J. Tanwar, S. Das, Z. Fatima, and S. Hameed, Multidrug Resistance: An Emerging Crisis, Interdisciplinary Perspectives on Infectious Diseases, vol.65, issue.13-14, 2014.
DOI : 10.1007/s11908-012-0289-x

H. Nikaido, Multidrug Resistance in Bacteria, Annual Review of Biochemistry, vol.78, issue.1, pp.119-146, 2009.
DOI : 10.1146/annurev.biochem.78.082907.145923

D. Naumann, S. Keller, D. Helm, . Schultz-ch, and B. Schrader, FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells, Journal of Molecular Structure, vol.347, pp.399-406, 1995.
DOI : 10.1016/0022-2860(95)08562-A

E. Kastanos, A. Kyriakides, K. Hadjigeorgiou, and C. Pitris, Identification and Antibiotic Sensitivity of UTI Pathogens Using Raman Spectroscopy, InTech. Urinary Tract Infections. Chapter, vol.12, pp.207-226, 2011.
DOI : 10.5772/22796

F. Guibet, C. Amiel, P. Cadot, C. Cordevant, M. H. Desmonts et al., Discrimination and classification of Enterococci by Fourier transform infrared (FT-IR) spectroscopy, Vibrational Spectroscopy, vol.33, issue.1-2, pp.133-142, 2003.
DOI : 10.1016/S0924-2031(03)00097-3

J. Vossenberg, H. Tervahauta, K. Maquelin, C. H. Blokker-koopmans, M. Uytewaal-aarts et al., Identification of bacteria in drinking water with Raman spectroscopy, Analytical Methods, vol.136, issue.11, pp.2679-2687, 2013.
DOI : 10.1039/c0an00526f

L. J. Goeller and M. R. Riley, Discrimination of Bacteria and Bacteriophages by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy, Applied Spectroscopy, vol.275, issue.7, pp.679-685, 2007.
DOI : 10.1126/science.275.5303.1102

M. A. Al-holy, M. Lin, H. Al-qadiri, A. G. Cavinato, and B. A. Rasco, CLASSIFICATION OF FOODBORNE PATHOGENS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY AND PATTERN RECOGNITION TECHNIQUES, Journal of Rapid Methods and Automation in Microbiology, vol.112, issue.67, pp.189-200, 2006.
DOI : 10.1016/S0964-8305(98)80002-4

N. A. Ngo-thi, C. Kirschner, and D. Naumann, Characterization and identification of microorganisms by FT-IR microspectrometry, Journal of Molecular Structure, vol.661, issue.662, pp.661-662, 2003.
DOI : 10.1016/j.molstruc.2003.08.012

S. Meisel, S. Stockel, P. Rosch, and J. Popp, Identification of meat-associated pathogens via Raman microspectroscopy, Food Microbiology, vol.38, pp.36-43, 2014.
DOI : 10.1016/j.fm.2013.08.007

Z. Filip, S. Hermann, and K. Demnerova, FT-IR spectroscopic characteristics of differently cultivated Escherichia coli, Czech J. Food Sci, vol.26, issue.6, pp.458-463, 2008.

B. Singh, R. Gautam, S. Kumar, V. Kumar, B. N. Nongthomba et al., Application of vibrational microspectroscopy to biology and medicine, Current Science, vol.102, issue.2, pp.232-244, 2012.

X. Lu, H. M. Al-qadiri, M. Lin, and B. A. Rasco, Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria, Food and Bioprocess Technology, vol.94, issue.9, pp.919-935, 2011.
DOI : 10.1063/1.1617359

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman spectroscopy, 2003.

B. Stuart, Infrared spectroscopy: Fundamentals and applications, 2004.
DOI : 10.1002/0470011149

A. Nawrocka and J. Lamorska, Determination of food quality by using spectroscopic methods Advances in Agrophysical Research, Intech. Chapter, vol.14, pp.347-367, 2013.

U. Neugebauer, Characterization of bacteria, antibiotics of the fluoroquinolone type and their biological targets DNA and gyrase utilizing the unique potential of vibrational spectroscopy, 2007.

T. Vankeirsbilck, A. Vercauteren, W. Baeyens, G. Van-der-weken, F. Verpoort et al., Applications of Raman spectroscopy in pharmaceutical analysis, TrAC Trends in Analytical Chemistry, vol.21, issue.12, pp.869-877, 2002.
DOI : 10.1016/S0165-9936(02)01208-6

J. R. Goodwin, Vibrational microspectroscopy of bacterial colonies. Ph, 2006.

W. E. Huang, M. Li, R. M. Jarvis, R. Goodacre, and S. A. Banwart, Shining Light on the Microbial World, pp.153-186, 2010.
DOI : 10.1016/S0065-2164(10)70005-8

J. H. Bemmel, Confocal Raman microspectroscopy a novel diagnostic tool in medical microbiology, 2002.

S. J. Clarke, R. E. Littleford, W. E. Smith, and R. Goodacre, Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy, The Analyst, vol.348, issue.86, pp.1019-1026, 2005.
DOI : 10.1080/05704929508001133

L. T. Kerr, H. J. Byrne, and B. M. Hennelly, Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen, Analytical Methods, vol.33, issue.12, pp.5041-5952, 2015.
DOI : 10.1002/jrs.882

G. J. Puppels, F. F. Mul, C. Otto, J. Greve, M. Robert-nicoud et al., Studying single living cells and chromosomes by confocal Raman microspectroscopy, Nature, vol.7, issue.6290, pp.301-303, 1990.
DOI : 10.1002/jrs.1250150412

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. G. Krieger, I. I. Jones et al., Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria, The Journal of Physical Chemistry B, vol.109, issue.1, 2005.
DOI : 10.1021/jp040442n

M. Harz, P. Rosch, and J. Popp, Vibrational spectroscopy-A powerful tool for the rapid identification of microbial cells at the single-cell level, Cytometry Part A, vol.646, issue.662, pp.104-113, 2009.
DOI : 10.1007/978-3-642-56584-7

A. Sivanesan, E. Witkowska, W. Adamkiewicz, L. Dziewit, A. Kaminska et al., Nanostructured silver???gold bimetallic SERS substrates for selective identification of bacteria in human blood, The Analyst, vol.4, issue.5, pp.1037-1043, 2014.
DOI : 10.1371/journal.pone.0005470

S. Efrima and L. Zeiri, Understanding SERS of bacteria, Journal of Raman Spectroscopy, vol.106, issue.3, pp.277-288, 2009.
DOI : 10.1002/1438-5171(200009)1:3<239::AID-SIMO239>3.0.CO;2-4

K. Kairyte, Z. Luksiene, M. Pucetaite, and V. Sablinskas, Differentiation of bacterial strains by means of surface enhanced FT-Raman spectroscopy. Lith, J. Phys, vol.52, issue.3, pp.276-283, 2012.

P. C. Lee and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, The Journal of Physical Chemistry, vol.86, issue.17, pp.3391-3395, 1982.
DOI : 10.1021/j100214a025

K. Maquelin, C. Kirschner, L. Choo-smith, N. Braak, H. Endtz et al., Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, vol.51, issue.3, pp.255-271, 2002.
DOI : 10.1016/S0167-7012(02)00127-6

R. M. Jarvis and R. Goodacre, Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy, Analytical Chemistry, vol.76, issue.1, pp.40-47, 2004.
DOI : 10.1021/ac034689c

R. M. Jarvis and R. Goodacre, Characterisation and identification of bacteria using SERS, Chemical Society Reviews, vol.33, issue.5, pp.931-936, 2008.
DOI : 10.1117/12.970803

C. S. Doris, Comparative evaluation of the ascorbic acid content of mineral ascorbate and ascorbic acid tablets marketed in Zaria, 2014.

A. Alvarez-ordonez, D. J. Mouwen, M. Lopez, and M. Prieto, Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria, Journal of Microbiological Methods, vol.84, issue.3, pp.369-378, 2011.
DOI : 10.1016/j.mimet.2011.01.009

R. Davis and L. J. Mauer, Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria, Current Research, p.99, 2011.

A. Barth, Infrared spectroscopy of proteins, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1767, issue.9, pp.1073-1101, 2007.
DOI : 10.1016/j.bbabio.2007.06.004

L. Ashton, K. Lau, C. L. Winder, and R. Goodacre, Raman spectroscopy: lighting up the future of microbial identification, Future Microbiology, vol.7, issue.9, pp.991-997, 2011.
DOI : 10.1002/cphc.200600173

B. Moen, A. O. Janbu, S. Langsrud, Ø. Langsrud, J. L. Hobman et al., to adverse conditions determined by microarrays and FT-IR spectroscopy, Canadian Journal of Microbiology, vol.12, issue.2, pp.714-728, 2009.
DOI : 10.1093/nar/gkh908

H. Alrabiah, Advanced metabolomics for the discrimination of uropathogenic Escherichia coli and their response to antibiotics. Ph, 2014.

S. Stöckel, J. Kirchhoff, U. Neugebauer, P. Rösch, and J. Popp, The application of Raman spectroscopy for the detection and identification of microorganisms, Journal of Raman Spectroscopy, vol.138, issue.1, pp.89-109, 2016.
DOI : 10.1039/c3an00255a

M. L. Paret, S. K. Sharma, L. M. Green, and A. M. Alvarez, Biochemical Characterization of Gram-Positive and Gram-Negative Plant-Associated Bacteria with Micro-Raman Spectroscopy, Applied Spectroscopy, vol.2, issue.4, pp.433-441, 2010.
DOI : 10.1021/ja00542a006

D. F. Wallach, S. P. Verma, and J. Fookson, Application of laser Raman and infrared spectroscopy to the analysis of membrane structure, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.559, issue.2-3, pp.153-208, 1979.
DOI : 10.1016/0304-4157(79)90001-7

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge et al., Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy, Langmuir, vol.20, issue.26, pp.11433-11442, 2004.
DOI : 10.1021/la049043+

D. Helm and D. Naumann, Identification of some bacterial cell components by FT-IR spectroscopy, FEMS Microbiology Letters, vol.126, issue.1, pp.75-80, 1995.
DOI : 10.1111/j.1574-6968.1995.tb07393.x

D. Naumann, G. Barnickel, H. Bradaczek, H. Labischinski, and P. Giesbrecht, Infrared Spectroscopy, a Tool for Probing Bacterial Peptidoglycan. Potentialities of Infrared Spectroscopy for Cell Wall Analytical Studies and Rejection of Models Based on Crystalline Chitin, European Journal of Biochemistry, vol.33, issue.6, pp.505-515, 1982.
DOI : 10.1107/S0567740878006081

J. L. Arrondo and F. M. Goni, Structure and dynamics of membrane proteins as studied by infrared spectroscopy, Progress in Biophysics and Molecular Biology, vol.72, issue.4, pp.367-405, 1999.
DOI : 10.1016/S0079-6107(99)00007-3

S. A. Strola, P. R. Marcoux, E. Schultz, R. Perenon, A. Simon et al., Differentiating the growth phases of single bacteria using Raman spectroscopy, Proc. SPIE 8939 Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry, pp.1-9, 2014.

H. M. Al-qadiri, N. I. Al-alami, M. A. Al-holy, and B. A. Rasco, Using Fourier Transform Infrared (FT-IR) Absorbance Spectroscopy and Multivariate Analysis To Study the Effect of Chlorine-Induced Bacterial Injury in Water, Journal of Agricultural and Food Chemistry, vol.56, issue.19, pp.8992-8997, 2008.
DOI : 10.1021/jf801604p

M. F. Escoriza, J. M. Vanbriesen, S. Stewart, and J. Maier, Studying Bacterial Metabolic States Using Raman Spectroscopy, Applied Spectroscopy, vol.38, issue.2, pp.971-976, 2006.
DOI : 10.1016/0003-2697(70)90174-0

L. Choo-smith, K. Maquelin, T. Van-vreeswijk, H. A. Bruining, G. J. Puppels et al., Investigating Microbial (Micro)colony Heterogeneity by Vibrational Spectroscopy, Applied and Environmental Microbiology, vol.67, issue.4, pp.1461-1469, 2001.
DOI : 10.1128/AEM.67.4.1461-1469.2001

M. Kemmler, E. Rodner, P. Rosch, J. Popp, and J. Denzler, Automatic identification of novel bacteria using Raman spectroscopy and Gaussian processes, Analytica Chimica Acta, vol.794, pp.29-37, 2013.
DOI : 10.1016/j.aca.2013.07.051

I. Espagnon, D. Ostrovskii, R. Mathey, M. Dupoy, P. L. Joly et al., Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy, Journal of Biomedical Optics, vol.19, issue.2, 2014.
DOI : 10.1117/1.JBO.19.2.027004

K. Maquelin, L. Choo-smith, T. Vreeswijk, H. Endtz, . Ph et al., Raman Spectroscopic Method for Identification of Clinically Relevant Microorganisms Growing on Solid Culture Medium, Analytical Chemistry, vol.72, issue.1, 2000.
DOI : 10.1021/ac991011h

J. F. Almarashi, N. Kapel, T. S. Wilkinson, and H. H. Telle, Raman Spectroscopy of Bacterial Species and Strains Cultivated under Reproducible Conditions, Spectroscopy: An International Journal, vol.345, pp.361-365, 2012.
DOI : 10.1002/jrs.1734

V. Ciobota, E. Burkhardt, W. Schumacher, P. Rosch, K. Kusel et al., The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy, Analytical and Bioanalytical Chemistry, vol.2, issue.662, pp.2929-2937, 2010.
DOI : 10.1080/14786440109462720

W. E. Huang, R. I. Griffiths, I. P. Thompson, M. J. Bailey, and A. S. Whiteley, Raman Microscopic Analysis of Single Microbial Cells, Analytical Chemistry, vol.76, issue.15, pp.4452-4458, 2004.
DOI : 10.1021/ac049753k

P. Rosch, M. Harz, M. Schmitt, K. Peschke, O. Ronneberger et al., Chemotaxonomic identification of 101, 2005.

H. Muhamadali, M. Chisanga, A. Subaihi, and R. Goodacre, Cells at Community and Single Cell Levels, Analytical Chemistry, vol.87, issue.8, pp.4578-4586, 2015.
DOI : 10.1021/acs.analchem.5b00892

U. Schmid, P. Rosch, M. Krause, M. Harz, J. Popp et al., Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy, Chemometrics and Intelligent Laboratory Systems, vol.96, issue.2, pp.159-171, 2009.
DOI : 10.1016/j.chemolab.2009.01.008

P. Mobili, A. Londero, G. Antoni, A. Gomez-zavaglia, C. Araujo-andrade et al., Multivariate analysis of Raman spectra applied to microbiology: Discrimination of microorganisms at the species level, Revista Mexicana de Fisica, vol.56, issue.5, pp.378-385, 2010.

K. C. Schuster, E. Urlaub, and J. R. Gapes, Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, Journal of Microbiological Methods, vol.42, issue.1, pp.29-38, 2000.
DOI : 10.1016/S0167-7012(00)00169-X

E. Kastanos, A. Kyriakides, K. Hadjigeorgiou, and C. Pitris, A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy, International Journal of Spectroscopy, vol.79, issue.1, 2011.
DOI : 10.1016/S0378-1097(01)00403-7

J. B. Forrester, N. B. Valentine, Y. Su, and T. J. Johnson, Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: Discrimination to the strain level, Analytica Chimica Acta, vol.651, issue.1, pp.24-30, 2009.
DOI : 10.1016/j.aca.2009.08.005

R. Davis, G. Paoli, and L. J. Mauer, Evaluation of Fourier transform infrared (FT-IR) spectroscopy and chemometrics as a rapid approach for sub-typing Escherichia coli O157:H7 isolates, Food Microbiology, vol.31, issue.2, pp.181-190, 2012.
DOI : 10.1016/j.fm.2012.02.010

R. Davis, A. Deering, Y. Burgula, L. J. Mauer, and B. L. Reuhs, Differentiation of live, dead and treated cells of Escherichia coli O157:H7 using FT-IR spectroscopy, Journal of Applied Microbiology, vol.144, issue.Suppl, pp.743-751, 2011.
DOI : 10.1016/j.ijfoodmicro.2010.09.023

K. Maquelin, C. Kirschner, L. Choo-smith, N. A. Ngo-thi, T. Vreeswijk et al., Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered from Blood Cultures, Journal of Clinical Microbiology, vol.41, issue.1, pp.324-329, 2003.
DOI : 10.1128/JCM.41.1.324-329.2003

Z. Filip and S. Hermann, An attempt to differentiate Pseudomonas spp. and other soil bacteria by FT-IR spectroscopy, European Journal of Soil Biology, vol.37, issue.3, pp.137-143, 2001.
DOI : 10.1016/S1164-5563(01)01078-0

W. Zeroual, M. Manfait, and C. Choisy, FT-IR spectroscopy study of perturbations induced by antibiotic on bacteria (Escherichia coli), Pathologie Biologie, vol.43, issue.4, pp.300-305, 1995.

A. I. Athamneh, R. A. Alajlouni, R. S. Wallace, M. N. Seleem, and R. S. Senger, Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy, Antimicrobial Agents and Chemotherapy, vol.58, issue.3, pp.1302-1314, 2014.
DOI : 10.1128/AAC.02098-13

U. Neugebauer, U. Schmid, K. Baumann, U. Holzgrabe, W. Ziebuhr et al., Characterization of bacterial growth and the influence of antibiotics by means of UV resonance Raman spectroscopy, Biopolymers, vol.61, issue.4, pp.306-311, 2006.
DOI : 10.1016/j.saa.2004.11.014

T. J. Moritz, C. R. Polage, D. S. Taylor, D. M. Krol, S. M. Lane et al., Evaluation of Escherichia coli Cell Response to Antibiotic Treatment by Use of Raman Spectroscopy with Laser Tweezers, Journal of Clinical Microbiology, vol.48, issue.11, pp.4287-4290, 2010.
DOI : 10.1128/JCM.01565-10

G. D. Sockalingum, W. Bouhedja, P. Pina, D. Allouch, C. Mandray et al., ATR???FTIR Spectroscopic Investigation of Imipenem-Susceptible and -ResistantPseudomonas aeruginosaIsogenic Strains, Biochemical and Biophysical Research Communications, vol.232, issue.1, pp.240-246, 1997.
DOI : 10.1006/bbrc.1997.6263

M. N. Amiali, Identification of antibiotic-resistant Staphylococci and epidemiological typing of methicillin-resistant Staphylococcus aureus by Fourier Transform Infrared spectroscopy, 2003.

H. H. Torkabadi, Raman microscopic studies of antimicrobial reactions in solution, crystals and bacterial cells, 2016.

W. Bouhedja, G. D. Sockalingum, P. Pina, P. Allouch, C. Bloy et al., transconjugants ??-lactams-resistance phenotype, FEBS Letters, vol.43, issue.1, pp.39-42, 1997.
DOI : 10.1093/jac/2.2.115

L. Lechowicz, M. Urbaniak, W. Adamus-biaek, and W. Kaca, The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains'susceptibility to cephalothin, Acta ABP Biochimica Polonica, vol.60, issue.4, pp.713-718, 2013.

C. Kirschner, N. A. Ngo-thi, and D. Naumann, FT-IR spectroscopic investigations of antibiotic sensitive and resistant microorganisms, pp.561-526, 1999.
DOI : 10.1007/978-94-011-4479-7_250

U. Schroder, . Ch, C. Beleites, C. Assmann, U. Glaser et al., Detection of vancomycin resistances in enterococci within 3, 2015.

L. Qi, H. Li, C. Zhang, B. Liang, J. Li et al., Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii, Frontiers in Microbiology, vol.8, pp.1-10, 2016.
DOI : 10.1371/journal.pone.0061625

Y. Chao and T. Zhang, Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm, Analytical and Bioanalytical Chemistry, vol.43, issue.5, pp.1465-1475, 2012.
DOI : 10.1016/j.watres.2008.10.034

A. Delille, Etude in situ, par spectroscopie infrarouge en mode ATR, des premières étapes de la formation d'un biofilm de Pseudomonas fluorescens et de sa réponse aux variations de la quantité de carbone organique dissous : application à la détection précoce du changement de la qualité microbiologique d'une eau de distribution, Thèse de l'Université de Henri Poincaré, 2007.

J. N. Anderl, M. J. Franklin, and P. S. Stewart, Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin, Antimicrobial Agents and Chemotherapy, vol.44, issue.7, pp.1818-1824, 2000.
DOI : 10.1128/AAC.44.7.1818-1824.2000

T. C. Mah and G. A. Otoole, Mechanisms of biofilm resistance to antimicrobial agents, Trends in Microbiology, vol.9, issue.1, pp.34-39, 2001.
DOI : 10.1016/S0966-842X(00)01913-2

M. Desai, T. Buhler, P. H. Weller, and M. R. Brown, Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth, Journal of Antimicrobial Chemotherapy, vol.42, issue.2, pp.153-160, 1998.
DOI : 10.1093/jac/42.2.153

M. G. Paraje, Antimicrobial resistance in biofilm. Science against microbial pathogens, pp.736-744, 2011.

D. Kusic, B. Kampe, A. Ramoji, U. Neugebauer, P. Rosch et al., Raman spectroscopic differentiation of planktonic bacteria and biofilms, Analytical and Bioanalytical Chemistry, vol.9, issue.5, pp.6803-6813, 2015.
DOI : 10.1016/S0966-842X(01)02012-1

C. Sandt, T. Smith-palmer, J. Pink, L. Brennan, and D. Pink, Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ, Journal of Applied Microbiology, vol.40, issue.662, pp.1808-1820, 2007.
DOI : 10.1016/j.watres.2005.10.035

A. Delille, F. Quiles, and F. Humbert, In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low- 104, 2007.

A. Assaf, C. B. Cordella, and G. Thouand, Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella spp. in the food industry, Analytical and Bioanalytical Chemistry, vol.646, issue.1???3, pp.4899-4910, 2014.
DOI : 10.1016/S0022-2860(02)00575-6

URL : https://hal.archives-ouvertes.fr/hal-01173820

H. M. Al-qadiri, M. Lin, A. G. Cavinato, and B. A. Rasco, Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice, International Journal of Food Microbiology, vol.111, issue.1, pp.73-80, 2006.
DOI : 10.1016/j.ijfoodmicro.2006.05.004

M. A. Al-holy, M. Lin, A. G. Cavinato, and B. A. Rasco, The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli O157:H7 from other bacteria inoculated into apple juice, Food Microbiology, vol.23, issue.2, pp.162-168, 2006.
DOI : 10.1016/j.fm.2005.01.017

A. A. Argyri, R. M. Jarvis, D. Wedge, Y. Xu, E. Z. Panagou et al., A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage, Food Control, vol.29, issue.2, pp.461-470, 2013.
DOI : 10.1016/j.foodcont.2012.05.040

K. Sowoidnich, H. Schmidt, H. Kronfeldt, and F. Schwagele, A portable 671nm Raman sensor system for rapid meat spoilage identification, Vibrational Spectroscopy, vol.62, pp.70-76, 2012.
DOI : 10.1016/j.vibspec.2012.04.002

O. Papadopoulou, E. Z. Panagou, C. C. Tassou, and G. E. Nychas, Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage, Food Research International, vol.44, issue.10, pp.3264-3271, 2011.
DOI : 10.1016/j.foodres.2011.09.012

P. Whittaker, M. M. Mossoba, S. Al-khaldi, F. S. Fry, V. C. Dunkel et al., Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters, Journal of Microbiological Methods, vol.55, issue.3, pp.709-716, 2003.
DOI : 10.1016/j.mimet.2003.07.005

D. Kusic, B. Kampe, P. Rosch, and J. Popp, Identification of water pathogens by Raman microspectroscopy, Water Research, vol.48, pp.179-189, 2014.
DOI : 10.1016/j.watres.2013.09.030

A. Tripathi, R. E. Jabbour, P. J. Treado, J. H. Neiss, M. P. Nelson et al., Waterborne Pathogen Detection Using Raman Spectroscopy, Applied Spectroscopy, vol.82, issue.1, 2008.
DOI : 10.1002/bip.20448

M. F. Escoriza, J. M. Vanbriesen, S. Stewart, J. Maier, and P. J. Treado, Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria, Journal of Microbiological Methods, vol.66, issue.1, pp.63-72, 2006.
DOI : 10.1016/j.mimet.2005.10.013

M. F. Escoriza, J. M. Vanbriesen, S. Stewart, and J. Maier, Raman Spectroscopic Discrimination of Cell Response to Chemical and Physical Inactivation, Applied Spectroscopy, vol.52, issue.2, pp.61-812, 2007.
DOI : 10.1366/0003702884430010

M. Lin, M. Al-holy, H. Al-qadiri, D. Kang, A. G. Cavinato et al., by Fourier Transform Infrared Spectroscopy and Principal Component Analysis, Journal of Agricultural and Food Chemistry, vol.52, issue.19, pp.5769-5772, 2004.
DOI : 10.1021/jf049354q

H. M. Al-qadiri, M. Lin, M. A. Al-holy, A. G. Cavinato, and B. A. Rasco, Detection of sublethal thermal injury in Salmonella enterica serotype typhimurium and Listeria monocytogenes using Fourier transform infrared (FT-IR) spectroscopy, 2008.

C. Lorin-latxague and A. Melin, bacteria monitored using FT???IR spectroscopy, Spectroscopy, vol.19, issue.1, pp.17-26, 2005.
DOI : 10.1155/2005/386404

A. Paudel, D. Raijada, and J. Rantanen, Raman spectroscopy in pharmaceutical product design, Advanced Drug Delivery Reviews, vol.89, pp.3-20, 2015.
DOI : 10.1016/j.addr.2015.04.003

P. J. Mak, I. G. Denisov, Y. V. Grinkova, S. G. Sligar, and J. R. Kincaid, Defining CYP3A4 Structural Responses to Substrate Binding. Raman Spectroscopic Studies of a Nanodisc-Incorporated Mammalian Cytochrome P450, Journal of the American Chemical Society, vol.133, issue.5, pp.1357-1366, 2011.
DOI : 10.1021/ja105869p

S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy, vol.4, issue.103, pp.208-212, 2005.
DOI : 10.1248/jhs.46.343

H. H. Torkabadi, C. R. Bethel, K. M. Papp-wallace, P. A. Boer, R. A. Bonomo et al., Cells by Raman Microspectroscopy, Biochemistry, vol.53, issue.25, pp.4113-4121, 2014.
DOI : 10.1021/bi500529c

A. Kuriyama and Y. Ozaki, Assessment of Active Pharmaceutical Ingredient Particle Size in Tablets by Raman Chemical Imaging Validated using Polystyrene Microsphere Size Standards, AAPS PharmSciTech, vol.15, issue.2, pp.375-386, 2014.
DOI : 10.1208/s12249-013-0064-9

N. Scoutaris, P. R. Gellert, M. Alexander, and C. J. Roberts, Inkjet printing as a novel medicine formulation technique, Journal of Controlled Release, vol.156, issue.2, pp.179-185, 2011.
DOI : 10.1016/j.jconrel.2011.07.033

P. Sacré, P. Lebrun, P. Chavez, C. Bleye, L. Netchacovitch et al., A new criterion to assess distributional homogeneity in hyperspectral images of solid pharmaceutical dosage forms, Analytica Chimica Acta, vol.818, pp.7-14, 2014.
DOI : 10.1016/j.aca.2014.02.014

S. Wartewig and R. H. Neubert, Pharmaceutical applications of Mid-IR and Raman spectroscopy, Advanced Drug Delivery Reviews, vol.57, issue.8, pp.1140-1170, 2005.
DOI : 10.1016/j.addr.2005.01.022

C. L. Armstrong, H. G. Edwards, D. W. Farwell, and A. C. Williams, Fourier transform Raman microscopic study of drug distribution in a transdermal drug delivery device, Vibrational Spectroscopy, vol.11, issue.2, pp.105-113, 1996.
DOI : 10.1016/0924-2031(95)00066-6

K. L. Chan, S. V. Hammond, and S. G. Kazarian, Applications of Attenuated Total Reflection Infrared Spectroscopic Imaging to Pharmaceutical Formulations, Analytical Chemistry, vol.75, issue.9, pp.2140-2146, 2003.
DOI : 10.1021/ac026456b

L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics, Vibrational Spectroscopy, vol.26, issue.2, pp.151-159, 2001.
DOI : 10.1016/S0924-2031(01)00113-8

R. Noor, Z. Islam, S. K. Munshi, and F. Rahman, Influence of temperature on Escherichia coli growth in different culture media, J. Pure Appl. Microbiol, vol.7, issue.2, pp.899-904, 2013.

I. Orskov, F. Orskov, B. Jann, and K. Jann, Serology, chemistry, and genetics of O and K antigens of Escherichia coli, Bacteriol. Rev, vol.41, issue.3, pp.667-710, 1977.

A. Clements, J. C. Young, N. Constantinou, and G. Frankel, Infection strategies of enteric pathogenic Escherichia coli, Gut Microbes, vol.11, issue.2, pp.71-87, 2012.
DOI : 10.1111/j.1462-5822.2007.01112.x

A. Szmolka and B. Nagy, Multidrug resistant commensal Escherichia coli in animals and its impact for public health, Frontiers in Microbiology, vol.4, 2013.
DOI : 10.3389/fmicb.2013.00258

J. K. Bailey, J. L. Pinyon, S. Anantham, and R. M. Hall, Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants, Journal of Medical Microbiology, vol.59, issue.11, pp.1331-1339, 2010.
DOI : 10.1099/jmm.0.022475-0

S. H. Ruy, J. H. Lee, S. H. Park, M. O. Song, S. H. Park et al., Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods, Int. J. Food Microbiol, vol.159, issue.3, pp.263-269, 2012.

T. T. Van, J. Chin, T. Chapman, L. T. Tran, and P. J. Coloe, Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes, International Journal of Food Microbiology, vol.124, issue.3, pp.217-240, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.03.029

Y. Su and C. Liu, Vibrio parahaemolyticus: A concern of seafood safety, Food Microbiology, vol.24, issue.6, pp.549-558, 2007.
DOI : 10.1016/j.fm.2007.01.005

Z. H. Hassan, J. T. Zwartkruis-nahuis, and E. Boer, Occurrence of Vibrio parahaemolyticus in retailed seafood in The Netherlands, Int. Food Res. J, vol.19, issue.1, pp.39-43, 2012.

J. L. Martinez, M. B. Sanchez, L. Martnez-solano, A. Hernandez, L. Garmendia et al., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiology Reviews, vol.33, issue.2, pp.430-449, 2009.
DOI : 10.1111/j.1574-6976.2008.00157.x

A. Lozano-leon, J. Torres, C. R. Osorio, and J. Martinez-urtaza, from an outbreak associated with raw oyster consumption in Spain, FEMS Microbiology Letters, vol.226, issue.2, pp.281-284, 2003.
DOI : 10.1016/S0378-1097(03)00604-9

J. Martinez-urtaza, A. Lozano-leon, A. Depaola, M. Ishibashi, K. Shimada et al., Characterization of Pathogenic Vibrio parahaemolyticus Isolates from Clinical Sources in Spain and Comparison with Asian and North American Pandemic Isolates, Journal of Clinical Microbiology, vol.42, issue.10, pp.4672-4678, 2004.
DOI : 10.1128/JCM.42.10.4672-4678.2004

O. A. Odeyemi, Incidence and prevalence of Vibrio parahaemolyticus in seafood: a systematic review and meta-analysis, SpringerPlus, vol.22, issue.1, pp.1-17, 2016.
DOI : 10.1016/j.foodcont.2010.12.017

J. Bowers, A. Dalsgaard, A. Depaola, I. Karunasagar, T. Mcmeekin et al., Risk assessment of Vibrio parahaemolyticus in seafood. WHO and FAO, Microbiological Risk Assessment, 2011.

F. H. Yildiz and K. L. Visick, Vibrio biofilms: so much the same yet so different, Trends in Microbiology, vol.17, issue.3, pp.109-118, 2009.
DOI : 10.1016/j.tim.2008.12.004

K. Vongxay, S. Wang, X. Zhang, B. Wu, H. Hu et al., Pathogenetic characterization of Vibrio parahaemolyticus isolates from clinical and seafood sources, International Journal of Food Microbiology, vol.126, issue.1-2, pp.71-75, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.04.032

J. B. Mclaughlin, A. Depaola, C. A. Bopp, K. A. Martinek, N. P. Napolilli et al., Gastroenteritis Associated with Alaskan Oysters, New England Journal of Medicine, vol.353, issue.14, pp.1463-1470, 2005.
DOI : 10.1056/NEJMoa051594

L. Wang, Y. Ling, H. Jiang, Y. Qiu, J. Qiu et al., AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus, International Journal of Food Microbiology, vol.160, issue.3, pp.245-251, 2013.
DOI : 10.1016/j.ijfoodmicro.2012.11.004

H. Wong, S. Liu, T. Wang, C. Lee, C. Chiou et al., Characteristics of Vibrio parahaemolyticus O3:K6 from Asia, Applied and Environmental Microbiology, vol.66, issue.9, pp.3981-3986, 2000.
DOI : 10.1128/AEM.66.9.3981-3986.2000

S. Shinoda, Sixty Years from the Discovery of Vibrio parahaemolyticus and Some Recollections, Biocontrol Science, vol.16, issue.4, pp.129-137, 2011.
DOI : 10.4265/bio.16.129

G. P. Richards, J. P. Fay, K. A. Dickens, M. A. Parent, D. S. Soroka et al., Predatory Bacteria as Natural Modulators of Vibrio parahaemolyticus and Vibrio vulnificus in Seawater and Oysters, Applied and Environmental Microbiology, vol.78, issue.20, pp.7455-7466, 2012.
DOI : 10.1128/AEM.01594-12

A. Deepanjali, S. Kumar, H. Karunasagar, and I. , Seasonal Variation in Abundance of Total and Pathogenic Vibrio parahaemolyticus Bacteria in Oysters along the Southwest Coast of India, Applied and Environmental Microbiology, vol.71, issue.7, pp.3575-3580, 2005.
DOI : 10.1128/AEM.71.7.3575-3580.2005

A. Depaola, J. L. Nordstrom, J. C. Bowers, J. G. Wells, and D. W. Cook, Seasonal Abundance of Total and Pathogenic Vibrio parahaemolyticus in Alabama Oysters, Applied and Environmental Microbiology, vol.69, issue.3, pp.1521-1526, 2003.
DOI : 10.1128/AEM.69.3.1521-1526.2003

Y. W. Kim, S. H. Lee, I. G. Hwang, and K. S. Yoon, Effect of Temperature on Growth of Vibrio paraphemolyticus and Vibrio vulnificus in Flounder, Salmon Sashimi and Oyster Meat, International Journal of Environmental Research and Public Health, vol.149, issue.12, pp.4662-4675, 2012.
DOI : 10.1111/j.1365-2672.1989.tb02519.x

L. Zhang and K. Orth, Virulence determinants for Vibrio parahaemolyticus infection, Current Opinion in Microbiology, vol.16, issue.1, pp.70-77, 2013.
DOI : 10.1016/j.mib.2013.02.002

C. D. Cruz, D. Hedderley, and G. C. Fletcher, Long-Term Study of Vibrio parahaemolyticus Prevalence and Distribution in New Zealand Shellfish, Applied and Environmental Microbiology, vol.81, issue.7, pp.2320-2327, 2015.
DOI : 10.1128/AEM.04020-14

T. Shimohata and A. Takahashi, Diarrhea induced by infection of <I>Vibrio parahaemolyticus</I>, The Journal of Medical Investigation, vol.57, issue.3,4, 2010.
DOI : 10.2152/jmi.57.179

C. A. Broberg, T. J. Calder, and K. Orth, Vibrio parahaemolyticus cell biology and pathogenicity determinants, Microbes and Infection, vol.13, issue.12-13, pp.992-1001, 2011.
DOI : 10.1016/j.micinf.2011.06.013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384537/pdf

V. Letchumanan, K. Chan, and L. Lee, Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques, Frontiers in Microbiology, vol.1, issue.163, pp.1-13, 2014.
DOI : 10.4161/viru.1.4.12318

F. C. Cabello, Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment, Environmental Microbiology, vol.112, issue.7, pp.1137-1144, 2006.
DOI : 10.1016/S0924-8579(00)00301-0

J. E. Han, L. L. Mohney, K. F. Tang, C. R. Pantoja, and D. V. Lightner, Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps, Aquaculture Reports, vol.2, pp.17-21, 2015.
DOI : 10.1016/j.aqrep.2015.04.003

P. Smith, La resistencia a los antimicrobianos en acuicultura, Revue Scientifique et Technique de l'OIE, vol.27, issue.1, pp.243-264, 2008.
DOI : 10.20506/rst.27.1.1799

I. Phillips, M. Casewell, T. Cox, B. Groot, C. Friis et al., Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data, Journal of Antimicrobial Chemotherapy, vol.53, issue.1, pp.28-52, 2004.
DOI : 10.1093/jac/dkg483

V. Letchumanan, W. Yin, L. Lee, and K. Chan, Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia, Frontiers in Microbiology, vol.16, issue.110, pp.1-11, 2015.
DOI : 10.1016/j.foodcont.2014.11.007

F. Han, R. D. Walker, M. E. Janes, W. Prinyawiwatkul, and B. Ge, Antimicrobial Susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus Isolates from Louisiana Gulf and Retail Raw Oysters, Applied and Environmental Microbiology, vol.73, issue.21, pp.7096-7098, 2007.
DOI : 10.1128/AEM.01116-07

M. B. Reantaso, R. Subasinghe, I. Karunasagar, and C. Boyd, FAO/MARD technical workshop on early mortality syndrome (EMS) or acute hepatopancreatic necrosis syndrome (AHPNS) of cultured shrimp, 2013.

T. R. Garrett, M. Bhakoo, and Z. Zhang, Bacterial adhesion and biofilms on surfaces, Progress in Natural Science, vol.18, issue.9, pp.1049-1056, 2008.
DOI : 10.1016/j.pnsc.2008.04.001

D. Garcia-gonzalo and R. Pagan, Influence of Environmental Factors on Bacterial Biofilm Formation in the Food Industry: A Review, Postdoc Journal, vol.3, issue.6, pp.3-13, 2015.
DOI : 10.14304/SURYA.JPR.V3N6.2

J. D. Bryers and B. D. Ratner, Bioinspired implant materials befuddle bacteria, ASM News, vol.70, issue.5, pp.232-237, 2004.

S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, Extracellular polymeric substances responsible for bacterial adhesion onto solid surface, FEMS Microbiology Letters, vol.223, issue.2, pp.287-292, 2003.
DOI : 10.1016/S0378-1097(03)00399-9

M. Simoes, L. C. Simoes, and M. J. Vieira, A review of current and emergent biofilm control strategies, LWT - Food Science and Technology, vol.43, issue.4, pp.573-583, 2010.
DOI : 10.1016/j.lwt.2009.12.008

L. Hall-stoodley and P. Stoodley, Developmental regulation of microbial biofilms, Current Opinion in Biotechnology, vol.13, issue.3, pp.228-233, 2002.
DOI : 10.1016/S0958-1669(02)00318-X

R. M. Donlan, Biofilm Formation: A Clinically Relevant Microbiological Process, Clinical Infectious Diseases, vol.33, issue.8, pp.1387-1392, 2001.
DOI : 10.1086/322972

R. Van-houdt and C. W. Michiels, Biolm formation and the food industry, a focus on the bacterial outer surface, J. Appl. Microbiol, pp.1-15, 2010.

K. Hori and S. Matsumoto, Bacterial adhesion: From mechanism to control, Biochemical Engineering Journal, vol.48, issue.3, pp.424-434, 2010.
DOI : 10.1016/j.bej.2009.11.014

S. Srey, I. K. Jahid, and S. Ha, Biofilm formation in food industries: A food safety concern, Food Control, vol.31, issue.2, pp.572-585, 2013.
DOI : 10.1016/j.foodcont.2012.12.001

N. Elexson, R. Yaya, A. M. Nor, H. K. Kantilal, A. Ubong et al., Biofilm assessment of Vibrio parahaemolyticus from seafood using Random Amplified Polymorphism DNA-PCR, Int. Food Res. J, vol.21, issue.1, pp.59-65, 2014.

M. F. Md, I. K. Jahid, and S. Ha, Microbial biolms in seafood: A foodhygiene challenge, Food Microbiol, vol.49, pp.41-55, 2015.

M. Kostakioti, M. Hadjifrangiskou, and S. J. Hultgren, Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era, Cold Spring Harbor Perspectives in Medicine, vol.3, issue.4, pp.1-23, 2013.
DOI : 10.1101/cshperspect.a010306

M. F. Md, I. K. Jahid, M. Kim, K. Lee, T. J. Kim et al., Variability of biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and distribution of genes involved in biofilm formation, Biofouling, vol.32, issue.4, pp.497-509, 2016.

M. E. Cortés, J. C. Bonilla, and R. D. Sinisterra, Biofilm formation, control and novel strategies for eradication. Science against microbial pathogens: communicating current research and technological advances, pp.896-905, 2011.

N. Elexson, R. Son, Y. Rukayadi, T. Zainazor, T. C. Nor-ainy et al., Biosafety of Vibrio parahaemolyticus biofilm from seafood using herbs and spices, Journal of Life Medicine, vol.1, issue.3, pp.71-82, 2013.

K. Poole, Mechanisms of bacterial biocide and antibiotic resistance, Journal of Applied Microbiology, vol.43, issue.s1, pp.55-64, 2002.
DOI : 10.1046/j.1365-2958.2000.01926.x

G. B. Jung, S. W. Nam, S. Choi, G. Lee, and H. Park, Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis, Biomedical Optics Express, vol.5, issue.9, 2014.
DOI : 10.1364/BOE.5.003238

M. T. Madigan, J. M. Martinko, D. A. Stahl, and D. P. Clark, Brock of biology microorganisms, 2010.

K. R. Marks, Investigating the fluoroquinolone-topoisomerase interaction by use of novel fluoroquinolone and quinazoline analogs, 2011.

M. I. Konaklieva, Molecular Targets of ??-Lactam-Based Antimicrobials: Beyond the Usual Suspects, Antibiotics, vol.91, issue.3, pp.128-142, 2014.
DOI : 10.1016/j.ijmm.2013.09.001

H. Suginaka, S. Kotani, N. Takata, and M. Ogawa, K12, FEMS Microbiology Letters, vol.8, issue.2, pp.79-82, 1980.
DOI : 10.1111/j.1574-6968.1980.tb05054.x

J. L. Lefrock, R. A. Prince, and R. D. Left, Mechanism of Action, Antimicrobial Activity, Pharmacology, Adverse Effects, and Clinical Efficacy of Cefotaxime, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, vol.6, issue.Suppl A, pp.174-184, 1982.
DOI : 10.1093/jac/6.suppl_A.243

K. C. Huang, R. Mukhopadhyay, B. Wen, Z. Gitai, and N. S. Wingreen, Cell shape and cell-wall organization in Gram-negative bacteria, Proceedings of the National Academy of Sciences, vol.294, issue.5541, pp.19282-19287, 2008.
DOI : 10.1126/science.1063611

C. Ginsberg, S. Brown, and S. Walker, Bacterial Cell Wall Components, pp.1535-1600, 2008.
DOI : 10.1007/978-3-540-30429-6_38

X. Zeng and J. Lin, Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria, Frontiers in Microbiology, vol.4, pp.1-9, 2013.
DOI : 10.3389/fmicb.2013.00128

A. Typas, M. Banzhaf, C. A. Gross, and W. Vollmer, From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nature Reviews Microbiology, vol.185, 2012.
DOI : 10.1128/JB.185.20.6112-6118.2003

T. D. Bugg, D. Braddick, C. G. Dowson, and D. I. Roper, Bacterial cell wall assembly: still an attractive antibacterial target, Trends in Biotechnology, vol.29, issue.4, pp.167-173, 2011.
DOI : 10.1016/j.tibtech.2010.12.006

K. Izaki, M. Matsuhashi, and J. L. Strominger, Biosynthesis of the peptidoglycan of bacterial cell walls, The Journal of Biological Chemistry, vol.243, issue.11, pp.3180-3192, 1968.

S. Tomioka, F. Ishino, S. Tamaki, and M. Matsuhashi, Formation of hyper-crosslinked peptidoglycan with multiple crosslinkages by a penicillin-binding protein, 1A, of Escherichia coli, Biochemical and Biophysical Research Communications, vol.106, issue.4, pp.1175-1182, 1982.
DOI : 10.1016/0006-291X(82)91236-0

J. Heijenoort, Formation of the glycan chains in the synthesis of bacterial peptidoglycan, Glycobiology, vol.11, issue.3, pp.25-36, 2001.
DOI : 10.1093/glycob/11.3.25R

L. L. Silver, Novel inhibitors of bacterial cell wall synthesis, Current Opinion in Microbiology, vol.6, issue.5, pp.431-438, 2003.
DOI : 10.1016/j.mib.2003.08.004

E. M. Wise and J. T. Park, Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis., Proceedings of the National Academy of Sciences, vol.54, issue.1, p.54, 1965.
DOI : 10.1073/pnas.54.1.75

H. C. Neu, Relation of structural properties of beta-lactam antibiotics to antibacterial activity, The American Journal of Medicine, vol.79, issue.2, p.2, 1985.
DOI : 10.1016/0002-9343(85)90254-2

D. Scheffers and M. G. Pinho, Bacterial Cell Wall Synthesis: New Insights from Localization Studies, Microbiology and Molecular Biology Reviews, vol.69, issue.4, pp.585-607, 2005.
DOI : 10.1128/MMBR.69.4.585-607.2005

E. Sauvage, F. Kerff, M. Terrak, J. A. Ayala, and P. Charlier, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis, FEMS Microbiology Reviews, vol.32, issue.2, pp.234-258, 2008.
DOI : 10.1111/j.1574-6976.2008.00105.x

T. J. Beveridge, Structures of Gram-negative cell walls and their derived membrane vesicles, J. Bacteriol, vol.181, issue.16, pp.4725-4733, 1999.

A. Kumar and H. P. Schweizer, Bacterial resistance to antibiotics: Active efflux and reduced uptake, Advanced Drug Delivery Reviews, vol.57, issue.10, pp.1486-1513, 2005.
DOI : 10.1016/j.addr.2005.04.004

G. D. Wright, Bacterial resistance to antibiotics: Enzymatic degradation and modification, Advanced Drug Delivery Reviews, vol.57, issue.10, pp.1451-1470, 2005.
DOI : 10.1016/j.addr.2005.04.002

P. A. Lambert, Bacterial resistance to antibiotics: Modified target sites, Advanced Drug Delivery Reviews, vol.57, issue.10, pp.1471-1485, 2005.
DOI : 10.1016/j.addr.2005.04.003

C. C. Sanders, W. E. Sanders, and . Jr, ??-Lactam Resistance in Gram-Negative Bacteria: Global Trends and Clinical Impact, Clinical Infectious Diseases, vol.15, issue.5, pp.824-839, 1992.
DOI : 10.1093/clind/15.5.824

M. Babic, A. M. Hujer, and R. A. Bonomo, What's new in antibiotic resistance? Focus on beta-lactamases, Drug Resistance Updates, vol.9, issue.3, pp.142-156, 2006.
DOI : 10.1016/j.drup.2006.05.005

A. Bauernfeind, Classification of ??-Lactamases, Clinical Infectious Diseases, vol.8, issue.Supplement_5, pp.470-481, 1986.
DOI : 10.1093/clinids/8.Supplement_5.S470

H. Ozturk, E. Ozkirimli, and A. Ozgur, Classification of beta-lactamases and penicillin binding proteins using ligand-centric network models, Plos One, vol.10, issue.2, pp.1-23, 2015.

K. Bush and G. A. Jacoby, Updated Functional Classification of ??-Lactamases, Antimicrobial Agents and Chemotherapy, vol.54, issue.3, pp.969-976, 2010.
DOI : 10.1128/AAC.01009-09

H. Nikaido, Role of permeability barriers in resistance to ??-lactam antibiotics, Pharmacology & Therapeutics, vol.27, issue.2, pp.197-231, 1985.
DOI : 10.1016/0163-7258(85)90069-5

A. Saini and R. Bansal, Insights on the structural characteristics of NDM-1: The journey so far, Advances in Biological Chemistry, vol.02, issue.04, pp.323-334, 2012.
DOI : 10.4236/abc.2012.24040

D. E. Brodersen, W. M. Clemons, A. P. Carter, R. J. Morgan-warren, B. T. Wimberly et al., The structural basis for the action of the antibiotics tetracycline, p.113, 2000.

I. Chopra and M. Roberts, Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance, Microbiology and Molecular Biology Reviews, vol.65, issue.2, pp.232-260, 2001.
DOI : 10.1128/MMBR.65.2.232-260.2001

B. S. Speer, N. B. Shoemaker, and A. A. Salyers, Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance., Clinical Microbiology Reviews, vol.5, issue.4, pp.387-399, 1992.
DOI : 10.1128/CMR.5.4.387

M. C. Roberts, Tetracycline Therapy: Update, Clinical Infectious Diseases, vol.36, issue.4, pp.462-467, 2003.
DOI : 10.1086/367622

D. Schnappinger and W. Hillen, Tetracyclines: antibiotic action, uptake, and resistance mechanisms, Archives of Microbiology, vol.165, issue.6, pp.359-369, 1996.
DOI : 10.1007/s002030050339

R. M. Card, M. Mafura, T. Hunt, M. Kirchner, J. Weile et al., Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor, Antimicrobial Agents and Chemotherapy, vol.59, issue.8, pp.4410-4416, 2015.
DOI : 10.1128/AAC.00068-15

H. Yoshida, M. Nakamura, M. Bogaki, H. Ito, T. Kojima et al., Mechanism of action of quinolones against Escherichia coli DNA gyrase., Antimicrobial Agents and Chemotherapy, vol.37, issue.4, pp.839-845, 1993.
DOI : 10.1128/AAC.37.4.839

P. M. Hawkey, Mechanisms of quinolone action and microbial response, Journal of Antimicrobial Chemotherapy, vol.51, issue.90001, pp.1-29, 2003.
DOI : 10.1093/jac/dkg207

D. C. Hooper, Mechanisms of Action and Resistance of Older and Newer Fluoroquinolones, Clinical Infectious Diseases, vol.31, issue.Supplement_2, pp.24-32, 2000.
DOI : 10.1086/314056

K. Drlica, M. Malik, R. J. Kerns, and X. Zhao, Quinolone-Mediated Bacterial Death, Antimicrobial Agents and Chemotherapy, vol.52, issue.2, pp.385-392, 2008.
DOI : 10.1128/AAC.01617-06

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya et al., Utilizing the Unique Potential of Vibrational Spectroscopy, The Journal of Physical Chemistry A, vol.111, issue.15, pp.2898-2906, 2007.
DOI : 10.1021/jp0678397

K. Mlynarikova, O. Samek, S. Bernatova, F. Ruzicka, J. Jezek et al., Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy, Sensors, vol.13, issue.12, pp.29635-29647, 2015.
DOI : 10.1016/S0169-7439(99)00047-7

F. S. Oliveira, H. E. Giana, and S. L. Jr, Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis, Journal of Biomedical Optics, vol.17, issue.10, pp.107004-107005, 2012.
DOI : 10.1117/1.JBO.17.10.107004

A. Ramoji, K. Galler, U. Glaser, T. Henkel, G. Mayer et al., Characterization of different substrates for Raman spectroscopic imaging of eukaryotic cells, Journal of Raman Spectroscopy, vol.400, issue.3, pp.773-786, 2016.
DOI : 10.1038/22493

H. M. Al-qadiri, N. I. Al-alami, M. Lin, M. Al-holy, A. G. Cavinato et al., STUDYING OF THE BACTERIAL GROWTH PHASES USING FOURIER TRANSFORM INFRARED SPECTROSCOPY AND MULTIVARIATE ANALYSIS, Journal of Rapid Methods and Automation in Microbiology, vol.67, issue.1, pp.73-89, 2008.
DOI : 10.1046/j.1365-2672.2003.02154.x

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor et al., Raman spectroscopy of lipids: a review, Journal of Raman Spectroscopy, vol.111, issue.173, pp.4-20, 2014.
DOI : 10.1021/jp0735886

Z. Movasaghi, S. Rehman, and I. U. Rehman, Raman Spectroscopy of Biological Tissues, Applied Spectroscopy Reviews, vol.72, issue.5, pp.493-541, 2007.
DOI : 10.1016/j.chemgeo.2006.01.014

K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy, Analytical Chemistry, vol.72, issue.22, pp.5529-5534, 2000.
DOI : 10.1021/ac000718x

M. Harz, P. Rosch, K. Peschke, O. Ronneberger, H. Burkhardt et al., Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, The Analyst, vol.25, issue.662, pp.1543-1550, 2005.
DOI : 10.1099/00221287-137-1-69

A. L. Jenkins, R. A. Larsen, and T. B. Williams, Characterization of amino acids using Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.61, issue.7, pp.1585-1594, 2005.
DOI : 10.1016/j.saa.2004.11.055

C. Xie and Y. Li, Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques, Journal of Applied Physics, vol.51, issue.5, p.5, 2003.
DOI : 10.1366/0003702971940134

M. M. Hlaing, M. Dunn, P. R. Stoddart, and S. L. Mcarthur, Raman spectroscopic identification of single bacterial cells at different stages of their lifecycle, Vibrational Spectroscopy, vol.86, pp.81-89, 2016.
DOI : 10.1016/j.vibspec.2016.06.008

M. Gniadecka, H. C. Wulf, N. N. Mortensen, O. F. Nielsen, and D. H. Christensen, Diagnosis of Basal Cell Carcinoma by Raman Spectroscopy, Journal of Raman Spectroscopy, vol.28, issue.2-3, pp.125-129, 1997.
DOI : 10.1002/(SICI)1097-4555(199702)28:2/3<125::AID-JRS65>3.0.CO;2-#

I. Notingher, Raman Spectroscopy Cell-based Biosensors, Sensors, vol.74, issue.8, pp.1343-1358, 2007.
DOI : 10.1002/bip.20063

Z. Movasaghi, S. Rehman, and I. Rehman, Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues, Applied Spectroscopy Reviews, vol.52, issue.2, pp.134-179, 2008.
DOI : 10.1002/jrs.1107

J. Xu, J. W. Turner, M. Idso, S. V. Biryukov, L. Rognstad et al., Using Surface-Enhanced Raman Spectroscopy, Analytical Chemistry, vol.85, issue.5, pp.2630-2637, 2013.
DOI : 10.1021/ac3021888

J. W. Costerton, Introduction to biofilm, International Journal of Antimicrobial Agents, vol.11, issue.3-4, pp.217-221, 1999.
DOI : 10.1016/S0924-8579(99)00018-7

N. Han, M. F. Md, I. K. Jahid, and S. Ha, Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature, Food Control, vol.70, pp.161-166, 2016.
DOI : 10.1016/j.foodcont.2016.05.054

S. Jovetic, Y. Zhu, G. L. Marcone, F. Marinelli, and J. Tramper, ??-Lactam and glycopeptide antibiotics: first and last line of defense?, Trends in Biotechnology, vol.28, issue.12, pp.596-604, 2010.
DOI : 10.1016/j.tibtech.2010.09.004

K. A. Toussaint and J. C. Gallagher, ??-Lactam/??-Lactamase Inhibitor Combinations, Annals of Pharmacotherapy, vol.48, issue.1, pp.86-98, 2015.
DOI : 10.1021/es405348h

J. Schmitt and H. Flemming, FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, vol.41, issue.1, pp.1-11, 1998.
DOI : 10.1016/S0964-8305(98)80002-4

B. W. Bycroft and R. E. Shute, The molecular basis for the mode of action of betalactam antibiotics and mechanisms of resistance, Pharmaceutical Research, vol.02, issue.1, pp.3-14, 1985.
DOI : 10.1023/A:1016305704057

F. Malouin and L. E. Bryan, Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance., Antimicrobial Agents and Chemotherapy, vol.30, issue.1, pp.1-5, 1986.
DOI : 10.1128/AAC.30.1.1

J. Ruiz, Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection, Journal of Antimicrobial Chemotherapy, vol.51, issue.5, pp.1109-1117, 2003.
DOI : 10.1093/jac/dkg222

D. C. Hooper, Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones, Clinical Infectious Diseases, vol.32, issue.Supplement_1, pp.9-15, 2001.
DOI : 10.1086/319370

K. Hamasha, Q. I. Qmohaidat, R. A. Putnam, R. C. Woodman, S. Palchaudhuri et al., Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy???a comparison of two multivariate analysis techniques, Biomedical Optics Express, vol.4, issue.4, pp.481-489, 2013.
DOI : 10.1364/BOE.4.000481

J. Anes, M. P. Mccusker, S. Fanning, and M. Martins, The ins and outs of RND efflux pumps in Escherichia coli, Frontiers in Microbiology, vol.286, issue.e7, p.587, 2015.
DOI : 10.1074/jbc.M111.243261

L. E. Day, Tetracycline inhibition of cell-free protein synthesis, J. Bacteriol, vol.92, issue.1, pp.197-203, 1966.

B. A. Freeman and R. Circo, Effect of tetracyclines on the intracellular amino acids of molds, J. Bacteriol, vol.86, pp.38-44, 1963.

V. Ling and C. L. Morin, Inhibition of amino acid transport in rat intestinal rings by tetracycline, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.249, issue.1, pp.252-259, 1971.
DOI : 10.1016/0005-2736(71)90102-7

L. S. Redgrave, S. B. Sutton, M. A. Webber, and L. J. Piddock, Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success, Trends in Microbiology, vol.22, issue.8, pp.438-445, 2014.
DOI : 10.1016/j.tim.2014.04.007

J. M. Blondeau, Fluoroquinolones: mechanism of action, classification, and development of resistance, Survey of Ophthalmology, vol.49, issue.2, pp.73-78, 2004.
DOI : 10.1016/j.survophthal.2004.01.005

K. Drlica, Mechanism of fluoroquinolone action, Current Opinion in Microbiology, vol.2, issue.5, pp.504-508, 1999.
DOI : 10.1016/S1369-5274(99)00008-9

R. J. Carman, M. A. Simon, H. Fernandez, M. A. Miller, and M. J. Bartholomew, Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats, Regulatory Toxicology and Pharmacology, vol.40, issue.3, pp.319-326, 2004.
DOI : 10.1016/j.yrtph.2004.08.005

V. F. Samanidou, C. E. Demetriou, and I. N. Papadoyannis, Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC, Analytical and Bioanalytical Chemistry, vol.17, issue.5, pp.623-629, 2003.
DOI : 10.1111/j.1365-2710.1992.tb01278.x

S. Bernatova, O. Samek, Z. Pilat, M. Sery, J. Jezek et al., Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy, Molecules, vol.14, issue.42, pp.13188-13199, 2013.
DOI : 10.1366/000370206776342553

J. S. Wolfson and D. C. Hooper, The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro., Antimicrobial Agents and Chemotherapy, vol.28, issue.4, pp.581-586, 1985.
DOI : 10.1128/AAC.28.4.581

G. Saifedden, G. Farinazleen, A. Nor-khaizura, A. Y. Kayali, Y. Nakaguchi et al., Antibiotic susceptibility profile of Vibrio parahaemolyticus isolated from shrimp in Selangor, Malaysia. Int. Food Res. J, vol.23, issue.6, pp.2732-2736, 2016.

S. W. Joseph, R. M. Debell, and W. P. Brown, In Vitro Response to Chloramphenicol, Tetracycline, Ampicillin, Gentamicin, and Beta-Lactamase Production by Halophilic Vibrios from Human and Environmental Sources, Antimicrobial Agents and Chemotherapy, vol.13, issue.2, pp.244-248, 1978.
DOI : 10.1128/AAC.13.2.244

L. P. Kotra and S. Mobashery, ??-Lactam antibiotics, ??-lactamases and bacterial resistance, Bulletin de l'Institut Pasteur, vol.96, issue.3, pp.139-150, 1998.
DOI : 10.1016/S0020-2452(98)80009-2

F. Denis, M. Dosso, A. Sow, and M. Mounier, Les nouvelles c??phalosporines. Structure ??? Pharmacocin??tique ??? Activit??, Medicine et Maladies Infectieuses, pp.236-240, 1986.
DOI : 10.1016/S0399-077X(86)80082-8

K. Bush, G. A. Jacoby, and A. A. Medeiros, A functional classification scheme for beta-lactamases and its correlation with molecular structure, Antimicrobial Agents and Chemotherapy, vol.39, issue.6, pp.1211-1233, 1995.
DOI : 10.1128/AAC.39.6.1211

M. S. Wike, A. L. Lovering, and N. C. Strynadka, Beta-lactam antibiotic resistance: a current structural perspective, Curr. Opin. Microbiol, vol.8, pp.525-533, 2005.

F. K. Majiduddin, I. C. Materon, and T. G. Palzkill, Molecular analysis of beta-lactamase structure and function, International Journal of Medical Microbiology, vol.292, issue.2, pp.127-137, 2002.
DOI : 10.1078/1438-4221-00198