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jury. Un merci tout particulier à Michel Ferreira Abdalla et Refik Molva d’avoir accepté d’être les
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Cyrille, le meilleur co-bureau qu’un thésard puisse espérer. Merci à toi mon ami pour toute l’aide

que tu m’as apporté, nos fou-rires et nos chants. La meilleure ambiance était chez nous à ne pas
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Résumé en français

Protocoles AKE

La transmission de données personnelles entre deux entités à travers un canal non sécurisé comme

Internet ou les voix radios au sein des réseaux mobiles, est l’un des enjeux majeurs en cryptogra-

phie. L’établissement d’un canal sécurisé permet d’échanger des données sensibles en garantissant

leurs confidentialités et intégrités durant leurs échanges. Dans le but de garantir ses propriétés,

l’utilisation de primitives cryptographiques telles que des algorithmes de chiffrement authentifié,

est requise. Ses algorithmes nécessitent que les deux entités possèdent une clef secrète au préalable

échangée. Par conséquent, un échange au préalable de clefs entre les deux entités doit être effectué

entre les deux entités afin d’établir le canal sécurisé. L’établissement d’un canal sécurisé se repose

sur l’exécution d’un protocole d’échange de clefs authentifiés, appelé AKE (Authenticated Key

Exchange).

Propriétés de sécurité classiques. Les protocoles AKE exécutés entre deux entités doivent garan-

tir l’établissement d’un canal sécurisé, à travers l’échange d’une ou plusieurs clefs temporaires

(autrement appelées clefs de sessions), en considérant la présence potentielle d’un adversaire de

type ”Homme-du-Milieu” (MitM) capable d’observer et d’intercepter l’ensemble des commu-

nications entre ses entités. Cet attaquant peut être soit passif (espionnant les communications

échangées) ou actif (capable de stopper, réordonner et injecter les messages de son choix). Con-

sidérant les adversaires de type MitM, les protocoles AKE doivent garantir les propriétés suivantes:

• La confidentialité des clefs de sessions échangées : un adversaire ne peut pas obtenir la

moindre information à propos des clefs de sessions durant leur établissement.

• La confidentialité des secrets permanents : un adversaire ne peut pas obtenir la moin-

dre information à propos des informations secrètes permanentes qui sont utilisées durant

l’exécution du protocole.

• L’authentification : toutes les entités qui doivent être authentifiés durant le protocole AKE

ne peuvent pas être impersonnifiées par un adversaire.

• La ”non-rejouabilité” des messages : cette propriété requit la fraicheur des messages échangés

durant l’exécution du protocole AKE.

Une propriété supplémentaire primordiale : le respect de la vie privée. La notion de vie privée

peut prendre différent sens, comme le soulignent Pftzmann et Hansen [95]. Dans ce manuscrit, les

notions qui seront utilisées, sont celles qui sont habituellement utilisées pour étudier les protocoles

d’authentification et de dérivations de clefs, e.g., la confidentialité de données caractéristiques des

utilisateurs, et de traçabilité. Les utilisateurs sont tous caractérisés par des données personnelles

permanentes qui les caractérisent telles qu’un identifiant, des états, une localisation etc. Un pre-

mier niveau de respect de la vie privée des utilisateurs est garanti par une propriété consistant à
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assurer la confidentialité de l’ensemble de ses données. Cette propriété est essentiellement cap-

turée par l’incapacité pour un attaquant de type ”Homme-du-Milieu” d’obtenir de l’information à

propos de données caractéristiques des utilisateurs. La non traçabilité des utilisateurs est la notion

la plus forte, qui en plus de considérer la confidentialité des données usagers, considère qu’un

attaquant ne peut pas tracer un utilisateur, ce qui est potentiellement possible même sans avoir des

informations sur ses données permanentes. En effet, par exemple, en reliant certaines informations

temporelles, le profil de l’utilisateur pourrait être retrouvé.

Typiquement, les protocoles AKE requièrent la garantie de non traçabilité des utilisateurs,

qui est globalement définit par le fait qu’aucun adversaire n’est capable de distinguer si deux

exécutions distinctes du protocole ont impliqué le même client ou deux clients distincts. Dans

ce manuscrit, la non traçabilité des utilisateurs sera étudiée en considérant les attaquants de type

”Homme-du-Milieu”. Une garantie plus forte, vus comme un anonymat total des utilisateurs, se

base sur le fait que même un honnête participant ne peut pas tracer l’identité des autres participants

au sein des communications. Une telle propriété pourrait être atteinte, dans une certaine mesure,

si le protocole AKE reposait sur une authentification basée sur un groupe, comme par exemple les

signatures de groupe.

Sécurité Prouvable. Étudier la sécurité des protocoles cryptographiques (plus précisément les

protocoles AKE) est essentiel. De tels protocoles ont été définis sans nécessairement avoir une

analyse de sécurité fiable. La sécurité prouvable est un outil générique et mathématiques pour

étudier la sécurité des protocoles en considérant l’ensemble des adversaires potentiels définis

au sein d’un modèle de sécurité. Ce modèle définit les capacités des adversaires et fournit une

définition formelle des différentes notions de sécurité requises par le protocole étudiée. Définit

durant les années 80, il y a globalement deux approches pour formaliser la sécurité : soit on utilise

le modèle calculatoire soit le modèle formel. Bien que l’approche des méthodes formelles présente

de nombreux avantages, un inconvénient important reste présent : il ne prend pas en compte la

sécurité des primitives sous-jacentes ainsi que la taille des paramètres du protocole. Cela signifie

que la preuve obtenue par un modèle formel n’est pas facile à quantifier à partir du moment où

en pratique les primitives cryptographiques ne sont pas idéalisées et la taille des paramètres est

indispensable pour évaluer la sécurité d’un protocole. Par conséquent, il nous semble préférable

d’utiliser un modèle et des preuves calculatoires afin de pouvoir fournir une analyse de sécurité

des protocoles aussi proche que possible de la réalité.

Contexte de nos recherches

Nos recherches se focalisent sur une utilisation spécifique des protocoles AKE, où un serveur

mandataire est requis entre le client et le serveur. Un serveur mandataire peut être requis pour

différentes raisons d’ordre pratiques telles que l’éloignement géographique entre le client et le

serveur, le cout et la latence des communications, etc. La présence d’une telle troisième entité

intermédiaire qui acte au sein des communication entre client et serveur impliquent différentes

modifications à la fois au niveau de l’établissement du canal sécurisé mais aussi au niveau des

communications au sein du canal sécurisé. Ce serveur mandataire est considéré comme un four-

nisseur local de services délégué par le serveur afin de gérer localement un certain nombre de

services pour un certain nombre de clients. De plus, la présence d’un serveur mandataire implique

de nouvelles considérations (propriétés et adversaire) sur la sécurité. En pratique, le serveur man-

dataire n’est pas forcément considéré comme une entité de confiance totale (comme le serveur

principal). Ainsi, nous considérerons les serveurs mandataires comme des entités partiellement

de confiance, qui peuvent être potentiellement malicieuses, i.e., qu’elles peuvent vouloir obtenir

des informations supplémentaires ou acquérir une autonomie par rapport au serveur, supérieure à
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ce qui lui a été autorisé. En ce qui concerne les protocoles étudiés dans ce manuscrit, nous con-

sidérerons que les serveurs mandataires malicieux ont pour objectif d’apprendre de l’information

à propos des clients et serveurs, ainsi que de les impersonnifier sans en avoir l’autorisation. Le

canal sécurisé est souvent établi entre le serveur mandataire et le client, avec l’aide du serveur

principal. Dans notre manuscrit, nous nous sommes focalisés sur deux types de protocoles AKE

en particulier : les protocoles AKA utilisés au sein des réseaux mobiles 3G et 4G afin de sécuriser

la voix radio, ainsi que le protocole TLS dans le cas spécifique où celui-ci requière un serveur

mandataire. Dans cette section, nous fournissons différentes informations concernant le contexte

d’utilisation de ces différents protocoles.

Réseaux Mobiles. Au sein des réseaux mobiles 3G et 4G, les protocoles AKA (Authenticated

Key Agreement) sont typiquement utilisés entre deux entités : un client mobile et son propre

opérateur. Un des objectifs principaux pour les opérateurs est de fournir un certains nombres

de services (appels téléphoniques, envoie de SMS, connections internet etc.) à l’ensemble de

ses clients, peu importe leurs localisations. En pratique, une troisième entité, que l’on appellera

fournisseur local de services est requise. Les communications entre le fournisseur local de services

et un client mobile sont exécutées à travers un canal publique à base d’ondes radios, alors que les

communications entre le fournisseur et l’opérateur se situent au sein d’un cœur de réseau sécurisé.

Pour une question de sécurité, certains services ne peuvent être fournis qu’au sein d’un canal

sécurisé. Par conséquent, il est indispensable de sécuriser les communications de la voix radio.

C’est là que les protocoles AKA interviennent. Nous précisons qu’au sein des architectures 3G et

4G, un certain nombre d’entités passives actes durant l’exécution des protocoles AKA. Néanmoins,

ces entités ne font que de la retransmission de messages sans modifier leurs contenus.

Le fournisseur local de services n’est pas toujours une entité de confiance, pour les clients

mobiles et les opérateurs. D’un point de vue géographique, on considère que le client a deux

possibilités : soit il se situe au sein du réseau mobile géré par son propre opérateur, soit au sein

de celui d’un autre opérateur. Dans le premier cas, le fournisseur local de services est géré par

l’opérateur du client, et dans ce cas, il est considéré de confiance par l’opérateur. Dans le second

cas, quand le client est en situation d’itinérance, les services sont fournis par une entité locale

gérée par l’opérateur local, qui est différent de l’opérateur du client. Par conséquent, dans le cas de

l’itinérance, le fournisseur local de services ne peut être considéré que partiellement de confiance,

malgré les différents accords d’itinérances établis entre les différents opérateurs. L’opérateur fait

confiance aux fournisseurs local de services uniquement pour fournir certains services à ces clients

en itinérance, mais il doit se prémunir d’un éventuel comportement malicieux de leurs parts, ayant

pour objectif d’obtenir des informations secrètes concernant les clients mobiles. A contrario,

les fournisseurs requièrent différentes informations temporelles, telles que des clefs de sessions

indispensable afin de sécuriser la voix radio.

Délégation de livraison de services. Le protocole HTTPS (HyperText Transfer Protocol Secure)

est utilisé afin de sécuriser les communications entre un navigateur web (le client) et un site In-

ternet (le serveur), en utilisant le protocole TLS (Transport Layer Security). Ce dernier garantit

la confidentialité et l’intégrité des données échangées. TLS est un protocole asymétrique exécuté

entre deux entités, le client et le serveur. Si les deux entités sont éloignées d’un point de vue

géographique, une certaine latence des communications apparait, i.e., le transfert des données

sera lent quelques soient les possibilités de routage. Une des approches pour atténuer cette la-

tence, consiste en la délégation de livraison de services, dénommée CDN (Content Delivery Net-

work), nécessitant un réseau de serveurs mandataires locales à proximité des clients. Le serveur

mandataire stockera et délivra les services aux clients qui sont à proximité à la place du serveur

principal. L’architecture CDN implique d’avoir une totale confiance envers les serveurs man-

dataires, à partir du moment où l’ensemble des informations (notamment celles requissent pour
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établir le canal TLS) requissent pour délivrer les services délégués par le serveur doivent être

stockés au sein de ses serveurs mandataires. De plus, la présence d’une telle entité implique cer-

taines problématiques génériques pour la divulgation inconditionnelle du trafic des clients vers les

serveurs, et plus globalement, pour la sécurité globale des protocoles qui sécurisent les communi-

cations entre le client et le serveur. Les serveurs mandataires sont souvent vus comme indésirable

d’un point de vue de la sécurité, ainsi que pour le respect de la vie privée des clients.

CloudFlare propose une variante aux CDNs, appelée Keyless SSL [101], qui améliore la la-

tence et atténue certains risques, en particulier lorsque les serveurs principaux ne souhaitent pas

que les serveurs mandataires possèdent et utilisent des informations secrètes longues durées (clefs

secrètes etc.) en leurs noms. Dans ce cas, le protocole TLS est modifié et exécuté en tenant compte

de cette troisième entité intermédiaire (le serveur mandataire) et de son potentiel malicieux. En

effet, les serveurs mandataires ne sont pas nécessairement de confiance, et leurs possibles com-

portements malicieux doivent être pris en compte.

État de l’art

Sécurisation de la voix radio des réseaux mobiles. Les protocoles AKA, apellés UMTS-AKA et

EPS-AKA, sont utilisés respectivement au sein des réseaux mobiles 3G et 4G afin de sécuriser la

voix radio en établissant un canal sécurisé entre le client mobile et le fournisseur local de services.

Pour cela, une authentification mutuelle des deux entités ainsi qu’un échange de clefs de sessions

sont nécessaires. La sécurité des protocoles AKE, classiquement éxécutés entre deux entités, fut

introduite par Bellare et Rogaway [40]. Sachant que les protocoles AKA requiérent une troisième

entité et que celle-ci est active dans l’établissement du canal sécurisé, le modéle de sécurité clas-

sique fourni par Bellare et Rogaway [40] et l’extension proposée par Bellare, Pointcheval et

Rogaway (BPR) [39] ne peuvent pas être directement importés pour modéliser la sécurité des pro-

tocoles AKA. Par conséquent, le manque d’un modèle de sécurité calculatoire complet et précis

prenant en compte l’ensemble des caractéristiques des protocoles AKA, implique l’impossibilité

de fournir une analyse de sécurité calculatoire de ses protocoles.

Cela fait plus de 15 ans que la première version du protocole AKA (UMTS-AKA) est utilisée,

ce qui explique pourquoi une large littérature éxiste autour de la sécurité de ce protocole. Un im-

portant résultat sur les propriétés d’authentification mutuelle et sur l’indistinguabilité des clefs de

sessions établies, a été proposé par Zhang, et Zhang et al. [?, 109]. Ils y décrivent différentes faib-

lesses remettant au cause ces propriétés de sécurité. Ces faiblesses sont basées sur la corruption des

fournisseurs locaux de services et sur des attaques par rejeu. Ils proposent ainsi certaines contre-

mesures. Malheureusement, ces dernières sont encore vulnérable à un certain nombre d’attaques

et les contre-mesures proposées ne prennent pas en compte les considérations pratiques.

Les protocoles AKA sont instantiés avec deux ensembles d’algorithmes cryptographiques :

TUAK and MILENAGE. Mise à part une étude de Gilbert [70] qui fournit une étude hors-contexte

de la sécurité des algorithmes de MILENAGE montrant qu’ils fonctionnent globalement comme

un mode compteur sur l’algorithme AES qui dérive successivement différentes clefs, il n’est pas

clair que les propriétés prouvées d’indistinguabilité sont vraiment utiles pour garantir la sécurité

des protocoles AKA. De plus, pour autant que nous le sachions, la sécurité des algorithmes TUAK

n’a jamais été étudié.

Des preuves de sécurité des protocoles AKA ont été proposé dans plusieurs papiers [30, 109],

spécialement quand ils sont instanciés avec les algorithmes MILENAGE. Les résultats les plus

pertinents utilisent des outils automatiques de vérification formelle afin de proposer une preuve de

sécurité. Ces outils se reposant sur des modèles formelles, ces preuves ne sont pas facile à quan-

tifier, au vus des approximations établies autour des paramètres et algorithmes cryptographiques.
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Nous considérons que seule une analyse calculatoire peut fournir une analyse de sécurité complète

et fiable en considérant les différentes caractéristiques des protocoles AKA (primitives cryp-

tographiques, tailles de paramètres, utilisation d’états etc.).

La majeure partie des papiers concernant les protocoles AKA se focalisent sur l’analyse du re-

spect de la vie privée des clients mobiles. Trois principales attaques ont été établies : les attaques

basées sur les IMSI catcher [62], IMSI paging [97,98], et sur l’impersonification des fournisseurs

locaux de services par corruption [?]. Ces attaques prouvent que durant l’éxécution des protocoles

AKA, le niveau de respect de la vie privée des clients mobiles est insuffisant. De plus, plusieurs

autres vulnérabilités e.g. [?, 30, 33, 87, 103, 108] montrent que les protocoles AKA ne respectent

les notions de respect de vie privée standardisées par le 3GPP. De telles vulnérabilités rendent pos-

sibles l’espionnage et la surveillance de masse illicites, et plus spécialement donnent la possibilité

à des attaquants d’identifier et de tracer les clients mobiles.

Les deux versions (3G et 4G) des protocoles AKA étant assez similaires, le protocole EPS-

AKA est souvent vus comme aussi faible, d’un point de vue sécurité et respect de la vie privée des

clients mobiles, que le protocole UMTS-AKA. A notre connaissance, aucune analyse ne compare

la sécurité et le respect de la vie privée des clients mobiles de ses deux protocoles.

Établissement d’un canal sécurisé dans le cadre des délégations de livraison de services web.

Au vus des nombreuses utilisations et de son architecture non-orthodoxe, l’ensemble des ver-

sions du protocole TLS ont fait l’objet de nombreuses analyses de sécurité, pour n’en citer que

quelqu’uns [24–28, 34, 36, 46–50, 54, 58, 61, 67, 69, 71, 74, 75, 79, 81, 83, 84, 89, 94, 105, 107].

La dernière version de TLS (1.3) est actuellement en cours de standardisation, et est conçue

pour éviter les nombreuses faiblesses présentes dans les différentes versions du protocole. La

dernière version de TLS 1.3 est disponible sur le lien suivant : https://tlswg.github.

io/tls13-spec/.

Traditionnellement, les communications sécurisées sont établies en utilisant des protocoles

d’authentification et d’échanges de clefs (AKE) comme détaillés dans les modéles de sécurité

[39, 40, 56]. Néanmoins, TLS ne peut pas garantir la sécurité AKE traditionnelle à cause de cer-

taines caractéristiques [73, 81] du protocole notamment du au chiffrement des derniers messages

du protocole TLS. Par conséquent, une propriété de sécurité plus faible a été formalisé, denommé

ACCE (Authenticated and Confidential Channel Establishment), qui fournit une spécification

cryptographique précise pour TLS. Krawczyk, Paterson, et Wee [81] ont prouvé la sécurité de

TLS 1.2 quand l’authentification mutuelle est requise. Les premières versions de TLS 1.3 ont

aussi été analysés avec des modéles de sécurité proches du modéle ACCE [61, 82].

Les scénarios nécessitant une troisième entité intermédiaire active dans l’exécution du proto-

cole TLS n’ont pas reçu autant d’attention que le protocole TLS exécuté classiquement entre deux

entités. A notre connaissance, aucun modèle de sécurité n’a été proposé, adaptant le modèle de

sécurité ACCE, pour un modèle de sécurité incluant les spécificités dues à la troisième entité.

Dans le contexte de la délégation de livraison de services web, deux variantes aux architec-

tures CDN furent proposées: Keyless SSL [101] et mcTLS [91]. Ces deux variantes ont pour

but de sécuriser les communications entre le client et le serveur de manière plus efficace que de

sécuriser indépendamment les communications entre client et serveur mandataire, et entre serveur

mandataire et serveur. Autant que nous le sachions, seulement un papier [101] a analysé la sécurité

l’architecture Keyless SSL. Stebila et Sullivan ont fourni une description, une liste informelle des

notions de sécurité que Keyless SSL doit garantir, ainsi qu’une étude de la performance de cette

nouvelle architecture afin de voir l’amélioration de la latence par rapporte aux architectures CDN.

Malheureusement, aucune analyse calculatoire ou formelle de sécurité n’a été proposé.

Une seconde architecture, appelée mcTLS, a été proposé afin de proposer une seconde alterna-

tive à base de serveurs mandataires. Dans cette variante, le protocole TLS est modifié afin que le

client et le serveur puissent s’accorder explicitement sur la délégation des autorisations de lectures

https://tlswg.github.io/tls13-spec/
https://tlswg.github.io/tls13-spec/
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et d’écritures des serveurs mandataires intermédiaires.

Contributions

Dans le but d’analyser la sécurité de l’ensemble de ses protocoles d’authentification et de dérivations

de clefs, les modèles de sécurité doivent être établis en prenant en compte l’ensemble des car-

actéristiques de ces protocoles, et notamment l’utilisation active et la sécurité de la troisième

entité intermédiaire. Dans un premier temps, nous fournissons un nouveau modèle de sécurité

AKE qui considère la troisième entité intermédiaire actif dans les communications client-serveur,

comme une important part du modèle. Les propriétés de sécurité de ses protocoles, au sein de

ce nouveau modèle, sont établies en considérant à la fois les adversaires de type ”Homme-du-

Milieu”, i.e. l’indistinguabilité des clefs ainsi que la non-impersonification des entités qui doivent

être authentifié, et le potentiel comportement malicieux des fournisseurs de services locales, i.e.

la confidentialité des clefs de sessions ainsi que le maintien d’une certaine dépendance de ses en-

tités envers les serveurs principaux. Dans un second temps, un premier modèle de sécurité ACCE,

généralisant le modèle ACCE en deux entités pour les protocoles qui font intervenir un serveur

mandataire intermédiaire actif dans les communications client-serveur. Ce modèle de sécurité

intègre différentes notions de sécurité, les classiques, i.e. l’authentification des différentes entités

ainsi que la sécurité du canal établi, mais aussi deux autres propriétés provenant du serveur man-

dataire, qui garantissent que le serveur mandataire ne puisse pas être plus dépendant que ce que

serveur lui autorise (accountability and content soundness).

Dans ce manuscrit, nous fournissons une analyse de sécurité de différents protocoles d’authen-

tification et de dérivations de clefs en trois entités dans différents contextes : les protocoles AKA

utilisés au sein des réseaux mobiles, et Keyless SSL utilisés au sein des communications entre un

navigateur et un serveur web. Nous insistons sur le fait que de telles analyses sont indispensables

vus que ces protocoles sont déjà implémentés et utilisés au quotidien. Nous fournissons une anal-

yse de sécurité complète du protocole UMTS-AKA et nous prouvons que ce protocole atteint la

sécurité AKE désirée à partir du moment où les fournisseurs locaux de services ne sont pas corrupt-

ibles. De plus, nous analysons la sécurité du protocole EPS-AKA afin de voir s’il garantit plus ou

moins les mêmes notions de sécurité que le protocole UMTS-AKA. Nous utilisons une approche

modulaire à base de réductions afin d’établir la sécurité de ses deux protocoles : dans un premier

temps, nous prouvons la sécurité de ses protocoles est atteinte sous la condition que l’ensemble

des primitives cryptographiques utilisées sont pseudo-aléatoires, et dans un second temps, nous

vérifiions que les deux instantiations possibles (TUAK et MILENAGE) peuvent atteindre une telle

propriété. Nous proposons (à notre connaissance) la première analyse calculatoire complète et

rigoureuse des protocoles AKA et de leurs deux instantiations. Finalement, nous fournissons une

analyse de sécurité du protocole Keyless SSL en capturant les différentes caractéristiques dues à

la délégation de services à un serveur mandataire. Notre analyse souligne différentes faiblesses de

sécurité et ainsi que des problématiques pratiques. Ainsi, nous proposons une nouvelle version de

Keyless SSL qui garantit une meilleure sécurité dans le nouveau modèle 3ACCE.

Une propriété transverse à la sécurité mais indispensable au sein des réseaux mobiles est le

respect de la vie privée des clients mobiles. Considérant les nombreuses faiblesses remettant en

cause le respect de la vie privée des clients mobiles, notamment celles permettant la surveillance de

masse et la traçabilité, durant l’éxécution des protocoles AKA, Van Den Broek et al. [104] et Ara-

pinis et al. [31] ont proposé respectivement des variantes des protocoles AKA. Nous utilisons une

approche calculatoire afin de prouver que l’ensemble de ses variantes échouent encore pour garan-

tir le respect de la vie privée des clients mobiles. Nous proposons des améliorations qui garan-

tissent l’ensemble des propriétés liées à la vie privée des clients mobiles définis par le 3GPP, en

considérant les attaquants de type ”Homme-du-Milieu”. De plus, nous prouvons que nos variantes



11

sont optimales d’un point de vue de la sécurité et du respect de la vie privée des clients mobiles, à

partir du moment où la structure globale de ces protocoles est maintenue. Dans ce sens, nos vari-

antes sont optimales. Nos variantes prennent également en compte les problématiques pratiques

liées au contexte des réseaux mobiles (coût élevé des communications au sein de l’équipement mo-

bile et du cœur de réseau, la confiance limitée envers les fournisseurs locaux de services dans le cas

de l’itinérance etc.) . Cependant, certaines exigences telles que les interceptions légales doivent

également être prises en considération pour une éventuelle normalisation. Afin de répondre à ces

différentes exigences additionnelles, deux variantes supplémentaires ont été proposées pour une

éventuelle standardisation au sein des réseaux mobiles actuels (3G et 4G) et futurs (5G).

La majeure partie de ces résultats ont fait (font) l’objet de publications au sein de conférences

et journaux.
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1.1 AKE Protocols

Transmitting private data between two parties across an insecure channel as Internet or radio-

frequency channel, is a fundamental goal in cryptography. The establishment of a secure chan-

nel permits to exchange sensitive data providing confidentiality and integrity services on the ex-

changed data. In order to provide these services, cryptographic primitives are required, e.g., au-

thenticated encryption algorithms. These algorithms require both parties to have pre-exchanged a

key, to be applied. Thus, an handshake of temporary/session key is required to establish the secure

channel. This handshake is provided by Authenticated Key Exchange (AKE) protocol.

Classical Security Requirements. Two-party AKE protocols must guarantee the establishment of

a secure channel, by a key agreement, even in the presence of a powerful Man-in-the-Middle ad-

versary (MitM), capable of observing and intercepting all the communication across the network.

The attacker may be either passive (merely eavesdropping on exchanged messages) or active (able

to stop, reorder, or inject messages of his choice). These protocols must guarantee the following

properties in the presence of such MitM attackers:

• The confidentiality of the exchanged session key: an adversary cannot obtain any informa-

tion on the current session key during the agreement.

• The confidentiality of the long-term key: an adversary cannot obtain any information on the

long-term key during the agreement or from the session keys.

• Authentication: all the entities which have to be authenticated cannot be impersonated by

any adversary.
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• The non-replayability of messages: this property requires the freshness of the exchanged

messages during a fresh execution of the protocol.

Additional Paramount Requirement: User Privacy. The notion of user privacy can take many

forms and meanings, as outlined by Pfitzmann and Hansen [95]. In this manuscript, the most

relevant notions are those which usually encountered in secure authentication protocols. We will

assume that lack of subject given users are associated with long-term personal data (an identifier,

some user-specific state, a location etc.). A weak degree of privacy is captured by the requirement

of confidentiality of user-specific data. This property is usually captured by the inability of a Man-

in-the-Middle adversary to recover one or multiple pieces of user information. User untraceability

is a stronger notion than confidentiality. Indeed, users may be traced even without knowing their

full identifiers or distinguishing data. By linking metadata, the full profile of a user could be

reconstructed. Typically, AKE protocols require the guarantee of user untraceability, which is

defined in terms of adversary’s ability of distinguishing whether two protocol executions involve

the same user or two different users. In particular, an adversary cannot distinguish even one bit

of any of the user’s identifiers. In this manuscript, we consider user untraceability with respect to

MitM attackers. A stronger guarantee, that of full anonymity, would require that even an honest

participant cannot trace the identity of its communication party. This could be achieved to some

degree if the authenticated key-exchange protocol relied on some group-based authentication, such

as group signatures.

Provable Security. Study the security of the cryptographic protocols (more precisely the AKE

protocols) is essential. Such protocols have been defined without necessary having a correct se-

curity analysis. Provable security is a generic and mathematics tool to provide the security of a

protocol considering all the possible adversaries in a defined security model. This model defines

abilities of adversaries and provides a formal definition of the security notions the protocol has to

provide. Emerging during the eighty’s, there are two main approaches to formalizing security: the

computational model and formal model. Although the formal method approach has many advan-

tages, one important disadvantage is that it does not give an exact reduction to the security of the

underlying primitives, which means that the proof statement is not easy to quantify, it is hard to

approximate the tightness of the proof, and the size of the parameters. Thus, a correct and fully

computational cryptographic model and proof are preferable to formal verification. Our first work

will be to define a specific security model as close to the real-world-context as possible.

1.2 Application Scenarios

Our researches are focused on a specific case of the AKE protocol, where a proxy is required be-

tween client and server. Such a proxy could be required for different practical reasons (geographic

positions, costs, efficiency, etc.). The presence of a third (intermediate) participant into a two-

way handshake causes modification in both the handshake and in the application layer protocols

of the AKE protocol. This proxy entity is considered as a service provider where some client’s

services are delegated from the server to the proxy. Moreover, the presence of the proxy implies

new security requirements and new adversary. Indeed, the proxy is not entirely trusted, it must be

considered potentially malicious. For the protocols considered in this manuscript, we will want to

prevent semi-trusted proxy from learning information about endpoints long-term state, and from

impersonating the endpoints without authorization. The secure channel is often established be-

tween the semi-trusted intermediary party and the client, with the help of the server. In this work,

we have focused on two protocols: the authenticated key agreement protocols in mobile networks,

and the proxied handshake transport layer security protocol used for securing Internet traffic. In

this section, we provide some context information on both these protocols.
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1.2.1 Mobile Networks

In 3G and 4G mobile networks, the symmetric Authenticated Key Agreement (AKA) protocols are

typically executed between two entities: a mobile client and its own operator. One of the main

goals of the operator is to provide services to all its mobile clients no matter their location. In

practice, a third entity is required, called a local service provider. Communication between service

providers and mobile clients are executed across a public channel using air radio waves, while

communication between service provider and operator are located in a secure core network. For

some notable security reasons, some services have to be exchanged toward a secure channel. Thus,

a secure channel has to be established between the mobile client and the local service provider. We

note that in the 3G and 4G architectures, some other (passive) entities act in the AKA protocols.

However, these devices act only as matters broadcasting messages to a specific entity without

modifying them.

The local service provider is not always trusted by the two endpoints. The mobile client finds

itself in one of two situations: either the client is located in a geographic area managed by its own

operator, or in an area managed by another operator. In the first case, the local service provider is

managed by the client’s operator, and may thus be trusted. In the second case, when the client is

abroad in a roaming situation, services are provided by a service provider affiliated with a different

operator. Thus, in a roaming situation, the service provider cannot be consider trusted despite any

roaming agreements established between the two operators. It is only trusted to provide services,

but they must not learn the client’s long-term secrets (known only to the client and the operator);

by contrast, service provider has to learn short-term secret values, such as session keys, which are

necessary for the transmission of the required services across the secure channel.

1.2.2 Content Delivery Services

HyperText Transfer Protocol Secure (HTTPS) establishes communication between web browsers

(end-clients) and popular websites (origin-servers) using the well-known Transport Layer Secu-

rity (TLS) protocol to guarantee data confidentiality and integrity services. TLS is a two-party

asymmetric protocol executed between an end-client and an origin-server. If the two entities are

situated geographically far away, latency appears, i.e. the data transfer will be slow involving

extensive routing. An approach to reduce the latency, is the use of Content Delivery Networks

(CDNs), which provide a network of proxies close to the client. The proxy or edge server, will

store and deliver services on behalf of the origin-server, but from the clients proximately. The

CDN architecture implies a total trust of the proxy since all information (notably the one requires

to establish the secure TLS channel) requires to deliver client’s services are delegated to the proxy.

Moreover, the presence of such an entity implies some widely issues for the all-or-nothing dis-

closure of end user traffic to proxies and, more globally, for the global security of the handshakes

protocols using them. These edge servers are sometimes viewed as undesirable in a security sense,

notably for privacy concerns and the implied modification in a part of original Internet architecture.

CloudFlare proposed a variant of proxied TLS, called Keyless SSL [101] , which mitigates

some risks, especially for “high-value” origin servers which may require some CDN-based per-

formance boost but do not want the CDN to handle long-term private keys on their behalf. In this

case, TLS has to be executed considering an active third entity (the intermediate) which is only

partially trusted by the endpoints, and thus which could be considered as malicious.
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1.3 State of the Art

1.3.1 The Authentication and Key Agreement in Mobile Networks

The AKA protocols, called UMTS-AKA and EPS-AKA, are used respectively in the 3G and 4G

networks to establish a secure channel between the mobile clients and the service providers, re-

quiring a mutual authentication and session keys agreement. An Authenticated Key Exchange

security was introduced by Bellare and Rogaway [40] is guaranteed. Since the three-party setting

and protocol features on the mobile client side, the classic security model provided by Bellare

and Rogaway [40] and its extension Bellare-Pointcheval-Rogaway (BPR) [39] cannot simply be

”imported” to model the security of these protocols. Thus, the lack of a precise computational se-

curity model, implies the impossibility to provide a complete computational analysis of the AKA

protocols.

Since the first version of the AKA protocol (UMTS-AKA) has been used for more than fifteen

years, there is a wealth of literature on the security of this protocol. An important result on the

mutual authentication and key-indistinguishability properties of AKA was provided by Zhang and

Zhang et al. [?,109]. They described attacks against both these properties based on service provider

corruption and replay attacks, and proposed countermeasures to fix the weaknesses. Unfortunately,

the proposed countermeasures are still vulnerable to some attacks and do not take into account

practical considerations.

AKA protocols are instantiated with two sets of cryptographic algorithms: TUAK and MILE-

NAGE. While Gilbert [70] provides an out-of-context security proof for the MILENAGE algo-

rithms, showing they operate as a kind of counter mode in deriving key materials (MILENAGE

runs AES multiple times as a one block to many blocks expansion function), it is unclear whether

the proved indistinguishabililty properties are strictly useful to guarantee the security of the full

AKA protocol. Moreover, as far as we know, the security of TUAK algorithms has never studied.

A security proof for the AKA protocols is given in few papers [30,109], especially when instan-

tiated with MILENAGE. The closest results to a security proof use automated (formal) verification.

Thus, the proof statement is not easy to quantify, making it hard to approximate the tightness of

the proof and the size of the parameters. We only consider a computational analysis can provide

a correct and complete security analysis of AKA, considering its various features (cryptographic

primitives and parameters, etc.).

Most of the papers concerning the AKA protocols focus on the user privacy. Three main attacks

in the literature, namely IMSI catcher attacks [62], IMSI paging attacks [97, 98], and imperson-

ation by server-corruption [?], already proved that AKA does not offer the desired degree of client

privacy. Additionally, further vulnerabilities, e.g. [?, 30, 33, 87, 103, 108] show that the AKA pro-

tocols do not attain even the basic-most privacy standardized requirements. Such vulnerabilities

imply illicit eavesdropping and mass-surveillance, and especially point out the ability to identify

and trace mobile clients.

Since both versions (3G and 4G) of the AKA protocols are similar, the EPS-AKA protocol is

often assumed to provide only as much security of the UMTS-AKA protocol as possible. To the

best of our knowledge, no complete security analysis comparing the security and privacy of the

two protocols has been provided.

1.3.2 Transport Layer Security Handshakes in Content Delivery Services

Due to its importance and to its non-orthodox design, all the versions of TLS protocol were subject

to numerous analyses, to quote just a few [24–28,34,36,46–50,54,58,61,67,69,71,74,75,79,81,

83, 84, 89, 94, 105, 107]. The next version of TLS (1.3) is currently being standardized, and it is
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designed to avoid many of the pitfalls in earlier versions of the protocol. The latest TLS 1.3 draft

is available in https://tlswg.github.io/tls13-spec/.

Traditionally, secure communication is attained by using an authenticated key-exchange proto-

col as detailed in security models [39, 40, 56]. However, TLS cannot guarantee AKE-security due

to subtle issues [73, 81] with the encryption of the last messages of the TLS handshake. Thus,

a weaker model was formalized, called authenticated and confidential channel establishment

(ACCE), which specifically provides a precise cryptographic specification for TLS. Krawczyk,

Paterson, and Wee [81] have proved the security of TLS 1.2 with mutual authentication. Early

drafts of the TLS 1.3 protocol have already been analyzed for security in models similar to

ACCE [61, 82].

Three-party TLS scenarios have not received such attention as 2-party TLS protocol. No secu-

rity model has been proposed adapting the 2-party ACCE security for the 3-party ACCE proxied

handshake protocol.

We firstly refer to Keyless SSL as a handshake delegation protocol, providing a proxied variant

of the TLS handshake. As far as we know, only one paper [101] is focused on the analysis of the

Keyless SSL handshake delegation. Stebila and Sullivan provided the description and informal

security requirements of Keyless SSL and studied the performances defining the efficiency against

the content delivery services latency. Unfortunately, no computational and formal security proofs

were given.

A different proxying scenario is considered in mcTLS [91], which modifies the TLS handshake

so that clients and servers can both explicitly grant read/write permissions to proxies. In this

manuscript, however, we only consider solutions that use unmodified TLS handshakes between

clients and proxies.

1.4 Contributions

In order to analyse security of such protocols, security models have to be established taking into ac-

count features of protocols, notably the three-party setting. We firstly provide a new 3-party AKE

security model which includes some specific security requirements. These requirements are for-

mulated with respect to both Man-in-the-Middle (MitM) adversaries, i.e. key-indistinguishability

and impersonation resistance security, and untrusted service provider, namely state-confidentiality

and soundness. We also detail a first full 3-party ACCE (3ACCE) security model, generalizing

of the 2-party ACCE security model, considering the three-party-setting as an important part of

this model, for secure handshakes between client and server with the presence of intermediary

entity. The security of such 3-party handshake is defined by four properties: the classic ones (en-

tity authentication and channel security), and the two specific ones (accountability and content

soundness).

In this manuscript, we will provide security analysis of 3-party handshake protocols in two

different contexts: the AKA protocols in mobile networks and Keyless SSL in Content Delivery

Networks. We stress that such analysis are important for any protocol deployed in real-life scenar-

ios. We provide a formal security analysis of the UMTS-AKA protocol in its complete three-party

setting. We prove that the UMTS-AKA protocol attains AKE-security as long as service provider

cannot be corrupted. Additionally to this study, we analyze the security of the EPS-AKA protocol

and see if it guarantees all or at least more requirements than the 3G version. We use a modular

proof approach to establish the security of these protocols: the first step is to prove the security of

AKA protocols assuming the pseudorandomness of the internal cryptographic functions. The sec-

ond step proceeds to show that TUAK and MILENAGE guarantee the required pseudorandomness.

We also provide (to our knowledge) the first complete, rigorous analysis of AKA protocols and the

two instantiations. We provide a formal security analysis of the considered protocol Keyless SSL

https://tlswg.github.io/tls13-spec/
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and captures content delivery network CDN’s characteristics. Such an analysis points out some se-

curity and practical weaknesses. Then, we propose a new design of Keyless SSL achieving better

security in the 3ACCE considerations.

A paramount requirement in mobile networks is user privacy which is vital for mobile client.

Considering the leak of client privacy in the AKA protocols due to the client-tracking attacks, Van

Den Broek et al. [104] and respectively Arapinis et al. [31] proposed new variant of AKA proto-

cols. We use the approach of provable security to show that these variants still fail to guarantee

the privacy of mobile clients. We propose improvements of AKA protocols, which retain most of

their structure and respect practical necessities, but which provably attains security with respect to

malicious service provider and Man-in-the-Middle (MitM) adversaries. Moreover, we prove that

any variant of the AKA protocols retaining the mutual authentication, cannot guarantee stronger

privacy properties than the ones guaranteed by our variants. In this sense, our proposed variants

are optimal. Our fix protocols also take into account practical considerations of mobile network

key agreement. However, some requirements such as lawful interception must also be considered

for a possible standardization and use in real-life scenarios. In order to respond to such considera-

tions, two additional variants were proposed towards a possible standardization in current (3G and

4G) and future (5G) mobile networks.

Nearly all those results have been published either in conference papers or journal papers

1.5 List of Publications

• Cryptographic Analysis of 3GPP AKA Protocol: ACNS 2016 with Stéphanie ALT (DGA),
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Labs), Cristina ONETE (INSA/IRISA Rennes).

• Better Privacy for the 3GPP AKA Protocol: PETS 2016 and APVP 2016 with Pierre-

Alain FOUQUE (IRISA / Université de Rennes1), Cristina ONETE (INSA/IRISA Rennes).

• Towards 5G Authenticated Key-Exchange: the security and privacy of the AKA Pro-

tocol: RWC 2017 with Pierre-Alain FOUQUE (IRISA / Université de Rennes1), Cristina

ONETE (INSA/IRISA Rennes).
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(INSA/IRISA Rennes).

• Does the EPS-AKA protocol guarantee more security and client privacy than UMTS-
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communication : Orange Labs with Todor GABISHEV (Orange Labs) and Gilles MACARIO-

RAT (Orange Labs). Patent no FR1659585 has been filed for the INPI in October 2016.



Chapter 2

An Overview of Architecture and

Security to Mobile Networks

Contents

2.1 Mobile Networks Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 The UMTS Mobile Network Architecture . . . . . . . . . . . . . . . . 26

2.1.2 The EPS Mobile Network Architecture . . . . . . . . . . . . . . . . . 27

2.2 Mobile Networks Security Considerations . . . . . . . . . . . . . . . . . . . 28

2.2.1 UMTS Security Considerations . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 EPS Security Considerations . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The AKA protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 AKA in the 3G Networks: The UMTS-AKA Protocol . . . . . . . . . 35

2.3.2 AKA in the 4G Networks: The EPS-AKA Protocol . . . . . . . . . . . 41

2.3.3 The Internal Cryptographic Primitives . . . . . . . . . . . . . . . . . . 45

2.1 Mobile Networks Architecture

Mobile networks emerged in the late 80s, and have since become essential to modern-day life.

Over 7 billion subscribers regularly use mobile networks today, for purposes such as sending mes-

sages, making calls, and Internet navigation. Every ten years, mobile networks take a generation

leap, expanding in terms of new architectures and services. The second generation of mobile net-

works (2G) was introduced in the early 90s. The most widely-deployed version of 2G architectures

is the Global System for Mobile Communication (GSM). It revolutionized mobile communications

as it replaced analogue signals by digital technology, offering new services, such as MMS privi-

leges (pictures, movies etc.). With an overage flow rate of 9.6 Kbits per second, 2G networks were

the first to provide fast voice- and data-transfer.

The third generation of mobile networks (3G) were introduced at the beginning of the twenty-

first century. The most common version is the Universal Mobile Telecommunication System

(UMTS). Another version called CDMA-2000 was however proposed in parallel in the North

of America and Asia. The UMTS version was introduced since the seven main standard devel-

opment organizations wish to propose a common unique international norm. These seven entities

compose the 3rd Generation Partnership Project (3GPP), which allows for global international

roaming for mobile subscribers. A new network architecture is provided, split into three parts:

25
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the user equipment, the access and core network. With UMTS networks, 3GPP increases sys-

tem capacity voice transfer for improving the high flow rate multimedia services. The maximal

theoretical flow rate is 1.920 Mbits per second, which is much more efficient compared to GSM

networks. In 2008, 3GPP defined the fourth generation of mobile networks. The complete system

is denoted LTE/EPC, where LTE (Long-Term-Evolution) is the new radio technology and EPC

(Evolved Packet Core) is the new core network. The latter relies only on Internet Protocols to

protect the communication in the core network. In general the 4G system is referred to as EPS

for Evolved Packet System. 4G networks propose a better flow rate notably for data transfers (the

download speed is 100 Mbits/s and the upload speed is 50 Mbits/s), reduces latency, and offers

better interoperability with 2G and 3G. In this chapter, we present the different architectures and

security mechanisms of the UMTS and EPS mobile networks.

2.1.1 The UMTS Mobile Network Architecture

A mobile network operates on radio waves ranging in frequency between 900 and 2100 MHz.

The UMTS architecture is specified in technical specifications 23.002 [17] and 25.301 [19]. For

3G mobile networks, 3GPP introduced a new network architecture, split into three main parts.

The first of these is the User Equipment (UE), consisting of a Mobile Equipment (ME) and a

secure element (USIM). The second 3G element is the Access Network (AN) denoted UTRAN

for Universal Terrestrial Radio Access Network, which consists of several base stations (NodeB)

and Radio Network Controllers (RNC). The last 3G component is the Core Network (CN), which

allows communication between operators. The global architecture is described in Figure 2.1 and

further detailed in the following sections.

Figure 2.1: 3G architecture overview. The communication interfaces and domains names are

outlined in red.

User Equipment. The User Equipment (UE), also called terminal, has a radio connection used

to reach the network and services of the operator it subscribes to, across the access network

UTRAN. 3G user equipments are composed by two main elements: a physical element, called

Mobile Equipment (ME) and a secure element (USIM). ME can be either a smartphone or a lap-

top computer with a mobile broadband adapter. It is mainly manufactured by equipment vendors

and not operators. It is divided into two distinct groups: the mobile termination which globally

manages the radio features and the sent data formatting, and terminal equipment which notably

manages the communication and order requests to the secure element. The Universal Subscriber

Identity Module (USIM) is the secure element in 3G networks and replacing the SIM cards used in

2G networks. The mobile equipment is almost a neutral entity, i.e., not constructed for a specific

operator, contrary to USIM cards, which are made for a specific operator and stores all the data
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and features related to the operators.

Access Network. The Access Network in UMTS is called the Universal Terrestrial Radio Access

Network (UTRAN). The access network allows the subscriber equipment to connect to the core

network. Moreover, it is responsible for ensuring several other functionalities, such as the security

of the radio infrastructures (the confidentiality and integrity of exchanged data), subscriber mo-

bility (geographic position-estimation), and the management of radio resources for the subscriber

communication and synchronization. The UTRAN network contains two types of elements: base

stations and radio network controllers. In order to allow coverage for a maximal territory, the latter

is split into a multitude of cells. Each cell represents a geographic area in which all the commu-

nications are managed by a base station, called NodeB. A base station can manage one or several

radio cells. The range of the NodeB depends on the size of radio cells, the existence of natural

obstacles (mountains, plain, relief, town, topography), the density of population in managed cells,

etc. The second element of an access network is the Radio Network Controller (RNC), which con-

trols radio transmission to and from the base station. RNC is the subscriber’s to the core network.

In UMTS architectures, the radio channel between the client and the RNC is protected. The base

station also manages other services, such as handover and macro-diversity. For more details, we

refer readers to [92].

Core Network. The Core Network (CN) in UMTS ensures communications between operators. It

manages the routing of communications (data and voice) to and from the external networks. It con-

sists of all equipments and data that can be used to guarantee the subscriber identification, location

updates, security management, etc. The CN is divided into the home- and the serving-network.

The Home Network (HN) contains the long-term information of all the operator’s subscribers.

The Serving Network (SN) contains the temporary information of all the subscribers in a roaming

situation. The roaming relates to the ability for a subscriber to have access to some services as

phone call or SMS/MMS privileges, when it is located in a geographic area unmanaged by its own

operator. The HN is mainly based on two main entities: the Home Location Register (HLR) and

The Authentication Center (AuC). The HLR contains for each subscriber, all the long-term public

information (permanent identifier, phone number, etc.), as well as private data (long-term keys

and security algorithms). The same entity also keeps track of the identity of the visitor location

register. The second network entity AuC inter-operates with the HLR to use the stored data of

subscribers. It generates authentication messages and session keys, which will be used in the SN

to ensure authentication and the confidentiality/integrity of data across the radio channel.

When a packet is sent from the RNC to the core network, it is managed either by the Mobil-

ity Switching Center & Visited Location Register (MSC/VLR) or by the Serving GPRS Support

Node (SGSN), depending on whether the packet is related to a real-time services or to non-real-

time services. Real-time services concern the phone conversations (video telephony, video games,

multimedia applications etc.) and process the voice and signalisation traffic from the radio net-

work controller requiring a high-flow-rate. Non-real-time services are less sensitive to the time of

transfer; this is the case of web browsing, use of e-mails, management of video games, etc. These

entities are in charge of the routing in a network, inter-connection with other external networks and

different services (location, handover, roaming etc.). They manage a specific area for specific ser-

vices. We note that two entities cannot manage the same area for the same service. The Gateways

of the MSC (GMSC) and the SGSN (GGSN) manage the connexion with the external networks.

2.1.2 The EPS Mobile Network Architecture

The new network 4G is called EPS or LTE/EPC. It is composed by a new access network denoted

LTE for Long-Term-Evolution and a new core network denoted EPC for Evolved-Packet-Core.

The EPS architecture is specified in technical specifications 23.401 [14] and 36.300 [16]. It only
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supports data services implying the merge from the non-real and real time services management.

Figure 2.2: 4G architecture overview.
It provides IP connectivity between user equipment and the packet data network, and supports

all the different generation of access network. This architecture is detailed in Figure 2.2.

User Equipment. 4G networks reuse the USIM cards involved in 3G networks. Only the access

network and core network are evolved in the 4G networks.

The Access Network. The Long Term Evolution of 4G (LTE) also called the Evolved Universal

Terrestrial Radio Access Network (E-UTRAN) is an extension of the 3G UTRAN architecture.

The main goals of this access network is to provide a higher data and flow rate, lower latency, an

enhancement of the quality of services and the interoperability with the older third generation of

mobile networks [21]. Contrary to the UTRAN architecture which is composed by both NodeB

and RNC, the LTE access network is based on an unique type of entities, called eNodeB. That

efficiently reduces the latency. The eNodeB notably secures the radio communication from and to

user equipments providing encryption and integrity services as well as the generation of session

keys.

The Core Network. The Evolved Packet Core network (EPC) is based on a simplified network

architecture. It consists of the Mobility Management Entity (MME), a Home Subscriber Server

(HSS), the Serving GateWay (SGW) and the Packet Data Network GateWay (PDN-GW). By com-

municating with the HSS, the MME will obtain subscriber information for the base station notably

initiating paging and the authentication of the mobile device. The HSS acts as an extension of

the 3G home location register, and contains all types of subscriber information, such as perma-

nent identifier, authentication data and MME identity to which the UE is connected. As in the

case of 3G networks, an authentication center denoted AuC, is attached. The SGW routes and

forwards user data packets from mobile equipment elements towards base stations. This gateway

completes the interface towards E-UTRAN and ensures the interoperability to other networks. The

PDN-GW component must guarantee the connection between the EPC and external IP networks,

routing packets to and from packet data networks.

2.2 Mobile Networks Security Considerations

Secure communications between mobile subscribers and their associated operator networks re-

quire security in both access and core networks. In this section, we will detail how a secure

channel is established in the access network and why the communication across the core network

can be considered as secure.
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2.2.1 UMTS Security Considerations

3GPP proposes a straight evolution of GSM networks in the release from 1999 and the specification

TS.33.102 [1] has been proposed for the security of UMTS networks. The security requirements

were formalized to take into account for the new services (electronic business, pictures, videos

sharing etc.) provided by 3G networks to mobile subscribers. Such transmission required a much

stronger security than guaranteed by GSM networks.

UMTS security overview. 3GPP in the technical specification [13], gives an overview of the

UMTS security architecture in the figure 2.3 detailed below:

- Access Network Security (A) provides users with secure access to UMTS services and

protect against (passive) attacks on the radio access link.

- Network Domain Security (B) protects against (passive) attacks on the wire line network

and allows nodes in the provider domain to exchange signalling data securely.

- User Domain Security (C) provides secure access to USIM cards in the mobile stations.

- Application Domain Security (D) allows the secure messages exchange between applica-

tions in the user and in the provider domain.

- The visibility and security configuration allows the user to observe whether a security

feature is currently in operation and if certain services depend on this security feature.

We recall the 3G networks propose a new cellular architecture splitting the network into two

parts: the access and the core networks. The main idea was to separate the roles of radio-network

operator and service operator. In the following sections, we detail the security of both parts.

Additionally to the security of the networks, the interoperability with the 2G was indispensable

as explained in the technical specification TS.31.900 [3]. Beyond the necessary infrastructures

implying new entities and additional structures and how the security during the interoperability

is, we consider that the main problematic is the ability for an adversary to force a subscriber to

communicate over an older interface (2G) exploiting its weaknesses. This consideration will be

not detailed in this section, and we refer readers [3] for more details.

Figure 2.3: UMTS security overview.
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Access Network Security. In the UMTS architecture, the user mobile equipment communicates

with the core network, more specifically its own operator, via a radio-frequency channel in the

radio access network. In the context of mobile networks, mobile services are granted to clients

over a secure channel. Such a secure channel is established by a security set-up procedure. We

detail this procedure in Figure 2.4.

Client Middle entity Server S

ME/USIM Serving RNC VLR/SGSN

Check the START values.

Define UE security capabilities

UiAUE and UeAUE.
”Initial L3 Message”

UID,KSICS ,KSIPS ,UiAUE,UeAUE

−−−−−−−−−−−−−−−−−−−−−−−−−→
Store the UE security capabilities.

Check the received values.

Decide optionally to update the session

keys.
UMTS− AKA Protocol (optionally)
←−−−−−−−−−−−−−−−−−−−−−−→

Update session keys which are

considered agreed with the oper-

ator.

Update session keys which are consid-

ered agreed with the client.

Decide server security capabilities

UiAS and UeAS.
Security Mode Command

CK,IK,UiAS,UeAS

←−−−−−−−−−−−−−−−−
Generate Fresh.

Choose algorithms UiA and

UeA.

Generate integrity value MacI.
Security Mode Command

UiA,UeA,MacI,Fresh

←−−−−−−−−−−−−−−−−
Check algorithms UiA and UeA

Compute integrity value XMacI

Check MacI

Accept Secure Channel
Security Mode Complete

MacI

←−−−−−−−−−−−−−−−−
Check MacI.

Accept Secure Channel

Security Mode Complete
UiA&UeA

−−−−−−−−−−−−−−−−→
START ENCRYPTION START ENCRYPTION

Figure 2.4: The set up 3G procedure.

This procedure is stateful. The client stores, from a previous connection, the parameters con-

sists to the t-uples (Startcs, Startps,Threshold, (CK, IK,KSI)ps, (CK, IK,KSI)cs). At the begin-

ning for the first connection, all the counters are initialized depending the client’s operator, and

no session keys are set. The values Startcs, Startps are counters for the Circuit-Switched (CS) and

Packet-Switched (PS) domains, and Threshold is the maximal allowed value of these counters,

as initialized by the network. These values are stored and maintained in the mobile equipment,

not in the USIM card during an ongoing connection. These values provide a means to limiting

the lifetimes of the used security key. The session keys (the cipher key CK and integrity key IK)

which ensure the confidentiality and integrity messages exchanged across the radio access network

(UTRAN). The key set identifier, denoted KSI, is associated with the retained session keys pair.

This 3-bit value allows to identify the session keys pair. The value ′111′ is restricted and expresses

that the keys are obsolete and need to be reallocated.

The subscriber requires mobile services and needs, hence to establish a connection with the

network. At the beginning of a new attempted connection, the user equipment checks its own

START values and updates the key set identifier KSI to the value ′111′ if necessary (i.e., if one

of the START values exceeds Threshold). The sets of encryption and integrity algorithms respec-

tively denoted UiAUE and UeAUE which UE would like to use to protect the future communica-

tions. These parameters are transmitted, at the very beginning of the connection, in plaintext. The

client then initiates the communication by sending user identification message to the VLR/SGSN
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via the RNC. This message1, also called an IMSI attachment is a tuple (KSI, IMSI). An IMSI

is the International Mobile Subscriber Identity which is a permanent identifier, unique per each

customer. We note that a temporary identifier, previously exchanged with the server, can replace

the IMSI value to guarantee user identity confidentiality. The key set identifier permits to either

reuse session keys or reallocate these keys from authenticated and key-agreement protocol, called

UMTS-AKA. This protocol provides a mutual authentication and a session-key-establishment be-

tween the network and the user equipment, and we detail it, with the user identification, in Section

2.3.1. If this protocol is carried out, the Start values will be reset to 0.

After agreeing on session keys (if necessary), the VLR/SGSN chooses its own sets of en-

cryption and integrity algorithms, listing them in order of preference. Then, it sends them in a

security mode command to the RNC. This message also includes the fresh cipher and integrity

keys (CK, IK) which will be used to protect the communication between the RNC and UE. Re-

ceiving the security mode command from the VLR/SGSN, the RNC selects the encryption and

integrity algorithms that will be used later, by comparing its own preferences to the sets received

from the user.

Next, the RNC generates a random value denoted Fresh, which will ensure the freshness of the

connection. From this point onwards, the integrity of the exchanged messages can be guaranteed.

The RNC sends a message to the client including the following values: the chosen algorithms

UeA and UiA, the random value Fresh, and a MAC value called MacI, which ensures integrity.

MAC value is computed over the random value Fresh, the algorithm UiA and the key IK. Upon

receiving such a message, the client compares the list of received algorithms it proposed at the

beginning. Then, it checks the MAC value MacI, computing a value XMacI over the received

UiA and the Fresh value. If all the verifications are successful, then the client accepts the secure

channel establishment. Otherwise, the procedure is dropped.

If the agreement is accepted, the UE sends to the RNC a message called security mode com-

plete, which includes the same MAC value MacI. The RNC receiving this message, verifies this

message and sends a message to the VLR/SGSN confirming the agreement and including the name

of the chosen algorithms UiA and UeA. At this step, the procedure is finished.

The communication between the user equipment and the RNC can now be ciphered/deciphered

using the algorithm UeA and the cipher key CK. The blockcipher KASUMI [9,10] and the stream

cipher SNOW-3G [11,12] are the only algorithms standardized by 3GPP for the UMTS networks,

and thus must be included in all options provided for the UiA and UeA. We note that since 2005,

following the attacks of Biham [51], Dunkelman [63] and Bar-On [35], KASUMI is no longer

considered secure.

Core Network Security. The global core network is divided into several core networks managed

by each operator. The core network traffic is not necessarily ciphered, but every operator may

implement protection mechanisms for their own network transmission link. Most of the threats to

the communication in the core network are similar to those affecting the application layer. The

most important security problems are:

• Denial of Services (DoS): the goal of DoS attacks is to ensure a long-term impossibility for

a service to be received or provided, by generating notably disturbance traffic.. In this sense,

DoS attacks do not directly threaten the security of communication, although it is often used

as a means of breaking privacy.

• Social engineering: often disregarded by cryptographic analysis, social engineering is one of

the most efficient attacks when looking for specific secret data, such as e.g., a PIN number.

1 We note that this message is, more general by an Initial L3 Message and can be different than an IMSI attachment.

Indeed, this message is generic request and can be for example, a request of location update or a paging response.
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• Sniffing: eavesdropping is another common attack that aims to collect subscriber informa-

tion, allowing even a passive adversary to monitor great amounts of connections without

detections.

• Spoofing: in this attack, adversary uses the IP address associated with a legitimate entity,

thus communicating with other users, i.e., the attacker replaces the real receiver or sender in

a communication attempt.

• Session Hijacking: the adversary hereby obtains access to mobile communication services

for incoming and outgoing calls of a specific subscriber.

Though at first similar to the GSM architecture, the UMTS infrastructure subsequently evolved

in terms of the core network structure, using the internet protocol, denoted IP, as its main network-

layer protocol used. We usually associate UMTS architectures with this improved core network

security. The IPSec [77] protocol is the basic tool in protection of network domain traffic, provid-

ing confidentiality and integrity of the communication in the IP layer. Complementary to IPSec,

the Mobile Application Part Security protects messages in the application layer. Consequently, we

will assume that the core network is secure, providing confidentiality and integrity for all commu-

nications. We refer readers to [59] for the security of the IPSec protocol.

2.2.2 EPS Security Considerations

The EPS security is a slight improvement of UMTS networks security. Keeping the secure ele-

ments and each security mechanisms, 3GPP has to update the requirements to the new architectures

and security contexts. The last version of the specification containing the security requirements of

the EPS networks have been published in 2016 in [8].

EPS security overview. The level security of this new network is upgraded by proposing some

modifications in particular in the access network. Most security features of the UMTS generation

were maintained, we recall these here:

• User permanent identity confidentiality using temporary identifiers.

• Basic features and concepts of the authenticated key-exchanged protocol (mutual authenti-

cation, session keys establishment, use of authentication vectors, sequence number).

• Confidentiality services for data and signalling over the radio channel.

• Integrity services on signalling data.

• Agreement of the algorithms UeA and UiA.

• Use of the same 3G standardized algorithms except KASUMI.

• Global security architecture in the core network.

• Use of the USIM secure element in the user equipment.

We note that USIM cards are re-used in 4G networks for business reasons, so as to avoid having

to replace the secure elements of older phones. Another requirement is the interoperablilty with

the UMTS and GSM networks. The interoperability with the GSM infrastructures is restricted

and possible only for insecure services. The technical specifications [8, 21] detail several security

requirements of the EPS networks which are different from those in UMTS, notably:
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• The deployment of a new authenticated and key-agreement procedure called EPS-AKA,

including new key hierarchy.

• The use of new temporary identifiers.

• Standardization of new algorithms notably replacing KASUMI.

• Resistance to attacks for evolved base stations.

• Integration of security for non-3GPP access.

The attacker model considered in EPS networks includes adversaries whose goal is to deny

service to either the client or the network, but also attacks seeking to break the authentication,

confidentiality, or integrity properties at each layer, and finally threats to privacy. The capabilities

of the adversary range from passive eavesdropping to active network access.

The evolved base stations, called eNodeB, are endpoints for major EPS security mechanisms,

i.e. entities in which the secure data is stored rather than just playing a relaying role like NodeB

in 3G networks. These entities may be located in exposed, unprotected locations, such as building

roofs, public, and outdoors places, which cannot be totally controlled by operators. Thus, evolved

base stations are assumed vulnerable.

Evolved base stations store session keys previously exchanged by the EPS-AKA protocol to

secure the radio communication toward the access network. Consequently, the stations require

element to support the secure storage of sensitive data. Such data includes some long-term keys

used for the authentication for the core network. The keys must never be used outside the secure

element, allowing the base station and its secure element support the execution of sensitive func-

tions, guaranteeing confidentiality and integrity services. The security of base stations is detailed

in [8].

Access Network Security. All the security functionalities in the LTE access network between the

user equipment and the evolved base stations are defined in Technical Specification TS 33.401 [8].

As in the UMTS networks, protecting the radio-link in the access network is the most important

point. This is the most vulnerable link to attacks. The security of the access network is split into

four parts: the confidentiality of the user and devices identities, mutual authentication between the

user equipment and the network, confidentiality, and the integrity of the signalling data.

One of the main goals is protecting personal user information which would allow passive ad-

versaries to identify him. As in 3G architectures, 3GPP continues to only consider security with

respect to passive adversaries. They focus on the confidentiality of one part of the permanent

identity, called the Mobile Subscriber Identification Number (MSIN), which is unique for each

user. They additionally consider the confidentiality of the international mobile equipment iden-

tifier (IMEI), which is a new requirement in this generation of mobile networks. The mutual

authentication between the user equipment and the network is still required in the 4G network by

means of a variant of the authenticated key agreement, called EPS-AKA. This protocol is similar

to its homologue in UMTS networks, but includes a new session keys hierarchy, a new temporary

identifier, and a means for the client to check the local network is identity. We detail this protocol

in Section 2.3.2.

Following the agreement of session keys between ME, BS and MME, the confidentiality of

signalling and user data is required. Integrity is only required on the signalling data NAS and

RRC, in order to protect against replays.

The security set-up protocol is designed to exchange session keys and negotiate the algorithms

to be used to provide confidentiality and integrity over the radio channel. Similarly to its UMTS

equivalent, this protocol is split into three phases: a tracking area update request, an optional

authenticated key-agreement protocol, and a secure mode command. The user equipment presents
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its security capabilities and algorithms by an attachment procedure, sending Tracking Area Update

request messages to the base station. This request is forward to the MME. After choosing a set of

existing session keys (or generating new ones by means an authenticated-key-agreement protocol),

the three entities compute the same session keys. The MME and the base station independently

choose this own list of algorithms to be used with the UE. The MME is responsible to the AS-level

algorithms negotiation, while the base station responsible to the NAS-level algorithms negotiation.

Core Network Security. All the security functionalities included in the evolved packet core net-

work allow to securely exchange data. The radio link in the access network, for which the air inter-

face is used, is considered to be the most vulnerable part of the network systems. The core network

is similar to its 3G equivalent, even although the evolved packet core is not split into packet and

circuit switched. The core network still has to guarantee the mutual authentication, confidential-

ity and integrity of all the exchanged data between each entities. As specified in TS.33.210 [5],

the protocol IPSec is used [77] to guarantee confidentiality and integrity services. For the mutual

authentication, the protocol IKEv2 (Internet Key Exchange version 2) [76] is used, relying on cer-

tificates and the establishment of trust. The version of the required X.509 certificates, are detailed

in the technical specification TS 33.310 [18].

New EPS Standardized Algorithms. As in all the mobile network generations, the system should

be flexible, meaning that new algorithms can be introduced and outdated ones can be removed,

without major modifications in the global infrastructures. In response to the attacks [51, 63] pre-

sented on the KASUMI block cipher, the EPS infrastructure has been introduced with a new block

cipher, implementing AES [66] with counter mode [64]. This cipher suite is denoted as 128-

EEA2. An extension to the SNOW 3G algorithm in UMTS, denoted as 128-EEA1 allows both

traditional 128-bit encryption and an optimal 256-bit mode. For integrity, AES-based cipher suites

use CMAC, whereas SNOW 3G is extended to provide both 128 and 256-bit output. The for-

mer method is labelled 128-EIA2, whereas the latter is called 128-EIA1. For AES, similar to the

specific case in the ciphering mode, ETSI-SAGE (which is the organization who studies the stan-

dardized algorithms) chose the Cipher-Based Message Authentication Code (CMAC) mode [64].

These algorithms may be chosen arbitrarily and independently to protect the AS and NAS layers,

as opposed to the UMTS case, when a single suite must be chosen for both layers. We note that

from the release 11 of the technical specifications, a third algorithm appears called ZUC [22] was

standardized to be used in China (since chinese authorities require the use of algorithms made in

China). Finally, 4G networks require unlike UMTS, the use of key derivation functions for the

new hierarchy and is detailed later in Section 2.3.2, this KDF is based in the Keyed-Hash Message

Authentication Code (HMAC) mode [80] using the cryptographic hash function SHA-256 [65].

We note that the EPS-AKA protocol uses its own algorithms detailed in Section 2.3.3.

2.3 The AKA protocols

Although the first version of the authenticated-key-agreement protocol (AKA) was introduced for

GSM networks, that version bears little resemblance to what AKA is today. In 2G, no requirement

of authentication exists, and the output and input sizes of cryptographic parameters and functions

are small.Consequently, we choose to describe only the authenticated-key-agreement (AKA) pro-

tocols used in the 3G and 4G architectures.
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2.3.1 AKA in the 3G Networks: The UMTS-AKA Protocol

The UMTS-AKA protocol features two main active actors: the client/subscriber (in 3GPP ter-

minology ME/USIM) and the server (denoted either VLR/MSC or SGSN 2). The third, only

selectively-active party is the operator (denoted HLR/AuC). The tripartite set-up of AKA was

notably meant for roaming, for which the server providing mobile coverage is not the client’s op-

erator, and may be subject to different legislations and vulnerabilities. Thus, although the server is

trusted to provide services to a client across a secure channel, it must not learn long-term sensitive

information about either clients or their home operators. Using the server as a mere proxy would

ideal; however, communications between servers and operators are (financially) expensive.

Clients C and operators Op use both the client’s secret key skC and the operator’s secret key

skOp. Subscribers to the same operator all share the operator’s own secret key, in practice a 256-bit

integer. This value is not directly stored on the phone, but rather an intermediate value, obtained

by deriving the operator key, the subscriber key and several constants, is embedded in the secure

element of the phone, i.e., the USIM card. Thus, whereas this value enters in all future runs

of the cryptographic algorithms, it is never stored in clear on the user’s mobile. The client and

operator also keep track of sequence numbers SqnC (resp. SqnOp,C), updated after each successful

authentication (by a simple, predictable procedure, e.g. incrementing them by a fixed value). If

these states are too far apart, the client prompts a re-synchronization. The three parties: clients,

servers, and operators, also know the client’s permanent identifier IMSI. Clients and servers must

keep track of tuples (IMSI, TMSI, LAI), the last two values forming a unique temporary identifier,

which is updated at every session. This value is included to avoid replay attacks, since subscribers

cannot generated (pseudo)random values from USIM cards. We note that, the next generation of

SIM cards will be able, to generate such values. However, a main consequence of the lack of client-

side randomness is that freshness must be guaranteed only using one random value rather than two.

This is done by using a sequence number which UMTS-AKA is stateful. Both ME/USIM and

the HLR/AuC keep track of counters, denoted respectively SqnC and SqnOp,C; these sequence

numbers are meant to provide entropy and enable network authentication (from HLR/AuC to

ME/USIM). Technically, one can view the user’s sequence number as an increasing counter,

while HLR/AuC keeps track of the highest authenticated counter the user has accepted.

The UMTS-AKA protocol uses a set of seven functions: F1, F2, F3, F4, F5, F∗
1 , F∗

5 . The first

two are used to authenticate a MAC value, proving that both participants know the same subscriber

key skC and the same operator key skOp. The F1 algorithm is called the network authentication

function. As its name implies, it allows the subscriber to authenticate the network. Furthermore,

this function provides the integrity of the data used to derive keys (in particular authenticating the

random, session-specific value R). Algorithm F2 is called the subscriber authentication function

and it provides a client-authentication functionality. The following three algorithms, F3,F4,F5,

are used as key derivation functions, outputting respectively a cipher key (CK), an integrity key

(IK), and an anonymity key (AK), all derived on input the subscriber key skC, the operator key

skOp, and the session-specific random value R. Notice that the master key skC is only known

to HLR/AuC and ME/USIM, but not to the intermediate entity VLR, which is the server. The

last key, AK, is used to mask the sequence number Sqn, but it is not part of the session keys.

Its function is to blind the value of Sqn, since the latter may leak some information about the

subscriber. In order to ensure that no long-term desynchronization of sequence numbers occurs,

the UMTS-AKA protocol provides a re-synchronization procedure between the two participants,

in which the user forces a new sequence number on the backend server, using the F∗
1 and F∗

5

algorithms to authenticate this value much in the same way that the client has authenticated its

2As explained in section 2.1.1, the server could be either a SGSN or a VLR/MSC. In our explanation for a easier

lecture, we only denote the server as a VLR
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own sequence number and random value. Another crucial design choice is that of the TUAK and

MILENAGE functions. F1 and F∗
1 are different and independent, as are F5 and F∗

5 . This ensures

security even with resynchronizations. Figure 2.5 details the challenge-response structure of the

UMTS-AKA procedure.

Client Server Operator

ME/USIM VLR/SGSN HLR/AuC
(skC, skOp, SqnC) (skC, skOp, SqnOp,C)

User identity request

←−−−−−−−−−→
Auth. vectors request

−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res

−−−−−−−−−−−−→
4©

TMSI re−allocation
←−−−−−−−−−→

Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).

Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:

CK← F3(skC, skOp,R
{i}),

IK← F4(skC, skOp,R
{i}),

Set Res := F2(skC, skOp,R
{i}).

Update SqnC := Sqn{i}.

Else re-synchronization

——————

2©: Store {AV{i}}ni=1.

Choose AV{i} one by one

in order.

Then it sends the related

challenge.

——————

4©: Res
?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}.
Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← F1(skC, skOp,R

{i}, Sqn{i},AMF),

Mac
{i}
C ← F2(skC, skOp,R

{i}),

CK{i} ← F3(skC, skOp,R
{i}),

IK{i} ← F4(skC, skOp,R
{i}),

AK{i} ← F5(skC, skOp,R
{i}),

Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac
{i}
S .

AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C ,

with SqnOp,C = Sqn{i}. End For.

Figure 2.5: The UMTS-AKA Procedure.

The UMTS-AKA protocol proceeds in several subparts. Over the insecure channel, client

and server perform the user identification step. At the end of this step, the VLR must establish

the IMSI of the client. An authenticated-key-exchange is executed between the three entities:

the ME/USIM, the VLR and HLR/AuC. Finally, the server and client allocate a new temporary

identifier over the new secure channel.

User Identification

This procedure starts when the user equipment switches on. In order to identify to the server

, the client’s mobile equipment receives a user equipment request and responds to the VLR, in

clear text, with a user identifier UID. This value can be either the permanent IMSI or a temporary

TMSI, which is a value exchanged between the server and the subscriber during a previous session

for which both entities were mutually authenticated. More precisely, the TMSI is only used in

the CS domain and another temporary identifier, denoted Packet-Temporary Mobile Subscriber

Identity (P-TMSI) in the PS domain. Since the two identifiers have a similar structure, we will
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only consider the temporary identity TMSI. Note that all permanent and temporary identifiers

are stored in the USIM card. The user identification is summarily depicted in Figure 2.6. The

permanent identifier IMSI of a client consists of the following values:

• The Mobile Country Code (MCC) consists of three digits. The MCC uniquely identifies

the origin country of the mobile subscriber.

• The National Mobile Subscriber Identity (NMSI) consists of two values. The first one, the

Mobile Network Code (MNC) consists of 2 or 3 digits (depending the value of the MCC).

This value identifies the home network of the mobile subscriber. The second value is the

Mobile Subscriber Identification Number (MSIN) which identifies the mobile subscriber

within the Public Land Mobile Network (PLMN).

ME/USIM VLR/SGSN

User identity request

←−−−−−−−−−−−−−−−−−−−−−−−−−
UID∈{IMSI,TMSI‖LAI}

−−−−−−−−−−−−−−−−−−−−−−−−−→ CHECK.

Figure 2.6: User identification by the permanent identity.

The TMSI may not exceed 15 digits.The allocation of Mobile Country Codes is administered

by the ITU-T, more specifically in the recommendation E-212. The allocation of the NMSI is the

responsibility of each administration of each country. The same Mobile Network Code should not

be assigned to more than one PLMN. In a roaming situation (i.e. when the client is located in a

foreign PLMN), the value NMSI is analyzed for information transfer. These TMSI are exchanged

in order to guarantee the uniqueness of the user equipment request during following sessions. In

practice, the IMSI is used either for the first session or when the serving network cannot retrieve

the IMSI from the temporary identity. Then, the VLR forwards the IMSI of the subscriber to the

HLR/AuC. Since the TMSI has only local significance (i.e. within a VLR and in the area controlled

by a VLR, or within an SGSN and the area controlled by an SGSN), the structure and encoding of

it can be chosen by agreement between operator and manufacturer in order to meet local needs. A

TMSI is a local number and its construction is specified in the technical specification 23.003 [7].

The TMSI consists of 4 bytes. It can be coded using a full hexadecimal representation. In order to

avoid the double allocation of TMSIs after a restart of an allocating node, some parts of the TMSI

may be related to the time when it was allocated or contain a bit field which is changed when the

allocating node has recovered from the restart. The TMSI is (re)allocated only in ciphered form

as we will detail after. The network must never allocate a TMSI with all 32 bits equal to 1 (this is

because the TMSI must be stored in the USIM, and the USIM uses 4 octets with all bits equal to 1

to indicate that no valid TMSI is available). The temporary identifier TMSI is never used alone. A

Location Area Identity, denoted LAI (and Routing Area Identifier (RAI) for the P-TMSI) is added

to the temporary identity to allow a serving network to retrieve a unique identity IMSI associated

to the temporary data. This value can be used only in a specific given area: the TMSI is always

accompanied by the location area identification to avoid ambiguity. The LAI consists of the three

following elements:

• A Mobile Country Code, which is the same 3-bit value included in the permanent identifier.

• A Mobile Network Code, which is the same 3-bit value included in the IMSI.

• A Location Area Code, which is a 8-bit value identifying a location area within a PLMN.
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In addition, the Routing Area Identifier (RAI) also includes a routing area code. The UMTS-AKA

protocol starts with the identification of the ME/USIM to VLR. At first, the mobile equipment

receives a user request from the VLR and then responds in cleartext, with a pre-exchanged TMSI

as detailed previously.

The VLR, which represents the serving network, manages a data base of correspondences be-

tween the IMSI and the TMSI values. A new TMSI must be allocated at least every time the loca-

tion updating procedure is used, as soon as a TMSI is used, it needs to be replaced. At that point,

the mobile station de-allocates the old value and allocates the fresh temporary identity required

from the VLR. We note that this value needs to be store in non-volatile memory together with

the associated LAI. So they are not lost when the ME/USIM switches off. When the ME/USIM
receives a user identity request from the VLR, it sends its current TMSI‖LAI. When it receives its

value, the VLR verifies if the LAI matches the current ME/USIM. If that is not the case, the VLR

starts a Local TMSI Unknown Procedure. Otherwise, it tries to recover the corresponding perma-

nent identity using its database to accept the identification. If such a value cannot be recovered,

the VLR sends a Permanent Identity Request to the ME/USIM, which answers with its IMSI. All

these flows are exchanged in cleartext.

Local TMSI Unknown Procedure. If the LAI does not match the VLR, a Local TMSI Unknown

Procedure is executed by finding the VLR that issued the used TMSI, i.e. the VLR denoted VLR0

corresponding to the sent LAI, the current VLR may recover the IMSI correponding to that (TMSI,

LAI) tuple or a ”error message” which in turn issues a Permanent Identity Request to the mobile

station. This request is also used when the user registers for the first time in a serving network.

This protocol is detailed in Figure 2.7.

ME/USIM VLRn/SGSNn VLRo/SGSNo

User identity request

←−−−−−−−−−−−−−−−−
TMSIo‖LAI

−−−−−−−−−−−−−−−−→
TMSIo

−−−−−−−−−→
Resp

←−−−−−−−−−
If Resp contains an IMSI, it ac-

cepts the identification. Oth-

erwise, Resp contains an ”er-

ror message” and it sends a

Permanent Identity request.
Permanent identity request

←−−−−−−−−−−−−−−−−
IMSI

−−−−−−−−−−−−−−−−→
ACCEPT.

Figure 2.7: Local TMSI Unknown Procedure

Challenge-Response.

At the end of the identification phase, the VLR has been able to recover the subscriber’s IMSI,

and thus its associated operator. In the challenge response phase, the VLR sends an authentication-

vectors request including the permanent identifier of the client to its related operator. Upon receiv-

ing the IMSI, the HLR/AuC generates a new sequence number Sqn and an unpredictable variable

R. By using the subscriber’s key skC and the corresponding operator key skOp, it then generates

a list of n unique authentication vectors AV composed of five values: R, MacC, CK, IK, Autn.

For every authentication vector, the sequence number is updated. The update procedure depends

on the chosen method. The specifications feature a first method which does not take into account

the notion of time, and which basically increments by 1 the most significant 32-first value of the

sequence number. A second and third subsequent methods feature a time-based sequence num-
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ber update based on a clock giving universal time [13]. The authentication vector is generated as

follows:

MacS ← F1(skC, skOp,R, Sqn,AMF),

MacC ← F2(skC, skOp,R),

CK ← F3(skC, skOp,R),

IK ← F4(skC, skOp,R),

AK ← F5(skC, skOp,R),

Autn ← (Sqn ⊕ AK)‖AMF‖MacS,

where MacS is the message authentication code of the network to the subscriber, MacC is the

message authentication code of the subscriber to the network and AMF is an administrative au-

thentication and key management field (which is a known, public constant). This 16-bit value

is not strictly standardized ans its usage depends to the related operator. Some examples as the

lifetime of the session keys are detailed in the technical specification 33.102 [13].

The HLR/AuC sends a batch of the authentication vectors AV to the VLR. This batch may be

restricted to a single authentication vector (notably when the client is in a roaming situation). If

the batch contains multiple authentication vectors, the operator will not be required in each session

and which reduces the communication in the core network (between service provider and operator)

which is financially expensive.

Upon the reception and storage of these vectors, when the server initiates an authentication and

key agreement, it selects the next authentication vector from the ordered array and stores MacC
and the session keys CK and IK. Then, it forwards (R, Autn) to ME/USIM. Note that the session

keys (CK, IK) are not used during the key agreement; the additional key AK used to mask Sqn is

independent of the other keys, thus preventing circularities in the security proof. The key AK is

not used later to secure the channel. These choices facilitate our analysis and proofs.

The ME/USIM verifies the freshness of the received authentication challenge. To this end, it

recovers the sequence number by computing the anonymity key AK, which in its own turn depends

on three values: skC , skOp, and the received R. Then, the user verifies the received MacS by com-

puting F1(skC , skOp, R, Sqn , AMF) with the received R and Sqn values. If Mac value does not

verify, the user sends an authentication failure message back to the server, and the user abandons

the procedure. In case the execution is not aborted, the ME/USIM verifies if the received Sqn value

is in a correct range with respect to its stored SqnC value3. If the Sqn is out of range, the user sends

a synchronization failure message back to the server, which triggers a re-synchronization proce-

dure, depicted further in Figure 2.8. The MacS value does not only ensure the integrity, but also the

authentication of the network by ME/USIM. If the two previous verifications are successful i.e.,

if the received authentication challenge is fresh, the network is authenticated by the ME/USIM.

Then, the ME/USIM computes CK, IK, and Res← F2(skC, skOp,R). To improve efficiency, Res,

CK, and IK could also be computed earlier, at the same time that AK is computed. Finally, the

user sends Res to server. If Res = MacC, the server successfully authenticates the ME/USIM.

Otherwise, the VLR will initiate an authentication failure report procedure with the HLR/AuC.

Note that the verification of the sequence number by the ME/USIM will cause the rejection of any

attempt to re-use an authentication challenge more than once.

The Re-synchronization Procedure.

3The sequence number Sqn is considered to be in the correct range relatively to SqnC if and only if Sqn ∈
[SqnC, SqnC +∆], where ∆ is defined by the operator.
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Client Server Operator

ME/USIM VLR/SGSN HLR/AuC
(skC, skOp, SqnC) (skC, skOp, SqnOp,C)

Auth. Challenge

R‖Autn

←−−−−−−−−−−−−−−−−

1©

Resynch. Request

Auts

−−−−−−−−−−−−−−−−→

2©
Resynch. Request

R‖Auts

−−−−−−−−−−−−−−−−→

3©
Auth. Vectors

R{i}‖Autn{i}

←−−−−−−−−−−−−−−−−
Instructions:

ME/USIM VLR HLR/AuC

1©: Compute the value AK with the value R.

Recover Sqn with AK.

Check if the received MacS is correct.

Check if Sqn is in the correct range w.r.t. the

stored SqnC.

Re-synchronization Procedure:

Compute AK∗ ← F∗
5 (skOp, skC,R) and

Mac∗ ← F∗
1 (skOp, skC,R, SqnC,AMF).

Forge Auts = (SqnC ⊕ AK∗)‖Mac∗).

2©: Add the R value.

3©: Compute the value AK∗ with the value R.

Recover SqnC with AK∗.

Check if the incremented SqnOp,C is in the cor-

rect range related to SqnC.

If it is not the case and if only the received

Mac∗ is correct, then SqnOp,C ← SqnC. Oth-

erwise, it aborts the procedure. It sends a new

list of authentication data vectors initiated with

SqnOp,C.

Figure 2.8: The re-synchronization procedure of UMTS-AKA protocol.

The re-synchronization procedure is used when the subscriber detects that the received se-

quence number is not in the correct range, but that it has been correctly authenticated. The single

goal of this procedure is the re-initialization of the sequence number which does not immediately

imply any mutual authentication or key agreement (rather the procedure triggers a new authen-

tication attempt). The ME/USIM sends an synchronization failure message, consisting of a pa-

rameter Auts, with Auts = (SqnC ⊕ AK∗)‖Mac∗ with Mac∗ = F∗
1 (skOp, skC,R, SqnC,AMF)

and AK∗ = F∗
5 (skOp, skC,R). The F∗

1 algorithm is a MAC function with the additional property

that no valuable information can be inferred from Mac∗ (in particular this function acts as a PRF).

Though similar to F1, the F∗
1 algorithm is designed so that the value Auts cannot be computed

relying on the output of F1. Furthermore, the anonymity key AK∗ generated by the client at resyn-

chronization is obtained via the F∗
5 algorithm, rather than by F5, even if the same random value R

is used. Upon receiving a synchronization failure message, the server does not immediately send a

new user authentication request to the ME/USIM, but rather notifies the HLR/AuC of the synchro-

nization failure, sending the parameter Auts and the session-specific R. Note that, since VLR does

not have the keys skOp and skC, it cannot verify the validity of Auts. When the HLR/AuC receives

this answer, it creates a new batch of authentication vectors after checking the Auts value. Depend-

ing on whether the retrieved, authenticated Sqn indicates that the HLR/AuC’s sequence number is

out of range or not, the backend entity generates vectors starting either with the last authenticated

sequence number, or from the authenticated sequence number sent by the user. More precisely, the

HLR/AuC retrieves SqnC by computing F∗
5 (skC, skOp,R)⊕ ⌊Auts⌋48. Then, it verifies if its own

incremented SqnOp,C is in the correct range relatively to SqnC. If SqnOp,C verifies this property,
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the new list of authentication vectors are initiated with SqnOp,C (the stored value). If SqnC is out of

range with respect to SqnOp,C the operator verifies Mac∗ . If this step is successful, the HLR/AuC
resets the value of SqnOp,C to SqnOp,C := SqnC and sends a new list of authentication data vectors

initiated with this updated SqnOp,C. This list may also contain only a single authentication vector.

Figure 2.8 details this resynchronization procedure.

Reallocation of the Temporary Identifier.

At the end of the key derivation, both entities (ME/USIM and VLR) need to update the tem-

porary identifier with a new value. To allocate new TMSIn, the VLR generates this value in its

own LAI 4, but only after a successful identification based on the old TMSIo, and a successful key

setting permitting to share the ciphering key CK (by the UMTS-AKA protocol). The VLR sends

the new TMSIn to the ME/USIM in a ciphered mode by using the A5/3 algorithm included in the

UeA set of algorithms, using the derived key CK. These algorithms are described in the technical

specification TS 43.020 [20]. The ME/USIM recovers with the key CK the new TMSIn, stores it

and de-allocates TMSIo. Then ME/USIM sends an ”acknowledge message” in cleartext to confirm

its allocation. After receiving this message, the VLR de-allocates the TMSIo and stores TMSIn.

If the VLR does not receive such a message, the network will associate the user’s IMSI with both

TMSIo and TMSIn. For the next identification, the mobile station can use either value (TMSIo
and TMSIn). This will allow the network to determine the TMSI stored in the ME/USIM; the

association between the other TMSI and the IMSI can then be deleted, to allow the unused TMSI

to be allocated to another ME/USIM. In theory, the temporary identifier has to be used only once

and reallocated after each secure channel establishment. We note that in practice it is not really

the case.

2.3.2 AKA in the 4G Networks: The EPS-AKA Protocol

Although the UMTS-AKA protocol forms the backbone of EPS-AKA, i.e., the form of AKA used

in 4G network, the latter comes with few differences which we detail below. Recall that one

modification in 4G architectures is replacing the intermediary entity VLR/SGSN by a Mobility

Management Entity (MME) instead VLR/SGSN. As for UMTS-AKA, the EPS version requires

two long-term symmetric keys: the subscriber key and the operator key. The protocol is still

stateful relying on the sequence number. A difference is that the temporary identifier use in the 4G

networks is called Global User Temporary Identity (GUTI) instead the TMSI.

User Identification.

In the 4G architecture, the user identification proceeds as in the 3G architecture, except that

the entities use a temporary identifier denoted GUTI instead of the TMSI and the LAI. To start the

protocol, the client must to identify to the service provider, allowing it to associate the client with

its permanent IMSI.

A new temporary identifier: GUTI. The Global User Temporary Identity (GUTI) is meant to

provide an unambiguous identification of the user, without revealing the latter’s permanent iden-

tifier mobile networks. It is constructed from server and user identifiers. This 64-bit identifier is

composed by the following values:

• The Globally Unique MME Identifier (GUMMEI) which identifies the MME that allocated

4They are not recommended methods to generate the TMSI as the technical specification 23.003 [7] (”the structure

and coding of it can be chosen by agreement between operator and manufacturer in order to meet local needs”). They

only provide one advice (some parts of the TMSI may be related to the time)
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the GUTI. It is composed by the MCC and MNC values described in Section 2.3.1 pre-

viously detailed and a MME identifier (MMEI). The latter has two components: a 16-bit

MME Group identifier and an 8-bit MME Code.

• The value M-TMSI uniquely identifies the UE similarly to the 3G temporary identifier.

Since the GUTI has one component which identifies the MME, this value also allows the MME

and mobile network identification, but without any authentication. See the technical specification

23.003 [7] for more details.

A Local GUTI Unknown Procedure. In the 4G architectures, the location area identifier (LAI)

is useless (since the GUMMEI identifies the MME), and only the GUTI is required for a user

identification. The Local GUTI Unknown Procedure (which replaces the Local TMSI Unknown

Procedure) behaves as described in Figure 2.9.

ME/USIM MMEn MMEo

User identity request

←−−−−−−−−−−−−−−−−
GUTIo

−−−−−−−−−−−−−−−−→
Recover the related value

MMEIo included in GUTIo.
GUTIo

−−−−−−−−−→
Resp

←−−−−−−−−−
If Resp contains an IMSI, it ac-

cepts the identification. Oth-

erwise, Resp contains an ”er-

ror message” and it sends a

Permanent Identity request.
Permanent identity request

←−−−−−−−−−−−−−−−−
IMSI

−−−−−−−−−−−−−−−−→
ACCEPT.

Figure 2.9: Local GUTI Unknown Procedure in 4G networks.

Challenge-Response.

The challenge-response of the EPS-AKA behaves almost as the UMTS-AKA protocol de-

scribed in Section 2.3.1. Figure 2.10 describes the new procedure.

This procedure is similar, but differs in the management of the session keys. Indeed the two session

keys CK and IK computed at the end of the protocol are no longer used to protect the radio link

for interoperability reasons. They are only used to compute a local main session key called Kasme.

This key is included in the authentication vectors sent by AuC to the MME, and while the two

old session keys CK and IK are removed. After receiving this new batch of authentication vectors,

the MME sends to the USIM via user equipment the random challenge R and an authentication

vector Autn for network authentication from the selected authentication vector. It also includes

an identifier KSIasme for the user equipment which will be used to identify the Kasme (and further

keys derived from the Kasme) that results from the EPS-AKA procedure. The KSIasme is allocated
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Client Server Operator

ME/USIM MME HSS/AuC
(skC, skOp, SqnC) (skC, skOp, SqnOp,C)

User identity request

←−−−−−−−−−→
Auth. vectors request

−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}‖KSIasme
{i}

←−−−−−−−−−−−−

3©
Auth response

Res

−−−−−−−−−−−−→
4©

GUTI re−allocation
←−−−−−−−−−→

Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).

Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:

CK← F3(skC, skOp,R
{i}),

IK← F4(skC, skOp,R
{i}),

Kasme ← KDF(CK‖IK, 0x10‖IDSN‖|IDSN|‖(Sqn⊕
AK)‖|(Sqn ⊕ AK)|).

Set Res := F2(skC, skOp,R
{i}).

Update SqnC := Sqn{i}.

Else re-synchronization

————————–

2©: Store {AV{i}}ni=1.

Choose AV{i} one by one

in order.

Then it sends the related

challenge.

————————–

4©: Res
?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}.
Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← F1(skC, skOp,R

{i}, Sqn{i},AMF),

Mac
{i}
C ← F2(skC, skOp,R

{i}),

CK{i} ← F3(skC, skOp,R
{i}),

IK{i} ← F4(skC, skOp,R
{i}),

AK{i} ← F5(skC, skOp,R
{i}),

Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac
{i}
S .

Kasme ← KDF(CK‖IK, 0x10‖IDSN‖|IDSN|
‖(Sqn ⊕ AK)‖|(Sqn ⊕ AK)|).

AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C ,

with SqnOp,C = Sqn{i}.

End For.

Figure 2.10: The EPS-AKA Procedure.

by the MME and uniquely identifies the Kasme. It is stored in the UE and serving MME together

with the GUTI (if one is available), allowing the Kasme to be cached and re-used during subse-

quent connections without re-authentication. A new authentication procedure includes a different

KSIasme. At receipt of this message, the user verifies the freshness of the authentication vector by

checking the received sequence number and the MAC value as described in technical specification

TS 33.102 [13]. If these checks are successful, the user computes a response Res. The user then

computes CK and IK, then use it to derive computing the local master key Kasme. Finally, the user

equipment and the MME, after having accepted the session, have to compute session keys for NAS

and RRC traffic.

New Session Keys Hierarchy.

The key hierarchy in EPS is considerably more elaborate than the UMTS one. Indeed, the

new mobile network requires a network separation for the confidentiality and integrity protection

in the access network. That implies a binding of session keys to the serving network identity,

which is not the case with the keys CK and IK. Thus, instead of computing only two session

keys CK and IK respectively for guaranteeing the confidentiality and integrity for all the commu-

nication in the access network, separated key-pairs are computed in 4G networks for each type
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of communications. A first local master key Kasme is computed by the client and by the network

which computes the authentication vectors. This key is distributed to the server MME. Re-using

the local master key Kasme reduces the frequency with which authentication vectors need to be

fetched from the operator. Finally, this key is less exposed since it is never transferred in the core

network. Following the computation of Kasme, a second master key called KeNb is computed to the

radio access network level. This key is computed by the server and distributed to the base station.

To derive all the session keys used in the encryption and integrity algorithms, the client, MME,

and eNodeB all use a key-derivation function KDF, typically instantiated as HMAC-SHA-256, as

detailed in the technical specification TS 33.220 [6]. To derive the 256-bit key Kasme, the user

and the operator uses the KDF function taking in input the following mandatory parameters: CK,

IK, and serving network identifier IDSN. The latter value consists of the encoded concatenation

of the values MCC and MNC described. The key Kasme is computed by the following expres-

sion: Kasme = KDF(CK‖IK, 0x10‖IDSN‖|IDSN|‖(Sqn ⊕ AK)‖|(Sqn ⊕ AK)|), including thus the

exclusive or of the sequence number (Sqn) and the anonymity key (AK) the value used during

the related session of the EPS-AKA protocol. After having accepted the session, the user and

the MME compute several session keys: KeNB, KNASint , KNASenc , KUPenc
, KRRCint

, KRRCenc
and

KUPint
, each protecting a different level of communications (traffic) between the server and the

client. Since all these keys are derived (directly or not) from the key Kasme, we can assume both

parties use these key appropriately. Moreover, note that these keys are computed directly in the

user equipment and not necessary in the USIM (as the session keys CK and IK). All the keys

(except KeNB) are computed as following the following computation (more details TS 33.401 [8]):

Kderived = KDF(K, 0x11‖P0‖|P0|‖P1‖|P1|) , with P0 the value of algorithm type distinguisher

and P1 the EPS Integrity Algorithm (EIA). The key hierarchy is described as follows:

• Intermediate key KeNB: This eNodeB key is a key derived by UE and the MME from Kasme

or by the ME and a target eNB as follows:

KeNB = KDF(Kasme, 0x11‖P0‖L0), with P0, L0 two values depending the uplink NAS

COUNT.

• Keys for NAS traffic: KNASint (respectively KNASenc) is a key used to protect the NAS traffic

particularly for providing integrity (respectively confidentiality). It is derived by the ME

and MME from Kasme and an identifier for the integrity algorithm P0 = 0x02 (respectively

P0 = 0x01).

• Keys for UP traffic: KUPint
(respectively KUPenc

) is a key used to protect the UP traffic

particularly for providing integrity (respectively confidentiality). This key is derived by ME

and eNB from KeNB and an identifier for the encryption algorithm P0 = 0x04 (respectively

P0 = 0x03).

• Keys for RRC traffic: KRRCint
(respectively KRRCenc

) is a key used to protect the RRC traffic

particularly for providing integrity (respectively confidentiality). This key is derived by

ME and eNB from KeNB, as well as an identifier for the encryption algorithm P0 = 0x06

(respectively P0 = 0x05).

Figure 2.11 details this session-keys hierarchy.

Reallocation of the Temporary Identifier.

Upon completing a successful run of the EPS-AKA protocol, a new GUTI must be reallo-

cated to replace the one used in the current execution. The MME generates a new GUTI for that

client, and sends it in ciphered mode. As detailed in Section 5.4.1 of the technical specification



2.3. THE AKA PROTOCOLS 45

Figure 2.11: New session keys hierarchy in 4G networks.

TS 24.301 [15], the behaviour of the two entities is similar to that during a TMSI re-allocation

procedure. Indeed, when the user receives a ciphered identifier, it recovers the new GUTI which

is considered as valid and the old one becomes as invalid. After receiving the acknowledgement

message, the MME considers the new GUTI as valid and the old one as invalid.

2.3.3 The Internal Cryptographic Primitives

Both AKA protocols are based on a set of seven functions which generate the cryptographic

output necessary to attain the required security. In the original seven-algorithm proposal called

MILENAGE [2], these functions relied on AES encryption. As an alternative to MILENAGE,

another set of algorithms called TUAK [4] was proposed, the latter relying on a truncation of

Keccak’s internal permutation. The winner of the SHA-3 hash function competition, Keccak relies

on the sponge construction [45], thus offering both higher performance, in hardware and software,

than AES, and resistance to many generic attacks. While the TUAK algorithms, designed by the

ETSI SAGE group, inherit Keccak’s superior performance, they do not use the Keccak permuta-

tion in a usual, black box way. Instead the internal permutation is truncated, then used in a cascade,

which makes it non-trivial to analyze. We cannot simply use the same assumptions for the trun-

cated version as we would for the original permutation, either. Our analysis of the key security, as

well as client- and respectively server-impersonation resistance of the protocol concerns both the

MILENAGE based instantiations.

The MILENAGE Algorithms.

MILENAGE [2] is a set of algorithms which aims to achieve authentication and key gener-

ation properties. As opposed to TUAK which is based on Keccak’s internal permutation, the

MILENAGE algorithms are based on the Advanced Encryption Standard (AES). The functions

F∗
1 , F1 and F2 must provide authentication, while F3, F4, F5 and F∗

5 are used to derive key ma-

terial in order to achieve confidentiality, integrity, and anonymity. The various parameters of these

functions are:

• Inputs: skOp, skC two 128-bit long term credential keys that are fixed by the operator, a

128-bit random value R , a 48-bit sequence number Sqn, and a 16-bit authentication field

management AMF chosen by the operator (the last two values are only used for the MAC
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generation). We denote that the subscriber key skOp is a private key shared by all the sub-

scribers of the same operator. The 128-bit subscriber key skC is shared out of band between

the client and operator.

• Five 128-bit constants c1,c2,c3,c4,c5 which are xored onto intermediate variables and are

defined as follows:

– c1[i] = 0, ∀i ∈ {0, 127}.

– c2[i] = 0, ∀i ∈ {0, 127}, except that c2[127] = 1.

– c3[i] = 0, ∀i ∈ {0, 127}, except that c3[126] = 1.

– c4[i] = 0, ∀i ∈ {0, 127}, except that c4[125] = 1.

– c5[i] = 0, ∀i ∈ {0, 127}, except that c5[124] = 1.

• Five integers r1,r2,r3,r4,r5 in the range {0, 127}which define amounts by which intermediate

variables are cyclically rotated. They are defined as follows: r1 = 64; r2 = 0; r3 = 32; r4 =
64; r5 = 96.

The generation of all AKE output starts by initializing a value TopC . To do so, one applies a first

call of the AES function on inputs the operator and subscriber keys: TopC = skOp⊕AESskC(skOp).
We recall that AESK(M) denotes the result of applying the Advanced Encryption Standard encryp-

tion algorithm to the 128-bit value M under the 128-bit key K. Then, we compute the following

values taking as input Sqn, R, AMF and other constants:

• Temp = AESskC(R ⊕ TopC),

• Out1 = AESskC(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,

• Out2 = AESskC(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC ,

• Out3 = AESskC(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

• Out4 = AESskC(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,

• Out5 = AESskC(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC .

All the outputs of the MILENAGE algorithms are computed as follows:

• Output F1: MacC = ⌊Out1⌋0..63,

• Output F∗
1 : Mac∗ = ⌊Out1⌋64..127,

• Output F2: MacS = ⌊Out2⌋64..127,

• Output F3: CK = Out3,

• Output F4: IK = Out4,

• Output F5: AK = ⌊Out2⌋0..47,

• Output F∗
5 : AK∗ = ⌊Out5⌋0..47,
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Figure 2.12: MILENAGE diagram.

This is also described in Figure 2.12.

The TUAK Algorithms.

TUAK [4] is a set of algorithms based on a truncation of the internal permutation function

of Keccak; however, for efficiency reasons, only one or two iterations of the internal TUAK per-

mutation are used. The goal of the TUAK functions is to provide secure authentication and key-

exchange in the AKA protocols. In particular the TUAK functions F1 (respectively F∗
1 ) and F2

must provide authentication, while F3, F4, and F5 (respectively F∗
5 ) are used to derive the session

keys used to attain confidentiality, integrity, and anonymity. The seven functions are parametrized

by:
• Inputs: skOp a 256-bit long term operator key, a 128-bit random value R, a 48-bit sequence

number Sqn, and a 16-bit authentication field management string AMF chosen by the op-

erator (the last two values are only used for the MAC generation). Note that all subscribers

to the same operator will share that operator’s key skOp. Additionally, a subscriber key skC
is shared out of band between the HSS/AuC and ME/USIM which allows to initialize the

value Key:

– If |skC| = 128 bits, then Key← skC[127..0]‖0
128.

– If |skC| = 256 bits, then Key← skC[255..0].

• Several public constants:

– AN: a fixed 56-bit value 0x5455414B312E30.

– Inst and Inst’ are fixed binary variables of 8 bits, specified in [4], which depend on

the functions and the output sizes.

The generation of all AKE output starts once more by initializing TopC . To do so, one ap-

plies a first fKeccak permutation on a 1600-bit state Val1 as Val1 = skOp‖Inst‖AN‖0
192‖Key‖

Pad‖1‖0512, where Pad is a bitstring output by a padding function. The value TopC corresponds

to the first 256 bits of this output. At this point, the behaviour of the functions F1 and F∗
1 diverges

from that of the other functions. To generate the MAC value of F1 and F∗
1 , we take as input

Sqn, AMF, and R, three values chosen by the operator, and some constants. After the generation

of TopC , we initialize a second state Val2 = TopC‖Inst
′‖AN‖R‖AMF‖Sqn‖Key‖Pad‖1‖0512.

Then, one applies the TUAK permutation on Val2, using only the first 64 bits to compute MacS.

To generate the session keys and run F2, one initializes a second state for this function, namely,
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Figure 2.13: TUAK diagram.

Val2 = TopC‖Inst
′‖AN‖R‖063‖Key‖Pad‖1‖0512. Then, the TUAK permutation is applied on

Val2 yielding Out, which in turn is used to compute the response MacC and the session keys:

MacC = ⌊Out⌋|ℓ|−1..0, ℓ ∈ {16, 32, 64, 128},

CK = ⌊Out⌋256..384 and |CK| = 128,

IK = ⌊Out⌋512..640 and |IK| = 128,

AK = ⌊Out⌋768..816 and |AK| = 48.

This is also depicted in Figure 2.13. The way the output of the functions is truncated and used is

the reason why TUAK is called a multi-output function. This is one of TUAK’s chief differences

from MILENAGE, and it has a non-negligible impact on its efficiency, as it saves a few calls to the

internal function. However, this multi-output property can be an issue for the security of the master

key, since during one session we can have as many as four calls to the same function with similar

inputs (and a different truncation). Having different chunks of the same 1600-bit state (called

Out in our description) can lead to recovering the long-term key skC by the reversibility of the

TUAK permutation. The concatenation of all the different chunks used per session totals at most

only 432 out of the 1600 output bits. Thus, though having multiple outputs can be hazardous in

general, the Keccak-based construction of TUAK allows this without compromising the long-term

parameters.
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The AKA protocols were designed for 3G and 4G networks, and are currently used to securely

provide service to mobile clients on 3G and 4G networks. As a standardized, and highly used

protocols, they are likely to become one of the main building blocks securing 5G communica-

tions. Despite its significance, the security of the AKA protocols is not well-understood to date.

Several previous results indicate privacy flaws and propose quite radical modifications which are

claimed to provide better privacy. We focus on the actual security guarantees of the unmodified

AKA protocols, and conclude that it is vulnerable to server corruptions and to offline relays. We

furthermore indicate a small modification, easily incorporated in the design of this protocol, which

provides a much stronger security.

49



50 CHAPTER 3. SECURITY ANALYSIS OF THE AKA PROTOCOLS

3.1 Security analysis

The security goals of the AKA protocols are: the secrecy of the established sessions keys against

both passive and active MitM adversaries, as well as mutual authentication. In particular, these

protocols cannot guarantee (perfect) strong secrecy, as it uses symmetric long-term keys, which,

once compromised, can also endanger past session keys. We formalize these goals in terms of three

properties: key-indistinguishability, client-impersonation resistance, and server-impersonation re-

sistance. Moreover, the protocols implicitly requires (and addresses) security with respect to ma-

licious servers. Indeed, since servers are sometimes untrusted (in the case of roaming), the AKA

protocols must also protect clients with respect to these third parties. Considering this adversary,

the additional security properties are required and are defined by: (1) the servers have no access

to the long-term symmetric keys; (2) the (hence necessary) operator-server communication must

be minimized in order to minimize costs. We formulate the following two implicit requirements

by the state confidentiality, i.e the servers must no learn any client-related long-term state, and

soundness which means clients must reject authentication-challenges not explicitly provided by

the operator to the server.

3.2 Security Model

The security of the AKA protocols is defined by five security properties which are key-indistinguis-

hability, client- and server-impersonation resistance, state-confidentiality and soundness. These

five security notions cannot be trivially proved in the Bellare-Rogaway model variations, e.g. [40].

Though AKA may seem to be a typical – if stateful – symmetric key agreement protocol, its de-

sign is convoluted and includes several unusual features. The sequence numbers provide state to

the protocol, and are tied to a resynchronization procedure. The server authentication step allows

an unorthodox kind of relay attack, which permits a degree of server impersonation. Further-

more, clients registered with the same operator share that operator’s key skOp, though not their

individual client keys. An interesting fact regarding the operator key is that it is never stored

in clear in the client’s SIM card. Finally, clients and servers may become desynchronized, and

the resynchronization procedure is required, introducing a further protocol step. Due to these

features, we cannot use the classical Bellare-Rogaway [40] or Bellare-Pointcheval-Rogaway [39]

model for our analysis, though we employ a modified version of it. Our model is robust with

respect to multiple clients, multiple operators, and different types of corruptions, and do take into

account re-synchronizations, sequence numbers and a more restricted Man-in-the-Middle server-

impersonation attacker model. Note that, even if this implies an imperfect mutual authentication,

the offline relay strategy we depict, has no impact on the secrecy (indistinguishability from ran-

dom) of the sessions keys. We split the guarantee of mutual authentication, which implies client

and server impersonation resistance, into two properties. This is because the AKA protocols offer

different degrees of security with respect to impersonation attacks for clients and for servers.

Setup and participants. We consider a set P of honest participants, which are either servers S or

mobile clients C of the type ME/USIM subscribing to operators Op. A participant is generically

denoted as P. In all security games with respect to Man-in-the-Middle adversary, the operators

Op are black-box algorithms within the server S. For the soundness and state-confidentiality prop-

erties with respect the malicious server adversary, the operators Op are oracles accessible from

servers. We assume the existence of nC clients, nS servers and nOp operators. If the operators are

contained within the servers, we assume that all copies of the same operator are synchronized at

all times. Each client C is associated with a unique identifier UID, two long term static secret keys:

skUID (subscriber key), and skOp (operator key), which is common to all clients subscribing to a
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specific operator. Clients also keep track of a long-term state stUID
1. In particular, we consider

multiple operators, with the restriction that each user may only be registered to a single operator2.

In our model, we also assume for simplicity that the key space of all operators is identical, noting

that neither the key-indistinguishability, nor the mutual authentication properties are affected by

the way operators choose their keys (the security of both the key exchange and the authentica-

tion properties rely just on the key length); the variation in the key space does, however, affect

user privacy. Each operator is assumed to store skUID as part of a database entry of the tuples

(UID, skUID, skOp, stOp,UID), each tuple corresponding to a single user of this operator. The last

entry stOp,UID of each tuple denotes the long term state of the operator associated with that user

– which may in fact differ from the state of the user itself. For the AKA protocols, the state is

in fact a sequence number, associated with each client. Finally, servers do not contain any secret

information pertaining to the operator or the subscriber. In our model, each participant may run

concurrent key-agreement executions of the protocol Π. We denote the j-th execution of the pro-

tocol by the party P as Pj . We tacitly associate each instance Pi with a session ID sid, a partner ID

pid (consisting either of one or of multiple elements), and an accept/reject bit accept. As explained

more in the proofs, the partner ID is set to either the server or to a user identifier UID, whereas the

session ID includes three values: the user ID given by the client (thus tacitly also the key associ-

ated with that UID), the randomness generated by the server, and the sequence number used for

the authentication. Finally, the accept/reject bit is initialized to 0 and turns to 1 at the successful

termination of the key agreement protocol. We call this “terminating in an accepting state”.

In the absence of an adversary, the protocol is always run between a client C and a server S.

For the AKA protocols, the server begins the protocol by means of an ID request, and can thus

be called its initiator, whereas the mobile client is the respondent. A successful termination of

the protocol yields, for each party, a session key K (which for the UMTS-AKA protocol consists

of two keys), the session identifier sid, and the partner identifier pid of the party identified as the

interlocutor. In the AKA protocols the client is authenticated by means of a challenge-response

type of query, where the response is computed as a pseudo-random function of the key and (a part

of) the challenge. The server is equally authenticated by means of an authentication string, also a

pseudo-random function of the key, the challenge, and the long-term state that the server associates

with that client. In particular, the challenge strings sent by the server are authenticated. During the

next sections, we detail and formalize the five security properties of the AKA protocols.

3.2.1 Key-Indistinguishability

The notion of key-indistinguishability refers to the session keys calculated as a result of the key-

exchange protocol (rather than to the long-term keys held by each party), requiring that they be

indistinguishable from random bitstrings of equal length. The MitM adversary A can access in-

stances of honest parties by means of oracles acting as interfaces; furthermore, A can schedule

message deliveries, send tampered messages, or interact arbitrarily with any party, by means of

the oracles below. We note that in the key-indistinguishability model the adversary may also know

the long-term state (in our case, the sequence number) of both users and the server. This will

also be the case in the impersonation games. Since the state is updated in a probabilistic way,

we give the adversary a means of always learning the updated state of a party without necessarily

corrupting it (the latter may rule out certain interactions due to notions of freshness, see below).

Corruption is allowed and implied the related party is considered as adversarially controlled. We

1The latter consists in practice of a sequence number SqnUID, which is updated at each successful authenticated key

exchange.
2We note that this seems to extend naturally to a case in which a single client may be registered with multiple

operators, as long as the key-generation process for each operator is such that the registration of a single client to two

operators is equivalent to representing a two-operator-client as two independent clients.
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use the same fundamental model, with similar oracles, also for the definitions of client and server

impersonation. We consider a finite (and public) list of nOp operators Op1, . . .OpnOp
, for which

the keys skOp1
, . . . skOpnOp

are generated independently and uniformly at random Sop.

Oracles. The adversary interacts with the system by means of the following oracles, in addition

to a function G, which we model as a PRF.

• CreateCl(Op)→ (UID, stUID): This oracle creates a client with unique identifier UID. Then

the client’s secret key skUID and the sequence number stUID := SqnUID. The tuples (UID,
skUID, skOp, SqnUID) are associated with the client UID and with the corresponding operator

Op (i.e. each “copy” of Op in each server does this). The operator sets stOp,UID := SqnUID
and then keeps track of stOp,UID. The adversary is given UID.

• NewInstance(P)→ (Pj ,m): this oracle instantiates a new instance Pj , of party P, which is

either a client or a server. Furthermore, the oracle also outputs a message m, which is either

the first message in an honest protocol session (if P is a server) or ⊥ (if P is a client). The

state st of this party is initiated to be the current state of P, i.e the current value of stUID.

• Execute(P, i,P′, j)→ τ : creates (fresh) instances Pi of a server P and P′
j of a client P′, then

runs the protocol between them. The adversary A receives the transcript of the protocol.

• Send(P, i,m) → m′: simulates sending message m to instance Pi of P. The output is a

response message m′ (which is set to ⊥ in case of an error or an abort).

• Reveal(P,i) → {K,⊥}: if the party has not terminated in an accepting state, this oracle

outputs ⊥; else, it outputs the session keys computed by instance Pi.

• Corrupt(P) → skP: if P is a client, this oracle returns the long-term client key skP, but not

skOp (in this we keep faithful to the implementation of the protocol, which protects the key

even from the user himself). If P is a server, then this oracle returns the identifier Si, giving

the adversary access to a special oracle OpAccess. If P is corrupted, then this party (and all

its instances, past, present, or future), are considered to be adversarially controlled.

• OpAccess(S,C) → m: for a corrupted server S, this oracle gives the adversary a one-time-

access to the server’s local copy of all the operators, in particular returning the message that

the operator Op would have output to the server on input a client C. If S is not corrupted,

this oracle outputs ⊥.

• StReveal(C, i, bitS)→ x: for a client P, if bitS = 0, then this oracle reveals the current state

of Ci; else, if bitS = 1, then the oracle returns the state the operator stores for C.

• TestK.Ind(P,i)→ K̂: this oracle is initialized with a secret random bit b. It returns ⊥ if the

instance Pi is unfresh or if it has not terminated in an accepting state (with a session key K).

If b = 0, then the oracle returns K̂ := K, else it returns K̂ := K′, which is a value drawn

uniformly at random from the same space as K. We assume that the adversary makes a single

TestK.Ind query (a standard hybrid argument can extend the notion to multiple queries). We

may assume that the adversary makes only a single TestK.Ind() query since we can extend

our model to the multi-query scenario by a standard hybrid argument.

We allow the adversaries to learn whether instances have terminated and whether they have

accepted or rejected their partners. Indeed, the adversary can always use Send queries to verify

the status of a session. We do not model the precise error messages received by the two parties on

abort, as they seem to have no effect on the key-indistinguishability and impersonation properties
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of the two parties respectively. We also assume that the adversary will learn the session and partner

identifiers for any session in which the instance has terminated in an accepting state.

Correctness and Partners. Each instance of each party keeps track of a session ID string, denoted

sid. For the AKA protocols, this value consists of a triple of values: a user ID UID (correspond-

ing to a single client C), a session-specific random value, and the sequence number used for the

authentication step. We define partners as party instances that share the same session ID. More

formally:

Definition 1. [Partners.] Two instances Pi and P′
j are partnered if the following statements hold:

(i) One of the parties is a user and the other is the server.

(ii) The two instances terminate in an accepting state.

(iii) The instances share the same sid.

In this case, the partner ID of some party P denotes its (intended) partner.

We define the correctness of the protocol as follows.

Definition 2. [Correctness.] An execution of the protocol Π between two instances is correct if

the execution is untampered with and if the following conditions hold:

(i) The two conversing instances share the same sid, i.e. they are partnered.

(ii) Both instances output the same session key(s) K.

(iii) The partner identifiers pid of the instances are correct, i.e they correspond to the con-

versing entities.

We consider two classes of adversaries, weak and strong, depending on whether the adversary

may corrupt servers or not. We model three requirements with respect to MitM adversaries.

Key-indistinguishability. For the property of key-indistinguishability, i.e. the guarantee that the

session keys of honest sessions are indistinguishable from random, we could consider two types

of models. The simpler of these gives the adversary the ability of recovering the secret key of the

operator, which considerably eases the simulation in our proof. However, we note that the operator

keys are not easy to recovery by a client in real-world implementations, as they are never stored

on the USIM card3. Thus, a more realistic model is the one we present above, in which only the

client key is recovered upon corruption.

The key-indistinguishability game is played as follows. First the challenger generates the keys

of all the nOp operators and gives black-box access to the server S. The adversary is then allowed

to query any of the oracles above. We implicitly assume that the TestK.Ind oracle keeps state and,

once it is queried a first time, it will return ⊥ on all subsequent queries (we only allow a single

query). However, we do allow the adversary to interact with other oracles after the TestK.Ind query

as well.

Eventually, the adversary A outputs a bit d, which is a guess for the bit b used internally

in the TestK.Ind oracle. The adversary wins if and only if: b = d and A has queried a fresh

instance to the TestK.Ind oracle. We consider the following definition of a fresh instance for the key-

indistinguishability. We note that this notion is classical in authenticated- key-exchange protocols.

3Instead, what is stored in the USIM card is an intermediate value, obtained after either a first Keccak truncated

permutation or a call of AES algorithm; thus the operator key is easy to use, but hard to recover.
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Definition 3. [Key-indistinguishability.] An instance Pi is fresh if the following queries had been

not previously executed on neither this instance, nor a partner of Pi,

(i) Reveal(.), either on the instance Pi, or on of its partners.

(ii) Corrupt(.) on any instance, either of P, or of their partners.

The advantage ofA in winning the key-indistinguishability game is defined as: AdvK.IndΠ (A) :=
|Pr[Awins]−1/2|. We quantify the adversary’s maximal advantage as a function of his resources

which are the running time t, the number qexec of instantiated party instances, and the maximum

number of allowed resynchronization attempts qres per instantiated instance.

Definition 4. [Weak/Strong Key-Indistinguishability.] A key-agreement protocol Π is (t, qexec,
qres, qG , ǫ)-weakly key-indistinguishable (resp. (t, qexec, qres, qs, qOp, qG , ǫ)-strongly key-indistin-

guishable) if no adversary running in time t, creating at most qexec party instances with at most qres
resynchronizations per instance, (corrupting at most qs servers and making at most qOp OpAccess

queries per operator per corrupted server for strong security), and making at most qG queries to

function G, has an advantage AdvK.IndΠ (A) > ǫ.

3.2.2 Client Impersonation Resistance

Though the AKA protocols claim to provide mutual authentication, its design introduces a vulner-

ability, leading to a subtle difference between the degree of client-impersonation resistance and

server-impersonation resistance. In fact, as detailed in the paragraph below, the protocols allow

the adversary to do a type of Man-in-the-Middle attack which resembles, but is not quite the same

as, a relay attack. We have two choices in modelling the client and server impersonation guar-

antees. The classical Bellare-Rogaway model, using the notion of freshness, cannot differentiate

well between client- and server-impersonation resistance. A consequence is that we would only be

able to prove a weaker client-impersonation guarantee than the one provided by the protocol. The

alternative is to give a more accurate model, which features time and can capture the difference

between online and offline relays. This is the strategy we use here. In a style akin to the distance-

bounding model of Dürholz et al. [96], we introduce a time variable with positive integer values,

denoted clock, which increments by 1 both when a Send query is sent by the adversary, and when

an honest party responds to this query. Running the Execute query increments clock by 1 for each

other implicit Send and for each implicit response step. For client impersonation, the only attacks

we rule out are online relay attacks, which are (somewhat simplistically) depicted in Figure 3.1.

We thus need to propose a more subtle definition of a fresh instance as follows:

Definition 5. [Freshness: C.Imp resistance.] A server-instance Si, with session ID sid and part-

ner ID pid, is fresh if: neither this instance nor a partner of Si is adversarially-controlled; and

there exists no instance Cj sharing session sid with the partner pid = Si (the related transcript is

denoted as (m,m′,m′′)) such that the following events occur:

(i) The message m is sent by the adversary A to Si via a Send(m) query at time clock = k,

yielding message m′ at time clock = k + 1.

(ii) The message m′ is sent by A to Cj via a Send(m′) query at time clock = k′ > k + 1,

yielding message m′′ at time clock = k′ + 1.

(iii) The message m′′ is sent by A to Si via a Send(m′′) query at time clock = k′′ > k′ + 1.

We note that the messages need not be exactly sequential (i.e. the adversary could query other

oracles in different sessions before returning to session sid). Furthermore, the notion of freshness
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only refers to relays with respect to the partner client pid. We do not restrict the adversary from for-

warding received messages to other server or client instances. The goal of a client-impersonation

adversary is to make a fresh server instance terminate in an accepting state. In this game, the Test

oracle is not used.

More formally, the game begins by generating the operator keys as before; then the adversary

A gains access to all the oracles except TestK.Ind. WhenA stops, he wins if there exists an instance

Si that ends in an accepting state and is fresh as described above. The advantage of the adversary

is defined as his success probability, i.e. Adv
C.Imp
Π (A) := Pr[A wins].

Definition 6. [Weak/Strong Client-Impersonation security.] A key-agreement protocol Π is (t,
qexec, qres, qG , ǫ)-weak-client-impersonation-secure (resp. (t, qexec, qres, qs, qOp, qG , ǫ)-strong-client-

impersonation secure) if no adversary running in time t, creating at most qexec party instances with

at most qres resynchronizations per instance, (corrupting at most qs servers and making at most

qOp OpAccess queries per operator per corrupted server for strong security), and making at most

qG queries to the function G, has an advantage Adv
C.Imp
Π (A) ≥ ǫ.
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Figure 3.1: Examples of Online and Offline relays.

3.2.3 Server Impersonation Resistance

As we explain later in more detail in Section 3.5, it is possible to impersonate a server even if

we rule out online relays. In particular, an adversary performs an offline (out of order) relay, as

described in the third scenario of Figure 3.1. This is because the client’s first message is the user

id, which is always sent in clear (thus known to adversaries). This enables A to obtain, in a first

session with the server, the server’s authenticated challenge for a particular client UID, which it

can replay to UID, in a separate (later) session. In essence, the adversary is relaying the messages,

but this happens in two different, non-concurrent executions. This indicates a gap between the

client impersonation and the server impersonation guarantees for the AKA protocols. Our server-

impersonation model rules out both offline and online relays, redefining freshness as follows.

Definition 7. [Freshness: S.Imp resistance.] An instance Ci, with session ID sid and partner

ID pid, is fresh if: neither this instance nor a partner of Ci is adversarially-controlled; and there

exists no instance Sj with session sid and partner pid = Ci (the transcript of sid is denoted as

(m,m′,m′′)) such that the following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message m′.

(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message m′′.

(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.
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The game is played as in the client impersonation case. When the adversary A stops, he wins

if there exists a fresh instance Ci that ends in an accepting state. The advantage of the adversary is

defined as its success probability, i.e. Adv
S.Imp
Π (A) := Pr[A wins].

Definition 8. [Weak/Strong Server-Impersonation security.] A key-agreement protocol Π is (t,
qexec, qres, qG , ǫ)-weak-server-impersonation-secure (resp. (t, qexec, qres, qs, qOp, qG , ǫ)-strong-server-

impersonation secure) if no adversary running in time t, creating at most qexec party instances with

at most qres resynchronizations per instance, (corrupting at most qs servers and making at most

qOp OpAccess queries per operator per corrupted server for strong security), and making at most

qG queries to the function G, has an advantage Adv
S.Imp
Π (A) ≥ ǫ.

3.2.4 Security with respect to Servers

In this section, we consider a new adversary which is a malicious, but legitimate server S. In the

context of mobile networks, a (malicious) server cannot learn any secret data of the subscriber

or operator, i.e the subscriber key skC, the operator key skOp, and the two related internal states.

Moreover, the server must not be able to make a client accept the server’s authentication (thus

completing the key-derivation process), unless they are explicitly given authenticating informa-

tion by a legitimate operator. We formalize these goals in terms of two new properties: state-

confidentiality and soundness. This model is really similar as the previous one, and is based on

the same participants which includes the adversary. For both properties, the adversary uses the

UReg,NewInstance, Execute, Send, Reveal, StReveal oracles as described in the previous model.

We additionally add two new oracles (including a new Corrupt oracle) as noted below:

• Corrupt(P) → S: if P is a client, behave as before in the previous model. If P is an

operator, returns skOp and the list of tuples S = (UID, skUID, stUID, stOp,C) for all clients C

subscribing with that operator.

• OpAccess(C) → m: this oracle gives the adversary one access to the server’s own local

copy of all the operators, in particular returning the message m that the client’s operator Op

would have output to the server on input a client C.

Unlike key-indistinguishability, which guarantees that session keys are indistinguishable from

random with respect to MitM adversaries, the property of state-confidentiality demands that long-

term client keys remain confidential with respect to malicious servers. This game begins by gen-

erating the material for nOp operators and nC clients. The adversary can then interact arbitrarily

with these entities by using the oracles above. At the end of the game, the adversary must output

a tuple: (Pi, sk
∗
UID, sk

∗
Op, st

∗
UID, st

∗
Op,UID) such that UID is the long-term identifier of P and Pi is

a fresh instance of P in the sense formalized below. The adversary wins if at least one of the val-

ues: sk∗UID, sk
∗
Op, st

∗
UID, st

∗
Op,UID is respectively equal to skUID, skOp, stUID, stOp,UID, the real secret

values of the fresh instance Pi.

Definition 9. [Freshness: St.Conf.] An instance Pi is fresh if neither this instance, nor a partner

of Pi is adversarially-controlled (its long-term key skP has not been corrupted) and the following

queries were not previously executed:

(i) StReveal(.) on any instance of P.

(ii) Corrupt(.) on any instance of P or on the operator Op to which P subscribes.

The advantage of the adversary is defined as: AdvSt.ConfΠ (A) := Pr[A wins].
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Definition 10. [State-confidentiality.] A key-agreement protocol Π is (t, qexec, qres, qOp, qG , ǫ)-
state-confidential if no adversary running in time t, creating at most qexec party instances with at

most qres resynchronizations per instance, making at most qOp OpAccess queries and qG queries

to G, has an advantage AdvSt.ConfΠ (A) ≥ ǫ.

In the Soundness game, we demand that no server is able to make a fresh client instance ter-

minate in an accepting state without help from the operator. This game resembles impersonation-

security; however, this time the adversary is a legitimate server (not a MitM) and it has access to

operators. The adversary may interact with oracles in the soundness game arbitrarily, but we only

allow a maximum number of qOp queries to the OpAccess oracle per client. The adversary wins

if there exist (qOp + 1) fresh client instances of a given client which terminated in an accepting

state. Freshness is defined similarly as in the impersonation game with the same restriction due to

the offline replays attacks:

Definition 11. [Freshness: Sound.] An instance Ci, with session ID sid and partner ID pid,

is fresh if: neither this instance, a partner of Ci nor their related operator Op is adversarially-

controlled ;and there exists no instance Sj with session sid and partner pid = Ci (the transcript of

sid is denoted as (m,m′,m′′)) such that the following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message m′.

(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message m′′.

(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.

The advantage of the adversary is defined as: AdvSoundΠ (A) := Pr[A wins].

Definition 12. [Soundness.] A key-agreement protocol Π is (t, qexec, qres, qOp, qG , ǫ)-server-sound

if no adversary running in time t, creating at most qexec party instances with at most qres resyn-

chronizations per instance, making at most qOp queries to any operator Op and at most qG queries

to the function G, has an advantage AdvSoundΠ (A) ≥ ǫ.

3.3 Security Proofs of the UMTS-AKA Protocol

In this section, we analyse the UMTS-AKA protocol with respect to the five properties formal-

ized in Section 3.2. The partner ID pid of an accepting client instance Ci is S (this reflects the

lack of server identifiers); server instances Si, have a pid corresponding to a unique UID. The

session ID sid of each instance consists of: UID, R, and the value Sqn that is agreed upon dur-

ing the session. In the absence of resynchronization, the session ID is (UID,R,SqnOp,C). During

re-synchronization, the operator updates SqnOp,C to the client’s SqnC; this update is taken into ac-

count in the sid. Any two partners (same sid) with accepting states compute session keys (CK‖IK).

3.3.1 A Unitary Function G

We analyse the security of UMTS-AKA in two steps. First, we reduce the security of this protocol

to the security (pseudorandomness) of an intermediate, unitary function G. This function models

the suite of seven algorithms used in UMTS-AKA; each algorithm is a specific call to G. For the

state-confidentiality property we also need to assume the pseudorandomness of the related unitary

function G∗, which is the same as G, but we key it with the operator key skOp rather than the

client key skC. This first reduction gives a sufficient condition to provide UMTS-AKA security

for any suite of algorithms intended to be used within it. As a second step, we prove that both

current proposals for UMTS-AKA, i.e. TUAK and MILENAGE, guarantee this property. We note
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that the pseudorandomness of the unitary function G implies the pseudorandomness of each of

the sub-algorithms of TUAK and MILENAGE. However, it is a strictly stronger property, which is

necessary because we require the output of all the different functions to be independent.

MILENAGE and TUAK as G. In section 3.3.3, we prove that both the calls to the instantiations

MILENAGE and TUAK algorithms can be modelled as the unitary function G that we use for our

proofs. The last step in our proof is to show that both algorithm suites exhibit the PRF property

we require for G, when instantiated with the key skC and with the operator key skOp (for the

key-indistinguishability). However, as opposed to TUAK (whose symmetric design allows a lot

more leeway), the MILENAGE algorithms require a stronger assumption to prove the PRF property

when G is used with key skOp. We note that the operator key causes a modelling problem. While

common to all the clients of a certain operator, this key is only stored implicitly in the phone, and

cannot be easily recovered (as we have detailed in appendix, it is based on the pseudorandom-

ness of the function keyed with the operator key). We show that with or without operator-key

corruptions, we can reduce the security of UMTS-AKA to the same underlying condition for the

cryptographic algorithms.

Identities and reallocation. In our security analysis, we stick close to the original UMTS-AKA

protocol. However, one simplification we make throughout this paper is associating each prover

with a single, unique UID, which we consider public. In practice, this identifier is the user’s IMSI,

which can be requested by servers in case a TMSI value is not traceable to an IMSI. From the

point of view of security, any attack initiated by mismatching TMSI values (i.e. replacing one

value by another) is equivalent to doing the same thing with IMSI values. Another important part

of the UMTS-AKA protocol that we abstract in this analysis is the TMSI reallocation. If the TMSI

system were flawless (a newly-allocated TMSI is reliable and non-modifiable by an active MitM),

then we could prove a stronger degree of server impersonation than in our current model. As we

discuss in Section 3.2, an active MitM can inject false TMSI values, which make servers request

an IMSI value; if the MitM reuses this value, it can use a type of offline relay to impersonate the

server. In particular, the use of the TMSI is undone by the back door allowing servers to demand

the IMSI; simultaneously, insecurities in using TMSIs translate to the identification by IMSI.

3.3.2 Provable Security Guarantees

The existing UMTS-AKA protocol only attains the weaker versions of key-indistinguishability,

client-, and server-impersonation resistance. The protocol also guarantees state-confidentiality and

soundness with respect to malicious servers. Denote by Π the UMTS-AKA protocol described in

Section 2.3.1, but in which the calls to the internal cryptographic functions F1, . . . ,F5,F
∗
1 ,F

∗
5

are replaced by calls to the function G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n, in

which κ is a security parameter, d is a positive integer strictly larger than the size of the operator

key, and t indicates the block size of an underlying pseudo-random permutation. Each input space

is specified according the considered instantiations (MILENAGE or TUAK) detailed above. We

denote by SC := {0, 1}κ the key-space for the client keys and by SOp := {0, 1}e, the key space

for operator keys, for some specified e < d (in practice e = 256). Our system features nC clients,

nS servers and nOp operators.

Security statements. We proceed to give the five security statements with the respect to the

UMTS-AKA protocol, in the following order: first, the notion of weak-key-indistinguishability,

then strong-client-, and weak-server-impersonation resistance, soundness with respect to servers,

and finally the state-confidentiality, which requires an additional assumption.

Theorem 1. [W.K.Ind-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}n be the

function specified in section 3.3.1, and Π the modelled UMTS-AKA protocol described in section
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2.3.1. Consider a (t, qexec, qres, qG)-adversary A against the W.K.Ind-security of the protocol Π,

running in time t and creating at most qexec party instances with at most qres resynchronizations

per instance, and making qG queries to the function G. Denote the advantage of this adversary as

AdvW.K.Ind
Π (A). Then there exist a (t′ ≈ O(t), q′ = qG + qexec(2 + qres))-prf-adversary A′ on G

such that:

AdvW.K.Ind
Π (A) ≤ nC ·

(

q2exec
2|R|

+ Adv
prf
G (A′)

)

.

We show that this result holds (in fact with a simpler proof) even if operator key corruptions

are possible. This is important, as it shows that even if an adversary knows all the operator keys,

it is still unable to distinguish real session keys from random ones. This is also the case for the

client- and server-impersonation statements below.

Proof. Our proof has the following hops.

Game G0: This game works as the W.K.Ind-game stipulated in our security model in sec-

tion 3.2. The goal of the adversary AG0
is to distinguish, for a fresh instance that ends in an

accepting state, the fresh session keys from random ones.

Game G1: We modify G0 by allowing A access to a new Corrupt(P, type) oracle, depicted

below. We note that this new query permits to consider the corruption of the key operator inde-

pendently to the corruption of the subscriber keys. The new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S (else, if the oracle

takes as input P = S, then it behaves as usual calling the oracle OpAccess). The output of

the oracle depends on the value type ∈ {sub, op, all}. If type = sub, then the returned

value is skP. If type = op, then the oracle returns skOp. Then, for type = all, we return

the both values skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present,

or future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning with probability ǫA,

the same adversary wins the game G0 with probability at least ǫA (this is trivial since in game G1,

A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client (any future CreateCl

calls for a client would be answered with an error symbol ⊥). The challenger generates only a

single operator key, which is associated with the operator chosen for the registered client, and

chooses a bit b ∈ {0, 1}. We process as follows: for any adversaryAG1
winning the game G1 with

a non-negligible success probability ǫAG1
, we propose to construct an adversary AG2

winning the

game G2 with a black-box access to the adversary AG1
as follows.

Adversary AG2
begins by choosing a single client C. For every user registration request that

AG1
sends to its challenger, AG2

responds as follows: if the registered client is C, then it forwards

the exact CreateCl query that AG1
makes to its own CreateCl oracle. Else, if AG1

registers any

client C∗ 6= C, AG2
simulates the registration, generating skC∗ and SqnC∗ , returning the latter

value. Adversary AG2
also generates nOp − 1 operator keys, and associates them with the clients

as follows: the target client C is associated with the same operator given as input by AG1
to the

CreateCl query (thus with the operator key skOp generated by the challenger of game G2). Let

this target operator be denoted as Op. AdversaryAG2
queries Corrupt(C, op) and stores skOp. We

distinguish between two types of other clients. For all other clients C∗ which are registered by

AG1
with an operator Op∗ 6= Op, adversary AG2

associates Op∗ with one of its generated keys
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rskOp∗ . Recall that, since adversary AG1
plays the game in the presence of nOp operators, there

are nOp − 1 keys which will be used this way. We call all clients C∗ 6= C registered by AG0
with

the target operator Op the brothers of the target client C. Adversary AG2
associates each brother

of C with the corrupted key skOp it learns from its challenger.

In the rest of the simulation, whenever AG1
makes a query to an instance of some party C∗,

not a brother of C, the adversary AG2
simulates the response using the values skC∗ , rskOp∗ , and

the current value of Sqn. For the brothers of C, the simulation is done with skC∗ , skOp, and the

current Sqn. For the target client C, any queries are forwarded by AG2
to its challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that AG2
cannot query

Corrupt to its adversary (this is a condition of freshness). The simulation is thus perfect up to the

Test query.

In the Test query, AG1
chooses a fresh session and sends it to AG2

(acting as a challenger).

Note that AG2
will be able to test whether this instance is fresh, as freshness is defined in terms of

AG1
’s queries. IfAG1

queries Test with a client other than the target client C, thenAG2
aborts the

simulation, tests a random, fresh instance of the client C (creating one if necessary), and guesses

the bit d, winning with probability at least 1
2 . Else, if AG1

queried a fresh instance of C, AG2

forwards this choice to its challenger and receives the challenger’s input. The adversary AG2

forwards the input of the challenger to AG1
and then receives A’s output d, which will be AG2

’s

own response to its own challenger.

Denote by E1 the event that adversary tests C in game G1, while Ē1 denotes the event thatAG1

chooses to test C∗ 6= C.

It holds that:

Pr[AG2
wins] = Pr[AG2

wins | E1] · Pr[E1] + Pr[AG2
wins | Ē1] · Pr[Ē1]

≥
1

nC
Pr[AG1

wins] +
1

2
·
(

1−
1

nC

)

≥
1

nC
Pr[AG0

wins] +
1

2
·
(

1−
1

nC

)

.

Note that adversary AG2
makes one extra query with respect to AG1

, since we need to learn

the key of the target operator.

Game G3: We modify G2 to ensure that the random values sampled by honest server instances

are always unique. This gives us a security loss (related to the respective collisions between the R

in two different instances) of
∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤
q2exec
2|R|

.

Game G4: We modify G3 to replace outputs of the internal cryptographic functions by truly

random, but consistent values (they are independent of the input, but the same input gives the same

output). We argue that the security loss is precisely the advantage of the adversary A against the

pseudorandomness of function G. Note that the total number of queries to the related functions is

at most 2 G per honest instance(thus totalling at most qG + qexec(2 + qres) queries to the function

G).
∣

∣Pr[AG3
wins]− Pr[AG4

wins]
∣

∣ ≤ Adv
prf
G (A).

Winning G4: At this point, the adversary plays a game in the presence of a single client C.

The goal of this adversary is to distinguish a random session key to a fresh session key. But, in

game G4, queries to G return truly random, consistent values. In this case, the adversary can do

no better than guessing. Thus, we have: Pr[AG4
wins] = 1

2 .
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Security statement: This yields the following result:

1

nC
· Pr[AG0

wins] +
1

2
· (1−

1

nC
) ≤

q2exec
2|R|

+ Adv
prf
G (A)

⇔
1

nC
· AdvW.K.Ind

Π (AG0
) ≤

q2exec
2|R|

+ Adv
prf
G (A)

⇔ AdvW.K.Ind
Π (AG0

) ≤ nC · (
q2exec
2|R|

+ Adv
prf
G (A′)).

This concludes the proof.

Theorem 2. [S.C.Imp-resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

be the function specified in Section 3.3.1, and Π the modelled UMTS-AKA protocol specified in

Section 2.3.1. Consider a (t, qexec, qres, qs, qOp, qG)-adversary A against the S.C.Imp-security of

the protocol Π, running in time t, and creating at most qexec party instances with at most qres
resynchronizations per instance, corrupting at most qs servers and making at most qOp OpAccess

queries per operator per corrupted server and making qG queries to the function G. Denote the

advantage of this adversary as Adv
S.C.Imp
Π (A). Then there exists a (t′ ≈ O(t), q′ = 5 · qOp · qs +

qG + qexec(qres + 2))-prf-adversary A′ on G such that:

Adv
S.C.Imp
Π (AG0

) ≤ nC ·

(

2 · AdvprfG (A′) +
(qexec + qs · qOp)

2

2|R|
+

qexec · qres

2|Res|
+

1

2κ

)

.

Proof. Our proof has the following hops.

Game G0: This game works as the S.C.Imp-game: When the adversary A stops, it is said

to win if there exists an instance Si that ends in an accepting state with session and partner ID

sid and pid such that: (a) pid is not adversarially controlled (its long-term key skpid has not been

corrupted), (b) no other instance Ci exists for pid = Si that ends in an accepting state, such that

the both entities have the same session ID sid.

Game G1: This game works as the previous game G0, but including the new query Corrupt(P,
type), i.e with the presence of operator keys corruption (as detailed in the previous proof). The

reduction from the game G0 to the game G1 is the same as the proof of the Theorem 1. As before,

it holds that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Game G2: We modify G1 to only interact with a single client (any future CreateCl calls for a

client would be answered with an error symbol⊥). The challenger only generates a single operator

key, which is associated with the operator chosen for the registered client. As indicated before, the

security loss is given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: We modify G2 to ensure that the random values sampled by any authentication

challenge are always unique. This gives us a security loss (related to the collisions between the R

in two different instances) of

∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤
(qexec + qs · qOp)

2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to only interact with only
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one server. As a consequence, the adversary loses the ability to obtain some authentication chal-

lenges from corrupted servers. We recall that the challenge is split in five parts: a random value, a

masked version of the fresh sequence number (an one-time-pad based on an anonymity key gener-

ated by the function G), two mac computed with the function G and both session keys. Corrupted

servers permit to obtain challenges based on the fresh sequence number but different random val-

ues. So the related security loss is given by the collision on two outputs of the same function G
with two different inputs (the differences between both inputs are at least the value of the random)

and by the indistinguishability of the function G which are guaranteed by the pseudorandomness

of G. We recall that the Test Phase of the game can be only focus on a fresh server which is or

was never corrupted. This give us a security loss

∣

∣Pr[AG4
wins]− Pr[AG3

wins]
∣

∣ ≤ Adv
prf
G (A).

Game G5: We modify G4 to replace outputs to calls to all the internal cryptographic functions

by truly random, but consistent values (they are independent of the input, but the same input gives

the same output). As detailed in the key-secrecy, we obtain:

∣

∣Pr[AG4
wins]− Pr[AG5

wins]
∣

∣ ≤ Adv
prf
G (A).

Winning G5: At this point, the adversary plays a game with a single client. A server instance

Si only accepts AG5
, if this latter can generate a fresh an authentication response Res for some

session sid. Assume that this happens against accepting instance Si of the server, for some target

session sid. Note that the value Res computed by Ci is purely random, but consistent. Thus, the

adversary has three options for each of these values: (a) forwarding a value already received from

the honest client for the same input values of which skC is unknown; (b) guessing the key skC;

or (c) guessing the value. The first option yields no result, since it implies there exists a previous

client instance with the same session id sid as the client.

The second option happens with a probability of 2−|skC|. The third option occurs with a

probability of 2−|Res| per session (with or without resynchronization) per client, thus a total of

qexec · 2
−|Res|. Thus,

Pr[AG5
wins] = 2−|skC| + qexec · qres · (2

−|Res|).

Security statement: This yields the following result:

Adv
S.C.Imp
Π (AG0

) ≤ nC · (2 · Adv
prf
G (A′) +

(qexec + qs · qOp)
2

2|R|
+

qexec · qres

2|Res|
+

1

2|skC|
).

Theorem 3. [W.S.Imp-resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n be

the function specified in Section 3.3.1 and Π our protocol specified in Section 2.3.1. Consider a

(t, qexec, qres, qG)-adversary A against the W.S.Imp-security of the protocol Π, running in time t,
creating at most qexec party instances, running at most qres re-synchronizations per each instance,

and making at most qG queries to the function G. Denote the advantage of this adversary as

Adv
W.S.Imp
Π (A). Then there exists a (t′ ≈ t, q = qexec · (qres + 2) + qG)-adversary A’ with an

advantage Adv
prf
G (A′) of winning against the pseudorandomness of the function G, such that:

Adv
W.S.Imp
Π (A) ≤ nC ·

(

Adv
prf
G (A′) +

qexec · qres

2|MacS|
+

1

2κ

)

.
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Proof. We prove this statement in three steps, similarly to the previous W.K.Ind proof. We recall

that the adversary cannot corrupt the server.

Game G0: This game works as the S.Imp-game stipulated in section 3.2.

Game G1: This game works as the previous game G0 but including the new query Corrupt(P,
type). This game is the same as the game G0 in the proof of the weak key-indistinguishability

theorem. As before, it holds that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Note that adversary AG1
makes no extra query.

Game G2: We modify G1 to only allow interactions with a single client. The challenger

generates only a single operator key, which is associated with the operator chosen for the registered

client. As indicated before the security loss is given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: We modify G2 to replace outputs to calls to the function G by truly random, but

consistent values (they are independent of the input, but the same input gives the same output). As

before, it holds that:
∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤ Adv
prf
G (A′).

Winning G3: At this point, the adversary plays a game against a single client C, which only

accepts AG3
, if MacS is verified for some session sid. Assume that this happens against accepting

instance Ci of the target client, for some target session sid. Note that the MAC value MacS com-

puted by Ci is purely random, but consistent. Thus, the adversary has three options: (a) forwarding

a value already received from the honest server for the same input values R, Sqn, skOp, skC, of

which skC is unknown; (b) guessing the key skC; or (c) guessing the vector. The former option

yields no result, since it implies a server instance with the same session id sid as the client. The

second option happens with a probability of 2−|skC|. The third option occurs with a probability

of 2−|MacS| per session (which is to say per instance and per re-synchronization), thus a total of

qexec · qres · 2
−|MacS|. Thus,

Pr[AG3
wins] = 2−|skC| + qexec · qres · 2

−|MacS|.

Security statement: This yields the following result:

Adv
W.S.Imp
Π (AG0

) ≤ nC ·
(

2−|skC| + qexec · qres · 2
−|MacS| + Adv

prf
G (A′)

)

.

Theorem 4. [Sound-security.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n be

our specified function in Section 3.3.1, and Π the protocol specified in Section 2.3.1. Consider a

(t, qexec, qres, qOp, qG , ǫ)-server-sound-adversary A against the soundness of the protocol Π, run-

ning in time t, creating at most qexec party instances with at most qres resynchronizations per

instance, making at most qOp queries to any operator Op and at most qG queries to the function

G. Denote the advantage of this adversary as AdvSoundΠ (A). Then there exists a (t′ ≈ t, q′ =

5 · qOp + qG + qexec(2 + qres))-adversary A′ with an advantage Adv
prf
G (A′) of winning against

the pseudorandomness of the function G, such that:

AdvSoundΠ (A) ≤ nC ·

(

2 · AdvprfG (A′) +
qexec · qres

2|MacS|
+

1

2κ

)

.
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Proof. Our proof has the following hops.

Game G0: This game works as the game Sound-game stipulated in our security model. The

goal of this adversary AG0
is similar as that of the S.Imp-game but with a different adversary;

indeed in the S.Imp-game is a MitM adversary and in the Sound-game, we have a legitimate-but-

malicious server-adversary.

Game G1: We consider the game G1 as the S.S.Imp-game (as previously detailed) but in-

cluding the new query Corrupt(P, type), i.e. allowing the corruption of operator keys, which we

allowed in previous proofs. We proceed to show that, for any adversary AG0
winning the game

G0 with an advantage AdvSoundΠ (AG0
), there exists an adversaryAG1

with black-box access to the

adversaryAG0
which wins game G1. Both adversaries play their related games with oracle access

to: Send, CreateCl, Init, Execute, Reveal, and StReveal, but with distinct corruption queries. For

each former queries made byAG0
, the adversaryAG1

forwards these queries to its own challenger

and sends toAG0
the related answers. Now focus on the two last oracles which can be used by the

adversary AG0
: OpAccess and Corrupt.

First, recall that the OpAccess oracle in game G0 takes in input a client identifier and outputs,

for our protocol, an authentication vector composed by the tuple AV = (R,Autn,MacC,CK, IK).
To simulate the answer of the oracle OpAccess(Ci), AG1

uses the query Execute(S,Ci) (with the

server related to the legitimate-but-malicious adversary) and Reveal(C, i).
Now, focus on the simulation of the Corrupt queries response. We recall that we have two

possible inputs: a client or an operator. If the Corrupt oracle takes in input a client, the adversary

AG1
uses its own Corrupt oracle to obtain the related answer. If the input is an operator, AG1

needs to provide the following values: the operator key skOp, and for each client of this operator

the tuple (UID, skUID, stOp,C). To simulate such an answer, AG1
uses its own Corrupt(C) and

StReveal(C, i, 1) for each client C of this operator. So at this point, the adversaryAG1
can simulate

any query from the adversary AG0
. At the end of the simulation, the adversary AG1

replays the

impersonation’s attempt from the adversary AG0
. Thus, we have:

Pr[AG0
wins] = Pr[AG1

wins].

Winning game G1: This game follows the game G1 described in the reduction proof of the

theorem S.S.Imp. Thus, we have:

Adv
S.S.Imp
Π (AG1

) ≤ nC · (2 · Adv
prf
G (A′) +

qexec · qres

2|MacS|
+

1

2κ
).

Theorem 5. [St.Conf-resistance.] Let G and G∗ be the functions specified in Section 3.3.1,

and Π our modelled UMTS-AKA protocol specified in Section 2.3.1. Consider a (t, qexec, qres,
qOp, qG , qG∗)-adversary A against the St.Conf-security of the protocol Π, running in time t and

creating at most qexec party instances with at most qres resynchronizations per instance, making at

most qOp queries to oracle OpAccess, and qG (resp. qG∗) queries to the function G (resp. G∗).

Denote the advantage of this adversary as AdvSt.ConfΠ (A). Then there exist a (t′ ≈ O(t), q′ =
qG + qexec(5 + qres))-adversary A1 and (t′ ≈ O(t), q′ = qG∗)-adversary A2 against respectively

the pseudorandomness of the functions G and G∗ such that:

AdvSt.ConfΠ (A) ≤ nC ·

(

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
+ Adv

prf
G (A1) + Adv

prf
G∗(A2)

)

.

Proof. Our proof has the following hops.

Game G0: This game works as the St.Conf-game stipulated in our security model. The goal
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of the adversaryAG0
is to recover at least one secret value, i.e. the subscriber key skC, the operator

key skOp, or the subscriber sequence number SqnC for a fresh instance.

Game G1: We modify G0 to only allow interactions with one operator. The challenger related

to the game G1 only generates a single operator key, which is associated with the operator chosen

for the registered client. We proceed as follows: for any adversaryAG0
winning the game G0 with

a no-negligible success probability ǫAG0
, we propose to construct an adversary AG1

winning the

game G1 with a black-box access to the adversary AG0
.

Adversary AG1
begins by choosing a single operator Op. It generates nOp − 1 operator keys,

denoted rskOp∗ . Then, for every user registration request that AG0
sends to its challenger, AG1

responds as follows: if the request CreateCl(.) takes in input the operator Op, then it forwards

the same query to its own oracle. Else, if AG0
sends a registration request based on any operator

Op∗ 6= Op, AG1
simulates the registration, generating a subscriber key skC∗ and a sequence

number SqnC∗ , returning the latter value. Moreover, each new client registered with the operator

Op (resp. any Op∗) is associated with the related operator key skOp(resp. rskOp∗).

We distinguish between two types of clients: we denote C∗ the clients which are registered

with an operator Op∗ 6= Op, and C the ones with the operator Op.

In the rest of the simulation, whenever AG0
makes a query to an instance of some party C∗

(from any operator except Op), the adversary AG1
simulates the response using the values skC∗ ,

rskOp∗ , and the current value of SqnC∗ . For the other clients, the query is forwarded by AG1
to its

own challenger. Any corruption or reveal queries are dealt with in a similar way. Note that AG1

cannot query Corrupt to its adversary (this is a condition of freshness). The simulation is thus

perfect up to the Test query.

In the Test query, AG0
chooses a fresh instance and sends it to AG1

(acting as a challenger).

Note that AG1
will be able to test whether this instance is fresh, as freshness is defined in terms of

AG0
’s queries. If AG0

queries an instance C∗
i for the Test query ,then AG1

aborts the simulation,

tests a random tuple about any fresh instance of the client C (creating one if necessary), winning

with probability 1
2|skC| +

1

2
|skOp|

+ 1
2|SqnC| +

1

2
|SqnOp,C| . Else, ifAG0

sends a tuple of a fresh instance of

Ci, AG1
forwards this choice to its challenger and receives the challenger’s output which contains

the result of this game.

Denote by E1 the event that adversaryAG0
tests an instance Ci (from the chosen operator Op),

while Ē1 denotes the event that AG0
chooses to test C∗

i .

It holds that:

Pr[AG1
wins] = Pr[AG1

wins | E1] · Pr[E1] + Pr[AG1
wins | Ē1] · Pr[Ē1]

≥
1

nOp

Pr[AG0
wins] +

(

1−
1

nOp

)

· (
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
).

That implies: Pr[AG0
wins] ≤ nOp · Pr[AG1

wins].
Game G2: We modify G1 to only allow interactions with a single client (any future CreateCl

(Op) calls for a client would be answered with an error symbol ⊥). We recall that the two ad-

versaries AG1
and AG2

interact with clients from a single operator key, denoted Op, which is

associated with the operator key skOp. We proceed as follows: for any adversary AG1
winning

the game G2 with a no-negligible success probability ǫAG1
. we propose to construct an adversary

AG2
winning the game G2 with a black-box access to the adversary AG1

. Adversary AG2
begins

by choosing a single client C. For every user registration request that AG1
sends to its challenger,

AG2
responds as follows: for a new client C∗ 6= C it generates skC∗ and SqnC∗ , returning the latter

value. In the rest of the simulation, whenever AG1
makes a query to an instance of some party

C∗, the adversary AG2
simulates the response using the oracle of the function G∗ and the values

skC∗ and the current value of SqnC∗ . For the target client C, any queries are forwarded by AG2

to its challenger. Any corruption or reveal queries are dealt with in a similar way. Note that AG2
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cannot query Corrupt to its adversary (this is a condition of freshness). The simulation is thus

perfect up to the Test query. In the Test query, AG1
chooses a fresh instance and sends it to

AG2
(acting as a challenger). Note that AG2

will be able to test whether this instance is fresh, as

freshness is defined in terms of AG1
’s queries. If AG1

queries Test with a client other than the

target client C, then AG2
aborts the simulation, tests a random tuple as the previous reduction.

Else, if AG1
queried a fresh instance of C, AG2

forwards this choice to its challenger and receives

the challenger’s which contains the result of this game. It holds that:

Pr[AG1
wins] ≤ nC,Op · Pr[AG2

wins],

with nC,Op denoting the maximum number of clients per operator.

Game G3: We modify G2 to replace outputs of the internal cryptographic functions by truly

random, but consistent values (they are independent of the input, but the same input gives the same

output). We argue that the security loss is precisely the advantage of the adversary A against the

pseudorandomness of functions G and G∗. Note that the total number of queries to the related

functions are at most qG + qexec(5 + qres) queries to the function G.

∣

∣Pr[AG3
wins]− Pr[AG2

wins]
∣

∣ ≤ Adv
prf
G (A) + Adv

prf
G∗(A).

Winning Game G3: At this point, the adversary plays a game with an uncorruptible single

client Ci in a protocol including truly but consistent values. She wins if she can output a tuple

(Ci, sk
∗
C, sk

∗
Op, SqnC

∗, SqnOp,C
∗) such as at least one of these values corresponds to the real related

secret value of the instance Ci. Thus, the adversary has only one choice to win this game: guessing

each value. So the probability that the adversary AG3
wins is as follows:

Pr[AG3
wins] =

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
.

3.3.3 The Pseudorandomness of the Internal Cryptographic Functions

Two sets of algorithms have been standardized to be used in the AKA protocols: MILENAGE and

TUAK. In this section, we prove the pseudorandomness of TUAK and MILENAGE algorithms.

The security of TUAK algorithms. In order to prove the pseudorandomness of the TUAK algo-

rithms, we assume that the truncated keyed internal Keccak permutation is a good pseudorandom

function. We propose two generic constructions to model the TUAK algorithms: a first one, de-

noted Gtuak when the secret is based on the subscriber key skC and a second one, denoted G∗
tuak

when the function is keyed with the operator key skOp. It is worth noting that the construction of

the TUAK functions is reminiscent of the Merkle-Damgård construction, where the output of func-

tion f is an input of the next iteration of the function f. This is in contradiction with the Sponge

construction used in the Keccak hash function, given the internal permutation fKeccak. Thus, we

clarify that this security proof does not directly imply an innovation on Keccak construction. We

model the truncated keyed internal permutation of Keccak by functions f and f∗:

f(K,x‖y, i, j) = ⌊fKeccak(x‖K‖y)⌋i..j , f
∗(K∗, x∗‖y∗, i, j) = ⌊fKeccak(K

∗‖x∗‖y∗)⌋i..j ,

with x ∈ {0, 1}512, K,K∗ ∈ {0, 1}κ, y ∈ {0, 1}1088−κ, x∗ ∈ {0, 1}512+κ, y∗ ∈ {0, 1}1088 and

i, j ∈ {0, 1}t with log2(t − 1) < 1600 ≤ log2(t). We note that ∀K,x, x∗, y, y∗, i, j such as

x = K∗‖x∗ and y∗ = K‖y, we have f(K,x‖y, i, j) = f∗(K∗, x∗‖y∗, i, j). The input x (resp.

x∗) can be viewed as the chaining variable of the cascade construction of Gtuak given f (resp. f∗),
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y (resp. y∗) is an auxiliary input of the function, and i and j define the size of the truncation. The

construction Gtuak and G∗
tuak act as a generalization of the TUAK algorithms:

F1(skOp, skC,R, Sqn,AMF) = Gtuak(skC, inp1, 0, 127) = G∗
tuak(skOp, inp

∗
1, 0, 127),

F∗
1 (skOp, skC,R, Sqn,AMF) = Gtuak(skC, inp2, 0, 127) = G∗

tuak(skOp, inp
∗
2, 0, 127),

F2(skOp, skC,R) = Gtuak(skC, inp3, 0, 127) = G∗
tuak(skOp, inp

∗
3, 0, 127),

F3(skOp, skC,R) = Gtuak(skC, inp3, 256, 383) = G∗
tuak(skOp, inp

∗
3, 256, 383),

F4(skOp, skC,R) = Gtuak(skC, inp3, 512, 639) = G∗
tuak(skOp, inp

∗
3, 512, 639),

F5(skOp, skC,R) = Gtuak(skC, inp3, 768, 815) = G∗
tuak(skOp, inp

∗
3, 768, 815),

F∗
5 (skOp, skC,R) = Gtuak(skC, inp4, 768, 815) = G∗

tuak(skOp, inp
∗
4, 768, 815),

with:

inp1 = skOp‖cst1‖cst5,, inp2 = skOp‖cst1‖cst5,
inp3 = skOp‖cst3‖cst5,, inp4 = skOp‖cst4‖cst5,
inp∗1 = cst1‖keys‖cst5,, inp

∗
2 = cst1‖keys‖cst5,

inp∗3 = cst3‖keys‖cst5,, inp
∗
4 = cst4‖keys‖cst5,

cst1 = Inst‖AN‖0192‖(Inst′‖AN‖R‖AMF‖Sqn),
cst2 = Inst‖AN‖0192‖(Inst(2)‖AN‖R‖AMF‖Sqn),
cst3 = Inst‖AN‖0192‖(Inst′‖AN‖R‖064),
cst4 = Inst‖AN‖0192‖(Inst(3)‖AN‖R‖064),
cst5 = Pad‖1‖0192,

We define the cascade construction Gtuak based on the function f as follows:

Gtuak(K, val, i, j) = f(K, f(K, val1‖val3, 0, 256)‖val2‖val3, i, j),

G∗
tuak(K

∗, val∗, i, j) = f∗(f∗, val∗1‖val
∗
3, 0, 256), val

∗
2‖val

∗
3, i, j),

with Gtuak and G∗
tuak defined on the domain {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t with range

{0, 1}n, val = (val1‖val2)‖val3 ∈ {0, 1}
512×{0, 1}256×{0, 1}(832−κ), val∗ = (val∗1‖val

∗
2)‖val

∗
3 ∈

{0, 1}256×{0, 1}256×{0, 1}(1088−κ) two known values with n = j−i, d = 1600−κ, κ = |K| and

log2(t− 1) < 1600 ≤ log2(t), K a secret value and 0 ≤ i ≤ j ≤ 1600. We express the required

security properties of the generalization Gtuak (resp. G∗
tuak) in terms of the pseudorandomness of

the function f (resp. f∗). Since the construction of the two functions, while we cannot prove the

latter property, we can conjecture that the advantage of a prf-adversary would be of the form:

Adv
prf
f∗ (A) = Adv

prf
f (A) ≤ c1 ·

t/Tf

2|K|
+ c2 ·

q · t/Tf

21600−m
,

for any adversary A running in time t and making at most q queries to its challenger. Here, m is

the output’s size of our function f and Tf is the time to do one f computation on the fixed RAM

model of computation. Furthermore, c1 and c2 are two constants depending only on this model.

In other words, we assume that the best attacks are either a exhaustive key search or a specific

attack on this construction. This attack uses the fact that the permutation is public and can be

easily inverted. Even if the protocol truncates the permutation, if the output values are large, and

an exhaustive search on the missing bits is performed, it is possible to invert the permutation and

recover the inputs. Since the secret key is one of the inputs, together with some known values, it

is possible to determine which guesses of the exhaustive search are correct. Finally, if the known

inputs are shorter than the truncation, false positives can happen due to collisions and we have to
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be filtered. However, if the number of queries is large enough, it is possible to filter these bad

guesses and uniquely recover the keys.

Pseudorandomness of TUAK algorithms. We begin by reducing the pseudorandomness of Gtuak

to the prf-security of the function f. This implies the pseudorandomness of each TUAK algorithm.

Recall that our main assumption is that the function f is pseudorandom if the Keccak permutation

is a good random permutation.

Theorem 6. [prf-security for G∗
tuak.] Let G∗

tuak : {0, 1}κ × {0, 1}e × {0, 1}d−e × {0, 1}t ×
{0, 1}t → {0, 1}n and f∗ : {0, 1}κ ×{0, 1}e ×{0, 1}d ×{0, 1}t ×{0, 1}t → {0, 1}m be the two

functions specified above. Consider a (t, q)-adversary A against the prf-security of the function

G∗
tuak, running in time t and making at most q queries to its challenger. Denote the advantage

of this adversary as Adv
prf
G∗

tuak
(A). Then there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an

advantage Adv
prf
f∗ (A′) of winning against the pseudorandomness of f∗ such that:

Adv
prf
G∗

tuak
(A) = Adv

prf
f∗ (A

′),

Proof. We construct the adversary Af∗ using a prf-adversary AG∗ . The latter uses Af∗ as a

challenger for a prf-game Gprf(f∗) and can only communicate with Af∗ whereas Af∗ has access

to a challenger for f∗. To begin with, the challenger Cprff∗ chooses a bit b and a private skOp ∈

{0, 1}κ. If b = 0, it assigns f∗ to a random function and if b = 1, it assigns f∗ to the specific

internal function. The adversary Af∗ expects queries of the form (m, a, b) from AG∗ , with m =

m(1)‖m(2)‖m(3) ∈ {0, 1}d, and a, b ∈ {0, 1}t. Then, Af∗ responds as follows:

• It queries its challenger Cprff∗ on input (m(1)‖m(3), 0, 256), and receives the value Out1.

• Then, it computes Out2 = f∗(Out1,m
(2)‖m(3), a, b).

• It returns the value Out2.

We note that the operations related to the two first bullets allows the adversary to generate

G∗(skOp,m, a, b) = Out2. This step is repeated up to a total of q queries from AG∗ , with a and b
fixed. At some point, AG∗ halts and outputs a guess d of the bit b. The prf-adversary Af∗ chooses

its guess b′ as b′ = d and forwards it to Cprff∗ , which verifies if b = b′. We analyze this simulation.

Recall that the challenger responded either with a random value (if its internal bit b was set to

0) or with the output of the function f∗(skOp,m
(1)‖m(3), 0, 256) (if its internal bit was set as 1).

Thus, the output Out2 matches either the output of a random function or the output of the function

G∗(sk,m, a, b). So the prf-adversary Af∗ simulates perfectly a prf-challenger of G. Thus, we

have:

Adv
prf
f∗ (Af∗) =

∣

∣Pr[Af∗ → 1 | b = 1]− Pr[Af∗ → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AG∗ → 1 | b = 1]− Pr[AG∗ → 1 | b = 0]
∣

∣

=
∣

∣Adv
prf
G∗(AG∗)

∣

∣.
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Theorem 7. [prf-security for Gtuak.] Let Gtuak : {0, 1}κ× {0, 1}e × {0, 1}d−e ×{0, 1}t ×
{0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}e × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}m be the two

functions specified above. Consider a (t, q)-adversary A against the prf-security of the function

Gtuak, running in time t and making at most q queries to its challenger. Denote the advantage of

this adversary as Adv
prf
Gtuak

(A). Then there exist: (i) a (t′ ≈ 2 · t, q′ = 2 · q)-adversary A’ with an

advantage Adv
prf
f (A′) of winning against the pseudorandomness of f, such that:

Adv
prf
Gtuak

(A) = Adv
prf
f (A′).

Proof. We construct the adversary Af using a prf-adversary A.
Gtuak

The latter uses Af as a chal-

lenger for a prf-game Gprf(f) and can only communicate with Af whereas Af has access to a

challenger for f. To begin with, the challenger Cprff chooses a bit b and a private sk ∈ {0, 1}κ. If

b = 0, it assigns f to a random function and if b = 1, it assigns f to the specific internal function.

The adversaryAf expects queries of the form (m, a, b) fromAGtuak
, with m = m(1)‖m(2)‖m(3) ∈

{0, 1}d, and a, b ∈ {0, 1}t. Then, Af responds as follows:

• It queries its challenger Cprff on input (m(1)‖m(3), 0, 256), and receives the value Out1.

• Then, it queries Cprff for inputs (Out1‖m
(2), a, b) and receives the value Out2.

• It returns the value Out2.

We note that the two operations allows the adversary to generate Gtuak(sk,m, a, b) computing

f(sk, f(sk,m(1)‖m(3), 0, 256)‖m(2), a, b). This step is repeated up to a total of q queries from

AGtuak
, with a and b fixed. At some point, AGtuak

halts and outputs a guess d of the bit b. The

prf-adversary Af chooses its guess b′ as b′ = d and forwards it to Cprff , which verifies if b = b′.
We analyze this simulation. Recall that the challenger responded either with a random value (if

its internal bit b was set to 0) or with the output of the function f(sk,m
(1)‖m(3), 0, 256) (if its

internal bit was set as 1). Thus, the output Out2 matches either the output of a random function

or the output of the function Gtuak(sk,m, a, b). So the prf-adversary Af simulates perfectly a

prf-challenger of Gtuak. Thus, we have:

Adv
prf
f (Af) =

∣

∣Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AGtuak
→ 1 | b = 1]− Pr[AGtuak

→ 1 | b = 0]
∣

∣

=
∣

∣Adv
prf
Gtuak

(A′)
∣

∣.

The security of MILENAGE algorithms. In order to prove the prf-security of the MILENAGE

algorithms, we assume that the AES permutation is a good pseudorandom function. We note that

this set of algorithms has been previously studied by Gilbert [70]. While Gilbert provides an out-

of-context security proof for the MILENAGE algorithms [70], showing they operate as a kind of

counter mode in deriving key materials (MILENAGE runs AES multiple times as a one block to

many blocks expansion function), it is unclear whether the proved indistinguishablilty properties

are strictly useful to guarantee the security of the full UMTS-AKA protocol. By contrast, we be-

gin by analyzing the security of the UMTS-AKA scheme, and are able to show that the security



70 CHAPTER 3. SECURITY ANALYSIS OF THE AKA PROTOCOLS

statements hold when it is instantiated both with MILENAGE and with TUAK. We model the AES

algorithm by the function f and a keyed version of a classic Davies-Meyer by the function f∗:

f(K,x) = AESK(x), f∗(K,x) = K ⊕ AESx(K), with x ∈ {0, 1}128, K ∈ {0, 1}κ. Contrary to

the TUAK algorithms, the MILENAGE algorithms have not the same behaviour. Let the construc-

tion Gmil1 (resp. G∗
mil1), the generalization of the functions F1 and F∗

1 and Gmil2 (resp. G∗
mil2) the

generalization of the functions F2, F3, F4, F5, F∗
5 which are keyed with the subscriber key skC

(resp. with the operator key skOp):

F1(skOp, skC,R, Sqn,AMF) = Gmil1(skC, inp1, 0, 63) = G∗
mil1(skOp, inp

∗
1, 0, 63),

F∗
1 (skOp, skC,R, Sqn,AMF) = Gmil1(skC, inp2, 64, 127) = G∗

mil1(skOp, inp
∗
2, 64, 127),

F2(skOp, skC,R) = Gmil2(skC, inp2, 64, 127) = G∗
mil2(skOp, inp

∗
2, 64, 127),

F3(skOp, skC,R) = Gmil2(skC, inp3, 0, 127) = G∗
mil2(skOp, inp

∗
3, 0, 127),

F4(skOp, skC,R) = Gmil2(skC, inp4, 0, 127) = G∗
mil2(skOp, inp

∗
4, 0, 127),

F5(skOp, skC,R) = Gmil2(skC, inp2, 0, 47) = G∗
mil2(skOp, inp

∗
2, 0, 47),

F∗
5 (skOp, skC,R) = Gmil2(skC, inp5, 0, 47) = G∗

mil2(skOp, inp
∗
5, 0, 47),

with: inp1 = skOp‖R‖(Sqn‖AMF)‖c1‖r1‖0
128, inp∗1 = skC‖R‖(Sqn‖AMF)‖c1‖r1‖0

128,
∀i ∈ {2, ..., 5}, inpi = skOp‖R‖ci‖ri‖0

128, inp∗i = skC‖R‖ci‖ri‖0
128.

Then, these constructions are constructed as follows:

Gmil1(K, val(1), a, b) = ⌊TopC ⊕ f(K, val4 ⊕ f(K,TopC ⊕ val2 ⊕ val6)⊕
Rotval

5
(TopC ⊕ (val3‖val3)))⌋a..b,

Gmil2(K, val(2), a, b) = ⌊TopC ⊕ f(K, val4⊕
Rotval

5
(TopC ⊕ f(K,TopC ⊕ val2 ⊕ val6)))⌋a..b,

G∗
mil1(K

∗, val∗(1), a, b) = ⌊TopC ⊕ f(val∗1, val
∗
4 ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)⊕

Rotval∗
5
(TopC ⊕ (val∗3‖val

∗
3)))⌋a..b,

G∗
mil2(K

∗, val∗(2), a, b) = ⌊TopC ⊕ f(val∗1, val
∗
4⊕

Rotval∗
5
(TopC ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)))⌋a..b,

with Gmil1 (resp. G∗
mil1): {0, 1}κ×{0, 1}d1×{0, 1}t×{0, 1}t → {0, 1}n, Gmil2 (resp. G∗

mil2):

{0, 1}κ × {0, 1}d2 × {0, 1}t × {0, 1}t → {0, 1}n, val(1) = val1‖ val2‖ val3‖ val4‖ val5‖|val6,

val(2) = val1‖ val2‖ val4‖ val5‖val6, val1,val2, val4, val6 ∈ {0, 1}
128,val3 ∈ {0, 1}

64, val5 ∈

{0, 1}7, and val∗(1) = val∗1‖ val
∗
2‖ val

∗
3‖ val

∗
4‖ val

∗
5 ‖val

∗
6, val

(2)
∗ = val∗1‖ val

∗
2‖ val

∗
4‖ val

∗
5 ‖val

∗
6,

val∗1,val∗2, val∗4, val
∗
6 ∈ {0, 1}

128,val∗3 ∈ {0, 1}
64, val∗5 ∈ {0, 1}

7 and TopC = val1 ⊕ f(K, val1) =
K∗ ⊕ f∗(val∗1,K

∗).
We express the security property of the generalizations Gmil1 and Gmil2 (resp. G∗

mil1 and G∗
mil2)

under the prf-security of the function f (resp. f∗). While we cannot prove the latter property, we

can conjecture that the advantage of a prf-adversary would be of the form:

Adv
prf
f (A) ≤ c1 ·

t/Tf

2128
+ c2 ·

q2

2128
,

for any adversaryA running in time t and making at most q queries at its challenger. Here, m is the

output’s size of our function f and Tf is the time to do one f computation on the fixed RAM model

of computation. Moreover, c1 and c2 are two constants depending only on this model. In other

words, we assume that the best attacks are either a exhaustive key search or a linear cryptanalysis.

We also conjecture that the advantage of a prf-adversary on f∗ is negligible.

Pseudorandomness of MILENAGE algorithms. We begin by reducing the prf-security of Gmil1

and Gmil2 to the prf-security of the function f. This implies the prf-security of each MILENAGE
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algorithm. In the following, we recall the properties of the functions Gmil1 and Gmil2 and prove

them.

Theorem 8. [prf-security of Gmil1] Let Gmil1 : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

and f : {0, 1}κ×{0, 1}128×{0, 1}128 → {0, 1}128 be the two functions specified above. Consider

a (t, q)-adversary A against the prf-security of the function Gmil1, running in time t and making

at most q queries to its challenger. Denote the advantage of this adversary as Adv
prf
Gmil1

(A). Then

there exists: (i) a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ with an advantage Adv
prf
f (A′) of winning

against the pseudorandomness of f such that:

Adv
prf
Gmil1

(A) = Adv
prf
f (A′),

Proof. We construct the adversary Af using a prf-adversary AGmil1
. The latter uses Af as a chal-

lenger for a prf-game Gprf(f) and can only communicate with Af whereas Af has access to a

challenger for f. To begin with, the challenger Cprff chooses a bit b and a private sk ∈ {0, 1}κ.

If b = 0, it assigns f to a random function and if b = 1, it assigns f to the specific inter-

nal function. The adversary Af waits for queries from AGmil1
of the form (m, a, b), with m =

m(1)‖m(2)‖m(3)‖m(4)‖m(5) ∈ {0, 1}d, and a, b ∈ {0, 1}t and responds as follows:

• It queries its challenger Cprff for inputs m(1) and receives the value Out1.

• Then, it computes TopC = m(1) ⊕ Out1 and it queries Cprff for inputs (Out1 ⊕m(2)) and

receives the value Out2.

• It queries (m(4) ⊕ Out2 ⊕ rot(Out1 ⊕ (m(3)‖m(3)),m(5))) and receives the value Out3.

• It returns the value ⌊Out1 ⊕ Out3⌋a,b.

This step is repeated up to a total of q queries fromAGmil1
, with a and b fixed. At some point,AGmil1

halts and outputs a guess d of the bit b. The prf-adversary Af chooses its guess b′ as b′ = d and

forwards it to Cprff , which verifies if b = b′. We analyze this simulation. Recall that the challenger

responded either with a random value (if its internal bit b was set to 0) or with the output of the

function f(sk,., .) (if its internal bit was set as 1). Thus, the output Out3 matches either the output

of the output of the function Gmil1(sk,m, a, b) or a random function (indeed, the combination of

two random functions by a boolean addition gives a random function). So the prf-adversary Af

simulates perfectly a prf-challenger of Gmil1. Thus, we have:

Adv
prf
f (Af) =

∣

∣Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AGmil1
→ 1 | b = 1]− Pr[AGmil1

→ 1 | b = 0]
∣

∣

= Adv
prf
Gmil1

(A′).

Theorem 9. [prf-security for G∗
mil1] Let G∗

mil1 : {0, 1}
κ×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}n

and f∗ : {0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider a (t,
q)-adversary A against the prf-security of the function G∗

mil1, running in time t and making at

most q queries to its challenger. Denote the advantage of this adversary as Adv
prf
G∗

mil1
(A). Then
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there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Adv
prf
f∗ (A′) of winning against

the pseudorandomness of f∗ such that:

Adv
prf
G∗

mil1
(A) = Adv

prf
f∗ (A

′).

Proof. We construct the adversary Af∗ using a prf-adversary AG∗
mil1

. The latter uses Af∗ as a

challenger for a prf-game Gprf(f∗) and can only communicate withAf∗ whereasAf∗ has access to

a challenger for f∗. To begin with, the challenger Cprff∗ chooses a bit b and a private sk ∈ {0, 1}κ. If

b = 0, it assigns f∗ to a random function and if b = 1, it assigns f∗ to the specific internal function.

The adversary Af∗ waits for queries from AG∗
mil1

of the form (m, a, b), with m∗ = m(1)‖ m(2)‖

m(3)‖m(4)‖m(5) ∈ {0, 1}d, and a, b ∈ {0, 1}t and responds as follows:

• It queries its challenger Cprff∗ for inputs m(1) and receives the value TopC = Out1.

• It computes Out3 = Out1⊕ f(m∗
1,m

∗
4⊕ f(m∗

1,Out1⊕m∗
2)⊕Rotm∗

5
(Out1⊕ (m∗

3‖m
∗
3))).

• It returns the value ⌊Out3⌋a,b.

This step is repeated up to a total of q queries fromAGmil1
, with a and b fixed. At some point,AG∗

mil1

halts and outputs a guess d of the bit b. The prf-adversary Af∗ chooses its guess b′ as b′ = d and

forwards it to Cprff∗ , which verifies if b = b′. We analyze this simulation. Recall that the challenger

responded either with a random value (if its internal bit b was set to 0) or with the output of the

function f∗(sk,.) (if its internal bit was set as 1). Thus, the output Out3 matches either the output

of the function G∗
mil1(skOp,m, a, b) or a random function (indeed, the combination of two random

functions by a boolean addition gives a random function). So the prf-adversary Af∗ simulates

perfectly a prf-challenger of G∗
mil1. Thus, we have:

Adv
prf
f∗ (Af∗) =

∣

∣Pr[Af∗ → 1 | b = 1]− Pr[Af∗ → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AG∗
mil1
→ 1 | b = 1]− Pr[AG∗

mil1
→ 1 | b = 0]

∣

∣

= Adv
prf
G∗

mil1
(A′).

We have the same reduction for the function Gmil2 and G∗
mil2 under the same parameters which

can be proved in the same way. Thus, it holds that:

Theorem 10. [prf-security of Gmil2] Let Gmil2 : {0, 1}
κ×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}n

and f : {0, 1}κ×{0, 1}128×{0, 1}128 → {0, 1}128 be the two functions specified above. Consider

a (t, q)-adversary A against the prf-security of the function Gmil2, running in time t and making

at most q queries to its challenger. Denote the advantage of this adversary as Adv
prf
Gmil2

(A). Then

there exists: a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ with an advantage Adv
prf
f (A′) of winning

against the pseudorandomness of f such that:

Adv
prf
Gmil2

(A) = Adv
prf
f (A′).
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Theorem 11. [prf-security for G∗
mil2] Let G∗

mil2 : {0, 1}
κ×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}n

and f∗ : {0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider a (t,
q)-adversary A against the prf-security of the function G∗

mil2, running in time t and making at

most q queries to its challenger. Denote the advantage of this adversary as Adv
prf
G∗

mil2
(A). Then

there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Adv
prf
f∗ (A′) of winning against

the pseudorandomness of f∗ such that:

Adv
prf
G∗

mil2
(A) = Adv

prf
f∗ (A

′).

3.4 Does EPS-AKA Protocol Guarantee more Security than UMTS-

AKA Protocol?

In the GSM and UMTS architecture, the session-key management is simple: the derived session

keys, from running AKA protocol, are used one for encryption (CK) and one for integrity (IK)

(just the cipher key CK for GSM architectures). These keys are directly used to protect the radio

link. In the EPS architecture, the key hierarchy is considerably more elaborate. A local master

key Kasme at the core network level is computed by both the client and operator. As 3G USIM

is still in use, and 3G and 4G networks are interoperable, the EPS key is computed from CK and

IK. Then, the new requirement of cryptographic network separation as defined in [8], implies the

computation of the session key by the serving network, using its identity. Moreover, EPS allows

for the generation of a batch of session keys, which are desired to separately handle the NAS, RRC

and UP protocols. Finally, another desirable effect of such a construction is the key Kasme is not

directly used to protect the radio link (contrary to the keys CK and IK in the 2G and 3G networks).

That permits to increase the lifetime of the derived key and to avoid frequent updates the derived

key as often as in the 3G and 4G networks.

Communications over 4G networks aim to guarantee similar security properties to those in

3G networks. The EPS-AKA protocol essentially aims to guarantee both server- and client-

impersonation, and the key-indistinguishability of the session key Kasme. In addition, state-confi-

dentiality and soundness must hold in the presence of malicious servers. These properties are

formalized in the security model defined in Section 3.2.

Security analysis: We note that the new key management featured by EPS-AKA protocol do

not affect client- and server-impersonation resistance, nor state-confidentiality or soundness. As a

consequence the same bounds hold for these properties.

Theorem 12. [S.C.Imp-resistance] For the protocol Π using the unitary function G specified

in Section 3.3.1, for any (t, qexec, qres, qs, qOp, qG)-adversary A against the S.C.Imp-security of

Π, winning with advantage Adv
S.C.Imp
Π (A), there exists a (t′ ≈ O(t), q′ = 5 · qs · qOp + qG +

qexec(qres + 2))-adversary A′ against the pseudorandomness of G such that:

Adv
S.C.Imp
Π (A) ≤ nC ·

(

2 · AdvprfG (A′) +
(qexec + qs · qOp)

2

2|R|
+

qexec · qres

2|Res|
+

1

2κ

)

.

Theorem 13. [W.S.Imp-resistance] For the protocol Π using the unitary function G specified in

Section 3.3.1, for any (t, qexec, qres, qG)-adversary A against the W.S.Imp-security of Π, winning

with advantage Adv
W.S.Imp
Π (A), there exists a (t′ ≈ t, q = qexec · (qres + 2) + qG)-adversary A′

against the pseudorandomness of G such that:

Adv
W.S.Imp
Π (A) ≤ nC ·

(

Adv
prf
G (A′) +

qexec · qres

2|MacS|
+

1

2κ

)

.
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Theorem 14. [Sound-resistance] For the protocol Π using the unitary function G specified in

Section 3.3.1, for any (t, qexec, qres, qOp, qG , ǫ)-adversary A against the soundness of Π, winning

with advantage AdvSoundΠ (A), there exists a (t′ ≈ t, q′ = 5 · qOp + qG + nC · qexec(2 + qres))-
adversary A′ against the pseudorandomness of G such that:

AdvSoundΠ (A) ≤ nC ·

(

2 · AdvprfG (A′) +
qexec · qres

2|MacS|
+

1

2κ

)

.

Theorem 15. [St.Conf-resistance] For the protocol Π using the unitary functions G,G∗ specified

in Section 3.3.1, for any (t, qexec, qres, qOp, qG , qG∗)-adversary A against the St.Conf-security of

Π, winning with advantage AdvSt.ConfΠ (A), there exist: a (t′ ≈ O(t), q′ = qG + qexec(5 + qres))-
prf-adversary A1 on G and (t′ ≈ O(t), q′ = qG∗)-prf-adversary A2 on G∗ such that:

AdvSt.ConfΠ (A) ≤ nC ·

(

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
+ Adv

prf
G (A1) + Adv

prf
G∗(A2)

)

.

Additional security offered by EPS-AKA: Since all the EPS-AKA session keys are based

on a new key Kasme featured in servers, EPS-AKA can guarantee a better security in terms of

session key indistinguishability than UMTS-AKA used the 3G networks but still owns the lack of

the strong server-impersonation.

As detailed in the description of the EPS-AKA protocol, the authentication vectors are gen-

erated by the home network and sent to the serving network MMEs. Each of these networks is

managed differently, in particular with respect to the security and privacy guarantees they can offer

for sensitive data. Zhang and Fang [?] pointed out that the possiblity of corrupting servers (be-

longing especially to a server network distinct from the home network) notably implies an active

attack permitting to impersonate an uncorrupted server. When a server is corrupted, it can request

some authentication vectors (using an auth. vectors request) wherever the mobile client is located.

From a corrupted (or malicious) server, a False Base Station (FBS) attack can be mounted against

legitimate mobile clients located in a uncorrupted network. Indeed, the authentication challenge is

not characteristic of the current location of the mobile client.

Such an FBS can reuse the obtained vectors to impersonate any (fresh) server. Thus, the

classic AKA protocol cannot guarantee strong server-impersonation since in that model servers

can be corrupted. Contrary to the UMTS-AKA used in the 3G architecture, corruption does not,

however, imply an active attack against strong key-indistinguishability. As proved before, the new

key hierarchy permits to guarantee this property since the main session key is computed using

the unique identifier of the user. Thus, two servers using the same authentication vector request,

i.e. using the same R, Sqn, would not receive the same key Kasme given to the MME. Moreover,

the two pre-session keys CK and IK are never given to the MME. We note that if these keys

were included in the authentication vector (as for 3G networks) the strong-key-indistinguishability

property would not hold.

Thus, we can propose a security proof of the strong key-indistinguishability property as fol-

lows:

Theorem 16. [S.K.Ind-resistance] For the protocol Π using the unitary function G specified in

Section 3.3.1, for any (t, qexec, qres, qOp, qS, qG)-adversary A against the S.K.Ind-security of Π

winning with advantage AdvS.K.IndΠ (A) there exists (t′ ≈ O(t), q′ = 5 · qOp · qS + qG + qexec(2 +
qres))-adversary A′ and (t′′ ≈ O(t), q′′ = qKDF + qexec)-adversary A′′ against respectively the

pseudorandomness of G and the prf-security of KDFwith:

AdvS.K.IndΠ (A) ≤ nC · nS

(

(qexec + qOp · qS)
2

2|R|
+ 2 · AdvprfG (A′) + 2 · AdvkdfKDF(A

′′) +
q2exec
2|Sqn|

)

.
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Proof. We use the following game hops:

Game G0: The adversary in this game is a classic active MitM between the client and the server,

whose goal is to distinguish the session key Kasme of a fresh client instance Pi from a random

key of the same length. Contrary to the weak-key-indistinguishability property, we allow

server corruptions.

Game G2: In this double reduction (G0 ⇒ G2), we use the same argument as applied in the

proof of the weak-key-indistinguishability property detailed before. At this step, this game

is reduced to the original game played with a single client.

Game G3: In this game, we abort the game if two honest server instances (or server-corruption/

operator access) output the same random value R of the token/challenge. The games G3 and

G4 are equivalent up to a collision term
(qexec+qOp·qS)

2

2{R} .

Game G4: In this game G4, we restrict the adversary to interact with only one server S . With such

a restriction, the adversary loses the ability to corrupt server S∗ 6= S and operator access. As

a consequence the adversary loses its access to legitimately-obtained authentication vectors

stored by S∗, which can be used to break the server-impersonation resistance of the protocol.

In addition, the server S∗ will also store, apart from the authentication vectors, other values

such as CK, IK, which could potentially leak information on skC or skOp. We show, in fact

that the adversary gains nothing by accessing the state of servers S∗ 6= S . For the second

condition, the security loss is given by the pseudorandomness of the functions G and KDF.

For the first point, we recall that these authentication vectors are composed by the following

values: two MAC values MacS and MacC, a random value R, a constant AMF, the masked

sequence number Sqn ⊕AK and the session key Kasme. The last value is the only one value

computed from a server identifier. Thus, depending the network where the authentication

challenge is used, the related session key Kasme computed will be not the same since we

consider each server owns a different identifier. So, replaying this vector permits only to

impersonate a server S (the mac value is not featured by the local network) and not to obtain

the correct client’ session key Kasme per a fresh session. The security loss is given by the

collision probability between two outputs of the KDF functions taking two different inputs,

i.e the pseudorandomnes of the KDF function.

Game G5: In this game G5, we replace all the outputs of the functions G and KDF by truly and

consistent (i.e independent of the input but the same input implies the same output) values.

That restrict notably the adversary to obtain some information about the long-term keys

sk and skOp from some couples (input, output). We argue that the security loss is exactly the

pseudorandomness of the function G and KDF.

Game G6: In this game G6, we consider that the outputs of the function G are unique. That

implied that two keys CK and IK are indistinguishable to real random values and these values

are unique for each session. We recall that the two keys are computed from the function G
taking at input some constants and a unique no-replayable random value R. Moreover, these

keys cannot be obtained directly to the adversary without corrupt the related entity (client

and operator) since the servers cannot computed and received them, and the output of the

key derivation function is randomized by the previous reduction. Thus, the security loss is

pseudorandomness of the function G.

Game G7: In the game G7, we consider that the outputs of the KDF function are unique. Fore-

that, we consider that all the inputs of the KDF function permitting to compute the session
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key Kasme are unique (different in each server instances) and the pseudorandomness of the

function KDF. We recall that the session key is computed from the three main values: a pre-

dictible unique server identifier IdS, the masked value of the sequence number Sqn ⊕ AK.

Thus, the unicity of the input depends to the value of the masked sequence number and the

network identifier. Since the random value R cannot be repeated during several instances

and two challenges cannot be based on the same sequence number (the operator increments

its sequence number after each generation of a challenge), the input is not the same in two

different session except if we obtain a collision in the computation of the value Sqn ⊕ AK.

So the security loss is given by the kdf-security of the key derivation function KDF and the

probability to have a collision in the computation of the obfuscated sequence number with

the tested session.

Winning G7: At this point, the adversary plays a game in the presence of a single server, and

a single client. The goal of this adversary is to distinguish the real random key to a fresh

session key, considering that all the functions used in a session returns truly random. The

outputs of the function KDF is indistinguishable to real random values since all the outputs

are unique and randomized by the previous reductions. Thus, the adversary can do no better

than guessing the answer.

Moreover, since the key Kasme is guaranteed to be indistinguishable from random since we

assure the use of a secure KDF function. All the session keys of the EPS-AKA can be proved

secure as the Kasme using the same reductions because the same function KDF (with different

predictable input) is used to derive all the session keys, as described in Section 2.3.2.

3.5 Vulnerabilities of the AKA Protocols

Before our study, few papers gave a security analysis of the AKA protocols, especially when

instantiated with MILENAGE. The closest results to a security proof use automated (formal) ver-

ification. While this approach has many advantages, and an automated proof is a good first step

towards a thorough security analysis, one important disadvantage is that automated verification

does not give an exact reduction to the security of the underlying primitives; thus, the proof state-

ment is not easy to quantify, making it hard to approximate the tightness of the proof and the size

of the parameters. In this sense, our results are stronger.

Some papers clearly focus on the mutual authentication and key-exchange properties of AKA.

A first one [109] points out some problems with using sequence numbers and outlines a corrupted-

network redirection attack, but does not attempt a security proof. Note that the AKA protocols

are à priori designed with the assumption that the operator trusts the network; the network attack

described by [109] falls outside the scope of our study as we do not consider how networks and op-

erators implement the protocol. Furthermore, note that adding a simple network-specific constant

in the computation of the MAC algorithms should prevent such attacks. By removing the sequence

number, the same authors propose a stateless variant called AP-AKA, with a security proof based

on Shoup’s formal model [99].

A second paper [30] refers to the authentication and key security of AKA, but focuses mainly

on client privacy. They attempt to do an automated verification proof for the UMTS-AKA protocol,

using ProVerif [53]; however, they are only able to assess a modified version, which randomizes

the sequence number. Since this modification is fundamental, their results cannot be applied to the

original protocol. In order to better model the true sequence number updates in the protocol, we



3.5. VULNERABILITIES OF THE AKA PROTOCOLS 77

have used an extension of ProVerif called StatVerif [32], which was proposed by Arapinis et al. to

handle automatic verification for protocols with global state.

Tsay and Mjølsnes have provided a computational analysis of AKA protocols in [88, 102],

using the computational prover CryptoVerif [52]. Additionally to prove the intended authentication

and secrecy properties, they provided a new client-impersonation attack considering a malicious

client adversary; however, this attack cannot be considered as a practical attack and it is out of

the scope of our computational model, since they did not consider the session identifiers which

make impossible the session mixup. These identifiers are essential to consider the real playing of

successive sessions.

Now, we detail why the UMTS-AKA protocol cannot guarantee the strong key-indistuishability

and strong server-impersonation properties.

3.5.1 The Lack of some Requirements

In the three-party mobile setting, the server is authenticated by the client if it presents credentials

(authentication vectors) generated by the client’s operator. The properties of state-confidentiality

and soundness, which the AKA protocols guarantee, indicate that servers cannot learn the client’s

long-term data, and that they cannot authenticate without the operator-generated data.

However, Zhang [109] and Zhang and Fang [?] pointed out that once a server is corrupted, it

can obtain legitimate authentication data from the client’s operator, and then use this data to set up a

False Base Station (FBS), which can lead to a malicious, unauthorised server authenticating to the

client. As a result, the UMTS-AKA protocol does not guarantee strong key-indistinguishability,

nor strong server-impersonation resistance. Such an attack only implies the lack of strong-server-

impersonation resistance for the EPS-AKA protocol.

C A S C S∗ Op

AV1, . . . , AVn
←−−−−−−−−−−−−−

Use k auth. vectors (k < n).
−−−−−−−−−−−−−−−−−−−−−−−→

User Identity request
←−−−−−−−−−−−−−−−−−−−−−−−−−−−

User Identity answer
−−−−−−−−−−−−−→

Auth. vector Request
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

AVk+1, . . . , AVn
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Use AVk+1
←−−−−−−−−−−−−−

Respk+1
−−−−−−−−−−−−−→

Figure 3.2: The attack of Zhang and Fang. On the right hand side, the client is in the vulnerable

network, interacting with the server S∗. The server uses up authentication vectors AV1, . . .AKk.

Then, the server S∗ is corrupted, and the adversary A learns AVk+1, . . . ,AVn, which it uses in a

second attack phase (on the left).

The main attack strategy is also depicted in Figure 3.2. In a first step, the client C is assumed

to be in the area (as designated by the LAI) corresponding to a server S∗, which will later be

corrupted. The server receives a batch of authentication vectors (AV1, . . . ,AVn), using some of

them (vectors AV1, . . . ,AVk) to provide service to that client (and learn what services this client

has been provided with, etc.). Subsequently, the client moves to a different LAI, outside the cor-

rupted network’s area. The adversary A has corrupted the server S∗ and learned the remaining

vectors AVk+1, . . . ,AVn; this adversary then uses this authentication data to authenticate to the

client, in its new location. This immediately breaks the server-impersonation guarantee. More-

over, since authentication vectors also contain the short-term session keys, key-indistinguishability

is breached, too. This attack is particularly dangerous since a single server corruption can affect a

very large number of clients. Moreover, server corruption is easily practiced in totalitarian regimes,
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in which mobile providers are subject to the state, and partial data is furthermore likely to be leaked

upon using backdoored algorithms.

Such attack do not, however, affect client-impersonation resistance, since the server cannot use

an authentication vector from the server to respond to a freshly-generated authentication challenge

(the random value for the two authentication vectors is different).

The authentication vectors considered in the previous attack, are only useful either if the cur-

rent authentication challenge is based on the same random value as one of the recovered authen-

tication vectors (that implies the MAC value MacC and the session keys CK and IK are the same)

or if the cryptographic outputs reveal information about long-term secret data (i.e.the long-term

keys skC and skOp). Such vectors could be dangerous if they were obtained from passive attacks,

for example by eavesdropping on the core network communication between the server and the

operator. We consider such an attack impossible (practical expensive) even if in the roaming case

it is hard to consider this channel secure.

In addition, we denote that a such active attack can permit to desynchronize any mobile client

as many as it has fresh authentication challenge. We note that desynchronization between client’s

and operator’ states which implies a resynchronization procedure, is problematic only for the user

privacy we will detail in the next chapter. Moreover, since the limited number of the 48-bit se-

quence number, this shortens the lifetime of the user sequence number.

In conclusion, it is important to propose counter measures to this attack (for example adding a

public value characterizing the serving network) to such attacks, since a single corrupted network

may jeopardize the entire system.

Security issue with the migration of authentication vectors. In the AKA protocols, the server

requires a batch of authentication vectors (and not only one). Using these authentication vectors,

a sever can execute an accepted session of the AKA protocols without requiring assistance from

the home network. Even if this procedure is allowed in 3GPP specifications, that represents a

failure in our notion of soundness. We require that servers never be able to authenticate without

the operator’s permission. Thus, we propose either to remove this procedure or at least to restrict

it to only exchanging the temporary identifier. In particular, we require the exchange of only one

authentication vector (i.e. the restriction of the batch to one element) during the AKA protocols.

Operational difficulties with sequence number. The AKA protocols are stateful, i.e. the sub-

scriber and its home network maintain a sequence number, which is updated after each execution

of this protocol. Since the sequence number is updated in the network even if the session of the

protocol is aborted without specific reasons, an adversary can desynchronize the home network by

dropping some authentication challenges. This reduces the lifetime of the sequence number.

Moreover, when the client checks the freshness of the received sequence number, it does not

only verify its equality to its own sequence number is equal to the received one, but only whether

it is in the correct range with respect to a static value ∆ defined differently by each operator. Thus,

the ability to guess the value of a sequence number is unegligible ( ∆/248 ) since either the size of

the sequence number is not increased or the verification is not restricted to the equality.

In order to fix all of these weaknesses, a variant has been proposed in [109]. We analyse this

variant and explain why it (still) does not offer sufficient security and efficiency.

3.5.2 Why AP-AKA cannot replace UMTS-AKA?

In 2003, Zhang proposed a variant of UMTS-AKA he called AP-AKA, which we depict in Fig-

ure 3.3 (although we use a syntax closer to our own variant, to facilitate a comparison). Instead

of the suite of seven cryptographic algorithms specified for the UMTS-AKA protocol, Zhang only

uses three independent functions F,G,H , which are all keyed with a key K. The authors do not

specify what this key is in the UMTS-AKA scenario, but considering the design of this protocol,
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it must be a function of the two keys skC and skOp. We assume K = skC||skOp in this case. For

the security of the protocol, G must be a pseudorandom function (PRF), while F and H must be

unforgeable MACs.

Client Server Operator

(K) (K)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→

Rfresh

←−−−−−−−−−−−−
RC,Mac2=FK(Rfresh||RC||IdS)

−−−−−−−−−−−−→
Auth response

UID,Rfresh,RC,Mac2

−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res

−−−−−−−−−−−−→
4©

Instructions:

Client Server Operator

3©: Recover R{i}, and Autn{i}.

If R
{i}
C was used before by S: abort.

Else: Find 1 ≤ i ≤ n s.t. R
{i}
C = HK(i‖RC)

If no such i exists: abort;

Else: check MacS for i,R{i}, R
{i}
C (or abort)

Compute Res = FK(R{i})
Compute: (CK‖IK) = GK(R{i}).

——————————

2©: Store {AV{i}}ni=1.

Choose next AV{i}, send

related challenge

—————–

4©: Res
?
= MacC.

1©: Check Mac2 w.r.t. Rfresh, RC.

If failure, send reject notice to S and abort;

Else: for i = 1, . . . , n, compute:

MacC = FK(R{i})
(CK‖IK) = GK(R{i})

R
{i}
C = HK(i‖RC)

MacS = FK(R{i}‖i‖R
{i}
C )

Autn{i} ← i‖R
{i}
C ‖MacS.

AV{i} := (R{i},CK, IK,Autn{i},MacC).
End For.

Figure 3.3: The AP-AKA Variant.

We first describe this protocol. The procedure begins by the same identification phase as the

regular UMTS-AKA procedure shown in Section 2.3.1. Namely, the server sends an identification

request, to which the client responds with either the permanent identifier IMSI or with a tuple

consisting of the temporary identifier TMSI and the local area identifier LAI of the server that

issued the TMSI.

The first modification made with respect to the classical UMTS-AKA is extending the authen-

tication vector request phase, which takes place between two parties in the original scheme, to

three parties. The server/client communication takes place across an insecure channel, whereas

the channel between the server and the operator is secure. Zhang [109] adds a message-exchange

to the protocol every time the server needs fresh authentication vectors. This exchange is a typical

challenge-response authentication: the server sends a fresh nonce Rfresh, and the client generates

a fresh RC, computing a MAC (namely the function F ) keyed with the key K, on input the con-

catenation of Rfresh, RC, and a unique server identifier IdS. The authentication vectors are similar
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to those in the original UMTS-AKA, but they implicitly rely on the client’s random value RC and

on fresh randomness R{i} generated by the operator for i = 1, . . . , n (here n is the batch size). An

initial step is to generate numbers R
{i}
C for i = 1, . . . , n; these are generated by using the MAC

function H on input i and RC. The server authentication string MacS is computed as the func-

tion F on input the operator’s randomness R{i}, the current index i, and a nonce R
{i}
C generated

from RC. The values i, R
{i}
C , and MacS are grouped as Autn{i} for each i. Each authentication

vector AV{i} consists of: the randomness R{i}, the authentication string Autn{i}, the session keys

(CK, IK) which are derived as a result of the PRF G, keyed with K, on input the randomness R{i},

and the expected client-authentication string MacC. Finally, a batch of n authentication vectors

are sent to the server.

The remainder of the protocol proceeds analogously to the original UMTS-AKA procedure,

with the modifications imposed by the way the authentication vectors are generated. In particular,

upon receiving the randomness R{i} and the authentication string Autn{i}, the client verifies, in

order: (1) that it has never received the same string R
{i}
C ; (2) that this value is consistent with the

randomness RC; (3) that the authentication MacS is correct with respect to this randomness. If

any of these verifications fail, the client aborts. Else, it computes the session keys and its own

authentication string Res, sending the latter to the server.

Stateful vs. Stateless. Zhang presented his variant as eliminating “dynamic states”. We note that,

while his work ensured that no sequence number is necessary, the protocol is not entirely stateless.

In particular, the client must keep track of a list, which is dynamically updated, of already seen

randomness R
{i}
C for a given nonce RC. Although this makes the protocol stateful, it does eliminate

the need to resynchronize the state of the two parties.

Security Problems. A first problem is the fact that the three functions F , G, and H use the same

key. In particular, the values MacS, MacC, and R
{i}
C , which are computed using the key K, are

sent across an insecure channel. Since F and H are MACs, the confidentiality of the key K is

not fully guaranteed; thus the guarantee of pseudorandomness of G is not sufficient to guarantee

the indistinguishability from random of the keys CK, IK. This weakness is remedied if all three

functions are assumed to have pseudorandom output.

A more serious problem is a network-corruption attack, which is harder to prevent, and which

originates in these two facts: (1) the new procedure to request authentication vectors originates

from the server, not from the client (indeed, the client is not aware of whether the server still has

pertinent authentication tokens or not); (2) the network-specific identifier IdS is only used in the

Mac2 value. In particular, the attack proceeds as follows:

1. The client C arrives in a vulnerable area (for which the server S∗ will be corrupted). This

server is authorized to request authentication tokens from the operator and does so. Then,

S∗ may use several such tokens with the client (but not all). We assume that there will be at

least a single authentication vector AV which was not used. The adversary A then corrupts

the server S∗, thereby also retrieving the vector AV.

2. The client leaves the vulnerable area to enter a non-vulnerable one (with an honest server

S). The adversary A acts as a Man-in-the-Middle (MitM) between C and S. It blocks

the message Rfresh and any other message sent by S, sending instead R,Autn from the

authentication vector AV.

3. The verifications on the client side pass as long as the client still retains its past value RC.

This is not specified exactly in the original paper [109], but considering that it is the server

that initiates this exchange, it is likely that the client will not automatically replace RC unless

prompted by the server.
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A possible countermeasure to this vulnerability is to ensure that once the client is aware of

having moved from the area associated with S∗, it discards the old RC and aborts unless it is asked

to generate a new one.

Practical Aspects. The protocol presented by Zhang [109] is not fully specified, but it does not

follow closely the practical constraints of mobile networks. The protocol forces a lot of complexity

on the client, which has to verify the uniqueness of the nonce R
{i}
C , to search exhaustively for

the correct index which gives an (honestly generated) R
{i}
C , and to generate the randomness RC.

Since R
{i}
C is generated given the secret key K, it must be computed securely: it is not possible

to delegate this computation to the phone (which is a more powerful, but untrusted tool). We

reiterate that the rationale of the initial UMTS-AKA design was that the client’s SIM card could

not generate its own randomness.

Another concern is the lack of specificity with respect to the client and operator keys, which are

replaced by the generic key K. The fact that this key is used in MAC functions exposes the keys

to attackers, as explained in the first attack above. In our results, we prove that for both TUAK and

MILENAGE the seven cryptographic algorithms are PRFs with respect to both the client and the

operator keys; this is a much stronger result. The same lack of specificity affects the keys CK, IK,

which are generically denoted as a secret key SK in the paper of Zhang. We note that the latter is

a more sounder cryptographic design, since in the UMTS-AKA protocol, the two keys are output

by different PRFs, but on the same input. In particular, a stronger property is required than merely

the pseudorandomness of the two concerned algorithms: the two values must be independent even

for adversarially-controlled input.

3.6 Our Fix Variant of AKA Protocols: SecAKA

In this section, we propose a new fix variant of the AKA protocols, called SecAKA. We only

describe this fix variant of the UMTS-AKA protocol since the EPS-AKA protocol can be fixed

similarly.

3.6.1 Description

The main reason server-corruption attacks are effective is that servers associated with a specific

geographic area (like a country, a region, etc.) can re-use authentication vectors given by the

operator in a different geographic area, impersonating the legitimate server associated with that

area. This vulnerability, however, is easily fixed as long as the client’s device is aware of its

geographical location. Our solution is to add a unique server identifier, denoted IdS, to the input of

each of the cryptographic functions, thus making any leftover authentication tokens un-replayable

in the wrong area. We stress that this is a minor modification to the protocol, as servers are already

associated with a unique LAI identifier.

We also show below 3.6.3 how to include IdS in the computation of each of the cryptographic

algorithms. These updated algorithms achieves as required the pseudorandomness 3.6.3. We

present our modified protocol in Figure 4.5.

3.6.2 Additional Achieved Security Properties of SecAKA Protocol

This modification still (trivially) preserves the properties of strong client-impersonation resistance,

soundness, and state-confidentiality. However, the modification yields in addition strong key-

indistinguishability and server-impersonation resistance, as we detail below. In this section, we

consider the function G and G∗ as the unitary functions of the suite of the updated seven algorithms
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Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).

Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:

CK← Upd F3(skC, skOp,R
{i}, IdS) ,

IK← Upd F4(skC, skOp,R
{i}, IdS) ,

Set Res := Upd F2(skC, skOp,R
{i}, IdS) .

Update SqnC := Sqn{i}.

Else re-synchronization

————————-

2©: Store {AV{i}}ni=1.

Choose AV{i} one by one

in order.

Then, it forges and sends

the related challenge.

————————-

4©: Res
?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← Upd F1(skC, skOp,R

{i}, Sqn{i},AMF, IdS) ,

Mac
{i}
C ← Upd F2(skC, skOp,R

{i}, IdS) ,

CK{i} ← Upd F3(skC, skOp,R
{i}, IdS) ,

IK{i} ← Upd F4(skC, skOp,R
{i}, IdS) ,

AK{i} ← Upd F5(skC, skOp,R
{i}, IdS) ,

Autn{i} ← (Sqn{i} ⊕ AK),AMF,MacS.

AV{i} := (R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.

End For.

Figure 3.4: The modified instructions of the fixed UMTS-AKA Procedure.

used in the Sec-AKA protocol. The generalisation of these algorithms described in 3.6.3 is really

similar to the one did in Section 3.3.1.

Theorem 17. [S.K.Ind-resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

be the unitary function of the suite of the updated seven algorithms specified in Section 3.6.3,

and Π the fixed AKA protocol specified in section 3.6.1. Consider a (t, qexec, qres, qs, qOp, qG)-
adversary A against the S.K.Ind-security of the protocol Π, running in time t and creating at

most qexec party instances with at most qres resynchronizations per instance, corrupting at most

qs servers, making at most qOp queries per operator per corrupted server and making qG queries

to the function G. Denote the advantage of this adversary as AdvS.K.IndΠ (A). Then there exists a

(t′ ≈ O(t), q′ = 5 · qOp + qG + qexec(qres + 2))-prf-adversary A′ on G such that:

AdvS.K.IndΠ (A) ≤ nC ·

(

(qexec + qs · qOp)
2

2|R|
+ 2 · AdvprfG (A′)

)

.

Proof. Our proof has the following hops.

Game G0: This game works as the S.K.Ind-game stipulated in our security model in Sec-

tion 3.2.

Game G1: We modify G0 to only consider the new query Corrupt(P, type) but keeping the

same goal. We note that this new query permits to consider the corruption of the key operator

independently to the corruption of the subscriber keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S (else, if the oracle

takes as input P = S, then it behaves as usual calling the oracle OpAccess). The output of

the oracle depends on the value type ∈ {sub, op, all}. If type = sub, then the returned

value is skP. If type = op, then the oracle returns skOp. Then, for type = all, we return

the both values skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present,

or future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning with probability ǫA,

the same adversary wins the game G0 with probability at least ǫA (this is trivial since in game G1,

A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client. The challenger gen-

erates only a single operator key, which is associated with the operator chosen for the registered

client. As indicated before, the security loss is given by:

Pr[AG2
wins] ≥

1

nC
Pr[AG0

wins] +
1

2
·
(

1−
1

nC

)

.
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Game G3: We modify G2 to ensure that the random value sampled by honest server instances

is always unique. This gives us a security loss (related to the respective collisions between the R

in two different instances) of

∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤
(qexec + qs · qOp)

2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to only interact with only

one server. The benefices loss is the ability to obtain some authentication challenges from uncor-

rupted servers. Such authentication challenges can be either to give information about the used

sequence number and the long term keys or to forge a fresh challenge replaying some parts of

these challenges. We recall that the challenge is split into five parts: a random value, a masked

version of the fresh sequence number (an one-time-pad based on an anonymity key generated by

the function G), two mac computed with the function G and both session keys. Moreover, we note

that all the calls of the function G take in input a specific value of the related server IdS. Thus,

the two session keys can not directly reuse since the random value R is never reused (see previous

reduction). So, the session keys will be always different in each session (except if some collisions

of the function G appear). The related security loss is given by the collision on two outputs of

the same function G with two different inputs (the only differences between the both inputs are at

least the value of the network identifier) and by the indistinguishability of the function G which

are both guaranteed by the pseudorandomness of G. We recall that the Test Phase of the game can

be only focus on a network which is or was never corrupted. This give us a security loss

∣

∣Pr[AG4
wins]− Pr[AG3

wins]
∣

∣ ≤ Adv
prf
G (A).

Game G5: We modify G4 to replace outputs of the internal cryptographic functions by truly

random, but consistent values (they are independent of the input, but the same input gives the same

output). As indicated before, the security loss is given by:

∣

∣Pr[AG4
wins]− Pr[AG5

wins]
∣

∣ ≤ Adv
prf
G (A).

Winning G5: At this point, the adversary plays a game in the presence of a single client C.

The goal of this adversary is to distinguish a random session key to a fresh session key. But, in

game G5, queries to G return truly random, consistent values. In this case, the adversary can do

no better than guessing. Thus, we have:

Pr[AG5
wins] =

1

2
.

Security statement: This yields the following result:

AdvS.K.IndΠ (AG0
) ≤ nC ·

(

(qexec + qs · qOp)
2

2|R|
+ 2 · AdvprfG (A)

)

.

This concludes the proof.

Theorem 18. [S.S.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}n be the

unitary function of the suite of the updated seven algorithms specified in Section 3.6.3 and Π our
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fixed variant of the AKA protocol specified in section 3.6.1. Consider a (t, qexec, qres, qs, qOp, qG , ǫ)-
adversary A against the S.S.Imp-security of the protocol Π, running in time t and creating at

most qexec party instances with at most qres resynchronizations per instance, corrupting at most

qs servers, making at most qOp queries per operator per corrupted server and making qG queries

to the function G. Denote the advantage of this adversary as Adv
S.S.Imp
Π (A). Then there exists a

(t′ ≈ O(t), q′ = 5 · qs · qOp + qG + qexec(2 + qres))-prf-adversary A′ on G such that:

Adv
S.S.Imp
Π (AG0

) ≤ nC ·

(

qexec · qres

2|MacS|
+

1

2κ
+ 2 · AdvprfG (A′)

)

.

Proof. Our proof has the following hops.

Game G0: This game works as the S.S.Imp-game detailed in Section 3.2.

Game G1: This game works as the previous game G0 but including the new query Corrupt(P,
type), i.e with the presence of operator keys corruption. The reduction from the game G0 to the

game G1 is the same as the security proof of the theorem 17. As before, it holds that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Note that adversary AG1
makes no extra query.

Game G2: We modify G1 to only allow the adversary to interact with a single client (any

future CreateCl calls would be answered with an error symbol ⊥). The challenger only generates

a single operator key, which is associated with the operator chosen for the registered client. As

indicated before, the security loss is given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: This game behaves as the game G2 with the restriction to only interact with only

one server. The adversary loses the ability to obtain authentication challenges from uncorrupted

servers. As detailed in the proof of the strong key-indistinguishability, the related security loss is

given by the pseudorandomness of the function G. We recall that the Test Phase of the game can

only apply to a server which is not corrupted. This gives us a security loss of:

∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤ Adv
prf
G (A).

Game G4: We modify G3 to replace outputs to calls to all the internal cryptographic functions

by truly random, but consistent values (they are independent of the input, but the same input gives

the same output). As detailed in the key-indistinguishability, we obtain:

∣

∣Pr[AG3
wins]− Pr[AG4

wins]
∣

∣ ≤ Adv
prf
G (A).

Winning G4: At this point, the adversary plays a game with a single client Ci, which only

accepts AG4
if the authentication challenge is verified for some session sid. Assume that this

happens against accepting instance Ci of the target client, for some target session sid. Note that the

MAC value MacS computed by Ci is purely random, but consistent. Thus, the adversary has three

options: (a) forwarding a value already received from a honest server for the same input values

R; IdS; Sqn; skOp; skC, of which skC is unknown; (b) guessing the key skC; or (c) guessing the

response. The first option yields no result since there are no collision between the transcript of

two different servers since all the servers have a different server identifier IdS. The second option

happens with a probability of 2−|skC|. The third option occurs with a probability of 2−|MacS| per
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session (which is to say per instance and per re-synchronization), thus a total of qexec ·qres ·2
−|MacS|.

Thus,

Pr[AG4
wins] = 2−|skC| + qexec · qres · 2

−|MacS|.

Security statement: This yields the following result:

Adv
S.S.Imp
Π (AG0

) ≤ nC ·

(

qexec · qres

2|MacS|
+

1

2κ
+ 2 · AdvprfG (A′)

)

.

Each of the two bounds above depends linearly on the number of clients nC; while this number

can be as large as, potentially, six billion, the size of the secret keys (128 or 256 bits) and of

the random value (128 bits) can still make the bound negligible. The linear factor nC, however,

highlights the importance of using authentication strings longer than 128 bits for authentication.

3.6.3 Update of the internal cryptographic functions

In our variant, we modified the inputs of the internal cryptographic algorithms to include the new

value IdS. Thus, we need to provide an update of these algorithms. As specified previously, the

AKA protocol can be based on two different sets of algorithms: TUAK and MILENAGE. To

preserve backward compatibility, we propose to keep track of and update these two sets.

The seven internal cryptographic functions used in the AKA protocol take s in input the fol-

lowing values:

• keys: the couple of 128-bit (or 256-bit) keys: the subscriber and operator keys (skC,skOp).

• Sqn (for the functions Upd F1 and Upd F∗1): a 48-bit sequence number.

• AMF (except for the functions Upd F1 and Upd F∗1): a 16-bit authentication field man-

agement value.

• R: a 128-bit random value.

• IdS: a 128-bit (public) value characterizing the visited network.

We note that the functions Upd F1 and Upd F∗1 behave differently because they take as an addi-

tional input the value of the sequence number.

Update of MILENAGE algorithms: In order to ensure a stronger degree of security, we also

modify the MILENAGE algorithms to output 128-bit MAC and session keys CK and IK.

Based on the Advanced Encryption Standard (AES), these functions compute firstly both val-

ues TopC and Temp as follows:

TopC = skOp ⊕ AESskC(skOp),Temp = AESskC(R ⊕ TopC ⊕ IdS).

The outputs of the MILENAGE algorithms are computed as follows:

• Output Upd F1: MacC = AESskC(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,

• Output Upd F∗1: Mac∗ = AESskC(Temp⊕ Rotr6(Sqn‖AMF‖Sqn‖AMF)⊕ c6)⊕ TopC ,

• Output Upd F2: MacS = AESskC(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC

• Output Upd F3: CK = AESskC(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

• Output Upd F4: IK = AESskC(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,
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Figure 3.5: Updated MILENAGE.

• Output Upd F5: AK = ⌊AESskC(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC⌋0..47,

• Output Upd F∗5: AK∗ = ⌊AESskC(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC⌋80..127,

with the five integers r1 = 0, r2 = 16, r3 = 32, r4 = 64, r5 = 80 and r6 = 96 in the range

{0, 127}, which define the number of positions the intermediate variables are cyclically rotated by

the right, and the five 128-bit constants ci such as:

• c1[i] = 0, ∀i ∈ {0, 127}.

• c2[i] = 0, ∀i ∈ {0, 127}, except that c2[127] = 1.

• c3[i] = 0, ∀i ∈ {0, 127}, except that c3[126] = 1.

• c4[i] = 0, ∀i ∈ {0, 127}, except that c4[125] = 1.

• c5[i] = 0, ∀i ∈ {0, 127}, except that c5[124] = 1.

• c6[i] = 0, ∀i ∈ {0, 127}, except that c6[123] = 1.

This is also described in Figure 3.5.

Update of TUAK algorithms: We update these algorithms by only modifying the inputs of

the second permutation.

Figure 3.6: Updated TUAK.

We recall that in this instantiation, the functions Upd F∗1 and Upd F∗5, used for the resynchro-

nization procedure, behave in the same way but use different values Inst’, Inst. We first compute
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the value TopC as follows:

TopC = ⌊fKeccak(skOp‖Inst ‖AN‖0
192‖Key‖Pad‖1‖0512)⌋1..256.

We note that the values AN, Inst’, Inst, Pad are the same as used in the original TUAK algorithms
and Key the (padded) subscriber key. At this point, the behaviour of the functions Upd F1 (resp.
Upd F∗1) diverges from the other functions. Generating the related output, we compute the value
Val1 and for the others ones, we compute the value Val2 which differ including the 128-bit value
IdS and the smaller paging value Pad.

Val1 = fKeccak(TopC‖Inst
′‖AN‖R‖064‖Key‖IdS‖Pad‖10

512),

Val2 = fKeccak(TopC‖Inst
′‖AN‖R‖AMF‖Sqn‖Key‖IdS‖Pad‖10

512).

Then, we obtain the output of the seven functions truncating the related value as follows:

• Output Upd F1: MacS = ⌊Val2⌋0..127,

• Output Upd F2: MacC = ⌊Val1⌋0..127,

• Output Upd F3: CK = ⌊Val1⌋256..383,

• Output Upd F4: IK = ⌊Val1⌋512..639,

• Output Upd F5: AK = ⌊Val1⌋768..815.

This is also depicted in Figure 3.6.

We note that the multi-output property is, as in the original version, not an issue for the security

of the master key, since during one session we can have as many as four calls to the same function

with similar inputs (and a different truncation).

The pseudorandomness of the updated TUAK and MILENAGE algorithms can be proved and

the generalition as a more-or-less unitary function can be done as 3.3.3.
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4.1 A Privacy Analysis

Proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G mobile-

network communications, the AKA protocols are meant to provide a mutually-authenticated key-

exchange between clients and associated network servers. As we explained in the previous chapter,

AKA protocols must basically guarantee the indistinguishability from random of the session keys

(key-indistinguishability), as well as client- and server-impersonation resistance considering man-

in-the-middle adversary and malicious servers. A paramount requirement is also that of client

privacy, which 3GPP defines in terms of: user identity confidentiality, service untraceability, and

location untraceability. Following the description of client-tracking attacks e.g. by using error

89
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messages or IMSI catchers, Van den Broek et al. and respectively Arapinis et al. each proposed

a new variant of UMTS-AKA, addressing such problems. In this chapter we use the approach of

provable security to show that the exciting variants still fail to guarantee the privacy of mobile

clients. We propose an improvement of AKA protocols, called PrivAKA, which retains most

of its structure and respects practical necessities such as key-management, but which provably

attains security with respect to servers and Man-in-the-Middle (MitM) adversaries. Moreover, it

is impossible to link client sessions in the absence of client-corruptions. Then, we prove that any

variant of AKA retaining its mutual authentication specificities cannot achieve client-unlinkability

in the presence of corruptions. In this sense, our proposed variant is optimal. Finally, we consider

additional practical and legal considerations, proposing patents for a possible standardization.

4.2 Privacy Requirements of the UMTS-AKA Protocol

The Third Generation Partnership Project (3GPP), which designed the UMTS-AKA protocol in

the TS.33.102 specification [13], lists the following privacy requirements:

• user identity confidentiality: specifically, ”the property that the permanent user identity

(IMSI) of a user [...] cannot be eavesdropped on the radio access link.”

• user untraceability: namely, ”the property that an intruder cannot deduce whether differ-

ent services are delivered to the same user by eavesdropping on the radio access link.”

• user location confidentiality: in particular, ”the property that the presence or the arrival

of a user in a certain area cannot be determined by eavesdropping on the radio access link.”

The requirements quoted above are quite informal; moreover, the nomenclature is confusing,

since in the provable-security literature, untraceability refers to adversaries tracing clients in dis-

tinct protocol runs (rather than it being service-related). We discuss the three requirements below,

then formalize them into cryptographic requirements. User identity confidentiality concerns only

the client’s permanent IMSI value (not, e.g. the client’s sequence number) with respect to passive

attackers (rather than active ones). However, mobile networks are notoriously prone to Man-in-the-

Middle (MitM) active attacks like the IMSI catcher [62], which allows a third party (the MitM) to

recover a client’s IMSI. Another highly-trackable client-specific parameter is the sequence number

Sqn, whose updating procedure is very simplistic and its output, predictable even without a secrey

key. As a consequence we require the stronger property of provable unlinkability, which ensures

that even an active MitM cannot link two UMTS-AKA protocols run to the same client. For user

untraceability, no attacker must know whether the same service (i.e. any message-exchange over

the secure channel) is provided to a client multiple times. From the point of view of provable se-

curity, this is equivalent to key-indistinguishability if the authenticated-encryption algorithms are

assumed to be secure. User location confidentaility demands that eavesdroppers A cannot detect

the presence of a client in a given area; however, the definition does not specify what information

A links to each client (e.g. the IMSI, the sequence number, etc.). Attackers are aware of the cur-

rent LAI; the difficulty lies in learning which clients enter the area. Unfortunately the UMTS-AKA

protocol always reveals the past location of any arriving client, making unique (or rare) itineraries

stand out. We formalize a strong degree of location privacy as a part of client-unlinkability.

Our formalizations of client unlinkability and key-indistinguishability consequently guarantee

3GPP’s three privacy requirements.
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4.3 Privacy Weaknesses of the UMTS-AKA Protocol

In this section, we focus on the (provable) privacy of UMTS-AKA, which completes the security

analysis detailed in chapter 3. We do not need to have a very formal/theoric analysis to point

out the pure UMTS-AKA protocol cannot guarantee user unlinkability as defined above. Indeed,

the user identification based on temporary identifiers independent to the permanent identifier is not

sufficient. Two main attacks in the literature, have been proposed namely IMSI catcher attacks [62]

and IMSI paging attacks [97,98] already prove that UMTS-AKA does not offer the desired degree

of client privacy. Paging request refers to the process used when server needs to locate a user

equipment in a particular area. This request being not directly out of the scope of AKA protocols,

we will not focused on the paging attacks. IMSI catchers allow passive and active adversaries to

track clients by exploiting the fact that during the protocol run, the server will require clients to

send their permanent identifier IMSI if the TMSI value cannot be traced back to an IMSI.

A known privacy problem of the UMTS-AKA protocol is the “IMSI catcher” attack [62],

which exploits the fact that the permanent identifier IMSI is sent as a back-up for a faulty tuple

(TMSI, LAI). By either observing such faulty behaviour (due to transmission errors or to server

database problems), or by causing it, MitM attackers can easily track clients, in blatant violation

of the user identity confidentiality requirement. This is a problem in all generations of mobile

communication networks. Van den Broek et al. [104] addressed IMSI catchers by replacing IMSI

values by an unlinkable pseudonym PMSI. We discuss the properties and weaknesses of this

countermeasure in details in Section 4.6.2.

Arapinis et al. [31] showed that failure messages (in authentication/resynchronization) can be

used to trace users. A subsequent paper by some of the same authors [29] cleverly identifies ways

in which a specific implementation deviates from 3GPP recommendations and thus allows the

linkability of client sessions.

An older work by Ateniese et al. [33] examines the problem of untraceable mobility, in par-

ticular noting an informal paradigm: nobody but the client should know both the client’s identity

and location at the same time. In this context, they provide solutions to achieving better privacy

in 3-party settings; however, these solutions are extremely generic, which makes them hard to

immediately applies them to UMTS-AKA. Moreover, note that server-operator communication

takes place across a channel that is implemented differently in practice by different operators. The

protocols proposed by [33] require this channel to be implemented in a specific way. Finally, we

note that, while highly worthwhile, the goal of preventing servers from learning a client’s operator

is incompatible with the way authentication is currently done in the UMTS-AKA protocol (oper-

ators need to prepare session information for servers, across a secure, and mutually authenticated

channel which forcibly reveals the identity – and implicitly the location of the server).

Although the UMTS-AKA protocol was designed to protect client privacy, several attacks also

be used to break this property at the physical layer or by using side-channel information. Since we

focus only on the privacy of UMTS-AKA at the protocol layer, this type of attacks is out of scope.

Another class of attacks that is out of scope for our analysis are those that exploit faults in TMSI

reallocation choices (for instance the fact that TMSIs are not updated sufficiently fast, or according

to protocol), denial-of-service by jamming, or attacks enabled by version-shifting (forcing the user

to employ a weaker, more vulnerable version of the protocol on 2G and 3G) [98]. Such attacks,

however, indicate that the infrastructure and protocols existing around the UMTS-AKA handshake

should be more closely examined; if possible, backward compatibility should be discouraged in

order to guarantee better security and privacy.

We clearly analyze the two main privacy vulnerabilities to user unlinkability in UMTS-AKA.

The first one is related to the operational difficulties related to the TMSI. The second concerns on

the linkability of failure messages. These weaknesses have been partially described by Arapinis
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and al. in [29,31] and Strobel [62]. These attacks are more-or-less efficient and do not necessarily

point the same weaknesses. Any of the three requirements defining the user privacy cannot be

guaranteed considering these attacks. One important condition to evaluate the impact of an attack

is the parallelization, i.e the ability for an attack to do not only focus on one user, but some of

them at the same time. The board 4.1 sums up the different features of each attacks and ranks the

attacks considering feasibility and impacts of each of them. We note that the ranking is established

comparing the attacks which target the same requirement.

Attacks Parallelizable Key Breakability of Ranking

For Privacy Vulnerabilities Privacy Requirement Feasibility Impact

IMSI catcher (passive) Yes User Identification User identity confidentiality 1© 2©

IMSI catcher (active)
Yes User Identification User identity confidentiality 2© 1©
No User Identification User untraceability 1© 2©

TMSI management Yes TMSI Re-Allocation User untraceability 2© 1©

Linkability of failure

messages (active)
No

Management of the

failure messages
User untraceability 3© 3©

Reveal Location Yes User identification User Location Confidentiality 1© 1©

Figure 4.1: Comparison between attacks against user privacy property of the UMTS-AKA.

Operational difficulties with TMSI. Each mobile client owns a unique permanent identifier, de-

noted IMSI1. If such a value is directly used to identify the client to the server, the user privacy

could be not guaranteed. Indeed, this value is unique and permanent, thus each time a client sends

its IMSI in clear, any man-in-the-middle adversary eavesdropping the communication can recog-

nize the client. The IMSI cannot be considered as a public and we consider that any adversary can

make the link between a mobile client and a IMSI value.

As we explained previously, 3GPP has standardized the use of temporary values TMSI, instead

to use permanent identifier IMSI every time. These temporary values are generated, independently

of the permanent identifier, by the local server and are exchanged after a successful execution of a

UMTS-AKA session. At first glance, this option could guarantee at least the confidentiality of the

user identity.

Several attacks have been proposed to force the client to use its permanent identity instead of

the temporary one. In the UMTS-AKA protocol, the IMSI is only used when the user identification

using temporary identifier fail. Such event can naturally arrived when a session of the UMTS-

AKA protocol or a TMSI re-allocation fail. These events are pretty rare but can arrived since

the messages are sent toward a radio link. Thus, some natural abort can arrive. This feature

is exploited by the well-know passive IMSI catcher [62]. A passive IMSI catcher is a MitM

adversary located in the access network sniffing the radio communication in a specific area and

detects all the exchanged IMSI values. Since we consider the natural abort as not a regular event,

this passive sniffing is not efficient. However, such abort can be easily forced for an active Man-

in-the-Middle.

The active IMSI catcher consists in forcing a mobile client to reveal its permanent identifier

In the identification of the user, when the VLR cannot recognize the received temporary identifier

TMSI it requires the user’s permanent identifier. Thus, by a simple attack as described on the

left side of the 4.2, an adversary can obtain and force the use of the IMSI during a fresh session.

Moreover, with such a behaviour, the active IMSI catcher can know the identity of the clients in

a specific area dropping (or randomizing) all the answer to a ”User Request”. Thus, these attacks

prove the lack of user identity confidentiality. Additionally, this attack can be used to check if a

1To the best of our knowledge, the specifications do not detail how the permanent user identifiers are generated, we

consider that all the IMSI value are different.
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specific client is located in this area or not. This attack is described on the right side of the figure

4.2. This attack proves the lack of user untraceability. In that sense, the active MitM is the best

known attack to mobile telephony users’privacy).

C A C A S

User Request
←−−−−−−−−−−−−−

User Request
←−−−−−−−−−−−−−

TMSIo‖LAI
−−−−−−−−−−−−−→

TMSIo‖LAI
−−−−−−−−−−−−−→

Rand‖LAI
−−−−−−−−−−−→

Permanent User Request
←−−−−−−−−−−−−−−−−−−

Permanent User Request
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMSI
−−−−−−−−−−−−−→

IMSI
−−−−−−−−−−−−−→

If IMSI = IMSIv
then Cv is found.

Principle of IMSI catcher Traceability of a victim client Cv

Figure 4.2: Active Attacks based on TMSI management.

The temporary identifier of each user must be used as its name suggests temporarily. The

technical specifications from 3GPP, explicitly require that TMSIs are used only a single time. As

specified by the UMTS-AKA protocol, a TMSI re-allocation is provided. However, a basic attack

can corrupt this uniqueness. Indeed, we note that the VLR does not de-allocate the old value

TMSIo without receiving the acknowledgement message. So if an adversary drops that message,

the VLR has both the allocated temporary values: the old TMSIo and the TMSIn. For the next

identification, the VLR will accept both values to identify the user. So an adversary dropping

the acknowledgement message can easily force the replay of the same TMSI in two independent

sessions. Moreover, we note that the new temporary identifier TMSIo is only sent encrypted with

the session key CK and without any authentication. The mobile subscriber cannot verify whether

the received value is sent by the VLR or by malicious entity. Thus, any adversary can send a

false random value as the new TMSI by sending a random instead of the ciphered temporary

identifier. Therefore, the user untraceability cannot be guaranteed the lack of authenticity any

TMSI uniqueness.

A TMSI value is associated to a specific location area, denoted LAI, identifying the VLR

having generated this temporary identifier. The LAI value is sent in cleartext with the TMSI

during the user identification. As a consequence, an adversary can associate the LAI with the

related IMSI (with an active IMSI catcher [62]): that permits to know where the subscriber with

the permanent identifier IMSI was located during the previous session. Therefore, the user location

confidentiality cannot be guaranteed.

Linkability of failure messages. Arapinis and al [31] notably provides a practical attack estab-

lishing the traceability of a user based on the study of the failure messages. Considering a victim

mobile client Cv, an adversary can detect its presence in a specific area only analyzing the response

of an authentication challenge. In the UMTS-AKA protocol, a mobile client receiving such a chal-

lenge can answer either with an accepting response ”authentication response” when the server is

authenticated, a ”Mac Failure Message” when the authentication fails, or a resynchronization pro-

cedure when the authentication check is successful but the received sequence number is unfresh.

We note that one important point when the client receives the challenge: it firstly check the mac

value to authenticate the client and only if this check is successful, it verifies the received sequence

number. We recall that the check is based on the received sequence number. Such management

implies that an old authentication challenge replayed to the correct mobile client will never imply

a Mac failure but only a resynchronization procedure, except to a negligible probability of (2−128)
(due to the collision’s probability). A replay of an authentication challenge always implies a fail-
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ure message. An old authentication challenge replayed to the bad client the answer will be a Mac

Failure Message because the Mac could not be correct except with a similar negligible probability.

This difference can permit to trace a mobile client in a specific area just replaying a legitimate

authentication challenge. This attack is no-parallelizable since it is focused on only one user, the

one who has received the legitimate authentication challenge. It represents a breach of the user’s

untraceability since any active MitM adversary located in a specific area can check if a client is

present or not. This active attack can be considered as cheap since no computation is required

and it is just a replay attack, but it is no cheaper than the IMSI catchers. The weaknesses of the

user identification are not exploited to establish this attack. Thus, only fix the user identification

procedure cannot entirely provide the user privacy.

4.4 Does EPS-AKA Protocol Guarantee more Client Privacy than

UMTS-AKA Protocol?

The EPS-AKA protocol tries to protect the user identifier confidentiality against Man-in-the-

Middle (MitM) adversary in the same way as the UMTS-AKA scheme i.e., by using a tempo-

rary identifier. The Global User Temporary Identity (GUTI) is assigned to the user by the MME.

This value is used to provide an unambiguous user identification without revealing the perma-

nent identifier IMSI. The GUTI is slightly different from the TMSI used in 3G networks. In the

EPS architecture, the temporary identifier includes an identifier of the MME which has generated

the value. This identifier replaces the Location Area Identifier (LAI) used with the TMSI in the

UMTS-AKA. This value is essential for the communication between the MMEs and notably the

Local GUTI Unknown Procedure when a client uses a temporary identifier which has not been

generated by the current server.

The Third Generation Partnership Project (3GPP), which designed the EPS-AKA protocol in

the TS.33.401 specification [8], lists the following privacy requirements: user identity confiden-

tiality, user untraceability and user location confidentiality. These properties are similar to the

ones define for the 3G networks but with few refinements which do not concern totally the EPS-

AKA protocol directly. Indeed, they notably concern the confidentiality of some others identifiers

(IMEI and IMEISV) which shall be securely stored in the terminal.

All the attacks on the UMTS-AKA protocol against the user identity confidentiality and user

untraceability properties can be applied directly against the EPS-AKA protocol. The third require-

ment demands that the presence of a client in a given local area is hidden from eavesdroppers.

Since GUMMEIs, included in the temporary identifier, are not confidential, attackers are aware of

the area they are in; thus the difficulty lies in learning which clients enter the area. A weakness

of the current EPS-AKA protocol is that MitM attackers can always learn the past location of any

arriving client studying the first part of the temporary identifier. Unique itineraries may thus stand

out.

In conclusion, the respect of user privacy is as unrespected in the 4G networks as in the 3G

networks.

4.5 Privacy Model

Due to their orthogonality, it is hard to formalize the notion of client-unlinkability in the same

generic framework used to define security properties as key-indistinguishability. One difficulty

is the fact that the unlinkability notion requires the adversary to have access to clients without

knowing their identities. Following established approaches [72, 106], in the unlinkability model,

we associate clients with identifiers, or handles, denoted VC (Virtual Client), and this changes the
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syntax of the oracles we use.

The privacy model uses similar oracles than the ones of the security models, but with a slightly

different syntax, for the two types of definitions, and thus obtain security guarantees based on

traditional Bellare, Pointcheval, and Rogaway models [39].

Set up and participants. We consider a set P of participants, which are either a server Si or a

mobile client Ci of the type respectively VLR or ME/USIM. By contrast operators Op are not

modelled as active parties. In all security games apart from state-confidentiality and soundness

with respect to the server, the operators Op are black-box algorithms within the server S; in those

two games, the operators are oracles, which the adversary (i.e. the server) may query. We assume

the existence of nC clients, nS servers, and nOp operators. If the operators are contained within

the servers, we assume that all copies of the same operator Op are synchronized at all times.

We associate each client with: a long-term, static secret state consisting of a tuple (skC, skOp),
an ephemeral state stC consisting of a sequence number SqnC, a tuple of a static, permanent

identifier IMSI and an ephemeral, temporary identifier TMSI, and finally a tuple of a current, and

a past local area identifier, denoted past.LAIP and curr.LAIP respectively. Servers are associated

with a permanent local area identifier LAI and a unique network identifier IDSi ; they also keep

track of a list of tuples (TMSI, IMSI) associated with clients. Each of the at most nS servers

has black-box access to algorithms (or oracles in the case of state-confidentiality and soundness)

Op1, . . . ,OpnOp
, which are initialized with long-term keys (skOpi

) and keep track of a list of tuples

(IMSI, skC, SqnOp,C). In our model, we also assume that the key space of all operators is identical

(otherwise it becomes easier to distinguish between clients of different operators).

Client-Unlinkability. Informally, we call a protocol Π client-unlinkable if no adversary can know

whether two executions of Π were run by the same, or by two different clients. Two sessions

associated with the same client are called linked. Following previous works of Vaudenay [106] and

Hermans et al. [72], we give the adversary access to a basic left-or-right oracle, which associates

an anonymized handle virtual client VC to one of two possible clients (input by the adversary). We

extend this framework to account for client mobility, giving the adversary access to a relocation

oracle. Consequently, if an attacker can distinguish between clients based on their location, it will

win the unlinkability game, which we detail below. At the onset of this game, the set of clients

is empty and the challenger instantiates two lists Ldrawn and Lfree. We initialize operators by

choosing their secret keys. The adversary can then initialise servers by choosing their locations,

and it can create clients to populate the system it attacks. For each newly-created client, the past

location past.LAIC is set to a special symbol ⊥ and the current location is adversarially-chosen.

The adversary then interacts with clients by means of several oracles. The lists Ldrawn and Lfree
correspond to the two possible states of any one client. Clients can be “drawn” or “free”; at

creation, all clients are “free”, and they may become “drawn” if used as input to a left-or-right

Client-Drawing oracle. In particular, we use a left-or-right Client-Drawing oracle (similar to that

in [72, 106]), which allows the adversary to interact with one of two clients (the interacting client

being chosen depending on a secret bit b). Clients input to the Drawing oracle are moved to the

Ldrawn list; further Drawing queries can then be made concurrently as long as the input clients are

in the Lfree list2. Upon drawing one of two possible clients, the adversary is given a handle on

the chosen entity; following the notation of [106], we call this a virtual client and we associate it

with the handle VC. Virtual clients can then be freed by the adversary (this would remove them

from the Ldrawn list and re-add them to the Lfree list). Only free clients can be drawn. This oracle

associates a handle to either the left or the right input client, depending on a secret bit b. The client

unlinkability property is defined in terms of the following security experiment Expc.unlinkA (1λ), for

2In particular, we want to avoid trivial attacks, in which an adversary can distinguish a client simply because it is

not in its original state (having already started the protocol run beforehand).
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a security parameter (in unary) 1λ.

• The challenger randomly chooses a bit b ∈ {0, 1}.

• The adversary may use the oracles below (with restrictions depending on its adversarial

class), and the challenger answers the queries.

• The adversary finally outputs a guess d of the bit b.

We say the adversary wins if and only if d = b, and we define the adversary’s advantage of

winning this game against a protocol Π as:

Ac.unlink
Π (A) := |Pr[A wins Expc.unlinkA (1λ)]−

1

2
|.

Recalling the adversarial classes of [72, 106], we call an adversary narrow if it may not use

the Result oracle, permitting it to know whether the server has authenticated the client or not.

The opposite of narrow are wide adversaries. Orthogoal to the use of the Result oracle, we also

classify adversaries in terms of their use of the Corrupt oracle, which gives them access to the

client’s data. Thus, adversaries are weak if they cannot use the corruption oracle; they are forward

if any corruption query may only be followed by more corruption queries3. Finally, adversaries are

classified as strong if their access to oracles is unrestricted. We note that the 3GPP requirements

outlined in Section 4.1 restrict their adversaries to “eavesdroppers on the radio link”, which seems

to indicate that they target weak adversaries that are either narrow or wide. Moreover, they restrict

their adversaries to being passive only; in this study, we also consider active weak attackers and

thus obtain a better privacy guarantee.

Formalization. We quantify adversaries in terms of the following parameters: the adversarial

class, which we abbreviate to α-c.unlink, with α ∈ {nw,ww, nf,wf} (for narrow- and wide-

weak, and narrow-, respectively wide-forward adversaries); their execution time is t; the maximum

number qexec of sessions instantiated per client C; the maximum number qid of user identification

per session; and the maximum number qG of queries to the function G. We formalize the following

definitions.

Definition 13. [Weak Unlinkability] A protocol Π is (t, qexec, qid, qG , ǫ)-nw/ww-client-unlinkable

if no narrow/wide-weak-adversary running in time t, creating at most qexec sessions and qid user

identification per session, and making at most qG queries to the function G, has an advantage

Advw.c.unlinkΠ (A) ≥ ǫ.

Definition 14. [Forward Unlinkability] A protocol Π is (t, qexec, qid, qG , ǫ)-nf/wf-client-unlinkable

if no narrow/wide-forward-adversary running in time t, creating at most qexec sessions and qid
user identification per session, and making at most qG queries to the function G, has an advantage

Advf.c.unlinkΠ (A) ≥ ǫ.

Oracles. The adversary interacts with the system by means of the following oracles, in addition to

a function G, which we model as a PRF and which ”encompasses” all the cryptographic functions

of the AKA protocol:

• CreateCl(Op, LAI) → (Ci, IMSI, stCi
): this oracle creates a new, legitimate, free client,

labelled Ci at a location LAI for which a server is already defined (else the oracle outputs

⊥). The client’s IMSI, its state stCi
, and its secret key skCi

are chosen uniformly at random

from sets ID, ST , and S respectively; the past location and TMSI are set to a special symbol

⊥. The client’s operator key skOp is set to the key of the operator Op. The adversary is given

the parameters IMSI, stCi
, and the label Ci (used later to select clients).

3In particular, the adversary may no longer free drawn clients, nor interact with servers or clients
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• CreateS(LAI)→ Si: this oracle generates a new server Si at location LAI, if this location is

not already defined for another server (else the oracle returns ⊥).

• Launch(VC, Sj)→ (s,m): this oracle instantiates a new session (labelled by a unique iden-

tifier s) between the client associated with VC and the server Sj , and outputs an initial

protocol message m from Sj to VC. This oracle keeps track of tuples (s,VC, Sj).

• DrawCl(Ci,Cj) → VC: on input a pair of client labels, this oracle generates a handle VC,

which is a monotonic counter, if the following conditions are met: (a) both clients were free

when the query was made; (b) both clients have the same current location value. If either

condition is not met, the oracle outputs ⊥. Else, depending on the value of the secret bit b,
the challenger associates the handle VC either with Ci (if b = 0) or with Cj (if b = 1). The

challenger stores the triple (VC,Ci,Cj) in a table T .

• FreeVC(VC) → ⊥: on input the virtual handle VC, this oracle retrieves the values Ci,Cj

associated to VC in the table T , aborting any ongoing protocol runs.

• Relocate(VC, LAI∗)→ ⊥: this oracle modifies the current location of the two clients Ci,Cj

associated with VC in T , to LAI∗. In particular, the challenger does the following for each

of the clients: (1) it sets past.LAI := curr.LAI; (2) it sets curr.LAI := LAI∗. Any protocol

sessions still running for VC are aborted.

• Send(P, s,m) → m′: for the first input, the adversary can input either a handle VC or a

server identity S. In the former case, the oracle simulates sending the message m from the

adversary to the client associated with VC in session s, returning either the party’s message

m′ or ⊥ if either s is not associated with VC or if VC does not exist. Parties may also return

m′ = ⊥ as an error message. If the first input of this oracle is set to S, the oracle simulates

sending the message from the adversary to the server S.

• Execute(VC, S, s) → τ : this oracle simulates a complete protocol run between the client

associated with VC and the server S. in the presence of a passive adversary. In particular,

Send queries to alternating the server S and the client associated with VC on genuinely-

output messages, this oracle generates and outputs the transcript τ of the execution between

the server S and the client C for which session s was created.

• Result(P, s) → {0, 1}: if P = VC, this oracle returns a bit indicating whether the client

associated with VC has accepted the server that VC ran session s with. If P = S, then the bit

indicates whether the server accepted the client. For the AKA protocol, an acceptance bit is

equivalent to the confirmation of the key-exchange. If the session is incomplete or session s
is not associated with P, the oracle returns ⊥.

• Corrupt(C) → {sk, stC, IDC, (past.LAI, curr.LAI)}: for a client C, this oracle returns the

full state (static and ephemeral), the identifiers and the location information of client C.

4.6 Two proposed variants of the UMTS-AKA Protocol

We proceed to describe two of the more promising improvements to the UMTS-AKA protocol,

and show that these variants are vulnerable to client-unlinkability attacks.
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C S

(skC, skOp, SqnC), pke (skC, skOp, SqnS,C), ske

User Identity Request

←−−−−−−−−−−−
[IMSI]pke

−−−−−−−−−−−−→
Decrypt the received message with ske.

Retrieves the IMSI of the client. If the

obtained value is not an IMSI, it aborts

the protocol.

Generate R.

Denote: Sqn ← Up(SqnS,C)
Compute:

MacS ← F1(skC, skOp,R, Sqn,AMF),
MacC ← F2(skC, skOp,R),
AK← F5(skC, skOp,R),
Autn← (Sqn ⊕ AK)‖AMF‖MacS.

R‖Autn

←−−−−−−−−−−−
Compute AK using R. Recover Sqn (from AK).

Check MacS value.

If MacS valid and Sqn ∈ {SqnC, SqnC + ∆}:
Compute:

CK← F3(skC, skOp,R),
IK← F4(skC, skOp,R),
Set Res := F2(skC, skOp,R).
Update SqnC := Sqn.

Else:

Generate a new random value rand.

UK← [rand]skC .

Res := (Auth Fail, x)
x := [IMSI, rand, [SqnC]UK]]pke.

Res

−−−−−−−−−−−→
Iff. Res == MacC, set:

CK← F3(skC, skOp,R),
IK← F4(skC, skOp,R),
Else if Res := (Auth Fail, x), then ⊥ or re-

synchronization.

Figure 4.3: The fixed UMTS-AKA Protocol by Arapinis.

4.6.1 A first fix from Arapinis et al.

[31]

Arapinis et al. [31] propose an UMTS-AKA variant which is supposed to ensure client unlink-

ability by avoiding failure-message-based linking and fixing the user identification. The autors

propose a simply representation of the network by concatenating the local server VLR and the

client’s operator HLR/AuC as an unique entity called a server S. Considering the problem of IMSI

catchers, they firstly modify the identification of the user, namely addressing privacy breaches that

exploit the fact that IMSIs can be sent in clear upon request. In this variant, the IMSI is encrypted

with a public-key-randomized-encryption (the same as the one used for the error messages) and

they remove the use of temporary identifiers. Thus, no re-allocation procedure is required. We

suppose if the server cannot recover the IMSI from the encryption the protocol is aborted. Then,

they propose to replace the two distinct failure messages by two indistinguishable messages (which

are nonetheless intelligible to legitimate parties). The failure messages are now encrypted with a

public key associated with the network and include the IMSI, a constant string Auth Fail, a random

value rand and the current sequence number SqnC. The latter is additionally encrypted with an

unlinkability key UK = fskC(rand), which authenticates the error message. After decrypting this

generic message, the network can deduce the cause of the failure from the IMSI and the sequence
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number, and sends the appropriate answer This variant is described in details in [31].

In this variant, authors propose to fix the user identification from a public-key-infrastructure.

Since the representation of the network is simply (concatenation of the local and home network),

it is hard to realize the feasibility of this infrastructure. Indeed, if the local server owns the secret

key ske, that implies the clients to store hundreds of certificates, notably due to roaming situations.

Otherwise, the secret key is stored by the home operator. But in this case, the local server cannot

decrypt the message and recover the identity of the client.

C A S
User Identity Request

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[IMSI]pke

−−−−−−−−−−−−→
[IMSIv ]pke

−−−−−−−−−−−−→
rand,Autn

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Res

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If Res = Fail Message

Then C 6= Cv

Else Cv is found.

Figure 4.4: Attack on the fixed version of Arapinis.

Additionally to this practical consideration, Arapinis et al. propose a security proof of their

variant in a 2-party formal model (using ProVerif), which is weaker than our 3-party computational

model. Their proof idealizes the long-term state used in the protocol runs, making it unclear how

far the guarantee holds for the true scheme. Moreover, we prove that the fixed protocol does not

assure the untraceability of the mobile subscriber. Indeed, we propose a new attack permitting

to trace a victim client based on the knowledge of a permanent user identity. We note that the

IMSI values are considered as a public value. Since IMSI values follow a relatively predictable

structure, this is not a strong assumption. In a specific area, our attack allows to trace a victim

client Cv, whose permanent identifier IMSIv is known by the adversary. This attack consists in

replacing the answer of the user identity request, as given by the user, by a response which encrypt

the permanent identifier of the victim client. In this case, if the user that was sent the identity

request is truly Cv, then the adversary has perfectly simulated its behaviour and the session could

succeed. Else, the user will return an error for the MAC verification. While encrypted, the message

will still yield a different behaviour (notably an abort). This attack is detailed in the figure 4.4.

We state the following result:

Lemma 1. Let Π the protocol proposed by Arapinis et al., as presented in figure 4.3. Then there

exists a (t, 1, 1, 0)-adversary A against the weak-privacy of the protocol Π running in time t,
creating at most one party instance, running one user identification per each instance and making

no extra query to the related internal cryptographic functions, which wins with non-negligeable

advantage Advww-unlink
Π (A) = 1

2 .

Proof. The attack we describe goes as follows:

1. At time clock = 0, the challenger sets up the server.

2. At time clock = 1, the adversary creates two clients C0, C1 from the oracles CreateClient

(IMSI{0}, st
{0}
0 ) and CreateClient(IMSI{1}, st

{1}
0 ).

3. At time clock = 2 → 3, the adversary uses the oracle DrawClient(C0,C1) which returns at

time clock = 3 a virtual client vc = Cb following a chosen bit b.
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4. At time clock = 4 → 10, the adversary runs an instance of the protocol Π between the

virtual client and the terminal as follows: At time clock = 4, the terminal sends a user iden-

tity request to the virtual client; at time clock = 5, the virtual client answers with the value

UID such as: UID = [IMSI{b}]pkeb ; at time clock = 6, the adversary intercepts this message

(before arriving to the terminal) and forges a user identification UID = [IMSI{0}]pke0 for the

client C0 which will be sent to the terminal at time clock = 7 (instead of the user identifier

computed by the virtual client); at time clock = 8, the terminal receives the related user

identifier and generates an authentication challenge which is sent to the virtual client vc at

time clock = 9; this latter sends its authentication answer Res at time clock = 10 which is

eavesdropped by the adversary.

5. At time clock = 11, since the eavesdropped authentication answer Res, the adversary tries to

guess the bit b as follows: if the message Res contains a failure message, then the adversary

deduces the virtual client to be client C0 (setting b′ = 0). Otherwise, it assumes the virtual

client to be C1 (setting b′ = 1).

6. At time clock = 12, the adversary returns its guess b′.

It is clear that the success probability of a such adversary is 1. Thus, the protocol cannot guarantee

the weak-privacy. We note that in practice if the adversary A cannot detect de-synchronizations,

some ”false positives” can be appear: indeed, during the tested session, if the victim client is

de-synchronized, the adversary cannot. However, frequency of such an event (i.e this one of a

synchronization procedure) is very weak. Moreover, the same attack procedure, if repeating, will

reduce the probability of obtaining a false positive.

4.6.2 A variant from Van der Broek et al.

[104] Van den Broek et al. [104] recently proposed an IMSI catcher countermeasure; in this

improved variant, they avoid sending the IMSI in clear by replacing (IMSI, TMSI) tuples by an

upgradeable pseudonym denoted PMSI. Their modified identification phase is done exclusively by

means of these pseudonyms. The PMSI is chosen by the operator and sent with the authentication

challenge in the preparation phase, encrypted together with the sequence number with a new secret

key that is assumed to be shared by clients and their operators. The ciphertext is then used as the

random value R in the authentication challenge. Indeed, a successful session of the UMTS-AKA

protocol, ending in the establishment of new session keys, can only be attained if the PMSI is

correctly updated. This variant is described in detail in [104].

From a practical point of view, using the operator at each key-exchange session is costly, and

something that the original AKA was designed tries to avoid. Furthermore, though this variant

successfully prevents IMSI catchers, it does not fully address client unlinkability. The pseudonym

PMSI can be intercepted in one session; if this session is then aborted, the PMSI can be replayed

in a second session, thus leading to user linkability. Furthermore, the protocol is still vulnerable

to the attack based on linking failure messages, as presented by Arapinis et al. Thus, if Π denotes

the protocol proposed by van den Broek et al., it holds that:

Lemma 2. There exists a (t, 2, 1, 0)-adversary A against the narrow-weak-client-unlinkability

of Π running in time t, initiating two protocol sessions, and making no query to the internal

cryptographic function G, which has an advantage Advww-unlink
Π (A) = 1

2 (and a probability of 1)

to win the game.

Proof. The attack we describe follows the strategy of Arapinis et al. for the linkability of failure

messages:
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1. At time clock = 0, the challenger sets up the server.

2. At time clock = 1, the adversary creates two clients C0, C1 from the oracles CreateClient(

IMSI{0}, st
{0}
0 ) and CreateClient(IMSI{1}, st

{1}
0 ).

3. At time clock = 2 → 3, the adversary uses the oracle DrawClient(C0,C1) which returns at

time clock = 3 a virtual client vc = Cb following a chosen bit b.

4. At time clock = 4 → 5, the adversary runs an instance of the protocol Π between the

virtual client and the terminal via the oracle Execute(vc, s) which returns the transcript of an

instance s at time clock = 5. This transcript includes the authentication challenge denoted

(R,Autn).

5. At time clock = 6 → 12, the adversary runs an instance s + 1 of the protocol Π between

the virtual client and the terminal as follows: at time clock = 6, the terminal sends a user

identity request to the virtual client; at time clock = 7, the virtual client sends the user

identifier UID to the terminal; at time clock = 8, the terminal receives the related user

identifier and generates an authentication challenge which is sent to the virtual client vc; at

time clock = 9, the adversary intercepts the fresh authentication challenge (before arriving

to the virtual client) and sends the previous authentication challenge (R,Autn) to the virtual

client at clock = 10 (obtains in a previous session on the client C0 := DrawClient(C0,C0)
); at time clock = 11, the virtual client sends its authentication answer Res at clock = 12
which is eavesdropped by the adversary.

6. At time clock = 13, since the eavesdropped authentication answer Res, the adversary tries to

guess the bit b as follows: if the message Res contains a ”de-synchronization message”, then

the adversary considers the virtual client as the client C0 (that implies b′ = 0). Otherwise, it

considers the virtual client as the client C1 (that implies b′ = 1).

7. At time clock = 14, the adversary returns its guess b′.

4.7 Our Complete Proposal: PrivAKA

In this section, we propose a new variant of the UMTS-AKA protocol which guarantees the weak-

unlinkability, the key-indistinguishability properties and the security properties (client- and server-

impersonations resistance, soundness and state-confidentiality). The weak-unlinkability, as de-

fined in the privacy model in Section 4.5, is a property guaranteeing that two sessions run by the

same client are not linkable with respect to a MitM attacker which may learn whether the server

accepts the client’s authentication or not, but which cannot corrupt clients to learn their keys. The

other properties are defined as in our 3-party security model defined in Section 3.2. This privacy

analysis notably is established with the respect to malicious servers, and considering the three-

party features as an important part of the analysis. Our fixed variant takes into account practical

considerations (interoperability of the servers, USIM card restrictions, ...) for a possible standard-

ization. We note that a fix variant of the EPS-AKA protocol can be proposed to guarantee all

the security and privacy requirements. This variant is really similar to the one proposed in 4.7.1

including a new temporary identifier which does not reveal the user location and the 4G session

keys hierarchy. The related security and privacy properties can be proved similarly and this variant

will keep all the modular properties including all the described practical considerations.
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Client Server Operator

(skC, skOp, pke), (SqnC, idxC), (TMSIo, LAIo) (TMSI) (skC, skOp, ske), (SqnOp,C, idxOp,C)
User Identity Request

Rid

←−−−−−−−−−−−−−−−−−−−

1©
User Identity Answer

ID‖Opid

−−−−−−−−−−−−−−−−−−−−→

2©

Auth. Vectors Request

Val

−−−−−−−−−−−−−−−−→

3©
Auth. Vectors Answer

AV

←−−−−−−−−−−−−−−−−

4©
Auth. Challenge

R‖Autn‖ AE.EncCK,IK(TMSIn‖idxOp,C)

←−−−−−−−−−−−−−−−−−−−

5©
Auth. Response

Res

−−−−−−−−−−−−−−−−−−−→

6©
Update Sequence Number

−−−−−−−−−−−−−−−−→

7©
Instructions:

Client Server Operator

1©: Compute the identifier:

If flagIdtemp
:= 0 then ID = TMSI.

Else, ID = PKE.Encpke(f5(keys,Rid, IMSI, idxC)‖Rid‖IMSI‖idxC).

flagIdtemp
:= 1.

———————————————————-

5©: Compute AK using R.

Recover SqnOp,C (from AK).

Check MacS value.

Compute: IK,CK;

Retrieve the received index and the new TMSI.

If abort caused or the AE does not verify, set flagIdtemp
:= 1

and increment: idxC := idxC + 1.

Else, check validity of SqnOp,C, i.e if one of the following

conditions is correct:

• SqnC = SqnOp,C.

• SqnC = inc(SqnOp,C) and idx = idxC + 1.

If the first condition is accepted: reset the index idxC,

update the sequence number SqnC = inc(SqnC) .

If the second condition is accepted: idxC=idxC+1 .

Compute Res := F∗
1 (keys,R, SqnOp,C, IdS,AMF ).

Update the internal index. Allocate the new TMSI.

flagIdtemp
:= 0.

2©: Process the identifier ID:

If the identifier is a TMSI

then Val = IMSI. Otherwise,

Val = (ID,Rid).

———————————–

4©: Store AV.

Then, it sends the au-

thentication challenge and

the new couple

(TMSIn, idxOp,C) encrypted and

authenticated by the session keys.

———————————–

6©: If the authentication of

the client is verified (Res
?
=

MacC), then they ask to the

server the update of its se-

quence number. Otherwise,

the protocol is aborted.

3©: Verify the identity of the client with Val.

If this holds, retrieve idxC, set idxOp,C := idxC

Generate R. Denote: keys := (skC, skOp).

MacS ← F1(keys,R, SqnOp,C, IdS, AMF),

MacC ← F
∗
1 (keys,R, SqnOp,C, IdS,AMF ),

CK← F3(keys,R, SqnOp,C, IdS,AMF ),

IK← F4(keys,R, SqnOp,C, IdS,AMF ),

AK← F5(keys,R, IdS ),
Autn← (SqnOp,C ⊕ AK)‖AMF‖MacS,

SqnOp,C ← inc(SqnOp,C) ,

AV := (R,CK, IK,Autn,MacC, idxOp,C).
End for.

————————————————-

7© : Update the sequence number:

SqnOp,C ← inc(SqnOp,C).

Reset the index idxOp,C.

Figure 4.5: Our fixed UMTS-AKA Procedure: PrivAKA.

4.7.1 Description

Instead of five phases, our variant only consists of three. Our protocol is designed to not require

re-synchronization (which was phase 4 in AKA), and we include the TMSI reallocation (which

was phase 5 in AKA) as part of the key-exchange phase (phase 3). In our construction, we use

a public-key encryption scheme PKE= (PKE.KGen,PKE.Enc,PKE.Dec), such that each operator

has a certified public and secret key-pair denoted as (pkeOp, skeOp). We assume that the client

stores only its own operator’s public key (and its certificate) internally. In particular, we do not
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give encryption keys to the servers in order to minimize key-management issues. We also use a

secure authenticated encryption scheme AE = (AE.KGen,AE.Enc,AE.Dec). Though these can

be instantiated generically, we use AES-GCM [86] for the AE scheme and (EC)IES [100] for the

PKE scheme. We depict our variant in Figure 4.5, and indicate in the grey boxes the differences

to the classical UMTS-AKA procedure. Just as the original protocol, our variant starts with an

identification phase, run by the client and the server over the insecure channel. The server sends

an identification request which includes a new random value that we denote Rid.

The client computes a user identification answer following a flag flagIdtemp
which it manages:

the client uses either a pre-exchanged fresh temporary identifier TMSI (if the previous protocol

has been accepted and if the user stayed in the same area: flagIdtemp
= 1) or it sends a public-key

encryption of the concatenation of the received random value Rid and the evaluation of the function

F5 on input the client secret key, the operator’s secret key, the random value Rid and the client’s

IMSI (only if it does not own a fresh temporary identifier or if the user is located in a new area:

flagIdtemp
= 0). We demand that the output size of the PKE scheme for this input size is always

equal to the length of the TMSI. The value flag flagIdtemp
is only used to restrict the computation

of an encrypted permanent identity and not for security reasons. In both cases, the client also

appends the identity of the operator Op it subscribes to, to the message. Moreover, we assume that

the client can detect when it moves in a new area. In this case, it allocates the flag at 0.

Intuitively, if the client stayed in the same area (flagIdtemp
= 0), then the TMSI the client

stored came from the server it is currently communicating with, hence the server can find the

(TMSI, IMSI) association in its database. Otherwise, the client does not use its TMSI value, but

rather encrypts a function of the IMSI with the operator’s public key. The function is symmetric-

key, requiring knowledge of the client and operator keys, and it is not replayable due to the fresh

identification randomness Rid. Upon receiving a string of the form (m,Op), the server first checks

whether the message m is a TMSI present in its database; if so, it retrieves the IMSI to which this

value corresponds; else, it assumes that m is a ciphertext, and it sends it to the operator Op for

decryption.

Phase 2, preparation, is run over a secure channel, between the server and the operator. If the

server received a valid TMSI in the previous phase, the preparation phase begins with the server

sending the corresponding IMSI to the operator; else, the server forwards the received ciphertext

and the associated random value Rid. The operator proceeds similarly to the standard AKA prepa-

ration procedure, with the following differences:

• We add as input to each cryptographic function a server-specific value IdS for a server with

identity S = VLR. This is to prevent attacks in which the adversary replays authentication

vectors from one network to another, as presented by Zhang [109]. We also use the constant

AMF which is sent in clear, as an additional input.

• We add the sequence number SqnOp,C to each of the cryptographic functions apart from

F5. Since the sequence number is an ephemeral value, which is updated, this guarantees

freshness even if the randomness R is repeated.

• We introduce an index value idxOp,C which essentially prevents the repetition of a challenge

using the same sequence number. This value is essential in preventing a desynchronization

of sequence number values. We note that the client also keeps track of a similar index idxC,

which will play a role in the key-exchange phase, as detailed below.

• We reduce the batch of authentication vectors to only one element. We note that such re-

duction is already present when the client is in a roaming situation. 3GPP specifications

only allow to send more than one authentication vector if the client is located in its home

network.
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In the final phase, authenticated-key-exchange, which is run between the client and the server, the

server sends a random value R, the authentication string Autn, and an authenticated encryption of

the new TMSI, using the keys (CK, IK) derived for this session. The client proceeds similarly to

the original AKA procedure, recovering AK by using the random value R, then checking MacS. If

the authentication cannot be verified, the procedure is aborted, and the new TMSI is disregarded.

Else, the user computes CK, IK and decrypts the received authenticated encryption string to find

the TMSI value and the operator’s index idxOp,C. Then, C checks the freshness of the sequence

number, i.e, it verifies if one of the following two conditions is correct:

SqnC = Sqn{i}; SqnC = inc(Sqn{i}) and idxOp,C = idxC + 1.

If the protocol is run normally, the first of these conditions is the one that will hold. However,

if the previous session is aborted after receiving the server’s authentication challenge, then the

two sequence numbers may become desynchronized by one step (the second condition). Further

desynchronization is prevented by the use of an index, which indicates whether the authentication

string for a particular SqnOp,C has already been used or not. If the first condition holds, then the

client’s internal index is reset; else, the index is incremented by 1. The client updates the sequence

number only upon successful authentication. If none of these conditions are verified, the procedure

is aborted and does not use of a resynchronization procedure.

Finally, the user computes a response Res := F2(keys,R
{i}, Sqn{i}, IdS,AMF), sends Res,

then stores the TMSI and the new index value. The server checks Res against the prepared value

MacC (else, if no response is received, the procedure is aborted).

One notable exception to the original UMTS-AKA protocol is that whenever an abort occurs

on the server’s side, the second phase – preparation – is used instead of simply querying the next

vector in the prepared batch. Though this might seem more inefficient, we note that an abort

only occurs in the presence of an adversary, which is considered to be a rare event. We detail the

procedure upon aborts in Figure 4.6.

Server Operator

AV

”Aborted Protocol Message”

−−−−−−−−−−−−−−−−−→
Recover the related sequence

number Sqn.

If SqnOp,C = Sqn : idxOp,C++.

If SqnOp,C 6= Sqn: idxOp,C = 1
and SqnOp,C = Sqn.

Then it constructs an authentica-

tion vector as usual.
AV

←−−−−−−−−−−−−−−−−

Figure 4.6: Procedure after an abort.

Internal cryptographic algorithms: In our variant, we have modified the inputs of the in-

ternal cryptographic algorithms, notably to include the sequence number and the new value IdS.

Thus, we need to provide an update of these algorithms to consider these modifications. As speci-

fied in specifications, the UMTS-AKA protocol can be based on two different sets of algorithms:

TUAK and MILENAGE.

To preserve backwards compatibility, we propose to keep and update these two algorithm

suites. Moreover, our variant requires an algorithm of authenticated encryption. We propose the

use of the well-known AES-GCM standard [86]. It is denoted AE. Note that for our variant, we

do not need the functions F∗
1 and F∗

5 , since we have dropped the resynchronization procedure.

The five internal cryptographic functions take as input the following values:
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• keys: the couple of the both 128-bit (or 256-bit) keys: the subscriber key skC and the operator

key skOp.

• Sqn (used in all but F5): a 48-bit sequence number.

• AMF (used in all but F5): a 16-bit authentication field management.

• R: a 128-bit random value.

• IdS: a 128-bit public value characterizing the visited network.

Update of the MILENAGE algorithms: MILENAGE is the original set of algorithms which is

currently implemented as detailed the specification 35.206 [2].

Figure 4.7: Updated Milenage.

To assure a stronger security, we modify the MILENAGE algorithms to output 128-bit MAC

values and session keys CK and IK.

Based on the Advanced Encryption Standard (AES), these functions compute firstly both val-

ues TopC and Temp as follows:

TopC = skOp ⊕ AESskC(skOp), Temp = AESskC(R ⊕ TopC ⊕ IdS).

Then, we obtain the output of the five functions as follows:

• Output F1: MacS = AESskC(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,

• Output F2: MacC = AESskC(Temp⊕ Rotr2(Sqn‖AMF‖Sqn‖AMF)⊕ c2)⊕ TopC ,

• Output F3: CK = AESskC(Temp⊕ Rotr3(Sqn‖AMF‖Sqn‖AMF)⊕ c3)⊕ TopC ,

• Output F4: IK = AESskC(Temp⊕ Rotr4(Sqn‖AMF‖Sqn‖AMF)⊕ c4)⊕ TopC ,

• Output F5: AK = ⌊AESskC(Rotr5(Temp⊕ TopC)⊕ c5)⊕ TopC⌋0..47,

with the five integers r1 = 0, r2 = 24, r3 = 48, r4 = 64 and r5 = 96 in the range {0, 127}, which

define the number of positions the intermediate variables are cyclically rotated by the right, and

the five 128-bit constants ci follows as:

• c1[i] = 0, ∀i ∈ {0, 127}.

• c2[i] = 0, ∀i ∈ {0, 127}, except that c2[127] = 1.
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• c3[i] = 0, ∀i ∈ {0, 127}, except that c3[126] = 1.

• c4[i] = 0, ∀i ∈ {0, 127}, except that c4[125] = 1.

• c5[i] = 0, ∀i ∈ {0, 127}, except that c5[124] = 1.

This is also described in Figure 4.7.

Update of the TUAK algorithms: TUAK is an alternative set of MILENAGE based on the

internal permutation of the Keccak [44]. The specification TS 35.231 [4] details the internal al-

gorithms of this set. We update these algorithms by only modifying the inputs of the second

permutation.
As the original TUAK algorithms, we firstly compute the value TopC as follows:

TopC = ⌊fKeccak(skOp‖Inst‖AN‖0
192‖Key‖Pad‖1‖0512)⌋1..256,

We note that the values AN, Inst’, Inst, Pad are the same as used in the no-updated TUAK

algorithms and Key the (padded) subscriber key.

Figure 4.8: Updated TUAK

At this point, the behaviour of F5 diverges from that of the other functions. To generate output

ofF5, we compute the value Val1 and while forF1 andF4, we compute the value Val2, as follows:

Val1 = fKeccak(TopC‖Inst
′‖AN‖R‖064‖Key‖IdS‖Pad‖10

512),

Val2 = fKeccak(TopC‖Inst
′‖AN‖R‖AMF‖Sqn‖Key‖IdS‖Pad‖10

512).

Then, we obtain the output of the five functions truncating the related value as follows:

• Output F1: MacS = ⌊Val2⌋0..127,

• Output F2: MacC = ⌊Val2⌋256..383,

• Output F3: CK = ⌊Val2⌋512..639,

• Output F4: IK = ⌊Val2⌋768..895,

• Output F5: AK = ⌊Val1⌋0..47.

This is also depicted in Figure 4.8.

We note that the multi-output property is, as the original version, not an issue for the security

of the master key, since during one session we can have as many as four calls to the same function

with similar inputs (and a different truncation).
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4.7.2 Security and Privacy Proofs

In this section, we prove the weak-client-unlinkability, the strong-key-indistinguishability, strong-

server- and client-impersonation, soundness, and state-confidentiality of PrivAKA under some

classic assumptions of the security of internal cryptographic functions. Just as for our security

analysis, we generalized the algorithms of TUAK and MILENAGE as two functions G and G∗ as

detailed in Section 4.7.4.

Weak Client Unlinkability of our fixed variant.

In this section, we prove that PrivAKA protocol achieves weak client unlinkability if we as-

sume that the internal functions assures indistinguishability, pseudorandomness and unforgeability

properties. The weak-client-unlinkability resistance of our fixed variant is proved as follows:

Theorem 19. [ww-unlink− Resistance.] Let G:{0, 1}
κ ∗ {0, 1}d ∗ {0, 1}t ∗ {0, 1}t → {0, 1}n

be our unitary function generalizing the internal cryptographic functions Fi and Π our PrivAKA

protocol described in Section 4.7.1. Consider a (t, qexec, qid, qG , qAE, qPKE)-adversary A against

the weak privacy ww-unlink-security of the protocol Π running in time t, creating at most qexec
party instance, with at most qid user identification per instance and making at most qG , qAE,

qPKE queries to respectively the functions G, AE and PKE. The advantage of this adversary is

denoted Advww-unlink
Π (A). Then, there exist (t′ ∼ O(t), q′ = qsess + qG)-adversary A1 and (t′ ∼

O(t), q′ = 2 ·qsess +qG)-A2 against respectively the unforgeability and pseudorandomness of the

function G, an (t′′ ∼ O(t), q′′ = qsess+qAE)-adversaryA3 against the AE-security of the function

AE, (t′′′ ∼ O(t), q′′′ = qsess · qid + qPKE)-adversaries A4 against the indistinguishability of the

function PKE, (t, qexec, qid, 0, 0, qG , qAE, qPKE)-adversary A5 against the key-indistinguishability

of the protocol Π such that:

Advww-unlink
Π (A) ≤ AdvK.IndΠ (A5) +

1 + (qexec · qid)
2

2|TMSI|
+

q2exec
2|R|

+
(qexec · qid)

2

2|Rid|
+

nC · (3 · Adv
mac
G (A1) + Adv

prf
G (A2) + 4 · AdvaeAE(A3) + Advind−cca2

PKE (A4)).

Proof. Our proof has the following hops:

Game G0: This game works as the ww-unlink-game stipulated in section 4.5.

Game G1: We modify the original game G0 to ensure that the random values Rid and R used by

honest server instances are always unique. The related security loss due to the collisions between

each respective random in two different instances is given by the following expression:

∣

∣Pr[AG0
wins]− Pr[AG1

wins]
∣

∣ ≤
q2exec
2|R|

+
(qexec · qid)

2

2|Rid|
.

Game G2: The game G2 behaves as G1 with the restriction that use abort the protocol if one of

the three following events happen:

• Event 1: The adversary A forges successfully user identification answer against an honest

server.

• Event 2: The adversaryA forges successfully an authentication challenge against an honest

client.

• Event 3: The adversary A forges successfully an authentication response against an honest

server.
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Note that if any of three events occurs, a classic attack permits to recover the user identity of

the client. Such an adversary behaves as follows: the adversary submits of one of these clients

(C0 or C1) to be chosen as the virtual client VC and forges a message x on behalf. During the

session, it drops the true message from the honest server and sends the forged message. If with

this modification the session is accepted, then the client for whichA forged the message is the one

chosen as the user equipment. Otherwise, the other client is the good one.

Now, focus on each event. Firstly, if the adversary wants to forge a fresh user identification

response (event 1), he has two options: either guess the fresh temporary identifier TMSI or an

encrypted version of the permanent identifier related to the random value Rid included in the user

identification request. For the first option, either the adversary must obtain a new one by using the

previous ones or it must decrypt the authenticated encryption which hides the TMSI in the previous

session. The TMSIs are independently chosen, so they are no way to guess the fresh TMSI from

the old one, except randomly, or by replaying one of these previous TMSI. The probability of a

such success is at most (1 + (qexec · qid)
2)/2|TMSI|. The ability to recover the fresh TMSI from

the encrypted version is restricted by the security of the authenticated encryption and the key-

indistinguishability of the session keys. Indeed, the fresh TMSI is sent authenticated and encrypted

by the algorithm AE, which is based on session keys and not long-term keys. Moreover, we note

that the fresh TMSI is encrypted with the index which is predictable, but fresh for each replay

of an old sequence number. So, if an adversary can forge a correct output of the authenticated

encryption AE (i.e. the related input includes a correct index), it can impose its own temporary

value and use it for the next user identification. The probability of such a recovery is at most

AdvK.IndΠ (A) + nC · (2 · Adv
ae
AE(A)). So, the adversary’s ability to forge a correct encrypted

permanent identity is restricted by his ability to forge a correct output of the function G with

the IMSI and without the private key. Thus, an adversary may only succeed with probability

nC · Adv
mac
G (A). The security loss due to the ability to forge an fresh identification response is

consequently bounded by
1+(qexec·qid)

2

2|TMSI| + AdvK.IndΠ (A) + nC · (2 · Adv
ae
AE(A) + Advmac

G (A)).

Now, focus on the second event involving a forgery on an authentication challenge. We recall

that such a challenge is split into four parts: the random value R, a masked value of the current

sequence number, val = AK ⊕Sqn, a message authentication code mac generated by the function

G which takes in inputs the private keys keys, the random value R and the sequence number

Sqn, and a tuple consisting of the next temporary identifier and the current index, both values

encrypted by an authenticated encryption AE. In a fresh instance, we have two options to forge an

authentication challenge: either the adversary guesses a fresh authentication challenge based on the

current sequence number or it replays an old challenge based on a previous used sequence number.

For the first option, the complexity to forge a such challenge is restricted by the unforgeability of

the function G. Indeed even if the adversary knows the current sequence number, which is in

practice masked by a one-time-pad, it cannot forge a fresh message authentication code without

the related message authentication code. Moreover, we note that the index is only implied for

the second condition of the freshness verification and the new TMSI will be only used for the next

session. With the second condition, the best option for the adversary consists of replaying the three

first parts of the previous authentication challenge from an aborted session while trying to forge

an authenticated and encrypted version of a fresh index value and a fresh TMSI. Indeed, when the

protocol is aborted after the server has sent the authentication challenge, the next authentication

challenge is based on the same sequence number. To forge a fresh authenticated and encrypted

value, the adversary chooses any non-nil value for the index value. We note that the adversaeary

needs to know it because such a challenge including the index idx is considered as fresh only if

there are exactly idx previous sessions aborted by a drop of the related authentication response.

Moreover, we do not need to the chosen temporary value. The ability to forge a such challenge

is restricted by the security of the chosen algorithm of authenticated encryption. So, considering
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both conditions, the success probability is at most nC · (Adv
mac
G (A) + AdvaeAE(A)).

Finally, we focus on the third event in which A must forge an authentication response, which

is only consists a value Res, output by the function G. Thus, the success probability is at most

nc · Adv
mac
G (A). We obtain a total loss of:

∣

∣Pr[AG1
wins]− Pr[AG2

wins]
∣

∣ ≤
1 + (qexec · qid)

2

2|TMSI|
+ AdvK.IndΠ (A) +

3 · nC · (Adv
ae
AE(A) + Advmac

G (A)).

Game G3: We modify the game G3 to replace outputs to call to the function G by truly ran-

doms, but consistent values, which are independent of the input, but the same input gives same

output. We argue that the security loss is precisely the advantage of the adversary against the pseu-

dorandomness of the function G, of the public encryption scheme PKE and of the authenticated

encryption scheme AE. It holds that:
∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤ nC · (Adv
prf
G (A) + Advind−cca2

PKE (A) + AdvaeAE(A)).

Winning the game G3: At this point, the adversary plays a game which consider to recover the bit

b with a fully-randomized protocol. In particular, the transcript no longer depends on the clients

long-term keys, hence two clients are indistinguishable. Thus, the adversary has only one option:

guess the bit b without any specific information. So we obtain the following probability of winning

the game G3: Pr[AG3
wins] = 1

2 .
textbfSecurity Statement This yields the following result:

Advww-unlink
Π (A) ≤ AdvK.IndΠ (A5) +

1 + (qexec · qid)
2

2|TMSI|
+

q2exec
2|R|

+
(qexec · qid)

2

2|Rid|
+

nC · (3 · Adv
mac
G (A1) + Adv

prf
G (A2) + 4 · AdvaeAE(A3) + Advind−cca2

PKE (A4)).

Key-Indistinguishability of PrivAKA.

We formalize the key-indistinguishability property, denoted K.Ind, as the guarantee that the

session keys of honest sessions are indistinguishable from random. We consider the session ID

sid to be a tuple: UID, IDSi , R, Rid, idxC and the value SqnC, that are agreed during the session.

As stipulated we can prove the key indistinguishability of PrivAKA, assuming the indistuigu-

ishability, unforgeability of the outputs, and pseudorandomness properties of some of the internal

cryptographic functions. This property is defined as follows:

Theorem 20. [K.Ind− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

be our unitary function generalizing the internal cryptographic functions Fi and Π our PrivAKA

protocol described in Section 4.7.1. Consider a (t, qexec, qid, qs, qOp, qG , qAE, qPKE)-adversary A
against the K.Ind-security of the protocol Π, running in time t and creating at most qexec party

instance, with at most qid user identification per instance, corrupting at most qs servers, making at

most qOp OpAccess queries per operator per corrupted server, and making at most qG , qAE, qPKE
queries to respectively the functions G, AE and PKE. Denote the advantage of this adversary as

AdvK.IndΠ (A). Then there exists a (t′ ≈ O(t), q′ = qG + qexec)-MAC-adversary A1 against G, a

(t′ = O(t), q′ = qG + 2 · qexec + 5 · qs · qOp)-PRF-adversary A2 against G, a (t′ = O(t), q′ =
qG + qexec)-IND-CPA-adversary A3 against G,a (t′ = O(t), q′ = qexec + qAE)-AE-adversary A4

against AE, and a (t′ = O(t), q′ = qexec ·qid+qPKE)-IND-CCA2-adversaryA5 against PKE such

that:

AdvK.IndΠ (A) ≤ nC · (
(qexec · qid)

2

2|Rid|
+

(qexec + qs · qOp)
2

2|R|
+ Advmac

G (A1) + Adv
prf
G (A2) +

AdvindG (A3) + AdvaeAE(A4) + Adv
prf
PKE(A5)).
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Proof. Our proof has the following hops.

Game G0: This game works as the K.Ind-game stipulated in our security model [3.2], but includ-

ing the new oracles. The goal of the adversary AG0
is to distinguish, for a fresh instance that ends

in an accepting state, the real session keys from random ones.

Game G1: We modify G0 giving A access to the new query Corrupt(P, type). We note that

this new query allows the corruption of the key operator independently of the corruption of the

subscriber keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S (else, if the oracle

takes as input P = S, then it outputs ⊥). The output of the oracle depends on the value

type ∈ {sub, op, all}. If type = sub, then the returned value is skP. If type = op,

then the oracle returns skOp. Then, for type = all, we return the both values skP, skOp. If

type ∈ {sub, all}, then P (and all its instances, past, present, or future), are considered to

be adversarially controlled.

We argue that given any adversary A playing the game G0 and winning with probability pA
also wins game G1 with at least the same probability (since in game G1,A has more information).

Pr[AG0
wins] ≤ Pr[AG1

wins].

Game G2: We modify G1 to only allow interactions with a single client (any future UReg calls for

a client, are answered with an error symbol ⊥). The challenger generates only a single operator

key, which is associated with the operator chosen for the registered client and chooses a bit b ∈
{0, 1}. We proceed as follows: for any adversaryAG1

winning the game G1 with a non-negligible

success probability ǫG1
, we propose to construct a generic adversary AG2

winning the game G2

(with black-box access to the adversary AG1
) with a non-negligeable probability.

Adversary AG2
begins by choosing a single client C. For every user registration request that

AG1
sends to its challenger, AG2

responds as follows: if the registered client is C, then it forwards

the exact UReg query that AG1
makes to its own UReg oracle. Else, if AG1

registers any client

C∗ 6= C, AG2
simulates the registration, generating skC∗ and SqnC∗ , returning the latter value.

AdversaryAG2
also generates nOp−1 operator keys rskOp∗ (for all operator Op∗ such that Op∗ 6=

Op), and associates them with the clients as follows: the target client C is associated with the same

operator given as input by AG1
to the UReg query (thus with the operator key skOp generated by

the challenger of game G2). Let this target operator be denoted as Op. Adversary AG2
queries

Corrupt(C, op) and stores skOp.

We distinguish two types of clients: the brothers of the target client (i.e. the clients which

have the same operator as the target client) and the others ones. For the latter clients C∗, which

are registered by AG1
with an operator Op∗ 6= Op, adversary AG2

associates Op∗ with one of its

generated keys rskOp∗ . Recall that, since adversary AG1
plays the game in the presence of nOp

operators, there are nOp−1 keys which will be used this way. We call all clients C∗ 6= C registered

by AG0
with the target operator Op the brothers of the target client C. Adversary AG2

associates

each brother of C with the corrupted key skOp it learns from its challenger.

In the rest of the simulation, whenever AG1
makes a query to an instance of some party C∗,

not a brother of C, the adversary AG2
simulates the response using the values skC∗ , rskOp∗ , and

the current value of Sqn. For the brothers of C, the simulation is done with skC∗ , skOp, and the

current Sqn. For the target client C, any queries are forwarded by AG2
to its challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that AG2
cannot query

Corrupt to its adversary (this is a condition of freshness). The simulation is thus perfect up to the

Test query.

In the Test query, AG1
chooses a fresh session and sends it to AG2

(acting as a challenger).

Note that AG2
will be able to test whether this instance is fresh, as freshness is defined in terms of
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AG1
’s queries. IfAG1

queries Test with a client other than the target client C, thenAG2
aborts the

simulation, tests a random, fresh instance of the client C (creating one if necessary), and guesses

the bit d, winning with probability 1
2 . Else, if AG1

queried a fresh instance of C, AG2
forwards

this choice to its challenger and receives the challenger’s input. The adversary AG2
forwards the

input of the challenger to AG1
and then receives A’s output d, which will be AG2

’s own response

to its own challenger.

Denote by E1 the event that adversary tests C in game G1, while Ē1 denotes the event thatAG1

chooses to test C∗ 6= C. It holds that:

Pr[AG2
wins] = Pr[AG2

wins | E1] · Pr[E1] + Pr[AG2
wins | Ē1] · Pr[Ē1]

≥
1

nC
Pr[AG1

wins] +
1

2
·
(

1−
1

nC

)

≥
1

nC
Pr[AG0

wins] +
1

2
·
(

1−
1

nC

)

.

Note that adversary AG2
makes one extra query with respect to AG1

, since we need to learn

the key of the target operator.

Game G3: We modify G2 to ensure that the random values sampled by honest server instances

are always unique. This gives us a security loss (related to the respective collisions between the R

and Rid values in two different instances) of

∣

∣Pr[AG2
wins]− Pr[AG3

wins]
∣

∣ ≤
(qexec · qid)

2

2|Rid|
+

(qexec + qs · qOp)
2

2|R|
.

Game G4: This game behaves as game G3 with the restriction to only interact with only one server

(any future UReg calls for a server would be answered with an error symbol ⊥). Thus A loses the

ability to obtain authentication vectors from corrupted servers. Such authentication vectors can

either give information about the used sequence number and the long term keys, or forge a fresh

challenge replaying some parts of these vectors. We recall that the challenge is split into four

parts: a random value, a masked version of the current sequence number (a one-time-pad based

on an anonymity key generated by the function G), a MAC computed with the function G, and

an authenticated and encrypted version of a tuple of messages consisting of the next temporary

identifier and the current index. Moreover, we note that all calls to the function G take in input a

specific value of the related server, denoted IDSi . The corrupted servers permit to obtain vectors

based on the current sequence number, but different random values and different server identifier.

So the related security loss is given by the collision on two outputs of the same function G with

two different inputs (namely two inputs differ at least in the value of the network identifier) and by

the indistinguishability of the function G. We recall that the Test Phase of the game can be only

focus on a network which is or was never corrupted. This give us a security loss of:

∣

∣Pr[AG4
wins]− Pr[AG3

wins]
∣

∣ ≤ AdvindG (A) + Advmac
G (A).

Game G5: We modify G4 to replace outputs of the internal cryptographic functions by truly

random, but consistent values (they are independent of the input, but the same input gives the

same output). We argue that the security loss is precisely the advantage of the adversaryA against

the pseudorandomness of function G, and the security respectively of PKE and of AE. Note that

the total number of queries to the functions are at most 2 · qG and one qAE and one qPKE per

honest instance (thus totalling at most qG + (2 · qsess) queries to the function G, qsess queries to

the function PKE, and qsess queries to the function AE).

∣

∣Pr[AG4
wins]− Pr[AG5

wins]
∣

∣ ≤ Advind−cca2
PKE (A) + Adv

prf
G (A) + AdvaeAE(A).
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Winning G5: At this point, the adversary plays a game in the presence of a single client C. The

goal of this adversary is to distinguish a random session key from a fresh session key. However, in

game G5, queries to G return truly random, consistent values. In this case, the adversary can do

no better than guessing. Thus, we have: Pr[AG5
wins] = 1

2 .

Security statement: This yields the following result:

AdvK.IndΠ (AG0
) ≤ nC · (

(qexec · qid)
2

2|Rid|
+

(qexec + qs · qOp)
2

2|R|
+ Advmac

G (A1) +

Adv
prf
G (A2) + AdvindG (A3) + AdvaeAE(A4) + Adv

prf
PKE(A5)).

This concludes the proof.

Impersonation of PrivAKA.

We present first the client-impersonation resistance proof, then the equivalent statement for

server impersonations.

Theorem 21. [C.Imp− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

our unitary function generalizing the internal cryptographic functions Fi and Π our PrivAKA

protocol described in Section 4.7.1. Consider a (t, qexec, qid, qs, qOp, qG , qAE, qPKE)-adversary

A against the C.Imp-security of the protocol Π, running in time t and creating at most qexec
party instance, with at most qid user identification per instance, corrupting at most qs servers,

making at most qOp OpAccess queries per operator per corrupted server, and making at most qG ,

qAE, qPKE queries to respectively the functions G, AE and PKE. Denote the advantage of this

adversary as Adv
C.Imp
Π (A), Then, there exist a (t′ ≈ O(t), q′ = qG + 2 · qexec + 5 · qs · qOp)-PRF-

adversary A1 against G, a (t′ = O(t), q′ = qexec + qAE)-AE-adversary A2 against AE, and a

(t′ = O(t), q′ = qexec · qid + qPKE)-IND-CCA2-adversary A3 against PKE such that:

Adv
C.Imp
Π (A) ≤ nC · (Adv

prf
G (A1) + AdvaeAE(A2) + Advind−cca2

PKE (A3) +

(qexec · qid)
2

2|Rid|
+

(qexec)
2

2|R|
+

qexec

2|Res|
+

1

2κ
+

qexec · qid
2|ID|

).

Proof. Our proof has the following hops:

Game G0: This game works as the C.Imp-game: WhenA stops, he wins if there exists an instance

Si that ends in an accepting state with session ID sid and partner ID pid such that: (a) pid is not

adversarially controlled (skpid has not been corrupted), (b) no other instance Ci exists for pid = Si
that ends in an accepting state, with session ID sid.

Game G1: We modify the game to allow the new Corrupt(P, type) query from the previous proof.

It holds that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Game G2: We modify G1 to only interact with a single client, as in the previous proof, giving a

security loss of:

Pr[AG2
wins] ≥

1

nC
Pr[AG1

wins] +
1

2
·
(

1−
1

nC

)

.

Game G3: We now restrict the adversary to using a single server As detailed in the key-indistinguishability

proof, the related security loss is given by:
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∣

∣Pr[AG3
wins]− Pr[AG2

wins]
∣

∣ ≤ Adv
prf
G (A).

Game G4: We modify G4 to replace outputs to calls to all the internal cryptographic functions by

truly random, but consistent values, and as before, we lose a term:

∣

∣Pr[AG3
wins]− Pr[AG4

wins]
∣

∣ ≤ Adv
prf
G (A) + AdvaeAE(A) + Advind−cca2

PKE (A).

Game G5: We modify G4 to ensure that the random values sampled by honest server instances

are always unique. As in the unlinkability proof, this yields a loss of:

∣

∣Pr[AG4
wins]− Pr[AG5

wins]
∣

∣ ≤ (qexec·qid)
2

2|Rid|
+ q2exec

2|R| .

Winning G5: At this point, the adversary plays a game with a single client and server. A server

instance Si only accepts AG5
, if the latter can generate a correct identification response ID and a

consistent authentication response Res for a fresh session sid. Assume that this happens against

accepting instance Si of the server, for some target session sid. Note that the values Res and ID

computed by Ci are purely random, but consistent. Thus, the adversary has three options for each

of these values: (a) forwarding a value already received from the honest client for the same input

values, of which skC is unknown; (b) guessing the key skC; or (c) guessing the value. The first

option yields no result, since it implies there exists a previous client instance with the same session

id sid as the client. The second option happens with a probability of 2−|skC|. The third option occurs

with a probability of 2−|Res|+2−|ID| per session, thus a total of qexec · (2
−|Res|+ qid ·2

−|ID|). Thus,

Pr[AG5
wins] = 2−|skC| + qexec · (2

−|Res| + qid · 2
−|ID|).

Security statement: This yields the following result:

Adv
C.Imp
Π (AG0

) ≤ nC · (Adv
prf
G (A1) + AdvaeAE(A2) + Advind−cca2

PKE (A3) +

(qexec · qid)
2

2|Rid|
+

(qexec)
2

2|R|
+

qexec

2|Res|
+

1

2κ
+

qexec · qid
2|ID|

).

Theorem 22. [S.Imp− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

our unitary function generalizing the internal cryptographic functions Fi and Π our PrivAKA

protocol described in Section 4.7.1. Consider a (t, qexec, qid, qs, qOp, qG , qAE, qPKE)-adversary

A against the S.Imp-security of the protocol Π, running in time t and creating at most qexec party

instance, with at most qid user identification per instance, corrupting at most qs servers, making at

most qOp OpAccess queries per operator per corrupted server, and making at most qG , qAE, qPKE
queries to respectively the functions G, AE and PKE. Denote the advantage of this adversary as

Adv
S.Imp
Π (A), Then, there exist a (t′ ≈ O(t), q′ = qG + 2 · qexec + 5 · qs · qOp)-PRF-adversary A1

against G, a (t′ = O(t), q′ = qexec + qAE)-AE-adversary A2 against AE and a (t′ = O(t), q′ =
qexec · qid + qPKE)-IND-CCA2-adversary A3 against PKE such that:

Adv
S.Imp
Π (A) ≤ nC ·

( qsess

2|MacS|
+

1

2κ
+ Adv

prf
G (A1) + AdvaeAE(A2) + Advind−cca2

PKE (A3)
)

.

Proof. Our proof has the following hops:

Game G0: This game works as the S.Imp-game. The adversary A wins if there exists an instance

Ci that ends in an accepting state with session ID sid and partner ID and pid s.t.: (a) pid = S, (b)
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no instance Sj exists such as Sj and Ci has the same session ID sid, (c) Ci and these partners are

not adversarially controlled.

Game G1: We add the new query Corrupt(P, type) as in the key-indistinguishability proof, such

that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Game G2: We modify G1 to only interact with a single client, as in the previous proofs, and lose:

Pr[AG2
wins] ≥

1

nC
Pr[AG1

wins] +
1

2
·
(

1−
1

nC

)

.

Game G3: Again, we restrict the adversary to only one server. This give us a security loss

∣

∣Pr[AG3
wins]− Pr[AG2

wins]
∣

∣ ≤ Adv
prf
G (A).

Game G4: We modify G3 to replace outputs to calls to G, AE, and PKE by truly random, but

consistent values and as before, it holds that:

∣

∣Pr[AG3
wins]− Pr[AG4

wins]
∣

∣ ≤ Adv
prf
G (A) + AdvaeAE(A) + Advind−cca2

PKE (A).

Winning G4: At this point, the adversary plays a game with a single client Ci, which only accepts

AG4
, if the authentication challenge is verified for some session sid. Assume that this happens

against accepting instance Ci of the target client, for some target session sid. Note that the MacS
value computed (for verification) by Ci is purely random, but consistent. Thus, the adversary has

three options: (a) forwarding a value already received from the honest server for the same input

values R; Sqn; skOp; skC, of which skC is unknown; (b) guessing the key skC; or (c) guessing the

response. The first option yields no result since there are no collision between the transcript of two

different servers since all the servers have a different session ID. The second option happens with

a probability of 2−|skC|. The third option occurs with a probability of 2−|MacS| per session, thus a

total of qexec · 2
−|MacS|. Thus,

Pr[AG4
wins] = 2−|skC| + qsess · 2

−|MacS|.

Security statement: This yields the following result:

Adv
S.Imp
Π (AG0

) ≤ nC ·
( qsess

2|MacS|
+

1

2κ
+ Adv

prf
G (A1) + AdvaeAE(A2) + Advind−cca2

PKE (A3)
)

.

Soundness and state-confidentiality of PrivAKA.

Theorem 23. [St.Conf − resistance.] Let G and G∗ our unitary functions generalizing the inter-

nal cryptographic functionsFi respectively keyed with the subscriber key and the operator key, and

Π, our PrivAKA protocol described in Section 4.7.1. Consider a (t, qexec, qid, qOp, qG , qG∗ , qAE, qPKE)-
adversary A against the St.Conf-security of the protocol Π, running in time t and executing qsess
sessions of the protocol Π, making at most qOp queries to any operator, and making qG , qG∗ ,

qAE, qPKE queries to respectively the functions G, G∗, AE and PKEresp. qG∗) queries to the func-

tion G (resp. G∗). Denote the advantage of this adversary as AdvSt.ConfΠ (A). Then there exist

a (t′ ≈ O(t), q′ = qG + 5 · qOp + 2 · qexec)-PRF-adversary A1 against G, a (t′ = O(t), q′ =
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qexec + qAE)-AE-adversary A2 against AE, a (t′ = O(t), q′ = qexec · qid + qPKE)-IND-CCA2-

adversary A3 against PKE, and (t′ ≈ O(t), q′ = qG∗)-PRF-adversary A4 against G∗ a such

that:

AdvSt.ConfΠ (A) ≤ nC · (
1

2|skC|
+

1

2|skOp|
+

1

2|Sqn|
+ Adv

prf
G (A1) + AdvaeAE(A2) +

Advind−cca2
PKE (A3)) + Adv

prf
G∗(A4).

Proof. Our proof has the following hops.

Game G0: This game works as the St.Conf-game stipulated in our security model. The goal of

the adversary AG0
is to recover at least one secret value, i.e the subscriber key skC, my operator

key skOp, or the subscriber sequence number SqnC for a fresh instance.

Game G1: We modify G0 to only allow interactions with one operator. The challenger related to

the game G1 only generates a single operator key, which is associated with the operator chosen for

the registered client. We proceed as follows: for any adversary AG0
winning the game G0 with a

non-negligible success probability ǫG0
, we propose to construct a generic adversary AG1

winning

the game G1 with a black-box access to the adversary AG0
, also with non-negligible probability.

Adversary AG1
begins by choosing a single operator Op. It generates nOp − 1 operator keys,

denoted rskOp∗ . Then, for every user registration request that AG0
sends to its challenger, AG1

responds as follows: if the request CreateCl(.) takes in input the operator Op, then it forwards

the same query to its own oracle. Else, if AG0
sends a registration request based on any operator

Op∗ 6= Op, AG1
simulates the registration, generating a subscriber key skC∗ and a sequence

number SqnC∗ , returning the latter value. Moreover, each new client registered with the operator

Op (respectively any Op∗) is associated with the related operator key skOp(respectively rskOp∗).

We distinguish two types of clients: the brothers of the target client (i.e. the clients which have

the same operator as the target client) and the others ones. For the latter C∗ registered byAG1
with

an operator Op∗ 6= Op, adversary AG2
associates Op∗ with one of its generated keys rskOp∗ .

In the rest of the simulation, whenever AG0
makes a query to an instance of some party C∗

(from any operator except Op), the adversary AG1
simulates the response using the values skC∗ ,

rskOp∗ , and the current value of SqnC∗ . For the other clients, the query is forwarded by AG1
to its

own challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that AG1
cannot query

Corrupt to its adversary (this is a condition of freshness). The simulation is thus perfect up to the

Test query.

In the Test query, AG0
chooses a fresh instance and sends it to AG1

(acting as a challenger).

Note that AG1
will be able to test whether this instance is fresh, as freshness is defined in terms of

AG0
’s queries. If AG0

queries an instance C∗
i for the Test query ,then AG1

aborts the simulation,

tests a random tuple about any fresh instance of the client C (creating one if necessary), winning

with probability 1
2|skC|

+ 1
2|skOp|

+ 1
2|SqnC|

. Else, if AG0
sends a tuple of a fresh instance of Ci,

AG1
forwards this choice to its challenger and receives the challenger’s output which contains the

result of this game.

Denote by E1 the event that adversaryAG0
tests an instance Ci (from the chosen operator Op),

while Ē1 denotes the event that AG0
chooses to test C∗

i .

It holds that:

Pr[AG1
wins] = Pr[AG1

wins | E1] · Pr[E1] + Pr[AG1
wins | Ē1] · Pr[Ē1]

≥
1

nOp

Pr[AG0
wins] +

(

1−
1

nOp

)

· (
1

2|skC|
+

1

2|skOp|
+

2

2|SqnC|
).

Note that adversary AG1
makes no query with respect to AG0

.
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Game G2: We modify G1 to only allow interactions with a single client (any future CreateCl (Op)

calls for a client would be answered with an error symbol ⊥). We recall that the two adversaries

AG1
andAG2

interact with clients from a single operator key, denoted Op, which is associated with

the operator key skOp. We proceed as follows: for any adversaryAG1
winning the game G1 with a

non-negligible success probability ǫG1
, we propose to construct a generic adversary AG2

winning

the game G2 with a black-box access to the adversary AG1
also with non-negligible probability.

Adversary AG2
begins by choosing a single client C. For every user registration request that AG1

sends to its challenger, AG2
responds as follows: for a new client C∗ 6= C, it generates skC∗ and

SqnC∗ , returning the latter value.

In the rest of the simulation, wheneverAG1
makes a query to an instance of some party C∗, the

adversary AG2
simulates the response using the oracle of the function G∗ and the values skC∗ and

the current value of SqnC∗ . Indeed, since the adversary can corrupt any operator key, he requires

the oracle of G∗ permitting to simulate all the queries of the brothers of the target client.

For the target client C, all queries are forwarded by AG2
to its challenger. Any corruption or

reveal queries are dealt with in a similar way. Note thatAG2
cannot query Corrupt to its adversary

(this is a condition of freshness). The simulation is thus perfect up to the Test query.

In the Test query, AG1
chooses a fresh instance and sends it to AG2

(acting as a challenger).

Note that AG2
will be able to test whether this instance is fresh, as freshness is defined in terms of

AG1
’s queries. IfAG1

queries Test with a client other than the target client C, thenAG2
aborts the

simulation, tests a random tuple as the previous reduction. Else, if AG1
queried a fresh instance

of C, AG2
forwards this choice to its challenger and receives the challenger’s which contains the

result of this game. It holds that:

Pr[AG2
wins] ≥

1

nC,Op

Pr[AG1
wins] +

1

2
·
(

1−
1

nC,Op

)

, with at most nC,Op clients per operator.

Note that adversary AG2
makes no extra query with respect to AG1

.

Game G3: We modify G2 to replace outputs of the internal cryptographic functions (G, PKE, and

AE) by truly random, but consistent values (they are independent of the input, but the same input

gives the same output). We argue that the security loss is precisely the advantage of the adversary

A against the pseudorandomness of functions G and G∗, and related security of the functions PKE

and AE.

∣

∣Pr[AG3
wins]− Pr[AG2

wins]
∣

∣ ≤ Adv
prf
G (A) + Adv

prf
G∗(A) + AdvaeAE(A) + Advind−cca2

PKE (A).

Winning Game G3: At this point, the adversary plays a game with an uncorruptible single

client Ci in a protocol including truly but consistent values. He wins if he can output a tuple

(Ci, sk
∗
C, sk

∗
Op, SqnC

∗, SqnOp,C
∗) such as at least one of these values corresponds to the real re-

lated secret value of the instance Ci. Thus, the adversary has only one choice to win this game:

guessing each value. So the probability that the adversary AG3
wins is as follows:

Pr[AG3
wins] =

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
.

Security statement: This yields the following result:

AdvSt.ConfΠ (AG0
) ≤ nC · (

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
+ Adv

prf
G (A1) + AdvaeAE(A2) +

Advind−cca2
PKE (A3)) + Adv

prf
G∗(A4).
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We provide the following theorem about the client-impersonation, denoted Sound-security, of

the fixed variant of the AKA protocol.

Theorem 24. [Sound− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n

be our unitary function generalizing the internal cryptographic functions Fi and Π our PrivAKA

protocol described in Section 4.7.1. Consider a (t, qexec, qOp, qG , qAE, qPKE)-adversaryA against

the Sound-security of the protocol Π, running in time t and executing qexec sessions of the protocol,

making at most qOp queries to any operator, and making qG , qAE, qPKE queries to respectively

the functions G, AE and PKE. Denote the advantage of this adversary as AdvSoundΠ (A). Then

there exist a (t′ ≈ O(t), q′ = qG + qsess)-MAC-adversary A1 against G, (t′ ≈ O(t), q′ =
qG + 2 · qexec + 5 · qOp)-PRF-adversary A2 against G, a (t′ = O(t), q′ = qG + qexec)-IND-CPA-

adversary adv3 against G, a (t′ = O(t), q′ = qexec + qAE)-AE-adversary adv4 against AE and a

(t′ = O(t), q′ = qexec + qPKE)-IND-CCA2-adversary A5 against PKE such that:

AdvSoundΠ (A) ≤ nC · (
qexec

2|MacS|
+

1

2κ
+ Advmac

G (A1) + Adv
prf
G (A2) + AdvindG (A3) +

AdvaeAE(A4) + Advind−cca2
PKE (A5)).

Proof. Game G0: This game works as the game Sound-game stipulated in our security model.

The goal of this adversaryAG0
is similar as the S.Imp-game but with a different adversary; indeed

in the S.Imp-game is a MiM adversary and in the Sound-game, we have a legitimate-but-malicious

adversary. The adversary is a malicious, but legitimate server.

Game G1: We consider the game G1 as the S.Imp-game (as previously detailed) but including

the specific query Corrupt(P, type), i.e with the presence of operator keys corruption. We have

used such a query in some previous security proofs. We proceed as follows: for any adversary

AG0
winning the game G0 with a non-negligible success probability ǫG0

, we propose to construct

a generic adversaryAG1
winning the game G1 with a black-box access to the adversaryAG0

, also

winning with non-negligible probability.

Both adversaries play these respective games. The following oracles are similar in the two

games: Send, CreateCl, Init, Execute, Reveal, and StReveal. So for each query related to these

oracles from the adversary AG0
, the adversary AG1

forwards these queries to its own challenger

and sends toAG0
the related answers. Now focus on the two last oracles which can be used by the

adversary AG0
: OpAccess and Corrupt.

Recall first that the OpAccess in the game G0 takes in input a client identifier and outputs,

for our protocol, an authentication vector consisting of the tuple AV = (R,Autn,MacC,CK, IK).
Simulating the answer of the oracle OpAccess(Ci), the AG1

uses the query Execute(S,Ci) (with

the server related to the legitimate-but-malicious adversary) and Reveal(C, i).

Now, focus on the simulation of the Corrupt answer. We recall that we have two possible

inputs: a client or an operator. If the Corrupt oracle takes in input a client, the adversary AG1

uses its own Corrupt oracle to obtain the related answer. If the input is an operator, AG1
needs

to forge the following values: the operator key skOp, and for each client of this operator the

tuple (UID, skUID, stOp,C). To simulate such an answer, AG1
uses its specific Corrupt(C) and

StReveal(C, i, 1) for each client C of this operator.

At this point, the adversary AG1
can simulate any query from the adversary AG0

. At the end

of the simulation, the adversaryAG1
replays the impersonation attempt fromAG0

. Thus, we have:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Winning game G1: This game follows the game G1 described in the reduction proof of the
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theorem S.Imp. Thus, it holds that:

AdvSoundΠ (AG0
) ≤ nC · (

qexec

2|MacS|
+

1

2κ
+ Advmac

G (A1) + Adv
prf
G (A2) + AdvindG (A3) +

AdvaeAE(A4) + Advind−cca2
PKE (A5)).

4.7.3 Narrow-Forward Privacy is Impossible

Our variant of UMTS-AKA preserves the structure of the original protocol, but also provably at-

tains wide-weak client unlinkability. In this section we show that this degree of client-unlinkability

is optimal with respect to the structure of UMTS-AKA. In particular, narrow-forward privacy is

impossible.

Our result covers similar ground as that by Paise and Vaudenay [93], as we address protocols

with mutual authentication. We extend the impossibility result to symmetric-key AKE protocols

which also use public-key primitives. We also explain why the original impossibility result in [93]

is imprecise, and presents some problems.

The result of [93]. Paise and Vaudenay showed an impossibility result for authentication protocols

– rather than AKE; the extension from one environment to the other is, however, easy. In the

terminology of our analysis, [93] proved that server-authentication essentially precludes narrow-

forward client-unlinkability. Their attack follows these steps: (1) the adversary A creates two

clients; (2) A runs an honest protocol session between one of them (chosen uniformly at random

depending on a secret bit b) and the server, but stops the last message from the server to the client;

(3) A corrupts both clients, learning their long-term state; (4) A distinguishes between the clients

by simulating the protocol with the intercepted message.

However, this attack makes a tacit assumption on the client’s behaviour, namely that if a session

is aborted, the state is not updated or that it is updated in a consistent way, depending on the

client’s internal state. Say that upon an abort, the client reverts to a random state; assumming that

the adversary cannot access the very short time-frame in which the reversion to random is done,

A only gets the random state in response. Simulating the protocol with the received message will

not match that state, thus reducing the adversary’s success probability to 1
2 .

Another way to bypass this result is to update the client state before the “last message” is sent

to the client; if such an update is done at every execution, the attack presented in [93] fails. This

is, however, a rather artificial twist: indeed, mutual authentication implies that the prover must

somehow identify the server’s state as “valid” before it reaches a state which precludes it from

verifying the server’s authentication.

Two new attacks. In the UMTS-AKA protocol, it is the server which first authenticates to the

client. The values used in authentication are the sequence number SqnOp,C and the nonce R. The

value SqnOp,C is ephemeral, being updated at every session; however, it is a long-term state, and

compatible with the client’s own state SqnC. In particular, corrupting a client yields SqnC allowing

the verifier to link the client with the corresponding SqnOp,C value.

For a better comprehension of our attacks and their impact, we define the following notations:

we divide a party’s state (for both clients and operators) into a static state stat.stP and an ephemeral

state eph.stP. Thus, an operator’s static state may contain operator-specific information, such as

the secret key for a PKE scheme, but it will also include state shared with clients, i.e. stat.stOp,C

for a client C. The same for the ephemeral state eph.stOp,C which for the UMTS-AKA protocol

consists of the sequence number SqnOp,C. We propose the following attack:

• The adversary A creates two clients C and C′ with the same operator Op and the same

location LAI.
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• A uses DrawCl on C,C′ and receives the handle VC, corresponding to either C (if the hidden

bit is b = 0), or C′ (otherwise).

• A runs an honest execution between the server S at LAI and the client VC until A receives

the message R,Autn = (SqnOp,C ⊕ AK)‖AMF‖MacS from the server. Denote Autn[1] :=
SqnOp,C ⊕ AK, Autn[2] = AMF, and Autn[3] := MacS.

• A corrupts C and learns SqnC, skC, and skOp.

• By using the values R, skC, and skOp, the adversary computes a value AKC and retrieves

Sqn∗ := Autn[1] ⊕ AKC. Note that if b = 0, then AKC = AK and Sqn∗ = SqnOp,C, while

if b = 1, then Sqn∗ 6= SqnOp,C′ with overwhelming probability.

• The adversary verifies MacS, on input (skC, skOp, Sqn
∗). If this verification succeeds, the

adversary outputs a guess d = 0 for the bit b; else, it outputs 1.

For the analysis note that with overwhelming probability MacS will not verify if it was com-

puted for C′, i.e. f1(skC′ , skOp,R,AMF, SqnOp,C′) 6= f1(skC, skOp,R,AMF, Sqn∗). The key vul-

nerability here is that, while SqnOp,C is never sent in clear, the masking authentication key AK

only depends on the client’s static state. We also use the fact that the validity of the sequence

number is confirmed by the value MacS.

While the latter factor, namely the validity of MacS certainly helps an attacker, our second

attack (a variation of the first one) does not use the MAC value at all. The attack is run exactly in

the same way, until we reach the final step. At that point:

• A compares the obtained value Sqn∗ with the recovered sequence number of C, namely

SqnC, verifying if |Sqn∗ − SqnOp,C| ≤ ∆. Note that in the actual attack presented above,

the client’s state SqnC should be exactly equal to the operator’s state with respect to that

client; however, our attack is even stronger in the sense that we do not need to control the

executions of the protocol in order to obtain exact equality.

Analysis and Impact. Since the original UMTS-AKA protocol is not even weak-client-unlinkable,

it is not surprising that that protocol is not narrow-forward unlinkable either. However, the same

attack works on our variant of the protocol and indeed, on any other extension or improvement

of the original procedure which retains the characteristic of exchanging a message of the type

f(eph.stOp,C, stat.stOp,C, X) in the presence of a function Match; or exchanging that same mes-

sage together with a message g(eph.stOp,C, stat.stOp,C, Y ), such that:

• f is reversible and takes as input eph.stOp,C, stat.stOp,C = stat.stC, and a set X of publicly-

known variables, giving arbitrary values in the set {0, 1}∗4;

• Match takes as input two ephemeral state values eph.stC′ and eph.stOp,C and it outputs a

boolean value: 1 if C = C′ and 0 otherwise5;

• g takes as input the state values eph.stOp,C, stat.stC and a set Y of public values, and which

has the property that, for randomly chosen x and stat.stC′ it holds that g(x, stat.stOp,C′ , Y ) 6=
g(eph.stOp,C, stat.stOp,C, Y )6.

4In our previous example, this is the string Autn1, which depends on eph.stOp,C = SqnOp,C, on stat.stOp,C =
(skC, skOp), and on the random value R which is public.

5In our case, the Match function returns 1 if and only if |SqnOp,C − SqnC′ | ≤ ∆.
6In our example, this function is f1, and the output value is MacS.
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4.7.4 Security of the internal cryptographic functions TUAK and MILENAGE

Updated TUAK algorithms security.

In order to prove the pseudorandomess, unforgeability, and indistinguishability of our updated

TUAK algorithms, we assume that the truncated keyed internal Keccak permutation is a good

pseudorandom function. We propose two generic constructions to model the updated TUAK algo-

rithms: a first one, denoted Gtuak, when the secret is based on the subscriber key sk and a second

one, denoted G∗
tuak when is only based on the operator key.

It is worth noting that the construction of the TUAK functions is reminiscent of the Merkle-

Damgård construction, where the output of the function f is an input of the next iteration of the

function f. This is in contradiction with the Sponge construction used in the hash function Keccak

given the internal permutation fKeccak.

We model the truncated keyed internal permutation of Keccak by the function f and f∗:

f(K,x‖y, i, j) = ⌊fKeccak(x‖K‖y)⌋i..j , f
∗(K∗, x∗‖y∗, i, j) = ⌊fKeccak(K

∗‖x∗‖y∗)⌋i..j ,

with x ∈ {0, 1}512, K,K∗ ∈ {0, 1}κ, y ∈ {0, 1}1088−κ, x∗ ∈ {0, 1}512+κ, y∗ ∈ {0, 1}1088 and

i, j ∈ {0, 1}t with log2(t − 1) < 1600 ≤ log2(t). We note that ∀(K,x, x∗, y, y∗, i, j) such that

x = K∗‖x∗ and y∗ = K‖y, we have f(K,x‖y, i, j) = f∗(K∗, x∗‖y∗, i, j). The input x (resp.

x∗) can be viewed as the chaining variable of the cascade construction of Gtuak given f (resp. f∗),

y (resp. y∗) is an auxiliary input of the function, and i and j define the size of the truncation. The

construction Gtuak acts as a generalization of the specific TUAK algorithms:

F1(skOp, skC,R, Sqn, IdS,AMF) = Gtuak(skC, inp1, 0, 127) = G∗
tuak(skOp, inp

∗
1, 0, 127),

F2(skOp, skC,R, Sqn, IdS,AMF) = Gtuak(skC, inp1, 256, 383) = G∗
tuak(skOp, inp

∗
1, 256, 383),

F3(skOp, skC,R, Sqn, IdS,AMF) = Gtuak(skC, inp1, 512, 639) = G∗
tuak(skOp, inp

∗
1, 512, 639),

F4(skOp, skC,R, Sqn, IdS,AMF) = Gtuak(skC, inp1, 768, 895) = G∗
tuak(skOp, inp

∗
1, 768, 895),

F5(skOp, skC,R, IdS) = Gtuak(skC, inp2, 0, 47) = G∗
tuak(skC, inp

∗
2, 0, 47),

with:

inp1 = skOp‖cst1‖cst3, inp2 = skOp‖cst1‖cst3, inp
∗
1 = cst1‖keys‖cst3, inp

∗
2 = cst1‖keys‖cst3,

cst1 = Inst‖AN‖0192‖(Inst′‖AN‖R‖AMF‖Sqn), cst3 = IdS‖Pad‖1‖0
192,

We define the cascade constructions Gtuak and G∗
tuak based on the function f and f∗ as follows:

Gtuak(K, val, i, j) = f(K, f(K, val1‖val3, 0, 256)‖val2‖val3, i, j),

G∗
tuak(K

∗, val∗, i, j) = f∗(f∗, val∗1‖val
∗
3, 0, 256), val

∗
2‖val

∗
3, i, j),

with Gtuak and G∗
tuak from {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t to {0, 1}n, val = (val1‖val2)‖val3 ∈

{0, 1}512×{0, 1}256×{0, 1}(832−κ), val∗ = (val∗1‖val
∗
2)‖val

∗
3 ∈ {0, 1}

256×{0, 1}256×{0, 1}(1088−κ)

two known values with n = j − i, d = 1600− κ, κ = |K| and log2(t− 1) < 1600 ≤ log2(t), K
a secret value and 0 ≤ i ≤ j ≤ 1600.

We express the required security properties of the generalization Gtuak (resp. G∗
tuak) assuming

the prf-security of the function f (resp. f∗). Although we cannot prove the latter property, we can

conjecture that the advantage of a prf-adversary would be of the form:

Adv
prf
f∗ (A) = Adv

prf
f (A) ≤ c1 ·

t/Tf

2|K|
+ c2 ·

q · t/Tf

21600−m
,
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for any adversary A running in time t and making at most q queries at its challenger. Here, m
is the output’s size of our function f and Tf is the time to do one f computation on the fixed

RAM model of computation and c1 and c2 are two constants depending only on this model. In

other words, we assume that the best attacks are either a exhaustive key search or a specific attack

on this construction. This attack uses the fact that the permutation is public and can be easily

inverted. Even if the protocol truncates the permutation, if the output values are large, and an

exhaustive search on the missing bits is performed, it is possible to invert the permutation and

recover the inputs. Since the secret keys is one of the inputs as well as some known values are also

inputs, it is then possible to determine which guesses of the exhaustive search are correct guess

or incorrect ones. Finally, if the known inputs are shorter than the truncation, false positives can

happen due to collisions and we have to filter the bad guesses. However, if the number of queries

is large enough, it is possible to filter these bad guesses and uniquely recover the keys.

Pseudorandomness and Unforgeability of the TUAK algorithms. We begin by reducing the prf-

security of Gtuak to the prf-security of the function f. This implies the mac-security of each TUAK

algorithm. Recall that our main assumption is that the function f is prf-secure if the Keccak per-

mutation is a good random permutation.

Theorem 25. [prf − security for G∗
tuak.] Let G∗

tuak : {0, 1}
κ × {0, 1}e × {0, 1}d−e × {0, 1}t ×

{0, 1}t → {0, 1}n and f∗ : {0, 1}κ ×{0, 1}e ×{0, 1}d ×{0, 1}t ×{0, 1}t → {0, 1}m be the two

functions specified above. Consider a (t, q)-adversary A against the prf-security of the function

G∗
tuak, running in time t and making at most q queries to its challenger. Denote the advantage

of this adversary as Adv
prf
G∗

tuak
(A). Then there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an

advantage Adv
prf
f∗ (A′) of winning against the pseudorandomness of f∗ such that:

Adv
prf
G∗

tuak
(A) = Adv

prf
f∗ (A

′),

Proof. We construct the adversary Af∗ using a prf-adversary AG∗ . The latter uses Af∗ as a

challenger for a prf-game Gprf(f∗) and can only communicate withAf∗ whereasAf∗ has access to

a challenger for f∗. To begin with, the challenger Cprff∗ chooses a bit b and a private skOp ∈ {0, 1}
κ.

If b = 0, it assigns f∗ to a random function and if b = 1, it assigns f∗ to the specific internal

function.

The adversaryAf∗ waits for queries fromAG∗ of the form (m, a, b), with m = m(1)‖m(2)‖m(3)

∈ {0, 1}d, and a, b ∈ {0, 1}t and responds as follows:

• It queries its challenger Cprff∗ for inputs (m(1)‖m(3), 0, 256) and receives the value Out1.

• Then, it computes Out2 = f∗(Out1,m
(2)‖m(3), a, b).

• It returns the value Out2.

We note that the two first bullets permits to generate G∗(skOp,m, a, b) = Out2. This step is

repeated up to a total of q queries from Ag∗ , with a and b fixed.

At some point, Ag∗ halts and outputs a guess d of the bit b. The prf-adversary Af∗ chooses its

guess b′ as b′ = d and forwards it to Cprff∗ , which verifies if b = b′.

We analyze this simulation. Recall that the challenger responded either with a random value

(if its internal bit b was set to 0) or with the output of the function f∗(skOp,m
(1)‖m(3), 0, 256) (if

its internal bit was set as 1).

Thus, the output Out2 matches either the output of a random function or the output of the

function G∗(sk,m, a, b). So the prf-adversary Af∗ simulates perfectly a prf-challenger of G.
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Thus, we have:

Adv
prf
f∗ (Af∗) =

∣

∣Pr[Af∗ → 1 | b = 1]− Pr[Af∗ → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AG∗ → 1 | b = 1]− Pr[AG∗ → 1 | b = 0]
∣

∣

=
∣

∣Adv
prf
G∗(AG∗)

∣

∣.

Theorem 26. [prf − security for Gtuak.] Let Gtuak : {0, 1}
κ × {0, 1}e × {0, 1}d−e × {0, 1}t ×

{0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}e × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}m be the two

functions specified above. Consider a (t, q)-adversary A against the prf-security of the function

G, running in time t and making at most q queries to its challenger. Denote the advantage of

this adversary as Adv
prf
Gtuak

(A). Then there exists a (t′ ≈ 2 · t, q′ = 2 · q)-adversary A’ with an

advantage Adv
prf
f (A′) of winning against the pseudorandomness of f such that:

Adv
prf
Gtuak

(A) = Adv
prf
f (A′),

Proof. We construct the adversaryAf using a prf-adversaryA.
G The latter usesAf as a challenger

for a prf-game Gprf(f) and can only communicate with Af whereas Af has access to a challenger

for f. To begin with, the challenger Cprff chooses a bit b and a private sk ∈ {0, 1}κ. If b = 0, it

assigns f to a random function and if b = 1, it assigns f to the specific internal function.

The adversaryAf waits for queries fromAG of the form (m, a, b), with m = m(1)‖m(2)‖m(3) ∈
{0, 1}d, and a, b ∈ {0, 1}t and responds as follows:

• It queries its challenger Cprff for inputs (m(1)‖m(3), 0, 256) and receives the value Out1.

• Then, it queries Cprff for inputs (Out1‖m
(2)‖m(3), a, b) and receives the value Out2.

• It returns the value Out2.

We note that the two first bullets permits to generate G(sk,m, a, b) computing

f(sk, f(sk,m(1)‖m(3), 0, 256)‖m(2)‖m(3), a, b). This step is repeated up to a total of q queries

from Ag, with a and b fixed.

At some point, Ag halts and outputs a guess d of the bit b. The prf-adversary Af chooses its

guess b′ as b′ = d and forwards it to Cprff , which verifies if b = b′.
We analyze this simulation. Recall that the challenger responded either with a random value

(if its internal bit b was set to 0) or with the output of the function f(sk,m
(1)‖m(3), 0, 256) (if its

internal bit was set as 1).

Thus, the output Out2 matches either the output of a random function or the output of the

function G(sk,m, a, b). So the prf-adversary Af simulates perfectly a prf-challenger of G. Thus,

we have:

Adv
prf
f (Af) =

∣

∣Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AG → 1 | b = 1]− Pr[AG → 1 | b = 0]
∣

∣

=
∣

∣Adv
prf
G (A′)

∣

∣.
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We use the generic result specified in 1 to reduce the mac-secure to the prf-secure of the

function G.

Theorem 27. [Mac− security for Gtuak.] Let Gtuak : {0, 1}
κ×{0, 1}e×{0, 1}d−e×{0, 1}t×

{0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}e × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}m be the two

functions specified above. Consider a (t, q)-adversary A against the Mac-security of the function

Gtuak, running in time t and making at most q queries to its challenger. Denote the advantage of

this adversary as Advmac
Gtuak

(A). Then there exists a (t′ ≈ 2 · (t+O(n+ d)), q′ = 2 · q)-adversary

A’ with an advantage Adv
prf
f (A′) of winning against the pseudorandomness of f such that:

Advmac
Gtuak

(A) ≤ Adv
prf
f (A′) +

1

2n
.

Indistinguishability of the TUAK algorithms. We begin by reducing the ind-security of Gtuak to

the prf-security of the function f. This implies the ind-security of each TUAK algorithm. Recall

that our main assumption is that the function f is prf-secure if the Keccak permutation is a good

random permutation.

Theorem 28. [ind− security for Gtuak.] Let Gtuak : {0, 1}
κ×{0, 1}e×{0, 1}d−e×{0, 1}t×

{0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}m be the two functions

specified in above. Consider a (t, q)-adversary A against the ind-security of the function G,

running in time t and making at most q queries to its challenger. Denote the advantage of this

adversary as AdvindGtuak
(A). Then there exists a (t′ ≈ 2 · t, q′ = 2 · q)-adversary A’ with an

advantage Adv
prf
f (A′) of winning against the pseudorandomness of f such that:

AdvindGtuak
(A) = Adv

prf
f (A′).

Proof. To prove the ind-security of G, we reduce this security to the prf-security of G which is

defined in the proof of the theorem 27. We show that a prf-adversary A of G can simulate the

ind-challenger C indG . A such prf-adversary behaves as follows. At first, the challenger CprfG chooses

a private key K and one random bit b ∈ {0, 1}. If b = 0, he assigns f to a random function

and if b = 1, he assigns f to the specific function G. For each query (M{i}, a, b) with a fixed

(a, b) from the ind-adversary A’ to the prf-adversary A the latter forwards each one to CprfG . The

answer f(K,M{i}, a, b) is sent to A which forwards it to A’. Then, A’ sends a specific query

containing two values (M0,M1) to AṪhe latter chooses randomly a bit d and forwards (Md, a, b)
to the prf-challenger. As usual, this challenger sends f(K,Md, a, b) to A which forwards it to A’.

The goal of the ind-adversary is to find the bit d chosen by the A. To do so, it can ask again

some queries (M{i}, a, b) as previously. Finally, it sends its guessing d′ to A. Upon receiving this

guessing, it chooses its guessing b′ of b as follows: if d = d′, it chooses b′ = 1, else b′ = 0.

Adv
prf
G (A) =

∣

∣Pr[b = b′|f
$
← G(K, ., ., .),K

$
← {0, 1}κ]− Pr[b = b′|f

$
← R]

∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b′ = 1|b = 1]− Pr[b′ = 0|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ 6= d|b = 0]
∣

∣

=
∣

∣AdvindG (A′) + 1
2 −

1
2

∣

∣ =
∣

∣AdvindG (A′)
∣

∣

In the last equality, Pr[d′ = d|b = 1] is the probability that the ind-adversary correctly guess the

bit d which is AdvindG (A′) + 1/2 and Pr[d′ 6= d|b = 0] which is equal to 1/2 since when b = 0, G
is a random function, that is its output is chosen independently from its inputs. Consequently, it is

not related to its inputs and the adversary cannot guess correctly the bit d.
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The security of the Updated MILENAGE algorithms.

In order to prove the unforgeability and indistinguishability properties of the MILENAGE al-

gorithms, we assume that the AES permutation is a good pseudorandom function.

We model the AES algorithm by the function f, as follows:

f(K,x, y) = AESK(x⊕ y),

with x, y ∈ {0, 1}128, K ∈ {0, 1}κ.

Contrary to the TUAK algorithms, the MILENAGE algorithms do not behave as the same way

but as two different ways. Let the construction Gmil1, the generalization of the functions F1, F∗
1 ,

F2, F3, F4 and Gmil2 the generalization of the functions F5 and F∗
5 as follows:

Gmil1(skC, inp1, 0, 127) = F1(skOp, skC,R, Sqn, IdS,AMF),

Gmil1(skC, inp2, 0, 127) = F∗
1 (skOp, skC,R, Sqn, IdS,AMF),

Gmil1(skC, inp3, 0, 47) = F2(skOp, skC,R, Sqn, IdS,AMF),

Gmil1(skC, inp4, 0, 127) = F3(skOp, skC,R, Sqn, IdS,AMF),

Gmil1(skC, inp5, 0, 127) = F4(skOp, skC,R, Sqn, IdS,AMF),

Gmil2(skC, inp6, 0, 47) = F5(skOp, skC,R, IdS),

Gmil2(skC, inp6, 64, 111) = F∗
5 (skOp, skC,R, IdS),

with: ∀i ∈ {1, ..., 5}, inpi = skOp‖R‖(Sqn‖AMF)‖IdS‖ci‖ri,, inp6 = skOp‖R‖IdS‖c6‖r6,
Both constructions are constructed as follows:

Gmil1(K, val(1), a, b) = ⌊TopC ⊕ f(K, val4, f(K,TopC , val2)⊕ Rotval
5
(TopC ⊕ (val3‖val3)))⌋a..b,

Gmil2(K, val(2), a, b) = ⌊TopC ⊕ f(K, val4,Rotval5(TopC ⊕ f(K,TopC , val2)))⌋a..b,

with Gmil1 : {0, 1}
κ×{0, 1}d1×{0, 1}t×{0, 1}t → {0, 1}n, Gmil2 : {0, 1}

κ×{0, 1}d2×{0, 1}t×
{0, 1}t → {0, 1}n, and val(1) = val1‖val2‖val3‖val4‖val5, val(2) = val1‖val2‖val4‖val5,

val1, val2, val4 ∈ {0, 1}
128,val3 ∈ {0, 1}

64, val5 ∈ {0, 1}
7 and TopC = val1 ⊕ f(K, val1, 0).

We express the security properties of the generalizations Gmil1 and Gmil2 assuming the prf-

security of the function f. While we cannot prove the latter property, we can conjecture that the

advantage of a prf-adversary would be of the form:

Adv
prf
f (A) ≤ c1 ·

t/Tf

2128
+ c2 ·

q2

2128
,

for any adversary A running in time t and making at most q queries at its challenger. Here, m is

the output’s size of our function f and Tf is the time to do one f computation on the fixed RAM

model of computation and c1 and c2 are two constants depending only on this model. In other

words, we assume that the best attacks are either a exhaustive key search or a linear cryptanalysis.

Pseudorandomness and Unforgeability of the MILENAGE algorithms. We begin by reducing

the prf-security of Gmil1 and Gmil2 to the prf-security of the function f. This implies the Mac-

security of each MILENAGE algorithm.

Theorem 29. [prf − security for Gmil1 and Gmil2.] Let Gmil1, Gmil2 : {0, 1}κ × {0, 1}d ×
{0, 1}t × {0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 → {0, 1}128 be the two

functions specified above. Consider a (t, q)-adversary A against the prf-security of the function

Gmil1 (respectively Gmil2), running in time t and making at most q queries to its challenger. De-

note the advantage of this adversary as Adv
prf
Gmil1

(A) (respectively Adv
prf
Gmil2

(A)). Then there exists

a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ with an advantage Adv
prf
f (A′) of winning against the

pseudorandomness of f such that:

Adv
prf
Gmil1

(A) = Adv
prf
Gmil2

(A) = Adv
prf
f (A′).
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Proof. We construct the adversary Af using a prf-adversary AG1
(respectively AG2

). The latter

uses Af as a challenger for a prf-game Gprf(f) and can only communicate with Af whereas Af

has access to a challenger for f. To begin with, the challenger Cprff chooses a bit b and a private

sk ∈ {0, 1}κ. If b = 0, it assigns f to a random function and if b = 1, it assigns f to the specific

internal function.

The adversaryAf waits for queries fromAG of the form (m, a, b), with m = m(1)‖m(2)‖m(3)‖
m(4)‖m(5) ∈ {0, 1}d, and a, b ∈ {0, 1}t and responds as follows:

• It queries its challenger Cprff for inputs (m(1), 0128) and receives the value Out1.

• Then, it computes TopC = m(1) ⊕ Out1 and it queries Cprff for inputs (Out1,m
(2)) and

receives the value Out2.

• It queries (m(4),Out2 ⊕ rot(Out1 ⊕ (m(3)‖m(3)),m(5))) (respectively (m(4), rot(Out1 ⊕
Out2,m

(5)))) and receives the value Out3.

• It returns the value ⌊Out1 ⊕ Out3⌋a,b.

This step is repeated up to a total of q queries fromAG1
(respectivelyAG2

), with a and b fixed.

At some point, AG1
(respectively AG2

) halts and outputs a guess d of the bit b. The prf-

adversary Af chooses its guess b′ as b′ = d and forwards it to Cprff , which verifies if b = b′.
We analyze this simulation. Recall that the challenger responded either with a random value

(if its internal bit b was set to 0) or with the output of the function f(sk,., ., .) (if its internal bit was

set as 1).

Thus, the output Out3 matches either the output of the output of the function G1(sk,m, a, b)
(respectively G2(sk,m, a, b)) or a random function (indeed, the combination of two random func-

tions by a boolean addition gives a random function). So the prf-adversary Af simulates perfectly

a prf-challenger of G1 (respectively G2). Thus, we have:

Adv
prf
f (Af) =

∣

∣Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣

∣

=
∣

∣Pr[b = b′|b = 1]− Pr[b = b′|b = 0]
∣

∣

=
∣

∣Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣

∣

=
∣

∣Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]
∣

∣

=
∣

∣Pr[AG1
→ 1 | b = 1]− Pr[AG1

→ 1 | b = 0]
∣

∣

= Adv
prf
G1
(A′).

(similar computation for G2).

We use the generic result specified in 1 to reduce the mac-secure to the prf-secure of the

function G1 (resp. G2).

Theorem 30. [Mac− security for Gmil1 and Gmil2.] Let Gmil1, Gmil2 : {0, 1}κ × {0, 1}d ×
{0, 1}t × {0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 → {0, 1}128 be the two

functions specified above. Consider a (t, q)-adversary A against the Mac-security of the function

Gmil1 (respectively Gmil2), running in time t and making at most q queries to its challenger. Denote

the advantage of this adversary as Advmac
Gmil1

(A) (respectively Advmac
Gmil2

(A)). Then there exists a

(t′ ≈ 3 · (t+O(n+d)), q′ = 3 ·q)-adversaryA′ with an advantage Adv
prf
f (A′) of winning against

the pseudorandomness of f such that:

Advmac
Gmil1

(A) = Advmac
Gmil2

(A) ≤ Adv
prf
f (A′) +

1

2n
.
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Indistinguishability of the MILENAGE algorithms. We proceed to reduce the ind-security of

Gmil1 and Gmil2 to the prf-security of the function f. This implies the prf-security of each

MILENAGE algorithm.

Theorem 31. [ind− security of Gmil1 and Gmil2.] Let Gmil1, Gmil2 : {0, 1}
κ×{0, 1}d×{0, 1}t×

{0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 → {0, 1}128 be the two functions spec-

ified above. Consider a (t, q)-adversary A against the ind-security of the function Gmil1 (resp.

Gmil2), running in time t and making at most q queries to its challenger. Denote the advantage

of this adversary as AdvindGmil1
(A) (resp. AdvindGmil2

(A)). Then there exists a (t′ ≈ 3 · t, q′ = 3 · q)-

adversary A’ with an advantage Adv
prf
f (A′) of winning against the pseudorandomness of f such

that:

AdvindGmil1
(A) = AdvindGmil2

(A) = Adv
prf
f (A′).

Proof. To prove the ind-security of G1 (resp. G2, we reduce this security to the prf-security of G1

(resp. G2) and then to the prf-security of the function f using the theorem 29 . The first reduction

follows the exact lines of the proof of the prf-security of the TUAK algorithms and we obtain:

AdvindG1
(A) = AdvindG2

(A) = Adv
prf
f (A′).

4.7.5 Comparison Between Several UMTS-AKA Variants

The Table 4.9 compares our proposal to the UMTS-AKA protocol and to the two more promising

variants we have in this chapter.

Defeating: Security:

Attack n◦1 Attack n◦2 Attack n◦3 Prop. n◦1 Prop. n◦2 Prop. n◦3 Prop. n◦4 Prop. n◦5

3G AKA x [104] x [31] x x x x ? ?

Arapinis X [31] X [31] x X x x ? X
∗ [31] 7

Van Den Broek X [104] x X X x x ? ?

Our variant X X X X X x X X

Attack n◦1: IMSI Catcher § 4.3. Prop. n◦1: Confidentiality of the previous location §3.2.

Attack n◦2: Linkability of failure messages § 4.3. Prop. n◦2: ww-unlink §4.5.

Attack n◦3 : Our traceability attack § 4.3. Prop. n◦3: nf-unlink §4.5.

Prop. n◦4: State-confidentiality & soundness §3.2. Prop. n◦5: Key-indistinguishability & Client- and Server-

impersonation §3.2.

Figure 4.9: Comparison between several UMTS-AKA variants. For attacks, a X denotes the

protocol resists the attack, while x denotes a vulnerability; for properties, a x denotes the property

is not achieved, while a X indicates security with respect to that property.

4.7.6 Practical Considerations

In this section, we discuss some of our design choices for the PrivAKA protocol. As opposed to

the proposal of van den Broek et al. [104], we opted to continue using (TMSI, LAI) tuples for the

identification phase of the protocol. This infrastructure is maintained strictly by servers, with no

operator contribution; thus it is efficient and inexpensive. Moreover, TMSI values and their corre-

spondence to the client’s IMSI is easy to find. In our proposal, we bypass IMSI catchers attacks by

never sending IMSIs in clear, and we add a symmetric authentication step in the encryption, thus

precluding the client-unlinkability attack we found against the UMTS-AKA variant of Arapinis et

al. [31]. For the encryption, we use an IND-CCA public-key encryption scheme and we require
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a minimum PKI, only for operators. A client only stores the public key (and certificate) of the

operator it subscribes to, thus minimizing key-management problems. In the TMSI reallocation

step, we add an implicit authentication step, preventing Denial-of-Service-based linkability. We

also add a freshness index, which prevents replays of challenges based on old sequence numbers.

We do specify, however, that our variant can only guarantee client-unlinkability if the size of

the TMSI is equal to the length of the output of the PKE scheme. This is a non-trivial requirement,

since servers are expected to keep track of all the TMSIs they issue; while using a shorter TMSI

does not leak anything about the IMSI value, it does allow mass-surveillance organisms to track

users down by distinguishing between the length of the encrypted IMSI as opposed to the TMSI

length. On the positive side, servers may store TMSI values for a shorter while, since as soon as

the user leaves the area, the TMSI is no longer useful.

Moreover, we recommend using a field of 32 bits for the index values idxC, idxOp,C. In fact,

every time a session is aborted, the index(indices) is (are) increased. The only way to replay a

challenge is to previously drop 232 successive authentication challenges, which is in our opinion

hard to do. We require that the size of all the variables (except the network variables OpId and

IdS) is: 96 bits for a 64-bit security bound, 128 bits for a 96-bit security bound and 154 bits for a

128-bit security bound.

We make the assumption that clients are aware of their current LAI, and thus avoid client-

tracking by means of an itinerary. This is not a very strong assumption, since mobile devices are

often equipped to detect their LAI. Finally, we bypass distinguishing attacks that exploit the re-

synchronization phase by ensuring that sequence numbers cannot be desynchronized (and replays

of challenges using old sequence numbers are prevented). Keeping in mind the practical require-

ment of minimizing the communication between servers and operators, our variant ensures that

operators are contacted only in case the protocol is abnormally run or an adversary is detected.

We also simplify the rather complex UMTS-AKA structure, including only three communication

phases rather than five.

Finally, we require to restrict the batch of authentication vectors at only one vector if the last

message (sent from the server to update the operator sequence number) can be dropped.

4.7.7 Additional Practical Considerations: Two Proposed Patents

One of the goal of this thesis is to provide practical solution for a possible future standardization

and implementation. Thus, we have deposed two patents, a first one focus on the user identifi-

cation raking into consideration lawful interceptions and a second one focusing on the impact of

subscriber key leakage.

Lawful Interception Consideration.

In our PrivAKA variant, we consider some practical requirements, e.g. the impossibility of

sharing secret values between operators, the limited and restricted communications between the

USIM and the mobile equipment, and inside the core network. Despite this, there exist a lawful

requirement we have to take care for standardizing and implementing a protocol. This requirement

is the lawful interception.

All telecommunication operators have to deploy all resources necessary for monitoring com-

munication on public channel, notably the radio link included in the access network. A lawful

interception can be put into place to collect two main kinds of information. The first one con-

cerns the content of the communications, i.e. conversations between some persons, mail contents,

exchanged files etc. The second one concerns identifying information such as the specific call

number or the received or unreceived calls. This administrative monitoring can be requested by

lawful interception for reasons such as the national defence, for the national interest protection, or
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the fight against terrorism. The content of the lawful interception warrants depend on the national

legacy. The data is associated with a specific call number or identifier, not a physical person. That

is the main reason the local operator which manages the local area must know such data for all the

mobile users located in this area. The international mobile subscriber identity (IMSI) is one of the

pieces of information which can be asked. Thus, the local operator has to (more or less depending

the local regulation) know the identifier of all clients physically located in its managed area, i.e.

clients managed by the local operator and clients in the roaming situation.

An operator can obtain this value either from the client or its operator. In order to start a com-

munication with the local network, a client identification is required. This identification includes

either the permanent identifier or a temporary one as detailed in Section 2.3 and is executed on

a public channel notably in the access network. This procedure is really problematic for the user

identity confidentiality as explained in section 4.3. The other option to obtain this information

is from the client of the operator. But in this case, the home network could be vulnerable to an

anonymization of the roaming client since their related operator can just send a fake identifier.

Legally, the USIM cards and mobile equipments are implemented such that the client can anon-

imyze itself only using a temporary value which has been previously exchanged with the local

server.

In Patent nr 1659583 8, we propose a new method for the user identification procedure respect-

ing user identity confidentiality and lawful interception. In this new procedure, the IMSI is never

sent in cleartext from the client; instead only an encrypted version of this value is sent. The IMSI

value in cleartext is sent from the operator. The encrypted identifier is sent from the user with

a specific MAC value permitting to guarantee to the local server, the similarity of the identifier

encrypted by the client and the one received, without decrypting the encrypted identifier. That

allows the local server to obtain the real user permanent identity without jeopardizing user identity

confidentiality.

Impact of secret subscriber key leakage.

The security of the AKA protocols is based on the confidentiality on the long-term keys skC
and skOp as previously detailed. It would be very difficult to achieve strong security against an

adversary who knows all of the secret keys and algorithms that a subscriber is using. But we can

make sure that the attacks would be much harder in practice. As denoted in the technical research

TR 33.899 [23], one requirement on the AKA protocols, is that an adversary, even if he knows the

subscriber secret key skC, would have to carry out a long-term active Man-in-the-Middle attack in

order to eavesdrop on that subscriber. We note that the operator keys are not easy to recover by

a client in real-world implementations, as they are never stored on the USIM card. Instead, what

is stored in the USIM card is an intermediate value, obtained after either a first Keccak truncated

permutation or a call of AES algorithm; thus the operator key is easy to use, but hard to recover.

The subscriber key is considered to be confidential. But if this security assumption fails, the

loss of security is catastrophic. The subscriber key might leak to an attacker for a number of

reasons, e.g.:

a. Hacking at the factory (USIM framers) where skC is generated and embedded.

b. Hacking of the communication channel over which skC is transported from USIM framers

or subscription manager to mobile operator.

c. Hacking the mobile operator.

8This patent was submitted to the Institut national de la propriété industrielle (INPI) on October 4th, 2016. The

request number is 201109.
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d. An insider attack at a mobile operator or USIM framers.

e. A local attack (e.g. side channel) on the USIM card in the supply chain.

f. A local attack (e.g. side channel) on the USIM card when it is temporarily “borrowed” from

the customer.

Operators and framers must prevent these possible leaks from happening but it is really hard

to do not consider them. A powerful adversary as described before which wants to eavesdrop the

communications of a specific user. Moreover, the adversary knows which authentication algorithm

the related client uses in this USIM card may yet obtain them. Moreover, leakage of additional

secret constraints and proprietary algorithms are also occur.

In Patent nr 1659585 9 we propose a new method reducing the impact of secret key leakage

respecting the security and privacy requirements. The main idea of this method is to avoid client

impersonation on the confidentiality of the current value of the sequence number. Indeed, with

although the adversary can also obtain the initial value of the client state, he cannot recover the

current value since the number of executed session is unpredictable.

4.7.8 Evaluation & Modular Countermeasures

In proposing our variant of UMTS-AKA, we explicitly or implicitly addressed several attacks. We

discuss these below, referring the reader to Figure 4.10 for a better overview. Note that PrivAKA

is an ideal protocol variant, i.e. which includes all the required modifications to guarantee all the

security and privacy properties. Most of these modifications are independent, i.e. we can propose

several fixed variants of the UMTS-AKA protocol providing some (not all) properties which imply

less modifications. In this section, we detail the modifications of the UMTS-AKA protocol require

to guarantee each property independently.

Strong Server-Impersonation: the UMTS-AKA protocol guarantees only a weak version of the

server-impersonation property, in which the adversaries cannot corrupt any server. We add

of a (public) server-specific value in all the internal cryptographic algorithms. Such a mod-

ification prevents attacks in which an adversary replays authentication vectors from one

network to another. The added value implies an update of all the internal cryptographic

algorithms; however the update is nearly for free since we respect the same construction

inside both instantiations (MILENAGE and TUAK). Moreover, we propose to include the

sequence number in the inputs of the algorithms (except the functionF5 since the anonymity

keys cannot depend to the sequence number). Intuitively that allows the protocol to offer a

better general security, since collision of the random value R in two sessions does not imply

a collision in the value Res in both sessions.

Server Corruptions: the original UMTS-AKA protocol only offers a weak degree of key-indistin-

guishability and impersonation security, in the absence of server corruptions. Since servers

are trusted to run the authenticated key exchange step, corrupting a server compromises any

security of a channel this server establishes; however, in the UMTS-AKA routine, this flaw

is exacerbated, since the corruption results can be re-used later in non-vulnerable areas. This

is an active, and rather complex attack, but it is highly parallelizable and has a great security

impact. To mitigate this risk, we added a server-specific, unique, publicly-known identifier

IdS, which is now given as input to all the cryptographic functions.

9this patent was submitted to the Institut national de la propriété industrielle (INPI) on October 4th, 2016. The

request number is 201169.
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Added countermeasures Cost Attacks it Prevents Attack Impact

Client sends encrypted IMSI

- Needs IND-CCA PKE

encryption

- Simple PKI

(only operators)

Client Confidentiality:

(IMSI Catchers)

Trace many users

- Parallelizable

- Passive/Active

Large TMSI size
Client unlinkability:

Distinguish TMSI/IMSI msg.

Trace 1 user:

- Non-parallelizable

- Active only

Authenticate TMSI reallocation

(see also: index)
New reallocation alg.

Client unlinkability:

(Denial-of-Service)

Trace many users

- Parallelizable

- Active only

Client unlinkability:

Distinguish TMSI/IMSI

Trace 1 user

- Non-parallelizable

- Active only

Index idxC, idxS New 1-bit state variable

Client unlinkability:

Prompt resynch, distinguish

Trace 1 user

- Non-parallelizable

- Active only

S.Imp-resistance:

Challege is un-replayable

Impersonate servers

- Parallelizable

- Active only

Introducing IdS

- New server identifier

- Changed crypto algs.

S.Imp-resistance

k.ind-security

Sound-security

(Server Corruptions)

Break sec. channel

- Parallelizable

- Needs corruptions

- Active only

Use only current LAI
- Clients must know LAI

- Clients store IdS

Location privacy:

(Track past LAI)

Trace 1 user per LAI

- Non-Parallelizable

- Passive

Figure 4.10: Assessment of our UMTS-AKA variant: cost and effect of countermeasures.

Client Confidentiality: the confidentiality of the user identity is the most problematic property

that we need to assure in the communication between a mobile and its home network. In

the UMTS-AKA protocol, some weaknesses (as described in the section 4.3) restrain the

guarantee of a such confidentiality. Thus, a new user identification procedure is required.

In the PrivAKA protocol, we never send the permanent identity IMSI in cleartext. Instead

we send a public-key encryption of the permanent identity as detailed in section 4.7.1. Such

a modification requires a new user identification request including a random value Rid and

a ”cheap” PKI between the operator and the client. Indeed, the latter only needs one long-

term couple of asymmetric keys pre-exchanged between the operator (more precisely one

for each HLR) and all of its subscribers. Thus this minimizes key-management problems

and we recommend to use only one secret/public key pair for all the clients owning the

same USIM card generation instead one couple for all the clients managed by the same

HLR. Our new user identification procedure notably implies a new problem: since the user

answers with the encryption of its permanent identifier, the server cannot recover the IMSI

of this client. The Mobile Country Code MCC and Mobile Network Code MNC values are
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included in the permanent identity. These values notably enable the server to find the HLR

of the client. Without these values, the VLR cannot request authentication vectors since it

cannot guess which HLR is the one of the client. In the PrivAKA protocol, the IMSI is

sent encrypted, and the VLR has to require the HLR of the client to obtain the IMSI value.

Thus, the client has to sent the MCC and MNC values with the encrypted IMSI value in

the user identification answer. That implies the PrivAKA protocol cannot guarantee the

confidentiality of the user’s operator. But this confidentiality is not required by the 3GPP

standards and does not question. We still remain if such an additional is enough to solve this

deficiency.

Client Unlinkability: since the UMTS-AKA protocol is vulnerable to attacks such as IMSI catch-

ers or client-tracking by means of error messages, the protocol cannot guarantee the user

untraceability. Firstly, we fix the user identification phase. The user location and identity

confidentiality (and their related modifications) are required to guarantee the untraceability.

Moreover, a flag flagIdtemp
is required to obtain an unique user identification answer. Indeed,

this flag manages the choice to use either an encryption of the permanent identity or the

temporary identifier. We remove the permanent identifier request implying the abort of a

session if the server cannot identify the user with the first answer. Then, we require that the

size of temporary identifiers and the encrypted permanent identifier are identical to make in-

distinguishable the user identification answer. We also include the TMSI-reallocation in the

challenge-response. Indeed, we require to use the new identification procedure described in

Section 4.7.1. The new challenge-response described in Section 4.7.1, is also required. This

new procedure needs a new management of the sequence number and a new abort procedure

and implies the following modifications and costs:

• An index value which removes the replay attacks.

• A new check of the sequence number: indeed, the client accepts only one sequence

number instead ∆ ones.

• A new management of the sequence number update: the operator sequence number is

updated after that the protocol is accepted instead of during the authentication vectors

generation. That is really important since we remove the resynchronization proce-

dure. Moreover we require an improvement of the size of the sequence number. This

requirement permits to also improve the different others security properties.

State-confidentiality & Soundness: we recall that the state-confidentiality and soundness prop-

erties are guaranteed (as in the UMTS-AKA protocol) without modifications. As previously

detailed, in the classic UMTS-AKA protocol the soundness property is guaranteed since

the servers do not exchange unused authentication vectors. In our variant, such an assump-

tion is not required since we add to key-indistinguishability and impersonation security by

adding a server-specific value in all the cryptographic functions. We also remove the local

TMSI unknown procedure. This latter modification is required to guarantee user location

confidentiality.

Denial of Service: apart from being a means of breaking client-unlinkability, DoS attacks can

also facilitate IMSI catchers, and add to the complexity of the AKA procedure. One way of

causing a DoS in the original protocol is to send a random string as a replacement for the

TMSI reallocation message. The client will parse this as a different TMSI than the intended

one, and thus the server will need to request the user’s IMSI in clear. We mitigate DoS

attacks by using authenticated encryption for the TMSI reallocation and ensuring that no

desynchronizations can occur.
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Itinerary tracking: one disadvantage of UMTS-AKA is that the client’s past location is revealed

during the protocol, allowing to track up to one user per LAI at any one time. We bypass this

difficulty by only using current LAI values.

4.7.9 A Required Desynchronization Analysis

Deny-of-Service attack, denoted DoS, is an attack aiming to make the delivery of services un-

available for an indefinite time. The goal of this attack is to prevent the protocol’s execution apart

from any security or privacy properties. Thus, this attack is not taken into account in our secu-

rity and privacy models. Our goal in this paper is not to consider such attacks. However, we

do wish to achieve DoS resistance against PrivAKA. Since the resynchronization procedure has

been removed, a desynchronization will directly imply a Deny-of-Services. Two possible entities

can desynchronize operator/client’s states: the server or a MitM adversary between the client and

server.

An easy attack consists in desynchronizing the operator through a malicious server. Indeed,

a server can play the last message ”Update Sequence Number” without running the challenge-

response phase with the client. Thus, a server can update the operator’s state out-of-synchronization

with the respective client. However, we note that servers have little to gain in desynchronizing the

operator’s state from client is. In particular, servers have more no gain by communicating with

clients and attempting to learn sensitive information. More globally, we assume that only a MitM

adversary is relevant to a Deny-of-Service attack. If a DoS of this type is relevant to the applica-

tion scenario, an easy fix would be to change the structure of the authentication vectors sent by the

operator to the server, such that the server no longer knows the correct response value. Whenever

it receives the response, the server forwards this value to the operator, instead of the ”Authenti-

cation OK” message, allowing the operator to verify the validity of the response. However, this

countermeasure comes at a communication cost of one added message (namely the accept/reject

message from the operator to the server), and it also implies that the operator needs to remember

the generated authentication vectors at least until they become invalid.

Finally, we consider a Man-in-the-Middle adversary can deny the protocol’s execution from a

desynchronization. We are studying with formal proof if such an assumption is reasonable or not.

This study is based on the Tamarin verification tool.
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In this chapter, we will study the well-known Transport Layer Security (TLS) protocol, in

particular when the latter is proxied through an intermediary entity between web-client and web-

server, alternatively called middlebox and edge server. The presence of such an entity implies some

issues for the all-or-nothing disclosure of end-user traffic to middleboxes and, more globally, for

the global security of the handshake protocols proved through. In this chapter, we are focused

on one of the main handshakes-delegation proposal when the intermediate entity does not have

its own certificate to establish the secure channel with the web-client: Keyless SSL. We firstly

give a global overview of the web delivery services, and the context of the use of the proxied

TLS protocol. Then, we consider the different security and practical requirements for secure

handshakes between endpoints (client and server), with the presence of intermediary entity (the

middlebox/edge-server) and propose a first formalization of 3-(S)ACCE security. Our model is

used to provide a formal security analysis of the Keyless SSL architecture, but it can also capture

generic content delivery network (CDN) characteristics. The analysis on Keyless SSL points out

some security and practical weaknesses, both with respect to traditional 2-party secure-channel

establishment, and respect to the additional requirements of our model. Lastly, we also propose

an enhanced design based on TLS 1.2 that does achieve all the security requirements that we

envisaged in our 3-(S)ACCE model. We finally discuss the strengths and shortcomings of existing

three-party ACCE architectures based on CDNs, from two standpoints (efficiency and security),

and suggest new architecture for secure 3-(S)ACCE.
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5.1 Web-delivery Services and TLS

One of the most fundamental requirements of modern-day cryptography is that of securing the

communication channel between two parties, even when these exchange messages over an insecure

network, such as the Internet. Arguably one of the best known such protocols is TLS/SSL, which is

used to secure most Internet connections today. The Transport Layer Security (TLS) protocol is the

most widely deployed secure-channel protocol on the Internet. For example, connections between

modern web browsers and popular websites are secured using HTTP over TLS (HTTPS). With

increased concerns over both mass surveillance and criminal activity on the Internet, the use of

TLS is slowly becoming mandatory for many use cases, including the Web.1. TLS is designed to be

used between a client and a server, which are typically authenticated using public-key certificates.

In TLS, the initial authenticated key exchange phase is called the handshake and the subsequent

authenticated encryption phase is called the record. The handshake protocol supports a number of

modes, such as RSA key transport, Diffie-Hellman key exchange, or pre-shared keys. The record

protocol also supports a variety of constructions, including stream ciphers, block ciphers, as well

as modern schemes that provide AE with additional data (AEAD).

TLS and AKA protocols. Although they both aim to construct secure channels, TLS differs

from the AKA protocols presented in the previous chapters. In a few crucial way, the TLS protocol

relies on public-key and certificates in the handshake (contrary to the symmetric AKA protocols).

In addition, the AKA protocols require mutual authentication whereas this feature is only optimal

for TLS (the default mode features server-only-authentication). TLS is specified [60] as a two-

party protocol only, by contrast the AKA protocols are designed to be run in the presence of

a middlebox. directly specified considering the intermediary server. Finally, one very typical

feature of TLS is its key-confirmation step, which once more sets it apart from AKA (and most

other protocols in the literature). In TLS, the main functionality of key-confirmation is allowing

the two parties to confirm that they computed the same keys, and that their views of the transcript

they share are identical. Consequently, these two protocols (AKA and TLS) cannot easily be

analysed in the same way. This justifies the very different approaches we take in this manuscript.

Recall that an authenticated key-exchange (AKE) protocol, is traditionally said to be secure if

a MitM (man-in-the-middle) adversary is unable to distinguish the real, established session-keys

from random keys [41]. These protocols offer at least the guarantee of authenticated and confiden-

tial channel establishment (ACCE) security as we detailed in Section 5.2.1. The AKE protocols

were designed as 2-party protocols, normally run in a client-server infrastructure. However, TLS

1.2 handshakes do not meet the standard AKE security definition because the channel keys are

used to encrypt the finished messages, even before the key agreement is complete. This provides

a real-from-random distinguishing oracle for the MitM attacker. After years of struggling to find

the right secure channel definition that is suitable for TLS, researchers developed the notion of

ACCE-security [74], which requires that the keys generated by the TLS handshake can safely be

used for authentication encryption in the record layer.

Two-pary TLS 1.2 Handshakes. In the TLS 1.2 protocol version, a client and a server rely on

a public key infrastructure (PKI) and on some exchanged information, to establish a master secret,

msk, using a nonce and a key share each. In particular, each party provides a nonce and a key

share msk or the TLS handshake, as follows. Firstly, a pre-master secret pmk is computed using

only the two key shares. Secondly, the msk is obtained as the result of applying a pseudorandom

function (PRF), keyed with the pmk value, to the two session-nonces. Then, this pmk value is used

as key to a pseudorandom function (PRF) to obtain a master secret msk, on input the two session

nonces.

1See the latest HTTP/2 draft: http://http2.github.io/http2-spec/

http://http2.github.io/http2-spec/
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The TLS protocol, executed between client and server, has two main constituents: the Hand-

shake protocol, which is responsible for session keys agreement and authentication; and the Record

protocol which provides secure channel with the established session keys. It exists three modes

of TLS 1.2 handshake, namely TLS-RSA, based on RSA construction, TLS-DH and TLS-DHE

based on Diffie Hellman key exchange (the first uses a static server’s Diffie Hellman key and an

ephemeral client’s key while in the second both parties contribute ephemeral DH keys). All of

these modes provide server authentication and optionally client authentication.

Client Server

NC←R{0, 1}
8·28

NC

−−−−−−−−−→
NS←R{0, 1}

8·28

SHello,CertS
←−−−−−−−−−

Verify CertS , get pk

pmk←R{0, 1}
46·8

Set KEC ← Encpk(pmk)
KEC

−−−−−−−−−→
pmk← Decsk(KEC)

msk← PRFpmk(NC‖NS) msk← PRFpmk(NC‖NS)
ck← PRFmsk(L1,NS‖NC) ck← PRFmsk(L1,NS‖NC)

FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ]) FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ])

ΓC ← AEck(FinC)
ΓC

−−−−−−−−−→ Decrypt ΓC , verify.

FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ]) FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ])

Decrypt ΓS , verify.
ΓC

←−−−−−−−−− ΓS ← AEck(FinS)

Record layer messages ←−−−−−−−→ Record layer messages

Figure 5.1: The two-party TLS-RSA 1.2 handshake.

The RSA Handshake In TLS-RSA, depicted in Figure 5.1, the client C sends a nonce NC to

the server S, which responds with its own nonce NS and an RSA public-key certificate CertS .

The client then generates and sends a pre-master secret pmk encrypted under the server’s public

key. The server decrypts pmk and the client and server both compute a master secret msk using

pmk and the two nonces. To complete the handshake, both client and server use msk to mac the

full handshake transcript and send (in an encrypted form) these MACs to each other in finished

messages (FinC ,FinS). These messages provide key confirmation, and also help detect whether a

network attacker has tampered with the handshake messages. At the end of the handshake, both

client and server derive connection keys ck from msk and the two nonces, and these keys are

subsequently used for authenticated encryption of application data in the record phase. (In fact,

these keys have already been used to encrypt the finished messages.)

The TLS-RSA protocol is the oldest and the most popular handshake mode in TLS, but it has

recently fallen out of favour because it does not provide forward secrecy, which means that if

an adversary records a TLS-RSA connection and much later it compromises the server’s private

key, it can decrypt the pmk, derive the connection keys, and hence read the application data. This

may seem like an unrealistic threat, but with new concerns about mass surveillance by powerful

adversaries, TLS-based applications increasingly require forward secrecy by default. Furthermore,

the RSA encryption mode used in TLS, called RSA-PKCS#1v1.5, has been shown to be vulnerable
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to a series of increasingly effective padding oracle attacks, first described by Bleichenbacher, that

have proved hard to fix. For both these reasons, the TLS working group is getting rid of RSA in

TLS 1.3.

Client Server

NC←R{0, 1}
8·28

NC

−−−−−−−−−→
NS←R{0, 1}

8·28

∗ Choose DH group (p, q, g)
v←RZq. Set KES ← gv (mod p)
∗ Set PSign := Signsk(τ[NC ,g]).

SHello,CertS ,KES ,p,g
←−−−−−−−−−

∗PSign
←−−−−−−−−

Verify CertS (∗ and PSign)

u←RZq

Set KEC ← gu (mod p)
KEC

−−−−−−−−−→
pmk← (gv)u (mod p) pmk← (gu)v (mod p)
msk← PRFpmk(NC‖NS) msk← PRFpmk(NC‖NS)
ck← PRFmsk(L1,NS‖NC) ck← PRFmsk(L1,NS‖NC)

FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ]) FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ])

ΓC ← AEck(FinC)
ΓC

−−−−−−−−−→ Decrypt ΓC , verify.

FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ]) FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ])

Decrypt ΓS , verify.
ΓC

←−−−−−−−−− ΓS ← AEck(FinS)

Record layer messages ←−−−−−−−→ Record layer messages

Figure 5.2: The two-party TLS-DH 1.2 handshake.

The DH and DHE Handshakes In the DH modes, the client and server first exchange nonces

and the server certificate just like in TLS-RSA. The server additionally selects some DH parame-

ters p, q, g 2, calculates one element of a DH tuple, KES (only for DHE mode) and it sends p, g,

KES and along with the SHello message (i.e., KES is gv mod p where v is the local, (ephemeral)

exponent of the server). Additionally, if the mode is TLS-DHE, then the server also sends to the

client its signature PSign on the DH parameters (i.e., see the figure 5.2, where PSign is trans-

mitted). At the next step, the client verifies the certificate. At this stage, the client calculates the

key-share, KEC ; The rest of the protocol and computations (msk, ck,FinC ,FinS) proceed as in

TLS-RSA. The DH mode is depicted in Figure 5.2,

The key advantage of TLS-DHE is that it does provide forward secrecy as long as both parties

generate fresh keypairs for each handshake and use a strong Diffie-Hellman group. Furthermore,

the elliptic curve variant of TLS-DHE is considered to be as fast (if not faster) than TLS-RSA.

(TLS distinguishes between Diffie-Hellman modes based on explicit primes from those based on

elliptic curves, but for the results in this paper, the difference between the two is immaterial, and

we refer to both as TLS-DHE.)

Session Resumption: After an established session, it is possible to store the corresponding

master secret msk, after the connection is closed, and then resume that session. The client signals

it wants to resume a past session in a particularity designed CHello message. The server can thus

accept the session resumption offer. If the server accepts, it sends an accepting SHello message. In

this case, the master key will be reuse of derive new session keys, on input two newly exchanged

2In the DH mode, the DH parameters are the same for all the sessions.
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nonces. This mechanism obviously requires the server and client to remember a previous master

key. Alternative session-resumption mechanisms based on session tickets have also been proposed.

These mechanisms offer to the server to avoid the store of the msk.

ChangeCipherSpec Message: The ChangeCipherSpec message signals the activation of en-

cryption, and only after this message the encryption in the record layer start. There is only one

message whose goal is to trigger the use of the negotiated parameters.

Proving 2-ACCE for TLS 1.2. A series of papers have developed a precise cryptographic

specification for TLS, called authenticated and confidential channel establishment (ACCE) [74],

and proved that various combinations of handshake and record layer modes achieve this spec-

ification. A variant of ACCE, called SACCE, applies to the most common implementation of

TLS where only the server is authenticated, but the client remains anonymous [81]. The first

ACCE-definition for TLS appeared alongside a 2-ACCE-security proof for TLS-DHE in [74]. A

subsequent paper introduced server-only authentication (SACCE) and proved the security of both

TLS-RSA and TLS-DHE [81], but strictly in a two-party setting. In fact, [47] describes an at-

tack which involves using the TLS handshake between three parties, one of which is malicious.

In this thesis, we also use the recent result of Brzuska et al. [55], who proved that for mutually-

authenticated TLS-like protocols (including TLS), deriving an export key from the master secret

via a pseudorandom function yields a session key that is indistinguishable from random.

In Section A.2, we recall the standard ACCE (and (S)ACCE) security model (which we will

call 2-(S)ACCE). For instance, the pivotal TLS1.2 –which we will investigate herein– in its dif-

ferent modes can achieve ACCE and/or SACCE security, under specific assumptions [81]. On

the other hand, a number of modes and constructions used in TLS have also been shown to be

insecure, resulting in high-profile attacks on both the handshake and record layers [27, 43].

Proxied Handshakes a 3-party TLS. Classical network architectures typically feature multi-

ple users, which can connect to each other in communication sessions. For instance, by using the

http protocol on top of TCP/IP protocols, a client can access a server and the data that the latter

might host.

If traffic is routed over http, then adding such intermediate entities across a network presents

no great difficulty, since all messages are sent in clear. However, the paradigm underlying present-

day browsing and messaging is that of end-to-end security in other words, the ability to ensure that

only authorized parties (in this case, the end nodes) are able to read and write information once

they have established a communication session.

In theory, the TLS protocol is executed between two entities, the client and the server, to

provide the secure channel. In practice, this protocol requires significant infrastructures and many

intermediary entities for exchanging messages, notably the large volumes. Web sites requiring to

exchange services over secure channel need to be fast and reactive, and must also secure channel

establishment. Thus, one direct consequence is the latency. TLS connections may potentially be

used to transfer large amounts of data (e.g., movies in streaming applications). If the content owner

(the origin server) and the receiver (the client) are situated geographically far away, data transfer

will be slow, involving extensive routing.

To reduce the latency of the execution of the TLS protocol and to speed up such connections,

servers can be geographically distributed and located (physically) located close to the clients.

We will call such distributed servers as middleboxes. They are delivery services, running

inside a local network and which are located between the endpoints (client and server) of the

communications. These middleboxes are proxies, managing services which have been delegated

by the server to the clients. They are considered as partially trusted and thus undesirable in the

security and privacy sense. Indeed, in a perfect architecture all functionality will be managed in

the endpoints. Naylor et al. have provided in [91] an accurate description of middleboxes and why

they are beneficial to keep them in the Internet architecture.
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The global approach to reduce the latency notably when large volumes are exchanged, is the

use of the content delivery networks (CDNs).

They were introduced as large networks of reverse-caching proxies to accelerate HTTP de-

livery. Nowadays CDNs also operate onto the TLS layer within (HTTPS) communications. To

achieve this, a variable number of the ACCE-related tasks of the end-server in the traditional

ACCE architecture have to be delegated to the CDN’s proxy-servers. To speed up such connec-

tions, content owners can hire Content Delivery Networks (CDNs) that cache popular content at

edge servers located around the world and deliver them to clients based on geographic proximity.

Deploying CDNs for public HTTP traffic is relatively straight-forward. The origin server (e.g.,

example.com) decides what content will be cached by the CDN and puts it on some subdomain

(e.g., cdn.example.com). The origin server and the CDN use the DNS protocol to direct requests

for this subdomain to the nearest edge server. The client sees a significant performance improve-

ment, but is otherwise unaware that it is not directly connected to the origin server. For HTTPS

connections, however, this is more problematic. The client expects a direct secure channel to the

origin server, and redirection to an unknown edge server will be seen as an attack. Consequently,

the origin server and the CDNs need to agree on a way by which edge.
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Figure 5.3: Standard TLS in CDNs (left-hand side); “Keyless SSL” in CDNs (right-hand side)

The original CDN architecture. In classic CDNs, the origin server provides a certificate and

private key (e.g., for cdn.example.com) to the edge server, effectively allowing the edge

server to impersonate some sub-domain of the origin server. This is depicted on the left-hand

side of Figure 5.3. This architecture works well for simple origin servers who wish to delegate

all TLS-related operations to the CDN. The main risk is that any attack on the edge server will

expose the private key to an adversary who can then impersonate the origin server, at least until

the corresponding certificate expires or is revoked.

Primarily, a Content Delivery Network is a sub-part of the internet infrastructure which fa-

cilitates the delivery of web-content on behalf of origin server. For instance, Akamai [68] is a

well-known commercial CDN, which delivers content originating from servers owned by, e.g.,

AirBnB. The founding principle of a CDN is that a large set of interconnected servers, which act

as reverse caching proxies between the origin-servers and the requesting end-users, can cache data

from origin servers to so-called edge-servers E . Then, as cached content is requested from clients

geographically close to E , the latter can deliver it faster than the distant origin-servers, and E can

even optimise it, filter it, compress it, etc. However, all of these become sensitive when the de-

livering origin-server and the requesting end-users are communicating not over HTTP, but over

HTTPS, as customary nowadays.

As depicted in left-hand side of Figure 5.3, in classical CDNs, the edge servers impersonate

the origin servers to end-users (clients) by using public keys that were certified for the origin-

server, which are associated with secret keys known to the edge servers. In this setting, the edge-

servers execute TLS handshakes with the end-user by using “origin-impersonating” certificates

cdn.example.com


5.2. 3-(S)ACCE SECURITY MODEL 139

provisioned by the CDN itself. This setup allows the edge-server to retain, decrypt, and inspect

the client’s and origin server’s data and inspect it for purposes such as malicious web-application

attacks. When the traffic needs to be forwarded to the origin server (i.e., in the case of request

for dynamic HTTP content), the edge-server establishes a separate TLS/SSL connection with the

origin-server, this time with the origin-server using its own certificate when acting as a responder

during the handshake. Thereafter, content relayed from the end-user (e.g., HTTP-request body) is

re-encrypted by the edge-server on its way to the origin-server.

To mitigate risks as especially for high-value origin servers who want to use the CDN only for

performance, but do not want to expose their long-term private keys, CloudFlare implemented a

version of proxied TLS called Keyless SSL [101], relying on a patent by Akamai [68].

The Keyless SSL approach. In 3-party TLS design for CDNs as above, we can ponder on the

fact that the edge-servers hold a secret key on behalf of the origin-server. One could alleviate this

by letting the origin-servers hold their secret keys; then, the TLS handshake between the client

and the edge-servers would need extending such that information would be relayed by the CDN to

the origin-server for the secret-key-related computations. In other words, it would be the origin-

server’s secret key that is used to establish the channel-key for a TLS-session between an end-user

and an edge-server. A CDN called Cloudflare implemented a version of this idea in a product

called “keyless SSL” [101], whose setup is based on a patent by Akamai [68]. The right-hand

side of Figure 5.3 depicts this setting. In particular, at the cost of a reduced speed-up for the

content-delivery, this infrastructure presents fewer risks of having a potentially-large number of

origin-impersonating secret keys leak to an adversary. However, the question of how to delegate

securely part of the TLS handshake from the CDN’s edge-server to the origin-servers remains.

Multi-Context TLS (mcTLS): A more principled approach of extending the 2-party ACCE

infrastructure to a 3-party setting is that of multi-context TLS (mcTLS) [91] where a middle-entity

(called middlebox) can mitigate and/or relay TLS handshakes and record communication between

end-users and servers, for a variety of purposes like content filtering, compression, etc. .This

approach is currently studied in a similar 3-(S)ACCE security model.

5.2 3-(S)ACCE Security Model

In the following, we will firstly recall how the classic ACCE (authenticated and confidential chan-

nel establishment) security has been defined in [73]. We define this model including the SACCE

model which a variant of the ACCE model when only the server is authenticated [81].

The classic ACCE (authenticated and confidential channel establishment) security has been

defined in [73] and detailed in Section A.2. We firstly introduced a new notion called Mixed Entity

Authentication has been introduced to consider the ability to have a mutual authenticated session

and unilateral authenticated session. Then, we define the 3-(S)ACCE security model, a non-trivial

adaptation of traditional 2-party ACCE security (which we will note 2-ACCE to be clearly), as

detailed in Section A.2, when the handshake is run in the presence of middleboxes (MB) such as

CDN edge servers.

Our 3-(S)ACCE model captures the characteristics of several types of proxied handshakes

including classic CDNs and Keyless SSL.

Though the terminology we use is that of Jager et al. from [74], we often use the notation

introduced by Brzuska et al. [55] to which we add elements and particularities to help with our

transition from a 2-party notion towards a 3-party notion for ACCE.
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5.2.1 Related work

The traditional notion of AKE security, entailing that the output session keys should be indis-

tinguishable from random output of the same length (to a Man-in-the-Middle attacker), was first

proposed by Bellare and Rogaway [40]. Further extensions and concrete instantiations of these

definitions followed in [39,42]. We present the AKE security notion in detail in the Appendix A.2.

However protocols like TLS/SSL, which include a key-confirmation step, cannot attain AKE

security, since an adversary can distinguish true keys from random keys by testing them during

key-confirmation. In other words, only shortened or modified versions of the TLS protocol (e.g.,

ones in which the key-confirmation is established without encryption [90]) can be proved secure

with respect to the AKE notion. As a relaxation of traditional AKE security, Jager et al. [74] in-

troduced the notion of ACCE security, which guarantees the security of only one application for

those keys, namely, that of authenticated encryption. In particular ACCE security implies both

mutual authentication guarantees and the security of the channel the parties communicate across.

If an AKE protocol is used with only one-sided authentication, as is the case for most applica-

tions of e-Commerce and secure Web browsing, then the entity-authentication and secure-channel

guarantees in ACCE are both one-sided only; this notion is called Server ACCE (SACCE), since

it is mostly relevant in the client-server setting. This model was later refined to take into account

the notion of length-hiding encryption [73], leading to the most complete analysis of the security

of TLS 1.2 to date, which is due to Krawczyk, Paterson, and Wee [81]. These authors showed

that, under a number of hardness assumptions and assumptions on the underlying primitives, TLS

1.2 guarantees the security notion of SACCE (ACCE restricted to the case of server authentica-

tion only), in all three operating modes: TLS-DH, TLS-DHE, and TLS-RSA. A less complete,

but modular and composable proof of the security of TLS 1.2 was given later, in the constructive

cryptography framework [78]. Finally, the work of Bhargavan et al., e.g. [49], used notions of

cryptographic agility and secure implementations in order to understand the security of TLS with

respect to renegotiations and multiple versions.

Although, by its nature, the guarantee of AKE security for the derived keys allows for some

form of composability of this primitive to other symmetric-key cryptographic protocols, a first

universally-composable definition of this model was presented by Canetti and Krawczyk [57].

Finally, an alternative, composable definition of secure channels is given by Maurer et al. [85].

These two latter generic definitions capture, as the AKE security, the idea that the handshake

produces channel keys which are indistinguishable from random with respect to a MitM attacker.

5.2.2 2-(S)ACCE New Requirement: Mixed Entity Authentication

In this section, we present an additional assumption for an intermediary security property, called

Mixed Entity Authentication. Ideally, since we construct the proxied handshake from a single,

unilaterally authenticated TLS negotiation (between the client and the middlebox), and a mutually-

authenticated one (between the middlebox and the server), we would want to reduce the security of

our schemes only to the basic 2-SACCE and 2-ACCE games, respectively. The two differ only in

their Entity Authentication property, with 2-SACCE restricting the adversary’s winning condition

to client instances πm
i only. However, for technical reasons, we need to rely on a slightly different

security notion. Namely, we consider ACCE protocols in which clients are also issued certificates.

We associate party instances with a bit denoted bauth and called authentication flag, which is set

to 0 by default. The flag value is initialized at the instantiation of πm
i depending if the client

authentication is required (πm
i .auth = 1) or not (πm

i .auth = 0). In the mEA game, we consider a

NewSession oracle described as follows:

1∗. NewSession(Pi, ρ, pid, bauth): This query creates a new session πm
i executed by party Pi

with the role ρ, having the partner identifier pid and initializes the authentication flag with
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the value πm
i .auth = bauth. Moreover, the session is set to be in the running state and the

associated party is its initiator, i.e., πm
i .α= ⊥ and πm

i .ρ=init.

The 2-(S)ACCE matching-conversation definitions can be adapted trivially to include that partner-

ing instances must have matching mode-flags’ values.

In the mEA game, like in the EA games, the adversary queries the first four oracles above and

its goal is to make one instance, πm
i of an uncorrupted Pi accept maliciously. That is, πm

i must

end in an accepting state, with partner ID Pj also uncorrupted, such that no other unique instance

of Pj partnering πm
i exists, and its authentication flag has been instantiated to 1.

We note that the importance of the condition πm
i .auth = πn

j .auth for the correctness between

πm
i and πn

j . Indeed, since the bit bauth is not directly initialized for all the parties considering

the studied protocol, it is important that the two parties are agreed on the authentication-feature

(unilateral or mutual) of the session.

Although it is not known whether TLS 1.2 is mEA-secure as adapted above, this assumption

seems quite reasonable, given the separate results given for unilaterally, and respectively mutually

authenticated handshakes.

5.2.3 A Security Model: 3-(S)ACCE

The attacks presented in Section 5.1 show that proxied TLS is difficult to get right, even if the

individual channels are 2-ACCE secure. Furthermore, we saw that generalizing 2-party security

to 3 parties requires care since the intermediary entity has to be considered. We now present

3-(S)ACCE, our security definition for proxied handshakes.

An overview. Our framework captures several types of architectures in a generic interaction

model. We consider a PKI in which middlebox and servers have registered credentials, but clients

do not; in particular, any secure channel the client establishes is only unilaterally authenticated.

Middlebox receive credentials for content-delivery upon registering with the content owner. This

models both architectures in which the middlebox impersonates the server for content-delivery

(e.g., CDNs) and those in which it uses its own credentials. Our notions of partnering and fresh-

ness capture both the designs in which the middlebox can independently compute the session keys

(as in CDNs) and those in which the middlebox needs the server’s help for some computations

(like in Keyless SSL).

Apart from extending classical 2-ACCE entity authentication and channel security, we require

two additional properties: accountability and content soundness.

Accountability. In CDN-ing over TLS, the middlebox impersonates servers to clients that are

oblivious of this fact. To protect against malicious or compromised middleboxes, the server must

have the power to detect and de-authorize such middleboxes. Accountability requires that the

server should be able to compute the channel keys used by the client and the middlebox. With this

key, the server can audit the behaviour of the middlebox and take action against it, thus becoming

accountable for any damage to the client.

Content soundness. Servers may authorize CDN middleboxes to deliver some of their contents.

Content soundness requires that no malicious middlebox may serve content that it is not authorized

to deliver. Typically, servers can achieve this by distributing content within separate subdomains

with their own certificates, and authorizing middleboxes to serve content for specific subdomains.

This demands a more extensive certificate infrastructure at the server. We explicitly note that we

do not take into consideration websites with “public” content, i.e., in our model, a middlebox

can only obtain content from an issuing server. In that sense, we also rule out (certain kinds of)

phishing attacks.
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Attributes and Partnering.

We extend the 2-ACCE setting to three parties, by adding a set MB of middlebox entities to

the existing sets of clients and servers’ entities. We instantiate parties as before, but extend the

model to include new attributes as follows.

Names and certificates. In 2-ACCE infrastructures, if one party is identified by the other by means

of, e.g, a certificate, then that certificate will point to the right partner (unless an impersonation

has occurred). By contrast, especially in CDNs and Keyless SSL, the infrastructure allows entity

impersonation to some extent. To capture the fact that one party may effectively compute keys

based on another party’s certificate, we no longer associate pid values with parties, but with names

(for instance the common name –CN– entry in X.509 certificates). We assume that each certificate

has a unique name associated to it. Finally, since we consider only unilaterally-authenticated

handshakes for the clients, the latter have no certificates, and they are identified (for partnering

purposes) by a generic name denoted “Clients”. We thus define, for each 3-(S)ACCE party Pi, two

new attributes: a name Pi.name and a set of certificates the party may use, denoted as Pi.CertSet.

Pre-channel keys. In some proxying architectures, the middlebox is unable to compute chan-

nel keys for middlebox-client sessions independently, without a server’s assistance. In Keyless

SSL, the server must compute any values requiring the secret key associated with the server’s

certified public key. We model this as follows. We assume that server instances and middlebox

instances partnered with server instances may compute a local value, which allows the middle-

box to ultimately compute the channel keys ck for a session it runs in parallel with the client.

We call this value a pre-channel key and denote it as a new attribute denoted πn
j .pck. For ex-

ample, for Keyless SSL running in RSA mode, π.pck = pmk, whereas for the DHE mode,

π.pck = (p, g,KES ,CertS ,PSign) (see Figure 5.7).

More formally, let PCK be the set of all pre-channel keys, Π the set of all possible transcripts

τ , and CK the set of all channel keys. We are interested in protocols for which a function f such

as f : PCK × Π → CK, taking as input a pre-channel key pck and a (handshake) transcript τ
and outputting a channel key ck, can be defined. We require that ∀pck, pck′ ∈ PCK, ∀π, π′ ∈ Π
such that π 6= π′, we have that if f(pck, π)=f(pck′, π′), then π=π′ (i.e., that the projection of f on

Π be injective).

The notion of pre-channel keys is crucial in identifying all partnering instances associated

with a given instance. Whenever the middlebox can compute all session keys independently of

the server, we have the classical two-instance partnering from 2-ACCE. However, when the server

needs to aid the middlebox, and the pre-channel key is required, four instances are partnered

instead of two.

Owned and proxied content. As indicated earlier, another important aspect of proxying TLS

connections is related to content. We associate to each server Pj ∈ S the content it owns, denoted

Ωj (which the adversary could choose). We assume that a content is composed of unitary elements

ωi ∈ Ωj (e.g, subdomains or single web-pages). We assume that each handshake is meant to

deliver a single content unit. Recall also that we do not consider public contents, i.e. the attacker

may only retrieve a content by demanding it from a server which owns it.

Middlebox can receive (and then deliver) server-content in two steps. First the middlebox

registers with a server for a given content, receiving credentials that allow it to authenticate to the

client as a legitimate distributor of that content. As a second step, the middlebox must execute a

handshake with the correct server, then – upon successful mutual authentication and verification

of registration for the content – the latter is delivered. We restrict the delivery to one content per

handshake, sent as a response to a “Contentrequest, ω” message from the middlebox.

We assume that clients can verify whether a content they receive in the record layer matches
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the certificate they received during the handshake3.

Party Attributes. We formalize the requirements presented above in terms of additional attributes,

for each party Pi:

◦ The party’s name Pi.name, linked to (possibly multiple) certificates. This value is unique

per middlebox or server, and is set to the label “Clients” for all clients.

◦ An indexed set Pi.CertSet of certificates held locally by Pi, for which Pi stores the asso-

ciated public keys that are certified, and possibly also the corresponding secret keys. This is

only true for middlebox and servers; for clients, the certificate set is empty.

◦ An indexed set Pi.PKSet of public keys, containing certified public keys held locally by

Pi (either a middlebox or a server), such that the k-th public key of that party, Pi.Certk, is

certified in the k-th certificate. This set is empty for all clients.

◦ An indexed set Pi.SKSet of secret keys held locally by Pi, defined analogously as Pi.PKSet.
For any secret keys that Pi does not have, Pi stores ⊥ instead.

◦ A set Pi.Contents of contents to which Pi has access. For a server Pj , we denote its content

by Ωj . For middleboxs Pk, we denote its entire registered content with server Pj by Ωk
j . For

clients, this set is empty.

◦ A hashtable Pj .Contracts held locally by servers Pj , for which the entries are of the form

(Pk,Ω
k
j ) with Pk ∈ MB and Ωk

j is the subcontent Pk registered with Pj . This table is used

by the server so that it forwards only registered contents to appropriate middlebox.

◦ A list of instances Pi.Instances, to keep track of all existing instances of this party.

Party-Instance Attributes. We proceed to extend the attribute-set of each party-instance πm
i as

follows.

◦ The instance parameters πm
i .par consisting of: a certificate, the corresponding public key,

and the matching secret key from the sets Pi.CertSet,Pi.PKSet,Pi.SKSet. Clients have no

such values; servers always have non-⊥ values; and middlebox may have the secret key set

to ⊥.

◦ The partner identifier πm
i .pid, which will be set to a party name (rather than a party).

◦ A pre-channel key πm
i .pck such that πm

i .pck ∈ PCK, set to ⊥ for clients and for middle-

box instances whose partner identifier is set to “Client”. Only accepting instances of servers

or middlebox with partner identifier a server have a pre-channel key not equal to ⊥.

◦ A record-layer transcript πm
i .recτ , which is non-⊥ only for accepting instances that have

already computed a channel key πm
i .ck. The record-layer transcript stores plaintext mes-

sages that a party encrypts and sends to its partner, or that the party decrypted from its

partner.

3This is modelled by means of an additional function with a Boolean output.
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Partnering and Freshness.

For 2-ACCE, partners are parties sharing the same session identifier sid. For 3-(S)ACCE this

is not sufficient. For instance, the design of Keyless SSL induces the dependency between a client-

middlebox session and an associated middlebox-server session through which the server aids the

middlebox to compute its channel keys with the client. These two sessions (and four instances)

are entwined since they contain information about each other.

Indeed, we characterise 3-(S)ACCE partnering for a given instance πm
i of a party Pi in terms

of two sets. The first of these, denoted πm
i .PSet, stores the parties that are partnered with πm

i (for

instance, in Keyless SSL, a client, a middlebox, and a server). The second set, denoted πm
i .InstSet,

stores the instances with which πm
i partners. These sets include the party Pi or respectively the

instance πm
i itself, for easiness with security definitions.

In 3-(S)ACCE the partner-instances πm
i .InstSet and partner-parties πm

i .PSet of an instance

πm
i are defined constructively by Algorithm as detailed in Figure 6.4.

Partnering in 3-party ACCE.

Require: The input is a party instance πm
i (ending in accepting state).

Ensure: The output are two sets πm
i .PSet and πm

i .InstSet.

1. State: Set πm
i .PSet := {Pi} and πm

i .InstSet := {πm
i }.

2. If: (πm
i .pid = Pj .name | for some Pj ∈ {MB, S})

3. If: (∃ unique πn
j s. that πm

i .sid = πn
j .sid and πn

j .pid = Pi.name)

4. State: Do πm
i .PSet← πm

i .PSet ∪ {Pj} and πm
i .InstSet← πm

i .InstSet ∪ {πn
j }

5. If: (Pi ∈MB and πm
i .pck 6= ⊥)

6. State: Find Pk ∈ C s.that ∃πp
i , π

ℓ
k with πℓ

k.sid = πp
i .sid and πℓ

k.ck = πp
i .ck = f(πm

i .pck, πℓ
k.τ)

7. State: Do πm
i .PSet← πm

i .PSet ∪ {Pk} and πm
i .InstSet← πm

i .InstSet ∪ {πp
i , π

ℓ
k}

8. Endif

9. If: Pj ∈MB and πn
j .pck 6= ⊥ :

10. State: Find Pk ∈ C s.t. ∃πp
j , π

ℓ
k with πℓ

k.sid = πp
j .sid and πℓ

k.ck = πp
j .ck = f(πn

j .pck, π
ℓ
k.τ)

11. State: Do πm
i .PSet← πm

i .PSet ∪ {Pk} and πm
i .InstSet← πm

i .InstSet ∪ {πp
j , π

ℓ
k}

12. Endif

13. State: Return πm
i .PSet and πm

i .InstSet.
14. Else

15. State: Find unique Pk, π
ℓ
k s.that πℓ

k.sid = πm
i .sid

16. State: Do πm
i .PSet← πm

i .PSet ∪ {Pj ,Pk} and πm
i .InstSet← πm

i .InstSet ∪ {πℓ
k}

17. If: ∃πp
k, π

n
j s.t. πp

k.sid = πn
j .sid and πm

i .ck = πℓ
k.ck = f(πn

j .pck, π
m
i .τ)

18. State: Do πm
i .InstSet← πm

i .InstSet ∪ {πp
k, π

n
j }

19. Endif

20. Endif

21. Else

22. State: Find unique Pj , π
n
j s.that πm

i .sid = πn
j .sid

23. State: Do πm
i .PSet← πm

i .PSet ∪ {Pj} and πm
i .InstSet← πm

i .InstSet ∪ {πn
j }

24. If: Pi ∈ S

25. State: Return πm
i .PSet, πm

i .InstSet
26. Else

27. If: πn
j .pid = Pk.name for Pk ∈ S

28. State: Do πm
i .PSet← πm

i .PSet ∪ {Pk}
29. If: ∃ πℓ

k of party Pk s.t. πn
j .ck = f(πℓ

k.pck, π
n
j .τ)

30. State: Find unique πp
i such that πp

i .sid = πℓ
k.sid

31. State: Do πm
i .InstSet← πm

i .InstSet ∪ {πp
i , π

ℓ
k}

32. State: Return πm
i .PSet, πm

i .InstSet
33. Endif

34. Endif

35. Endif

36. Endif

37. State: Return πm
i .PSet, πm

i .InstSet

Figure 5.4: Algorithm of Partnering in 3-party ACCE.
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This algorithm covers all the possible communication-links in proxied handshakes: client–

server, client–middlebox, client–middlebox–server, middlebox–server. If server-impersonation is

used, like in CDNs, we denote this by MB(S). If the middlebox uses its own credentials, we use

MB(MB). We assume that in all middlebox-server sessions, the middlebox always authenticates

as itself, and do not specify this explicitly. To give the reader an intuition, we summarize all the

possibilities in Figure 5.5. The rows are designed such that, for each entry, the partnering is defined

from the viewpoint of one fixed party-instance involved in the link (this party is underlined).

For instance let us assume we wish to determine the partner-instances and the partnering parties

of one instance πm
i of the client-type. This instance can find itself in the following communica-

tion scenarios: (1) speaking to a server in a direct “C–S” link; (2) speaking to a middlebox that

authenticates as itself, i.e., a “C – MB(MB)” link; (3) speaking to a middlebox impersonating a

server, but running the handshake independently: “C – MB(S)” ; (4). speaking to a middlebox

impersonating a server, needing the latter’s assistance, as in Keyless SSL:“C – MB – S”. These are

the first four rows in the table in Figure 5.5.

Actual Link Partnering by Alg.1 Partner-sets forming

Relevant Alg.1 lines

1. C − S πm
i .PSet = {Pi ∈ C,Pj ∈ S}
πm
i .InstSet = {πm

i , πn
j } 4; 13

2. C −MB(MB) πm
i .PSet = {Pi ∈ C,Pj ∈ MB}

πm
i .InstSet = {πm

i , πn
j } 4; 13

3. C −MB(S) πm
i .PSet = {Pi ∈ C,Pk ∈ MB ,Pj ∈ S}

πm
i .InstSet = {πm

i , πl
k} 16; 37

4. C −MB − S πm
i .PSet = {Pi ∈ C,Pk ∈ MB ,Pj ∈ S}

πm
i .InstSet = {πm

i , πl
k, π

p
k, π

n
j } 16, 18; 37

5. MB − S πm
i .PSet = {Pi ∈ MB ,Pj ∈ S}

πm
i .InstSet = {πm

i , πn
j } 4; 13

6. MB(MB)− C πm
i .PSet = {Pj ∈ C,Pi ∈ MB}

πm
i .InstSet = {πm

i , πn
j } 23; 37

7. MB(S)− C πm
i .PSet = {Pj ∈ C,Pi ∈ MB ,Pk ∈ S}

πm
i .InstSet = {πm

i , πn
j } 23, 28; 37

8. S −MB − C πm
i .PSet = {Pk ∈ C,Pi ∈ MB ,Pj ∈ S}

πm
i .InstSet = {πm

i , πp
i , π

l
k} 7; 13

9. C −MB − S πm
i .PSet = {Pj ∈ C,Pi ∈ MB ,Pk ∈ S}

πm
i .InstSet = {πm

i , πn
j , π

p
i , π

l
k} 23, 28, 31; 32

10. S − C πm
i .PSet = {Pj ∈ C,Pi ∈ S}
πm
i .InstSet = {πm

i , πn
j } 23; 25

11. S −MB πm
i .PSet = {Pj ∈ MB ,Pi ∈ S}

πm
i .InstSet = {πm

i , πn
j } 4; 13

12. S −MB − C πm
i .PSet = {Pk ∈ C,Pj ∈ MB ,Pi ∈ S}

πm
i .InstSet = {πm

i , πn
j , π

p
j , π

l
k} 4, 11; 13

Figure 5.5: Algorithm Coverage of 3-Party Communication Settings

To show how algorithm describing partnering in 3-party ACCE operates, take as an example

row 3. In this case, the party for which the algorithm is run, Pi, is a client, and its partner identifier

will be the name of some party Pj ∈ S. Thus, the algorithm enters the IF on line 2, but not

the IF on line 3 (which essentially demands that there be “matching conversation” between that

instance of the client and an instance of Pj). We enter the ELSE on line 14. Via 15, we find the

middlebox that is actually partnering Pi, which is a middlebox Pk, for an instance πℓ
k. In this case,

the middlebox will not need the server’s aid to authenticate to the client, so the pre-channel keys

will not be used; this makes us skip line 17, and we output the partnering sets in line 37.

Now suppose we are in the infrastructure depicted in row 4. The algorithm will behave as

above, apart from the fact that the IF on line 17 will also be entered. At that point, we find
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the matching middlebox-server instances which will compute the pre-channel key for the session

between πm
i , πℓ

k. These are: an instance of that same middlebox Pk and an instance of the server

who is the purported partner of πm
i . In line 18 we add that party to the partnering instance-set of

πm
i , and these values are returned in line 37.

The other cases follow similarly.

Session freshness in 3-(S)ACCE: Like in 2-party ACCE, for the 3-(S)ACCE-channel-security

game, a notion of freshness is needed. In our case, this is as follows.

Definition 15. [3-(S)ACCE Freshness.] An instance πm
i of Pi is fresh with intended partner Pj

if the following conditions hold:

• πm
i .α = 1 with πm

i .pid = Pj .name.

• All parties in πm
i .PSet are uncorrupted. Note that this includes Pi itself.

• No Reveal query was made to any of the instances in πm
i .InstSet, which includes πm

i itself.

Correctness in 3-(S)ACCE. We extend the definition of correctness (i.e., 2(S)ACCE matching-

conversation) in terms of the partnering algorithm presented above. In particular, we demand

that, for any instance πm
i ending in an accepting state with partnering instance-set πm

i .InstSet and

partnering party-set πm
i .PSet, the following conditions hold.

1. If |πm
i .InstSet| = 2, then both instances in πm

i .InstSet compute the same channel key ck.

2. Consider the case of |πm
i .InstSet| = 4. Let πn

j , π
ℓ
k ∈ πm

i .InstSet for Pi,Pj ∈ πm
i .PSet,

such that πm
i , πn

j share a session identifier. Then, the following holds:

a). Any 2-partnered instances in πm
i .InstSet compute the same channel key. So,

• πm
i and πn

j compute the same channel key x, i.e., πn
j .ck= πm

i .ck and x:=πm
i .ck;

• the other two instances in πm
i .InstSet (i.e. πℓ

k and πm
i .InstSet \ {πm

i , πn
j , π

ℓ
k})

compute the same channel key x′;

b). Furthermore, the pre-channel key computed in the middlebox-server session must be

consistent with that of the client-middlebox channel key. Thus,

• If Pi or Pj is a client, then x = f(πℓ
k.pck, π

m
i .τ).

• If neither Pi nor Pj is a client, it holds that x′ = f(πm
i .pck, πℓ

k.τ).

3-(S)ACCE Properties & Adversarial Interactions.

In this section, we define four security notions, which together constitute the definition of 3-

(S)ACCE-security. Each notion is defined in terms of a game, which the adversary plays against a

challenger by interacting with a number of oracles. Many of these are standard 2-ACCE oracles,

for which we need to adapt the syntax. We also need an additional party-registration oracle.

New Oracles. In addition to the 2-ACCE oracles, we require the new party-registration oracle we

present below.

• RegParty(Pi,Ω, dest): taking as input a party Pi, a content Ω (possibly set to a special

symbol ⊥), and a so-called destination dest ∈ {“MB′′, “Server′′} ∪ S. This query works in

three modes.
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◦ The server mode, with input (Pi,Ω, “Server′′). This query registers Pi as a server

(unless this has been done before), outputting, for each subcontent ω ∈ Ω, a tuple

consisting of a secret key, a public key, and a certificate for that public key on the

server’s name. The content Ω is added to the server’s already-registered content. The

adversary receives the certificates and public keys.

◦ The middlebox mode, with input (Pi,⊥, “MB
′′). The query registers Pi as middlebox,

outputting a single secret key, public key, and certificate for that public key associated

with Pi’s name (the latter two are also output to the adversary).

◦ The contract mode, with input (Pi,Ω,Pj) and Pi ∈ MB, Pj ∈ S, both registered

parties such that Ω ⊆ Ωj (the requested content is a subset of the server’s content).

This oracle registers locally in the server’s hashtable Pj .Contracts the entry Pj ,Ω, and

it adds Ω to the middlebox’s content Ωi
j . Then a set of secret keys, public keys, and

certificates are given to Pi (one tuple of keys with the certificate per sub-content). In

some cases, the secret key may be set to ⊥. All the public information is also given to

the adversary.

We define 3-(S)ACCE-security as a union of four properties: entity authentication, channel

security, accountability, and content soundness, presented in more detail below.

For each game, we consider a PPT adversary A playing against a challenger and interacting

with various party instances sequentially or concurrently by means of the above-mentioned oracles.

We quantify the attack in terms of the number NP of parties in the system (and in particular, also

the number of clients NC , the number of servers NS , and the number of middlebox parties NMB ),

the number qn of NewSession queries that the adversary makes, and the number t of the total of

queries made by the A. The time-complexity of the adversary is determined by t and qn.

Entity Authentication (EA). In the entity authentication game, the adversaryA is given access to

the new oracle RegParty, as well as the traditional 2-ACCE oracles. Finally, A ends the game by

outputting a special string “Finished” to its challenger. The adversary is said to win the EA game

if there exists a party instance πm
i maliciously accepting a partner Pj ∈ {S,MB}, according to the

following definition.

Definition 16. [Winning conditions – EA game.] An instance πm
i of some party Pi is said to

maliciously accept with partner Pj ∈ {S,MB} if the following holds:

• πm
i .α = 1 with πm

i .pid = Pj .name 6= “Client′′;

• No party in πm
i .PSet is corrupted, no party in πm

i .InstSet was queried in Reveal queries;

• There exists no unique πn
j ∈ Pj .Instances such that πn

j .sid = πm
i .sid;

• If Pi ∈ C, there exists no party Pk ∈ MB such that: RegParty(Pk, ·,Pj) has been queried,

and there exists an instance πℓ
k ∈ πm

i .InstSet.

The adversary’s advantage, denoted AdvEAΠ (A), is defined as its winning probability i.e.:

AdvEAΠ (A) := Pr[A wins the EA game],

where the probability is taken over the random coins of all the NP parties in the system.

Channel Security (CS). In the channel security game, the adversary A can use all the oracles

(including RegParty) adaptively. Finally, the adversary outputs a tuple consisting of a fresh party

instance πj
i (in the sense of Definition 15) and a bit b′. The winning condition is defined below:
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Definition 17. [Winning Conditions – CS Game.] We say an adversary A breaks the channel

security of a 3-(S)ACCE protocol, if it terminates the channel security game by outputting a tuple

consisting of a party instance πj
i and a bit b′ such that:

• πm
i is fresh with partner Pj;

• πm
i .b = b′.

The advantage of the adversary A is defined as follows:

AdvCSΠ (A) :=
∣

∣Pr[A wins the CS game]−
1

2

∣

∣,

where the probability is taken over the random coins of all the NP parties in the system.

Accountability (Acc). In the accountability game the adversaries interacts arbitrarily with the

challenger by means of all the oracles presented in the previous section. Finally, A halts by

outputting a “Finished” string to its challenge. The adversary A wins if there exists an instance

πm
i of a client Pi such that the following winning condition applies.

Definition 18. [Winning Conditions – Acc.] We say that an adversaryA breaks the accountabil-

ity for instance πm
i of Pi ∈ C, if:

• πm
i .α = 1 such that πm

i .pid = Pj .name for an uncorrupted Pj ∈ S;

• There exists no instance πn
j ∈ Pj .Instances such that πn

j .ck = πm
i .ck;

• There exists no probabilistic algorithm S polynomial in a given security parameter of the

model, such that when S is given the view of Pj (namely all instances πn
j ∈ Pj .Instances

with all their attributes), S outputs πm
i .ck.

The adversary’s advantage is defined as its winning probability, i.e.:

AdvAccΠ (A) := Pr[A wins the Acc game],

where the probability is taken over the random coins of all the NP parties in the system.

Content Soundness (CSound). In the content soundness game, the adversary A can once again

query oracles arbitrarily, and ends the game with a “Finished” message to the challenger. The

adversary wins if there exist: a client instance πm
i and a content ω such that A will break the

soundness of that content in the definition below.

Definition 19. [Winning Conditions – CSound.] We say an adversary A breaks soundness

of an arbitrarily fixed context ω an 3-(S)ACCE protocol if there exists a client-instance πm
i ∈

Pi.Instances for Pi ∈ C and πm
i .α = 1, and there exists no server-instance πℓ

u of a party Pu ∈ S

such that: πm
i .pid = Pu.name, ω ∈ Ωu, and πm

i .sid = πℓ
u.sid, and the following conditions

simultaneously hold:

• ω ∈ πm
i .recτ ;

• there exists no instance πp
k of a party Pk such that πm

i .sid = πp
k.sid and, by defining Ωk :=

{ω̂ : RegParty(Pk,Ω, ·) queried and ω̂ ∈ Ω}, it holds that ω ∈ Ωk;

• it holds that any party Px such that RegParty(Px,Ω, ·) was queried, with ω ∈ Ω, Px is

uncorrupted.
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• Furthermore, it holds that no party Py such that RegParty(Py,Ω, “Server′′) was queried,

with ω ∈ Ω, is corrupted.

The adversary’s advantage is defined as its winning probability, i.e:

AdvCSoundΠ (A) := Pr[A wins the CSound game],

where the probability is taken over the random coins of all the NP parties in the system.

5.3 Proxied TLS Connection: Keyless SSL

5.3.1 The Keyless SSL Protocol

The TLS protocol supports many versions, extensions, and ciphersuites. Each TLS connection

begins with a handshake that negotiates the version and other protocol parameters and then exe-

cutes an authenticated key exchange. In this section, we give a description of the proxied TLS in

Keyless SSL.

In proxied TLS, the client C wants to connect to a server S and is instead redirected to a

geographically close CDN edge server (or middlebox) MB that serves cached content from S .

The server S trusts MB enough to allow it to decrypt requests and encrypt responses for this

content. However, unlike in classical CDNs, S does not want MB to impersonate it indefinitely;

instead, S wants to keep some control over its long-term private keys.

Client Middlebox Server

Generate NC←R{0, 1}
28·8

NC−−−−−−−→ Generate NMB←R{0, 1}
28·8

Mutually-authenticated TLS
←−−−−−−−−−−−−−−−−→

Check CertS

NMB ,CertS←−−−−−−−−

Compute pmk←R{0, 1}
46·8

Compute KEC ← Encpk(pmk)

KEC−−−−−−→
KEC=======⇒ Compute pmk← Decsk(KEC)

pmk
⇐=======

Compute msk← PRFpmk(L1,NC‖NMB)
Compute ck← PRFmsk(L2,NMB‖NC)

Compute msk← PRFpmk(L1,NC‖NMB)
Compute ck← PRFmsk(L2,NMB‖NC)

Compute FinC ← PRFmsk(L3, τ)
AEck(FinC)========⇒ Decrypt and check FinC

Compute FinMB ← PRFmsk(L4, τ)

Decrypt and check FinMB

AEck(FinMB )⇐=========

Record layer: application data
AEck(−)⇐=======⇒ Record layer: application data

Figure 5.6: The Keyless SSL architecture as implemented by Cloudflare using TLS-RSA.

In both TLS-RSA and TLS-DHE, the server authenticates by proving possession of its certifi-

cate private key, using it to either decrypt some secret (TLS-RSA) or to sign some value (TLS-

DHE). The key observation of proxied TLS, as originally developed by CloudFlare as Keyless

SSL is that the middlebox MB does not need to be given the server’s private key as long as it can

query the latter when it needs to decrypt or sign some value with the private key.

This leads to the design in Figure 5.7. The client C and middlebox MB execute a standard

TLS-RSA or TLS-DHE handshake, where MB uses S’s certificate. In TLS-RSA, C sends a client

key exchange message KEC containing the encrypted pmk and MB forwards it to S’s key server,

which decrypts and returns pmk to MB . In TLS-DHE, MB generates the DHE keypair, composes

the hashed value sv that needs to be signed, and sends it to S’s key server, which signs and returns

the signature. All other computations are performed by MB with no assistance from S .
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The queries from MB to the key server S are performed over a mutually-authenticated TLS

channel. CloudFlare issues a client certificate (with a distinguished issuer) to each edge server

MB , and a key server certificate to each S .

Keyless SSL is engineered for high performance. Most of the computation can be performed

by edge servers; the key server can remain oblivious of the details of TLS. The additional cost of

proxying is reduced to a single round-trip between the edge server and the key server. Furthermore,

by using session resumption, the edge server can use the same master secret msk over many TLS

connections with the same client, without needing to recontact S.

Client Middlebox Server

Generate NC←R{0, 1}
28·8

NC−−−−−−−→ Generate NMB←R{0, 1}
28·8

Mutually-authenticated TLS
←−−−−−−−−−−−−−−−−→

Check CertS

NMB ,CertS←−−−−−−−−
Generate v←RZp

Compute KEMB ← (p‖g‖gv mod p)
Compute sv← H(NC‖NMB‖KEMB)

sv
======⇒ Compute PSign← Signsk(sv)

PSign
⇐=======

Check PSign over NC ,NMB ,KEMB

KEMB ,PSign←−−−−−−−−
Generate u←RZp

Compute KEC ← gu (mod p)
Compute pmk← (KEMB)

u mod p

KEC−−−−−−−→ Compute pmk← (KEC)
v mod p

Compute msk← PRFpmk(L1,NC‖NMB)
Compute ck← PRFmsk(L2,NMB‖NC)

Compute msk← PRFpmk(L1,NC‖NMB)
Compute ck← PRFmsk(L2,NMB‖NC)

Compute FinC ← PRFmsk(L3, τ)
AEck(FinC)========⇒ Decrypt and check FinC

Compute FinMB ← PRFmsk(L4, τ)

Decrypt and check FinMB

AEck(FinMB )⇐=========

Record layer: application data
AEck(−)⇐=======⇒ Record layer: application data

Figure 5.7: The Keyless SSL architecture as implemented by Cloudflare: TLS-DHE.

5.3.2 Security Goals of Keyless SSL

The security goals for Keyless SSL were informally described in [101], where the authors observed

that the addition of the third party MB necessitated a few new security goals.

In classic 2-party TLS with server-only authentication, as long as a server’s private key is kept

secret, we expect (i) server-to-client authentication, which says that the attacker cannot imper-

sonate the server or otherwise interfere in handshakes between honest clients and the server, and

(ii) channel security, which says that the attacker cannot read, alter, or insert application data on

connections between an honest client and an honest server. These goals must hold in a threat model

in which the attacker controls the network and any number of dishonest clients and malicious or

compromised servers. Many variants of these goals have been previously formalized and proved

for TLS. In this paper, we assume that classical TLS satisfies them.

In proxied TLS, the main new threat is that we need to consider malicious or compromised

middleboxes MB . In “classic” CDNs, MB holds a long-term private key identifying S , and MB

uses it on S’s behalf on the C–MB side of the TLS-connections. So, any attack that leaks secrets

stored at MB (e.g., HeartBleed) could compromise this private key and allow the adversary to then

impersonate S .

In Keyless SSL, the server keeps the private key and may even store it securely in a hardware

security module. So, the real threat is from attackers who learn the private key of some middlebox

MB and use it to query the key server and thereby impersonate the server. The key goal is that

once the key server learns of this compromise and de-authorizes the middlebox’s certificate, the

attacker should not be able to interfere with connections any longer.
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To reflect this intuition, [101] presents three goals for proxied TLS. The first two, key-server-

to-client and edge-server-to-client authentication, generalize the authentication goals to three par-

ties. The third generalizes channel security:

The adversary cannot read or insert messages on the authenticated encryption channel

between the client and edge server, provided that the client and edge server’s session

keys were not compromised, and the long-term private key of the origin server that

the client thinks it is talking to was not compromised, and no edge server’s private key

was compromised between the time when the client sent its first message and accepts.

That is, the confidentiality and integrity of a proxied TLS connection is guaranteed only if the

server’s private key is kept secret, and also only if all middleboxes’ private keys are secret until

the end of the handshake.

Are these new security definitions adequate? Does Keyless SSL satisfy them? [101] presents

informal arguments about why these properties hold in Keyless SSL. In the rest of this section, we

seek to answer these questions through a detailed cryptographic analysis. But first, we show that

even with the informal definitions above, Keyless SSL is vulnerable to important attacks.

A Middlebox Attack on Keyless TLS-RSA. As discussed earlier, TLS-RSA does not provide

forward secrecy, so if the server’s private key is compromised, the adversary can decrypt previously

recorded connections. In Keyless SSL, if we assume that the server’s private key is kept secret,

we should normally not have to worry about forward secrecy. However, we still need to consider

compromised middlebox.

Suppose an attacker records all the messages in a proxied TLS-RSA connection between C,

MB , and S . Much later, suppose that the attacker compromises the private key for some middlebox

MB
′ that is authorized to query the key server S. The attacker can use this private key to establish

a mutually-authenticated connection with S , it can ask S to decrypt the encrypted pmk for any

previous connection and thereby decrypt its contents. This attack directly contradicts the channel

security property of [101] presented above, since we only compromised the edge server after the

connection was complete. (The authors of [101] acknowledged this attack and are seeking to fix

their definition.) The attack can either be read as a forward secrecy attack (MB compromised

after the connection is complete) or a cross-middlebox attack (MB
′ is compromised to break C’s

connection with MB ).

The attack is particularly worrisome for CDNs because it means that an attacker who compro-

mises some edge server in country A will then be able to decrypt all prior TLS-RSA conversations

recorded in any country B. This emphasizes the new risks of proxied TLS: it strictly reduces the

security of client-server connections by increasing the attack surface to include middleboxes dis-

tributed around the world. We are also in discussions with CloudFlare to fix this attack; all fixes

require the key server to do more than just act as a decryption oracle. For example, a minimal fix

for the attack would be for the key server to generate the server nonce NS and then, when the edge

server queries it with the two nonces and the encrypted pmk, it directly derives the msk and re-

turns it. This ensures that a compromised MB cannot make decryption queries on old connections

(since NS will be different).

A Cross-Protocol Attack on Keyless TLS-DHE. Proxied TLS-DHE in Keyless SSL is vulnerable

to a different attack that also relies on using the key server as an oracle. The key server is willing

to sign any hashed value that the middlebox MB provides. Even if the key server wanted to, it

could not check that the value it is signing is the hash of a valid TLS-DHE server key exchange

message (KEMB ). This leads to a cross-protocol attack between Keyless SSL and QUIC.

The QUIC protocol4 was proposed as a faster alternative to TLS 1.2 by Google and it is trans-

4See https://www.chromium.org/quic

https://www.chromium.org/quic
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parently used (instead of TLS) on most HTTPS connections from the Chrome web browser to

servers that support it. QUIC servers reuse the same X.509 server certificates as TLS to execute

a handshake similar to TLS-DHE. However, instead of per-connection signatures, QUIC requires

each server to sign a long-term server configuration message SCFG that contains a semi-static

Diffie-Hellman key. Once a client has obtained and cached a signed SCFG, it can use it for many

connections to the server, without needing any new server signatures, until the configuration ex-

pires.

The format of the signed value in QUIC is quite different from that of TLS. For example,

the signed value begins with the ASCII string "QUIC server config signature". This

value is first hashed using SHA-256 and then signed, using ECDSA, for example. The key obser-

vation that leads to our attack is that once the signed values in QUIC or TLS are hashed, the key

server cannot tell the difference between them.

Suppose the attacker has compromised the private key of some middlebox MB . It then com-

poses a QUIC SCFG message containing its own Diffie-Hellman public value and a large expiry

time (264 − 1 seconds). It sends this message to the key server, which will sign it thinking it is

signing for a TLS-DHE handshake. The attacker can now pretend to be a QUIC server for S un-

til the configuration expires, even though S never intended to support QUIC. De-authorizing the

middlebox does not stop this attack.

The flaw in Keyless SSL that enables this attack is that the key server blindly signs messages

without checking them. For example, the attack is prevented if MB provides the client nonce and

key exchange value to the key server S, and S generates the server nonce and compiles the value

to-be-signed before hashing and signing it.

The Problem with Session Resumption. Once a client has established a TLS session with a

server, it does not have to redo the full handshake on new connections. Instead, it can rely on an

abbreviated handshake, comm only called session resumption, that relies on the client and server

storing the master secret msk and other parameters of previously established sessions. A variant

called session tickets allows servers to offload session storage to clients.

The extensive use of session resumption in modern web browsers is crucial to the efficiency

of Keyless SSL, since it means that for a majority of connections, the edge server need not contact

the origin server. However, resumption also allows an adversary who has compromised an edge

server to create a session ticket with a long expiry time, and thereafter impersonate the server

on resumed connections until the session expires, even if the origin server de-authorizes the edge

server immediately. This attack is difficult to prevent without changing the way web browsers

work, and so for strong security against malicious middleboxes, we forbid session resumption in

proxied TLS, except in special cases.

Towards a Stronger Security Definition. We have described two concrete attacks that break the

intended security goals of Keyless SSL. Before fixing Keyless SSL, however, it is worth asking if

the original goals were the right ones in the first place, or whether they are too weak and need to

be strengthened.

The channel security definition from [101] quoted above only applies if none of the middlebox

private keys is compromised. Suppose an honest client managed to connect to an uncompromised

middlebox MB in country A. The definition says that this connection is not guaranteed to be

secure if the attacker can compromise some edge server MB
′ in any country B. However, it seems

valuable to strengthen the goals to require security for connections to honest middleboxes even if

other middleboxes were compromised.

The authentication goals in [101] are also quite weak. The client authenticates the key server,

the edge server authenticates the key server, but there is no guarantee that the client and edge

server agree on the identity of the key server. That is, the definitions allow the case where the
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client thinks it is connected to S via MB but MB thinks it is connected to S ′. In the CDN context,

MB would then be serving content from S ′ (instead of S) to C, and this becomes a serious attack

which is not forbidden by the authentication goals.

More generally, extending two-party secure channel definitions to three-party scenarios like

proxied TLS requires close attention or it may leave gaps that miss new attacks. Over the next two

sections, we explore and present a formal definition for proxied TLS that attempts to close these

gaps.

5.4 Our variant of Keyless SSL Protocol: KeylessTLS1.2

Keyless SSL is not 3-(S)ACCE-secure. The attack on TLS-RSA in Section 5.3.2 breaks our chan-

nel security definition, since a malicious middlebox MB
′ can decrypt connections to an honest

middlebox MB . Similarly, a malicious middlebox can confuse a honest middlebox about the

identity of the server, breaking entity authentication. Session resumption breaks accountability.

5.4.1 Achieving 3-(S)ACCE-security for Keyless SSL

In this section, we introduce a 3-(S)ACCE-secure variant of Keyless SSL, which will preserve the

general infrastructure of the original protocol, in the keyless architecture. In this description, we

focus mainly on the differences between this variant and the original Keyless SSL protocol.

A more extensive PKI. In the original Keyless SSL architecture, whenever a middlebox registers

with the server, for any content, the server forwards the same certificate, which we denote as

CertMB ,S . However, in order to ensure content soundness and entity authentication, we need

servers to issue one public key (with a corresponding certificate) for each subcontent ω and for

each middlebox authorized to deliver that subcontent. We denote a certificate associated with a

server Pj which is used by a middlebox Pk for some content ω as CertωPk,Pj
.

Client Middlebox Server

HTTPS req. for ω∈ΩS

←−−−−−−−−−−−−→

Generate NC←R{0, 1}
8·28

Generate N∗
MB

Compute msk∗, ck∗

Compute ek ← Gmsk∗(N
∗
MB

,N∗S).

Mutually-authenticated TLS
←−−−−−−−−−−−−−−−−→

Generate N∗S
Compute msk∗, ck∗

Compute ek ← Gmsk∗(N
∗
MB

,N∗S).

NC−−−−−−−−→
Req. pars for ω

=============⇒ Generate NS←R{0, 1}
8·28

Set NMB ← NS

NS⇐===========

Check CertωMB,S

NMB ,Cert
ω
MB,S

←−−−−−−−−−−
Compute KEC ← Encpk(pmk)
Compute pmk←R{0, 1}

46·8

KEC−−−−−−−−→

Compute msk, ck, FinC , ΓC such

that:

msk← PRFpmk(L1,NC‖NMB)
ck← PRFmsk(L2,NMB‖NC)

FinC ← PRFmsk(L3, τ)

AEck(FinC)−−−−−−−−→
τ :=τ[NC,AEck(FinC)]

==============⇒

Check Certω
MB ,S

Decrypt and Check FinC .

Decrypt and Check FinS .
AEck(FinS)←−−−−−−−−

kblind,AEck(FinS)⇐=============
Compute pmk, msk, ck as the

client.

Compute kblind ← ck⊕ ek and

FinS ← PRFmsk(L4, τ)

Record layer messages
AEck(−)⇐=======⇒ Record layer messages

Figure 5.8: An 3-(S)ACCE-secure variant of Keyless SSL: TLS-RSA

The protocol description. We depict our 3-(S)ACCE-secure variant of Keyless SSL in Figure

5.9. We list some key elements of this protocol below.
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An export key ek. We begin by describing the handshake between the middlebox and the server.

In Keyless SSL this is a generic 2-ACCE-secure protocol; in our design we use a TLS handshake,

and then compute an export key ek, which is computed as the result of a pseudorandom function

G which is independent of the one used in the TLS handshake itself. We key this function with

the master secret used in the TLS handshake between the middlebox and the server, and use it on

input the nonces used in that session. For this type of protocol, Brzuska et al. [55] proved that ek
is indistinguishable from random from any party other than the two protocol participants.

The key share KEMB . In the traditional Keyless TLS-DHE architecture, the middlebox always

generates its own key share KEMB and sends a hash of that and other values to the appropriate

server to certify. In our new design, it is the server that generates the key share. This is essential in

order to achieve accountability: if the middlebox were able to generate msk, it could use session

resumption in a future session, thus winning the accountability game. Note that the server has

already run a handshake with the middlebox at this point, and the server has verified the identity

of its partner. The middlebox forwards the content ω requested by the client and the two session

nonces used in the client-middlebox session; then the server generates the signature of the public

key certified in Certω
MB ,S .

Computing the channel key. In DHE mode, the server now holds the private DH exponent to the

key share KEMB . After the middlebox receives (in its session with the client) the client’s key

share KEC and the Finished message ΓC , it transmits the entire session transcript to the server.

The latter verifies: that the nonces in the transcript are those received earlier; that the certificate

used by the middlebox in that transcript is the correct one, and finally, that the client’s Finished

message verified (note that the server can compute pmk, msk, and the channel key ck locally).

Finally, the server also computes the Finished message on behalf of the middlebox, and encrypts

and authenticates it.

In TLS-RSA mode, the client chooses pmk and sends it to the middlebox, encrypted with

the received certified public key. The middlebox forwards the entire session transcript up to,

and including, the client’s encrypted Finished message. The server checks that the certificate is

compatible with the querying middlebox’ authentication information (certificate). Then it obtains

pmk by decrypting under the secret key corresponding to the certificate the middlebox forwarded.

After computing msk and ck, the server verifies the validity of the client’s Finished message. Upon

successful verification, the server computes and sends the encrypted Finished message the client

expects from the middlebox.

Blinding the key. In both modes, the server will first blind the computed channel key ck with the

export key ek, thus sending the encrypted Finished message and ek ⊕ ck to the middlebox, who

will recover the value ck and use the Finished message. In particular, the blinding is necessary

in the security proof in order to reduce the security of our variant to the 2-(S)ACCE security of

TLS (we will need to simulate the encrypted messages so that they are consistent with what the

adversary expects).

5.4.2 The Security Analysis of the KeylessTLS1.2

In this section, we proved the entity authentication, secure channel, accountability and content

soundness properties under some classic properties of the internal cryptographic functions and the

proved mEA- and 2-(S)ACCE-security of the unilaterally-authenticated and mutually-authenticated

TLS 1.2 handshakes.

The security statement. We state the following informal security statement, proving the security

of the KeylessTLS1.2 protocol. We begin by noting that, following the results of Brzuska et

al. [55], if G is a PRF that is independent from the key-derivating PRF used in TLS, then the keys

ek computed by the middlebox and the server are indistinguishable from random. Furthermore,
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Client Middlebox Server

HTTPS req. for ω∈ΩS

←−−−−−−−−−−−−→

Generate NC←R{0, 1}
8·28

Generate N∗
MB

Compute msk∗, ck∗

Compute ek ← Gmsk∗(N
∗
MB

,N∗S).

Mutually-authenticated TLS
←−−−−−−−−−−−−−−−−→

Generate N∗S
Compute msk∗, ck∗

Compute ek ← Gmsk∗(N
∗
MB

,N∗S).

NC−−−−−−−−→
Req. pars for ω

=============⇒ Generate NS←R{0, 1}
8·28

Set NMB ← NS

NS⇐===========

Check CertωMB,S

NMB ,Cert
ω
MB,S

←−−−−−−−−−−
NC============⇒

Check PSign over NC ,NMB ,KEMB

KEMB ,PSign←−−−−−−−−− Check PSign over NC ,NMB ,KES
KEMB ← KES

KES ,PSign⇐=============

Generate v←RZp

Compute KES ← (p‖g‖gv mod p)
sv ← H(NC‖NMB‖KES) and

PSign← Signsk(sv)
Retain NC ,NMB ,KES ,PSignGenerate u←RZp

Compute KEC ← gu (mod p)
Compute pmk← (KEMB)

u mod p

KEC−−−−−−−−→

Compute msk, ck, FinC , ΓC such

that:

msk← PRFpmk(L1,NC‖NMB)
ck← PRFmsk(L2,NMB‖NC)

FinC ← PRFmsk(L3, τ)

AEck(FinC)−−−−−−−−→
τ :=τ[NC,AEck(FinC)]

==============⇒ Check τ

Check Certω
MB ,S

Decrypt and Check FinC .

Decrypt and Check FinS .
AEck(FinS)←−−−−−−−− Store ck := ek ⊕ kblind

kblind,AEck(FinS)⇐=============
Compute pmk, msk, ck as the

client.

Compute kblind ← ck⊕ ek and

FinS ← PRFmsk(L4, τ)

Record layer messages
AEck(−)⇐=======⇒ Record layer messages

Figure 5.9: An 3-(S)ACCE-secure variant of Keyless SSL: TLS-DHE.

the TLS 1.2 protocol with unilateral authentication was proved to attain 2-SACCE security by

Krawczyk et al. [81]; they also proved the same protocol was 2-ACCE-secure.

Theorem 32. [EA-security of KeylessTLS1.2.] Let Π be our 3-(S)ACCE variant of Keyless SSL,

KeylessTLS1.2, let P be the unilaterally-authenticated TLS 1.2 handshake, P ′, the mutually-

authenticated TLS handhsake between middlebox and servers, P ′′, a mix between unilaterally-

authenticated and mutually-authenticated 2-party TLS handshake, and Ψ, the transformation of

P ′ to an AKE protocol by the computation of the export key ek. Consider a (t,q)-adversary A
against the EA-security of the protocol Π running at most t queries and creating at most q party

instances per party. We denote by nP the number of parties in the system, and denote A’s ad-

vantage by AdvEAΠ (A). If such an adversary exists, then there exist adversaries A1 against the

SACCE security of P , A2 against the ACCE security of P ′, A3 against the AKE security of the

EAP-TLS protocol composed as Ψ(P ′) with resulting export key ek,A4 against the M-EA security

of P ′′ and either: (for TLS-DHE)A5 against the existential unforgeability (EUF-CMA) of the sig-

nature algorithm used to generate PSign and A6 against the hash function H , or (for TLS-RSA)

A5 against the channel security of P , each adversary running in time t′ ∼ O(t) and instantiating

at most q′ = q instances per party, such that

• For TLS-DHE:

AdvEAΠ (A) ≤ 2nP
2 · AdvACCEP ′ (A2) + nP

3 · AdvSACCEP (A1) + AdvC.ResH (A6)

+nP · Adv
Unf
Sign(A5) + nP

3 · AdvAKEΨ (A3) + nP
3 · AdvM−EA

Π′′ (A4).

• For TLS-RSA:

AdvEAΠ (A) ≤ 2nP
2 · AdvACCEP ′ (A2) + nP

2 · AdvSACCEP (A1) + nP
3AdvAKEΨ (A3)

+nP
2 · AdvCS−SACCE

P (A5) + nP
3 · AdvM−EA

Π′′ (A4).

Proof. Our proof has the following hops:
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Game G0: This game works as the EA- game stipulated in Section 5.2.3.

Game G1: This is the same game as the EA-game, except that if the adversary can no longer win

if its winning instance πm
i belongs to a server, i.e., Pi ∈ S. We argue that the security loss in

this game hop corresponds to nP
2 · AdvACCEP ′ (A2), accounting for the fact that the reduction must

guess the identity of the server that will maliciously accept, and of the middlebox that is being

impersonated. Indeed, we note that in our EA definition, the only way the adversary can win if Pi

is a server is if the accepting instance πm
i for which A wins has to accept for πm

i .pid = Pj .name

with Pj ∈MB. Thus,

|Pr[AG0
wins]−Pr[AG1

wins]| ≤ nP
2 · AdvACCEP ′ (A2)

Game G2: This game behaves as G1, except we now rule out the possibility that Pi is a middlebox.

Notably, if that is the case, then its partner only be a server (Pj ∈ S). In a similar way as in the

previous reduction, we can reduce this to the 2-ACCE-EA security of P ′, namely,

|Pr[AG1
wins]−Pr[AG2

wins]| ≤ nP
2 · AdvACCEP ′ (A2).

Game G3: We recall that in this game, the adversary may only win against an instance πm
i of

a client P ∈ C. In this game, we rule out the possibility that πm
i .pid = Pj .name such that Pj

is a server, such that there exists an instance πn
j such that πm

i .sid = πn
j .sid. In other words, we

are ruling out the possibility of the adversary winning in a direct client-server handshake. In this

game-hop we lose nP
2 · AdvSACCEP (A1), accounting for the 2-SACCE security in the client-server

handshake (namely P ):

Pr[AG2
wins] ≤ Pr[AG3

wins] + nP
2 · AdvSACCEP (A1).

We note that at this point, G3 corresponds to G0 with the restriction that Pi is a client and the

targeted instance πm
i has the related partnering: πm

i .pid = Pj .name with Pj ∈ S and such that

there exists some middlebox Pk and an instance πp
k such that πp

k and πm
i are 2-partnered (they have

the same session ID).

Winning game G3: In this game, we rely quite strongly on the fact that the server Pj , which is

uncorrupted, provides distinct certificates per middlebox, per content. For one fixed content ω, the

implication is that if Pk and another middlebox Px both registered for ω with the same server Pj ,

then the public keys and the certificates used by Pk,Px on behalf of Pj are different.

We first prove that, more than just having a middlebox for a real partner and a server for the

intended partner, it also holds that: there exists a matching instance πℓ
k such that πℓ

k and πn
j are

also 2-partnered, and furthermore, πm
i .ck = ϕ(πn

j .pck, π
m
i .τ). In this case, we recall that the part-

nering in 3-(S)ACCE implies that πm
i .PSet = {Pi,Pj ,Pk} and πm

i .InstSet = {πm
i , πn

j , π
p
k, π

ℓ
k}.

• TLS-DHE To begin with, we focus on the transcript of πm
i . Assume that this transcript yields

the certificate(and public key) CertωPk,Pj
. We first rule out the possibility that another party Px

as above, is able to maliciously authenticate to Pi using that certificate. We already ruled out the

possibility that Px impersonates Pk to Pj during the middlebox-server handshake. We now rule

out the possibility that the client accepts Px as though it were Pk, which is bounded, first by the

collision-resistance of the hash function H (AdvC.ResH (A6)), and secondly, by the unforgeability

in the signature PSign (nP · Adv
Unf
Sign(A5)), accounting for getting which party the signature is

generated for.

• TLS-RSA In this setting, the equivalent security is guaranteed by the fact that the encryption is

under the public key of the purported partner Pk of πm
i . We have already ruled out middlebox im-

personations to the server, which leaves, as an only option, having a party that is not Pk decrypt the

encrypted pre-master key. We can build a reduction to the SACCE security of the underlying pro-

tocol P , such that the adversary can learn the secret bit of instance πm
i (by learning the pre-master

secret and then computing the channel key). The security loss is given by nP
2 ·AdvSC−SACCE

P (A5)
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We now resume our proof. We first fix the three parties Pi,Pj ,Pk, and lose a factor nP
3.

We also note that the EA definition stipulates that no Reveal query can be made on the instances

in πm
i .InstSet. An intermediate reduction is that, for instances πℓ

k and πn
j as above, we claim that

the keys ek these parties compute are indistinguishable from random (as indicated by the AKE

property of Ψ(P ′)). Thus, we lose here a term AdvAKEΨ (A3).
We then reduce the remaining winning probability to the M-EA property of P”. The M-EA

security game simulates simultaneously unilateral server- and mutual authentication TLS hand-

shake sessions. To prove the security reduction, we propose to simulate the security game from

the M-EA security game. The most important point in the simulation is the instantiation of the

3-(S)ACCE parties and instances. The servers are defined as a server party in the M-EA game

and clients are defined as a client party in the M-EA game. Let πm
i the instance of a client, πn

j an

instance of a server and πs
k an instance of a middlebox. Three kind of communications have to be

simulated by the M-EA security game:

- A two-party communication between a client instance πm
i and a server instance πn

j : This

communication is simulated as a 2-SACCE communication. These instances are initialized

in G3 with requests NewSession(πm
i , init, πn

j .pid) and NewSession(πn
j , resp, π

m
i .pid). With

the game GM−EA, there are simulated with respectively the queries NewSession∗(πm
i , init,

πn
j .pid, 0) and NewSession∗(πn

j , resp, π
m
i .pid, 0).

- A two-party communication between a middlebox instance πs
k and a server instance πn

j : This

communication is simulated as a 2-ACCE communication. These instances are initialized in

G3 with requests NewSession(πs
k, init, π

n
j .pid) and NewSession(πm

i , resp, πs
k.pid). With

the game GM−EA, there are simulated with respectively the queries NewSession∗(πs
k, init,

πn
j .pid, 1) and NewSession∗(πn

j , resp, π
s
k.pid, 1).

- A three-party communication between a client instance πm
i , a middlebox instance πs

k and

a server instance πn
j : This communication is simulated as a 2-SACCE communication.

Since the middlebox does not use its own certificate and parameters, but use the parame-

ters of the server to establish the key-agreement, the communication can be simulated by a

communication between client and server. Two queries NewSession∗(πm
i , init, πn

j , 0) and

NewSession∗(πn
j , resp, π

m
i , 0) are required to instantiate the session.

Let nP = nc+ns+nmb, the number of the party with nc the number of client party, nmb the number

of middlebox party and ns the number of server party. With this reduction, the game GM−EA has

to simulate ns server’s party and nc + nmb client’s party.

For all the others queries (Reveal, Send and Corrupt), the simulation works as in the M-EA

case on the related instances. We note that a peculiarity occurs for the Send oracle, since in

order to simulate correctly the record-layer transcript of the middlebox-server session between πℓ
k

and πn
j , the M-EA-adversary will query Reveal on this session (this is allowed in the EA game)

and simulate the encryption and decryption oracles. In particular, to simulate sending: (ek ⊕
ck,ΓS), the M-EA-adversary chooses at random a value r and encrypts r,ΓS , sending this to the

middlebox.

This simulation is perfect. In particular, this is guaranteed by the earlier reduction concerning

the indistinguishability from random of the blinding keys ek. If the adversary AG3
wins for some

session πm
i , then A1 verifies if there exists a unique instance πp

k such that πm
i .sid = πp

k.sid. If not,

thenA1 will have πm
i as its own winning instance; else, it must be thatA3 will find an instance πn

j

of Pj holding the pre-channel key corresponding to πm
i .ck, but such that there exists no matching,

unique πℓ
k, also holding that pre-channel key, so that πℓ

k, π
n
j are 2-partnered; in that case, A3 wins.

This concludes the proof and yields the indicated bound.
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Theorem 33. [CS-security of KeylessTLS1.2.] Let Π be our 3-(S)ACCE variant of Keyless SSL,

KeylessTLS1.2, let P be the unilaterally-authenticated TLS 1.2 handshake, P ′, the mutually-

authenticated TLS 1.2 handhsake between middlebox and servers, P ′′, a mix between unilaterally-

authenticated and mutually-authenticated 2-party TLS handshake, and Ψ, the transformation of

P ′ to an AKE protocol by the computation of the export key ek. Consider a (t,q)-adversary A
against the CS-security of the protocol Π running at most t queries and creating at most q party

instances per party. We denote by nP the number of parties in the system, and denote A’s advan-

tage by AdvCSΠ (A). If such an adversary exists, then there exist adversariesA1 against the SACCE

security of P , A2 against the ACCE security of P ′, A3 against the AKE security of the EAP-TLS

protocol composed as Ψ(P ′) with resulting export key ek, A4 against the M-EA security of P ′′,

A5 against the AE security of P with the computed channel keys, A6 against the AE security of

P ′ given the computed keys and either: A7 against the existential unforgeability (EUF-CMA) of

the signature algorithm used to generate PSign andA8 against the collision resistance of the hash

function H (for TLS-DHE), orA7 against the channel security of P (for TLS-RSA), each adversary

running in time t′ ∼ O(t) and instantiating at most q′ = q instances per party, such that

• For TLS-DHE:

AdvCSΠ (A) ≤ 2nP
2AdvACCEP ′ (A2) + nP

2AdvSACCEP (A1) + nPAdv
Unf
Sign(A7) + AdvC.ResH (A8)

+ nP
3(AdvAKEΨ (A3) + AdvM−EA

Π′′ (A4) + AdvaeP (A5) + AdvaeP ′(A6)).

• For TLS-RSA:

AdvCSΠ (A) ≤ 2nP
2AdvACCEP ′ (A2) + nP

2 · AdvSACCEP (A1) + nP
2AdvCS−SACCE

P (A7)

+ nP
3(AdvAKEΨ (A3) + AdvM−EA

Π′′ (A4) + AdvaeP (A5) + AdvaeP ′(A6)).

Proof. Our proof has the following hops:

Game G0: This game works as the CS-game stipulated section 5.2.3.

Games G0-G3: We make similar successive reductions as in the previous proof to obtain the

game G3 which behaves as the original game but with the restriction that Pi is a client, and for

the targeted instance πm
i it holds that: πm

i .pid = Pj .name with Pj ∈ S and such that there exists

some middlebox Pk and an instance πp
k such that πp

k and πm
i are 2-partnered (they have the same

session ID).

The loss through to game G3 is as follows:

Pr[AG2
wins] ≤ Pr[AG3

wins] + nP
2 · AdvSACCEP (A1) + 2nP

2 · AdvACCEP ′ (A2).

Winning game 3: This proof goes similarly to the one before, except that in the simulation

of adversaries A1 and A2 we use a simulation akin to that of the CS-game simulating party as

the previous proof and additionally, in particular with respect to simulating the encryption and

decryption queries which have been included in the simulation. The total success probability of

the adversary is given by:

• For TLS-DHE:

Pr[AG3
wins] ≤

1

2
+ nP

3 · (AdvAKEΨ (A3) + AdvM−EA
Π′′ (A4) + AdvaeP (A5)

+ AdvaeP ′(A6)) + nP · Adv
Unf
Sign(A7) + AdvC.ResH (A8).

• For TLS-RSA:

Pr[AG3
wins] ≤

1

2
+ nP

3 · (AdvAKEΨ (A3) + AdvM−EA
Π′′ (A4) + AdvaeP (A5)

+ AdvaeP ′(A6)) + nP
2 · AdvCS−SACCE

P (A7).
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Theorem 34. [Acc-security of KeylessTLS1.2.] Let Π be our 3-(S)ACCE variant of Keyless

SSL, KeylessTLS1.2, let P be the unilaterally-authenticated TLS 1.2 handshake, P ′, the mutually-

authenticated TLS 1.2 handshake between middlebox and servers, and Ψ, the transformation of P ′

to an AKE protocol by the computation of the export key ek. Consider a (t,q)-adversaryA against

the Acc-security of the protocol Π running at most t queries and creating at most q party instances

per party. We denote by nP the number of parties in the system, and denote A’s advantage by

AdvAccΠ (A). If such an adversary exists, then there exists adversaryA1 against the SACCE security

of P running in time t′ ∼ O(t) and instantiating at most q′ = q instances per party, andA2 against

the existential unforgeability (EUF-CMA) of the signature algorithm used to generate PSign (for

TLS-DHE) such that:

• For TLS-DHE: AdvAccΠ (A) ≤ 2 · nP
2 · AdvSACCEP (A1) + nP

2 · AdvUnfSign(A2).

• For TLS-RSA: AdvAccΠ (A) ≤ 3 · nP
2 · AdvSACCEP (A1).

Proof. Our proof has the following hops:

Game 0: This game works as the Acc- game stipulated section 5.2.3. We say that an adversary

A breaks the accountability for an instance πm
i with Pi ∈ C, if the following conditions are

verified:

(a) πm
i .α = 1 such that πm

i .pid = Pj .name for an uncorrupted Pj ∈ S and πm
i .ck = ck;

(b) There exists no instance πn
j ∈ Pj .Instances such that πn

j .ck = πm
i .ck;

(c) There exists no probabilistic polynomial algorithm S which given the view of Pj (namely

all instances πn
j ∈ Pj .Instances with all their attributes), outputs ck.

Our strategy in this proof is to show that, whenever condition (a) holds, then either the reverse

of (b) or the reverse of condition (c) holds (except with negligible probability). Our ultimate task

will be to construct a simulator that fulfills condition (c). We first rule out a few exceptional cases.

Game G1: The adversary begins by guessing the identities of the targetted client Pi and of the

server Pj such that πm
i is the instance for which accountability is broken, and for which it holds

πm
i .pid = Pj .name. As a consequence, we have:

Pr[AG0
wins] ≤ nP

2 ·Pr[AG1
wins].

There are two cases.

• No middlebox. In this case, we assume that there is no middlebox Pk such that there exists an

instance πp
k with πp

k.sid = πm
i .sid. This implies that either there is a true session between πm

i and

some instance πn
j of Pj (no impersonation takes place), or there was a server impersonation on

Pj . The latter only happens with probability AdvSACCEP (A1). The former implies directly that the

opposite of condition (b) is true, since the TLS 1.2 handshake has perfect correctness.

•With middlebox. In this case, we assume the existence of a middlebox Pk such that there exists

an instance πp
k with πp

k.sid = πm
i .sid. There are two options.

First the middlebox could try to run the handshake on its own (there exist no instances πn
j , π

ℓ
x

such that πm
i .pck is in fact πm

i .ck as per the protocol description). Note that for this first option

it does not necessarily have to hold that πℓ
x is an instance of Pk, i.e, the middlebox talking to the

client. In that case we can construct a reduction from this case to the server-impersonation security

of the protocol P ′ (recall that the honest server Pj cannot be corrupted). In the case of TLS-DHE,

this is equivalent to forging the signature PSign. For TLS-RSA, this is equivalent to decrypting

the premaster secret. We lose a term AdvSACCEP (A1).
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The second option is that there exist instances πn
j , π

ℓ
x such that πm

i .pck is in fact πm
i .ck as

per the protocol description. In this case, the simulator is trivial, namely, the simulator consists in

simply seeking an instance πn
j such that the record transcript of that instance contains the transcript

of πm
i .τ , i.e, the same tuple of nonces, key-exchange elements, and a verifying client finished

message. Output the key ck sent to the middlebox by that instance as the key of πm
i . We also

note that if the client finished message does not verify, then the middlebox has to generate its

own Finished message; if the adversary does that, we can construct a reduction from this game

to the SACCE-security of P ′ (i.e, the standard TLS 1.2 handshake run between the client and the

uncorrupted server), in which the adversary (possibly a collusion of all the malicious middlebox)

simulates all but parties Pi,Pj and will win by outputting the same instance and random sampling

bit as the underlying adversary. Thus, we lose here another term AdvSACCEP (A1).

Theorem 35. [CSound-security of KeylessTLS1.2.] Let Π be our 3-(S)ACCE variant of Keyless

SSL, KeylessTLS1.2, let P be the unilaterally-authenticated TLS 1.2 handshake, P ′, the mutually-

authenticated TLS 1.2 handhsake between middlebox and servers, and Ψ, the transformation of

P ′ to an AKE protocol by the computation of the export key ek. Consider a (t,q)-adversary A
against the CSound-security of the protocol Π running at most t queries and creating at most q
party instances per party. We denote by nP the number of parties in the system, and denote A’s

advantage by AdvCSoundΠ (A). If such an adversary exists, then there exist adversaries A1 against

the SACCE security of P , and A2 against the ACCE security of P ′, each adversary running in

time t′ ∼ O(t) and instantiating at most q′ = q instances per party, such that

AdvCSoundΠ (A) ≤
1

2|ω|
+ AdvSACCEP (A1) + nP

2 · AdvACCEP ′ (A2).

Proof. Our proof has the following hops:

Game 0: This game works as the CSound-game stipulated section 5.2.3. An adversaryAwins this

game on an arbitrarily fixed context ω an 3-(S)ACCE protocol if there exists a client-instance πm
i ∈

Pi.Instances for Pi ∈ C and πm
i .α = 1, and there exists no partner-server-instance πl

u such that

πm
i .pid = Pu.name, Pu ∈ S and πm

i .sid = πl
u.sid, and the following conditions simultaneously

hold:

• ω ∈ πm
i .recτ .

• It holds that any party Px such that RegParty(Px,Ω, ·) was queried, with ω ∈ Ω, Px is

uncorrupted.

• Furthermore, it holds that no party Py such that RegParty(Py,Ω,′ Server′) was queried,

with ω ∈ Ω, is corrupted.

For our security proof, we will split this game in two games G
{1}
0 and G

{2}
0 . The first game

G
{1}
0 considers the case where the partner identifier of the instance πm

i is a server while the second

one considers the case where this partner identifier is a middlebox. Thus we have:

Pr[AG1
wins] = Pr[A

G
{1}
0

wins] +Pr[A
G

{2}
0

wins]

Game G
{1}
0 : We focus on the situation in which the instance πm

i ends in an accepting state with

partner identifier Pk ∈ S.

Game G
{1}
1 : This game behaves as the game G

{1}
0 with the restriction that the partner identifier is

a real server instance (which must be the owner of ω if πm
i finished in an accepting state). Since
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owners of ω cannot be corrupted, it follows that, except for the probability of server-impersonation

towards a client, the true partner is indeed the indicated server.

|Pr[A
G

{1}
0

wins]−Pr[A
G

{1}
1

wins]| ≤ AdvSACCEP (A1)

Winning game G
{1}
1 : We note that at this point, every time a client instance finishes in an accept-

ing state (a pre-requisite of having the content in its record transcript), it holds that there exists

a matching session πs
u such that Pu is the owner of ω and πm

i .sid = πs
u.sid, contradicting the

hypothesis of a winning attack. Thus,

Pr[AG1
wins] = 0

Game G
{2}
0 : We now focus on the situation in which the instance πm

i ends in an accepting state

with partner identifier Pk ∈ MB. We note that all owners of ω are uncorrupted, and so are all

middlebox parties that legitimately registered for that content.

Game G
{2}
1 : A middlebox party may obtain contents in two steps. First, the middlebox registers

for that content; second, it requests this content on the secure channel of a middlebox-server

session. In this game, we rule out the possibility that there exists a middlebox party Px such that

no RegParty(Px,Ω, ·) was made, with ω ∈ Ω was made, which successfully obtains the content

ω via a secure channel with a server Py, which is an owner of that content.

Indeed, this is bounded by the ACCE security of the established channel – first by entity au-

thentication, then by channel security. The reduction follows the usual route, though the adversary

needs to guess the identity of the content owner and that of the impersonated middlebox. This

yields:

Pr[A
G

{2}
1

wins]− Pr[A
G

{2}
2

wins] ≤ nP
2 · AdvACCEP ′ (A1)

Winning game G
{2}
1 : At this point, the adversary has no possibility of delivering the content other

than guessing it, which yields a final term of 1
2|ω| .

5.4.3 Efficiency vs. Security

Our KeylessTLS1.2 proposal has several disadvantages in terms of efficiency with respect to Key-

less SSL. First, the server is involved more heavily in client-middlebox handshakes. In fact, in

KeylessTLS1.2 the middlebox is practically reduced to relaying the handshake between the client

and the server. Most of our modifications are meant to achieve accountability. In particular, we

must both allow the server to compute the master secret and channel keys, and at the same time

prevent the middlebox from calculating those values itself (otherwise the msk can be used for ses-

sion resumption). In addition to computing msk, ck, the server must also verify the client Finished

message, and generate and encrypt FinS on behalf of the middlebox.

Second, we disallow session resumption. An alternative is to relax the accountability definition

requiring servers to only be able to compute the msk for each client-middlebox session (and not

directly the channel key ck). Using TLS 1.2 session resumption is compatible with this relaxation;

however, we cannot recommend using it, since it weakens security against malicious middleboxes.

We also discourage the use of TLS-RSA in Keyless SSL, as this mode is inherently not forward

secure; although TLS-DHE involves more exchanges with the server, it offers a better protection

against malicious middlebox and corruptions.

Third, we need to compute the export key ek to blind the channel-key transmission. In the

proofs, this allows us to simulate the record-layer transcript to an adversary, even when the re-

duction does not know ck. Although not computationally-heavy, this step does deviate from the

standard TLS 1.2 handshake.
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Fourth, we also require a very large certificate infrastructure, with one public key/certificate

per middlebox, per content. A way to reduce that number is to ensure, on the server side, that no

content can be delivered by more than one middlebox. This could, however, significantly decrease

the efficiency of the CDN.

Our design represents one set of trade-offs that favors security over efficiency. Other designs

may choose a different balance. For example, if we want to prevent just the attacks in Section 5.3.2

without attaining full 3-(S)ACCE-security, smaller changes are probably adequate.



Chapter 6

Conclusion & Further Perspectives

This thesis is focused on the secure channel establishment between client and server when a third

intermediate entity acts within the communications. This establishment is based on a correct

execution of an authenticated key exchange protocol, when some session keys are agreed between

endpoints of the channel. Our researches are focused on two specific contexts: the mobile networks

where a secure channel has to be established across the access network and the secure HTTP

communication (HTTPS) where a content delivery to a local entity is required.

In this chapter, we recall the main obtained results for each contexts and how we fulfil our

objectives. We also propose some additional works to do, some others possible leads in each

context.

Mobile Networks. This study starts by a complete overview of the radio access mobile net-

works. Proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and 4G

mobile-network communications, the UMTS-AKA and EPS-AKA protocols are meant to provide

a mutually-authenticated key-exchange between clients and associated serving networks, denoted

servers, to establish a secure channel between clients and local servers, across the radio access

network.

We have formulated requirements with respect to both Man-in-the-Middle adversaries, i.e.

key-indistinguishability and impersonation security, and to local untrusted serving networks namely

state-confidentiality and soundness. Additionally to these security requirements, a paramount re-

quirement is that of client privacy, which 3GPP defines in terms of: user identity confidentiality,

service untraceability, and location untraceability. Moreover, since servers are sometimes un-

trusted (in the case of roaming), the AKA protocols must also protect clients with respect to these

third parties.

We have proved that the unmodified UMTS-AKA protocol attains the security properties as

long as servers cannot be corrupted. Considering client-tracking attacks e.g. by using error mes-

sages or IMSI catchers, some variants of the UMTS-AKA have been proposed, addressing such

problems. We use the approach of provable security to show that these variants, as UMTS-AKA

protocol, still fail to guarantee the privacy of mobile clients.

Additionally to the study of UMTS-AKA protocol, we have proposed a specific analysis of

the EPS-AKA protocol to know if the 4G variant of AKA protocol can guarantee more security

and client privacy than the UMTS-AKA protocol. In this way, we consider the three following

statements: (a) The EPS-AKA protocol guarantees the key-indistinguishability property consider-

ing the ability to corrupt a server, which is not the case of the UMTS-AKA protocol; (b) as the

GSM and UMTS version of the AKA protocol, the EPS-AKA cannot guarantee any kind of user

privacy despite the use of a new temporary identifier; (c) we propose a secure modular variant of

the EPS-AKA protocol providing all the security and privacy requirements and considering some

practical considerations and the cost reductions due to the pre-established EPS architecture.
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We have proposed a first improvement of AKA protocols, which retains most of its structure

and respects practical necessities such as key-management, but which provably attains security and

user privacy with respect to servers and Man-in-the-Middle adversaries. One of the main features

of this improvement is the delete of the resynchronization procedure. Such a remove can imply

some DoS attack based on the desynchronization of clients/operators’ states. We consider that an

additional formal study in Tamarin to study the desynchronization’s ability, is indispensable before

a possible standardization.

Finally, we provide additional practical solution for a possible future standardization and im-

plementation within 5G mobile networks, considering additional lawful and practical issues. Thus,

we have filled two patents, a first one focus on the user identification taking into consideration law-

ful interceptions and a second one focusing on the impact of subscriber key leakage.

Content Delivery Networks. Due to revelations of widespread mass-surveillance by govern-

mental agencies, natural migration appeared from HTTP to HTTPS, to delivery web services and

exchange information across a secure channel. Content delivery networks were introduced as a

large networks of reverse catching proxies to accelerate HTTP delivery. The secure channel es-

tablished in HTTPS communications, is based on the TLS protocol. This protocol is a 2-party

protocol executed between web client and web server. With the act of intermediate proxies, the

TLS protocol cannot be directly implied. The basic option is to have different TLS connection

between each pair of consecutive neighbours along the chain of links in the communication. But

with such an option, proxies can modify and access to the exchanged data and it is not clear that the

security of the several independent TLS handshakes imply the establishment of a secure channel

between endpoints.

A first variant proposed by Cloudfare, is called Keyless SSL [101]. We provide a first full

security overview of the Keyless SSL proposal in the content delivery networks. Considering the

different security requirements from the CDNs context, we also propose a 3-(S)ACCE security

model. Such a security model, we have studied the security of Keyless SSL pointing out dif-

ferent practical and security weaknesses. Thus, we propose an enhanced design of Keyless SSL

guaranteeing the different required security requirements which include TLS 1.2 architecture.

Alternatively to Keyless SSL as an alternative design, multi-context TLS (mcTLS) was intro-

duced in 2015 [91], as mentioned in Chapter 6. Where a middle entity, e.g. a proxy, can mitigate

and/or relay TLS handshake, and record communication between end-users and servers for a vari-

ety of purposes like content filtering, compression, etc. This alternative has no complete security

analysis. We consider as important to analyse the strengths and shortcomings of mcTLS proto-

col checking the AKE and ACCE security considering the specific third intermediate entity as an

important part of the security model.
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Appendix A

Relevant Security Definitions

We recall in this chapter the different security definitions that have been used in our different

security analysis detailed in the different chapters.

A.1 Primitives

A.1.1 Generic functions: pseudo-random functions and permutations.

A pseudo-random function (PRF) is a family of functions with the property that the input-output

behavior of a random instance of the family is computationally indistinguishable from that of a

random function. Consider a function f : {0, 1}k × {0, 1}m → {0, 1}n. This property is defined

in terms of the following security game G
prf :

Security Game G
prf :

K
$
← {0, 1}k;

b ∈ {0, 1};
If b = 0 then assigns F0 to a random function Rand : {0, 1}m → {0, 1}n;

If b = 1 then assigns F1 to the function f(K, .);

b′ ← AOFb
(.).

A wins iff b = b′.

Definition 20. [Pseudo-Random Function.] A function f from {0, 1}k × {0, 1}m to {0, 1}n is

(t, q)-PRF-secure if any probabilistic polynomial time adversary A running in time t and making

at most q queries to the PRF oracle, cannot distinguish f from a random function Rand with a non-

negligible advantage. We can evaluate the PRF-advantage of an adversary against f, denoted by

Adv
prf
f (A) as follows, for a random function denoted by Rand : {0, 1}m → {0, 1}n:

Adv
prf
f (A) =

∣

∣Pr[A wins Gprf |b← 1]− Pr[A wins Gprf |b← 0]
∣

∣.

A.1.2 Secure Symmetric Encryption Algorithms

An encryption scheme SE is a tuple of probabilistic polynomial-time algorithms (KeyGen,Enc,
Dec) and sets K,M, C such that:

• The random-key-generator algorithm KeyGen takes in input a security parameter l and

outputs a key K ← KeyGen(1l), with K ∈ K and |K| ≥ l ;
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• The encryption algorithm Enc maps a key K and a plaintext M ∈ M = {0, 1}m to a

ciphertext C ← EncK(M);

• The decryption algorithm Dec maps a key K and a ciphertext C ∈ C = {0, 1}n(n ≥ m)
to either a plaintext M ← DecK(C) or a special symbol ⊥;

The encryption scheme is perfectly correct if, and only if, for all l,K ← KeyGen(1l) and

M ∈M = {0, 1}m: M = DecK(EncK(M)).
The security of encryption schemes is given in terms of a left-or-right indistinguishability no-

tion which ensures that the adversary does not learn even one bit of a plaintext from the ciphertext.

The most common definitions used to capture the security of symmetric encryption schemes are:

• Indistinguishability under Chosen Plaintext Attack (IND-CPA), in which the adversary is

limited to just having access to the Encryption oracle to win its game.

• Indistinguishability under adaptive Chosen Ciphertext Attack (IND-CCA2) , in which the

adversary is additionally given access to a Decryption oracle.

For a symmetric encryption scheme SE = (KeyGen,Enc,Dec), the indistinguishability under

adaptive chosen ciphertext attack (IND-CCA2) is defined in terms of the following security game:

Security Game G
ind−cca2:

K ← KeyGen(1l);
b ∈ {0, 1};

(m0,m1)← A
EncK(.),DecK(.), with |m0| = |m1|;

C ← EncK(mb);

(b′ ← AEncK(.),Dec∗K(.), with Dec∗K(.) works just like Dec∗K(.), except DecK(C) = ⊥.
A wins iff b = b′.

An encryption scheme is indistinguishable under an adaptive chosen ciphertext attack if every

probabilistic polynomial time adversary has only a negligible advantage over random guessing,

i.e. it wins the below game with a probability 1/2+ ǫ(l), where ǫ(l) is a negligible function in the

security parameter l.

Definition 21. [General security of IND-CCA2-scheme.] A scheme SE is considered as IND-CCA2-

secure if any probabilistic polynomial time adversary A running in time t, making at most qenc
queries to the encryption oracle, and respectively at most qdec queries to the decryption oracle,

given an encryption of a message randomly chosen from a two-element message space, cannot

distinguish efficiently the encryption of one of both messages. We can evaluate the IND-CCA2-

advantage of a such adversary, denoted Advind−cca2
SE (A):

Advind−cca2
SE (A) =

∣

∣Pr[A wins Gind−cca2]−
1

2

∣

∣.

We note that the security game of the indistinguishability under chosen plaintext attack (IND-

CPA) behaves similarly as the previous one, except that the adversary has only access to the en-

cryption oracle and cannot used the results of the encryption to select subsequent plaintext after

the test.

A.1.3 MAC using pseudo-random function

Let F be a pseudo-random function. A message authentication code scheme is a tuple of proba-

bilistic polynomial-time algorithms SM = (KeyGen,Mac,Vrf) and sets K,M, T such that:
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• The random-key-generator algorithm KeyGen receives a security parameter l and outputs

a key K → KeyGen(1l), with K ∈ K and |K| ≥ l ;

• The message authentication code algorithm Mac maps a key K and a message M ∈M =
{0, 1}m to a tag value T ← FK(M) ∈ {0, 1}n;

• The verification algorithm Vrf maps a key K, a message M ∈ M = {0, 1}m, and a

received tag value T ∈ T = {0, 1}n to check the equality T = FK(M).

The security of MAC schemes SM is defined in terms of the existential unforgeability of tags

against chosen message attacks (EUF-CMA) if no probabilistic polynomial time adversary can

forge a tag of any freshly-chosen message. It is formalized in terms of the following security game

(denoted G
euf−cma):

Security Game G
euf−cma:

K ← KeyGen(1l);

(M,T )← AOMac(.);

A wins iff VrfK(M,T ) = 1 and M was not queried to the Mac oracle.

A message authentication code scheme SM is secure in terms of unforgeability if every prob-

abilistic polynomial time adversary has only a negligible advantage to output a correct mac value,

i.e. a couple (T,M) such that VrfK(M,T ) = 1 which has not been output by the Mac Oracle.

Definition 22. [Security of MAC-scheme.] A message authentication code scheme SM = (KeyGen,
Mac,Vrf) is considered as existentially unforgeable against chosen message attacks if any prob-

abilistic polynomial time adversary A running in time t and making at most q queries to its Mac

oracle, cannot forge with a non-negligible success probability, a couple (M,Mac) with M which

had not been previously input by the Mac oracle. We can evaluate the EUF-CMA-advantage of a

such adversary, denoted Advmac
SM(A):

Advmac
SM(A) = Adveuf−cma

SSM (A) = Pr[A wins Geuf−cma].

As mentioned in [37], pseudorandom functions make good message authentication codes. The

authors have determined the exact security of a such reduction by the following proposal, which

has been useful for our AKA results:

Proposition 1. Let f : {0, 1}k ∗ {0, 1}m → {0, 1}n be a family of functions. Consider a (t, q)-
adversary A against the prf-security of the function f, running in time t and making at most

q queries to its challenger. Denote the advantage of a such adversary Adv
prf
f (A). then, there

are a (t′ ∼ t + O(s + d), q′ = q)-adversary A’ against the mac-security of the MAC scheme

SM = (KeyGen, f,Vrf) with an advantage Advmac
SM(A′) such as:

Advmac
SM(A) ≤ Adv

prf
f (A′) +

1

2n
.

A.1.4 Key derivation functions

A classical key derivation function is a basic and essential cryptographic function permitting to

obtain some new pseudorandom keys from a source of initial keying material. A KDF is secure

if the keys it outputs are indistinguishable from random output of the same length. In particular,

the output keys reveal nothing about the input keying material. Consider a key derivation function

KDF : {0, 1}k × {0, 1}m → {0, 1}n.

The security of key derivation function is defined as a particular case of the PRF security game

described above.



178 APPENDIX A. RELEVANT SECURITY DEFINITIONS

Definition 23. [Security of a KDF-scheme.] A key derivation function f from {0, 1}k × {0, 1}m

to {0, 1}n is (t, q)-KDF-secure if any probabilistic polynomial time adversary A running in time

t and making at most q queries to the KDF oracle, cannot distinguish f from a random function

Rand with a non-negligible advantage. We can evaluate the KDF-advantage of an adversary

against f, denoted by Advkdff (A) as follows, for a random function denoted by Rand : {0, 1}m →
{0, 1}n:

Advkdff (A) =
∣

∣Pr[A wins Gkdf |b← 1]− Pr[A wins Gkdf |b← 0]
∣

∣.

A.1.5 Authenticated Encryption functions

An authenticated encryption scheme is a tuple of probabilistic polynomial-time algorithms SAE =
(KeyGen, AE.Enc,AE.Dec) and sets K,A,M, C such that:

• The random-key-generator algorithm KeyGen takes in input a security parameter l and

outputs a key K ← KeyGen(1l), with K ∈ K and |K| ≥ l ;

• The encryption algorithm AE.Enc maps the key K, the output length n, additional data A,

and a message M ∈M = {0, 1}m to a ciphertext C = AE.EncK(M,A, n) ∈ C = {0, 1}n.

• The decryption algorithm AE.Dec maps the key K, additional data A and a ciphertext

C ∈ C = {0, 1}n(n ≥ m) to either a plaintext M ← AE.DecK(C,A) or a special symbol

⊥;

The main problem around the authenticated encryption is to establish a generic construction

permitting to guarantee confidentiality and integrity. Bellare and Namprempre detailed in [38] the

security of the three main construction of authenticated encryption.

We consider the following definition of the security of the AEAD scheme. An AEAD-scheme

SAE = (KeyGen,AE.Enc,AE.Dec) is AE-secure if every probabilistic polynomial time adver-

sary has only a negligible advantage of the Left-or-Right security game using presented [94] and

detailed as follows:

Security game G
ae: Oracle OEnc(.) : Oracle ODec(.) :

K ← KeyGen(1l) C0 ← AE.EncK(M0, A, n). If b = 1 & C 6∈ List then

b← {0, 1} C1 ← AE.EncK(M1, A, n). return AE.DecK(C,A).

b′ ← AOEnc(.),ODec(.) If C0 = ⊥ or C1 = ⊥ then return ⊥.

A wins iff b = b′. then return ⊥

List
U
← Cb

return Cb.

Definition 24. [Security of AE-scheme.] An AEAD-scheme Π is a tuple of algorithms SAE =
(KeyGen, AE.Enc,AE.Dec) as detailed above. We consider that such a scheme is ae-secure if

any probabilistic-polynomial-time adversary A running in time t and making at most q queries

to the encryption and decryption oracles, cannot success with a non-negligible advantage. This

advantage, denoted AdvaeSAE(A), is defined as follows:

AdvaeSAE(A) =
∣

∣Pr[A wins Gae|b← 1]− Pr[A wins Gae|b← 0]
∣

∣.

A.2 ACCE- and AKE-security models

In the following, we will recall how the classic ACCE (authenticated and confidential channel

establishment) and AKE (authenticated key exchange) security properties have been defined re-

spectively in [73] and [40]. These properties are applicable to two-party protocols, run between
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a client and a server. In order to distinguish these notions from our own security models, as de-

fined in Chapters 3 and 5, we denote traditional AKE and ACCE security as 2-AKE and 2-ACCE

security, respectively.

Informally, in the AKE security definitions, an authenticated key-exchange protocol is consid-

ered secure if it outputs pseudorandom keys. If, in addition, the primitives used for authenticated

encryption provide suitable confidentiality, authenticity, and integrity properties, compositional

results such as [54] guarantee that a secure channel is obtained as a result. However, in the case

of the TLS protocol, the AKE security notion is not guaranteed, since the Finished messages act

as trivial real-from-random distinguishers for the session keys. In 2012, Jager et al. [74] proposed

a relaxation of AKE security to a monolithic definition, which captures two demands : entity au-

thentication and channel security. Thus, ACCE security essentially guarantees only that the keys

output by the AKE protocol are sufficient to establish a secure channel; by contrast, AKE security

guarantees that the keys themselves are good, thus offering better composability guarantees.

Parties and Instances. Both models consider a set P of parties, which is partitioned in two: the

set C of clients and the set S of servers. Each party Pi ∈ P is associated with a long-term secret

key sk and, possibly with a long-term public key pk encapsulated in a certificate.

Parties can behave honestly, or can be adversarially controlled. One party is associated with

several instances, each corresponding to a single execution of the protocol or, in other words, a

protocol-session. For a party Pi ∈ P , we denote the m-th instance of that party as πm
i . Each such

instance πm
i is described by the following attributes and their values:

• The long-term, secret key πm
i .sk := ski of party Pi and the long-term, public key πm

i .pk :=
pki of Pi, with ski, pki ∈ {0, 1}

∗. For clients, in the case that the TLS handshake is unilater-

ally authenticated, the public key πm
i .pk and secret key πm

i .sk are set to the special symbol

⊥, which simply means that the party-instance does not hold any effective values for these

attributes.

• The role of Pi in the session, πm
i .ρ ∈ {init, resp}, denoting that the party can be the

initiator or the responder in the session.

• The session identifier, πm
i .sid ∈ {0, 1}∗ ∪{⊥}; the session identifier is⊥ when the session

does not exist.

• The partner identifier, πm
i .pid ∈ P∪{“Client′′}. In particular, the partner ID indicates the

alleged interlocutor of an user, as this user ascertains this partner during its running session

πm
i .pid. In the case of TLS with unilateral authentication, servers cannot authenticate their

partners, so in that case we say that the corresponding partner identifier is set to a generic

string “Client”.

• The acceptance-flag πm
i .α ∈ {1, 0,⊥}; the value⊥ denotes that the session is still ongoing

and the acceptance-flag has not been set. If for some instance πm
i it holds that πm

i .α = 1,

then we say the instance has terminated in an accepting state.

• The established channel-key, πm
i .ck ∈ {0, 1}∗ ∪ {⊥}; the key πm

i .ck is initially set to a

special symbol ⊥, but if the instance terminates in an accepting state, them πm
i .ck is set to a

concrete bitstring.

• The revealed-bit πm
i .γ ∈ {0, 1}; a left-or-right bit of value 1 denotes that the channel key

was revealed to the adversary, otherwise the bit has value 0.

• The sampling-bit πm
i .b ∈ {0, 1}; a bit sampled uniformly at the beginning of the session

for purposes of security-games.
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• The transcript πm
i .τ of the instance; this is essentially formed of the random coins of this

instance, its public knowledge prior to the session, as well as the ordered suite of messages

received and sent by this party-instance from the beginning of the handshake, until it sets its

acceptance bit to either 1 or 0.

• The authentication flag πm
i .auth of the instance is a bit, initialized to 0 or 1 depending on

whether mutual or unilateral (server-authentication) authentication is required in the studied

protocol. We say πm
i .auth = 0 if unilateral server-authentication is required (as in the

2-SACCE protocols) or πm
i .auth = 1 if the mutual authentication is required (as in the

2-ACCE and AKE protocols). We note that this flag is not used in the traditional security

model but will be useful in our analysis.

The execution environment in the two-party setting is formed of a polynomial number (in the

security parameter) of party-instances or sessions being executed concurrently.

To define security, we need to define –as it is customary– some extra properties over the notion

of sessions. Two sessions πm
i .pid and πn

j .pid are partners if πm
i .sid = πn

j .sid and these session

identifiers are not ⊥. For a fixed session πm
i .pid, if its partner does not exist as per the above, then

we say that πm
i .pid’s is ⊥.

The AKE Threat model. We recall the AKE security experiment with the related notations used

to consider the 2-ACCE security. Adversarial parties can control the network, up to an interaction

with the aforementioned party-instances, also called session-oracles, described by the following

queries:

1. NewSession(Pi, ρ, pid): This query creates a new session πm
i executed by party Pi with the

role ρ, having the partner identifier pid. Moreover, the session is set to be in the running

state and the associated party is its initiator, i.e., πm
i .α=⊥ and πm

i .ρ=init. If the considered

protocol provides mutual authentication, the authentication flag of all the instances πm
i is

instantiated to πm
i .auth = 1. If the protocol provides only unilateral authentication, the

authentication flag of all the instances is instantiated to πm
i .auth = 0.

2. Send(πm
i , n): This query allows the adversary to send any message n within the session πm

i .

If the session is in the running state, then the session-oracle πm
i will answer to n as per the

protocol, otherwise it will return a fixed error message, ⊥.

3. Corrupt(Pi): Via this query Pi’s secret key is returned to the adversary.

4. Reveal(πm
i ): This query returns the channel key πm

i .ck and the revealed bit of the session,

πm
i .γ, is set to 1.

5. Test(πm
i ): If πm

i .α 6= 1, then this query returns ⊥. Otherwise, the oracle of this query

samples k0 uniformly from the domain of channel keys and set k1 to be πm
i .ck. Of the two

keys k0 and k1, then returns k
πm
i

.b
. This key is called the test-challenge.

AKE security game. The AKE-security is now defined by requiring that (i) the protocol is a

secure mutual authentication (EA-security) based on their matching conversation notion (ii) the

key-indistinguishability (K-IND-security) of the exchanged session key, i.e. any adversary cannot

in polynomial time the established session key to random value. A 2-party protocol is said to be a

correct AKE protocol, if the following holds:
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πm
i .α = 1⇒ πm

i .ck 6= ⊥ and πm
i .sid 6= ⊥.

πm
i .α = πn

j .α = 1, πm
i .auth = πn

j .auth and

πm
i .sid = πn

j .sid⇒

{

πm
i .ck = πn

j .ck

πm
i .pid = Pj ;π

n
j .pid = Pi.

In relation to the adversarial queries (1-4) above and especially so with the Corrupt(·) query,

considered in the context of the state of a session, the following notion appears. A session πm
i .pid

is said to be fresh, with intended partner Pj , if:

1. πm
i .pid = Pj when the adversary A issued its first query;

2. πm
i .γ= 0 and Pi is uncorrupted;

3. for any πn
j which is partner with πm

i , we have that πn
j .γ= 0 and Pj is uncorrupted.

A session πm
i .pid is said to be accepted maliciously in the AKE security experiment with

intended partner Pj , if:

1. πm
i .α = 1 and πm

i .pid = Pj when the adversary A, playing in the AKE experiment, issued

its first query;

2. Pi and Pj are not corrupted;

3. there is no unique session πs
j such that πs

j is the partner of πm
i .

We use AdvEAΠ (A) to denote the probability that an adversary A, (playing the AKE security game

and trying to break the entity authentication property) makes a session accept maliciously on the

protocol Π.

An adversary A, that queries Test(πm
i .pid) during the AKE security experiment, answers the

test-challenge correctly if it outputs a bit b′, such that πm
i .pid is fresh with some intended partner

Pj and πm
i .b = b′. We use AdvK−ind

Π (A) to denote the advantage A (trying to break the key-

indistinguishability property) in outputting the correct b′ in the above game, notably how much

better A’s winning probability is compared to a basic guessing probability.

An adversary A wins the AKE security experiment if he makes a session to accept mali-

ciously or he answers the test-challenge correctly. We use AdvAKEΠ (A) to denote his advantage in

winning the AKE security experiment, which is the probability that he does make a session ac-

cept maliciously, plus the absolute probability-difference between a non-trivial output of the test-

challenge and guessing the test-challenge at random, i.e., AdvAKEΠ (A) is the sum of AdvEAΠ (A) and

AdvK−ind
Π (A) for any A in the AKE security experiment.

The 2-ACCE Threat model. We define the 2-ACCE model including the SACCE model which a

variant of the ACCE model when only the server is authenticated. The traditional 2-party ACCE

security will be noted 2-ACCE to be clearly. These models include both 2-ACCE model consid-

ering protocol which requires mutual authentication and 2-SACCE model considering protocol

which requires unilateral server authentication.

The 2-ACCE experiment is described via the following game. A challenger plays against an

adversary with access (during the game and outside the game) the subset of queries formed with

the first four types of queries (1-4) plus one additional query (available just during the game):

5. Encrypt(πm
i , l, n0, n1, H): This query takes as input a ciphertext-length l, two messages n0,

n1, and a header H . The query uses the sLHAE encryption stE correctly such that in an

accepting session πm
i , i.e., where πm

i .α = 1, it will encrypt under πm
i .ck the message nb

where b := πm
i .b. The details of this are given in Figure A.1.
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6. Decrypt(πm
i , C,H): This query takes as input a ciphertext C and a header H . The query

uses the sLHAE encryption stE correctly such that in an accepting session πm
i , i.e., where

πm
i .α = 1, it will decrypt under πm

i .ck the ciphertext C. The details of this are given in

Figure A.1.

Encrypt(πs
i , l,m0,m1, H) : Decrypt(πs

i , C,H) :

C,H ← empty list; C,H ← empty list; u, v ← 0; in-sync = True;

u, v ← 0; If(πs
i .α 6= 1) then Return ⊥;

If(πs
i .α 6= 1) then Return ⊥; If(πs

i .b = 0) then Return ⊥;

u← u+ 1; πt
i ← partner of πs

i ;

(C(0), st(0)E)← stE.Enc(k, πs
i ,m0, H, stE); v ← v + 1;

(C(1), st(1)E)← stE.Enc(k, πs
i ,m1, H, stE); (m, stD)← stE.Dec(k,C,H, stD);

If( (C(0) = ⊥) Or (C(1) = ⊥) ) then Return ⊥; If( (v > πt
i .u) | (C 6= πt

i .C[v]) | (H 6= πt
i .H[v]) ) then in-sync← False;

(C[u], H[u], stE)← (C(b), H, st(b)); If (πt
i = ⊥ ) then in-sync← False;

Return C[u]; If (in-sync = False ) then Return m;

Return ⊥

Figure A.1: With the respect to the algorithms above, we consider that the instance πs
i .α has

k, b, stE , stD, C,H, u and v as variables local to its internal state.

Authenticated Encryption for 2-ACCE. As per [74], we now henceforth assume, suitably for

TLS 1.2., that the established channel key is used in stateful Length-Hiding Authenticated Encryp-

tion (sLHAE) schemes, specified as the tuple of algorithms stE = (st.Gen, stE.Init, stE.Enc,
stE.Dec). Clearly, we also assume that the established channel key is used to encrypt/decrypt

messages with stE (via stE.Enc and stE.Dec) using key(s) generated by st.Gen in such a way

that it respects the correct sequences of states produced by stE and commenced via stE.Init.
The security of such scheme is approximately the same as an indistinguishability property and is

detailed in [73] as follows:

2-(S)ACCE security game. The 2-(S)ACCE security experiment is described just as the AKE

security experiment except for the fact that the adversaryA has access to the query-types 1-6. and

no Test query. All the other, related notions (e.g., session freshness and correctness) are defined in

the (S)ACCE case as in the AKE case. In the ACCE security experiment we use Adv2−ACCE
Π (A) to

denote his advantage in winning the 2-ACCE security experiment, which is the probability that he

does make a session accept maliciously, plus the absolute probability-difference between a non-

trivial strategy of outputting the sampling bit of a fresh session and that of guessing its sampling

bit, i.e, Adv2−ACCE
Π (A) is the sum of AdvSCΠ (A) and AdvEAΠ (A) for any A in the 2-ACCE security

experiment. We note that the 2-SACCE security game is a similar game as the 2-ACCE security

game but considering only the unilateral authentication.

2-(S)ACCE Entity Authentication (EA). In the EA game, the adversary queries the first four ora-

cles above and its goal is to make one instance, πm
i of an uncorrupted Pi accept maliciously. That

is, πm
i must end in an accepting state, with partner ID Pj , also uncorrupted, such that no other

unique instance of Pj partnering πm
i exists. The adversary’s advantage in this game is its winning

probability.

2-(S)ACCE Security of the Channel (SC). In the SC-game, the adversaryA can use all the oracles

except Test and must output, for a fresh instance πm
i , the bit πm

i .b of that instance. The adversary’s

advantage is the absolute difference between its winning probability and 1
2 .
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Résumé

Dans cette thèse, nous nous sommes intéressés à la sécurité des protocoles d’authentification et de

dérivations de clefs dans le cas où une troisième entité intermédiaire, partiellement de confiance,

est requise pour différentes raisons pratiques.

Dans un premier temps, nous nous sommes focalisés sur le protocole AKA, dont les différentes

versions sont utilisées pour établir un canal sécurisé sur la voix radio au sein des réseaux mobiles

3G et 4G. Nous avons d’abord fait état des faiblesses de sécurité et celles concernant le respect de la

vie privée des clients mobiles durant l’établissement d’un tel canal sécurisé. Différentes solutions

pratiques ont été proposé afin d’assurer les propriétés de sécurité et de vie privée requises par le

3GPP au sein des réseaux 3G, 4G. Dans un second temps, nous avons analysé le protocole Keyless

SSL utilisé au sein des CDNs afin d’établir le canal sécurisé requis pour les communications

HTTPS. Nous avons proposé un modèle de sécurité calculatoire recoupant l’ensemble des besoins

de sécurité et ainsi pointé les différentes faiblesses de sécurité de la proposition Keyless SSL. Par

conséquent, une variante basée sur TLS 1.2 a été proposé.

Mots-clés: Sécurité Prouvable, Protocoles AKA, Réseaux Mobiles, Keyless SSL, CDN, TLS.

Abstract

In this thesis, we study the security of authentication and key exchange protocols when they

are proxied through a semi-trusted third party is required.

We begin by focusing on the security of the UMTS/LTE AKA protocol, when the different

versions of this protocol are used to establish a secure channel across a radio access link in 3G

and 4G mobile networks. We first describe some security and privacy weaknesses during the

execution of the EPS- and UMTS-AKA protocols. Then, several practical solutions are proposed,

guaranteeing better security and privacy for this protocol in both 3G and 4G scenarios.

Secondly, we focus on computer networks, more precisely on the use of the Keyless SSL in

proxying over HTTPS. A security model including the different various, specific security require-

ments from the web delivery context has been established. We also identify and discuss various

weaknesses in the structure of Keyless SSL. Finally, we propose an improvement of Keyless SSL

over TLS 1.2, and describe how Keyless SSL could work securely for the new TLS 1.3 protocol

version.

Keywords: Provable Security, AKA Protocols, Mobile Networks, Keyless SSL, CDN, TLS.
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