent with the experimental reference work, in which the
correlation length is measured as about half the diameter of a particle, we �rst choose
to set � = 0 :50, i.e., half the diameter of a particle. However, a study of the e�ect of
a variation of the correlation length has been undertaken, with very interesting results,
and is presented in section 5.2.

The choice of the closure relation is of course another variable that has to be taken into
account, the dynamics being dependent on the structural functions in the MCT frame-
work, as can be clearly seen from the construction of the memory function in particular.
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An extensive comparison of the closure relations will be made and critically discussed as
well. For now, the choice has been made to consider HNC as the most realistic closure
relation, for the reasons exposed in chapter 3 and reasons that will become obvious later
on. Thus, keeping the value of� constant, and choosing an adequate closure relation,
the phase diagram consists of transition lines in the two-dimensional space of the cou-
ple of variables (�; � ) that delimit the liquid ( f (q) = 0 ; f s(q) = 0), the localized phase
(f (q) = 0 ; f s(q) 6= 0) and the glass (f (q) 6= 0 ; f s(q) 6= 0).

5.1.2 What phase diagrams can tell us about the dynamics

Figure 5.1 is a phase diagram calculated for a value of� = 0 :5, and structural functions
calculated using the HNC closure relation. Because all the scenarios that we will discuss
take place in the variable space spanned in �gure 5.1, it will be taken as a basis for the
discussions concerning the dynamical scenarios discussed hereafter.

A few things are immediately noticeable from the phase diagram.
If we look at the simple behavior of the system when no potential is involved (i.e.,� = 0)
and the density increases (which is equivalent to tracing a horizontal line at the bottom
of the phase diagram, and is represented by a dashed gray arrow on �gure 5.1), we notice
that the system stays in a liquid phase until it reaches a density of about� = 1 :0 and
undergoes a discontinuous phase transition to the glass phase. This obviously describes
the behavior of the bulk system, and the discontinuous liquid-glass transition occurs
at the critical packing fraction. The phenomenon responsible for the phase transition
here is called the cage e�ect: at high density, particles �nd themselves trapped inside
cages created by the body of other particles. At the critical value of the density, the
particles are trapped so tightly, any Brownian motion is prohibited, leading to what is
called a glass phase. The discontinuous transition line, even though still being present
in the case of a system with a disordered potential is mainly still caused by the cage
e�ect. Interplay between the potential and the local density of the uid causes the
increase of the amplitude to have a small but noticeable e�ect on this transition line,
as it will be explicited later on. The fact that, compared to the continuous and the
di�usion-localization transitions lines, the discontinuous one is very vertical indicates
the rather small inuence of the potential on the e�ects causing it. This further justi�es
the attribution of the cage e�ect as a main cause to this transition line.

At zero density, meaning that only one particle is placed in the disordered potential, an
increase of the amplitude (which is represented by a dashed gray line on �gure 5.1) leads
to crossing the continuous and the di�usion-localization transition lines together at the
same value of� c = 1 :143. This fact can be understood by noticing that when the uid
consists of only one particle, the self and collective dynamics are obviously overlapping:
� (q; t) = � s(q; t). Thus, a change in the self dynamics automatically means a change in
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the collective dynamics as well. From a more intuitive point of vue, if the uid is made
out of only one particle, a localization of this particle means a nonergodic system, which
in this case means a glass phase.

A second thing that we may notice is the nonmonotonic behavior of the continuous
and the di�usion-localization transition lines. Indeed, if the system is set at a constant
value of the amplitude, for example � = 1, and the density is steadily increased, the
�rst thing to happen is that the di�usion-localization line pulls away. This means that
the system is less likely to be localized as the density increases. Then, at higher values
of the density, the di�usion-localization line experiences a reentrance until its junction
with the discontinuous transition line. Therefore, it seems that as the density increases,
the system �rst experiences an acceleration of its dynamics (recession of the di�usion-
localization line), and at high values of the density, a slowing down (reentrance of the
line). In a bulk hard-sphere uid, when the density is increased, the dynamics are slowing
down more and more, due to the cage e�ect and steric interactions, until an eventual
dynamical arrest occurs at a critical density. Why is this not the case when a disordered
potential is present?

In order to understand this rather strange phenomenon, one has to look at the potential
in an other way. Figure 5.2 shows a Gaussian random potential with a Gaussian cor-
relation function, generated for the Monte-Carlo simulations. For obvious reasons, the
picture has to be presented as a two dimensional potential, but one has to keep in mind
that this work concerns three dimensional particles and a three dimensional disordered
potential. It seems that the external random �eld actually takes the form of spots of
positive and negative potential, which e�ectively represent the random light spots cre-
ated by a speckle pattern. The particles are attracted by the spots of negative potential
(in blue) and repulsed by the spots of positive potential (in red).
If only one particle is present in the system (i.e., the case of� = 0 explored previously),
a given value of the amplitude may localize the particle, and lead though the continuous
transition line to the glass phase. However, as the density increases, particles start to
have interactions with one another. At low values of the density, the hard-sphere inter-
actions allow particles to exchange kinetic energy. This happens by collision, and may
contribute to dislodge a particle trapped in a minimum of the potential, thus e�ectively
accelerating the dynamics. Then, as the density increases towards higher values, another
phenomenon may take place: the steric hindering starts to have a big importance on
the dynamics of the system as a whole. The presence of the potential might lead to
several particles being trapped inside a minimum with other particles, leading them to
be closer in average, and therefore experience more collisions. But this time, the system
is overcrowded in general, and more collisions do not simply mean more kinetic energy,
but rather a higher inuence of the cage e�ect, which explains also that as the amplitude
increases, the discontinuous transition line recesses in density.
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The phase diagram is built as lines separating di�erent long time (typically in�nite)
behaviors. The domains that these lines separate (liquid, localized and glass) can be
linked to isodi�usivity lines, in which the uid will have a given value of the di�usion
coe�cient. An isodi�usivity diagram is the closest an experimental picture can get to
a theoretical phase diagram. Luckily, this has been done by J•org Bewerunge as part of
his PhD thesis (Bewerunge, 2016), and is shown in �gure 5.3. The system studied in
the experimental work has been presented in chapter 1. It is very similar to the one
studied in this work, with the notable di�erence however that the experimental work is
in two dimensions. This can lead the comparison to be tricky, as any discrepancy can be
attributed either to the dimensionality, to the experimental uncertainties, or to possible
artifacts of the theory. However, any similarity between the results can be seen as a
good validation of both the theory and the experiment.
Comparing �gure 5.3 with the phase diagram presented in �gure 5.1 (the correlation
length of the speckle light spots has been consistently measured to be close to 0:5), we
can see one major similarity: the isodi�usivity lines, as well as the transition lines both
increase with the density. This corroborates the point stated earlier: an increase of
the density leads to an exchange of kinetic energy between particles, allowing trapped
populations to escape energy minima, and therefore accelerates the dynamics. The
reentrance of the isodi�usivity line is however not observed, but the densities scanned
may not allow for this observation to happen. There is an other quantity that can give
us insights about the reentrance: the long time di�usion coe�cient itself. This quantity
is inversely proportional to the distance to the di�usion-localization line in the context
of the theory, and to the isodi�usivity lines in the experimental context. Therefore, a
reentrance of the di�usion-localization line will be accompanied by a reentrance of the
long time di�usion coe�cient.

This quantity can be calculated, through the MSD as

DL = lim
t !1

�r 2(t)
6t

; (5.4)

where DL is the long time di�usion coe�cient and �r 2(t) is the MSD. For the sake of
comparison with the experiments,DL has been calculated by taking constant values of
the amplitude, and varying the density regularly until reaching the phase transition.
Both the calculated and experimental long time di�usion coe�cients are presented in
�gure 5.4.
The comparison here is quite straightforward, as the �gures are very similar: as the
amplitude of the potential increases, the long time di�usion coe�cient globally decreases.
A same reentrant behavior is observed as well on all the curves, which hints at the
probable presence of a reentrant behavior concerning the isodi�usivity lines as well, that
potential future experiments done at high values of the density will probably observe.
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Figure 5.2: 10� 10 (unit is the
size of a particle) box contain-
ing a two dimensional Gaussian
random potential with Gaussian
correlation function. An arbi-
trary amplitude has been chosen,
and a correlation length of� =
0:5. The blue spots represent
negative areas and the red spots
represent positive areas. Peri-
odic boundary conditions have
been applied.

Figure 5.3: Long-term di�usion coe�cient DL of a Brownian uid of packing
fraction � A in a two-dimensional random Potential Energy Landscape (rPEL) of
powerPL (equivalent to the amplitude of the potential� ). Filled circles and squares
are measured conditions in the presence and absence of a rPEL, respectively. The
values ofDL are represented by a color scale, where the gradient from purple to
dark red indicates increasing values. Grey dash-dotted lines indicate possible iso-
di�usivity lines between suggested colored iso-di�usivity areas. Reproduced from
Bewerunge (2016).
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Figure 5.4: (left panel) Normalized long-time di�usion coe�cient D long=D0 shown
for increasing strength of a two-dimensional speckle potential, indicated by ma-
genta squares, purple circles, light blue triangles and dark blue stars, respectively.
Experimental data corresponding to the case of no potential and taken from (Ma
et al., 2013) is included as black crosses. Lines are guides to the eye.(right panel)
Normalized long-time di�usion coe�cient of a three-dimensional hard-sphere uid
of density � , in a Gaussian random �eld with Gaussian covariance of amplitude� ,
and given correlation length� = 0:5. The lines are guides for the eye.
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5.2 Inuence of the correlation length

For a matter of consistency with the experiments, most of the calculations and qualitative
studies have been made in a system with a potential that presented a correlation length
of half the size of the particle, this being roughly the value that has been calculated in
the experiments. However, increasing or decreasing the value of� may be interesting
from a theoretical point of vue. It might also give a guideline to experimentalists on
how to trust the determined value of the correlation length. In order to see the e�ect of
the variation of the correlation length on the overall dynamics, a full phase diagram has
to be drawn. But testing a continuum of values for � is near impossible, and anyway
probably useless. Thus, a constant step of �� = 0 :25 has been taken, and a phase
diagram calculated for each value of the correlation length. The result concerning the
HNC closure relation is presented in �gure 5.5.
By many aspects the phase diagrams are similar, but one thing they do not share is their
height, i.e., the critical set of variables (� c; � c) at which the continuous or discontinuous
glass transitions occur. Except for the extremes of the phase diagrams, all the critical
amplitudes are increasing dramatically with the increase of the correlation length.
This can be easily explained in the following way: a bigger correlation length means
bigger positive and negative spots. Thus, with an increase of� , more particles �t inside
the attractive spots, which means more collisions between them, and subsequently a
higher amplitude is required to trap the particles in the potential, and reach a complete
dynamical arrest.

Some di�erences can be noticed between the shapes of the phase diagrams at di�erent
values of the correlation length as well. First, the variation of the junction between
the continuous and the discontinuous transition lines: between� = 0 :25 and � = 0 :50,
this junction seems to occur at higher density as the correlation length increases, but
between� = 0 :50 and� = 1 :00, the junction recesses in density as the correlation length
increases. In other words, as we increase the correlation length, the cage e�ect and steric
phenomena play a role at lower and lower density in creating a glass transition. This
can be seen more easily by plotting the density at the junction between the continuous
and the discontinuous transition � ? cont-disc as a function of the correlation length � , as
shown in �gure 5.6.
How can this behavior be explained? As often in the framework of the MCT, giving a
precise quantitative explanation for such a phenomenon is di�cult, as the equations do
not provide information about the speci�c phenomena occurring at the level of a particle,
but rather give information about the behavior of the uid as a whole. We can only
postulate some scenarios and hope to be one day able to verify them using experimental
setups or simulations.

As for the behavior of the continuous-discontinuous junction, the following scenario can
be imagined: an increase in� means an increase of the size of the positive and negative
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Figure 5.5: Phase diagrams of hard-sphere uids of density� in a Gaussian random
potential with Gaussian correlation function of amplitude� and correlation length
� . Each phase diagram corresponds to a value of the correlation length of the
potential � (from bottom to top one has� = 0:25; 0:50; 0:75; 1:00). The structural
correlation functions have been calculated using the OZ equation together with the
HNC closure relation, and the transition lines have been calculated using MCT.

spots that the potential is essentially made out of. Here, we need to recall that only
the center of the particle interacts with the potential, its bulk only preventing it from
penetrating other particles.

To make the understanding easy, some schematic dynamical scenarios have been drawn
in �gure 5.7. By looking at the top left panel of this �gure (corresponding to � = 0 :25),
one can see that the size of the spots is quite small compared to that of a particle, which
in turn leads to the fact that when a particle sits in a favorable position, the whole
attractive spot is covered by the bulk of the particle, leaving no room for another one.
Thus, around � = 0 :25, an increase in� does not lead to more particles sitting close
to each other, but rather that each particle is more and more pinned in one precise
position, which is the location of the lowest point of the minimum. In turn, the pinning
of the particles leads to a system very close to a quenched-annealed one, where some
particles sit in the favorable positions and are immobile, and some particles wander in
the matrix of these quenched particles. Thus, the change of the density here needs to
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Figure 5.6: Fluid density � ? cont-disc at which the junction between the continuous
and the discontinuous glass transition lines happens, as a function of the correlation
length � of the Gaussian random potential with a Gaussian correlation function.

be very important to see any e�ect, an increase of the amplitude of the potential having
the only e�ect of pinning more and more the already quite quenched particles.
However, starting from � = 0 :50, up until � = 1 :00, the junction between these con-
tinuous and discontinuous lines occurs at a lower density as� increases. This can be
explained using the same arguments the other way around: starting from� = 0 :50 more
than one particle start to �t inside a minimum. Therefore, as � increases, these small
populations of particles get isolated from the rest of the system, and the size of the
populations increases with the correlation length. This probably means that they will
experience a lot more collisions between themselves, than with the surrounding parti-
cles, a phenomenon that increases with� . Thus, at high values of the correlation length,
increasing the amplitude of the potential will lead to cage-e�ect-induced glass transi-
tions at low densities, due to this property that the potential has, to group two or more
particles inside one minimum.

While this dramatic inuence of the correlation length on the shape of the phase diagrams
can seem surprising at �rst, a more intuitive explanation can be given by considering
that the correlation length is a de�ning lengthscale of the system. Hence, we temporarily
take it as the unit of length and plot the data of �gure 5.5 using �� 3 as the x-axis. The
e�ects coming from the di�erent values of the correlation length are then accounted for
in a more speci�c picture.
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As one can see on �gure 5.8, by simply introducing this change, the di�usion-localization
transition lines seem to follow a very similar trend, with the only di�erence of the length
of the transition lines. This seems to put the previous problem of the shape of the phase
diagrams in function of the correlation length of the potential in a more natural and
understandable shrine.
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Figure 5.7: Gaussian random potentials with a Gaussian correlation function,
generated using the method described in chapter 7. The original potential has
been generated in a three dimensional box of 10� 10� 10, and the present picture
is a cross section of the middle of the box. Particles have been represented in
a schematic fashion, not accounting for their respective position on the z-axis.
Correlation length is taken as� = 0:25; 0:50; 0:75; 1:00 from left to right and top
to bottom. Red parts represent high values of the potential, and blue parts low
values, the amplitude having been chosen arbitrarily.
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Figure 5.8: Phase diagrams of hard-sphere uids of density� in a random Gaussian
potential with Gaussian correlation function of amplitude� and correlation length
� . Each phase diagram corresponds to a value of the correlation length of the
potential � (from bottom to top one has� = 0:25; 0:50; 0:75; 1:00). The x-axis has
been chosen as�� 3, and y-axis is plotted using a logarithmic scale. The structural
correlation functions have been calculated using the OZ equation together with the
HNC closure relation, and the transition lines have been calculated using MCT.
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5.3 Inuence of the closure relation

5.3.1 Building upon sand

Due to the structure of the vertices in the MCT framework, the dynamics of the system
is fully determined by the structural functions calculated using the Ornstein-Zernike and
the closure relations. The latter being the only approximation at that level, it can be
considered as a parameter as well. Indeed, closure approximations exist in many avors,
and those that have been tested have been quickly developed and discussed in chapter
3. A quick comparison of these closure relations can be seen in �gure 5.9.
First and foremost, only the HNC and MSA closure relations allow for the calculation of a
full phase diagram. Concerning PY and EXP, the calculations either could not converge,
found new and unphysical solutions to the MCT or outright crashed. The reasons for
this have been detailed in chapter 3, and are the result of the closure relations bringing
up unphysical solutions, in the form of negative structure factors needed to calculate the
dynamics. As a result, as PY fails at low densities, only the discontinuous transition line
could be calculated, and EXP failing at high densities allows for a calculation of only
the continuous transition.

However, by looking at the shape of the diagrams, it seems that we can separate them
into two classes: on one hand, HNC and EXP lead to phase diagrams of low heights,
while PY and MSA have overall higher critical parameters. It seems interesting that
the closure relations are separated in two classes in this way, and further study of other
relations would probably give insights about a fundamental reason for this. Anyway,
comparison can be made between the MSA and HNC based phase diagrams, assuming
that the PY and EXP respectively would behave in similar ways.

5.3.2 Mean Spherical Approximation

Figure 5.10 shows the phase diagrams of a uid in a disordered potential, with the
structural functions calculated using the MSA closure relation, de�ned in chapter 2. As
reported in chapter 3, the MSA closure relation treats the correlations, both coming
from the density and from the potential, in a much lighter way compared to HNC. This
leads to the phase diagram being excessively higher concerning the parameter� .
Another thing one might notice is the fact that the junction between the continuous
and the discontinuous transition lines does not lead to the end of the discontinuous
transition line, which might extend beyond this point. This is not a perk of the MSA
closure relation, and can be observed in the phase diagrams based on HNC as well, al-
though concerning HNC, the overtaking is much smaller, and therefore invisible without
zooming. This e�ect increases with the correlation length of the potential. By crossing
the discontinuous transition line while being already in the glass phase, the system un-
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Figure 5.9: Phase diagrams of a uid in a Gaussian random potential with Gaus-
sian correlation function, calculated using the OZ equation together with the HNC,
EXP, PY and MSA closure relations. The x-axis represents the density of the uid
� , the y-axis is the amplitude of the potential� , and the correlation length is taken
as a constant for all the phase diagrams as� = 0:5.

dergoes a transition between two glass phases. This is shown hereafter in the section
dedicated to explicit analysis of the dynamic variables.
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Figure 5.10: Phase diagrams of hard-sphere uids of density� in a Gaussian ran-
dom potential with Gaussian correlation function of amplitude� and correlation
length � . Each phase diagram corresponds to a value of the correlation length of
the potential � (from bottom to top one has� = 0:25; 0:50; 0:75; 1:00). The struc-
tural correlation functions have been calculated using the OZ equation together
with the MSA closure relation, and the transition lines have been calculated using
MCT.

5.4 Intermediate scattering function and mean
squared displacement

While the phase diagram can lead to some interesting results and lead us to imagine
general scenarios based on the behavior of the transition lines, a lot of information is
missed by not looking at the actual behavior of the ISF, whose in�nite time limit only
is used to generate a transition line. The collective and self ISF, the MSD and other
related parameters as the local exponent and the non-Gaussian parameter can all lead
us to scenarios of how the dynamics of the uid actually behavesbefore total relaxation
to either liquid, localized or glass phase. In the following, the phase diagram of �gure
5.1 will be taken as a reference for the results exposed. This phase diagram can be
considered as a mere map, but the interesting part of the journey is revealed by looking
at the road itself.

In the following, dynamical variables will be traced, so to frame a given transition line and
highlight the critical phenomena taking place in its vicinity. As the critical phenomena
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appear more clearly when looking at the dynamical variable very close to the transition
line, and on both sides, one of the variables (� or � ) will be taken constant, the other
one varied in the following way:

 i =  c(1 + � );

 = � Y �;

� = � 10� n=3 ; n 2 NNN;

(5.5)

where  is either � or � ,  i is the value at which the given curve is plotted, and  c is
the critical value of the parameter, at which the phase transition happens. Choosing
� < 0 or � > 0 will lead to values respectively below and above the critical amplitude,
and a higher value ofn allows for arbitrary re�nement. The value of this parameter will
be typically chosen in the rangen 2 [1; 3; 6; 9; 12]. This scheme has been taken from
Franosch et al. (1997a). The following results will take this route, and as a guide, one
can refer to �gure 5.1, where dashed colored arrows have been traced to hint to the exact
locations on the phase diagram where the calculations have been performed.

One can refer to chapter 4 for the theoretical developments, and to chapter 6 for the
actual implementation of the MCT equations.

5.4.1 Around the di�usion-localization transition line

Let us start in the liquid phase, and explore the variable space around the di�usion-
localization line. The density of the system is kept constant at� = 0 :5, and the values
of the amplitude have been varied following equation (5.5).
First, one has to look at the curves traced for� < 0, which are located in the liquid phase.
In that case, the ISF tends to zero at long times, which is the principal characteristic
of the liquid phase. Another characteristic is the behavior of the MSD. At short times,
the MSD presents a slope of one, which signi�es that the system is totally di�usive.
This is the case for all the curves, and is a characteristic of the short time dynamics:
the particles are simply exploring their immediate environment, and no interaction with
other objects has yet happened. At intermediate times, this slope decreases and the
system experiences a subdi�usive regime: the particles interact with their environment,
either by collisions with other particles, or with the potential. If the system is in a liquid
phase, it eventually goes back to di�usive again at long times. As the amplitude of the
potential increases, the ISF takes more and more time to reach zero, and the MSD more
and more time to reach its �nal slope.

The critical amplitude is represented by the red line, above which the behavior of the
MSD changes: after a period of subdi�usion, it reaches a plateau at long times, which
means that the system does not explore anymore space, which is a characteristic of
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Figure 5.11: (left) collective ISF and(right) MSD of a uid of density � = 0:5, in
a Gaussian random potential with Gaussian correlation function of amplitude� and
correlation length � = 0:5. The amplitude has been chosen, following equation
(5.5), to frame the di�usion-localization transition line (see the pink arrows on
�gure 5.1). The red curve is taken at the critical amplitude � = � c (n ! 1 ).
The structural correlation functions have been calculated using the OZ equation
together with the HNC closure relation.

a localized system. On the other hand, the collective ISF still reaches zero, which is
characteristic of a liquid.

This paradoxical state of the uid is called the localized phase: the uid as a whole is
still ergodic, but the full space is not explored anymore by individual particles. One
possible explanation of this state is that the minima of the potential are so deep that
the populations of particles trapped inside them are virtually isolated from one another.
However, the amplitude is not high enough so to create a dynamical arrest, which would
be the case in a glass phase. Therefore, inside these pockets created by the potential the
system is still relaxing, but the area explored is limited to the pocket itself.

Further increase of the amplitude of the potential leads to a decrease of the value of the
plateau of the MSD. The ISF on the other hand takes more and more time to reach zero.
These two facts mean that the dynamics of the liquid become slower as the amplitude
increases: the potential localizes and further restrains the space available to the particles.

5.4.2 Around the continuous transition line

Increasing again the amplitude of the potential from the localized phase eventually leads
the system to the glassy phase, by crossing the continuous transition line at densities
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Figure 5.12: (left) collective ISF and(right) MSD of a uid of density � = 0:5,
in a Gaussian random potential with Gaussian correlation function of amplitude�
and correlation length� = 0:5. The amplitude has been chosen, following equation
(5.5), to frame the continuous transition line (see the orange arrows on �gure 5.1).
The red curve is taken at the critical amplitude� = � c (n ! 1 ). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

lower that � � 0:90. Figure 5.12 shows the collective ISF and the MSD in the process
of crossing the continuous transition line from a localized liquid to a glass.
This time, the ISF is the interesting observable, the MSD having reached its plateau
does not fundamentally change its behavior, except for a further lowering of the value of
this plateau, which means a further localization of the particles. In the localized phase
(� < 0) the collective ISF reaches zero, but as we approach the continuous transition
line, the time taken to reach that value is longer and longer. On the transition line,
represented by the red line, the time taken to reach zero is in�nite, and above it the
collective ISF does reach a nonzero plateau instead. The ISF therefore continuously
transitions from one regime (limt !1 � (q; t) = 0) to another (lim t !1 � (q; t) 6= 0). This
last regime is the characteristic of a uid in dynamical arrest: a glass.

5.4.3 Around the discontinuous transition line

The continuous transition line gives way to the discontinuous transition line around
� = 0 :90. This is expected, and has been treated previously with the scenarios coming
from the shape of the phase diagrams. The behavior of the ISF and the MSD when
crossing the discontinuous transition line is showed in �gure 5.13, where the amplitude
of the potential has been kept constant at� = 1 :0, and the density varied in the same
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Figure 5.13: Collective ISF(left) and (right) MSD of a uid of density � , in a
Gaussian random potential with Gaussian correlation function of amplitude� =
1:0 and correlation length� = 0:5. The density has been chosen, following equation
(5.5), to frame the discontinuous transition line (see the blue arrows on �gure 5.1).
The red curve is taken at the critical density� = � c (n ! 1 ). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

way as previously done, around the transition line.
The behavior of the collective ISF here is fundamentally di�erent from the continuous
case. In the liquid phase, the ISF still reaches zero at long times, meaning that the
relaxation of the system brings it in an ergodic state eventually. However at intermediate
times, the ISF develops a plateau, that lasts longer and longer as the critical density
is approached. The discontinuous transition line takes its name from the fact that the
dynamical variables are undergoing a sudden and discontinuous change in their behavior
when crossing that line. Therefore, when the critical density is reached, the plateau
developed by the ISF lasts for an in�nite amount of time leading to a nonzero value for
the long time limit of the ISF. The di�erence with the case of the continuous transition
line of �gure 5.12 is that the nonzero value of f (q) is reached in a discontinuous way,
as a sudden plateau appearing after a precise value of the density is crossed. A further
increase of the density leads to the value of the plateau tending towards one.

The MSD behaves in a related way: in the liquid state eventually the slope of the function
reaches one which characterizes a di�usive regime, after passing through a longer and
longer subdi�usive regime as the density gets close to� c. After having reached a critical
density represented by the red curve, the MSD reaches a plateau at in�nite time, meaning
that the particles are trapped. If the density is increased further, the plateau of the MSD
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decreases, which means that the particles are more and more localized. Conversely, the
value of the long time ISF gets closer to one meaning that the system is at an almost
complete dynamical arrest.

5.4.4 A glass-glass discontinuous transition line?

One special feature that the MCT predicts is the possibility for the system to undergo a
glass-glass transition. This has been introduced earlier with the phase diagram calculated
using the MSA closure relation, on which the discontinuous transition line dramatically
extends beyond its junction with the continuous transition line. This perk is not spe-
ci�c to the MSA closure relation, but can be observed using basically all the closure
relations. MSA however has the property to lead to almost excessively big phase dia-
grams, and this phenomenon can be observed more easily in this case. This has not been
observed experimentally, the power necessary to generate a speckle that would create
a liquid-glass transition having not yet been achieved. However, theory leaves us free
to postulate the consequences of this phenomenon, which will hopefully be observed in
future experiments.

A discontinuous transition line extending in the glass phase means that by crossing that
line, the uid can go from one type of glass to another. This has been represented in
�gure 5.14, where the density is kept constant at � = 0 :6, and the amplitude of the
potential varied so to frame closely that transition line, using (5.5) as previously.
It so happens that some of the curves have been set in the localized phase, below the
continuous transition line, which is therefore traced in dashed red line. In this case,
what has been said for �gure 5.12 still holds: the ISFs calculated below the continuous
transition line reach zero at long times, but as the amplitude is increased this time
increases as well, and the continuous transition line is met when the time taken to reach
zero is in�nite. When the amplitude is increased further, the values of the ISF at long
time increase, and seem to converge towards a limit. This limit is overcame when the
discontinuous transition line is crossed, at which the long time value of the ISF jumps
discontinuously from one limit to a higher value. Further increase of the amplitude leads
this value to increase as well, seemingly without limit. This also happens concerning the
MSD: even though the system is in a glassy phase a limit seems to be reached. This limit
is overcame with an increase of the amplitude of the potential, causing a discontinuous
jump for the long time values of the MSD as well.

This indicates that there are two types of glasses present in this system: the one that is
located between the continuous and the discontinuous transition line, and the one that
is located above the latter. By nature, these two types of glasses do not seem to di�er:
they both lead the ISF and the MSD to a nonzero plateau at long times, except the value
of the plateau is di�erent. The system could go from one type of glass to another by



98 PHASE DIAGRAMS AND DYNAMICAL SCENARIOS

Figure 5.14: (left) collective ISF and(right) MSD of a uid of density � = 0:6,
in a Gaussian random potential with Gaussian correlation function of amplitude�
and correlation length� = 0:5. The amplitude has been chosen, following equation
(5.5), to frame the discontinuous transition line (see �gure 5.10). The red curve
is taken at the critical amplitude � = � c (n ! 1 ). The structural correlation
functions have been calculated using the OZ equation together with the MSA
closure relation.

simply circumventing the discontinuous transition line. In that case, we would observe
that the plateaus of the ISF and the MSD undergo a continuous variation to the new
value. The ISF and the MSD do not seem to o�er much insights about the nature of
these two glasses, and they indeed seem of a similar nature, but more complex dynamical
observables could highlight some di�erences between them. The local exponent and the
non-Gaussian parameter will be traced as well, after some discussion, in the following.

5.5 Local exponent and non-Gaussian parameter

A normal di�usion is characterized by two features: the MSD increases linearly with
time, and the mean distance from the origin of the particles after a given time follows a
Gaussian distribution, whose width is given by the MSD. Therefore, the probability of
�nding a given particle at a distance r away from its origin at time t follows the rule

P(r; t ) / e� ~r 2=2 �r 2 ( t ) : (5.6)

Starting from this fact, there are several ways one can analyze an anomalous di�usion by
looking at its time and space variations. This leads to the de�nition of more re�ned tools
compared to the ISF and the MSD. However, more re�ned tools means more di�cult
analysis, the following will therefore consist of surface analysis, with a few conjectures.
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The �rst one of these tools is the local exponent: by de�ning the MSD as a function of
time, its slope can be considered as an indicator of the way the di�usion of the system
varies in time. The MSD can be written as

�r 2(t) = t � (t ) ; (5.7)

where � (t) is called the local exponent, and in the case of a normal di�usion is equal
to one. The local exponent can be extracted by taking the logarithmic derivative of the
MSD as

� (t) =
d log �r 2(t)

d log t
: (5.8)

This function informs about the speci�c way the di�usion is changing in time, and might
give insights about behavior that are missed by simply looking at the large picture the
MSD gives us. In case of subdi�usion, the local exponent presents a value lower than
one, and in case of superdi�usion (which will not be encountered here), it presents a
value higher than one.

The second parameter we may look at is the Non-Gaussian Parameter (NGP). Recalling
that a normal di�usion leads the distance of the constituent particles from their origin to
follow a Gaussian distribution, any deviation from this may be an interesting character-
istic of anomalous di�usion. The development of the MCT specialized to the NGP has
been done in chapter 4, and requires the calculation of the mean quartic displacement
as well as the mean squared displacement. The NGP is then obtained as

� (t) =
3
5

�r 4(t)
(�r 2(t))2 � 1; (5.9)

where � (t) is the NGP, and �r 4(t) is the mean quartic displacement.

To sum up, the local exponent gives clues about the way anomalous di�usion unfolds
in time, and the NGP informs about how it unfolds in space. However, a slowing down
of the dynamics (lower values of� (t)) does not automatically lead to a lower distance
traveled by the particles (lower values of� (t)) and vice versa. Therefore, while these two
parameters are related to the gaussianity of the di�usion, they may not be correlated,
leading to a rather cumbersome interpretation.

5.5.1 Around the di�usion-localization transition line

Figure 5.15 shows the local exponent and the NGP around the di�usion-localization line,
at a constant density of � = 0 :5, and amplitude of the potential varied in the same way
as in �gure 5.11, framing the transition line.
Let us �rst look at the local exponent, for which the �rst curve on the top is located far
in the liquid phase at an amplitude of � = 1 :2. At short times (of which most has been
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Figure 5.15: (left) local exponent and(right) NGP of a uid of density � = 0:5,
in a Gaussian random potential with Gaussian correlation function of amplitude�
and correlation length� = 0:5. The amplitude has been chosen, following equation
(5.5), to frame the di�usion-localization transition line (see the pink arrows on
�gure 5.1). The red curve is taken at the critical amplitude � = � c (n ! 1 ).
The structural correlation functions have been calculated using the OZ equation
together with the HNC closure relation.

cut) we have � (t) = 1 :0, which is a common characteristic of all the curves, and of short
time dynamics in general. At intermediate times, the �rst curve shows a minimum that
appears aroundt = 1 hinting to a subdi�usive behavior, which then resorbs leading to
� (t) = 1 :0 at long times: the system is di�usive and therefore in a liquid phase.

However as the amplitude of the potential increases, a new minimum starts to appear
around t = 104. The width of this minimum increases with the increase of the amplitude,
which means that the particles are slowing down more and for longer times, until the
di�usion-localization line at which the width of the minimum is in�nite. The value
reached by the local exponent here is known in the framework of MCT to be exactly
lim t !1 � (t) = 0 :5.

The emergence of this new minimum does not lead the �rst one to disappear however.
The �rst minimum being present at low values of the amplitude, we may postulate
that the subdi�usive regime it hints at is due to the cage e�ect and density related
phenomena. The second minimum, emerging and deepening with the increase of the
amplitude, can be thought to be caused by the external disordered potential. As this
last minimum leads into the di�usion-localization line, we can assess for sure that the
phase transition is here cause mainly by the potential.

With a further increase of � , the time taken to reach zero is reduced, meaning that the
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time until localization of the uid is shorter, the potential being deeper and trapping
the particles more easily.

Two things are to be learnt from this. First, the density related subdi�usive phenomena
and the potential related phenomena are two separate things. The interplay between
the two phenomena exists however, as it can be seen from the deepening of the �rst
minimum with the increase of the potential, but the e�ect seems overall small. Second
the density related phenomena occurbefore the potential related ones. This latter fact
is furthermore systematic: all local exponent examples show the same behavior.

The NGP, though not being an easy-to-understand variable, might anyway give some
insights about the subdi�usion phenomena. Looking at the lowest curve, corresponding
to the highest for the local exponent, we can see that it starts at zero, then grows a peak
around t = 102, to �nally go back to zero. This means that the di�usion is at short
times a Gaussian one, which is expected at short times. Around intermediate times the
particles start to travel further as we can see from the higher value of the NGP, before
eventually going back to a Gaussian di�usion again. As the amplitude increases, the
said peak grows, and another one starts to appear, very much like the second minimum
of the local exponent does. The times are however not exactly corresponding, and we
cannot assess for sure that a speci�c non-Gaussianity of the di�usion is related to a
speci�c subdi�usive regime, but the temptation is big. Again, in the same way than for
the local exponent, the second peak appearing only when the amplitude increases, the
potential can be thought to be its main cause, and the �rst peak therefore seems to be
caused by density related e�ects. At the di�usion-localization transition, the width of
the second peak is in�nite, leading to a discontinuous jump of the in�nite time NGP
to a nonzero value. In the framework of the MCT, the value reached by the NGP
at the very critical amplitude � c is known to be limt !1 � (t)j � = � c = �

2 � 1. A further
increase of� leads to another discontinuous jump of the in�nite value of the NGP towards
lim t !1 � (t)j � ! � +

c
= 1.

5.5.2 Around the discontinuous transition line

From the perspective of the local exponent and the NGP, crossing the continuous transi-
tion line is rather uninteresting. Both these variables are dependent on the MSD, whose
essential changes of regime occur when the uid exits the liquid phase, either to the
localized phase through the di�usion-localization transition line, or to the glass phase
through the discontinuous transition line. The continuous transition case will therefore
not be shown here, bringing no interesting features nor discussions. The case of the
discontinuous transition line is shown in �gure 5.16, where the local exponent and the
NGP have been plotted at a constant value of� = 1 :0, and density framing the transition
line in the way adopted previously.
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Figure 5.16: (left) local exponent and(right) NGP of a uid of density � , in a
Gaussian random potential with Gaussian correlation function of amplitude� =
1:0 and correlation length� = 0:5. The density has been chosen, following equation
(5.5), to frame the discontinuous transition line (see the blue arrows on �gure 5.1).
The red curve is taken at the critical density� = � c (n ! 1 ). The structural
correlation functions have been calculated using the OZ equation together with
the HNC closure relation.

The �rst curve of the local exponent on the top is located in the liquid phase at a
quite high density of � = 0 :89. At short times, as in �gure 5.15, this function equals
one meaning that the system is di�usive. At intermediate times, a minimum develops
around t = 102 which, as the density increases, broadens, deepens, and shifts to the
right. This indicates that the system develops a subdi�usive regime that intensi�es and
lasts for longer and longer time with an increase of the density. When the discontinuous
transition line is met, the minimum reaches zero and its width is in�nite. The system has
therefore reached a nondi�usive state at long times: the system is in a state of dynamical
arrest, the glass phase. Subsequent increase of the density leads the local exponent to
reach zero earlier.

In comparison with �gure 5.15, only one minimum is present in this case, which by
looking at the apparition time, can be identi�ed to the density related one. Furthermore,
this minimum increases as a result of the increase of the density, and is the one leading
to the dynamical arrest through the discontinuous transition line, which corroborates
the latter fact.

The case of the NGP here is somewhat trickier to analyze. All the curves of the NGP
present a value of zero at short times, meaning that the distribution of the particles
around their initial position follows a Gaussian distribution. At a density of � = 0 :89
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(the �rst curve), the NGP starts to increase at t = 1 and reaches a peak aroundt = 103,
times at which the particles travel further compared to a normal distribution. The
system being in the liquid phase, this peak is followed by a decrease to zero at long
times. As the density increases towards the discontinuous transition line, the peak
described previously shifts to the longer times, while a minimum appears at short to
intermediate times. At the transition line, the second peak disappears, leaving only
a plateau, and with subsequent increase of the density, the value of the plateau shifts
down. In this case, we can assume that the said peak has simply shifted towards in�nite
time. The sudden apparition of a minimum at short times seems to indicate a change
of regime of the system, that persists after the phase transition. This minimum cannot
be correlated to a change in the local exponent, nor in the ISF or the MSD, so any
attempt of interpretation would lead to unclear conclusions. We hope that in the future
experimental studies would observe this phenomenon and trace it back to a probable
cause, is there is any.

5.5.3 Around the glass-glass transition

The case of the glass-glass transition mentioned earlier left a quit unsatisfying taste, the
conclusions from the study of the ISF and the MSD being that even though this strange
phenomenon happens, no real distinction can be made between the two types of glasses.
However, tracing the local exponent and the NGP at the same set of parameters leads to
interesting observations. This is shown in �gure 5.17, where the density has been kept
at a constant value of � = 0 :6, and the amplitude varied following equation (5.5).
Many phenomena are at play in this case: the continuous transition line is very close and
probably inuencing the dynamics a lot, and the transition from one glass to another
seems to bring a lot of complex phenomena to play, concerning both the local exponent
and the NGP. Therefore, no interpretation will be attempted.

At low values of the amplitude, the local exponent has a bump, seemingly inherited
from the continuous transition, that shifts to the right as the amplitude increases. On
the other hand, the NGP develops a minimum at short times, that converges towards a
limit as the amplitude increases. As the discontinuous transition line is approached, a
plateau forms at intermediate times, before the value goes up at in�nite time to another
plateau. At the transition line, the plateau jumps to a lower value, indicating a new
regime.

This time, by looking at more complex values like the local exponent and the NGP,
it seems clear that the dynamical phenomena leading to the two glasses are di�erent
in nature. However, these scenarios are extremely complex, and the times very long.
Observing these phenomena in experiments is therefore very improbable.
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Figure 5.17: (left) local exponent and(right) NGP of a uid of density � = 0:6,
in a Gaussian random potential with Gaussian correlation function of amplitude�
and correlation length� = 0:5. The amplitude has been chosen, following equation
(5.5), to frame the discontinuous transition line (see �gure 5.10). The red curve
is taken at the critical amplitude � = � c (n ! 1 ). The structural correlation
functions have been calculated using the OZ equation together with the MSA
closure relation.

5.5.4 Unusual shape of the local exponent

The last phenomenon that we may discuss in this work concerns the shape of the second
minimum observed in the local exponent. As it has been dicussed earlier, this minimum
�nds its origin in the action of the potential on the dynamical slowing down of the
dynamics, and it systematically happens at a later time than the minimum caused by
the cage e�ect. The shape of this minimum has been observed to be quite characteristic of
this type of phenomenon, however no in-depth discussion has been undertaken. Figure
5.18, top panel, shows the local exponent at zero density for a correlation length of
� = 0 :75, and an increasing amplitude of the potential until � c, where the liquid gives
way to the glass by crossing both the continuous and di�usion-localization transition
lines at the same time. The bottom panel shows a simulation result from Schnyderet al.
(2015) where a single tracer is set to move in a two-dimensional landscape of quenched
particles with a Weeks-Chandler-Andersen (WCA) potential.

First, looking at the top panel of �gure 5.18, we can see that as the amplitude of the
potential increases, a minimum of the local exponent appears at intermediate to long
times, as described previously. This minimum however seems to be the sum of two
minima located at di�erent times. The �rst one appears at � = 0 :0+ around t = 101,
while the second one appears at higher values of� around t = 102 and shifts to later
times as � increases. At high values of� , and as we approach the transition line, the
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second minimum takes over the �rst one and eventually leads to the transition. The �rst
minimum is then reduced to a simple shoulder on the left side of the second one. The
presence of these two minima hints to the existence of two distinct dynamical phenomena
that are both linked to the presence of the external disordered potential.

At �rst, the presence of these two minima has been mistaken for a mere artifact of
the MCT, but the simulation study of which a picture is presented on the bottom
panel of �gure 5.18 hints to physical reality. On this �gure the curves are plotted for
increasing values of the reduced number densityn�

W CA . As this parameter increases, a
minimum �rst appears around t = 101, and the second one appears at higher values of
the reduced number density at later times and shifts in the same way as described for
the second minimum seen on the top panel. The WCA potential is a Lennard-Jones
like type of potential and provides therefore with a smooth interaction between the
quenched particles and the tracer. Similarly, the disordered potential studied throughout
this work creates a smooth energy landscape for the hard spheres that constitute the
uid. Therefore, despite many di�erences (namely the dimensionality, the nature of the
potential and the method of study) the two systems have in common the fact that the
potential experienced by the particle is smooth. The existence of two minima, linked to
the action of two distinct dynamical phenomena, can be thought to be a characteristic
of dynamics with smooth interactions. The very nature of the dynamical phenomena
is yet to be uncovered, and we hope that future simulation studies could pinpoint the
causes of this complex behaviour.
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Figure 5.18: (top) Local exponent of a uid at zero density, in a Gaussian random
potential with Gaussian correlation function of amplitude� and correlation length
� = 0:75. The amplitude has been steadily increased so that ten curves are
traced between� = 0:0 and � = � c. The value of the amplitude is proportionnal
to the saturation of the colors. (bottom) Local exponent of a single particle
in a quenched matrix of particles with a WCA potential. The parametern�

W CA
de�nes both the density of the quenched particles and the range of their potential.
Reproduced from Schnyderet al. (2015).



Chapter 6

Numerical details

6.1 Structural calculations

6.1.1 Description of the algorithm

The calculation of the structural functions is done using the Ornstein-Zernike equations,
together with a chosen closure relation. The developments leading to the suited equations
have been presented in chapter 2, but the actual implementation and solving of these
equations requires methods and precisions that are the point of this very chapter.

We recall the form of the OZ equations:
�

h(r ) = c(r ) + �
R

c(r )h(r ) � �
R

cd(r )hd(r );
hd(r ) = cd(r ) + �

R
c(r )hd(r ) + �

R
cd(r )h(r ) � 2�

R
cd(r )hd(r );

(6.1)

�
h(q) = c(q) + �c (q)h(q) � �c d(q)hd(q);
hd(q) = cd(q) + �c (q)hd(q) + �c d(q)h(q) � 2�c d(q)hd(q);

(6.2)

where equations (6.1) are the OZ relations in real space and equations (6.2) are in
reciprocal space. By working in the reciprocal space, the terms on the r.h.s of the
equations which are convolutions in real space become simple products. This has the
advantage of both simplifying the structure of this very important function and making
the numerical evaluation far simpler. Therefore during the calculation, a back and forth
trip is done at each iteration between the real and the reciprocal space.

The numerical calculation of the structural functions h, hd, c and cd, from which one
can compute all the other structural functions, needs the de�nition of an intermediate
term, as

 (r ) = h(r ) � c(r );

 d(r ) = hd(r ) � cd(r );
(6.3)
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 (q) = h(q) � c(q) =
cc(q)

1 � �c c(q)
+

cd(q)
(1 � �c c(q))2 � c(q);

 d(q) = hd(q) � cd(q) =
cd(q)

(1 � �c c(q))2 � cd(q):

(6.4)

thence respectively de�ned in real and reciprocal space. and  d are simply expressed
as functions of the total and the direct correlation functions.

Using what has just been de�ned, the algorithm to calculate iteratively the structural
functions is

1. Find reasonable guessesc(r ) = cguess(r ) and cd(r ) = cd
guess(r ) for the direct corre-

lation functions.

2. Fourier transform to get c(q) and cd(q).

3. Calculate  (q) and  d(q) using equation 6.4.

4. Inverse Fourier transform to get  (r ) and  d(r ).

5. Calculate cnew(r ) and cd
new(r ) using a closure relation.

6. Mix the new function with the previous one usingcnew(r ) = �c new(r )+ (1 � � )c(r )
and cd

new(r ) = �c d
new(r ) + (1 � � )cd(r ) with � 2 [0; 1].

7. Go back to 2, unlessjjcnew(r ) � c(r )jj < � and jjcd
new(r ) � cd(r )jj < � where � is

small.

The step number 6 of the algorithm incorporates a mixing parameter� that has the
purpose of keeping the stability of the calculated functions in the process of convergence.
At each iteration, a certain percentage of the newly calculated function is mixed with
the old one, and this allows the spontaneous changes in the shape of the functions not to
have a too dramatic e�ect on the calculation, while still being taken into account. This
is done at the expense of calculation time.

6.1.2 Practical details

All the structural calculations have been performed using FORTRAN 90 and storing the
real numbers in double precision type variables, whose precision reaches the �fteenth
digit. For calculation time reasons, the choice has been made to use a well tested Fast
Fourier Transform (FFT) subroutine to do the back and forth route in the reciprocal
space. This subroutine has the particularity, on top of being very e�cient, of being only
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able to process arrays with a number of cells that follows the ruleNstruct = 2 p where
p 2 N+ . This number has been chosen asp = 12, leading to arrays of Nstruct = 2 12 = 4096
cells. The distance between two values has been chosen as �r = 0 :01. We therefore have
� q = �

dr � N struct
� 0:077.

The mixing parameter is chosen as� = 0 :05, a quite low value that has proved to
keep the convergence on tracks. Furthermore, the calculation of the structural functions
is extremely fast compared to the dynamical functions. Therefore, a little more time
allocated to make sure the structural calculation are performed correctly every time,
does not fundamentally change the overall calculation time. Finally, the convergence
parameter as been chosen as� = 10 � 12.

6.2 Phase diagrams

6.2.1 Description of the algorithm

We start with the expression that allows the calculation of the in�nite time limit of the
ISF, f (q) = lim t !1 � (q; t) :

f (q)
1 � f (q)

= m(q; V (2) ; V (1) ; f (q)) ; (6.5)

where m(q; V (2) ; V (1) ; f (q)) is the memory function, in which the dependence on the
vertices V (2) and V (1) as well asf (q) has been made explicit. As explained in chapter 5,
the di�erent phases of the uid are characterized by di�erent values of f (q) (in the case
of the liquid and the glass) and f s(q) (in the case of the localized phase). The general
example of f (q) will be taken in the following, but everything is applicable to f s(q) as
well.

f (q) is the parameter de�ning the phase of the system, otherwise called the order pa-
rameter. The limit between two phases or domains corresponds to critical values of the
in�nite time ISF f c(q) and of the verticesV (2) ;c and V (1) ;c, so that the following equation
presents at least one singular solution:

f c(q)
1 � f c(q)

= mc(q)(V (2) ;c; V (1) ;c; f c(q)) ; (6.6)

and the condition of singularity of the Jacobian matrix is met:

det
�

1
(1 � f c(qi ))2 � ij �

@m(qi )
@f(qj )

(V (2) ;c; V (1) ;c; f c(q))
�

= 0 : (6.7)

Let us approach the liquid-glass transition line from the glass phase, i.e., the system
is set in a state (V (2) ; V (1) ) = ( V (2) ;c + v(2) ; V (1) ;c + v(1) ) so that the solution f (q) to
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equation (6.5) is nonzero. We setf (qi ) = f c(qi ) + (1 � f c(qi ))2g(qi ), inject it in equation
(6.5) and perform a Taylor expansion in the following way:

X

j

[� ij �
@m(qi )
@f(qj )

(v(2) ; v(1) ; f c(q))(1 � f c(qi ))2
�

g(qj ) = m(qi )(v(2) ; v(1) ; f c(q))

� (1 � f c(qi ))g(qi )2 +
1
2

X

j;k

@2m(qi )
@f(qj )f (qk )

(v(2) ; v(1) ; f c(q))(1 � f c(qj ))2

(1 � f c(qk ))2g(qj )g(qk ) + O(v(2) g; v(1) g; g3):

(6.8)

The matrix on the l.h.s. is equivalent to the Jacobian of equation (6.5), and has therefore
a unique zero eigenvalue. We de�ne the two eigenvectorse(qi ) and ê(qi ) respectively on
the right and on the left of this matrix, and both associated to the zero eigenvalue. We
apply them the following constraints:

e(qi ) > 0 ê(qi ) > 0
X

i

ê(qi )e(qi ) = 1
X

i

ê(qi )(1 � f c(qi ))e(qi )2 = 1 : (6.9)

A solution exists only if
X

i

ê(qi ) [ m(qi )(v(2) ; v(1) ; f c(q)) � (1 � f c(qi ))g(qi )2

+
1
2

@2m(qi )
@f(qj )f (qk )

(v(2) ; v(1) ; f c(q))(1 � f c(qj ))2(1 � f c(qk ))2gj gk

�
= 0 :

(6.10)

This solution is of the form g(qi ) = e(qi )g at the main order.
Finally, we de�ne � as

� =
1
2

X

i;j;k

ê(qi )
@2m(qi )

@f(qj )f (qk )
(v(2) ; v(1) ; f c(q))(1 � f c(qj ))2(1 � f c(qk ))2e(qj )e(qk ) (6.11)

This parameter is called the exponent parameter and is extremely important in the
calculation of the transition lines. When this parameter is calculated on a transition
line, its value de�nes the way the dynamical variables decay towards their �nal value.
Furthermore, and this is the feature that will be interesting in the case of the calculation
of the phase diagram, the value of� indicates the end of a transition line. Usually,
this parameter is expected to be 0� � � 1 for a continuous or di�usion-localization
transition line, and 0:5 � � � 1 for a discontinuous transition line. In any cases, when
� = 1, the transition line is known to reach its end.

A phase diagram consists of transition lines separating the di�erent phases the uid can
adopt, and the calculation of the transition lines is done by evaluating the in�nite time
limit of the ISF f (q), and subsequent calculations of the eigenvalue of the Jacobian and
of the parameter � to quantify the position on the transition line.
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Concerning the phase diagrams presented in chapter 5, the x-axis has been chosen as
the density of the uid � , and the y-axis as the amplitude of the potential � , and the
correlation length of the potential taken as a constant. Therefore due to the way they
behave, the continuous and the localization transition lines were created by varying� at
constant values of� and of the correlation length of the potential � . This example will
be taken in the following, but the procedure is applicable to the discontinuous transition
line as well by varying the density instead of the amplitude.

The algorithm used to calculate the transition lines is a dichotomy over the value of a
varying parameter, here taken as� for the example :

Initialization

1 For a given value of� , make an educated guess of a value of� that is likely
to be close to the critical value � c.

2 Calculate the vertices, and by an iteration process evaluate both the memory
function and the order parameter f (q).

3 Use power iteration to calculate the eigenvalueE of the Jacobian of the
system.

4 If E < 0 (resp. E > 0) we have � < � c (resp. � > � c). Increment (resp.
decrement) � by an arbitrary value and repeat step 2 until E > 0 (resp.
E < 0). The two values of � that are respectively below and above� c are
denoted � liq and � glass.

Re�nement

5 Set � = � liq + � glass

2 and calculate the vertices, memory function, order param-
eter and �nally the eigenvalue E.

6 If E < 0 (resp. E > 0) set � liq = � (resp. � glass = � ) and go back to step 4
until jE j < � where � is chosen small.

7 Evaluate the value of � . If � > 1, the end of the transition line has been
met and the calculation is stopped. Otherwise, increment� and start over
at step 1. A re�nement of the position of the end of the transition line can
be done after the whole transition line has been drawn.

6.2.2 Practical details

The evaluation of f (q), f s(q), the eigenvalue, and� has been performed using FORTRAN
90 and double precision type variables for the evaluation of the real numbers and arrays.

The number of iterations, especially to calculate the value of the order parameterf (q) can
be huge, this part of the calculation is one of the most time-consuming ones. Therefore,
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in order to make the calculations faster, and as concern for memory consumption, all
the functions have been stored and calculated on arrays ofN d = 300d cells, whered is
the dimension of the array. Knowing that the structural functions have been evaluated
on arrays of Ndynamics = 4096 cells, calculating the vertices is done with an obvious loss
of information. Every two values until Nstructure = 600 is sampled out to calculate the
vertices in order to account for the short distance correlations, which contain most of
the information.

The iteration over f (q) is done until jf i (q) � f i +1 (q)j � � f where i denotes the iteration
and we choose� f = 10 � 12. The continuous and di�usion-localization transition lines
are calculated by varying � regularly by steps of � � = 0 :01, and for each value of� ,
the critical amplitude � c is framed using dichotomy until jE liquid � E glassj � 10� 6 where
E liquid and E glass are respectively the eigenvalues calculated in the liquid and the glass
side of the transition line.

The discontinuous transition is calculated by �rst varying � regularly and choosing the
number of steps according to the expected height of the phase diagram, untiljE liq �
E glassj � 10� 4. The calculation of the transition line is stopped when the value of� = 1
is reached. When the transition line becomes horizontal for certain closure relations and
values of � (typically the high values), the discontinuous transition line is calculated by
varying the density.

Due to the structure of the solutions, two types of junctions are expected to happen
between the continuous and the discontinuous transition lines. The �rst way these two
lines can intersect is by connecting at the very point where� = 1 for both of them,
which is only encountered in this work for the low values of the correlation length. Most
of the time however, the discontinuous transition line cuts through the continuous one,
which is discarded beyond this point. The reasons for this lies again in the structure
of the solutions and the demonstration will not be explicited here. The discontinuous
transition line always prevails over the continuous transition line.

The precision chosen to frame the discontinuous transition line is much lower compared
to the continuous case, because the convergence off (q) is slower, and becomes even
slower as the point � = 1 is approached. The typical convergence of a calculation when
the point is taken in the liquid phase is very di�erent from the case of the glass phase,
and both are represented in �gure 6.1.
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Figure 6.1: Convergence of the calculation of the location of a critical value� c at
a value of the amplitude� = 1:0 in the liquid phase (plain black line) and the
glass phase (dashed red line) as a function of the number of iterations. The double
arrow indicates a turning point.

In the glass, the di�erence betweenf i (q) ad f i +1 (q) decreases steadily until convergence
is reached, while the pattern in the case of the liquid phase presents a minimum followed
quickly by a maximum and a fast decrease to convergence. The main di�erence lies
in the fact that the convergence in the liquid phase presents a turning point, which is
pinpointed in �gure 6.1 by a tangent line. In the course of the calculation, this turning
point can be very easily found. Since it is a feature of only the liquid phase, a convergence
process can be stopped as soon as a turning point is found, and the phase of the uid
determined on this sole criteria, which speeds up the calculation of the transition line.

Moreover, taking the value of thef (q) array on the turning point to calculate the vertices
and the eigenvalue allows for a greater precision on the calculation of� than usual
convergence. This allows for a very good re�nement of this important parameter without
the cost of carrying a calculation to full convergence.
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6.3 Dynamical functions

6.3.1 Description of the algorithm

The calculation of the dynamical variables such as the intermediate scattering function
(ISF), the mean squared displacement (MSD), and the non-Gaussian parameter is done
by iteratively solving the MCT equations presented in chapter 4, using standart methods
developped in (Fuchs et al., 1991; Franoschet al., 1997b; Fuchs et al., 1998). The
evaluation of these functions goes through the evaluation of the memory kernel, which in
turn is de�ned in terms of the structural functions presented in chapter 2. For calculation
time reasons, the dynamical functions have been de�ned on arrays ofNdynamics = 300
cells. The structural functions therefore have to be sampled on the same array, and
this can be therefore only done by loosing information, the initial structural functions
being sampled on aNstructure = 4096 array. Therefore, one of two values has been taken,
e�ectively stopping the sampling at Nstructure = 600, which did not seem to create
numerical discrepancies.

The calculation of the dynamical variables has been made as follows.

Let us consider the following generalized Langevin equation for the collective ISF, as
described in chapter 4:

� (q) _� (q; t) + � (q; t) +
Z t

0
m(q; t � � ) _� (q; � )d� = 0 : (6.12)

The following will focus �rst on a discretization of this equation, followed by the de-
scription of the iterative algorithm used to solve it. This is done for the example with
the generalized Langevin equation for the collective ISF, but the same scheme can be
applied to solve its self counterpart, and the mean squared and quartic displacements,
whose equations follow similar rules.

We can rewrite this equation in the following way:

� (q; t) = m(q; t) �
d
dt

Z t

0
m(q; � )� (q; t � � )d� � � (q) _� (q; t): (6.13)

First we rewrite the integral I (q; t) = d
dt

Rt
0 m(q; � )� (q; t � � )d� , introducing T � t=2 :

I (q; t) = m(q; T)� (q; t� T)+
Z t � T

0
_m(q; t� � )� (q; � )d� +

Z T

0

_� (q; t� � )m(q; � )d� (6.14)

De�ning t1 < t 2 < t and developing at the third order for any two dummy variables
A(q; t) and B (q; t) :

Z t 2

t 1

_A(t � � )B (� )d� �
A(t � t1) � A(t � t2)

t2 � t1

Z t 2

t 1

B (� )d�; (6.15)
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which allows to rewrite equation (6.14) in a way that can be discretized. We de�ne
t = nh, T = Nh and tk = kh, wheren; N; k 2 NNN+ , and h 2 RRR+ . This allows to represent
all the functions we want to compute on arrays ofN values, wheren and k label cells
of the arrays and h is to be chosen small in order to have a good precision. We de�ne
the discretized ISFs as follows:

� k = � (q; kh);

� k =
1
h

Z kh

(k� 1)h
� (q; t)dt;

(6.16)

and the discretized memory functions:

mk = m(q; kh);

M k =
1
h

Z kh

(k� 1)h
m(t)dt:

(6.17)

We apply (6.15) and use the notation just de�ned on (6.14):

I n = mN � n� N +
NX

k=1

(� n� k+1 � � n� k )M k +
n� NX

k=1

(mn� k+1 � mn� k )� k : (6.18)

We de�ne Cn as

Cn = mN � n� N � mn� 1� 1 � � n� 1M 1+
NX

k=2

(� n� k+1 � � n� k )M k +
n� NX

k=2

(mn� k+1 � mn� k )� k ;

(6.19)
and �nally, we write (6.18) as

mn � I n = mn (1 � � 1) � � nM 1 � Cn ; (6.20)

which is the �rst term on the r.h.s. of equation (6.13). In order to fully discretize this
expression, we need to de�ne the derivative of the ISF, using a common approximation:

_� n =
3� n � 4� n� 1 + � n� 2

2h
(6.21)

Finally, plugging these expressions in equation (6.13) and rearranging, we get

� n =
mn (1 � � 1) � Dn

1 + M 1 + 3 � (q)
2h

; (6.22)

with

Dn = Cn �
� (q)
2h

(4� n� 1 � � n� 2): (6.23)
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The times spanned by the relaxation of the dynamical variables is huge, usually of
the order of 1012, but sometimes longer, when the calculation is performed close to a
transition line, where the dynamics of the system is by de�nition very slow. Storing all
the values of � (q; t) would require a quantity of memory that computer at the time this
work is put together cannot support. Therefore, the calculation has to be done in an
iterative manner, and information has to be lost carefully at each step.

Initialization

The ISF is stored on an array ofN = 2p cells, and the time steph0 is chosen so that
t0 = Nh0 � minq � (q), where the subscript 0 indicates that the value ofh is meant to
change at each iteration. The �rst N=2 values of the array are initialized using a Taylor
expansion of the ISF:

� (q; t) = 1 �
t

� (q)
; (6.24)

and the integrals are calculated using the trapezoidal rule:

� k =
1
2

(� k� 1 + � k ); with the initial condition � 0 = 1,

M k =
1
2

(mk� 1 + mk ); where m0 has to be explicitly calculated.
(6.25)

Concerning the NGP, the �rst and the second derivatives of the self ISF with respect to
the wavevector have to be calculated at this step for the initialized array, using simple
numerical derivation:

d
dq

� s
k;q =

� s
k;q� 1 � � s

k;q+1

2hq
;

d2

d2q
� s

k;q =
� s

k;q� 1 � 2� s
k;q + � s

k;q+1

h2
q

:
(6.26)

The integrals and the derivatives have to be stored inNdynamics sized arrays as well.

Propagation

The following propagation has to be done forN=2 + 1 � k � N , and sums up to
calculating the values of the ISF and the memory function (possibly the derivatives of
the self ISF in the case of the mean quartic displacement) for the second half of the
array.

1. Calculate Cn and Dn , which requires values of the ISF and the memory functions
and the integrals at times 1 � k � N=2.

2. Take a guess� i
n , and calculate the memory function as

mi
n (q1) =

X
(q1; q2; q3)V (2) (q1; q2; q3)� i

n (q2)� i
n (q3) + V (1) � i

n (q2): (6.27)



6.3. DYNAMICAL FUNCTIONS 117

3. Calculate a new value of� i +1
n (q) using equation (6.22), which will be taken as a

guess for the next iteration.

4. Start over at step 2 until j� i
n � � i +1

n j < � , where � is a small real number.

5. Calculate mi
n (q1) one last time.

The guess at the �rst step of this propagation is chosen as� i
n = � n� 1. After the �rst

propagation, the values calculated forN=2 + 1 � k � N have to be written down.

Reduction

Because of the fact that Cn has to be calculated usingall the previous values of the
ISF and the memory function, one would need, in order to get a theoretically perfect
calculation of the dynamical variables, to dynamically allocate the arrays after each �rst
propagation. However as stated above, the times spanned by the MCT calculation are
usually very long, due to the fact that the phenomena that we aim to observe happen at
critical values of the parameters describing the system. Therefore, such a simple solution
would lead to a huge amount of information to be stored, and therefore be impossible.
We can however take advantage from the fact that the long time dynamics shows less
and less dependence over the short time dynamics as the time increases: this second
propagation aims to reduce the information in a smart way.

First, for all 1 � k � N=2, we do the following:

� k = � 2k ;

� k =
1
2

(� 2k� 1 + � 2k );

mk = m2k ;

M k =
1
2

(M 2k� 1 + M 2k ):

(6.28)

Then, for all N=2 + 1 � k � N , we calculate the integrals using the Simpson formula:

� k =
� 2k + 4 � 2k� 1 + � 2k� 1

6

M k =
m2k + 4m2k� 1 + m2k� 1

6

(6.29)

and �nally, we set h0 = 2h as the new time step. This whole process has the purpose of
e�ectively doubling the time step h. Starting up again with a propagation will lead to a
new series of values calculated in a much faster way. Propagation followed by reduction
is to be applyied as much as needed, typically until convergence is met, or a certain
number of values have been calculated.
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6.3.2 Practical details

The calculation of the dynamical variables has been performed using FORTRAN 90
and double precision type variables for the evaluation of the real numbers and arrays.
The functions have been stored in arrays of sizeQ � 2T where Q = 300 and T = 200.
The functions are calculated for each value ofq one time with the initialization and
propagation steps, and are written down in �les, followed by a reduction step. The
propagation is performed again and the newly calculated values written down in the
same �les. This process is followed untilj� (q)t � � (q)t+1 j < � with � = 10 � 12.



Chapter 7

Preliminary simulation study

When working with the Mode Coupling Theory, the problem one immediately runs into
is the comparison with experiments, which is something that could be done to an extent
with the work of Evers et al. (2013a), Everset al. (2013b), Bewerungeet al. (2016b),
and Bewerunge (2016). Unfortunately, due to the di�culties pertaining to the di�erence
in dimensionality, and the inability to span the very long and very short time scales
experimentally, useful comparison was often considered only as a way to con�rm the
existence of general trends that MCT could sometimes capture. Moreover, it is unlikely
that experiments could measure the critical dynamics happening at long times any soon,
due to the technical di�culty of doing so.

When the MCT had seemingly been milked out of all meaningful results, the logical
step forward has been clearing up the way for potential future results. These future
results have to come from simulation studies which do have but little constrains on the
time scales measured and the precision of the outcome, at least for not too extreme
situations. As a way of simplifying the implementation, the method has been chosen to
be a Monte Carlo method performed on hard spheres placed in a three-dimensional box
with periodic boundary conditions, where the positions of the particles as well as the
Gaussian random potential de�ned in chapters 1 and 2 are set on a �ne grid.

The diameter of the particles is taken as unity, and the simulations done in aL � L � L
box with L = 10, divided into P � P � P points with P = 200, over which N particles are
placed. The arrangement of the particles at the beginning of the simulation is done by
creating a crystal of N particles with lattice constant d = b P 3

N 1=3
c. Placing the particles

in this way requires a step of relaxation before starting any actual data collection, so
that the rather practical but unrealistic starting crystal does not bring any contribution
to �nal structural results.
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7.1 Generation of a random potential

The reliability of the Monte-Carlo simulations stands on the quality of the potential
generated, which contrary to the case of the theoretical work cannot be included in the
study through its covariance alone. This time, the potential has to have a value on
each point of the grid, which in part simpli�es the problem by requiring only a �nite
number of well de�ned points, on which the potential has a known value that can be
used throughout the entire calculation. The scheme developed by Bertschinger (2001)
for cosmological large scale calculations provides an easy and quick way to generate
such a potential on a grid that presents periodic boundary conditions. The potential is
generated according to

� (r ) =
Z

d3kei k :r T(k)� (k); (7.1)

where � (k) is the Fourier transform of a Gaussian white noise, andT(k) is related to
the covariance of the random potential as

T(k) =
p

K (k); (7.2)

where K (k) is the Fourier transform of the covariance of the potential, here chosen as a
Gaussian function of the form

k(r ) = "2e� ( r
� )2

(7.3)

which can be Fourier transformed into

K (k) = "2(�� 2)3=2e� k2 � 2 =4: (7.4)

The discretized process starts with the generation of one random number per point of
the grid, i.e., P3 points. These random numbers have to follow a Gaussian distribution,
and the Box-Muller algorithm gives a quick and e�cient way to do this. First, two
random numbersu and v are generated using a uniform random number generator. We
then calculate u0 = 2u � 1, v0 = 2v � 1, and

w = u0
1 + u0

2; (7.5)

and �nally, a couple of Gaussian random numbers is generated as

z1 = u0

r
� 2 logw

w
;

z2 = v0

r
� 2 logw

w
:

(7.6)

One such number is generated on each point of the grid. The variance of this Gaussian
distribution has to be N 3 and therefore every random number is scaled accordingly.
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Equation (7.1), which can be rewritten as a convolution product (Salmon, 1996), can be
discretized as

� (r ) =
X

�

e
i 2 �
N

�: r T(� )� (� ); (7.7)

where � = k L
2� has three components, each in [� N=2; N=2[.

The correct generation of the disordered potential is at the core of the validity of the
results, and is thus a step of major importance. Its validation will therefore be the object
of the �rst results presented in this chapter.

7.2 Calculation of the disconnected structural
quantities

The calculation of the total correlation function and associated quantities is done in a
straightforward way, by sampling the positions of the particles on a regular basis during
the calculation. However, separating the connected from the disconnected requires the
use of a more sophisticated method, adapted from Meroniet al. (1996).

The disconnected total correlation function is expressed as a function of the two-point
density correlation function 	( r 1; r 2) = h� (r 1)ih� (r 2)i . We note that in that expression
only the ensemble average is taken. The disorder average is to be evaluated later on. In
the context of a Monte Carlo simulation, the one-point density can be calculated as

� (R ) =
1
v

NX

i =1

� R � r i ; (7.8)

where v is the volume of a single cell of the discretized box, and �R � r i acts like a
Kronecker delta in the way that it equals 1 if r i = R and 0 otherwise. The two-point
density correlation can be discretized as

	( r ) =
1

N 3

X

R

h� (R + r )ih� (R )i ; (7.9)

which can be evaluated by taking the inverse Fourier transform of the following expres-
sion:

 (k) = � (k) � � (k); (7.10)

with � (k) the Fourier transform of h� (R )i .
Taking the average over di�erent disorder realizations allows one to recover to disorder
averaged quantity, and �nally 	( r ) is obtained by regrouping all 	( r ) with the same r .
We eventually calculate the disconnected total correlation functionhd(r ) as

hd(r ) =
	( r )
� 2 � 1: (7.11)
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7.3 Some results

As a validation of the generation of the potential and as a way to introduce results from
this simulation study, we may calculate the usual and disconnected total correlation
functions h(r ) and hd(r ). These functions were described in chapter 2, and in the case of
a system with no hard core, i.e., an ideal gas, they are strictly equal. Furthermore, the
exact result for these functions is known and coincides with the result of the HNC closure
relation as h(r ) = hd(r ) = e� 2 k(r ) � 1. Comparison between the simulated disconnected
and usual total correlation functions, and the analytic result is presented in �gure 7.1,
for varying values of the relative amplitude from � = 0 :5 to � = 2 :0.

Figure 7.1: Disconnected (green curves) and usual (red curves) total correla-
tion functions evaluated by a Monte Carlo simulation of an ideal gas (no in-
teraction between the particles) in a Gaussian random potential with amplitude
� = 0:5; 1:0; 1:5; 2:0 and correlation length� = 0:5. 250000 Monte Carlo itera-
tions have been performed, and the positions of the particles have been sampled
every 50 iterations to calculate the correlation functions. 50 potentials have been
generated with the same parameters to get the disorder averaged quantities. The
dashed black curves represent the analytic result.

The simulated functions have not been calculated atr = 0, where they are prone to
large normalization errors. Furthermore, it can be noticed that the result at r = � r
concerning the disconnected total correlation function is very imprecise, compared to the



7.3. SOME RESULTS 123

usual total correlation function. This is entirely an artifact of the method, due to the
discretization of the simulation box, creating a self contribution of the two-point density
correlation function at that distance. This contribution vanishes very slowly when the
re�nement of the discretization and the number of potentials sampled increase.

Clearly, apart from the discrepancy at short distance for the simulated disconnected
total correlation function, the curves are very similar. This constitutes therefore both
a con�rmation of the proper generation of the potential, and of the algorithm used to
evaluate h(r ) and hd(r ). The curves are expected to approach the analytic solutions
more and more, as more iterations are done, and more potentials are sampled.

As interesting as the ideal gas is in order to validate the generation of the potential
and the calculation of the structural properties, the real interest lies in the study of
a hard-sphere uid at di�erent densities. During the short time that the calculations
could be ran, we managed to increase the density until� = 0 :2 while keeping reasonable
calculation times. Figure 7.2 shows a comparison of the usual and disconnected total
correlation function for a hard-sphere uid of densities � = 0 :1 and � = 0 :2. This short
range of densities obviously does not constitute an extensive study, but it allows a few
quick and general conclusions.

Concerning the usual total correlation function, a �rst conclusion is that the inuence
of the potential grows very slowly when the amplitude increases. Second, it appears
that the total correlations are more important when the density is higher, due to the
increased particle-particle interactions. This is all expected.

Concerning the disconnected total correlation function, the inuence of the potential
is much bigger, and grows very fast with the increase of the amplitude. We note the
apparition of a negative peak aroundr = 1, a fact that can be seen in the theoretical
calculations in chapter 3 as well. Comparing the cases of� = 0 :1 and � = 0 :2, we
see that the potential has a greater inuence on the disconnected correlations at lower
values of the density. When the density increases, it seems that the density related
correlations erase the potential related correlations, and this points to the reentrance of
the di�usion-localization line observed in chapter 5. Which, as it has been discussed in
that chapter, is caused exactly by this phenomenon. The reentrance, which has already
been compared to experimental isodi�usivity lines, receives here a further con�rmation.
We therefore expect the disconnected correlations to collapse even more with an increase
of the density, until a certain high value of the density where they would start to grow
again.
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Figure 7.2: (left) Usual and(right) disconnected total correlation functions eval-
uated by a Monte Carlo simulation of a hard-sphere uid in a Gaussian random
potential with amplitude � = 0:0 to � = 2:0 and correlation length� = 0:5. The
amplitude of the potential is proportional to the saturation of the color of the
curve. 250000 Monte-Carlo iterations have been performed, and the positions of
the particles have been sampled every 50 iterations to calculate the correlation
functions. 50 potentials have been generated with the same parameters to get the
disorder averaged quantities.

Among the dynamical variables, the MSD is one that is very easy to evaluate in the
context of a simulation, since it only needs the position of the particles with almost
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Figure 7.3: (left) MSD evaluated by a Monte Carlo simulation of an ideal gas in
a Gaussian random potential with increasing amplitude� = 0:0 to � = 2:0 and
correlation length � = 0:5. 250000 Monte-Carlo iterations have been performed,
and 50 potentials have been generated with the same parameters to get the disorder
averaged MSD.(right) MSD calculated for the same parameters using MCT, and
the OZ equation together with the HNC closure relation to get the structural
correlation functions.

no treatment. Figure 7.3 shows a comparison between the simulated MSD and the one
calculated using the MCT framework.
Quite strikingly, the two pictures show very di�erent results for sets of parameters that
are identical. Clearly, the shape of the MSD in the case of the MCT calculation is
ruled by the presence of the di�usion-localization transition line, located at � c = 1 :14
at zero density, leading to the apparition of a plateau of the MSD at � > � c. This
informs us about the fact that MCT overestimates the correlations of the uid, leading
to an underestimation of the value of the critical values, a fact that is very well known
concerning this theory. In the case of the simulated MSD, an increase of� leads to the
slight but noticeable apparition of a subdi�usive regime at intermediate times, followed
by a return to a di�usive regime at long times, no plateau is observed. In this way,
the simulation result better compares with the second panel of �gure 1.3, which shows
the experimental result from Evers et al. (2013a). Both in the case of the simulation
and the experimental result, a simple subdi�usive regime followed by a return to normal
di�usion is observed.

However, no quantitative comparison can be made, since the dimensionality is di�erent,
and it is unclear how the power of the laser used to generate the speckle and the theoret-
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Figure 7.4: MSD evaluated by a Monte Carlo simulation of a hard-sphere uid
of density � = 0:0; 0:1; 0:2 in a Gaussian random potential of amplitude� = 1:0
and correlation length � = 0:5. The value of the density is proportional to the
saturation of the curve. 250000 Monte-Carlo iterations have been performed, and
50 potentials have been generated with the same parameters to get the disorder
averaged MSD. The inset curve is a zoom.

ical parameter � exactly relate to each other. In the future, exploration of higher values
of the amplitude will be necessary, in order to eventually observe a transition to arrest,
and a study of the links that � and the laser power have will be necessary to get the full
picture. The local exponent is too noisy to be exploited: a bigger set of potentials will
have to be tested in order to create an exploitable picture.

Finally, the case of a hard-sphere uid at low densities (� = 0 :0 to � = 0 :2) has been
investigated, in an amplitude range identical to what has been done in �gure 7.3. Figure
7.4 shows the MSD calculated at the same value of the amplitude� = 1 :0, and increasing
density � = 0 :0; 0:1; 0:2.
As the density increases, the value of the MSD at a given time decreases, while keeping
the slope of one, characteristic of a liquid phase. The density scanned here are very low,
and no signi�cant change was to be expected. However, the trend is good, and high
densities will very probably yield to a liquid-glass transition through cage e�ect. It is
furthermore expected that the density of transition decreases with an increase of� . This
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Chapter 8

Conclusion

Throughout this work, the focus has been set on �nding a new way to explore the dynam-
ics of a uid plunged in a smooth disordered potential. The early theoretical research
on the percolation transition and the development of experimental approaches to track
and measure the di�usion of individual particles has led to the discovery of complex
anomalous di�usion phenomena. These studies were supported by a few numerical ex-
periments, but lacked a theoretical understanding, which is the point of the present work.
Furthermore, the previous studies often only considered the case of a two-dimensional
uid. In this work, the system has been modeled as a hard-sphere uid in a Gaussian
random potential with Gaussian correlation function, in order to account for the size of
the light spots in a real laser speckle. Furthermore the system is three-dimensional, a
constraint inherent to the theory, that hopefully opens new perspectives in the �eld.

The �rst results account for the structural properties of the uid, that have been calcu-
lated using the OZ equation and closure relations. General and expected results such as
the increase of the disorder-induced and density-induced correlations with the increase
of, respectively, the amplitude of the potential and the density of the system have been
checked. It has been found that the correlation length of the potential plays a role in
increasing the density correlations, which is interpreted in terms of structural scenarios.
Furthermore, the disorder-induced correlations experience a change of regime at high
values of the density, compared to low values. This result hints to a reentrant behaviour
that is observed concerning the dynamics of this system. All these results have been ob-
tained using the HNC closure relation, which has been, for many reasons, chosen as the
most realistic one. In order to be complete, a comparison of the di�erent closure relations
that have been tried is necessary. Study shows surprisingly similar results between HNC,
PY, MSA and EXP. As has been observed later on, the dynamics are quantitatively very
di�erent in these cases, which shows a great sensitivity of the latter to changes in the
structure of the uid. Finally, the major discrepancies of two of the closure relations,
PY and EXP, have been studied. Due to uncontrolled approximations, the calculation
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of the structural properties using these closure relations leads to unwanted nonphysical
results at respectively low and high densities, and this for low values of the correlation
length. These failures in the calculation of the structure will lead the calculation of
the dynamics to undergo serious breakdowns, when EXP and PY are being used as a
closure relation. HNC and MSA seemingly do not present any breakdowns at this level.
The structural results, as interesting as they are, can only be fully interpreted with the
associated dynamical results, which was the point of the second part of this work.

A full development of the MCT for uids in randomness is presented, that allows the
calculation of the collective and self ISF, the MSD, the non-Gaussian parameter, and the
local exponent. These quantities have been computed and used to understand the dy-
namics and relaxation of the uids in a speckle-like smooth disordered potential. First,
phase diagrams have been created, which show in a general picture, transition lines sep-
arating the di�erent phases the uid can be in, as a result of steric interaction and/or
perturbation by the potential. The shape of the phase diagrams is discussed and brings
an overall understanding of the relaxation of the uid. A particularly interesting feature
consists in the reentrance of some of the transition lines. This nonmonotonic character-
istic is an essential feature of this system and can be related to the change of regime of
the correlation functions, as observed in the dedicated section. As expected, the dynam-
ics calculated using the PY and EXP closure relations fail due to the aforementionned
issues with the structural correlation functions. It has been found that HNC reaches a
new branch of solutions at values of the correlation length of the order of the diameter
of a particle. This new branch of solutions is non-physical, and leads the calculations
to reach a dead end. However, since the experimental results focused on a correlation
length of half a diameter, this issue does not undermine the fundamental comparison
with reality inherent to every theoretical study. In order to be extensive, a quick overview
of the phase diagrams calculated using MSA has been made, and compared with HNC.
Next, the ISFs are calculated around the transition lines. This quantity allows for a
study of the relaxation processes and a re�nement of the scenarios developped by simply
looking at the phase diagrams. Finally, the non-Gaussian parameter and the local expo-
nent are studied and discussed as much as their complexity allows it. Throughout the
chapter dedicated to the dynamics of the uid, comparison with experiments has been
made. Even though the di�erences between the theoretical results and the experimen-
tal counterpart can be dramatic (dimensionality, time scales, etc.), features such as the
reentrance of the transition lines and the behavior of the long-time di�usion coe�cient
are very similar, and can be thought to be of some universality among systems of uids
in smooth disordered potential.

The end of this thesis is devoted to more down-to-earth considerations, as the numerical
tricks and treatment of the structural and MCT equations are detailed. Around the
end of the PhD, it seemed clear that the resources of pure theory had been exploited
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extensively, and that the artifacts deeply built into the core of the MCT framework
are a barrier to the full understanding of this complex system. Therefore, as a way of
circumventing both the issues of theory and of experiments, a Monte-Carlo simulation
tool has been developped. The preliminary results are presented at the very end and look
promising for the future of the project. Many complex predictions made by the MCT
are still waiting for a comparison, and hopefully, with enough time the precision and the
timescales spanned by the Monte-Carlo calculations will allow for such a juxtaposition.
Moreover, the simulations are not bound to their dimensionality. Therefore, simulations
would allow for a comparison both with the theory and with the experiments, which
would kill two birds with one stone.

As a concluding remark, we must say that the di�culty of the interpretation of the
results could only be compared to the simplicity of the system from which they arise. It
is probable that many more studies are to be undertaken before reaching a full under-
standing of all the phenomena at play both in the structure and the dynamics.
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Recent experimental studies of the dynamics o�af colloids beamed by a random light
pattern (speckle) whowed the existence of subdi�usion, trapping, or mixture separation
phenomena, under the action of that disordered environment. To this end, a verison of
the Mode Coupling Theory (MCT), initially developed for uids in con�nement in solid
porous matrices has been applied to the case of a uid plunged in a random Gaussian
potential with a Gaussian correlation function. The aim of this PhD work is to further
improve the understanding of these phenoma by the addition of a theoretical study. The
numerical resultion of the asymptotic equations of this theory leads to the construction
of phase diagrams, which reproduce for example the non trivial reentrent behaviour
of the di�usivity, observed in related experiments, for which a physical interpretation
is proposed. Furthermore, results suggest a strong dependence of the dynamics on the
disorder correlation length. A detailed study of the relaxation of the uid has been made,
in order to bring an understanding of the dynamics at all timescales. Simultaneously, it
has been showed that a number of common approximations used in the calculation of the
structural properties of uids lead in the present case to non-physical results. Finally, a
Monte-Carlo simulation program has been developed, and the �rst results are compared
to theory and experiments.

De r�ecentes �etudes exp�erimentales de la dynamique de collo•�des illumin�es par une �g-
ure d'interf�erence optique al�eatoire (tavelures ou speckle) ont montr�e l'existence de
ph�enom�enes de sous-di�usion, de pi�egeage, ou de s�egr�egation dans le cas de m�elanges,
sous l'e�et de cet environnement d�esordonn�e. L'objet de ce travail de doctorat est
d'approfondir la compr�ehension de ces ph�enom�enes par une �etude th�eorique. Dans ce
but, une version de la th�eorie de couplage de modes (MCT), initialement d�evelopp�ee pour
les uides con�n�es dans des solides poreux d�esordonn�es, a �et�e appliqu�ee au cas d'un u-
ide plong�e dans un potentiel al�eatoire gaussien de covariance gaussienne. La r�esolution
num�erique des �equations asymptotiques de cette th�eorie a permis la construction de dia-
grammes d'�etat, lesquels reproduisent, par exemple, le comportement r�eentrant non triv-
ial de la di�usivit�e observ�e dans les exp�eriences, dont une interpr�etation physique simple
est propos�ee. Les r�esultats sugg�erent en outre une forte d�ependance de la dynamique
du syst�eme par rapport �a la longueur de corr�elation du d�esordre. Une �etude d�etaill�ee
de la relaxation du uide a �et�e e�ectu�ee, dans le but d'apporter une compr�ehension
de la dynamique �a toutes les �echelles de temps. En parall�ele, il a �et�e montr�e que de
nombreuses approximations classiques utilis�ees dans le calcul des propri�et�es structurales
des uides conduisent �a des r�esultats non physiques dans le cas pr�esent. Finalement, un
programme de simulation Monte Carlo a �et�e d�evelopp�e, et les premiers r�esultats sont
compar�es �a la th�eorie et aux exp�eriences.
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