R. Blankenship, Molecular Mechanisms of Photosynthesis, 2014.
DOI : 10.1002/9780470758472

K. Palczewski, Chemistry and Biology of Vision, Journal of Biological Chemistry, vol.20, issue.3, pp.1612-1619, 2012.
DOI : 10.1001/archophthalmol.2010.245

M. Garavelli, F. Bernardi, M. A. Robb, and M. Olivucci, Computer simulation of photoinduced molecular motion and reactivity, International Journal of Photoenergy, vol.4, issue.2, pp.57-68, 2002.
DOI : 10.1155/S1110662X02000107

D. R. Yarkony, Conical Intersections:?? The New Conventional Wisdom, The Journal of Physical Chemistry A, vol.105, issue.26, pp.6277-6293, 2001.
DOI : 10.1021/jp003731u

X. Hu and K. Schulten, How Nature Harvests Sunlight, Physics Today, vol.21, issue.8, pp.28-34, 1997.
DOI : 10.1063/1.1699044

M. J. Paterson, M. A. Robb, L. Blancafort, and A. Debellis, -Hydroxyphenyl-(1,3,5)-triazine, The Journal of Physical Chemistry A, vol.109, issue.33, pp.7527-7537, 2005.
DOI : 10.1021/jp051108+

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni et al., Conical intersection dynamics of the primary photoisomerization event in vision, Nature, vol.274, issue.7314, pp.440-443, 2010.
DOI : 10.1038/nature09346

T. Yoshizawa and G. Wald, Pre-Lumirhodopsin and the Bleaching of Visual Pigments, Nature, vol.39, issue.4874, pp.1279-1286, 1963.
DOI : 10.1042/bj0450304

H. Chosrowjan, N. Mataga, Y. Shibata, S. Tachibanaki, H. Kandori et al., Rhodopsin Emission in Real Time:?? A New Aspect of the Primary Event in Vision, Journal of the American Chemical Society, vol.120, issue.37
DOI : 10.1021/ja981659w

R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. Shank, The first step in vision: femtosecond isomerization of rhodopsin, Science, vol.254, issue.5030, pp.412-415, 1991.
DOI : 10.1126/science.1925597

P. J. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst et al., Local vibrational coherences drive the primary photochemistry of vision, Nature Chemistry, vol.66, issue.12, pp.980-986, 2015.
DOI : 10.1109/PROC.1978.10837

P. J. Johnson, M. H. Farag, A. Halpin, T. Morizumi, V. I. Prokhorenko et al., The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit, The Journal of Physical Chemistry B, vol.121, issue.16, pp.4040-4047, 2017.
DOI : 10.1021/acs.jpcb.7b02329

J. K. Lanyi and S. P. Balashov, Xanthorhodopsin: A bacteriorhodopsin-like proton pump with a carotenoid antenna, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8, pp.684-688, 2008.
DOI : 10.1016/j.bbabio.2008.05.005

J. K. Lanyi, Proton transfers in the bacteriorhodopsin photocycle, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.8, pp.1012-1018, 2006.
DOI : 10.1016/j.bbabio.2005.11.003

R. A. Mathies, C. H. Cruz, W. T. Pollard, and C. Shank, Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin, Science, vol.240, issue.4853, pp.777-779, 1988.
DOI : 10.1126/science.3363359

O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown et al., Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms, Chemical Reviews, vol.114, issue.1, pp.126-163, 2014.
DOI : 10.1021/cr4003769

URL : https://doi.org/10.1021/cr4003769

M. B. Nielsen, Model systems for understanding absorption tuning by opsin proteins, Chemical Society Reviews, vol.96, issue.4, pp.913-924, 2008.
DOI : 10.1113/jphysiol.1990.sp018082

K. A. Freedman and R. S. Becker, Comparative investigation of the photoisomerization of the protonated and unprotonated n-butylamine Schiff bases of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinals, Journal of the American Chemical Society, vol.108, issue.6, pp.1245-1251, 1986.
DOI : 10.1021/ja00266a020

N. A. Hampp, Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material, Applied Microbiology and Biotechnology, vol.53, issue.6, pp.633-639, 2000.
DOI : 10.1007/s002539900311

H. E. Kato, M. Kamiya, S. Sugo, J. Ito, R. Taniguchi et al., Atomistic design of microbial opsin-based blue-shifted optogenetics tools, Nature Communications, vol.48, pp.10-1038
DOI : 10.1021/bi901338d

Y. Sudo, A. Okazaki, H. Ono, J. Yagasaki, S. Sugo et al., A Blue-shifted Light-driven Proton Pump for Neural Silencing, Journal of Biological Chemistry, vol.75, issue.28, pp.20624-20632, 2013.
DOI : 10.1038/nmeth0611-447

S. Base, An ab Initio Minimal Model for Retinal Photoisomerization, Journal of the American Chemical Society, vol.119, issue.23, pp.6891-6901, 1997.

A. Cembran, R. González-luque, P. Altoè, M. Merchán, F. Bernardi et al., Structure, Spectroscopy, and Spectral Tuning of the Gas-Phase Retinal Chromophore:?? The ??-Ionone ???Handle??? and Alkyl Group Effect, The Journal of Physical Chemistry A, vol.109, issue.29, pp.6597-6605, 2005.
DOI : 10.1021/jp052068c

A. Cembran, R. González-luque, L. Serrano-andrés, M. Merchán, and M. Garavelli, About the intrinsic photochemical properties of the 11-cis retinal chromophore: computational clues for a trap state and a lever effect in Rhodopsin catalysis, Theoretical Chemistry Accounts, vol.33, issue.1, pp.173-183, 2007.
DOI : 10.1002/ijch.199500026

E. Walczak, B. Szefczyk, and T. Andruniów, Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods, Journal of Chemical Theory and Computation, vol.9, issue.11, pp.4915-4927, 2013.
DOI : 10.1021/ct400423u

S. Hayashi and I. Ohmine, Proton Transfer in Bacteriorhodopsin:?? Structure, Excitation, IR Spectra, and Potential Energy Surface Analyses by an ab Initio QM/MM Method, The Journal of Physical Chemistry B, vol.104, issue.45, pp.10678-10691, 2000.
DOI : 10.1021/jp001508r

N. Ferré and M. Olivucci, Probing the Rhodopsin Cavity with Reduced Retinal Models at the CASPT2//CASSCF/AMBER Level of Theory, Journal of the American Chemical Society, vol.125, issue.23, pp.6868-6869, 2003.
DOI : 10.1021/ja035087d

M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel et al., Calculating Absorption Shifts for Retinal Proteins:?? Computational Challenges, The Journal of Physical Chemistry B, vol.109, issue.8, pp.3606-3615, 2005.
DOI : 10.1021/jp0463060

K. Fujimoto, S. Hayashi, J. Hasegawa, and H. Nakatsuji, Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins, Journal of Chemical Theory and Computation, vol.3, issue.2, pp.605-618, 2007.
DOI : 10.1021/ct6002687

K. Bravaya, A. Bochenkova, A. Granovsky, and A. Nemukhin, An Opsin Shift in Rhodopsin:?? Retinal S0???S1 Excitation in Protein, in Solution, and in the Gas Phase, Journal of the American Chemical Society, vol.129, issue.43, pp.13035-13042, 2007.
DOI : 10.1021/ja0732126

S. Hayashi, E. Tajkhorshid, and K. Schulten, Molecular Dynamics Simulation of Bacteriorhodopsin's Photoisomerization Using Ab Initio Forces for the Excited Chromophore, Biophysical Journal, vol.85, issue.3, pp.1440-1449, 2003.
DOI : 10.1016/S0006-3495(03)74576-7

U. F. Röhrig, L. Guidoni, and U. Rothlisberger, Solvent and Protein Effects on the Structure and Dynamics of the Rhodopsin Chromophore, ChemPhysChem, vol.109, issue.9, pp.1836-1847, 2005.
DOI : 10.1002/ijch.199500032

L. M. Frutos, T. Andruniow, F. Santoro, N. Ferre, and M. Olivucci, Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry, Proc. Natl. Acad
DOI : 10.1021/jp972752u

I. Rivalta, A. Nenov, and M. Garavelli, Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins, Phys. Chem. Chem. Phys., vol.5, issue.32, pp.16865-16888, 2014.
DOI : 10.1021/jz5002314

URL : https://hal.archives-ouvertes.fr/hal-01121384

C. Punwong, J. Owens, and T. J. Martínez, Direct QM/MM Excited-State Dynamics of Retinal Protonated Schiff Base in Isolation and Methanol Solution, The Journal of Physical Chemistry B, vol.119, issue.3, pp.704-714, 2015.
DOI : 10.1021/jp5038798

K. Andersson, P. Malmqvist, and B. Roos, Second???order perturbation theory with a complete active space self???consistent field reference function, The Journal of Chemical Physics, vol.23, issue.2, pp.1218-1226, 1992.
DOI : 10.1016/0009-2614(91)90407-Z

M. Garavelli, T. Vreven, P. Celani, F. Bernardi, M. A. Robb et al., Photoisomerization Path for a Realistic Retinal Chromophore Model:?? The Nonatetraeniminium Cation, Journal of the American Chemical Society, vol.120, issue.6, pp.1285-1288, 1998.
DOI : 10.1021/ja972695i

M. Garavelli, F. Negri, and M. Olivucci, Initial Excited-State Relaxation of the Isolated 11-cis Protonated Schiff Base of Retinal:?? Evidence for in-Plane Motion from ab Initio Quantum Chemical Simulation of the Resonance Raman Spectrum, Journal of the American Chemical Society, vol.121, issue.5, pp.1023-1029, 1999.
DOI : 10.1021/ja981719y

M. Garavelli, Computational Organic Photochemistry: Strategy, Achievements and Perspectives, Theoretical Chemistry Accounts, vol.101, issue.21, pp.87-105, 2006.
DOI : 10.1002/ijch.196900034

R. González-luque, M. Garavelli, F. Bernardi, M. Merchán, M. A. Robb et al., Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization, Proceedings of the National Academy of Sciences, vol.158, issue.15, pp.9379-9384, 2000.
DOI : 10.1016/0301-0104(91)87074-6

G. Haran, E. A. Morlino, J. Matthes, R. H. Callender, and R. M. Hochstrasser, Femtosecond Polarized Pump???Probe and Stimulated Emission Spectroscopy of the Isomerization Reaction of Rhodopsin, The Journal of Physical Chemistry A, vol.103, issue.14
DOI : 10.1021/jp9832847

T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. A. Robb et al., Photoisomerization Dynamics of a Simple Retinal Chromophore Model, Journal of the American Chemical Society, vol.119, issue.51, pp.12687-12688, 1997.
DOI : 10.1021/ja9725763

A. Cembran, F. Bernardi, M. Olivucci, and M. Garavelli, From The Cover: The retinal chromophore/chloride ion pair: Structure of the photoisomerization path and interplay of charge transfer and covalent states, Proceedings of the National Academy of Sciences, vol.105, issue.52
DOI : 10.1021/jp010704a

A. Cembran, F. Bernardi, M. Olivucci, and M. Garavelli, Counterion Controlled Photoisomerization of Retinal Chromophore Models:?? a Computational Investigation, Journal of the American Chemical Society, vol.126, issue.49, pp.16018-16037, 2004.
DOI : 10.1021/ja048782+

G. Tomasello, G. Olaso-gonzález, P. Altoè, M. Stenta, L. Serrano-andrés et al., Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching, Journal of the American Chemical Society, vol.131, issue.14, pp.5172-5186, 2009.
DOI : 10.1021/ja808424b

T. Okada, M. Sugihara, A. Bondar, M. Elstner, P. Entel et al., The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2?? Crystal Structure, Journal of Molecular Biology, vol.342, issue.2, pp.571-583, 2004.
DOI : 10.1016/j.jmb.2004.07.044

H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler, and J. K. Lanyi, Structure of bacteriorhodopsin at 1.55 ?? resolution, Journal of Molecular Biology, vol.291, issue.4, pp.899-911, 1999.
DOI : 10.1006/jmbi.1999.3027

T. J. Martínez, Insights for Light-Driven Molecular Devices from ab initio Multiple Spawning Excited-State Dynamics of Organic and Biological Chromophores, ChemInform, vol.39, issue.18, pp.119-126, 2006.
DOI : 10.1002/chin.200618276

N. Ferré, A. Cembran, M. Garavelli, and M. Olivucci, Complete-active-space self-consistent-field/Amber parameterization of the Lys296?retinal?Glu113 rhodopsin chromophore-counterion system, Theoretical Chemistry Accounts, vol.112, pp.335-341, 2004.

O. Weingart, P. Altoè, M. Stenta, A. Bottoni, G. Orlandi et al., Product formation in rhodopsin by fast hydrogen motions, Physical Chemistry Chemical Physics, vol.49, issue.9, pp.3645-3648, 2011.
DOI : 10.1002/anie.200905061

A. Warshel, Z. T. Chu, and J. Hwang, The dynamics of the primary event in rhodopsins revisited, Chemical Physics, vol.158, issue.2-3, pp.303-314, 1991.
DOI : 10.1016/0301-0104(91)87074-6

A. Warshel, Bicycle-pedal model for the first step in the vision process, Nature, vol.197, issue.5553, pp.679-683, 1976.
DOI : 10.1017/S0033583500001785

A. Warshel and M. Levitt, Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, Journal of Molecular Biology, vol.103, issue.2, pp.227-249, 1976.
DOI : 10.1016/0022-2836(76)90311-9

P. Altoè, M. Stenta, A. Bottoni, and M. Garavelli, A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction, Theoretical Chemistry Accounts, vol.105, issue.1, pp.219-240, 2007.
DOI : 10.1007/s00214-007-0275-9

T. Andruniów, N. Ferré, and M. Olivucci, Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level, Proceedings of the National Academy of Sciences, vol.124, issue.17, pp.17908-17913, 2004.
DOI : 10.1021/ja012666e

O. Weingart, The role of HOOP-modes in the ultrafast photo-isomerization of retinal models. Chemical Physics. Electron Correlation and Molecular Dynamics for Excited States and Photochemistry 349, pp.348-355, 2008.

P. Kukura, D. W. Mccamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman, Science, vol.310, issue.5750, pp.1006-1009, 2005.
DOI : 10.1126/science.1118379

J. P. Malhado, M. J. Bearpark, and J. Hynes, Non-adiabatic dynamics close to conical intersections and the surface hopping perspective, Frontiers in Chemistry, vol.121, issue.39, p.35, 2014.
DOI : 10.1063/1.1793991

T. J. Martinez, Physical chemistry: Seaming is believing, Nature, vol.104, issue.7314, pp.412-413, 2010.
DOI : 10.1038/467412a

T. W. Keal, A. Koslowski, and W. Thiel, Comparison of algorithms for conical intersection optimisation using semiempirical methods, Theoretical Chemistry Accounts, vol.34, issue.5-6, pp.837-844, 2007.
DOI : 10.1007/s002149900083

M. J. Bearpark, M. A. Robb, and H. B. Schlegel, A direct method for the location of the lowest energy point on a potential surface crossing, Chemical Physics Letters, vol.223, issue.3, pp.269-274, 1994.
DOI : 10.1016/0009-2614(94)00433-1

J. C. Tully, Molecular dynamics with electronic transitions, The Journal of Chemical Physics, vol.76, issue.2, pp.1061-1071, 1990.
DOI : 10.1002/qua.560320105

J. C. Tully, Perspective: Nonadiabatic dynamics theory, The Journal of Chemical Physics, vol.2, issue.22, pp.22-301, 2012.
DOI : 10.1063/1.4742066

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4757762

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.80, issue.3B, pp.864-871, 1964.
DOI : 10.1088/0370-1328/80/5/307

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.119.1153

E. Runge and E. K. Gross, Density-Functional Theory for Time-Dependent Systems, Physical Review Letters, vol.140, issue.12, pp.997-1000, 1984.
DOI : 10.1103/PhysRev.140.A1133

D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini, and C. Adamo, TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:?? Conventional versus Long-Range Hybrids, Journal of Chemical Theory and Computation, vol.4, issue.1, pp.123-135, 2008.
DOI : 10.1021/ct700187z

O. Valsson, C. Filippi, and M. E. Casida, Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory, The Journal of Chemical Physics, vol.142, issue.14, pp.144104-144145, 2015.
DOI : 10.1021/jp0463060

URL : https://hal.archives-ouvertes.fr/hal-01651410

B. Demoulin, M. M. El-tahawy, A. Nenov, M. Garavelli, and T. L. Bahers, Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels, Theoretical Chemistry Accounts, vol.109, issue.305, p.96, 2016.
DOI : 10.1021/jp0463060

L. Bahers, T. Adamo, C. Ciofini, and I. , A Qualitative Index of Spatial Extent in Charge-Transfer Excitations, Journal of Chemical Theory and Computation, vol.7, issue.8, pp.2498-2506, 2011.
DOI : 10.1021/ct200308m

K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, Second-order perturbation theory with a CASSCF reference function, The Journal of Physical Chemistry, vol.94, issue.14, pp.5483-5488, 1990.
DOI : 10.1021/j100377a012

C. C. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.46, issue.2, pp.69-89, 1951.
DOI : 10.1051/jcp/1949460497

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chemical Physics, vol.48, issue.2, pp.157-173, 1980.
DOI : 10.1016/0301-0104(80)80045-0

V. Veryazov, P. Å. Malmqvist, and B. Roos, How to select active space for multiconfigurational quantum chemistry?, International Journal of Quantum Chemistry, vol.72, issue.13, pp.3329-3338, 2011.
DOI : 10.1021/jo071157d

P. A. Malmqvist, A. Rendell, and B. Roos, The restricted active space self-consistent-field method, implemented with a split graph unitary group approach, The Journal of Physical Chemistry, vol.94, issue.14, pp.5477-5482, 1990.
DOI : 10.1021/j100377a011

D. Ma, L. Manni, G. Gagliardi, and L. , The generalized active space concept in multiconfigurational self-consistent field methods, The Journal of Chemical Physics, vol.3, issue.4, pp.44128-44175, 2011.
DOI : 10.1063/1.2953696

P. Löwdin, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Physical Review, vol.88, issue.6, pp.1474-1489, 1955.
DOI : 10.1103/PhysRev.88.1217

N. Forsberg and P. Malmqvist, Multiconfiguration perturbation theory with imaginary level shift, Chemical Physics Letters, vol.274, issue.1-3, pp.196-204, 1997.
DOI : 10.1016/S0009-2614(97)00669-6

G. Ghigo, B. O. Roos, and P. Malmqvist, A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2), Chemical Physics Letters, vol.396, issue.1-3, pp.142-149, 2004.
DOI : 10.1016/j.cplett.2004.08.032

J. P. Zobel, J. J. Nogueira, and L. González, The IPEA dilemma in CASPT2, Chemical Science, vol.37, issue.2, pp.1482-1499, 2017.
DOI : 10.1002/jcc.24283

J. Finley, P. Malmqvist, B. O. Roos, and L. Serrano-andrés, The multi-state CASPT2 method, Chemical Physics Letters, vol.288, issue.2-4, pp.299-306, 1998.
DOI : 10.1016/S0009-2614(98)00252-8

E. Brunk and U. Rothlisberger, Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States, Chemical Reviews, vol.115, issue.12, pp.6217-6263, 2015.
DOI : 10.1021/cr500628b

C. Ochsenfeld, J. Kussmann, and F. Koziol, Ab Initio NMR Spectra for Molecular Systems with a Thousand and More Atoms: A Linear-Scaling Method, Angewandte Chemie International Edition, vol.43, issue.34, pp.4485-4489, 2004.
DOI : 10.1002/anie.200460336

H. M. Senn, W. Thiel, . Qm, . Mm-methods-for-biomolecular, and . Systems, QM/MM Methods for Biomolecular Systems, Angewandte Chemie International Edition, vol.24, issue.462, pp.1198-1229, 2009.
DOI : 10.1021/cen-v024n010.p1375

P. Sherwood, Quantum Mechanics/Molecular Mechanics Approaches in NIC Series. 3: Modern Methods and Algorithms of Quantum Chemistry, pp.285-305, 2000.

V. Théry, D. Rinaldi, J. Rivail, B. Maigret, and G. G. Ferenczy, Quantum mechanical computations on very large molecular systems: The local self-consistent field method, Journal of Computational Chemistry, vol.77, issue.3, pp.269-282, 1994.
DOI : 10.1063/1.444375

J. Pu, J. Gao, and D. G. Truhlar, Generalized Hybrid Orbital (GHO) Method for Combining Ab Initio Hartree???Fock Wave Functions with Molecular Mechanics, The Journal of Physical Chemistry A, vol.108, issue.4, pp.632-650, 2004.
DOI : 10.1021/jp036755k

U. C. Singh and P. A. Kollman, A combinedab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl? exchange reaction and gas phase protonation of polyethers, Journal of Computational Chemistry, vol.107, issue.6, pp.718-730, 1986.
DOI : 10.1016/B978-0-12-164720-9.50006-4

M. J. Field, P. A. Bash, and M. Karplus, A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations, Journal of Computational Chemistry, vol.106, issue.6, pp.700-733, 1990.
DOI : 10.1103/PhysRevB.26.4571

H. Lin, D. G. Truhlar, and . Qm, MM: what have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts, pp.185-199, 2007.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.1157-1174, 2004.
DOI : 10.1002/jcc.20035

T. Vreven and K. Morokuma, Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM, Annual Reports in Computational Chemistry, vol.2, pp.35-51, 2006.
DOI : 10.1016/S1574-1400(06)02003-2

Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu et al., Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-4063, 2013.
DOI : 10.1021/ct4003702

D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai et al., AmberTools 14

J. Wang, W. Wang, P. A. Kollman, and D. A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, Journal of Molecular Graphics and Modelling, vol.25, issue.2, pp.247-260, 2006.
DOI : 10.1016/j.jmgm.2005.12.005

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. E. Roitberg et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Structure, Function, and Bioinformatics, vol.43, issue.3, pp.712-725, 2006.
DOI : 10.1002/prot.21123

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey et al., 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table, 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, pp.506-541, 2016.
DOI : 10.1002/chem.201100438

URL : https://hal.archives-ouvertes.fr/hal-01639026

G. Haran, K. Wynne, A. Xie, Q. He, M. Chance et al., Excited state dynamics of bacteriorhodopsin revealed by transient stimulated emission spectra, Chemical Physics Letters, vol.261, issue.4-5, pp.389-395, 1996.
DOI : 10.1016/0009-2614(96)01017-2

K. C. Hasson, F. Gai, and P. A. Anfinrud, The photoisomerization of retinal in bacteriorhodopsin: Experimental evidence for a three-state model, Proceedings of the National Academy of Sciences, vol.261, issue.3, pp.15124-15129, 1996.
DOI : 10.1016/0009-2614(96)01017-2

S. Ruhman, B. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, Following Evolution of Bacteriorhodopsin in Its Reactive Excited State via Stimulated Emission Pumping, Journal of the American Chemical Society, vol.124, issue.30, pp.8854-8858, 2002.
DOI : 10.1021/ja026426q

A. Wand, B. Loevsky, N. Friedman, M. Sheves, and S. Ruhman, Probing Ultrafast Photochemistry of Retinal Proteins in the Near-IR: Bacteriorhodopsin and Anabaena Sensory Rhodopsin vs Retinal Protonated Schiff Base in Solution, The Journal of Physical Chemistry B, vol.117, issue.16, pp.4670-4679, 2013.
DOI : 10.1021/jp309189y

P. Hamm, M. Zurek, T. Röschinger, H. Patzelt, D. Oesterhelt et al., Femtosecond spectroscopy of the photoisomerisation of the protonated Schiff base of all-trans retinal, Chemical Physics Letters, vol.263, issue.5, pp.613-621, 1996.
DOI : 10.1016/S0009-2614(96)01269-9

G. Zgrabli´czgrabli´c, K. Voïtchovsky, M. Kindermann, S. Haacke, and M. Chergui, Ultrafast Excited State Dynamics of the Protonated Schiff Base of All-trans Retinal in Solvents, Biophysical Journal, vol.88, issue.4, pp.2779-2788, 2005.
DOI : 10.1529/biophysj.104.046094

O. Bismuth, N. Friedman, M. Sheves, and S. Ruhman, Photochemical dynamics of all-trans retinal protonated Schiff-base in solution: Excitation wavelength dependence, Chemical Physics, vol.341, issue.1-3, pp.267-275, 2007.
DOI : 10.1016/j.chemphys.2007.06.052

G. Zgrabli´czgrabli´c, S. Haacke, and M. Chergui, Heterogeneity and Relaxation Dynamics of the Photoexcited Retinal Schiff Base Cation in Solution, The Journal of Physical Chemistry B, vol.113, issue.13, pp.4384-4393, 2009.
DOI : 10.1021/jp8077216

G. Zgrabli´czgrabli´c, A. M. Novello, and F. Parmigiani, Population Branching in the Conical Intersection of the Retinal Chromophore Revealed by Multipulse Ultrafast Optical Spectroscopy, Journal of the American Chemical Society, vol.134, issue.2, pp.955-961, 2012.
DOI : 10.1021/ja205763x

O. Bismuth, N. Friedman, M. Sheves, and S. Ruhman, Photochemistry of a Retinal Protonated Schiff-Base Analogue Mimicking the Opsin Shift of Bacteriorhodopsin, The Journal of Physical Chemistry B, vol.111, issue.9, pp.2327-2334, 2007.
DOI : 10.1021/jp0669308

T. Sovdat, G. Bassolino, M. Liebel, C. Schnedermann, S. P. Fletcher et al., Backbone Modification of Retinal Induces Protein-like Excited State Dynamics in Solution, Journal of the American Chemical Society, vol.134, issue.20, pp.8318-8320, 2012.
DOI : 10.1021/ja3007929

G. Bassolino, T. Sovdat, M. Liebel, C. Schnedermann, B. Odell et al., Synthetic Control of Retinal Photochemistry and Photophysics in Solution, Journal of the American Chemical Society, vol.136, issue.6, pp.2650-2658, 2014.
DOI : 10.1021/ja4121814

G. Bassolino, T. Sovdat, A. Soares-duarte, J. M. Lim, C. Schnedermann et al., Retinal Protonated Schiff Base in Solution, Journal of the American Chemical Society, vol.137, issue.39, pp.12434-12437, 2015.
DOI : 10.1021/jacs.5b06492

J. M. Rintelman, I. Adamovic, S. Varganov, and M. S. Gordon, Multireference second-order perturbation theory: How size consistent is ???almost size consistent???, The Journal of Chemical Physics, vol.93, issue.4, pp.44105-82, 2005.
DOI : 10.1002/(SICI)1097-461X(1999)72:6<549::AID-QUA2>3.0.CO;2-G

P. Altoè, A. Cembran, M. Olivucci, and M. Garavelli, Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping, Proceedings of the National Academy of Sciences, vol.155, issue.4
DOI : 10.1016/0009-2614(89)85347-3

L. Lindvold and P. Ramanujam, The use of bacteriorhodopsin in optical processing: A review, Journal of Scientific and Industrial Research, vol.54, pp.55-66, 1995.

J. Sasaki, L. Brown, Y. Chon, H. Kandori, A. Maeda et al., Conversion of bacteriorhodopsin into a chloride ion pump, Science, vol.269, issue.5220, p.95, 1995.
DOI : 10.1126/science.7604281

K. Inoue, Y. Nomura, and H. Kandori, Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps, Journal of Biological Chemistry, vol.22, issue.19, pp.9883-9893, 2016.
DOI : 10.1021/bi047500f

A. Kawanabe, Y. Furutani, K. Jung, and H. Kandori, Engineering an Inward Proton Transport from a Bacterial Sensor Rhodopsin, Journal of the American Chemical Society, vol.131, issue.45, pp.16439-16444, 2009.
DOI : 10.1021/ja904855g

K. Inoue, T. Tsukamoto, K. Shimono, Y. Suzuki, S. Miyauchi et al., Converting a Light-Driven Proton Pump into a Light-Gated Proton Channel, Journal of the American Chemical Society, vol.137, issue.9, pp.3291-3299, 2015.
DOI : 10.1021/ja511788f

C. Vasileiou, S. Vaezeslami, R. M. Crist, M. Rabago-smith, J. H. Geiger et al., Protein Design:?? Reengineering Cellular Retinoic Acid Binding Protein II into a Rhodopsin Protein Mimic, Journal of the American Chemical Society, vol.129, issue.19, pp.6140-6148, 2007.
DOI : 10.1021/ja067546r

K. S. Lee, T. Berbasova, C. Vasileiou, X. Jia, W. Wang et al., Probing Wavelength Regulation with an Engineered Rhodopsin Mimic and a C15-Retinal Analogue, ChemPlusChem, vol.72, issue.4, pp.273-276, 2012.
DOI : 10.1021/bi025636c

W. Wang, Z. Nossoni, T. Berbasova, C. T. Watson, I. Yapici et al., Tuning the Electronic Absorption of Protein-Embedded All-trans-Retinal, Science, vol.67, issue.Pt 4, pp.1340-1343, 2012.
DOI : 10.1107/S0907444911001314

C. Cheng, M. Kamiya, Y. Uchida, and S. Hayashi, Molecular Mechanism of Wide Photoabsorption Spectral Shifts of Color Variants of Human Cellular Retinol Binding Protein II, Journal of the American Chemical Society, vol.137, issue.41, pp.13362-13370, 2015.
DOI : 10.1021/jacs.5b08316

I. Rivalta, A. Nenov, G. Cerullo, S. Mukamel, and M. Garavelli, simulations of two-dimensional electronic spectra: The SOS//QM/MM approach, International Journal of Quantum Chemistry, vol.396, issue.2, pp.85-93, 2014.
DOI : 10.1016/j.cplett.2004.08.032

URL : https://hal.archives-ouvertes.fr/hal-01121383

M. M. Huntress, S. Gozem, K. R. Malley, A. E. Jailaubekov, C. Vasileiou et al., Toward an Understanding of the Retinal Chromophore in Rhodopsin Mimics, The Journal of Physical Chemistry B, vol.117, issue.35, pp.10053-10070
DOI : 10.1021/jp305935t

R. Salomon-ferrer, A. W. Götz, D. Poole, S. Le-grand, and R. C. Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.3878-3888, 2013.
DOI : 10.1021/ct400314y

N. Michaud-agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, MDAnalysis: A toolkit for the analysis of molecular dynamics simulations, Journal of Computational Chemistry, vol.4, issue.Suppl. 2, pp.2319-2327, 2011.
DOI : 10.1109/5992.998641

R. J. Gowers, M. Linke, J. Barnoud, T. J. Reddy, M. N. Melo et al., MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations, Proceedings of the 15th Python in Science Conference, pp.98-105, 2016.

F. Melaccio, M. Del-carmen-marín, A. Valentini, F. Montisci, S. Rinaldi et al., Toward Automatic Rhodopsin Modeling as a Tool for High-Throughput Computational Photobiology, Journal of Chemical Theory and Computation, vol.12, issue.12, pp.6020-6034, 2016.
DOI : 10.1021/acs.jctc.6b00367

URL : https://hal.archives-ouvertes.fr/hal-01409070

J. K. Lanyi, Understanding Structure and Function in the Light-Driven Proton Pump Bacteriorhodopsin, Journal of Structural Biology, vol.124, issue.2-3, pp.164-178, 1998.
DOI : 10.1006/jsbi.1998.4044

H. Kandori, Role of internal water molecules in bacteriorhodopsin, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1460, issue.1, pp.5-272800138, 2000.
DOI : 10.1016/S0005-2728(00)00138-9

S. Mikihiro, T. Tanimoto, and H. Kandori, Water Molecules in the Schiff Base Region of Bacteriorhodopsin, Journal of the American Chemical Society, vol.125, pp.13312-13313, 2003.

H. Kandori, Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1658, issue.1-2, p.153, 2004.
DOI : 10.1016/j.bbabio.2004.03.015

S. Schenkl, E. Portuondo, G. Zgrabli, M. Chergui, S. Haacke et al., Ultrafast energy relaxation in bacteriorhodopsin studied by time-integrated fluorescence. Phys, Chamistry Chem. Phys, vol.4, pp.5020-5024, 2002.

T. Ye, N. Friedman, Y. Gat, G. H. Atkinson, M. Sheves et al., Locked Pigments, The Journal of Physical Chemistry B, vol.103, issue.24, pp.5122-5130, 1999.
DOI : 10.1021/jp9846227

J. Zhu, I. Gdor, E. Smolensky, N. Friedman, M. Sheves et al., Photoselective Ultrafast Investigation of Xanthorhodopsin and Its Carotenoid Antenna Salinixanthin, The Journal of Physical Chemistry B, vol.114, issue.8, pp.3038-3045, 2010.
DOI : 10.1021/jp910845h

K. Smolensky, E. Brumfeld, V. Friedman, N. Sheves, and M. , Origin of Circular Dichroism of Xanthorhodopsin. A Study with Artificial Pigments, The Journal of Physical Chemistry B, vol.119, issue.2, pp.456-464, 2014.
DOI : 10.1021/jp510534s

S. Hayashi, E. Tajkhorshid, H. Kandori, and K. Schulten, Role of Hydrogen-Bond Network in Energy Storage of Bacteriorhodopsin's Light-Driven Proton Pump Revealed by ab Initio Normal-Mode Analysis, Journal of the American Chemical Society, vol.126, issue.34, pp.47506-155, 2004.
DOI : 10.1021/ja047506s

H. Luecke, H. Richter, and J. K. Lanyi, Proton Transfer Pathways in Bacteriorhodopsin at 2.3&nbsp;Angstrom Resolution, Science, vol.280, issue.5371, pp.1934-1937, 1998.
DOI : 10.1126/science.280.5371.1934

N. Grigorieff, T. Ceska, K. Downing, J. Baldwin, and R. Henderson, Electron-crystallographic Refinement of the Structure of Bacteriorhodopsin, Journal of Molecular Biology, vol.259, issue.3, pp.393-421, 1996.
DOI : 10.1006/jmbi.1996.0328

H. Belrhali, P. Nollert, A. Royant, C. Menzel, J. P. Rosenbusch et al., Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 ?? resolution, Structure, vol.7, issue.8, pp.909-917, 1999.
DOI : 10.1016/S0969-2126(99)80118-X

J. Sasaki, J. K. Lanyi, R. Needleman, T. Yoshizawa, and A. Maeda, Complete Identification of C:O Stretching Vibrational Bands of Protonated Aspartic Acid Residues in the Difference Infrared Spectra of M and N Intermediates versus Bacteriorhodopsin, Biochemistry, vol.33, issue.11, pp.178-181, 1994.
DOI : 10.1021/bi00177a006

L. S. Brown, J. Sasaki, H. Kandori, A. Maeda, R. Needleman et al., Glutamic Acid 204 is the Terminal Proton Release Group at the Extracellular Surface of Bacteriorhodopsin, Journal of Biological Chemistry, vol.12, issue.45, pp.27122-27128, 1995.
DOI : 10.1021/bi00081a010

Y. Furutani and H. Kandori, Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.5, pp.598-605, 2014.
DOI : 10.1016/j.bbabio.2013.09.004

K. Rothschild, D. Gray, T. Mogi, T. Marti, M. Braiman et al., Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs trytophan-86, Biochemistry, vol.28, issue.17, p.86
DOI : 10.1021/bi00443a041

R. Needleman, M. Chang, B. Ni, G. Váró, J. Fornés et al., Properties of Asp212 to Asn Bacteriorhodopsin Suggest That Asp212 and Asp85 Both Participate in a Counterion and Proton Acceptor Complex near the Schiff Base, The Journal of Biological Chemistry, vol.266, pp.11478-11484, 1991.

S. Subramanian, D. A. Greenhalgh, and H. G. Khorana, Aspartic Acid 85 in Bacteriorhodopsin Functions Both as Proton Acceptor and Negative Counterion to the Schiff Base, Journal of Biological Chemistry, vol.267, pp.25730-25733, 1992.