N. Fast, L. Xue, and S. Bingham, Re-examining Alveolate Evolution Using Multiple Protein Molecular Phylogenies, The Journal of Eukaryotic Microbiology, vol.51, issue.1, pp.30-37, 2002.
DOI : 10.1038/22099

D. Patterson, The Diversity of Eukaryotes, The American Naturalist, vol.154, issue.S4, pp.96-124, 1999.
DOI : 10.1086/303287

A. Vaidya and M. Mather, Mitochondrial Evolution and Functions in Malaria Parasites, Annual Review of Microbiology, vol.63, issue.1, pp.249-267, 2009.
DOI : 10.1146/annurev.micro.091208.073424

M. Hoppenrath and B. Leander, (Alveolata, Myzozoa): Insights into Perkinsid Character Evolution, Journal of Eukaryotic Microbiology, vol.56, issue.3, pp.251-256, 2009.
DOI : 10.1111/j.1550-7408.2009.00395.x

M. Melo, K. Jensen, and J. Saeij, Toxoplasma gondii effectors are master regulators of the inflammatory response, Trends in Parasitology, vol.27, issue.11, pp.487-495, 2011.
DOI : 10.1016/j.pt.2011.08.001

J. Jones, D. Kruszon-moran, and M. Wilson, Infection in the United States, 1999???2000, Emerging Infectious Diseases, vol.9, issue.11, pp.1371-1374, 1999.
DOI : 10.3201/eid0911.030098

G. Mcquillan, D. Kruszon-moran, and B. Kottiri, Racial and Ethnic Differences in the Seroprevalence of 6 Infectious Diseases in the United States: Data From NHANES III, 1988???1994, American Journal of Public Health, vol.94, issue.11, pp.1952-1958, 2004.
DOI : 10.2105/AJPH.94.11.1952

D. Dunn, M. Wallon, and F. Peyron, Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling, The Lancet, vol.353, issue.9167, pp.1829-1833, 1999.
DOI : 10.1016/S0140-6736(98)08220-8

R. Nussenblatt and R. Belfort, Ocular toxoplasmosis. An old disease revisited, JAMA: The Journal of the American Medical Association, vol.271, issue.4, 1994.
DOI : 10.1001/jama.271.4.304

B. Butcher, L. Kim, and P. Johnson, Toxoplasma gondii Tachyzoites Inhibit Proinflammatory Cytokine Induction in Infected Macrophages by Preventing Nuclear Translocation of the Transcription Factor NF-??B, The Journal of Immunology, vol.167, issue.4, pp.2193-2201, 2001.
DOI : 10.4049/jimmunol.167.4.2193

G. Reichmann, H. D?ugo?ska, and E. Hiszczy?ska-sawicka, Tachyzoitespecific isoform of Toxoplasma gondii lactate dehydrogenase is the target antigen of a murine CD4(+) T-cell clone. Microbes Infect, pp.779-787, 2001.

G. Yap and A. Sher, Cell-mediated Immunity to Toxoplasma Gondii: Initiation, Regulation and Effector Function, Immunobiology, vol.201, issue.2, pp.240-247, 1999.
DOI : 10.1016/S0171-2985(99)80064-3

D. Mordue and L. Sibley, A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis, Journal of Leukocyte Biology, vol.74, issue.6, pp.1015-1025, 2003.
DOI : 10.1189/jlb.0403164

P. Robben, M. Laregina, and W. Kuziel, monocytes is essential for control of acute toxoplasmosis, The Journal of Experimental Medicine, vol.67, issue.11, pp.1761-1769, 2005.
DOI : 10.4049/jimmunol.166.3.1930

J. Frenkel and D. Taylor, Toxoplasmosis in immunoglobulin Msuppressed mice, Infect. Immun, vol.38, pp.360-367, 1982.

J. Grimwood and J. Smith, Toxoplasma gondii: The role of a 30-kDa surface protein in host cell invasion, Experimental Parasitology, vol.74, issue.1, pp.106-111, 1992.
DOI : 10.1016/0014-4894(92)90144-Y

W. Hauser and J. Remington, Effect of monoclonal antibodies on phagocytosis and killing of Toxoplasma gondii by normal macrophages, Infect. Immun, vol.32, pp.637-640, 1981.

K. Couper, C. Roberts, and F. Brombacher, Toxoplasma gondii-Specific Immunoglobulin M Limits Parasite Dissemination by Preventing Host Cell Invasion, Infection and Immunity, vol.73, issue.12, pp.8060-8068, 2005.
DOI : 10.1128/IAI.73.12.8060-8068.2005

C. Brown and R. Mcleod, Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasma gondii infection, J. Immunol, vol.145, pp.3438-3441, 1990.

R. Gazzinelli, F. Hakim, and S. Hieny, Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine, J. Immunol, vol.146, pp.286-292, 1991.

L. Kodjikian, M. Wallon, and J. Fleury, Ocular manifestations in congenital toxoplasmosis, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.61, issue.1, pp.14-21, 2006.
DOI : 10.1016/0002-9394(81)90642-5

S. Tomavo, R. Schwarz, and J. Dubremetz, Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens., Molecular and Cellular Biology, vol.9, issue.10, pp.4576-4580, 1989.
DOI : 10.1128/MCB.9.10.4576

C. De-macedo, H. Shams-eldin, and . Smith, Inhibitors of glycosyl-phosphatidylinositol anchor biosynthesis, Biochimie, vol.85, issue.3-4, pp.465-472, 2003.
DOI : 10.1016/S0300-9084(03)00065-8

J. Mineo and L. Kasper, Attachment of Toxoplasma gondii to Host Cells Involves Major Surface Protein, SAG-1 (P-30), Experimental Parasitology, vol.79, issue.1, pp.11-20, 1994.
DOI : 10.1006/expr.1994.1054

F. Dzierszinski, M. Mortuaire, and M. Cesbron-delauw, Targeted disruption of the glycosylphosphatidylinositol-anchored surface antigen SAG3 gene in Toxoplasma gondii decreases host cell adhesion and drastically reduces virulence in mice, Molecular Microbiology, vol.99, issue.3, pp.574-582, 2000.
DOI : 10.1016/S0166-6851(99)00019-5

X. He, M. Grigg, and J. Boothroyd, Structure of the immunodominant surface antigen from the Toxoplasma gondii SRS superfamily, Nature Structural Biology, vol.9, pp.606-611, 2002.
DOI : 10.1038/nsb819

C. Lekutis, D. Ferguson, and M. Grigg, Surface antigens of Toxoplasma gondii: variations on a theme, International Journal for Parasitology, vol.31, issue.12, pp.1285-1292, 2001.
DOI : 10.1016/S0020-7519(01)00261-2

I. Manger, A. Hehl, and J. Boothroyd, The surface of Toxoplasma tachyzoites is dominated by a family of glycosylphosphatidylinositol-anchored antigens related to SAG1, Infect. Immun, vol.66, pp.2237-2244, 1998.

E. Vivier and A. Petitprez, [The outer membrane complex and its development at the time of the formation of daughter cells in Toxoplasma gondii], J. Cell Biol, vol.43, pp.329-342, 1969.

N. Morrissette, J. Murray, and D. Roos, Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii, J. Cell. Sci, vol.110, pp.35-42, 1997.

E. Porchet and G. Torpier, Freeze fracture study of Toxoplasma and Sarcocystis infective stages, Zeitschrift f???r Parasitenkunde, vol.8, issue.2, pp.101-124, 1977.
DOI : 10.1111/j.1550-7408.1974.tb03735.x

K. Hu, Organizational Changes of the Daughter Basal Complex during the Parasite Replication of Toxoplasma gondii, PLoS Pathogens, vol.117, issue.1, 2008.
DOI : 10.1371/journal.ppat.0040010.sv003

H. Sheffield and M. Melton, The Fine Structure and Reproduction of Toxoplasma gondii, The Journal of Parasitology, vol.54, issue.2, pp.209-226, 1968.
DOI : 10.2307/3276925

K. Frénal, V. Polonais, and J. Marq, Functional Dissection of the Apicomplexan Glideosome Molecular Architecture, Cell Host & Microbe, vol.8, issue.4, pp.343-357, 2010.
DOI : 10.1016/j.chom.2010.09.002

R. Ménard, Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite. Microreview, Cellular Microbiology, vol.40, issue.2, pp.63-73, 2001.
DOI : 10.1074/jbc.272.28.17558

T. Mann and C. Beckers, Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii, Molecular and Biochemical Parasitology, vol.115, issue.2, pp.257-268, 2001.
DOI : 10.1016/S0166-6851(01)00289-4

B. Nichols and M. Chiappino, 1, The Journal of Protozoology, vol.87, issue.2, pp.217-226, 1987.
DOI : 10.1083/jcb.87.2.404

URL : https://hal.archives-ouvertes.fr/hal-01645676

M. Cyrklaff, M. Kudryashev, and A. Leis, Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites, The Journal of Experimental Medicine, vol.115, issue.6, pp.1281-1287, 2007.
DOI : 10.1038/308032a0

D. Russell and R. Burns, The polar ring of coccidian sporozoites: a unique microtubule-organizing centre, J. Cell. Sci, vol.65, pp.193-207, 1984.

N. Morrissette and L. Sibley, Cytoskeleton of Apicomplexan Parasites, Microbiology and Molecular Biology Reviews, vol.66, issue.1, 2002.
DOI : 10.1128/MMBR.66.1.21-38.2002

J. Tran, J. De-leon, and C. Li, RNG1 is a late marker of the apical polar ring in Toxoplasma gondii, Cytoskeleton, vol.119, issue.99, pp.586-598, 2010.
DOI : 10.1111/j.1550-7408.1987.tb03162.x

V. Carruthers and L. Sibley, Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts, Eur. J. Cell Biol, vol.73, pp.114-123, 1997.

L. Pelletier, C. Stern, and M. Pypaert, Golgi biogenesis in Toxoplasma gondii, Nature, vol.45, issue.6897, pp.548-552, 2002.
DOI : 10.1016/S0091-679X(08)61845-2

C. He, M. Shaw, and C. Pletcher, A plastid segregation defect in the protozoan parasite Toxoplasma gondii, The EMBO Journal, vol.20, issue.3, pp.330-339, 2001.
DOI : 10.1093/emboj/20.3.330

V. Carruthers, O. Giddings, and L. Sibley, Secretion of micronemal proteins is associated with toxoplasma invasion of host cells, Cellular Microbiology, vol.56, issue.3, pp.225-235, 1999.
DOI : 10.1111/j.1471-4159.1991.tb02595.x

D. Soldati, J. Dubremetz, and M. Lebrun, Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii, International Journal for Parasitology, vol.31, issue.12, pp.1293-1302, 2001.
DOI : 10.1016/S0020-7519(01)00257-0

F. Tomley and D. Soldati, Mix and match modules: structure and function of microneme proteins in apicomplexan parasites, Trends in Parasitology, vol.17, issue.2, pp.81-88, 2001.
DOI : 10.1016/S1471-4922(00)01761-X

E. Bromley, N. Leeds, and J. Clark, Defining the protein repertoire of microneme secretory organelles in the apicomplexan parasiteEimeria tenella, PROTEOMICS, vol.3, issue.8, pp.1553-1561, 2003.
DOI : 10.1002/pmic.200300479

V. Carruthers and F. Tomley, Microneme Proteins in Apicomplexans, Subcell. Biochem, vol.47, pp.33-45, 2008.
DOI : 10.1007/978-0-387-78267-6_2

K. Kremer, D. Kamin, and E. Rittweger, An Overexpression Screen of Toxoplasma gondii Rab-GTPases Reveals Distinct Transport Routes to the Micronemes, PLoS Pathogens, vol.14, issue.3, 2013.
DOI : 10.1371/journal.ppat.1003213.s016

M. Leriche and J. Dubremetz, Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies, Molecular and Biochemical Parasitology, vol.45, issue.2, pp.249-259, 1991.
DOI : 10.1016/0166-6851(91)90092-K

F. Foussard, M. Leriche, and J. Dubremetz, Characterization of the lipid content of Toxoplasma gondii rhoptries, Parasitology, vol.116, issue.03, pp.367-370, 1991.
DOI : 10.1001/jama.1941.02820090001001

P. Bradley and L. Sibley, Rhoptries: an arsenal of secreted virulence factors, Current Opinion in Microbiology, vol.10, issue.6, pp.582-587, 2007.
DOI : 10.1016/j.mib.2007.09.013

H. Ngô, M. Yang, and K. Joiner, Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules?, Molecular Microbiology, vol.278, issue.0, pp.1531-1541, 2004.
DOI : 10.1111/j.1550-7408.1992.tb04844.x

C. Mercier, K. Adjogble, and W. Däubener, Dense granules: Are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites?, International Journal for Parasitology, vol.35, issue.8, pp.829-849, 2005.
DOI : 10.1016/j.ijpara.2005.03.011

URL : https://hal.archives-ouvertes.fr/hal-00173252

F. Persat, C. Mercier, and D. Ficheux, A synthetic peptide derived from the parasite Toxoplasma gondii triggers human dendritic cells' migration, Journal of Leukocyte Biology, vol.92, issue.6, pp.1241-1250, 2012.
DOI : 10.1189/jlb.1211600

URL : https://hal.archives-ouvertes.fr/hal-00790489

M. Cesbron-delauw, C. Gendrin, and L. Travier, Apicomplexa in Mammalian Cells: Trafficking to the Parasitophorous Vacuole, Traffic, vol.147, issue.5, pp.657-664, 2008.
DOI : 10.1111/j.1550-7408.2006.00230.x

URL : https://hal.archives-ouvertes.fr/hal-00306737

D. Gold, A. Kaplan, and A. Lis, The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole, Cell Host & Microbe, vol.17, issue.5, pp.642-652, 2015.
DOI : 10.1016/j.chom.2015.04.003

C. Mercier and M. Cesbron-delauw, Toxoplasma secretory granules: one population or more?, Trends in Parasitology, vol.31, issue.2, pp.60-71, 2015.
DOI : 10.1016/j.pt.2014.12.002

URL : https://hal.archives-ouvertes.fr/hal-01110876

N. Hiller, S. Bhattacharjee, and C. Van-ooij, A Host-Targeting Signal in Virulence Proteins Reveals a Secretome in Malarial Infection, Science, vol.306, issue.5703, pp.1934-1937, 2004.
DOI : 10.1126/science.1102737

T. Sargeant, M. Marti, and E. Caler, Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites, Genome Biology, vol.7, issue.2, p.12, 2006.
DOI : 10.1186/gb-2006-7-2-r12

C. Hsiao, L. Hiller, N. Haldar, and K. , Dense Granule Proteins is a Signal for Protein Cleavage but not Export into the Host Cell, Traffic, vol.111, issue.Pt 1, pp.519-531, 2013.
DOI : 10.1073/pnas.90.24.11703

A. Curt-varesano, L. Braun, and C. Ranquet, The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells, Cell. Microbiol, 2015.

A. Barragan, F. Brossier, and L. Sibley, Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2, Cellular Microbiology, vol.3, issue.4, pp.561-568, 2005.
DOI : 10.1111/j.1462-5822.2005.00486.x

J. Harper, E. Hoff, and V. Carruthers, Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells, Molecular and Biochemical Parasitology, vol.134, issue.2, pp.201-212, 2004.
DOI : 10.1016/j.molbiopara.2003.12.001

T. Blumenschein, N. Friedrich, and R. Childs, Atomic resolution insight into host cell recognition by Toxoplasma gondii, The EMBO Journal, vol.57, issue.11, pp.2808-2820, 2007.
DOI : 10.1038/sj.emboj.7601704

O. Cérède, J. Dubremetz, and M. Soête, virulence, The Journal of Experimental Medicine, vol.64, issue.3, pp.453-463, 2005.
DOI : 10.1093/nar/gkg072

O. Cérède, J. Dubremetz, and D. Bout, The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin, The EMBO Journal, vol.21, issue.11, pp.2526-2536, 2002.
DOI : 10.1093/emboj/21.11.2526

T. Jewett and L. Sibley, Aldolase Forms a Bridge between Cell Surface Adhesins and the Actin Cytoskeleton in Apicomplexan Parasites, Molecular Cell, vol.11, issue.4, pp.885-894, 2003.
DOI : 10.1016/S1097-2765(03)00113-8

S. Kappe, T. Bruderer, and S. Gantt, Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites, The Journal of Cell Biology, vol.67, issue.5, pp.937-944, 1999.
DOI : 10.1084/jem.189.12.1947

D. Alexander, J. Mital, and G. Ward, Identification of the Moving Junction Complex of Toxoplasma gondii: A Collaboration between Distinct Secretory Organelles, PLoS Pathogens, vol.165, issue.2, p.17, 2005.
DOI : 0021-9525(2004)165[0653:IMOTGR]2.0.CO;2

S. Besteiro, A. Michelin, and J. Poncet, Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion, PLoS Pathogens, vol.256, issue.5, 2009.
DOI : 10.1371/journal.ppat.1000309.s008

URL : https://hal.archives-ouvertes.fr/hal-00373665

M. Lebrun, A. Michelin, and H. Hajj, The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion, Cellular Microbiology, vol.280, issue.12, pp.1823-1833, 2005.
DOI : 10.1016/S0092-8674(00)80511-5

K. Straub, S. Cheng, and C. Sohn, Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements, Cellular Microbiology, vol.34, issue.4, pp.590-603, 2009.
DOI : 10.1111/j.1462-5822.2008.01276.x

R. Magno, L. Lemgruber, and R. Vommaro, Intravacuolar network may act as a mechanical support forToxoplasma gondii inside the parasitophorous vacuole, Microscopy Research and Technique, vol.108, issue.1, pp.45-52, 2005.
DOI : 10.1177/44.10.8813077

S. Fentress, M. Behnke, and I. Dunay, Phosphorylation of Immunity-Related GTPases by a Toxoplasma gondii-Secreted Kinase Promotes Macrophage Survival and Virulence, Cell Host & Microbe, vol.8, issue.6, pp.484-495, 2010.
DOI : 10.1016/j.chom.2010.11.005

T. Steinfeldt, S. Könen-waisman, and L. Tong, Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii, PLoS Biol, vol.8, 2010.

Y. Ong, M. Reese, and J. Boothroyd, Rhoptry Protein 16 (ROP16) Subverts Host Function by Direct Tyrosine Phosphorylation of STAT6, Journal of Biological Chemistry, vol.173, issue.37, pp.28731-28740, 2010.
DOI : 10.1074/jbc.M006227200

M. Yamamoto, D. Standley, and S. Takashima, kinase ROP16 determines the direct and strain-specific activation of Stat3, The Journal of Experimental Medicine, vol.15, issue.12, pp.2747-2760, 2009.
DOI : 10.1110/ps.073161707

E. Rosowski, D. Lu, and L. Julien, Strain-specific activation of the NFkappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein, J, 2011.

L. Lemgruber, D. Souza, W. Vommaro, and R. , Freeze-fracture study of the dynamics of Toxoplasma gondii parasitophorous vacuole development, Micron, vol.39, issue.2, pp.177-183, 2008.
DOI : 10.1016/j.micron.2007.01.002

J. Dubremetz and G. Torpier, Freeze fracture study of the pellicle of an Eimerian sporozoite (Protozoa, Coccidia), Journal of Ultrastructure Research, vol.62, issue.2, pp.94-109, 1978.
DOI : 10.1016/S0022-5320(78)90012-6

C. Agop-nersesian, S. Egarter, and G. Langsley, Biogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B, PLoS Pathogens, vol.12, issue.1, 2010.
DOI : 10.1371/journal.ppat.1001029.s004

J. Hartmann, K. Hu, and C. He, Golgi and centrosome cycles in Toxoplasma gondii, Molecular and Biochemical Parasitology, vol.145, issue.1, pp.125-127, 2006.
DOI : 10.1016/j.molbiopara.2005.09.015

M. Nishi, K. Hu, and J. Murray, Organellar dynamics during the cell cycle of Toxoplasma gondii, Journal of Cell Science, vol.121, issue.9, pp.1559-1568, 2008.
DOI : 10.1242/jcs.021089

B. Anderson-white, J. Beck, and C. Chen, Cytoskeleton Assembly in Toxoplasma gondii Cell Division, Int Rev Cell Mol Biol, vol.298, pp.1-31, 2012.
DOI : 10.1016/B978-0-12-394309-5.00001-8

N. Ogino and C. Yoneda, The Fine Structure and Mode of Division of Toxoplasma gondii, Archives of Ophthalmology, vol.75, issue.2, pp.218-227, 1966.
DOI : 10.1001/archopht.1966.00970050220015

L. Bannister, J. Hopkins, and R. Fowler, Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts, Parasitology, vol.121, issue.3, pp.273-287, 2000.
DOI : 10.1017/S0031182099006320

M. Shaw, D. Roos, and L. Tilney, Acidic compartments and rhoptry formation in Toxoplasma gondii, Parasitology, vol.117, issue.5, pp.435-443, 1998.
DOI : 10.1017/S0031182098003278

D. Cristina, M. Spaccapelo, R. Soldati, and D. , Two Conserved Amino Acid Motifs Mediate Protein Targeting to the Micronemes of the Apicomplexan Parasite Toxoplasma gondii, Molecular and Cellular Biology, vol.20, issue.19, pp.7332-7341, 2000.
DOI : 10.1128/MCB.20.19.7332-7341.2000

P. Chardin and F. Mccormick, Brefeldin A, Cell, vol.97, issue.2, pp.153-155, 1999.
DOI : 10.1016/S0092-8674(00)80724-2

C. Barlowe, L. Orci, and T. Yeung, COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum, Cell, vol.77, issue.6, pp.895-907, 1994.
DOI : 10.1016/0092-8674(94)90138-4

H. Hoppe and K. Joiner, Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii, Cellular Microbiology, vol.7, issue.6, pp.569-578, 2000.
DOI : 10.1074/jbc.272.3.1970

P. Sloves, S. Delhaye, and T. Mouveaux, Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection, Cell Host & Microbe, vol.11, issue.5, pp.515-527, 2012.
DOI : 10.1016/j.chom.2012.03.006

URL : https://hal.archives-ouvertes.fr/hal-00701381

M. Breinich, D. Ferguson, and B. Foth, A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii, Current Biology, vol.19, issue.4, pp.277-286, 2009.
DOI : 10.1016/j.cub.2009.01.039

URL : https://hal.archives-ouvertes.fr/hal-00373663

S. Liu, M. Wong, and C. Craik, Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs, Cell, vol.83, issue.2, pp.257-267, 1995.
DOI : 10.1016/0092-8674(95)90167-1

C. Wang, X. Yan, and Q. Chen, Clathrin Light Chains Regulate Clathrin-Mediated Trafficking, Auxin Signaling, and Development in Arabidopsis, The Plant Cell, vol.25, issue.2, pp.499-516, 2013.
DOI : 10.1105/tpc.112.108373

J. Hirst and M. Robinson, Clathrin and adaptors, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1404, issue.1-2, pp.173-193, 1998.
DOI : 10.1016/S0167-4889(98)00056-1

W. Nevin and J. Dacks, Repeated secondary loss of adaptin complex genes in the Apicomplexa, Parasitology International, vol.58, issue.1, pp.86-94, 2009.
DOI : 10.1016/j.parint.2008.12.002

S. Tomavo, C. Slomianny, and M. Meissner, Protein Trafficking through the Endosomal System Prepares Intracellular Parasites for a Home Invasion, PLoS Pathogens, vol.317, issue.10, 2013.
DOI : 10.1371/journal.ppat.1003629.g004

A. Fomovska, R. Wood, and E. Mui, Salicylanilide Inhibitors of Toxoplasma gondii, Journal of Medicinal Chemistry, vol.55, issue.19, pp.8375-8391, 2012.
DOI : 10.1021/jm3007596

M. Yang, I. Coppens, and S. Wormsley, The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation, Journal of Cell Science, vol.117, issue.17, pp.3831-3838, 2004.
DOI : 10.1242/jcs.01237

F. Parussini, I. Coppens, and P. Shah, Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii, Molecular Microbiology, vol.269, issue.Pt C, pp.1340-1357, 2010.
DOI : 10.1007/978-1-4757-5806-1_12

K. Miranda, D. Pace, and R. Cintron, Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole, Molecular Microbiology, vol.104, issue.Part 5, pp.1358-1375, 2010.
DOI : 10.1104/pp.104.1.153

M. Francia, S. Wicher, and D. Pace, A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion, Experimental Cell Research, vol.317, issue.10, pp.1382-1396, 2011.
DOI : 10.1016/j.yexcr.2011.03.020

D. Nickerson, C. Brett, and A. Merz, Vps-C complexes: gatekeepers of endolysosomal traffic, Current Opinion in Cell Biology, vol.21, issue.4, pp.543-551, 2009.
DOI : 10.1016/j.ceb.2009.05.007

K. Peplowska, D. Markgraf, and C. Ostrowicz, The CORVET Tethering Complex Interacts with the Yeast Rab5 Homolog Vps21 and Is Involved in Endo-Lysosomal Biogenesis, Developmental Cell, vol.12, issue.5, pp.739-750, 2007.
DOI : 10.1016/j.devcel.2007.03.006

D. Seals, G. Eitzen, and N. Margolis, A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion, Proceedings of the National Academy of Sciences, vol.41, issue.2, pp.9402-9407, 2000.
DOI : 10.1139/gen-41-2-236

C. Ostrowicz, C. Bröcker, and F. Ahnert, Defined Subunit Arrangement and Rab Interactions Are Required for Functionality of the HOPS Tethering Complex, Traffic, vol.18, issue.10, pp.1334-1346, 2010.
DOI : 10.1091/mbc.3.12.1389

J. Solinger and A. Spang, Tethering complexes in the endocytic pathway: CORVET and HOPS, FEBS Journal, vol.176, issue.12, pp.2743-2757, 2013.
DOI : 10.1083/jcb.200606077

J. Morlon-guyot, S. Pastore, and L. Berry, Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles, Cellular Microbiology, vol.151, issue.Part 4, pp.1157-1178, 2015.
DOI : 10.1083/jcb.151.3.551

C. Trousdale and K. Kim, Retromer: Structure, function, and roles in mammalian disease, European Journal of Cell Biology, vol.94, issue.11, 2015.
DOI : 10.1016/j.ejcb.2015.07.002

H. Renard, M. Simunovic, and J. Lemière, Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis, Nature, vol.224, issue.7535, pp.493-496, 2015.
DOI : 10.1111/j.1365-2818.2006.01706.x

URL : https://hal.archives-ouvertes.fr/hal-01219767

L. Johannes, R. Parton, and P. Bassereau, Building endocytic pits without clathrin, Nature Reviews Molecular Cell Biology, vol.6, issue.5, pp.311-321, 2015.
DOI : 10.1111/j.1600-0854.2010.01116.x

Z. Dou, O. Mcgovern, D. Cristina, and M. , Toxoplasma gondii Ingests and Digests Host Cytosolic Proteins, mBio, vol.5, issue.4, pp.1188-1202, 2014.
DOI : 10.1128/mBio.01188-14

M. Seaman, J. Mccaffery, and S. Emr, A Membrane Coat Complex Essential for Endosome-to-Golgi Retrograde Transport in Yeast, The Journal of Cell Biology, vol.12, issue.3, pp.665-681, 1998.
DOI : 10.1016/0962-8924(93)90031-U

J. Bonifacino and J. Hurley, Retromer, Current Opinion in Cell Biology, vol.20, issue.4, pp.427-436, 2008.
DOI : 10.1016/j.ceb.2008.03.009

G. Farias, D. Gershlick, and J. Bonifacino, Going Forward with Retromer, Developmental Cell, vol.29, issue.1, pp.3-4, 2014.
DOI : 10.1016/j.devcel.2014.03.018

C. Griffin, J. Trejo, and T. Magnuson, Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2, Proceedings of the National Academy of Sciences, vol.177, issue.2, pp.15173-15177, 2005.
DOI : 10.1006/dbio.1996.0182

I. Mcgough and P. Cullen, Recent Advances in Retromer Biology, Traffic, vol.22, issue.8, pp.963-971, 2011.
DOI : 10.1105/tpc.110.078451

H. Shi, R. Rojas, and J. Bonifacino, The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain, Nature Structural & Molecular Biology, vol.13, issue.6, pp.540-548, 2006.
DOI : 10.1091/mbc.02-01-0005

B. Collins, S. Norwood, and M. Kerr, Structure of Vps26B and Mapping of its Interaction with the Retromer Protein Complex, Traffic, vol.115, issue.3, pp.366-379, 2008.
DOI : 10.1016/S0092-8674(00)81002-8

A. Bugarcic, Y. Zhe, and M. Kerr, Vps26A and Vps26B Subunits Define Distinct Retromer Complexes, Traffic, vol.29, issue.12, pp.1759-1773, 2011.
DOI : 10.1038/emboj.2010.28

M. Kerr, J. Bennetts, and F. Simpson, A Novel Mammalian Retromer Component, Vps26B, Traffic, vol.51, issue.11, pp.991-1001, 2005.
DOI : 10.1091/mbc.12.10.3242

A. Hierro, A. Rojas, and R. Rojas, Functional architecture of the retromer cargo-recognition complex, Nature, vol.47, issue.7165, pp.1063-1067, 2007.
DOI : 10.1091/mbc.10.4.875

B. Collins, C. Skinner, and P. Watson, Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly, Nature Structural & Molecular Biology, vol.39, issue.7, pp.594-602, 2005.
DOI : 10.1021/bi0021030

S. Gokool, D. Tattersall, and J. Reddy, Identification of a conserved motif required for Vps35p/Vps26p interaction and assembly of the retromer complex, Biochemical Journal, vol.408, issue.2, pp.287-295, 2007.
DOI : 10.1042/BJ20070555

URL : https://hal.archives-ouvertes.fr/hal-00478792

S. Nothwehr, P. Bruinsma, and L. Strawn, Distinct Domains within Vps35p Mediate the Retrieval of Two Different Cargo Proteins from the Yeast Prevacuolar/Endosomal Compartment, Molecular Biology of the Cell, vol.10, issue.4, pp.875-890, 1999.
DOI : 10.1091/mbc.10.4.875

S. Nothwehr, S. Ha, and P. Bruinsma, Sorting of Yeast Membrane Proteins into an Endosome-to-Golgi Pathway Involves Direct Interaction of Their Cytosolic Domains with Vps35p, The Journal of Cell Biology, vol.11, issue.2, pp.297-310, 2000.
DOI : 10.1091/mbc.3.12.1353

A. Gullapalli, T. Garrett, and M. Paing, A Role for Sorting Nexin 2 in Epidermal Growth Factor Receptor Down-regulation: Evidence for Distinct Functions of Sorting Nexin 1 and 2 in Protein Trafficking, Molecular Biology of the Cell, vol.15, issue.5, pp.2143-2155, 2004.
DOI : 10.1091/mbc.E03-09-0711

M. Seaman and H. Williams, Identification of the Functional Domains of Yeast Sorting Nexins Vps5p and Vps17p, Molecular Biology of the Cell, vol.13, issue.8, pp.2826-2840, 2002.
DOI : 10.1091/mbc.02-05-0064

T. Strochlic, T. Setty, and A. Sitaram, Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling, The Journal of Cell Biology, vol.110, issue.1, pp.115-125, 2007.
DOI : 10.1074/jbc.M304392200

J. Song, K. Zhao, and C. Newman, Solution structure of human sorting nexin 22, Protein Science, vol.4, issue.5, pp.807-814, 2007.
DOI : 10.1110/ps.072752407

J. Van-weering, R. Sessions, and C. Traer, Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules, The EMBO Journal, vol.284, issue.23, pp.4466-4480, 2012.
DOI : 10.1074/jbc.M109.007278

D. Gillooly, I. Morrow, and M. Lindsay, Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells, The EMBO Journal, vol.19, issue.17, pp.4577-4588, 2000.
DOI : 10.1093/emboj/19.17.4577

P. Cullen, Endosomal sorting and signalling: an emerging role for sorting nexins, Nature Reviews Molecular Cell Biology, vol.8, issue.7, pp.574-582, 2008.
DOI : 10.1091/mbc.11.12.4105

M. Harbour, S. Breusegem, and R. Antrobus, The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics, Journal of Cell Science, vol.123, issue.21, pp.3703-3717, 2010.
DOI : 10.1242/jcs.071472

T. Liu, T. Gomez, and B. Sackey, Rab GTPase regulation of retromer-mediated cargo export during endosome maturation, Molecular Biology of the Cell, vol.23, issue.13, pp.2505-2515, 2012.
DOI : 10.1091/mbc.E11-11-0915

M. Harrison, C. Hung, and T. Liu, A mechanism for retromer endosomal coat complex assembly with cargo, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.267-272, 2014.
DOI : 10.1111/j.1600-0854.2011.01297.x

M. Seaman, M. Harbour, and D. Tattersall, Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5, Journal of Cell Science, vol.122, issue.14, pp.2371-2382, 2009.
DOI : 10.1242/jcs.048686

T. Gomez and D. Billadeau, A FAM21-Containing WASH Complex Regulates Retromer-Dependent Sorting, Developmental Cell, vol.17, issue.5, pp.699-711, 2009.
DOI : 10.1016/j.devcel.2009.09.009

E. Derivery, C. Sousa, and J. Gautier, The Arp2/3 Activator WASH Controls the Fission of??Endosomes through a Large Multiprotein Complex, Developmental Cell, vol.17, issue.5, pp.712-723, 2009.
DOI : 10.1016/j.devcel.2009.09.010

P. Cullen and H. Korswagen, Sorting nexins provide diversity for retromer-dependent trafficking events, Nature Cell Biology, vol.360, issue.1, pp.29-37, 2012.
DOI : 10.1016/j.ceb.2008.03.009

M. Seaman, E. Marcusson, and J. Cereghino, Gene Products, The Journal of Cell Biology, vol.11, issue.1, pp.79-92, 1997.
DOI : 10.1091/mbc.3.12.1353

R. Lane, S. Raines, and J. Steele, Diabetes-Associated SorCS1 Regulates Alzheimer's Amyloid-?? Metabolism: Evidence for Involvement of SorL1 and the Retromer Complex, Journal of Neuroscience, vol.30, issue.39, pp.13110-13115, 2010.
DOI : 10.1523/JNEUROSCI.3872-10.2010

G. Hesketh, I. Pérez-dorado, and L. Jackson, VARP Is Recruited on to Endosomes by Direct Interaction with Retromer, Where Together They Function in Export to the Cell Surface, Developmental Cell, vol.29, issue.5, pp.591-606, 2014.
DOI : 10.1016/j.devcel.2014.04.010

P. Krai, S. Dalal, and M. Klemba, Evidence for a Golgi-to-Endosome Protein Sorting Pathway in Plasmodium falciparum, PLoS ONE, vol.25, issue.2, p.89771, 2014.
DOI : 10.1371/journal.pone.0089771.s005

V. Koumandou, M. Klute, and E. Herman, Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei, Journal of Cell Science, vol.124, issue.9, pp.1496-1509, 2011.
DOI : 10.1242/jcs.081596

M. Seaman, The retromer complex - endosomal protein recycling and beyond, Journal of Cell Science, vol.125, issue.20, pp.4693-4702, 2012.
DOI : 10.1242/jcs.103440

S. Kim, G. Taylor, and K. Torgersen, Myotubularin and MTMR2, Phosphatidylinositol 3-Phosphatases Mutated in Myotubular Myopathy and Type 4B Charcot-Marie-Tooth Disease, Journal of Biological Chemistry, vol.277, issue.6, pp.4526-4531, 2002.
DOI : 10.1006/abio.2000.4497

M. Silhankova, F. Port, and M. Harterink, Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells, The EMBO Journal, vol.12, issue.24, pp.4094-4105, 2010.
DOI : 10.1371/journal.pgen.1000679

K. Tsujita, T. Itoh, and T. Ijuin, Myotubularin Regulates the Function of the Late Endosome through the GRAM Domain-Phosphatidylinositol 3,5-Bisphosphate Interaction, Journal of Biological Chemistry, vol.11, issue.14, pp.13817-13824, 2004.
DOI : 10.1091/mbc.11.2.747

M. Velichkova, J. Juan, and P. Kadandale, Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions, The Journal of Cell Biology, vol.15, issue.3, pp.407-425, 2010.
DOI : 10.1083/jcb.200911020.dv

K. Ebine, M. Fujimoto, and Y. Okatani, A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6, Nature Cell Biology, vol.4, issue.7, pp.853-859, 2011.
DOI : 10.1016/S0076-6879(00)27297-2

K. Ebine, N. Miyakawa, and M. Fujimoto, Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants, Small GTPases, vol.63, issue.1, pp.23-27, 2012.
DOI : 10.1016/j.tcb.2008.03.002

A. Priya, I. Kalaidzidis, and Y. Kalaidzidis, Molecular Insights into Rab7-Mediated Endosomal Recruitment of Core Retromer: Deciphering the Role of Vps26 and Vps35, Traffic, vol.293, issue.1, pp.68-84, 2015.
DOI : 10.1006/abio.2001.5119

J. Dacks, L. Davis, and A. Sjögren, Evidence for Golgi bodies in proposed 'Golgi-lacking' lineages, Proceedings of the Royal Society B: Biological Sciences, vol.270, issue.Suppl_2, pp.168-71, 2003.
DOI : 10.1098/rsbl.2003.0058

P. Sloves, T. Mouveaux, and S. Ait-yahia, Apical Organelle Secretion by Toxoplasma Controls Innate and Adaptive Immunity and Mediates Long-Term Protection, J. Infect. Dis, 2015.

S. Eathiraj, X. Pan, and C. Ritacco, Structural basis of family-wide Rab GTPase recognition by rabenosyn-5, Nature, vol.12, issue.7049, pp.415-419, 2005.
DOI : 10.1016/S1097-2765(03)00356-3

C. Law, P. Maloney, and D. Wang, Ins and Outs of Major Facilitator Superfamily Antiporters, Annual Review of Microbiology, vol.62, issue.1, pp.289-305, 2008.
DOI : 10.1146/annurev.micro.61.080706.093329

I. Mcgough and P. Cullen, Clathrin is not required for SNX-BAR-retromer-mediated carrier formation, Journal of Cell Science, vol.126, issue.1, pp.45-52, 2013.
DOI : 10.1242/jcs.112904

P. Berger, S. Bonneick, and S. Willi, Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1, Human Molecular Genetics, vol.11, issue.13, pp.1569-1579, 2002.
DOI : 10.1093/hmg/11.13.1569

A. Bolino, M. Muglia, and F. Conforti, Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2, Nature Genetics, vol.18, issue.1, pp.17-19, 2000.
DOI : 10.1038/ng0498-331

J. Laporte, L. Hu, and C. Kretz, A gene mutated in X???linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast, Nature Genetics, vol.269, issue.2, pp.175-182, 1996.
DOI : 10.1146/annurev.physiol.53.1.201

G. Taylor, T. Maehama, and J. Dixon, Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate, Proceedings of the National Academy of Sciences, vol.27, issue.1, pp.8910-8915, 2000.
DOI : 10.1006/bbrc.2000.2417

S. Jean, S. Cox, and E. Schmidt, Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling, Molecular Biology of the Cell, vol.23, issue.14, pp.2723-2740, 2012.
DOI : 10.1091/mbc.E12-05-0375

O. Ikonomov, D. Sbrissa, and A. Shisheva, Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion, AJP: Cell Physiology, vol.291, issue.2, pp.393-404, 2006.
DOI : 10.1152/ajpcell.00019.2006

D. Sbrissa, O. Ikonomov, and Z. Fu, Core Protein Machinery for Mammalian Phosphatidylinositol 3,5-Bisphosphate Synthesis and Turnover That Regulates the Progression of Endosomal Transport, Journal of Biological Chemistry, vol.2, issue.33, pp.23878-23891, 2007.
DOI : 10.1038/28879

O. Ikonomov, J. Fligger, and D. Sbrissa, Kinesin Adapter JLP Links PIKfyve to Microtubule-based Endosome-to-Trans-Golgi Network Traffic of Furin, Journal of Biological Chemistry, vol.19, issue.6, pp.3750-3761, 2009.
DOI : 10.1002/jcb.20930

A. Rutherford, C. Traer, and T. Wassmer, The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport, Journal of Cell Science, vol.119, issue.19, pp.3944-3957, 2006.
DOI : 10.1242/jcs.03153

W. Henne, N. Buchkovich, and S. Emr, The ESCRT Pathway, Developmental Cell, vol.21, issue.1, pp.77-91, 2011.
DOI : 10.1016/j.devcel.2011.05.015

K. Leung, J. Dacks, and M. Field, Evolution of the Multivesicular Body ESCRT Machinery; Retention Across the Eukaryotic Lineage, Traffic, vol.275, issue.10, pp.1698-1716, 2008.
DOI : 10.1091/mbc.3.12.1389

H. Ngô, M. Yang, and K. Paprotka, Mediates Biogenesis of the Rhoptry Secretory Organelle from a Post-Golgi Compartment, Journal of Biological Chemistry, vol.112, issue.7, pp.5343-5352, 2003.
DOI : 10.1016/S0092-8674(00)81650-5