Skip to Main content Skip to Navigation

Edge computing-based access network selection for heterogeneous wireless networks

Yue Li 1, 2
Abstract : Telecommunication network has evolved from 1G to 4G in the past decades. One of the typical characteristics of the 4G network is the coexistence of heterogeneous radio access technologies, which offers end-users the capability to connect them and to switch between them with their mobile devices of the new generation. However, selecting the right network is not an easy task for mobile users since access network condition changes rapidly. Moreover, video streaming is becoming the major data service over the mobile network where content providers and network operators should cooperate to guarantee the quality of video delivery. In order to cope with this context, the thesis concerns the design of a novel approach for making an optimal network selection decision and architecture for improving the performance of adaptive streaming in the context of a heterogeneous network. Firstly, we introduce an analytical model (i.e. linear discrete-time system) to describe the network selection procedure considering one traffic class. Then, we consider the design of a selection strategy based on foundations from linear optimal control theory, with the objective to maximize network resource utilization while meeting the constraints of the supported services. Computer simulations with MATLAB are carried out to validate the efficiency of the proposed mechanism. Based on the same principal we extend this model with a general analytical model describing the network selection procedures in heterogeneous network environments with multiple traffic classes. The proposed model was, then, used to derive a scalable mechanism based on control theory, which allows not only to assist in steering dynamically the traffic to the most appropriate network access but also helps in blocking the residual traffic dynamically when the network is congested by adjusting dynamically the access probabilities. We discuss the advantages of a seamless integration with the ANDSF. A prototype is also implemented into ns-3. Simulation results sort out that the proposed scheme prevents the network congestion and demonstrates the effectiveness of the controller design, which can maximize the network resources allocation by converging the network workload to the targeted network occupancy. Thereafter, we focus on enhancing the performance of DASH in a mobile network environment for the users which has one access network. We introduce a novel architecture based on MEC. The proposed adaptation mechanism, running as an MEC service, can modify the manifest files in real time, responding to network congestion and dynamic demand, thus driving clients towards selecting more appropriate quality/bitrate video representations. We have developed a virtualized testbed to run the experiment with our proposed scheme. The simulation results demonstrate its QoE benefits compared to traditional, purely client-driven, bitrate adaptation approaches since our scheme notably improves both on the achieved MOS and on fairness in the face of congestion. Finally, we extend the proposed the MEC-based architecture to support the DASH service in a multi-access heterogeneous network in order to maximize the QoE and fairness of mobile users. In this scenario, our scheme should help users select both video quality and access network and we formulate it as an optimization problem. This optimization problem can be solved by IBM CPLEX tool. However, this tool is time-consuming and not scalable. Therefore, we introduce a heuristic algorithm to make a sub-optimal solution with less complexity. Then we implement a testbed to conduct the experiment and the result demonstrates that our proposed algorithm notably can achieve similar performance on overall achieved QoE and fairness with much more time-saving compared to the IBM CPLEX tool.
Complete list of metadatas

Cited literature [108 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, December 12, 2017 - 12:03:39 AM
Last modification on : Tuesday, October 20, 2020 - 11:03:38 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01661436, version 1


Yue Li. Edge computing-based access network selection for heterogeneous wireless networks. Networking and Internet Architecture [cs.NI]. Université Rennes 1, 2017. English. ⟨NNT : 2017REN1S042⟩. ⟨tel-01661436⟩



Record views


Files downloads