I. Vallet-gely and F. Boccard, Chromosomal Organization and Segregation in Pseudomonas aeruginosa, PLoS Genetics, vol.80, issue.5, p.1003492, 2013.
DOI : 10.1371/journal.pgen.1003492.s010

D. W. Adams, L. J. Wu, and J. And-errington, Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane, The EMBO Journal, vol.34, issue.4, pp.491-501, 2015.
DOI : 10.15252/embj.201490177

A. Azam, T. Iwata, A. Nishimura, A. Ueda, S. Ishihama et al., Growth phasedependent variation in protein composition of the Escherichia coli nucleoid, J. Bacteriol, vol.181, pp.6361-6370, 1999.

S. J. Austin, R. J. Mural, D. K. Chattoraj, and A. L. Abeles, Trans- and Cis-acting elements for the replication of P1 miniplasmids, Journal of Molecular Biology, vol.183, issue.2, pp.195-202, 1985.
DOI : 10.1016/0022-2836(85)90212-8

A. Badrinarayanan, T. B. Le, and M. T. Laub, Bacterial Chromosome Organization and Segregation, Annual Review of Cell and Developmental Biology, vol.31, issue.1, pp.171-199, 2015.
DOI : 10.1146/annurev-cellbio-100814-125211

J. H. Baek, S. V. Rajagopala, C. , and D. K. , Chromosome Segregation Proteins of Vibrio cholerae as Transcription Regulators, mBio, vol.5, issue.3, pp.1061-1075, 2014.
DOI : 10.1128/mBio.01061-14

P. Parb and . Aeruginosa, Interactions with Its Partner ParA and Its Target parS and Specific Effects on Bacterial Growth, J. Bacteriol, vol.186, pp.6983-6998

G. Burdzy, Transcriptional profiling of para and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa, PLoS One, vol.9, 2014.

D. Bates and N. Kleckner, Chromosome and Replisome Dynamics in E. coli: Loss of Sister Cohesion Triggers Global Chromosome Movement and Mediates Chromosome Segregation, Cell, vol.121, issue.6, pp.899-911, 2005.
DOI : 10.1016/j.cell.2005.04.013

T. G. Bernhardt and P. A. De-boer, SlmA, a Nucleoid-Associated, FtsZ Binding Protein Required for Blocking Septal Ring Assembly over Chromosomes in E. coli, Molecular Cell, vol.18, issue.5, pp.555-564, 2005.
DOI : 10.1016/j.molcel.2005.04.012

S. Bigot, V. Sivanathan, C. Possoz, F. Barre, and F. Cornet, FtsK, a literate chromosome segregation machine, Molecular Microbiology, vol.180, issue.6, pp.1434-1441, 2007.
DOI : 10.1111/j.1365-2958.2005.05033.x

URL : https://hal.archives-ouvertes.fr/hal-00154604

F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland et al., The Complete Genome Sequence of Escherichia coli K-12, Science, vol.277, issue.5331, pp.1453-1462, 1997.
DOI : 10.1126/science.277.5331.1453

A. M. Breier and A. D. Grossman, Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome, Molecular Microbiology, vol.66, issue.3, pp.703-718, 2007.
DOI : 10.1006/jmbi.1999.2909

P. Brezellec, M. Hoebeke, M. Hiet, S. Pasek, and J. Ferat, DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance, Bioinformatics, vol.22, issue.16, pp.1935-1941, 2006.
DOI : 10.1093/bioinformatics/btl336

URL : https://hal.archives-ouvertes.fr/hal-00131567

R. A. Britton, D. C. Lin, and A. D. Grossman, Characterization of a prokaryotic SMC protein involved in chromosome??partitioning, Genes & Development, vol.12, issue.9, pp.1254-1259, 1998.
DOI : 10.1101/gad.12.9.1254

A. C. Brooks and L. C. Hwang, Reconstitutions of plasmid partition systems and their mechanisms, Plasmid, vol.91, pp.37-41, 2017.
DOI : 10.1016/j.plasmid.2017.03.004

F. Bürmann, H. Shin, J. Basquin, Y. Soh, V. Giménez-oya et al., An asymmetric SMC???kleisin bridge in prokaryotic condensin, Nature Structural & Molecular Biology, vol.10, issue.3, 2013.
DOI : 10.1038/emboj.2012.6

F. Bürmann, A. Basfeld, R. Vazquez-nunez, M. Diebold-durand, L. Wilhelm et al., Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin, Molecular Cell, vol.65, issue.5, pp.861-872, 2017.
DOI : 10.1016/j.molcel.2017.01.026

J. Cairns, The bacterial chromosome and its manner of replication as seen by autoradiography, Journal of Molecular Biology, vol.6, issue.3, pp.208-213, 1963.
DOI : 10.1016/S0022-2836(63)80070-4

C. S. Campbell and R. D. Mullins, In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids, The Journal of Cell Biology, vol.181, issue.5, pp.1059-1066, 2007.
DOI : 10.1016/S0960-9822(97)70088-5

C. Carnoy and C. And-roten, The dif/Xer Recombination Systems in Proteobacteria, PLoS ONE, vol.4, issue.9, p.6531, 2009.
DOI : 10.1371/journal.pone.0006531.s005

S. Casjens, . Diverse, . Dynamic, . Of, and . Genomes, THE DIVERSE AND DYNAMIC STRUCTURE OF BACTERIAL GENOMES, Annual Review of Genetics, vol.32, issue.1, pp.339-377, 1998.
DOI : 10.1146/annurev.genet.32.1.339

M. G. Chandler and R. H. Pritchard, The effect of gene concentration and relative gene dosage on gene output inEscherichia coli, MGG Molecular & General Genetics, vol.111, issue.2, pp.127-141, 1975.
DOI : 10.1038/241133a0

S. L. Chiang, R. , and E. J. , Construction of a mariner -based transposon for epitope-tagging and genomic targeting, Gene, vol.296, issue.1-2, pp.179-185, 2002.
DOI : 10.1016/S0378-1119(02)00856-9

H. Cho, H. R. Mcmanus, S. L. Dove, and T. G. Bernhardt, Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist, Proceedings of the National Academy of Sciences, vol.105, issue.48, pp.3773-3778, 2011.
DOI : 10.1073/pnas.0808215105

S. Cuylen, J. Metz, and C. H. Haering, Condensin structures chromosomal DNA through topological links, Nature Structural & Molecular Biology, vol.11, issue.8, pp.894-901, 2011.
DOI : 10.1016/S0092-8674(01)80007-6

R. T. Dame, The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin, Molecular Microbiology, vol.390, issue.4, pp.858-870, 2005.
DOI : 10.1007/BF00279792

O. Danilova, R. Reyes-lamothe, M. Pinskaya, D. Sherratt, and C. Possoz, MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves, Molecular Microbiology, vol.179, issue.6, pp.1485-1492, 2007.
DOI : 10.1046/j.1365-2958.2000.02138.x

A. David, G. Demarre, L. Muresan, E. Paly, F. Barre et al., The Two Cis-Acting Sites, parS1 and oriC1, Contribute to the Longitudinal Organisation of Vibrio cholerae Chromosome I, PLoS Genetics, vol.80, issue.7, 2014.
DOI : 10.1371/journal.pgen.1004448.s047

E. De-wit, E. S. Vos, S. J. Holwerda, C. Valdes-quezada, M. J. Verstegen et al., CTCF Binding Polarity Determines Chromatin Looping, Molecular Cell, vol.60, issue.4, pp.676-684, 2015.
DOI : 10.1016/j.molcel.2015.09.023

A. M. Deshpande and C. S. Newlon, DNA Replication Fork Pause Sites Dependent on Transcription, Science, vol.272, issue.5264, pp.1030-1033, 1996.
DOI : 10.1126/science.272.5264.1030

S. C. Dillon and C. J. Dorman, Bacterial nucleoid-associated proteins, nucleoid structure and gene expression, Nature Reviews Microbiology, vol.11, issue.3, pp.185-195, 2010.
DOI : 10.1016/0167-4781(95)00173-5

C. Donovan, B. Sieger, R. Krämer, and M. Bramkamp, A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria, Molecular Microbiology, vol.49, issue.1, pp.105-116, 2012.
DOI : 10.1046/j.1365-2958.2003.03643.x

S. Duigou and F. Boccard, Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains, PLOS Genetics, vol.80, issue.5, 2017.
DOI : 10.1371/journal.pgen.1006758.s006

G. Ebersbach and K. Gerdes, Plasmid Segregation Mechanisms, Annual Review of Genetics, vol.39, issue.1, pp.453-479, 2005.
DOI : 10.1146/annurev.genet.38.072902.091252

L. Feijoo-siota, J. L. Rama, A. Sánchez-pérez, and T. G. Villa, Considerations on bacterial nucleoids, Applied Microbiology and Biotechnology, vol.156, issue.14, pp.5591-5602, 2017.
DOI : 10.1016/j.jsb.2006.03.022

R. A. Fekete, C. , and D. K. , A cis-acting sequence involved in chromosome segregation in Escherichia coli, Molecular Microbiology, vol.23, issue.1, pp.175-183, 2004.
DOI : 10.1615/JEnvironPatholToxicolOncol.v20.i1.40

A. Fiebig, K. Keren, and J. A. Theriot, Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes, Molecular Microbiology, vol.60, issue.5, pp.1164-1178, 2006.
DOI : 10.1007/s004390050686

G. Fink and J. Löwe, Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments, Proc. Natl, 2015.
DOI : 10.1016/S0091-679X(10)95013-9

M. A. Fogel and M. K. Waldor, A dynamic, mitotic-like mechanism for bacterial chromosome segregation, Genes & Development, vol.20, issue.23, pp.3269-3282, 2006.
DOI : 10.1101/gad.1496506

J. Fortin and K. D. Hansen, Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data, Genome Biology, vol.12, issue.1, p.180, 2015.
DOI : 10.1038/nmeth.3252

S. French, Consequences of replication fork movement through transcription units in vivo, Science, vol.258, issue.5086, pp.1362-1365, 1992.
DOI : 10.1126/science.1455232

B. E. Funnell, ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres, Frontiers in Molecular Biosciences, vol.97, p.44, 2016.
DOI : 10.1073/pnas.97.26.14656

T. Gaal, B. P. Bratton, P. Sanchez-vazquez, A. Sliwicki, K. Sliwicki et al., : a bacterial nucleolus, Genes & Development, vol.30, issue.20, pp.2272-2285, 2016.
DOI : 10.1101/gad.290312.116

L. Gall, A. Cattoni, D. I. Guilhas, B. Mathieu-demazière, C. Oudjedi et al., Bacterial partition complexes segregate within the volume of the nucleoid, Nature Communications, vol.11, p.12107, 2016.
DOI : 10.1371/journal.pbio.1001557

R. Golloshi, J. T. Sanders, and R. P. Mccord, Genome organization during the cell cycle: unity in division, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.126, issue.5, p.1389, 2017.
DOI : 10.1242/jcs.1125880

A. Goloborodko, J. Marko, and L. Mirny, Chromosome Compaction by Active Loop Extrusion, Biophysical Journal, vol.110, issue.10, pp.2162-2168, 2016.
DOI : 10.1016/j.bpj.2016.02.041

T. G. Graham, X. Wang, D. Song, C. M. Etson, A. M. Van-oijen et al., ParB spreading requires DNA bridging, Genes & Development, vol.28, issue.11, pp.1228-1238, 2014.
DOI : 10.1101/gad.242206.114

J. A. Gregory, E. C. Becker, and K. Pogliano, Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division, Genes & Development, vol.22, issue.24, pp.3475-3488, 2008.
DOI : 10.1101/gad.1732408

S. Gruber, MukBEF on the march: taking over chromosome organization in bacteria?, Molecular Microbiology, vol.192, issue.4, pp.855-859, 2011.
DOI : 10.1128/JB.00010-10

S. Gruber and J. And-errington, Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis, Cell, vol.137, issue.4, pp.685-696, 2009.
DOI : 10.1016/j.cell.2009.02.035

S. Gruber, P. Arumugam, Y. Katou, D. Kuglitsch, W. Helmhart et al., Evidence that Loading of Cohesin Onto Chromosomes Involves Opening of Its SMC Hinge, Cell, vol.127, issue.3, pp.523-537, 2006.
DOI : 10.1016/j.cell.2006.08.048

C. H. Haering, A. Farcas, P. Arumugam, J. Metson, and K. Nasmyth, The cohesin ring concatenates sister DNA molecules, Nature, vol.10, issue.7202, pp.297-301, 2008.
DOI : 10.1002/0471250953.bi0506s15

A. Harms, A. Treuner-lange, D. Schumacher, and L. Søgaard-andersen, Tracking of Chromosome and Replisome Dynamics in Myxococcus xanthus Reveals a Novel Chromosome Arrangement, PLoS Genetics, vol.53, issue.1, pp.19-23, 2013.
DOI : 10.1371/journal.pgen.1003802.s008

R. Hayama and K. J. Marians, Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli, Proc. Natl. Acad, 2010.
DOI : 10.1046/j.1365-2958.2003.03736.x

N. P. Higgins, X. Yang, Q. Fu, R. , and J. R. , Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium., Journal of Bacteriology, vol.178, issue.10, pp.2825-2835, 1996.
DOI : 10.1128/jb.178.10.2825-2835.1996

S. Hiraga, Dynamic Localization of Bacterial and Plasmid Chromosomes, Annual Review of Genetics, vol.34, issue.1, pp.21-59, 2000.
DOI : 10.1146/annurev.genet.34.1.21

T. Hirano and T. J. Mitchison, A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro, Cell, vol.79, issue.3, pp.449-458, 1994.
DOI : 10.1016/0092-8674(94)90254-2

S. Hong and H. H. Mcadams, Compaction and transport properties of newly replicated Caulobacter crescentus DNA, Molecular Microbiology, vol.20, issue.6, pp.1349-1358, 2011.
DOI : 10.1101/gad.388406

L. C. Hwang, A. G. Vecchiarelli, Y. Han, M. Mizuuchi, Y. Harada et al., ParA-mediated plasmid partition driven by protein pattern self-organization, The EMBO Journal, vol.78, issue.9, pp.1238-1249, 2013.
DOI : 10.1046/j.1365-2958.1997.4761842.x

A. A. Iniesta, ParABS System in Chromosome Partitioning in the Bacterium Myxococcus xanthus, PLoS ONE, vol.76, issue.1, 2014.
DOI : 10.1371/journal.pone.0086897.t003

K. Ireton, N. W. Gunther, and A. D. Grossman, spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis., Journal of Bacteriology, vol.176, issue.17, pp.5320-5329, 1994.
DOI : 10.1128/jb.176.17.5320-5329.1994

F. Jacob, S. Brenner, C. , and F. , On the Regulation of DNA Replication in Bacteria, Cold Spring Harbor Symposia on Quantitative Biology, vol.28, issue.0, pp.329-348, 1963.
DOI : 10.1101/SQB.1963.028.01.048

R. B. Jensen and L. Shapiro, The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation, Proceedings of the National Academy of Sciences, vol.252, issue.5009, pp.10661-10666, 1999.
DOI : 10.1126/science.252.5009.1162

R. B. Jensen, S. C. Wang, and L. Shapiro, A moving DNA replication factory in Caulobacter crescentus, The EMBO Journal, vol.20, issue.17, pp.4952-4963, 2001.
DOI : 10.1093/emboj/20.17.4952

S. Jun and B. Mulder, Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome, Proc. Natl. Acad. Sci. 103, pp.12388-12393, 2006.
DOI : 10.1093/emboj/21.12.3119

T. Kanno, D. G. Berta, and C. Sjögren, The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker, Cell Reports, vol.12, issue.9, pp.1471-1482, 2015.
DOI : 10.1016/j.celrep.2015.07.048

R. Kavenoff and B. C. Bowen, Electron microscopy of membrane-free folded chromosomes from Escherichia coli, Chromosoma, vol.38, issue.2, pp.89-101, 1976.
DOI : 10.1101/SQB.1974.038.01.007

R. Kavenoff and O. A. Ryder, Electron microscopy of membrane-associated folded chromosomes of Escherichia coli, Chromosoma, vol.82, issue.1, pp.13-25, 1976.
DOI : 10.1101/SQB.1974.038.01.007

A. B. Khodursky, B. J. Peter, M. B. Schmid, J. Derisi, D. Botstein et al., Analysis of topoisomerase function in bacterial replication fork movement: Use of DNA microarrays, Proceedings of the National Academy of Sciences, vol.30, issue.3, pp.9419-9424, 2000.
DOI : 10.1016/0092-8674(82)90269-0

N. Kleckner, J. K. Fisher, M. Stouf, M. A. White, D. Bates et al., The bacterial nucleoid: nature, dynamics and sister segregation, Current Opinion in Microbiology, vol.22, pp.127-137, 2014.
DOI : 10.1016/j.mib.2014.10.001

N. Kono, K. Arakawa, and M. Tomita, Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes, BMC Genomics, vol.10, issue.10, 2011.
DOI : 10.1186/1471-2164-10-640

F. Kunst, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, vol.141, issue.6657, pp.249-256, 1997.
DOI : 10.1099/13500872-141-2-261

H. Lam, W. B. Schofield, and C. Jacobs-wagner, A Landmark Protein Essential for Establishing and Perpetuating the Polarity of a Bacterial Cell, Cell, vol.124, issue.5, pp.1011-1023, 2006.
DOI : 10.1016/j.cell.2005.12.040

T. B. Le and M. T. Laub, Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries, The EMBO Journal, vol.35, issue.14, pp.1582-1595, 2016.
DOI : 10.15252/embj.201593561

T. B. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub, High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome, Science, vol.110, issue.5, pp.731-734, 2013.
DOI : 10.1073/pnas.1220824110

J. Y. Lee, I. J. Finkelstein, E. Crozat, D. J. Sherratt, and E. C. Greene, Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK, Proc. Natl. Acad. Sci, pp.6531-6536, 2012.
DOI : 10.1038/nsmb.1858

K. P. Lemon and A. D. Grossman, Localization of Bacterial DNA Polymerase: Evidence for a Factory Model of Replication, Science, vol.282, issue.5393, pp.1516-1519, 1998.
DOI : 10.1126/science.282.5393.1516

T. A. Leonard, P. J. Butler, and J. Löwe, Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus, Molecular Microbiology, vol.23, issue.2, pp.419-432, 2004.
DOI : 10.1099/00221287-148-2-537

Y. Li, N. K. Stewart, A. J. Berger, S. Vos, A. J. Schoeffler et al., Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction, Proc. Natl. Acad. Sci, pp.18832-18837, 2010.
DOI : 10.1016/j.cell.2008.10.050

E. Lieberman-aiden, N. L. Van-berkum, L. Williams, M. Imakaev, T. Ragoczy et al., Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome, Science, vol.27, issue.2, pp.289-293, 2009.
DOI : 10.1038/nbt.1523

D. C. Lin and A. D. Grossman, Identification and Characterization of a Bacterial Chromosome Partitioning Site, Cell, vol.92, issue.5, pp.675-685, 1998.
DOI : 10.1016/S0092-8674(00)81135-6

J. Livny, Y. Yamaichi, and M. K. Waldor, Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics, Journal of Bacteriology, vol.189, issue.23, pp.8693-8703, 2007.
DOI : 10.1128/JB.01239-07

M. S. Luijsterburg and M. C. Noom, The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective, Journal of Structural Biology, vol.156, issue.2, pp.262-272, 2006.
DOI : 10.1016/j.jsb.2006.05.006

J. Lutkenhaus, Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring, Annual Review of Biochemistry, vol.76, issue.1, pp.539-562, 2007.
DOI : 10.1146/annurev.biochem.75.103004.142652

A. S. Lynch, W. , and J. C. , SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid., Proceedings of the National Academy of Sciences, vol.92, issue.6, pp.1896-1900, 1995.
DOI : 10.1073/pnas.92.6.1896

M. Marbouty, . Le, A. Gall, D. Cattoni, A. Cournac et al., Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging, Molecular Cell, vol.59, issue.4, pp.588-602, 2015.
DOI : 10.1016/j.molcel.2015.07.020

URL : https://hal.archives-ouvertes.fr/pasteur-01419993

M. J. Mclean, K. H. Wolfe, and K. M. Devine, Base Composition Skews, Replication Orientation, and Gene Orientation in 12 Prokaryote Genomes, Journal of Molecular Evolution, vol.47, issue.6, pp.691-696, 1998.
DOI : 10.1007/PL00006428

C. Midonet and F. Barre, Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information, Microbiology Spectrum, vol.2, issue.6, 2014.
DOI : 10.1128/microbiolspec.MDNA3-0056-2014

J. Mierzejewska and G. Jagura-burdzy, Prokaryotic ParA???ParB???parS system links bacterial chromosome segregation with the cell cycle, Plasmid, vol.67, issue.1, pp.1-14, 2012.
DOI : 10.1016/j.plasmid.2011.08.003

A. Minnen, F. Bürmann, L. Wilhelm, A. Anchimiuk, M. Diebold-durand et al., Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA, Cell Reports, vol.14, issue.8, 2003.
DOI : 10.1016/j.celrep.2016.01.066

D. A. Mohl, J. Easter, and J. W. Gober, The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus, Molecular Microbiology, vol.28, issue.3, pp.741-755, 2001.
DOI : 10.1046/j.1365-2958.1998.00808.x

V. Morales, C. Giamarchi, C. Chailleux, F. Moro, V. Marsaud et al., Chromatin structure and dynamics: Functional implications, Biochimie, vol.83, issue.11-12, pp.1029-1039, 2001.
DOI : 10.1016/S0300-9084(01)01347-5

Y. Murayama and F. Uhlmann, Biochemical reconstitution of topological DNA binding by the cohesin ring, Nature, vol.112, issue.7483, pp.367-371, 2014.
DOI : 10.1016/0926-6585(66)90333-5

H. Murray, H. Ferreira, and J. And-errington, The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites, Molecular Microbiology, vol.264, issue.5, pp.1352-1361, 2006.
DOI : 10.1073/pnas.97.26.14656

N. Nanninga, Morphogenesis of Escherichia coli, Microbiol. Mol. Biol. Rev, vol.62, pp.110-129, 1998.

K. Nasmyth, Disseminating the Genome: Joining, Resolving, and Separating Sister Chromatids During Mitosis and Meiosis, Annual Review of Genetics, vol.35, issue.1, pp.673-745, 2001.
DOI : 10.1146/annurev.genet.35.102401.091334

K. Nasmyth, Segregating Sister Genomes: The Molecular Biology of Chromosome Separation, Science, vol.297, issue.5581, pp.559-565, 2002.
DOI : 10.1126/science.1074757

H. J. Nielsen, J. R. Ottesen, B. Youngren, S. J. Austin, and F. G. Hansen, chromosome is organized with the left and right chromosome arms in separate cell halves, Molecular Microbiology, vol.182, issue.2, pp.331-338, 2006.
DOI : 10.1128/JB.182.14.3924-3928.2000

H. Niki, A. Jaffé, R. Imamura, T. Ogura, and S. Hiraga, The new gene mukB codes for a 177 kd protein with coiled-coil domains, 1991.

H. Niki, Y. Yamaichi, and S. Hiraga, Dynamic organization of chromosomal DNA in Escherichia coli, Genes Dev, vol.14, pp.212-223, 2000.

M. C. Noom, W. W. Navarre, T. Oshima, G. J. Wuite, and R. T. Dame, H-NS promotes looped domain formation in the bacterial chromosome, Current Biology, vol.17, issue.21, pp.913-917, 2007.
DOI : 10.1016/j.cub.2007.09.005

R. L. Ohniwa, Y. Ushijima, S. Saito, and K. Morikawa, Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus, PLoS ONE, vol.26, issue.4, 2011.
DOI : 10.1371/journal.pone.0019172.s019

J. J. Palecek and S. Gruber, Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes, Structure, vol.23, issue.12, pp.2183-2190, 2015.
DOI : 10.1016/j.str.2015.10.004

B. J. Peter, C. Ullsperger, H. Hiasa, K. J. Marians, C. et al., The Structure of Supercoiled Intermediates in DNA Replication, Cell, vol.94, issue.6, pp.819-827, 1998.
DOI : 10.1016/S0092-8674(00)81740-7

Z. M. Petrushenko, W. She, R. , and V. V. , A new family of bacterial condensins, Molecular Microbiology, vol.250, issue.4, pp.881-896, 2011.
DOI : 10.1007/BF02174381

L. Postow, C. D. Hardy, J. Arsuaga, C. , and N. R. , Topological domain structure of the Escherichia coli chromosome, Genes & Development, vol.18, issue.14, pp.1766-1779, 2004.
DOI : 10.1101/gad.1207504

J. L. Ptacin, S. F. Lee, E. C. Garner, E. Toro, M. Eckart et al., A spindle-like apparatus guides bacterial chromosome segregation, Nature Cell Biology, vol.20, issue.8, pp.791-798, 2010.
DOI : 10.1093/nar/gkm818

R. Ramachandran, J. Jha, C. , and D. K. , Chromosome Segregation in <b><i>Vibrio cholerae</i></b>, Journal of Molecular Microbiology and Biotechnology, vol.24, issue.5-6, pp.360-370, 2014.
DOI : 10.1159/000368853

R. Reyes-lamothe, C. Possoz, O. Danilova, and D. J. Sherratt, Independent Positioning and Action of Escherichia coli Replisomes in Live Cells, Cell, vol.133, issue.1, pp.90-102, 2008.
DOI : 10.1016/j.cell.2008.01.044

A. Rietsch, I. Vallet-gely, S. L. Dove, M. , and J. J. , ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci, pp.8006-8011, 2005.
DOI : 10.1016/0042-6822(66)90317-5

C. Robinow and E. Kellenberger, The bacterial nucleoid revisited, Microbiol. Rev, vol.58, pp.211-232, 1994.

E. P. Rocha, The replication-related organization of bacterial genomes, Microbiology, vol.150, issue.6, pp.1609-1627, 2004.
DOI : 10.1099/mic.0.26974-0

E. P. Rocha, The Organization of the Bacterial Genome, Annual Review of Genetics, vol.42, issue.1, pp.211-233, 2008.
DOI : 10.1146/annurev.genet.42.110807.091653

O. Rodionov, M. Lobocka, Y. , and M. , Silencing of Genes Flanking the P1 Plasmid Centromere, Science, vol.283, issue.5401, pp.546-549, 1999.
DOI : 10.1126/science.283.5401.546

V. W. Rowlett and W. Margolin, The Min system and other nucleoid-independent regulators of Z ring positioning, Frontiers in Microbiology, vol.6, 2015.
DOI : 10.3389/fmicb.2015.00478

V. V. Rybenkov, V. Herrera, Z. M. Petrushenko, and H. Zhao, MukBEF, a Chromosomal Organizer, Journal of Molecular Microbiology and Biotechnology, vol.24, issue.5-6, pp.371-383, 2014.
DOI : 10.1159/000369099

A. Sanchez, D. I. Cattoni, J. Walter, J. Rech, A. Parmeggiani et al., Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus, Cell Systems, vol.1, issue.2, pp.163-173, 2015.
DOI : 10.1016/j.cels.2015.07.013

URL : https://hal.archives-ouvertes.fr/hal-01191677

W. B. Schofield, H. C. Lim, and C. Jacobs-wagner, Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins, The EMBO Journal, vol.2006, issue.18, 2010.
DOI : 10.1016/S1097-2765(00)80379-2

M. A. Schwartz and L. Shapiro, An SMC ATPase mutant disrupts chromosome segregation in Caulobacter, Molecular Microbiology, vol.192, issue.6, pp.1359-1374, 2011.
DOI : 10.1128/JB.00607-10

R. R. Sinden and D. E. Pettijohn, Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling., Proceedings of the National Academy of Sciences, vol.78, issue.1, pp.224-228, 1981.
DOI : 10.1073/pnas.78.1.224

Y. Soh, F. Bürmann, H. Shin, T. Oda, K. S. Jin et al., Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding, Molecular Cell, vol.57, issue.2, pp.290-303, 2015.
DOI : 10.1016/j.molcel.2014.11.023

D. Song, K. Rodrigues, T. G. Graham, and J. J. Loparo, A network of cis and trans interactions is required for ParB spreading, Nucleic Acids Research, vol.45, issue.12, pp.7106-7117, 2017.
DOI : 10.1093/nar/gkx271

J. Soppa, K. Kobayashi, M. F. Noirot-gros, D. Oesterhelt, S. D. Ehrlich et al., Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB, Molecular Microbiology, vol.144, issue.1, pp.59-71, 2002.
DOI : 10.1093/emboj/18.21.5873

W. W. Steiner and P. L. Kuempel, Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site, J. Bacteriol, vol.180, pp.6269-6275, 1998.

C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.25, issue.6799, pp.959-964, 2000.
DOI : 10.1093/nar/25.17.3389

A. V. Strunnikov, V. L. Larionov, K. , and D. , SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family, The Journal of Cell Biology, vol.123, issue.6, pp.1635-1648, 1993.
DOI : 10.1083/jcb.123.6.1635

A. V. Strunnikov, E. Hogan, K. , and D. , SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family., Genes & Development, vol.9, issue.5, pp.587-599, 1995.
DOI : 10.1101/gad.9.5.587

N. L. Sullivan, K. A. Marquis, and D. Z. Rudner, Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation, Cell, vol.137, issue.4, pp.697-707, 2009.
DOI : 10.1016/j.cell.2009.04.044

J. P. Swiercz, T. Nanji, M. Gloyd, A. Guarné, and M. A. Elliot, A novel nucleoid-associated protein specific to the actinobacteria, Nucleic Acids Research, vol.41, issue.7, pp.4171-4184, 2013.
DOI : 10.1093/nar/gkt095

K. K. Swinger, R. , and P. A. , IHF and HU: flexible architects of bent DNA, Current Opinion in Structural Biology, vol.14, issue.1, pp.28-35, 2004.
DOI : 10.1016/j.sbi.2003.12.003

K. Takeyasu, J. Kim, R. L. Ohniwa, T. Kobori, Y. Inose et al., Genome architecture studied by nanoscale imaging: analyses among bacterial phyla and their implication to eukaryotic genome folding, Cytogenetic and Genome Research, vol.107, issue.1-2, 2004.
DOI : 10.1159/000079570

N. K. Tonthat, S. T. Arold, B. F. Pickering, M. W. Van-dyke, S. Liang et al., Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check, The EMBO Journal, vol.9, issue.1, pp.154-164, 2011.
DOI : 10.1186/gb-2008-9-9-r137

E. Toro, S. H. Hong, H. H. Mcadams, and L. Shapiro, Caulobacter requires a dedicated mechanism to initiate chromosome segregation, Proceedings of the National Academy of Sciences, vol.204, issue.6, pp.15435-15440, 2008.
DOI : 10.1016/0076-6879(91)04019-K

N. T. Tran, M. T. Laub, L. , and T. B. , SMC Progressively Aligns Chromosomal Arms in Caulobacter crescentus but Is Antagonized by Convergent Transcription, Cell Reports, vol.20, issue.9, pp.2057-2071, 2017.
DOI : 10.1016/j.celrep.2017.08.026

F. Uhlmann, SMC complexes: from DNA to chromosomes, Nature Reviews Molecular Cell Biology, vol.9, issue.7, pp.399-412, 2016.
DOI : 10.1172/JCI73264

M. A. Umbarger, E. Toro, M. A. Wright, G. J. Porreca, D. Baù et al., The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation, Molecular Cell, vol.44, issue.2, pp.252-264, 2011.
DOI : 10.1016/j.molcel.2011.09.010

M. Val, A. Soler-bistué, M. J. Bland, and D. Mazel, Management of multipartite genomes: the Vibrio cholerae model, Current Opinion in Microbiology, vol.22, pp.120-126, 2014.
DOI : 10.1016/j.mib.2014.10.003

URL : https://hal.archives-ouvertes.fr/pasteur-01163283

M. Valens, S. Penaud, M. Rossignol, F. Cornet, and F. Boccard, Macrodomain organization of the Escherichia coli chromosome, The EMBO Journal, vol.241, issue.21, pp.4330-4341, 2004.
DOI : 10.1038/sj.emboj.7600028

M. Valens, A. Thiel, and F. Boccard, The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain, PLOS Genetics, vol.213, issue.9, 2016.
DOI : 10.1371/journal.pgen.1006309.s009

URL : https://hal.archives-ouvertes.fr/hal-01412308

I. Vallet-gely and F. Boccard, Chromosomal Organization and Segregation in Pseudomonas aeruginosa, PLoS Genetics, vol.80, issue.5, p.1003492, 2013.
DOI : 10.1371/journal.pgen.1003492.s010

A. G. Vecchiarelli, Y. Han, X. Tan, M. Mizuuchi, R. Ghirlando et al., ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition, Molecular Microbiology, vol.103, pp.no-no, 2010.
DOI : 10.1128/jb.177.9.2381-2386.1995

A. G. Vecchiarelli, L. C. Hwang, and K. Mizuuchi, Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism, Proc. Natl. Acad, 2013.
DOI : 10.1073/pnas.0913060107

M. Vietri-rudan, C. Barrington, S. Henderson, C. Ernst, D. T. Odom et al., Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture, Cell Reports, vol.10, issue.8, pp.1297-1309, 2015.
DOI : 10.1016/j.celrep.2015.02.004

P. H. Viollier, M. Thanbichler, P. T. Mcgrath, L. West, M. Meewan et al., From The Cover: Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication, Proceedings of the National Academy of Sciences, vol.15, issue.16, pp.9257-9262, 2004.
DOI : 10.1101/gad.913301

X. Wang and D. Z. Rudner, Spatial organization of bacterial chromosomes, Current Opinion in Microbiology, vol.22, 2014.
DOI : 10.1016/j.mib.2014.09.016

X. Wang, X. Liu, C. Possoz, and D. J. Sherratt, The two Escherichia coli chromosome arms locate to separate cell halves, Genes & Development, vol.20, issue.13, pp.1727-1731, 2006.
DOI : 10.1101/gad.388406

X. Wang, R. Reyes-lamothe, and D. J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV, Genes & Development, vol.22, issue.17, pp.2426-2433, 2008.
DOI : 10.1101/gad.487508

X. Wang, O. W. Tang, E. P. Riley, and D. Z. Rudner, The SMC Condensin Complex Is Required for Origin Segregation in Bacillus subtilis, Current Biology, vol.24, issue.3, pp.287-292, 2014.
DOI : 10.1016/j.cub.2013.11.050

X. Wang, H. B. Brandão, T. B. Le, M. T. Laub, and D. Z. Rudner, SMC complexes juxtapose chromosome arms as they travel from origin to terminus, Science, vol.355, issue.6324, pp.524-527, 2017.
DOI : 10.1073/pnas.1402529111

L. Wilhelm, F. Bürmann, A. Minnen, H. Shin, C. P. Toseland et al., Author response, eLife, vol.12, 2015.
DOI : 10.7554/eLife.06659.018

J. Willemse, J. W. Borst, E. De-waal, T. Bisseling, and G. P. Van-wezel, Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces, Genes & Development, vol.25, issue.1, pp.89-99, 2011.
DOI : 10.1101/gad.600211

E. Wit, . De, W. Laat, and . De, A decade of 3C technologies-insights into nuclear organization, Genes Dev, pp.11-24, 2012.

A. Worcel and E. Burgi, On the structure of the folded chromosome of Escherichia coli, Journal of Molecular Biology, vol.71, issue.2, pp.127-147, 1972.
DOI : 10.1016/0022-2836(72)90342-7

L. J. Wu and J. And-errington, Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis, Cell, vol.117, issue.7, pp.915-925, 2004.
DOI : 10.1016/j.cell.2004.06.002

Y. Yamaichi, N. , and H. , Active segregation by the Bacillus subtilis partitioning system in Escherichia coli, Proceedings of the National Academy of Sciences, vol.96, issue.9, pp.14656-14661, 2000.
DOI : 10.1073/pnas.96.9.4971

Y. Yamaichi, N. , and H. , migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome, The EMBO Journal, vol.23, issue.1, pp.221-233, 2004.
DOI : 10.1038/sj.emboj.7600028

Y. Yamaichi, M. A. Fogel, S. M. Mcleod, M. P. Hui, and M. K. Waldor, Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp., Journal of Bacteriology, vol.189, issue.14, pp.5314-5324, 2007.
DOI : 10.1128/JB.00416-07

Y. Yamaichi, R. Bruckner, S. Ringgaard, A. Möll, D. Ewen-cameron et al., A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole, Genes & Development, vol.26, issue.20, pp.2348-2360, 2012.
DOI : 10.1101/gad.199869.112

B. Youngren, H. J. Nielsen, S. Jun, A. , and S. , The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer, Genes & Development, vol.28, issue.1, pp.71-84, 2014.
DOI : 10.1101/gad.231050.113

P. Zawadzki, M. Stracy, K. Ginda, K. Zawadzka, C. Lesterlin et al., The Localization and Action of Topoisomerase IV in Escherichia coli Chromosome Segregation Is Coordinated by the SMC Complex, MukBEF, Cell Reports, vol.13, issue.11, pp.2587-2596, 2015.
DOI : 10.1016/j.celrep.2015.11.034

E. L. Zechiedrich, A. B. Khodursky, C. , and N. R. , Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia??coli, Genes & Development, vol.11, issue.19, pp.2580-2592, 1997.
DOI : 10.1101/gad.11.19.2580