E. S. Fisher, C. J. Renken-]-d, I. M. Northwood, L. E. London, G. L. Bahen et al., Elastic constants of zirconium alloys Lattice parameters, thermal expansions, and Gruneisen coefficients of zirconium 4.2 to 1130 K, Performance of alloy M5® cladding and structure at burnups beyond the current licensing limit in U.S reactors 2006 International Meeting on LWR Fuel Performance " Nuclear Fuel: Addressing the Future, pp.482-494, 1964.

D. Charquet, J. Senevat, J. P. Mardon, F. Ferrer, A. Barbu et al., Influence of sulfur content on the thermal creep of zirconium alloy tubes at 400??C, Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.78-82, 1998.
DOI : 10.1016/S0022-3115(98)00008-7

]. J. Abriata, J. C. Bolcich, D. Arias, F. J. Ferrer9-]-j, R. Kearns et al., The Sn-Zr (Tin-Zirconium) System Etude des mécanismes de déformation du zirconium entre 25 et 400°C Influence d'une faible teneur en soufre Therminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4 Determination of the hydrogen site occupation in the ? phase of zirconium hydride and in the ? and ? phases of titanium hydride by inelastic neutron scattering Simulations atomistiques ab-initio des effets de l'hydrogène et de l'iode dans le zirconium, Thèse de doctorat, Ecole Polytechnique Thèse de doctorat, pp.147-154, 1967.

E. V. Cantonwine and . Mader, Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations, J. Nucl. Mater, vol.460, pp.82-96, 2015.

E. V. Cantonwine and . Mader, Effect of hydrogen on dimensional changes of Zirconium and the influence of alloying elements: first principles and classical simulations of points defects, dislocation loops and hydrides, Zirconium in the Nuclear Industry: Seventeenth International Symposium, ASTM STP 1543, pp.55-92, 2015.

]. K. Loucif, P. Merle, and R. Borrelly, On the thermoelectric power variation according to temperature of zirconium alloys and its possible application to the estimation of the amount of solubility variations of iron and chromium in zircaloy, Journal of Nuclear Materials, vol.202, issue.1-2, pp.193-196, 1993.
DOI : 10.1016/0022-3115(93)90042-W

]. D. Charquet, R. Hahn, E. Ortlieb, J. P. Gros, and J. F. Wadier, Solubility limits and formation of intermetallic precipitatesin ZrSnFeCr alloys, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, pp.69-405, 1988.

D. O. Meng and . Northwood, Intermetallic precipitates in Zircaloy-4, Meng and D. O. Northwood, " A TEM study of the C15 type Zr(Fe,Cr)2 Laves phase in Zircaloy-4, pp.80-87, 1985.

]. D. Shaltiel, I. Jacob, and D. Davidov, Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds The Nb-Zr (Niobium-Zirconium) System, J. Less Common Met. Bull. Alloy Phase Diagrams, vol.53, issue.3, pp.117-131, 1977.

]. S. Doriot, B. Verhaeghe, J. Béchade, D. Menut, D. Gilbon et al., Microstructural evolution of M5 TM alloy irradiated in PWRs up to high fluences -Comparison with other Zr base alloys, Zirconium in the Nuclear Industry: Seventeenth International Symposium, ASTM STP 1543, pp.759-799, 2015.

]. S. Doriot, D. Gilbon, J. Béchade, M. H. Mathon, L. Legras et al., Microstructural stability of M5 TM alloy irradiated up to high neutron fluences, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.175-201, 2005.

Z. L. Pan, N. Wang, and Z. He, Measurements of elastic modulus in Zr alloys for CANDU applications Deformation mechanisms, texture and anisotropy in zirconium and Zircaloy, Eleventh International Conference on CANDU Fuel ASTM STP 966, pp.1-77, 1988.

P. Geyer-akhtar and A. Teghtsoonian, Comportement élasto-viscoplastique de tubes en Zircaloy-4: approche expérimentale et modélisation micromécanique Basal slip in zirconium Plastic deformation of zirconium single crystals, Thèse de doctorat, Ecole des Mines de Paris, pp.1-11, 1971.

]. E. Tenckhoff, Review of deformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium base alloys, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.25-50, 2005.

S. Naka and A. Lasalmonie, Relations entre la structure électronique et la facilité de glissement dans les métaux hexagonaux comptacts Cross-slip on the first order pyramidal plane (10-11) of a-type dislocations [1-210] in the plastic deformation of ?-titanium single crystals, Philos. Mag. B J. Mater. Sci, vol.49, issue.18, pp.171-184, 1983.

]. S. Farenc, D. Caillard, A. Couret-feaugas, D. Poquillon, and J. M. Cloué, An in situ study of prismatic glide in ?? titanium at low temperatures, Thèse de doctorat Confidentielle, pp.2701-2709, 1993.
DOI : 10.1016/0956-7151(93)90139-J

]. D. Caillard, M. Rautenberg, and X. Feaugas, Dislocation mechanisms in a zirconium alloy in the high-temperature regime: An in situ TEM investigation, Acta Materialia, vol.87, pp.283-292, 2015.
DOI : 10.1016/j.actamat.2015.01.016

]. N. Chaari, E. Clouet, and D. Rodney, First-Principles Study of Secondary Slip in Zirconium, Physical Review Letters, vol.112, issue.7, p.75504, 2014.
DOI : 10.1103/PhysRevLett.102.055502

URL : https://hal.archives-ouvertes.fr/hal-00950867

X. Feaugas and E. Conforto, Influence de l'hydrog??ne sur les m??canismes de d??formation et d'endommagement des alliages de titane et de zirconium, PlastOx 2007, M??canismes et M??canique des Interactions Plasticit??, Environnement, pp.161-178, 2007.
DOI : 10.1051/ptox/2009012

]. D. Mills and G. B. Craig, The plastic deformation of Zr-O alloy single crystals in the range 77 to 950K The deformation of zirconium-oxygen single crystals, Trans. Metall. Soc. AIME Acta Metall, vol.242, issue.16, pp.1881-1890, 1968.

]. C. Régnard, B. Verhaeghe, F. Lefebvre-joud, and C. Lemaignan, Activated slip systems and localized straining of irradiated alloys in circunferential loadings, Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.384-399, 2002.

]. F. Onimus, I. Monnet, J. L. Béchade, C. Prioul, and P. Pilvin, A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys, Journal of Nuclear Materials, vol.328, issue.2-3, pp.165-179, 2004.
DOI : 10.1016/j.jnucmat.2004.04.337

URL : https://hal.archives-ouvertes.fr/hal-00019077

]. F. Onimus, J. L. Béchade, C. Prioul, P. Pilvin, I. Monnet et al., Plastic deformation of irradiated zirconium alloys: TEM investigation and micro-mechanical modelling, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.53-77, 2005.

K. Linga-murty and I. Charit, Texture development and anisotropic deformation of zircaloys, Progress in Nuclear Energy, vol.48, issue.4, pp.325-359, 2006.
DOI : 10.1016/j.pnucene.2005.09.011

]. P. Delobelle, P. Robinet, P. Geyer, P. Bouffioux, J. L. Béchade48-]-s et al., Radiation Effects in Zirconium Alloys A molecular dynamics study of high energy displacement cascades in ?-zirconium Temperature-dependence of defect creation and clustering by displacement cascades in ?-zirconium A proposed method of calculating displacement dose ratesMeV neutrons with nuclei, 90Zr and 92Zr: Neutron total and scattering cross sections, pp.135-162, 1956.

V. N. Shishov, M. M. Peregud, A. V. Nikulina, Y. V. Pimenov, G. P. Kobylyansky et al., Influence of structure-phase state of Nb containing Zr alloys on irradiation-induced growth, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.666-686, 2005.

J. F. Ziegler and J. P. Biersack, The Stopping and Range of Ions in Matter, Treatise on Heavy-Ion Science, pp.93-129, 1985.
DOI : 10.1007/978-1-4615-8103-1_3

J. P. Biersack, L. G. Haggmark56-]-d, A. F. Bacon, F. Calder, and A. Gao, A Monte Carlo computer program for the transport of energitic ions in amorphous targets Computer simulation of displacement cascade effects in metals Interatomic potentials and crystalline defects Ab initio study of self-interstitials in hcp-Zr, Nucl. Instruments Methods Radiat. Eff. Defects Solids J. Nucl. Mater, vol.17457, issue.323, pp.257-269, 1980.

G. Vérité, C. Domain, C. C. Fu, P. Gasca, A. Legris et al., Self-interstitial defects in hexagonal close packed metals revisited: Evidence for low-symmetry configurations in Ti, Zr, and Hf, Thèse de doctorat, p.134108, 2007.
DOI : 10.1080/09500830701191393

]. C. Varvenne, F. Bruneval, M. C. Marinica, and E. Clouet, and elasticity approaches, Physical Review B, vol.88, issue.13, p.134102, 2013.
DOI : 10.1103/PhysRevB.86.144104

URL : https://hal.archives-ouvertes.fr/hal-00875386

G. D. Samolyuk, S. I. Golubov, Y. N. Osetsky, and R. E. Stoller, Self-interstitial configurations in hcp Zr: a first principles analysis, Philosophical Magazine Letters, vol.429, issue.2, pp.93-100, 2013.
DOI : 10.1016/j.jnucmat.2012.06.010

D. J. Bacon, G. D. Samolyuk, A. V. Barashev, S. I. Golubov, Y. N. Osetsky et al., A review of computer models of point defects in hcp metals, Journal of Nuclear Materials, vol.159, issue.78, pp.176-189, 1988.
DOI : 10.1016/0022-3115(88)90092-X

Y. N. Osetsky, D. J. Bacon, and N. D. Diego, Anisotropy of point defect diffusion in alpha-zirconium, Metallurgical and Materials Transactions A, vol.3, issue.191, pp.777-782, 2002.
DOI : 10.1557/PROC-439-389

C. H. Woo and X. Liu, -zirconium, Philosophical Magazine, vol.1295, issue.16, pp.2355-2369, 2007.
DOI : 10.1016/0022-3115(88)90084-0

W. J. Huang and . Zhu, Low-dimension self-interstitial diffusion in ?-Zr, Appl. Phys. A Mater. Sci. Process, vol.76, pp.101-106, 2003.

]. J. Horvath, F. Dyment, and H. Mehrer, Anomalous self-diffusion in a single crystal of ??-zirconium, Journal of Nuclear Materials, vol.126, issue.3, pp.206-214, 1984.
DOI : 10.1016/0022-3115(84)90030-8

E. V. Cantonwine and . Mader, Effect of alloying elements on the properties of Zr and the Zr?H system, J. Nucl. Mater, vol.445, pp.241-250, 2014.

E. Forlerer and C. Rodriguez, On the influence of iron on the Zr-? (hcp) self-diffusion, J. Nucl. Mater, vol.185, pp.167-173, 1991.

A. D. King, G. M. Hood, and R. A. Holt, Fe-enhancement of self-diffusion in ??-Zr, Journal of Nuclear Materials, vol.185, issue.2, pp.174-181, 1991.
DOI : 10.1016/0022-3115(91)90333-3

R. C. Pasianot, R. A. Pérez, V. P. Ramunni, and M. Weissmann, Ab initio approach to the effect of Fe on the diffusion in hcp Zr II: The energy barriers, Journal of Nuclear Materials, vol.392, issue.1, pp.100-104, 2009.
DOI : 10.1016/j.jnucmat.2009.03.051

G. M. Hood, R. J. Schultz, G. Vérité, F. Willaime, C. C. Fu et al., Tracer diffusion in ?-Zr* Anisotropy of the vacancy migration in Ti, Zr and Hf hexagonal close-packed metals from first principles Vacancy clustering in zirconium: An atomic-scale study, Acta Metall. Solid State Phenom. Acta Mater, vol.22, issue.78, pp.459-464, 1974.

A. V. Barashev, S. I. Golubov, and R. E. Stoller, Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation, Journal of Nuclear Materials, vol.461, pp.85-94, 2015.
DOI : 10.1016/j.jnucmat.2015.02.001

H. Wen and C. H. Woo, Temperature dependence and anisotropy of self- and mono-vacancy diffusion in ??-Zr, Journal of Nuclear Materials, vol.420, issue.1-3, pp.362-369, 2012.
DOI : 10.1016/j.jnucmat.2011.10.012

D. O. Northwood, R. W. Gilbert, L. E. Bahen, P. M. Kelly, R. G. Blake et al., Characterization of neutron irradiation damage in zirconium alloys -An international 'Round-Robin' experiment Dislocation loop generation and irradiation growth in a zirconium single crystal The nature of dislocation loops in neutron irradiated zirconium, J. Appl. Phys. J. Nucl. Mater. J. Nucl. Mater, vol.79, issue.66, pp.379-394, 1976.

P. M. Kelly and R. G. Blake, The characterization of dislocation loops in neutron irradiated zirconium, Philosophical Magazine, vol.18, issue.2, pp.415-426, 1973.
DOI : 10.1080/14786436808227499

G. J. Carpenter, J. F. Watters, and R. E. Smallman, A study of electron irradiation damage in Zirconium using a high voltage electron microscope, Journal of Nuclear Materials, vol.96, issue.3, pp.213-226, 1981.
DOI : 10.1016/0022-3115(81)90565-1

3. , D. /. Secc-]-g, D. O. Carpenter, and . Northwood, Note technique confidentielle, CEA Grenoble The contribution of dislocation loops to radiation growth and creep of Zircaloy-2 Theory of irradiation deformation in non-cubic metals: effects of anisotropic diffusion, J. Nucl. Mater. J. Nucl. Mater, vol.9387, issue.159, pp.260-266, 1975.

D. O. Northwood, Irradiation damage in zirconium and its alloys, At. Energy Rev, vol.15, pp.547-610, 1977.

C. Hellio, C. H. Novion, and L. Boulanger, Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in ??-zirconium, Journal of Nuclear Materials, vol.159, issue.433, pp.368-378, 1988.
DOI : 10.1016/0022-3115(88)90103-1

R. W. Gilbert, K. Farrell, C. E. Coleman-shinohara, H. Abe, T. Iwai et al., Damage structure in zirconium alloys neutron irradiated at 573 to 923 K In situ TEM observation of growth process of zirconium hydride in Zircaloy-4 during hydrogen ion implantation, J. Nucl. Mater. J. Nucl. Sci. Technol, vol.84, issue.46 6, pp.137-148, 1979.

]. Y. Udagawa, M. Yamaguchi, H. Abe, N. Sekimura, and T. Fuketa, Ab initio study on plane defects in zirconium???hydrogen solid solution and zirconium hydride, Acta Materialia, vol.58, issue.11, pp.3927-3938, 2010.
DOI : 10.1016/j.actamat.2010.03.034

C. Varvenne, O. Mackain, L. Proville, E. Clouet, and M. B. Lewis, Hydrogen and vacancy clustering in zirconium Deuterium-defect trapping in ion irradiated zirconium, Acta Mater. J. Nucl. Mater, vol.125, pp.152-159, 1984.

P. Vizcaino, A. D. Banchik, and J. P. Abriata, Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery, Journal of Nuclear Materials, vol.304, issue.2-3, pp.96-106, 2002.
DOI : 10.1016/S0022-3115(02)00883-8

C. H. Woo, Rate theory analysis of radiation damage effects near surfaces in hexagonal metals, Philosophical Magazine A, vol.7, issue.5, pp.915-923, 1991.
DOI : 10.1002/pssb.2221590210

C. H. Woo and U. Gosele, Dislocation bias in an anisotropic diffusive medium and irradiation growth, Journal of Nuclear Materials, vol.119, issue.2-3, pp.219-228, 1983.
DOI : 10.1016/0022-3115(83)90198-8

M. Griffiths, R. W. Gilbert, and C. E. Coleman, Grain boundary sinks in neutron-irradiated Zr and Zr-alloys, Journal of Nuclear Materials, vol.159, pp.405-416, 1988.
DOI : 10.1016/0022-3115(88)90107-9

M. Griffiths, M. H. Loretto, and R. E. Smallman, Anisotropic distribution of dislocation loops in HVEM???irradiated Zr, Philosophical Magazine A, vol.46, issue.5, pp.613-624, 1984.
DOI : 10.1063/1.321679

S. N. Buckley, Irradiation growth, Properties of Reactor Materials and the Effects of Radiation Damage, p.413, 1962.

A. Jostsons, R. G. Blake, J. G. Napier, P. M. Kelly, and K. Farrell, Faulted loops in neutron-irradiated zirconium, Journal of Nuclear Materials, vol.68, issue.3, pp.267-276, 1977.
DOI : 10.1016/0022-3115(77)90251-3

R. A. Holt and R. W. Gilbert, ?????? Component dislocations in annealed Zircaloy irradiated at about 570 K, Journal of Nuclear Materials, vol.137, issue.3, pp.185-189, 1986.
DOI : 10.1016/0022-3115(86)90218-7

M. Griffiths and R. W. Gilbert, The formation of c-component defects in zirconium alloys during neutron irradiation, Journal of Nuclear Materials, vol.150, issue.2, pp.169-181, 1987.
DOI : 10.1016/0022-3115(87)90072-9

A. Rogerson and R. A. Murgatroyd, ???Breakaway??? growth in annealed Zircaloy-2 at 353 K and 553 K, Journal of Nuclear Materials, vol.113, issue.2-3, pp.256-259, 1983.
DOI : 10.1016/0022-3115(83)90151-4

R. A. Holt and R. W. Gilbert, c-Component dislocations in neutron irradiated zircaloy-2, Journal of Nuclear Materials, vol.116, issue.1, pp.127-130, 1983.
DOI : 10.1016/0022-3115(83)90301-X

H. Foll and M. Wilkens, Transmission electron microscope studies of dislocation loops in heavy-ion irradiated H.C.P. cobalt, Physica Status Solidi (a), vol.8, issue.2, pp.561-571, 1977.
DOI : 10.1007/978-1-4684-2079-1_35

Y. De-carlan, Contribution à l'étude des phénomènes d'accélération de la croissance en réacteur des alliages de zirconium -influence du fer sur la formation des boucles de dislocation de type <c>, Thèse de doctorat, 1996.

C. Simonot, Evolutions microstructurales des alliages de zirconium sous irradiation, liens avec le phénomène de croissance, Thèse de doctorat, 1996.

M. Griffiths, R. W. Gilbert, V. Fidleris, R. P. Tucker, and R. B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 k, Journal of Nuclear Materials, vol.150, issue.2, pp.159-168, 1987.
DOI : 10.1016/0022-3115(87)90071-7

P. Bossis, B. Verhaeghe, S. Doriot, D. Gilbon, V. Chabretou et al., In PWR comprehensive study of high burn-up corrosion and growth behaviour of M5® and recrystallized low-tin Zircaloy-4, Zirconium in the Nuclear Industry: Fifteenth International Symposium, ASTM STP 1505, pp.430-456, 2009.

M. Griffiths, Microstructure evolution in Zr alloys during irradiation: dose, dose rate, and impurity dependence, Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, pp.19-26, 2000.

D. Gilbon and C. Simonot, Effect of Irradiation on the Microstructure of Zircaloy-4, Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, pp.521-548, 1994.
DOI : 10.1520/STP15207S

M. Griffiths, M. H. Loretto, and R. E. Smallman, Electron damage in zirconium, Journal of Nuclear Materials, vol.115, issue.2-3, pp.323-330, 1983.
DOI : 10.1016/0022-3115(83)90323-9

M. Griffiths, D. Gilbon, C. Regnard, and C. Lemaignan, HVEM study of the effects of alloying elements and impurities on radiation damage in Zr-alloys, Journal of Nuclear Materials, vol.205, pp.273-283, 1993.
DOI : 10.1016/0022-3115(93)90090-L

Y. De-carlan, C. Regnard, M. Griffiths, D. Gilbon, and C. Lemaignan, Influence of Iron in the Nucleation of ???c??? Component Dislocation Loops in Irradiated Zircaloy-4, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.638-653, 1996.
DOI : 10.1520/STP16194S

D. Lee and E. F. Koch, Irradiation damage in Zircaloy-2 produced by high-dose ion bombardment, Journal of Nuclear Materials, vol.50, issue.2, pp.162-174, 1974.
DOI : 10.1016/0022-3115(74)90153-6

R. B. Adamson, J. R. Beller, and D. Lee, Use of Ion Bombardment to Study Irradiation Damage in Zirconium Alloys, Zirconium in Nuclear Applications, ASTM STP 551, American Society for Testing and Materials, pp.215-228, 1974.
DOI : 10.1520/STP32117S

W. L. Bell, Corduroy contrast observations in neutron-irradiated zirconium and zircaloy, Journal of Nuclear Materials, vol.55, issue.1, pp.14-22, 1975.
DOI : 10.1016/0022-3115(75)90133-6

L. Tournadre, Vers une meilleure compréhension des mécanismes de déformation par croissance libre sous irradiation des alliages de zirconium, Thèse de doctorat confidentielle, 2012.

L. Tournadre, F. Onimus, J. Béchade, D. Gilbon, J. Cloué et al., Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4, Journal of Nuclear Materials, vol.425, issue.1-3, pp.1-3, 2012.
DOI : 10.1016/j.jnucmat.2011.11.061

URL : https://hal.archives-ouvertes.fr/in2p3-00716308

R. M. Hengstler-eger, Ion irradiation studies of the origins of Pressurized Water Reactor fuel assembly deformation, Thèse de doctorat, 2012.

R. M. Hengstler-eger, P. Baldo, L. Beck, J. Dorner, K. Ertl et al., Heavy ion irradiation induced dislocation loops in AREVA???s M5?? alloy, Journal of Nuclear Materials, vol.423, issue.1-3, pp.1-3, 2012.
DOI : 10.1016/j.jnucmat.2012.01.002

S. Yamada and T. Kameyama, Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation, Journal of Nuclear Materials, vol.422, issue.1-3, pp.1-3, 2012.
DOI : 10.1016/j.jnucmat.2011.12.035

X. T. Zu, M. Atzmon, L. M. Wang, L. P. Pou, F. R. Wan et al., Effect of ion irradiation on microstructure and hardness in Zircaloy-4, Effects of Radiation on Materials: Twentieth First International Symposium, ASTM STP 1447, pp.741-752, 2004.

J. J. Kai, W. I. Huang, and H. Y. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, Journal of Nuclear Materials, vol.170, issue.2, pp.193-209, 1990.
DOI : 10.1016/0022-3115(90)90412-G

L. Fournier, A. Serres, Q. Auzoux, D. Leboulch, and G. S. Was, Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4, Journal of Nuclear Materials, vol.384, issue.1, pp.38-47, 2009.
DOI : 10.1016/j.jnucmat.2008.10.001

G. E. Lucas, M. Surprenant, J. Dimarzo, and G. J. Brown, Proton irradiation creep of Zircaloy-2, Journal of Nuclear Materials, vol.101, issue.1-2, pp.78-91, 1981.
DOI : 10.1016/0022-3115(81)90446-3

C. K. Chow, R. A. Holt, C. H. Woo, and C. B. So, Deformation of zirconium irradiated by 4

Y. S. Lee, K. Y. Huang, C. Y. Huang, J. J. Kai, and W. F. Hsieh, Effects of proton irradiation on the microstructural evolution and uniform corrosion resistance of Zircaloys, Journal of Nuclear Materials, vol.205, pp.476-482, 1993.
DOI : 10.1016/0022-3115(93)90112-C

M. Griffiths, R. A. Holt, and A. Rogerson, Microstructural aspects of accelerated deformation of Zircaloy nuclear reactor components during service, Journal of Nuclear Materials, vol.225, pp.245-258, 1995.
DOI : 10.1016/0022-3115(94)00687-3

M. Griffiths, J. F. Mecke, and J. E. Winegar, Evolution of microstructure in zirconium alloys during irradiation, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.580-602, 1996.

D. Gilbon, A. Soniak, S. Doriot, and J. Mardon, Irradiation Creep and Growth Behavior, and Microstructural Evolution of Advanced Zr-Base Alloys, Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, pp.51-73, 2000.
DOI : 10.1520/STP14294S

H. Suzuki, Segregation of Solute Atoms to Stacking Faults, Journal of the Physical Society of Japan, vol.17, issue.2, pp.322-325, 1962.
DOI : 10.1143/JPSJ.17.322

V. N. Shishov, M. M. Peregud, A. V. Nikulina, P. V. Shebaldov, A. V. Tselischev et al., Influence of Zirconium Alloy Chemical Composition on Microstructure Formation and Irradiation Induced Growth, Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.758-779, 2002.
DOI : 10.1520/STP11415S

V. N. Shishov, A. V. Nikulina, V. A. Markelov, M. M. Peregud, A. V. Kozlov et al., Influence of Neutron Irradiation on Dislocation Structure and Phase Composition of Zr-Base Alloys, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.603-622, 1996.
DOI : 10.1520/STP16192S

R. H. Zee, A. Rogerson, and G. J. Carpenter, Effect of tin on the irradiation growth of polycrystalline zirconium, Journal of Nuclear Materials, vol.120, issue.2-3, pp.223-229, 1984.
DOI : 10.1016/0022-3115(84)90060-6

A. Rogerson and R. H. Zee, Irradiation growth in zirconium-tin alloys at 353 and 553 K, Journal of Nuclear Materials, vol.152, issue.2-3, pp.220-224, 1988.
DOI : 10.1016/0022-3115(88)90330-3

V. N. Shishov, The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation, Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, pp.37-66, 2010.

M. A. Mcgrath and S. Yagnik, Experimental investigation of irradiation creep and growth of recrystallized Zircaloy-4 guide tubes pre-irradiated in PWR, Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, pp.875-898, 2010.

L. Tournadre, F. Onimus, J. Béchade, D. Gilbon, J. Cloué et al., Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys, Journal of Nuclear Materials, vol.441, issue.1-3, pp.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.05.045

L. Tournadre, F. Onimus, D. Gilbon, and X. Feaugas, Impact of hydrogen pick-up and applied stress on c-component loops : Toward a better understanding of the radiation induced growth I

D. Faulkner and M. P. Puls, Radiation damage simulation experiments in zirconium, International Conference on Fundamental Aspects of Radiation Damage in Metals, pp.1287-1295, 1975.

D. Faulkner and C. H. Woo, Void swelling in zirconium, Journal of Nuclear Materials, vol.90, issue.1-3, pp.307-316, 1980.
DOI : 10.1016/0022-3115(80)90269-X

G. J. Carpenter, R. A. Murgatroyd, A. Rogerson, and J. F. Watters, Irradiation growth of zirconium single crystals, Journal of Nuclear Materials, vol.101, issue.1-2, pp.28-37, 1981.
DOI : 10.1016/0022-3115(81)90441-4

G. J. Carpenter, R. H. Zee, and A. Rogerson, Irradiation growth of zirconium single crystals: A review, Journal of Nuclear Materials, vol.159, pp.86-100, 1988.
DOI : 10.1016/0022-3115(88)90087-6

A. Rogerson, Irradiation growth in zirconium and its alloys, Journal of Nuclear Materials, vol.159, pp.43-61, 1988.
DOI : 10.1016/0022-3115(88)90084-0

R. A. Holt, In-reactor deformation of cold-worked Zr???2.5Nb pressure tubes, Journal of Nuclear Materials, vol.372, issue.2-3, pp.182-214, 2008.
DOI : 10.1016/j.jnucmat.2007.02.017

V. Fidleris, R. P. Tucker, and R. B. Adamson, An Overview of Microstructural and Experimental Factors That Affect the Irradiation Growth Behavior of Zirconium Alloys, Zirconium in the Nuclear Industry: Seventh International Symposium, ASTM STP 939, pp.49-85, 1987.
DOI : 10.1520/STP28108S

A. Soniak, N. L. 'hullier, J. Mardon, V. Rebeyrolle, P. Bouffioux et al., Irradiation Creep Behavior of Zr-Base Alloys, Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.837-862, 2002.
DOI : 10.1520/STP11419S

F. Garzarolli, P. Dewes, G. Maussner, and H. Basso, Effects of High Neutron Fluences on Microstructure and Growth of Zircaloy-4, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, pp.641-657, 1989.
DOI : 10.1520/STP18891S

V. Fidleris, The irradiation creep and growth phenomena, Journal of Nuclear Materials, vol.159, pp.22-42, 1988.
DOI : 10.1016/0022-3115(88)90083-9

R. B. Adamson, Irradiation Growth of Zircaloy, Zirconium in the Nuclear Industry, ASTM STP 633, pp.326-343, 1977.
DOI : 10.1520/STP35579S

M. Griffiths, R. W. Gilbert, and V. Fidleris, Accelerated Irradiation Growth of Zirconium Alloys, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, pp.658-677, 1989.
DOI : 10.1520/STP18892S

R. A. Murgatroyd and A. Rogerson, An assessment of the influence of microstructure and test conditions on the irradiation growth phenomenon in zirconium alloys, Journal of Nuclear Materials, vol.90, issue.1-3, pp.240-248, 1980.
DOI : 10.1016/0022-3115(80)90261-5

P. M. Kelly, Irradiation growth in zirconium, International Conference on Physical Metallurgy of Reactor Fuel Elements, 1973.

R. A. Holt, Mechanisms of irradiation growth of alpha-zirconium alloys, Journal of Nuclear Materials, vol.159, pp.310-338, 1988.
DOI : 10.1016/0022-3115(88)90099-2

W. G. Wolfer and M. Ashkin, Diffusion of vacancies and interstitials to edge dislocations, Journal of Applied Physics, vol.29, issue.3, pp.791-800, 1976.
DOI : 10.1080/14786437408226592

L. Walters, G. Bickel, and M. Griffiths, The effects of microstructure and operting conditions on irradiation creep of Zr-2.5Nb pressure tubing, Zirconium in the Nuclear Industry: Seventeenth International Symposium, ASTM STP 1543, 2013.

A. R. Causey, In???Reactor Stress Relaxation of Zirconium Alloys, Zirconium in Nuclear Applications, ASTM STP 551, pp.263-273, 1974.
DOI : 10.1520/STP32120S

F. Tinti, Uniaxial In-Reactor Creep of Zircaloy-2: Stress, Flux, and Temperature Dependence, Nuclear Technology, vol.30, issue.1, pp.104-113, 1983.
DOI : 10.1016/0022-3115(69)90181-0

J. R. Matthews and M. W. Finnis, Irradiation creep models ??? an overview, Journal of Nuclear Materials, vol.159, pp.257-285, 1988.
DOI : 10.1016/0022-3115(88)90097-9

P. T. Heald and M. V. Speight, Steady-state irradiation creep, Philosophical Magazine, vol.29, issue.5, pp.1075-1080, 1974.
DOI : 10.1080/00337577108231003

P. T. Heald and M. V. Speight, Point defect behaviour in irradiated materials, Acta Metallurgica, vol.23, issue.11, pp.1389-1399, 1975.
DOI : 10.1016/0001-6160(75)90148-0

W. G. Wolfer and M. Ashkin, Stress???induced diffusion of point defects to spherical sinks, Journal of Applied Physics, vol.48, issue.2, pp.547-557, 1975.
DOI : 10.1016/0022-3115(73)90157-8

W. G. Wolfer, M. Ashkin, and A. Boltax, Creep and Swelling Deformation in Structural Materials During Fast-Neutron Irradiation, Properties of Reactor Structural Alloys After Neutron or Particle Irradiation, pp.233-258, 1975.
DOI : 10.1520/STP33690S

R. Bullough and J. R. Willis, The stress-induced point defect-dislocation interaction and its relevance to irradiation creep, Philosophical Magazine, vol.10, issue.4, pp.855-861, 1975.
DOI : 10.1103/PhysRevB.10.363

R. Bullough and M. H. Wood, Mechanisms of radiation induced creep and growth, Journal of Nuclear Materials, vol.90, issue.1-3, pp.1-21, 1980.
DOI : 10.1016/0022-3115(80)90241-X

E. J. Savino and C. N. Tomé, Irradiation creep by stress-induced preferential attraction due to anisotropic diffusion (SIPA-AD), Journal of Nuclear Materials, vol.108, issue.109, pp.405-416, 1982.
DOI : 10.1016/0022-3115(82)90509-8

W. G. Wolfer, Correlation of radiation creep theory with experimental evidence, Journal of Nuclear Materials, vol.90, issue.1-3, pp.175-192, 1980.
DOI : 10.1016/0022-3115(80)90255-X

W. G. Wolfer, Fundamental Properties of Defects in Metals, Compr. Nucl. Mater, vol.1, pp.1-45, 2012.
DOI : 10.1016/B978-0-08-056033-5.00001-X

C. H. Woo, Irradiation Creep Due to Stress-Induced Preferred Absorption of Point Defects in Zirconium Single Crystals, Effects of Radiation on Structural Materials, ASTM STP 683, American Society for Testing and Materials, pp.640-55, 1979.
DOI : 10.1520/STP38194S

D. Faulkner and R. J. Mcelroy, Irradiation Creep and Growth in Zirconium During Proton Bombardment, Effects of Radiation on Structural Materials, ASTM STP 683, American Society for Testing and Materials, pp.329-345, 1979.
DOI : 10.1520/STP38174S

R. V. Hesketh, A possible mechanism of irradiation creep and its reference to uranium, Philosophical Magazine, vol.9, issue.80, pp.1417-1420, 1962.
DOI : 10.1080/14786435608238145

A. Brailsford and R. Bullough, Irradiation creep due to the growth of interstitial loops, Philosophical Magazine, vol.14, issue.1, pp.49-64, 1973.
DOI : 10.1063/1.1722933

G. W. Lewthwaite, Irradiation creep produced by the effect of stress on the nucleation of dislocation loops, Philosophical Magazine, vol.16, issue.6, pp.1287-1302, 1973.
DOI : 10.1016/0022-3115(72)90147-X

K. Herschbach and W. Schneider, Interconnection between irradiation creep and interstitial loop formation in fcc metals, Journal of Nuclear Materials, vol.51, issue.2, pp.215-220, 1974.
DOI : 10.1016/0022-3115(74)90005-1

H. R. Brager, F. A. Garner, and G. L. Guthrie, The effect of stress on the microstructure of neutron irradiated type 316 stainless steel, Journal of Nuclear Materials, vol.66, issue.3, pp.301-321, 1977.
DOI : 10.1016/0022-3115(77)90119-2

D. S. Gelles, F. A. Garner, and H. R. Brager, Frank Loop Formation in Irradiated Metals in Response to Applied and Internal Stresses, Effects of Radiation on Materials: Tenth conference, ASTM STP 725, American Society for Testing and Materials, pp.735-753, 1981.
DOI : 10.1520/STP28247S

E. V. Cantonwine and . Mader, Effect of alloying elements on the properties of Zr and the Zr?H system, J. Nucl. Mater, vol.445, pp.241-250, 2014.

G. S. Was and R. S. Averback, Radiation damage using ion beams Vacancy clustering in zirconium: An atomic-scale study, Compr. Nucl. Mater. Acta Mater, vol.1, issue.78, pp.195-221, 2012.

H. Landolt and R. Börnstein, Landolt-Börnstein -Atomic defects in metals : Series III

]. L. Tournadre, Vers une meilleure compréhension des mécanismes de déformation par croissance libre sous irradiation des alliages de zirconium, Thèse de doctorat confidentielle, 2012.

]. R. Holt and R. W. Gilbert, ?????? Component dislocations in annealed Zircaloy irradiated at about 570 K, Journal of Nuclear Materials, vol.137, issue.3, pp.185-189, 1986.
DOI : 10.1016/0022-3115(86)90218-7

]. L. Tournadre, F. Onimus, J. Béchade, D. Gilbon, J. Cloué et al., Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys, Journal of Nuclear Materials, vol.441, issue.1-3, pp.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.05.045

F. Lefebvre, C. Lemaignan, C. Régnard-technique-confidentielle, and C. Grenoble, Analysis with heavy ions of the amorphisation under irradiation of Zr(Fe,Cr)2 precipitates in Zircaloy-4 Etude de la microstructure d'un tube de Zircaloy-4 irradié aux neutrons à 300°C, DTP/SECC In PWR comprehensive study of high burn-up corrosion and growth behaviour of M5® and recrystallized low-tin Zircaloy-4, Zirconium in the Nuclear Industry: Fifteenth International Symposium, ASTM STP 1505, pp.223-229, 1990.

]. S. Doriot, B. Verhaeghe, J. Béchade, D. Menut, D. Gilbon et al., Microstructural evolution of M5 TM alloy irradiated in PWRs up to high fluences -Comparison with other Zr base alloys Considérations sur la relation entre le fluage sous irradiation et dommages créés par l'irradiation en l'absence de contrainte, Zirconium in the Nuclear Industry: Seventeenth International Symposium, ASTM STP 1543 Modeling in-reactor deformation of Zr-2.5Nb pressure tubes in CANDU power reactors Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.759-799, 1971.

R. A. Holt-]-r, E. F. Holt, E. F. Ibrahim, R. A. Ibrahim, and . Holt, 5Nb pressure tubes Factors affecting the anisotropy of irradiation creep and growth of zirconium alloys Anisotropy of irradiation creep and growth of zirconium alloy pressure tubes Ion simulation of neutron irradiation growth and creep in Zr and Zr-2.5 wt% Nb at 314 K In-reactor deformation of zirconium alloy components, Zirconium in the Nuclear Industry: Fifth International Symposium, ASTM STP 1505, pp.182-214, 1979.

I. 6. References, G. E. Du-chapitre-franklin, A. L. Lucas, . V. Bement9-]-r, G. R. Hesketh et al., Creep of zirconium alloys in nuclear reactors ASTM Special Technical Publication 815 Application of the generalised theory of yielding creep to irradiation in zirconium alloys Mechanisms for the in-reactor creep of zirconium alloys Irradiation creep produced by the effect of stress on the nucleation of dislocation loops Interconnection between irradiation creep and interstitial loop formation in fcc metals Homogeneous nucleation of dislocation loops under stress in perfect crystals, J. Nucl. Mater. J. Nucl. Mater. Philos. Mag. J. Nucl. Mater. Philos. Mag. Lett, vol.412, issue.80, pp.160-77, 1967.

P. T. Heald and M. V. Speight, Steady-state irradiation creep, Philosophical Magazine, vol.29, issue.5, pp.1075-1080, 1974.
DOI : 10.1080/00337577108231003

P. T. Heald and M. V. Speight, Point defect behaviour in irradiated materials, Acta Metallurgica, vol.23, issue.11, pp.1389-1399, 1975.
DOI : 10.1016/0001-6160(75)90148-0

W. G. Wolfer and M. Ashkin, Diffusion of vacancies and interstitials to edge dislocations, Journal of Applied Physics, vol.29, issue.3
DOI : 10.1080/14786437408226592

. Appl, M. Phys, and . Ashkin, Stress-induced diffusion of point defects to spherical sinks, J, vol.4717, pp.791-800, 1976.

. Appl, . Phys18-]-r, J. R. Bullough, . R. Willis-]-p, S. D. Okamoto et al., The stress-induced point defect-dislocation interaction and its relevance to irradiation creep Stress-biased loop nucleation in irradiated type 316 stainless steel The effect of stress on the microstructure of neutron irradiated type 316 stainless steel Creep under irradiation of 316 steel in the high voltage electron microscope A reassessment of the role of stress in development of radiation-induced microstructure, Effects of Radiation on Structural Materials, ASTM STP 683, pp.547-557, 1973.

D. S. Gelles, F. A. Garner, and H. R. Brager, Frank Loop Formation in Irradiated Metals in Response to Applied and Internal Stresses, Effects of Radiation on Materials: Tenth conference, ASTM STP 725, pp.735-753, 1981.
DOI : 10.1520/STP28247S

F. A. Garner and D. S. Gelles, Irradiation creep mechanisms: An experimental perspective, Journal of Nuclear Materials, vol.159, issue.205, pp.286-309, 1988.
DOI : 10.1016/0022-3115(88)90098-0

E. <#>, Déformation sous flux des aciers austénitiques des structures internes des Réacteurs à Eau Pressurisée Irradiation creep of SA 304L and CW 316 stainless steels: Mechanical behaviour and microstructural aspects. Part I: Experimental results, Thèse de doctorat, Institut National Polytechnique de Grenoble, pp.161-63, 2007.

C. Xu and G. S. Was, Anisotropic dislocation loop distribution in alloy T91 during irradiation creep, Journal of Nuclear Materials, vol.454, issue.1-3, pp.255-264, 2014.
DOI : 10.1016/j.jnucmat.2014.07.062

]. S. Jitsukawa, Y. Katano, and K. Shiraishi, Effect of External Stress on Microstructural Change during Electron-Irradiation in Nickel, Journal of Nuclear Science and Technology, vol.78, issue.9, pp.671-677, 1984.
DOI : 10.1039/df9613100038

M. Griffiths and R. E. Smallman, Electron damage in zirconium, Journal of Nuclear Materials, vol.115, issue.2-3, pp.313-322, 1983.
DOI : 10.1016/0022-3115(83)90322-7

M. Griffiths, M. H. Loretto, and R. E. Smallman, Electron damage in zirconium, Journal of Nuclear Materials, vol.115, issue.2-3, pp.323-330, 1983.
DOI : 10.1016/0022-3115(83)90323-9

R. A. Holt and R. W. Gilbert, ?????? Component dislocations in annealed Zircaloy irradiated at about 570 K, Journal of Nuclear Materials, vol.137, issue.3, pp.185-189, 1986.
DOI : 10.1016/0022-3115(86)90218-7

T. A. Kenfield, H. J. Busboom, W. K. Appleby, V. N. Shishov, M. M. Peregud et al., In-reactor stress relaxation in bending of 20% cold-worked 316 stainless steel Influence of structure-phase state of Nb containing Zr alloys on irradiation-induced growth, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.238-243, 1977.

R. A. Fisher and F. Yates, Statistical tables for biological, agricultural and medical research, 1974.

K. C. Russell, Correlation of irradiation creep with experimental evidence The theory of void nucleation in metals Vacancy cluster: helium synergy in void nucleation, J. Nucl. Mater. Acta Metall. Metall. Mater. Trans. A, vol.90, issue.39, pp.175-192, 1978.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, The Royal Society, Proceedings A, 1957.

M. Priser, M. Rautenberg, J. Cloué, P. Pilvin, X. Feaugas et al., Multiscale analysis of viscoplastic behavior of recrystallized Zircaloy-4 at 400°C, Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, pp.269-297, 2010.

G. J. Carpenter, R. H. Zee, and A. Rogerson, Irradiation growth of zirconium single crystals: A review, Journal of Nuclear Materials, vol.159, pp.86-100, 1988.
DOI : 10.1016/0022-3115(88)90087-6

R. Brenner, F. Barbe, L. Decker, D. Jeulin, G. Cailletaud et al., Influence de la microstructure sur le comportement en fluage thermique d'alliages de zirconium: analyse expérimentale et mise en oeuvre des méthodes d'homogénéisation Intergranular and intragranular behavior of polycrystalline aggregates. Part 1 : FE model Intergranular and intragranular behavior of polycrystalline aggregates Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity, Thèse de doctorat, pp.513-536, 2001.

]. N. Letouzé, R. Brenner, O. Castelneau, J. Béchade, and M. H. Mathon, Residual strain distribution in Zircaloy-4 measured by neutron diffraction and estimated by homogenization techniques, Scripta Materialia, vol.47, issue.9, pp.595-599, 2002.
DOI : 10.1016/S1359-6462(02)00199-9

R. M. Hengstler-eger, Ion irradiation studies of the origins of Pressurized Water Reactor fuel assembly deformation, Thèse de doctorat, 2012.

F. Mardon, M. Onimus, . M. Kiritani4-]-n, S. Ghoniem, T. Sharafat et al., Présentation orale In-pile dimensional changes in neutron irradiated zirconium base alloys Analysis of the clustering process of supersaturated lattice vacancies A numerical solution of the Fokker-Planck equation describing the evolution of the interstitial loop microstructure during irradiation Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations Theory of irradiation deformation in non-cubic metals: effects of anisotropic diffusion Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach Dislocation bias in an anisotropic diffusive medium and irradiation growth, J. Nucl. Mater. J. Phys. Soc. Japan J. Nucl. Mater. J. Nucl. Mater. J. Nucl. Mater. J. Nucl. Mater. J. Nucl. Mater. J. Nucl. Mater, vol.59, issue.119, pp.61-76, 1973.

W. G. Wolfer, The Dislocation Bias, Journal of Computer-Aided Materials Design, vol.152, issue.70, pp.403-417, 1977.
DOI : 10.13182/NT78-2

N. Soneda, T. Diaz-de-la-rubia, Y. N. Osetsky, and D. J. Bacon, Defect production, annealing kinetics and damage evolution in ??-Fe: An atomic-scale computer simulation, Philosophical Magazine A, vol.199, issue.5, pp.995-1019, 1998.
DOI : 10.1016/0022-3115(93)90140-T

N. De-diego, A. Serra, D. J. Bacon, and Y. N. Osetsky, On the structure and mobility of point defect clusters in alpha-zirconium: a comparison for two interatomic potential models, Modelling and Simulation in Materials Science and Engineering, vol.19, issue.3, 2011.
DOI : 10.1088/0965-0393/19/3/035003

D. Kulikov and M. Hou, Vacancy dislocation loops in zirconium and their interaction with self-interstitial atoms, Journal of Nuclear Materials, vol.342, issue.1-3, pp.131-140, 2005.
DOI : 10.1016/j.jnucmat.2005.04.004

]. C. Varvenne, O. Mackain, and E. Clouet, Vacancy clustering in zirconium: An atomic-scale study, Acta Materialia, vol.78, pp.223-65, 2014.
DOI : 10.1016/j.actamat.2014.06.012

URL : https://hal.archives-ouvertes.fr/hal-01024423

]. C. Varvenne, F. Bruneval, M. C. Marinica, and E. Clouet, and elasticity approaches, Physical Review B, vol.88, issue.13, p.134102, 2013.
DOI : 10.1103/PhysRevB.86.144104

URL : https://hal.archives-ouvertes.fr/hal-00875386

]. R. Bullough, M. R. Hayns, and M. H. Wood, Sink strengths for thin film surfaces and grain boundaries, Journal of Nuclear Materials, vol.90, issue.1-3, pp.44-59, 1980.
DOI : 10.1016/0022-3115(80)90244-5

M. J. Norgett, M. T. Robinson, I. M. Torrens21-]-s, L. M. Wooding, F. Howe et al., A proposed method of calculating displacement dose rates A molecular dynamics study of high energy displacement cascades in ?-zirconium Temperature-dependence of defect creation and clustering by displacement cascades in ?-zirconium Computer simulation of displacement cascade effects in metals Rate theory cluster dynamics simulations including spatial correlations within displacement cascades, Nucl. Eng. Des. J. Nucl. Mater. J. Nucl. Mater. Radiat. Eff. Defects Solids Phys. Rev. B, vol.3323, issue.86 5, pp.50-54, 1975.

C. Hellio, C. H. Novion, L. Boulanger-osetsky, D. J. Bacon, and N. D. Diego, Influence of alloying elements on the dislocation loops created by Zr ion or by electron irradiation in ?-Zr Anisotropy of point defect diffusion in alphazirconium, J. Nucl. Mater. Metall. Mater. Trans. A, vol.159, issue.33, pp.368-378, 1988.

G. D. Samolyuk, A. V. Barashev, S. I. Golubov, Y. N. Osetsky, and R. E. Stoller, Analysis of the anisotropy of point defect diffusion in hcp Zr, Acta Materialia, vol.78, pp.173-180, 2014.
DOI : 10.1016/j.actamat.2014.06.024

S. Ishioka, M. Kiritani, N. Yoshida, H. Takata, and Y. Maehara, Random walk properties of lattices and correlation factors for diffusion via the vacancy mechanism in crystals Point defect diffusion in ?-Zr Growth of interstitial type dislocation loops and vacancy mobility in electron irradiated metals, J. Stat. Phys. J. Nucl. Mater. J. Phys. Soc. Japan, vol.30, issue.38 6, pp.477-485, 1975.

M. Griffiths and R. E. Smallman, Electron damage in zirconium, Journal of Nuclear Materials, vol.115, issue.2-3, pp.313-322, 1983.
DOI : 10.1016/0022-3115(83)90322-7

V. I. Dubinko, A. S. Abyzov, and A. A. Turkin, Numerical evaluation of the dislocation loop bias, Journal of Nuclear Materials, vol.336, issue.1, pp.11-21, 2005.
DOI : 10.1016/j.jnucmat.2004.07.034

Y. De-carlan, Contribution à l'étude des phénomènes d'accélération de la croissance en réacteur des alliages de zirconium -influence du fer sur la formation des boucles de dislocation de type <c> Influence of iron in the nucleation of c-component dislocation loops in irradiated Zircaloy-4, Thèse de doctorat Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.638-653, 1996.

E. V. Cantonwine and . Mader, Effect of alloying elements on the properties of Zr and the Zr?H system, J. Nucl. Mater, vol.445, pp.241-250, 2014.

A. T. Motta and C. Lemaignan, A ballistic mixing model for the amorphization in Zircaloy under neutron irradiation Rapid-pair enhanced diffusion in alpha-Zr and its integration into the point defect scenario in hcp metals, J. Nucl. Mater. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop, vol.195, issue.63, pp.277-285, 1991.

R. C. Pasianot, R. A. Pérez, V. P. Ramunni, and M. Weissmann, Ab initio approach to the effect of Fe on the diffusion in hcp Zr II: The energy barriers, Journal of Nuclear Materials, vol.392, issue.1, pp.100-104, 2009.
DOI : 10.1016/j.jnucmat.2009.03.051

E. Forlerer and C. Rodriguez, On the influence of iron on the Zr-? (hcp) self-diffusion, J. Nucl. Mater, vol.185, pp.167-173, 1991.

A. D. King, G. M. Hood, and R. A. Holt, Fe-enhancement of self-diffusion in ??-Zr, Journal of Nuclear Materials, vol.185, issue.2, pp.174-181, 1991.
DOI : 10.1016/0022-3115(91)90333-3

M. Griffiths, R. W. Gilbert, V. Fidleris, R. P. Tucker, and R. B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 k, Thèse de Doctorat, pp.159-168, 1974.
DOI : 10.1016/0022-3115(87)90071-7

P. T. Heald and M. V. Speight, Point defect behaviour in irradiated materials, Acta Metallurgica, vol.23, issue.11, pp.1389-1399, 1975.
DOI : 10.1016/0001-6160(75)90148-0

A. Ashkin and . Boltax, Creep and swelling deformation in structural materials during fast neutron irradiation, Properties of Reactor Structural Alloys After Neutron or Particle Irradiation, ASTM STP 570, American Society for Testing and Materials, pp.233-258, 1975.

W. G. Wolfer and M. Ashkin, Diffusion of vacancies and interstitials to edge dislocations, Journal of Applied Physics, vol.29, issue.3
DOI : 10.1080/14786437408226592

. Appl, M. Phys, and . Ashkin, Stress-induced diffusion of point defects to spherical sinks, J, vol.47, pp.791-800, 1976.

R. Bullough and J. R. Willis, The stress-induced point defect-dislocation interaction and its relevance to irradiation creep Prediction of irradiation creep from microstructural data, Philos. Mag. Scr. Metall, vol.31, issue.9, pp.225-855, 1975.

L. K. Garner, W. G. Wolfer, and H. R. Brager, Correlation of irradiation creep with experimental evidence Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects A reassessment of the role of stress in development of radiation-induced microstructure, Effects of Radiation on Structural Materials, ASTM STP 683, pp.175-192, 1979.

W. G. Wolfer, Fundamental Properties of Defects in Metals, Compr. Nucl. Mater, vol.1, pp.1-45, 2012.
DOI : 10.1016/B978-0-08-056033-5.00001-X

D. O. Northwood, I. M. London, and L. E. Bahen, Elastic constants of zirconium alloys, Journal of Nuclear Materials, vol.55, issue.3, pp.299-310, 1975.
DOI : 10.1016/0022-3115(75)90071-9

A. J. Rogerson63-]-g, R. H. Carpenter, A. Zee, and . Rogerson, Irradiation growth in zirconium and its alloys, Journal of Nuclear Materials, vol.159, issue.159, pp.43-61, 1988.
DOI : 10.1016/0022-3115(88)90084-0

G. J. Carpenter, R. A. Murgatroyd, A. Rogerson, J. F. Watters, M. Griffiths et al., Irradiation growth of zirconium single crystals, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, pp.28-37, 1981.
DOI : 10.1016/0022-3115(81)90441-4

]. P. Pilvin-]-f, P. Garzarolli, G. Dewes, H. Maussner, and . Basso, SiDoLo Version 2.4495 Notice d'utilisation Effects of high neutron fluences on microstructure and growth of Zircaloy-4, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, pp.641-657, 1989.

V. N. Shishov, M. M. Peregud, A. V. Nikulina, Y. V. Pimenov, G. P. Kobylyansky et al., Influence of structure-phase state of Nb containing Zr alloys on irradiation-induced growth, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.666-686, 2005.

M. Du, C. Macroscopique, . Sous, . Des, Z. A. De et al., Irradiation creep behavior of Zr-base alloys, Zirconium in the Nuclear Industry: Fifteenth International Symposium, ASTM STP 1505 Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.430-456, 2002.

]. D. Gilbon, A. Soniak, S. Doriot, and J. Mardon, Irradiation Creep and Growth Behavior, and Microstructural Evolution of Advanced Zr-Base Alloys, Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, pp.51-73, 2000.
DOI : 10.1520/STP14294S

]. V. Fidleris, R. P. Tucker, and R. B. Adamson, An Overview of Microstructural and Experimental Factors That Affect the Irradiation Growth Behavior of Zirconium Alloys, Zirconium in the Nuclear Industry: Seventh International Symposium, ASTM STP 939, pp.49-85, 1987.
DOI : 10.1520/STP28108S

G. Martin, J. P. Poirier, N. Christodoulou, A. R. Causey, R. A. Holt et al., Considerations sur la relation entre le fluage sous irradiation et les dommages crees par l'irradiation en l'absence de contrainte, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, pp.93-101, 1971.
DOI : 10.1016/0022-3115(71)90187-5

R. A. Holt, In-reactor deformation of cold-worked Zr???2.5Nb pressure tubes, Journal of Nuclear Materials, vol.372, issue.2-3, pp.182-214, 2008.
DOI : 10.1016/j.jnucmat.2007.02.017

]. G. Carpenter, R. A. Murgatroyd, A. Rogerson, J. F. Watters12-]-g, R. H. Carpenter et al., Irradiation growth of zirconium single crystals, Journal of Nuclear Materials, vol.101, issue.1-2, pp.28-37, 1981.
DOI : 10.1016/0022-3115(81)90441-4

]. A. Rogerson, Irradiation growth in zirconium and its alloys, Thèse de doctorat, pp.43-61, 1988.
DOI : 10.1016/0022-3115(88)90084-0

J. Lepape, A. Mardon, G. Thil, . A. Uny16-]-r, R. W. Holt et al., Interlaboratories tests of textures of Zircaloy-4 tubes Part 1: Pole figure measurements and calculation of Kearns coefficients C-component dislocations in neutron irradiated Zircaloy-2, Textures Microstruct. J. Nucl. Mater. J. Nucl. Mater, vol.12, issue.137, pp.125-140, 1983.

M. Griffiths, R. W. Gilbert, V. Fidleris, R. P. Tucker, and R. B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 k, Thèse de doctorat confidentielle, pp.159-168, 1987.
DOI : 10.1016/0022-3115(87)90071-7

]. R. Limon, S. Lehmann, R. Maury, J. Pelchat, and D. Nt, Mesure des coefficients d'élasticité et d'anisotropie plastique des tubes de gainage en Zircaloy-4 X1 Première phase Note technique confidentielle, CEA Saclay The effect of small concentrations of sulfur on the plasticity of zirconium alloys at intermediate temperatures, Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, pp.95-2135, 1995.

]. S. Carassou, C. Duguay, P. Yvon, F. Rozenblum, J. M. Cloué et al., REFLET Experiment in OSIRIS: Relaxation under flux as a method for determining creep behavior of Zircaloy assembly components, Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, pp.899-927, 2010.

]. P. Delobelle, P. Robinet, P. Geyer, P. L. Bouffioux26-]-j, S. Derep et al., A model to describe the anisotropic viscoplastic behaviour of Zircaloy-4 tubes, Journal of Nuclear Materials, vol.238, issue.2-3, pp.135-162, 1979.
DOI : 10.1016/S0022-3115(96)00450-3

. Rabouille, Experimental and modeling approach of irradiation defects recovery in zirconium alloys: impact of an applied stress, Zirconium in the Nuclear Industry: Fifteenth International Symposium, ASTM STP 1505, pp.674-695, 2008.

3. , D. /. , S. S. Doriot, B. Verhaeghe, J. Béchade et al., Etude de la microstructure d'un tube de Zircaloy-4 irradié aux neutrons à Note technique confidentielle, CEA Grenoble Microstructural evolution of M5 TM alloy irradiated in PWRs up to high fluences -Comparison with other Zr base alloys, Zirconium in the Nuclear Industry: Seventeenth International Symposium, ASTM STP 1543, pp.759-799, 1993.

]. F. Onimus, J. Béchade, C. Prioul, P. Pilvin, I. Monnet et al., Plastic deformation of irradiated zirconium alloys : TEM investigations and micro-mechanical modeling, Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, pp.53-78, 2005.

C. Cappelaere, R. Limon, C. Duguay, G. Pinte, M. L. Breton et al., Thermal creep model for CWSR Zircaloy-4 cladding taking into account the annealing of the irradiation hardening Effets de l'irradiation sur le Zircaloy, Mater. Nucl. Syst. Ann. Chim. Fr. REFERENCES BIBLIOGRAPHIQUES DES CONCLUSIONS ET DES PERSPECTIVES, vol.177, issue.268, pp.257-272, 1984.

]. J. Garnier, ]. J. Garnier, Y. Bréchet, M. Delnondedieu, C. Pokor et al., Irradiation creep of SA 304L and CW 316 stainless steels: Mechanical behaviour and microstructural aspects. Part I: Experimental results, Références bibliographiques des conclusions et des perspectives Déformation sous flux des aciers austénitiques des structures internes des Réacteurs à Eau Pressurisée Proceedings A Thèse de doctorat, pp.63-69, 1957.
DOI : 10.1016/j.jnucmat.2011.02.057

URL : https://hal.archives-ouvertes.fr/hal-00640097

. Dans-le-cadre-de-notre-Étude, des irradiations aux électrons de 1 MeV ont été conduites au Microscope Electronique à Très Haute Tension (THT) du SRMA (Figure D.1.1) Au cours de l'irradiation, nous mesurons le courant ? 6 recueilli sur l'écran. Connaissant l'aire ¢ ^ ~ du diaphragme de sélection d'aire$$? 6 , il est possible de calculer le flux des électrons incidents selon l'expression suivante

T. Pour-le, un courant moyen de 83 nA. L'aire du diaphragme ? 6 étant égale à 6,15×10 -9 cm², le flux moyen des électrons est de 8,43×10 19 e/cm²/s. En considérant une section efficace de 30 barn pour les électrons d'énergie de 1 MeV, nous déduisons à partir de l'équation Eq I.2

L. Boucles-de-dislocation and <. , que nous souhaitons imager ont un vecteur de Burgers de type < ! > ( ? 45 = @/3 < @@P A : >) Trois familles de boucles sont à distinguer selon que le vecteur de Burgers est suivant

. Pour-notre-Étude, les boucles de dislocation < ! > sont imagées avec un vecteur de diffraction de typê 5 = @@P A : afin d'

B. La-boucle, *. Se-situe-entres-les-plans-prismatiques, $. P@@:-+, and . @@, Nous notons que les boucles de dislocation < ! > ne sont pas rigoureusement situées dans les plans prismatiques de type$?@:@:?$mais qu'elles se situent entre les plans ?@:@:? et$$?@@P:?. Ce fait a été démontré par Jostsons, Kelly et Blake [4] ( § I.2.3.1, Figure I.2.4 (a) et Figure I.2.4 (b))

. Cette-Étude-permet-aussi-de-rendre-compte-de, orientation de la lame mince sur la proportion des boucles < ! > interstitielles et lacunaires. Pour des faibles valeurs de$$¹, les boucles de dislocation < ! > interstitielles et lacunaires coexistent Au-delà d'une valeur seuil d'environ 8°, la croissance des boucles < ! > lacunaires est favorisée par rapport à celle des boucles < ! > interstitielles. Cette valeur seuil est déduite des courbes de tendance représentées dans la Figure D.2.11. Comme ces courbes regroupent à la fois nos résultats issus des irradiations de Zircaloy-4 recristallisé TREX à 580°C et

M. Griffiths, M. H. Loretto, R. E. Smallman, C. Hellio, C. H. Novion et al., Anisotropic distribution of dislocation loops in HVEM irradiated Zr Etude par microscopie électronique à transmission des défauts induits par irradiation aux ions et aux électrons dans du zirconium pur et quatre de ces alliages Influence of alloying elements on the dislocation loops created by Zr ion or by electron irradiation in ?-Zr The nature of dislocation loops in neutron irradiated zirconium The characterization of dislocation loops in neutron irradiated zirconium Approche expérimentale et modélisation micromécanique du comportement en fluage des alliages de zirconium irradiés Characterization of neutron irradiation damage in zirconium alloys -An international 'Round-Robin' experiment Electron damage in zirconium -I. Defect structure and loop character, Thèse de doctorat Thèse de doctorat confidentielle, pp.613-624, 1973.