Paramétrisations stochastiques de processus biogéochimiques non résolus dans un modèle couplé NEMO/PISCES de l'Atlantique Nord : Applications pour l'assimilation de données de la couleur de l'océan

Résumé : En dépit de progrès croissants durant la dernière décennie, la complexité des écosystèmes marins est encore imparfaitement simulée par les modèles.Les formulations des processus biogéochimiques sont en général établies de manière empirique et contraintes par une multitude de paramètres.Il est ainsi généralement admis que leurs incertitudes impactent fortement l'estimation de la production primaire, dont le rôle dans le cycle du carbone est primordial.Analyser les impacts de l'incertitude des modèles est donc nécessaire pour améliorer la représentation des caractéristiques biogéochimiques de l'océan.Dans le contexte d'assimilation de données de la couleur de l'océan, la définition des erreurs de prévision représente de plus un important verrou aux performances des systèmes.Ces points seront analysés dans cette thèse. L'objectif sera d'examiner, dans un contexte de modélisation/assimilation, la pertinence d'utiliser une approche probabiliste basée sur une simulation explicite des incertitudes biogéochimiques du modèle couplé au 1/4° NEMO/PISCES sur l'océan Atlantique Nord.A partir d'une simulation déterministe du modèle PISCES, nous proposerons une méthode pour générer des processus aléatoires, AR(1), permettant d'inclure des structures spatiales et temporelles de corrélations.A chaque pas de temps, ces perturbations aléatoires seront ensuite introduites dans le modèle par l'intermédiaire de paramétrisations stochastiques.Elles simuleront 2 différentes classes d'incertitudes: les incertitudes sur les paramètres biogéochimiques du modèle et les incertitudes dues aux échelles non résolues dans le cas d'équations non linéaires. L'utilisation de paramétrisations stochastiques permettra ainsi d'élaborer une version probabiliste du modèle PISCES, à partir de laquelle nous pourrons réaliser une simulation d'ensemble de 60 membres.La pertinence de cette simulation d'ensemble sera évaluée par comparaison avec les observations de la couleur de l'océan SeaWIFS. Nous montrerons en particulier que la simulation d'ensemble conserve les structures de grande échelle présentes dans la simulation déterministe.En utilisant les distributions de probabilité définies par les membres de l'ensemble, nous montrerons que l'ensemble capture l'information des observations avec une bonne estimation de leurs statistiques d'erreur (fiabilité statistique). L'intérêt de l'approche probabiliste sera ainsi d'abord évalué dans un contexte de modélisation biogéochimique.
Type de document :
Thèse
Océanographie. Université Grenoble Alpes, 2016. Français. 〈NNT : 2016GREAU044〉
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01661414
Contributeur : Abes Star <>
Soumis le : lundi 11 décembre 2017 - 23:30:58
Dernière modification le : mardi 29 mai 2018 - 12:50:25

Fichier

GARNIER_2016_diffusion.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01661414, version 1

Collections

STAR | OSUG | LGGE | UGA | INSU

Citation

Florent Garnier. Paramétrisations stochastiques de processus biogéochimiques non résolus dans un modèle couplé NEMO/PISCES de l'Atlantique Nord : Applications pour l'assimilation de données de la couleur de l'océan. Océanographie. Université Grenoble Alpes, 2016. Français. 〈NNT : 2016GREAU044〉. 〈tel-01661414〉

Partager

Métriques

Consultations de la notice

420

Téléchargements de fichiers

68