C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, Human photoreceptor topography, The Journal of Comparative Neurology, vol.26, issue.4, p.497, 1990.
DOI : 10.1016/S0002-9394(28)90119-1

K. Koch, J. Mclean, R. Segev, M. A. Freed, M. J. Ii et al., How Much the Eye Tells the Brain, How Much the Eye Tells the Brain', p.1428, 2006.
DOI : 10.1016/j.cub.2006.05.056

E. Lifshin, Characterization of materials, pt. 1 in Materials science and technology, 1992.

E. Ruska, Über eine Berechnungsmethode des Kathodenstrahloszillographen auf Grund der experimentell gefundenen Abhängigkeit des Schreibfleckdurchmessers von der Stellung der Konzentrierspule, 1929.

E. Ruska, Über ein magnetisches Objektiv für das Elektronenmikroskop, 1933.
DOI : 10.1007/bf01333236

L. and D. Broglie, Recherches sur la th??orie des Quanta, Annales de Physique, vol.10, issue.3, p.22, 1925.
DOI : 10.1051/anphys/192510030022

]. E. Ruska, Nobel Lecture: The Development of the Electron Microscope and of Electron Microscopy', nobelprize.org/nobel_prizes, 1986.

O. Scherzer, Über einige Fehler von Elektronenlinsen', Zeitschrift für Physik, p.593, 1936.
DOI : 10.1007/bf01349606

D. Gabor, A New Microscopic Principle, Nature, vol.161, issue.4098, p.777, 1948.
DOI : 10.1038/161777a0

P. Batson and N. Dellby, Sub-??ngstrom resolution using aberration corrected electron optics, Nature, vol.49, issue.6898, p.270, 2002.
DOI : 10.1103/PhysRevLett.70.1822

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, vol.27, issue.20, p.1951, 1984.
DOI : 10.1103/PhysRevB.27.1725

R. S. Ruskin, Z. Yu, and N. Grigorieff, Quantitative characterization of electron detectors for transmission electron microscopy, Journal of Structural Biology, vol.184, issue.3, p.385, 2013.
DOI : 10.1016/j.jsb.2013.10.016

A. Rosenauer, F. F. Krause, K. Müller, M. Schowalter, and T. Mehrtens, Conventional Transmission Electron Microscopy Imaging beyond the Diffraction and Information Limits, Physical Review Letters, vol.33, issue.9, p.96101, 2014.
DOI : 10.1016/0304-3991(85)90068-3

S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo et al., Dynamics of annular bright field imaging in scanning transmission electron microscopy, Ultramicroscopy, vol.110, issue.7, p.903, 2010.
DOI : 10.1016/j.ultramic.2010.04.004

S. Findlay, T. Saito, N. Shibata, Y. Sato, J. Matsuda et al., Direct Imaging of Hydrogen within a Crystalline Environment, Applied Physics Express, vol.3, issue.11, p.6, 2010.
DOI : 10.1143/APEX.3.116603

A. V. Crewe, Scanning Electron Microscopes: Is High Resolution Possible?, Science, vol.154, issue.3750, p.729, 1966.
DOI : 10.1126/science.154.3750.729

A. V. Crewe, J. Wall, and J. Langmore, Visibility of Single Atoms, Science, vol.168, issue.3937, p.1338, 1970.
DOI : 10.1126/science.168.3937.1338

M. Treacy, A. Howie, and S. Pennycook, Z-contrast of supported catalyst particles on the STEM. Electron Microscopy and Analysis 1979', in: 'Institute of Physics Confonference Series, p.261, 1980.

S. J. Pennycook and D. E. Jesson, High-resolution incoherent imaging of crystals', Physical Review Letters, p.938, 1990.

P. D. Nellist, M. F. Chisholm, N. Dellby, O. L. Krivanek, M. F. Murfitt et al., Direct Sub-Angstrom Imaging of a Crystal Lattice, Science, vol.305, issue.5691, p.1741, 2004.
DOI : 10.1126/science.1100965

D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2009.

L. Reimer and H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, 2008.

K. Müller, F. F. Krause, A. Béché, M. Schowalter, V. Galioit et al., Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nature Communications, vol.47, p.5653, 2014.
DOI : 10.1107/S0108767391004804

R. Vincent and P. A. Midgley, Double conical beam-rocking system for measurement of integrated electron diffraction intensities, Ultramicroscopy, vol.53, issue.3, p.271, 1994.
DOI : 10.1016/0304-3991(94)90039-6

E. J. Kirkland, Advanced Computing in Electron Microscopy, 2010.

A. Bleloch and Q. Ramasse, Lens Aberrations: Diagnosis and CorrectionAberration?Corrected Analytical Transmission Electron Microscopy, pp.55-87, 2011.

S. Uhlemann and M. Haider, Residual wave aberrations in the first spherical aberration corrected transmission electron microscope, Ultramicroscopy, vol.72, issue.3-4, p.109, 1998.
DOI : 10.1016/S0304-3991(97)00102-2

M. T. Browne and J. F. Ward, Detectors for stem, and the measurement of their detective quantum efficiency, Ultramicroscopy, vol.7, issue.3, p.249, 1982.
DOI : 10.1016/0304-3991(82)90172-3

R. N. Clough, G. Moldovan, and A. I. Kirkland, Direct Detectors for Electron Microscopy, Journal of Physics: Conference Series, p.12046, 2014.
DOI : 10.1088/1742-6596/522/1/012046

Y. Agard and . Cheng, Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nature methods, vol.10, p.584, 2013.

M. Linck, P. Hartel, S. Uhlemann, F. Kahl, H. Müller et al., Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80??kV, Physical Review Letters, vol.2, issue.7, p.76101, 2016.
DOI : 10.1051/epjap/2011100414

R. Leary, Z. Saghi, P. A. Midgley, and D. J. Holland, Compressed sensing electron tomography, Ultramicroscopy, vol.131, p.70, 2013.
DOI : 10.1016/j.ultramic.2013.03.019

M. L. Taheri, E. A. Stach, I. Arslan, P. Crozier, B. C. Kabius et al., Current status and future directions for in situ transmission electron microscopy, Ultramicroscopy, vol.170, p.86, 2016.
DOI : 10.1016/j.ultramic.2016.08.007

A. Rosenauer, K. Gries, K. Müller, A. Pretorius, M. Schowalter et al., Measurement of specimen thickness and composition in <mml:math altimg="si20.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>Al</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:mo>/</mml:mo><mml:mi>GaN</mml:mi></mml:math> using high-angle annular dark field images, Ultramicroscopy, vol.109, issue.9, p.1171, 2009.
DOI : 10.1016/j.ultramic.2009.05.003

C. Dwyer, C. Maunders, C. L. Zheng, M. Weyland, P. C. Tiemeijer et al., Sub-0.1???nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters, Applied Physics Letters, vol.49, issue.19, p.191915, 2012.
DOI : 10.1016/j.ultramic.2010.03.008

A. Thust, High-Resolution Transmission Electron Microscopy on an Absolute Contrast Scale, Physical Review Letters, vol.22, issue.22, p.220801, 2009.
DOI : 10.1016/0968-4328(95)00054-8

C. J. Humphreys, The scattering of fast electrons by crystals, Reports on Progress in Physics, vol.42, issue.11, p.1825, 1979.
DOI : 10.1088/0034-4885/42/11/002

S. Pennycook and D. Jesson, High-resolution Z-contrast imaging of crystals, Ultramicroscopy, vol.37, issue.1-4, p.14, 1991.
DOI : 10.1016/0304-3991(91)90004-P

A. Amali, P. Rez, and J. Cowley, High angle annular dark field imaging of stacking faults', Micron, p.89, 1997.

P. Nellist and S. Pennycook, Incoherent imaging using dynamically scattered coherent electrons, Ultramicroscopy, vol.78, issue.1-4, p.111, 1999.
DOI : 10.1016/S0304-3991(99)00017-0

L. Allen, S. Findlay, M. Oxley, and C. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I', Ultramicroscopy, p.47, 2003.

S. Findlay, L. Allen, M. Oxley, and C. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II, Ultramicroscopy, vol.96, issue.1, p.65, 2003.
DOI : 10.1016/S0304-3991(02)00381-9

P. Stadelmann, EMS - a software package for electron diffraction analysis and HREM image simulation in materials science, Ultramicroscopy, vol.21, issue.2, p.131, 1987.
DOI : 10.1016/0304-3991(87)90080-5

J. M. Lebeau, S. D. Findlay, X. Wang, A. J. Jacobson, L. J. Allen et al., High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment, Physical Review B, vol.109, issue.21, p.214110, 2009.
DOI : 10.1063/1.2957648

J. M. Lebeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Position averaged convergent beam electron diffraction: Theory and applications, Ultramicroscopy, vol.110, issue.2, p.118, 2010.
DOI : 10.1016/j.ultramic.2009.10.001

J. M. Cowley and A. F. Moodie, The scattering of electrons by atoms and crystals. I. A new theoretical approach, Acta Crystallographica, vol.10, issue.10, p.609, 1957.
DOI : 10.1107/S0365110X57002194

K. Ishizuka and N. Uyeda, A new theoretical and practical approach to the multislice method, Acta Crystallographica Section A, vol.33, issue.5, p.740, 1977.
DOI : 10.1107/S0567739477001879

D. A. Muller, B. Edwards, E. J. Kirkland, and J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve, international Symposium on Spectroscopy of Materials, p.371, 2001.
DOI : 10.1016/S0304-3991(00)00128-5

A. Rosenauer and M. Schowalter, STEMSIM???a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging, pp.170-172, 2008.
DOI : 10.1007/978-1-4020-8615-1_36

R. Fritz, Quantitative Untersuchungen der Zusammensetzung von kubischen III/V- Verbindungshalbleitern mittels HAADF-STEM, 2013.

J. M. Lebeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Quantitative Atomic Resolution Scanning Transmission Electron Microscopy, Physical Review Letters, vol.19, issue.20, p.206101, 2008.
DOI : 10.1142/S0218625X05007943

D. V. Dyck and M. O. De-beeck, A simple intuitive theory for electron diffraction, Ultramicroscopy, vol.64, issue.1-4, p.99, 1996.
DOI : 10.1016/0304-3991(96)00008-3

P. Geuens and D. Van-dyck, The S-state model: a work horse for HRTEM, Ultramicroscopy, vol.93, issue.3-4, p.179, 2002.
DOI : 10.1016/S0304-3991(02)00276-0

A. Rose, The Sensitivity Performance of the Human Eye on an Absolute Scale*, Journal of the Optical Society of America, vol.38, issue.2, p.196, 1948.
DOI : 10.1364/JOSA.38.000196

J. C. Spence, High-Resolution Electron Microscopy, 2003.

W. Moerner, Microscopy beyond the diffraction limit using actively controlled single molecules, Journal of Microscopy, vol.475, issue.10, p.213, 2012.
DOI : 10.1016/S0076-6879(10)75002-3

S. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo et al., Dynamics of annular bright field imaging in scanning transmission electron microscopy, Ultramicroscopy, vol.110, issue.7, p.903, 2010.
DOI : 10.1016/j.ultramic.2010.04.004

R. Hovden, H. L. , and D. A. Muller, Determining Resolution in an Aberration-Corrected Era: Why Your Probe Is Larger Than You Thought, Microscopy and Microanalysis, vol.16, issue.S2, p.152, 2010.
DOI : 10.1017/S1431927610060319

J. L. Rouvière, A. Mouti, and P. Stadelmann, Measuring strain on HR-STEM images: application to threading dislocations in Al 0.8 In 0, Journal of Physics: Conference Series, p.12022, 2011.

N. Braidy, Y. Le-bouar, S. Lazar, and C. Ricolleau, Correcting scanning instabilities from images of periodic structures, Ultramicroscopy, vol.118, p.67, 2012.
DOI : 10.1016/j.ultramic.2012.04.001

J. Zuo, A. B. Shah, H. Kim, Y. Meng, W. Gao et al., Lattice and strain analysis of atomic resolution Z-contrast images based on template matching, Ultramicroscopy, vol.136, p.50, 2014.
DOI : 10.1016/j.ultramic.2013.07.018

A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I. Sanchez et al., Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nature Communications, vol.72, p.1, 2014.
DOI : 10.1103/PhysRevLett.72.1494

L. Jones, H. Yang, T. J. Pennycook, M. S. Marshall, S. Van-aert et al., Smart Align???a new tool for robust non-rigid registration of scanning microscope data, Advanced Structural and Chemical Imaging, p.8, 2015.
DOI : 10.1103/PhysRevLett.107.086102

X. Sang and J. M. Lebeau, Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge, Ultramicroscopy, vol.138, p.28, 2014.
DOI : 10.1016/j.ultramic.2013.12.004

R. A. Mcleod, B. Haas, and H. Stahlberg, Zorro: multi-reference dosefractionated image registration, European Microscopy Congress 2016: Proceedings' , Wiley-VCH

R. A. Mcleod, J. Kowal, P. Ringler, and H. Stahlberg, Robust image alignment for cryogenic transmission electron microscopy, Journal of Structural Biology, vol.197, issue.3
DOI : 10.1016/j.jsb.2016.12.006

D. Padfield, Masked Object Registration in the Fourier Domain, IEEE Transactions on Image Processing, vol.21, issue.5, p.2706, 2012.
DOI : 10.1109/TIP.2011.2181402

D. J. Wales and J. P. Doye, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, The Journal of Physical Chemistry A, vol.101, issue.28, p.5111, 1997.
DOI : 10.1021/jp970984n

J. Verbeeck, A. Béché, and W. Van-den-broek, A holographic method to measure the source size broadening in STEM, Ultramicroscopy, vol.120, p.35, 2012.
DOI : 10.1016/j.ultramic.2012.05.007

D. Su and Y. Zhu, Scanning moir?? fringe imaging by scanning transmission electron microscopy, Ultramicroscopy, vol.110, issue.3, p.229, 2010.
DOI : 10.1016/j.ultramic.2009.11.015

S. Kim, Y. Kondo, K. K. Lee, G. Byun, J. J. Kim et al., Quantitative measurement of strain field in strained-channel-transistor arrays by scanning moir?? fringe imaging, Applied Physics Letters, vol.103, issue.3, p.33523, 2013.
DOI : 10.1063/1.3243990

S. Kim, S. Lee, Y. Kondo, K. Lee, G. Byun et al., Strained hetero interfaces in Si/SiGe/SiGe/SiGe multi-layers studied by scanning moir?? fringe imaging, Journal of Applied Physics, vol.114, issue.5, p.114, 2013.
DOI : 10.1007/978-1-4757-2519-3

S. Kim, S. Lee, Y. Oshima, Y. Kondo, E. Okunishi et al., Scanning moir?? fringe imaging for quantitative strain mapping in semiconductor devices, Applied Physics Letters, vol.102, issue.16, 2013.
DOI : 10.1109/TED.2006.876390

M. Hytch, C. Gatel, A. Ishizuka, and K. Ishizuka, Mapping 2D strain components from STEM moir?? fringes, European Microscopy Congress 2016: Proceedings' , Wiley-VCH
DOI : 10.1016/S0304-3991(98)00035-7

M. Takeda and J. Suzuki, Crystallographic heterodyne phase detection for highly sensitive lattice-distortion measurements, Journal of the Optical Society of America A, vol.13, issue.7, p.1495, 1996.
DOI : 10.1364/JOSAA.13.001495

M. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, issue.3, p.131, 1998.
DOI : 10.1016/S0304-3991(98)00035-7

J. Rouvière and E. Sarigiannidou, Theoretical discussions on the geometrical phase analysis, Ultramicroscopy, vol.106, issue.1, 2005.
DOI : 10.1016/j.ultramic.2005.06.001

J. J. Peters, R. Beanland, M. Alexe, J. W. Cockburn, D. G. Revin et al., Artefacts in geometric phase analysis of compound materials, Ultramicroscopy, vol.157, p.9, 2015.
DOI : 10.1016/j.ultramic.2015.05.020

E. F. Rauch and M. Véron, Automated crystal orientation and phase mapping in TEM, Materials Characterization, vol.98, p.1, 2014.
DOI : 10.1016/j.matchar.2014.08.010

URL : https://hal.archives-ouvertes.fr/hal-01121290

B. Haas, K. I. Gries, T. Breuer, I. Haäusler, G. Witte et al., Microstructural Characterization of Organic Heterostructures by (Transmission) Electron Microscopy, Crystal Growth & Design, vol.14, issue.6, p.3010, 2014.
DOI : 10.1021/cg5002896

K. Usuda, T. Numata, T. Irisawa, N. Hirashita, and S. Takagi, Strain characterization in SOI and strained-Si on SGOI MOSFET channel using nano-beam electron diffraction (NBD), Materials Science and Engineering B: Solid-State Materials for Advanced Technology, pp.124-125, 2005.
DOI : 10.1016/j.mseb.2005.08.062

D. Cooper, N. Bernier, and J. Rouvière, Combining 2 nm Spatial Resolution and 0.02% Precision for Deformation Mapping of Semiconductor Specimens in a Transmission Electron Microscope by Precession Electron Diffraction, Nano Letters, vol.15, issue.8, p.5289, 2015.
DOI : 10.1021/acs.nanolett.5b01614

URL : https://hal.archives-ouvertes.fr/hal-01588268

A. Béché, J. L. Rouvière, L. Clément, and J. M. Hartmann, Improved precision in strain measurement using nanobeam electron diffraction, Applied Physics Letters, vol.12, issue.12, p.123114, 2009.
DOI : 10.1051/mmm:0199100202-3031500

J. M. Lebeau and S. Stemmer, Experimental quantification of annular dark-field images in scanning transmission electron microscopy, Ultramicroscopy, vol.108, issue.12, p.1653, 2008.
DOI : 10.1016/j.ultramic.2008.07.001

J. M. Lebeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Quantitative Atomic Resolution Scanning Transmission Electron Microscopy, Physical Review Letters, vol.19, issue.20, p.1, 2008.
DOI : 10.1142/S0218625X05007943

F. F. Krause, M. Schowalter, T. Grieb, K. Müller-caspary, T. Mehrtens et al., Effects of instrument imperfections on quantitative scanning transmission electron microscopy, Ultramicroscopy, vol.161, p.146, 2016.
DOI : 10.1016/j.ultramic.2015.10.026

T. Grieb, K. Müller, R. Fritz, M. Schowalter, N. Neugebohrn et al., Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis, Ultramicroscopy, vol.117, p.15, 2012.
DOI : 10.1016/j.ultramic.2012.03.014

H. Rose, Phase Contrast in Scanning Transmission Electron Microscopy, Optik, vol.39, p.416, 1974.

E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori et al., Visualization of Light Elements at Ultrahigh Resolution by STEM Annular Bright Field Microscopy, Microscopy and Microanalysis, vol.15, issue.S2, p.164, 2009.
DOI : 10.1017/S1431927609093891

S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo et al., Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Applied Physics Letters, vol.95, issue.19, p.10, 2009.
DOI : 10.1016/S0304-3991(02)00341-8

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa et al., Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy, Nature Materials, vol.3, issue.4, p.278, 2011.
DOI : 10.1143/APEX.3.116603

M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Insertion electrode materials for rechargeable lithium batteries', Advanced materials, p.725, 1998.

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, p.359, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

D. Pasero, V. Mclaren, S. R. De-souza, and . West, :?? An Alternative Explanation for Its Anomalous Electrochemical Activity, Chemistry of Materials, vol.17, issue.2, p.345, 2005.
DOI : 10.1021/cm040186r

A. Boulineau, L. Croguennec, C. Delmas, and F. Weill, Structure: Electron Diffraction and High Resolution TEM, Chemistry of Materials, vol.21, issue.18, p.4216, 2009.
DOI : 10.1021/cm900998n

URL : https://hal.archives-ouvertes.fr/hal-00423819

K. A. Jarvis, Z. Deng, L. F. Allard, A. Manthiram, and P. J. Ferreira, Understanding structural defects in lithium-rich layered oxide cathodes, Journal of Materials Chemistry, vol.32, issue.23, p.11550, 2012.
DOI : 10.1107/S056773947600137X

H. Lichte, P. Formanek, A. Lenk, M. Linck, C. Matzeck et al., Electron Holography: Applications to Materials Questions, Annual Review of Materials Research, vol.37, issue.1, p.539, 2007.
DOI : 10.1146/annurev.matsci.37.052506.084232

M. R. Mccartney and D. J. Smith, Electron Holography: Phase Imaging with Nanometer Resolution, Annual Review of Materials Research, vol.37, issue.1, p.729, 2007.
DOI : 10.1146/annurev.matsci.37.052506.084219

C. Phatak, A. K. Petford-long, and M. D. Graef, Three-Dimensional Study of the Vector Potential of Magnetic Structures, Physical Review Letters, vol.104, issue.25, p.1, 2010.
DOI : 10.1038/nmat2406

N. H. Dekkers and H. De-lang, Differential Phase Contrast in a STEM, Optik, vol.41, p.452, 1974.

M. Lohr, R. Schregle, M. Jetter, W. Clemens, T. Wunderer et al., Differential phase contrast 2.0???Opening new ???fields??? for an established technique, Ultramicroscopy, vol.117, p.7, 2012.
DOI : 10.1016/j.ultramic.2012.03.020

N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo et al., Differential phase-contrast microscopy at atomic resolution, Nature Physics, vol.41, issue.8, p.611, 2012.
DOI : 10.1046/j.1365-2818.1998.3070861.x

N. Shibata, S. D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada et al., Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy', Scientific Reports, p.1, 2015.

M. Lohr, R. Schregle, M. Jetter, C. Wächter, K. Müller-caspary et al., Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures, physica status solidi (b), vol.86, issue.13, p.140, 2016.
DOI : 10.1063/1.1896446

T. Grieb, F. F. Krause, C. Mahr, K. Müller-caspary, D. Zillmann et al., Optimization of NBED simulations to accurately predict discdetection measurements

D. Cooper, P. Rivallin, G. Guegan, C. Plantier, E. Robin et al., Field mapping of focused ion beam prepared semiconductor devices by off-axis and dark field electron holography', Semiconductor Science and Technology, p.125013, 2013.

B. Bauer, Transmission Electron Microscopy on GaAs Nanowires -Spontaneous Polarization and MnAs Nanocrystals, 2015.

K. X. Nguyen, R. Hovden, M. W. Tate, P. Purohit, J. Heron et al., Lorentz-STEM imaging of Fields and Domains using Bibliography a High-Speed, High-Dynamic Range Pixel Array Detector at Atomic Resolution, Microscopy and Microanalysis, p.2309, 2015.

B. Haas, D. Cooper, and J. Rouvière, Méthode de détermination de la réflexion d'un faisceau d'électrons resultant d'un champ électrique et, 2016.

B. Bonef, B. Haas, J. L. Rouvière, R. André, C. Bougerol et al., Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements, Journal of Microscopy, vol.136, issue.11, p.178, 2016.
DOI : 10.1016/j.ultramic.2013.07.018

URL : https://hal.archives-ouvertes.fr/hal-01390785

D. Mourad, J. Richters, L. Gérard, R. André, J. Bleuse et al., Determination of valence-band offset at cubic CdSe/ZnTe type-II heterojunctions: A combined experimental and theoretical approach, Physical Review B, vol.86, issue.19, p.195308, 2012.
DOI : 10.1002/pssb.2221000240

URL : https://hal.archives-ouvertes.fr/hal-00940137

S. Boyer-richard, C. Robert, L. Gérard, J. Richters, R. André et al., Atomistic simulations of the optical absorption of type-II CdSe/ZnTe superlattices, Nanoscale Research Letters, vol.7, issue.1, p.543, 2012.
DOI : 10.1116/1.585726

B. Bonef, L. Gérard, J. Rouvière, A. Grenier, P. Jouneau et al., Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography, Applied Physics Letters, vol.106, issue.5, p.51904, 2015.
DOI : 10.1063/1.104859

URL : https://hal.archives-ouvertes.fr/hal-01132475

H. J. Mcskimin and D. G. Thomas, Elastic Moduli of Cadmium Telluride, Journal of Applied Physics, vol.4, issue.1, p.56, 1962.
DOI : 10.1121/1.1906618

B. H. Lee, Elastic Constants of ZnTe and ZnSe between 77?????300??K, Journal of Applied Physics, vol.1, issue.7, p.2984, 1970.
DOI : 10.1088/0370-1298/65/5/307

E. Deligoz, K. Colakoglu, and Y. Ciftci, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe, Physica B: Condensed Matter, vol.373, issue.1, p.124, 2006.
DOI : 10.1016/j.physb.2005.11.099

A. Béché, Mesure de déformation à l'échelle nanométrique par microscopie électronique en transmission, 2009.

C. Thomas, Strained HgTe/CdTe topological insulators, toward spintronic applications, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01555288

L. Fu, C. Kane, and E. Mele, Topological Insulators in Three Dimensions, Physical Review Letters, vol.98, issue.10, p.106803, 2007.
DOI : 10.1103/PhysRevB.52.1566

D. Hsieh, Y. Xia, D. Qian, H. Wray, L. et al., A tunable topological insulator in the spin helical Dirac transport regime, Nature, vol.76, issue.7259, p.1101, 2009.
DOI : 10.1103/PhysRevB.75.121306

D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky et al., Transport Properties of a 3D Topological Insulator based on a Strained High-Mobility HgTe Film, Physical Review Letters, vol.112, issue.19, p.196801, 2014.
DOI : 10.1103/PhysRevB.84.035301

S. Zhang, H. Lu, and S. Shen, Edge states and integer quantum Hall effect in topological insulatorthin films', Scientific Reports, p.13277, 2015.

R. Cottam and G. Saunders, The elastic behaviour of mercury telluride, Journal of Physics and Chemistry of Solids, vol.36, issue.3, p.187, 1975.
DOI : 10.1016/0022-3697(75)90007-4

R. Greenough and S. Palmer, The elastic constants and thermal expansion of single-crystal CdTe, Journal of Physics D: Applied Physics, vol.6, issue.5, p.587, 1973.
DOI : 10.1088/0022-3727/6/5/315

G. Hansen, J. Schmit, and T. Casselman, Te, Journal of Applied Physics, vol.27, issue.10, p.7099, 1982.
DOI : 10.1016/0038-1098(78)91149-3

URL : https://hal.archives-ouvertes.fr/in2p3-01202519

T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter et al., Indium redistribution in an InGaN quantum well induced by electron-beam irradiation in a transmission electron microscope, Applied Physics Letters, vol.30, issue.24, p.241911, 2005.
DOI : 10.1063/1.1543642

M. Schowalter, J. T. Rosenauer, D. Titantah, and . Lamoen, Temperaturedependent Debye-Waller factors for semiconductors with the wurtzite-type structure' , Acta Crystallographica Section A: Foundations of Crystallography, p.227, 2009.

V. Grillo, E. Carlino, and F. Glas, Influence of the static atomic displacement on atomic resolution Z-contrast imaging, Physical Review B, vol.11, issue.5, p.1, 2008.
DOI : 10.1016/S0921-4526(01)00551-8

T. Mehrtens, K. Müller, M. Schowalter, D. Hu, D. M. Schaadt et al., Measurement of indium concentration profiles and segregation efficiencies from high-angle annular dark field-scanning transmission electron microscopy images, Ultramicroscopy, vol.131, p.1, 2013.
DOI : 10.1016/j.ultramic.2013.03.018

M. A. Steiner, L. Bhusal, J. F. Geisz, A. G. Norman, M. J. Romero et al., CuPt ordering in high bandgap GaxIn1???xP alloys on relaxed GaAsP step grades, CuPt ordering in high bandgap Ga x In 1?x P alloys on relaxed GaAsP step grades, p.63525, 2009.
DOI : 10.1103/PhysRevB.80.045206

S. Wei and A. Zunger, Fingerprints of CuPt ordering in III-V semiconductor alloys: Valence-band splittings, band-gap reduction, and x-ray structure factors, Physical Review B, vol.47, issue.15, p.8983, 1998.
DOI : 10.1103/PhysRevB.47.9385

C. B. Lim, A. Ajay, C. Bougerol, B. Haas, J. Schörmann et al., -plane GaN/AlGaN heterostructures with intersubband transitions in the 5???10 THz band, Nanotechnology, vol.26, issue.43, p.435201, 2015.
DOI : 10.1088/0957-4484/26/43/435201

X. Zhang, H. Lourenço-martins, S. Meuret, M. Kociak, B. Haas et al., InGaN nanowires with high InN molar fraction: growth, structural and optical properties, Nanotechnology, vol.27, issue.19, p.195704, 2016.
DOI : 10.1088/0957-4484/27/19/195704

S. Y. Woo, M. Bugnet, H. P. Nguyen, Z. Mi, and G. A. Botton, Atomic Ordering in InGaN Alloys within Nanowire Heterostructures, Nano Letters, vol.15, issue.10, p.6413, 2015.
DOI : 10.1021/acs.nanolett.5b01628

T. Auzelle, B. Haas, M. D. Hertog, J. Rouvière, B. Daudin et al., Attribution of the 3.45???eV GaN nanowires luminescence to inversion domain boundaries, Applied Physics Letters, vol.107, issue.5, p.51904, 2015.
DOI : 10.1103/PhysRevB.69.085204

URL : https://hal.archives-ouvertes.fr/hal-01586122

T. Auzelle, B. Haas, A. Minj, C. Bougerol, J. Rouvière et al., The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires, Journal of Applied Physics, vol.117, issue.24, p.245303, 2015.
DOI : 10.1016/j.jcrysgro.2013.01.031

URL : https://hal.archives-ouvertes.fr/hal-01226735

X. Zhang, B. Haas, J. Rouvière, E. Robin, and B. Daudin, Growth mechanism of InGaN nano-umbrellas, Nanotechnology, vol.27, issue.45, p.455603, 2016.
DOI : 10.1088/0957-4484/27/45/455603

J. Zuo and . Rouvière, Picometre-precision atomic structure of inversion domain boundaries in GaN, European Microscopy Congress 2016: Proceedings', Wiley-VCH

E. Ertekin, P. A. Greaney, D. Chrzan, and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, Journal of Applied Physics, vol.737, issue.11, p.114325, 2005.
DOI : 10.1063/1.98667

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.77, issue.12, p.121302, 2006.
DOI : 10.1063/1.1608486

L. Largeau, E. Galopin, N. Gogneau, L. Travers, F. Glas et al., N-Polar GaN Nanowires Seeded by Al Droplets on Si(111), Polar GaN Nanowires Seeded by Al Droplets on Si, p.2724, 2012.
DOI : 10.1021/cg300212d

M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, Journal of Applied Physics, vol.92, issue.5, p.53506, 2011.
DOI : 10.1063/1.2715119

X. Kong, J. Risti?, M. A. Sanchez-garcia, E. Calleja, and A. Trampert, Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns, Nanotechnology, vol.22, issue.41, p.415701, 2011.
DOI : 10.1088/0957-4484/22/41/415701

B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo et al., On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy, Applied Physics Letters, vol.98, issue.1, p.11914, 2011.
DOI : 10.1016/S0022-0248(99)00375-9

J. E. Northrup, J. Neugebauer, and L. Romano, Inversion Domain and Stacking Mismatch Boundaries in GaN, Physical Review Letters, vol.68, issue.1, p.103, 1996.
DOI : 10.1063/1.116756

S. Labat, M. Richard, M. Dupraz, M. Gailhanou, G. Beutier et al., Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging, 'Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging, p.9210, 2015.
DOI : 10.1021/acsnano.5b03857

URL : https://hal.archives-ouvertes.fr/hal-01228287

F. Lançon, L. Genovese, and J. Eymery, Revisiting inversion domain boundaries in GaN at the picometer scale

L. Mandel, Image fluctuations in cascade intensifiers, British Journal of Applied Physics, vol.10, issue.5, p.233, 1959.
DOI : 10.1088/0508-3443/10/5/309

/. Hgte and . Hgcdte-structure......., Lattice variation maps for, p.91

S. On, 18 Overview image of GaN NWs, p.104

B. Bonef, B. Haas, J. L. Rouvière, R. André, C. Bougerol et al., Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements, Journal of Microscopy, vol.136, issue.11, p.178, 2016.
DOI : 10.1016/j.ultramic.2013.07.018

URL : https://hal.archives-ouvertes.fr/hal-01390785

B. Auzelle, A. Haas, C. Minj, J. L. Bougerol, A. Rouvière et al., The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires, Journal of Applied Physics, vol.117, issue.24, p.245303, 2015.
DOI : 10.1016/j.jcrysgro.2013.01.031

URL : https://hal.archives-ouvertes.fr/hal-01226735

B. Auzelle, M. D. Haas, J. L. Hertog, B. Rouvière, B. Daudin et al., Attribution of the 3.45???eV GaN nanowires luminescence to inversion domain boundaries, Applied Physics Letters, vol.107, issue.5, p.51904, 2015.
DOI : 10.1103/PhysRevB.69.085204

URL : https://hal.archives-ouvertes.fr/hal-01586122

C. Jouneau, T. Bougerol, D. Auzelle, X. Jalabert, B. Biquard et al., InGaN nanowires with high InN molar fraction: growth, structural and optical properties, Nanotechnology, vol.27, p.195704, 2016.

X. Zhang, B. Haas, J. L. Rouvière, E. Robin, and B. Daudin, Growth mechanism of InGaN nano-umbrellas, Nanotechnology, vol.27, issue.45, p.455603, 2016.
DOI : 10.1088/0957-4484/27/45/455603

C. B. Lim, A. Ajay, C. Bougerol, B. Haas, J. Schörmann et al., -plane GaN/AlGaN heterostructures with intersubband transitions in the 5???10 THz band, Nanotechnology, vol.26, issue.43, p.435201, 2015.
DOI : 10.1088/0957-4484/26/43/435201

B. Bonef, M. Lopez-haro, L. Amichi, M. Beeler, A. Grenier et al., Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography, Nanoscale Research Letters, vol.11, issue.1, p.461, 2016.
DOI : 10.1016/j.ultramic.2006.06.008

URL : https://hal.archives-ouvertes.fr/hal-01385434

. Rouvière, High Precision Strain Mapping of Topological Insulator HgTe, pp.sub- mitted

B. Haas and J. L. Rouvière, Strain mapping from two-dimensional scanning moiré patterns in [110] zone axis

B. Haas, D. Cooper, and J. L. Rouvière, Direct comparison of differential phase contrast and off-axis electron holography

B. Haas, D. Cooper, B. Daudin, and J. L. Rouvière, Simultaneous electric field and strain measurements of a-plane AlN, preparation Journal Covers List of Tables Patents

B. Haas, D. Cooper, and J. L. Rouvière, Méthode de détermination de la réflexion d'un faisceau d'électrons resultant d'un champ électrique et/ou d'un champ magnétique', patent pending, 2016.

B. Haas, D. Cooper, and J. L. Rouvière, Direct comparison of differential phase contrast and off-axis electron holography for the measurement of electric potentials by the examination of reverse biased Si p-n junctions and III-V samples, European Microscopy Congress 2016

B. Haas, R. A. Mcleod, T. Auzelle, B. Daudin, J. Eymery et al., Rouvière 'Picometre-precision atomic structure of inversion domain boundaries in GaN, European Microscopy Congress 2016