S. Amari and H. Nagaoka, Methods on Information Geometry, 2007.

G. Ball and B. Hall, Isodata, a novel method of data analysis and classification, 1965.

S. Bandyopadhyay and S. Saha, Unsupervised Classification : Similarity Measures, Classical and Metaheuristic Approaches, and Applications, 2013.
DOI : 10.1007/978-3-642-32451-2

T. Batard, C. Jean, and M. Berthier, A Metric Approach to nD Images Edge Detection with Clifford Algebras, Journal of Mathematical Imaging and Vision, vol.7, issue.3, pp.296-312, 2009.
DOI : 10.1007/978-3-662-04621-0

URL : https://hal.archives-ouvertes.fr/hal-00267629

J. Bezdek, Pattern Recognition with fuzzy objective function algorithm, 1981.
DOI : 10.1007/978-1-4757-0450-1

D. A. Bini and B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices, Linear Algebra and its Applications, vol.438, issue.4, pp.1700-1710, 2013.
DOI : 10.1016/j.laa.2011.08.052

D. A. Bini and B. Iannazzo, Toolbox Karcher Means

J. Bioucas-dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du et al., Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.5, issue.2, pp.354-379, 2012.
DOI : 10.1109/JSTARS.2012.2194696

URL : https://hal.archives-ouvertes.fr/hal-00760787

A. Bookstein, V. A. Kulyunkin, and T. Raita, Generalized Hamming distance, Information Retrieval, vol.5, issue.4, pp.353-375, 2002.
DOI : 10.1023/A:1020499411651

G. Bougenière, C. Cariou, K. Chehdi, and A. Gay, Unsupervised non parametric data clustering by means of bayesian inference and information theory, 2th Int. Conf. on Signal Processing and Multimedia Applications, pp.101-108, 2007.

G. Camp-valls, D. Tuia, D. Gomez-chova, S. Jimenez, and J. Malo, Remote sensing image processing, synthesis lectures on image, video, and multimedia processing, 2011.

G. Camps-valls, D. Tuia, L. Bruzzone, and A. J. Benediktsson, Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods, IEEE Signal Processing Magazine, vol.31, issue.1, pp.45-54, 2014.
DOI : 10.1109/MSP.2013.2279179

C. Cariou and K. Chehdi, Unsupervised Nearest Neighbors Clustering With Application to Hyperspectral Images, IEEE Journal of Selected Topics in Signal Processing, vol.9, issue.6, pp.1105-1116, 2015.
DOI : 10.1109/JSTSP.2015.2413371

URL : https://hal.archives-ouvertes.fr/hal-01133648

]. E. Cartan, Groupes simples clos et ouverts et géométrie riemannienne, J. Math. Pures Appl, vol.8, pp.1-33, 1929.

G. Celeux and J. Diebolt, The sem algorithm : A probabilistic teacher algorithm derived from the em algorithm for the mixture problem, Comput. Statist. Quart, vol.2, pp.73-82, 1985.

M. D. Craig, Unsupervised unmixing of remotely sensed images, Proc. Australian Remote Sensing Conf, pp.324-330, 1990.

M. M. Crawford, L. Ma, and W. Kim, Exploring Nonlinear Manifold Learning for Classification of Hyperspectral Data, Optical Remote Sensing : Advances in Signal Processing and Exploitation Techniques, pp.207-234, 2011.
DOI : 10.1007/978-3-642-14212-3_11

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, J. of the Royal Stat. Soc., Series B, vol.39, issue.1, pp.1-38, 1977.

L. Dieci, B. Morini, and A. Papini, Computational Techniques for Real Logarithms of Matrices, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.3, pp.570-593, 1996.
DOI : 10.1137/S0895479894273614

M. D. Carmo, Differential geometry of curves and surfaces, 2016.

B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry Methods and Applications : Part I : The Geometry of Surfaces, Transformation Groups, and Fields, 1991.

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, issue.3, pp.32-57, 1971.
DOI : 10.1080/01969727308546046

J. F. Frey and D. Dueck, Clustering by Passing Messages Between Data Points, Science, vol.315, issue.5814, pp.315972-976, 2007.
DOI : 10.1126/science.1136800

K. S. Fu and J. K. Mui, A survey on image segmentation, Pattern Recognition, vol.13, issue.1, pp.2-16, 1981.
DOI : 10.1016/0031-3203(81)90028-5

M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation functions, 2009.
DOI : 10.1017/CBO9781139644150

URL : https://hal.archives-ouvertes.fr/halshs-00445120

S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001.
DOI : 10.1090/gsm/034

J. Ho, G. Cheng, H. Salehian, and B. Vemuri, Recursive karcher expectation estimators and geometric law of large numbers, Proceedings of the Sixteenth international conference on artificial intelligence and statistics, pp.325-332, 2013.

Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery, vol.2, issue.3, pp.283-304, 1998.
DOI : 10.1023/A:1009769707641

Z. Huang and M. K. Ng, A fuzzy k-modes algorithm for clustering categorical data, IEEE Transactions on Fuzzy Systems, vol.7, issue.4, pp.446-452, 1999.
DOI : 10.1109/91.784206

A. K. Jain and R. C. Dubes, Algorithms for clustering data, 1988.

H. Karcher, Riemannian center of mass and so called Karcher mean

W. Kendall, Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence, Proceedings of the London Mathematical Society, vol.3, issue.2, pp.371-406, 1990.
DOI : 10.1112/plms/s3-61.2.371

N. Keshava and J. F. Mustard, Spectral unmixing, IEEE Signal Processing Magazine, vol.19, issue.1, pp.44-57, 2002.
DOI : 10.1109/79.974727

S. S. Khan and A. Ahmad, Cluster center initialization algorithm for K-modes clustering, Expert Systems with Applications, vol.40, issue.18, pp.7444-7456, 2013.
DOI : 10.1016/j.eswa.2013.07.002

E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, 2000.
DOI : 10.1007/978-94-015-9540-7

H. W. Kuhn, A note on Fermat's problem, Mathematical Programming, vol.43, issue.1, pp.98-107, 1973.
DOI : 10.1007/BF01584648

H. Kwon and N. M. Nasrabadi, Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.2, pp.388-397, 2005.
DOI : 10.1109/TGRS.2004.841487

T. Landgrebe, Hyperspectral image data analysis, IEEE Signal Processing Magazine, vol.19, issue.1, pp.17-28, 2002.
DOI : 10.1109/79.974718

H. Le-capitaine, T. Batard, C. Frélicot, and M. Berthier, Blockwise similarity in [0,1] via triangular norms and Sugeno integrals - Application to cluster validity, 2007 IEEE International Fuzzy Systems Conference, 2007.
DOI : 10.1109/FUZZY.2007.4295474

URL : https://hal.archives-ouvertes.fr/hal-00293811

B. Long, Z. Zhang, and P. S. Yu, Relational data clustering, models, algorithms, and applications, 2010.

D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning, IEEE Signal Processing Magazine, vol.31, issue.1, pp.55-66, 2014.
DOI : 10.1109/MSP.2013.2279894

W. Ma, J. Bioucas-dias, J. Chanussot, and P. D. Gader, Signal and image processing in hyperspectral remote sensing, IEEE Signal Processing Magazine, issue.1, pp.31-2014

D. Manolakis, M. Rossacci, D. Zhang, J. Cipar, R. Lockwood et al., Statistical characterization of hyperspectral background clutter in the reflective spectral region, Applied Optics, vol.47, issue.28, pp.4796-106, 2008.
DOI : 10.1364/AO.47.000F96

D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, vol.19, issue.1, pp.29-43, 2002.
DOI : 10.1109/79.974724

D. Manolakis, E. Truslow, M. Pieper, T. Cooley, and B. , Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms, IEEE Signal Processing Magazine, vol.31, issue.1, pp.24-33, 2014.
DOI : 10.1109/MSP.2013.2278915

L. Mascarilla, M. Berthier, and C. Frélicot, A k-order fuzzy OR operator for pattern classification with k-order ambiguity rejection. Fuzzy Sets and Systems, pp.2011-2029, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00289367

E. M. Massart, J. M. Hendrickx, P. Absil, S. Matteoli, M. Diani et al., Approximate matrix geometric means based on the inductive mean A tutorial overview of anomaly detection in hyperspectral images, IEEE Aerosp. Electron. Syst. Mag, issue.7, pp.255-282, 2010.

M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-747, 2005.
DOI : 10.1137/S0895479803436937

M. Nakahara, Geometry, Topology and Physics, 2003.
DOI : 10.1887/0750306068

N. M. Nasrabadi, Hyperspectral Target Detection : An Overview of Current and Future Challenges, IEEE Signal Processing Magazine, vol.31, issue.1, pp.34-44, 2014.
DOI : 10.1109/MSP.2013.2278992

M. Nixon, Feature Extraction and Image Processing, Newnes, 2013.

C. Ordonez, Clustering binary data streams with K-means, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery , DMKD '03, pp.12-19, 2003.
DOI : 10.1145/882082.882087

C. Ordonez, Clustering binary data streams with K-means, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery , DMKD '03, pp.12-19, 2003.
DOI : 10.1145/882082.882087

C. M. Pieters and P. A. Englert, Remote Geochemical Analysis ; Elemental and Mineralogic Composition, 1993.

J. B. Queen, Some methods for classification and analysis of multivariate observations, 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

R. Quéré, Quelques propositions pour la comparaison de partitions non strictes, 2012.

W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.15, issue.336, 1971.
DOI : 10.1080/01621459.1963.10500845

I. S. Reed and X. Yu, Adaptative multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Trans. Acoust., Speech, Signal Process, issue.10, pp.381760-1770, 1990.

H. Salehian, G. Cheng, B. C. Vemuri, and J. Ho, Recursive Estimation of the Stein Center of SPD Matrices and Its Applications, 2013 IEEE International Conference on Computer Vision, pp.1793-1800, 2013.
DOI : 10.1109/ICCV.2013.225

A. P. Schaum, Joint subspace detection of hyperspectral targets, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), pp.1818-1824, 2004.
DOI : 10.1109/AERO.2004.1367963

C. L. Siegel, Symplectic Geometry, American Journal of Mathematics, vol.65, issue.1, pp.1-86, 1943.
DOI : 10.2307/2371774

L. Skovgaard, A riemannian geometry of the multivariate normal model. Scand, J. Statistics, vol.11, pp.211-223, 1984.

D. A. Socolinsky and L. B. Wolff, A new visualization paradigm for multispectral imagery and data fusion, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999.
DOI : 10.1109/CVPR.1999.786958

M. Spivak, A comprehensive introduction to differential geometry Publish or Perish, 1999.

S. Stahl, The Poincaré half-plane : a gateaway to modern geometry, Jones and Bartlett Learning, 1993.

K. Sturm, Probability measure on metric spaces of non positive curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, 2003.

Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recognition, vol.43, issue.7, pp.2367-2379, 2010.
DOI : 10.1016/j.patcog.2010.01.016

URL : https://hal.archives-ouvertes.fr/hal-00578860

A. Terras, Harmonic analysis on symmetric spaces and applications, 1988.
DOI : 10.1007/978-1-4612-5128-6

V. Vapnik, Statistical Learning Theory, 1998.

Y. Weiss, A. Torralba, and R. Fergus, Spectral hashing, Advances in Neural Information Processing Systems, pp.1753-1760, 2009.