Skip to Main content Skip to Navigation

Structure and dynamics of fluids in quenched-random potential energy landscapes

Abstract : Recent experimental studies of the dynamics of colloids beamed by a random light pattern (speckle) showed the existence of subdiffusion, trapping, or mixture separation phenomena, under the action of that disordered environment.To this end, a version of the Mode Coupling Theory (MCT), initially developed for fluids in confinement in sol id porous matrices has been applied to the case of a fluid plunged in a random Gaussian potential with a Gaussian correlation function.The aim of this PhD work is to further improve the understanding of these phenomena by the addition of a theoretical study.The numerical resolution of the asymptotic equations of this theory leads to the construction o phase diagrams, which reproduce for example the non trivial reentrent behaviour of the diffusivity, observed in related experiments, for which a physical interpretation is proposed. Furthermore, results suggest a strong depend ence of the dynamics on the disorder correlation length. A detailed study of the relaxation of the fluid has been made, in order to bring an understandin( of the dynamics at ali timescales. Simultaneously, it has been showed that a number of common approximations used in the calculation of the structural properties of fluids lead in the present case to non-physical results. Finally, a Monte-Carlo simulation program has been developed, and the first results are compared to theory and experiments.
Complete list of metadatas

Cited literature [95 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, December 12, 2017 - 1:55:27 AM
Last modification on : Wednesday, November 20, 2019 - 2:34:37 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01661598, version 1


Thomas Konincks. Structure and dynamics of fluids in quenched-random potential energy landscapes. Mechanics of the fluids [physics.class-ph]. Université de Lyon, 2017. English. ⟨NNT : 2017LYSEN076⟩. ⟨tel-01661598⟩



Record views


Files downloads