M. Thanbichler, L. Shapiro3, and ]. D. Ridgway, Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasmDiffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial CytoplasmSpatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobusCrossmembranes orchestrate compartmentalization and morphogenesis in StreptomycesMacromolecule diffusion and confinement in prokaryotic cellsThe bacterial cytoskeleton', Microbiol, Proc. Natl. Acad. Sci, pp.28-40, 1991.

K. Matsumoto, J. Kusaka, A. Nishibori, and H. Hara, Lipid domains in bacterial membranes, Molecular Microbiology, vol.175, issue.5, pp.1110-1117, 2006.
DOI : 10.1074/jbc.M310183200

M. Z. Wilson and Z. Gitai, Beyond the cytoskeleton: mesoscale assemblies and their function in spatial organization, Current Opinion in Microbiology, vol.16, issue.2, pp.177-183, 2013.
DOI : 10.1016/j.mib.2013.03.008

C. M. Oikonomou and G. J. Jensen, A new view into prokaryotic cell biology from electron cryotomography, Nature Reviews Microbiology, vol.111, issue.4, pp.205-220, 2016.
DOI : 10.1126/science.1246794

E. Evguenieva-hackenberg, V. Roppelt, C. Lassek, and G. Klug, Subcellular localization of RNA degrading proteins and protein complexes in prokaryotes, RNA Biology, vol.77, issue.1, pp.49-54, 2011.
DOI : 10.1007/s00203-008-0402-6

X. Weng and J. Xiao, Spatial organization of transcription in bacterial cells, Trends in Genetics, vol.30, issue.7, pp.287-297, 2014.
DOI : 10.1016/j.tig.2014.04.008

E. Mileykovskaya and W. Dowhan, Cardiolipin membrane domains in prokaryotes and eukaryotes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.10, pp.2084-2091, 2009.
DOI : 10.1016/j.bbamem.2009.04.003

W. Wang, G. Li, C. Chen, X. S. Xie, and X. Zhuang, Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria, Science, vol.83, issue.2, pp.1445-1449, 2011.
DOI : 10.1016/S0300-9084(01)01232-9

A. A. Buskila, S. Kannaiah, and O. , RNA localization in bacteria, RNA Biology, vol.178, issue.8, pp.1051-1060, 2014.
DOI : 10.1016/j.tig.2012.03.008

F. H. Crick, On protein synthesis, Symp. Soc. Exp. Biol, vol.12, pp.138-163, 1958.

M. P. Robertson and G. F. Joyce, The Origins of the RNA World, Cold Spring Harbor Perspectives in Biology, vol.4, issue.5, 2012.
DOI : 10.1101/cshperspect.a003608

B. Masquida and E. Westhof, RNase P: At last, the key finds its lock, RNA, vol.17, issue.9, pp.1615-1618, 2011.
DOI : 10.1261/rna.2841511

Y. Shimoni, Regulation of gene expression by small non-coding RNAs: a quantitative view, Molecular Systems Biology, vol.4, 2007.
DOI : 10.1103/PhysRevE.72.031908

J. T. Wade and D. C. Grainger, Pervasive transcription: illuminating the dark matter of bacterial transcriptomes, Nature Reviews Microbiology, vol.136, issue.9, pp.647-653, 2014.
DOI : 10.1016/j.cell.2009.01.043

E. Lioliou, C. Romilly, P. Romby, and P. Fechter, RNA-mediated regulation in bacteria: from natural to artificial systems, New Biotechnology, vol.27, issue.3, pp.222-235, 2010.
DOI : 10.1016/j.nbt.2010.03.002

URL : https://hal.archives-ouvertes.fr/hal-00529847

J. A. Howe, FMN riboswitch, RNA Biology, vol.13, issue.10, pp.946-954, 2016.
DOI : 10.1038/nrg3722

A. Serganov, Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs, Chemistry & Biology, vol.11, issue.12, pp.1729-1741, 2004.
DOI : 10.1016/j.chembiol.2004.11.018

A. D. Garst, E. B. Porter, and R. T. Batey, Insights into the Regulatory Landscape of the Lysine Riboswitch, Journal of Molecular Biology, vol.423, issue.1, pp.17-33, 2012.
DOI : 10.1016/j.jmb.2012.06.038

J. Hindley, Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting, Journal of Molecular Biology, vol.30, issue.1, pp.125-136, 1967.
DOI : 10.1016/0022-2836(67)90248-3

B. Steuten, Regulation of transcription by 6S RNAs, RNA Biology, vol.148, issue.5, pp.508-521, 2014.
DOI : 10.1016/j.ymeth.2008.10.010

K. M. Wassarman, G. Storz, and E. , 6S RNA Regulates E. coli RNA Polymerase Activity, Cell, vol.101, issue.6, pp.613-623, 2000.
DOI : 10.1016/S0092-8674(00)80873-9

B. Steuten, S. Schneider, and R. Wagner, 6S RNA: recent answers - future questions, Molecular Microbiology, vol.106, issue.4, pp.641-648, 2014.
DOI : 10.1073/pnas.0810738106

J. F. Kugel and J. A. Goodrich, An RNA transcriptional regulator templates its own regulatory RNA, Nature Chemical Biology, vol.3, issue.2, pp.89-90, 2007.
DOI : 10.1038/nrm1946

D. H. Haft, J. Selengut, E. F. Mongodin, and K. E. Nelson, A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes, PLoS Computational Biology, vol.21, issue.6, p.60, 2005.
DOI : 1367-4803(2005)021[0293:GPASFT]2.0.CO;2

M. L. Luo, R. T. Leenay, and C. L. Beisel, Current and future prospects for CRISPR-based tools in bacteria, Biotechnology and Bioengineering, vol.509, issue.5, pp.930-943, 2016.
DOI : 10.1038/nature13166

K. Pougach, Transcription, processing and function of CRISPR cassettes in Escherichia coli, Molecular Microbiology, vol.32, issue.6, pp.1367-1379, 2010.
DOI : 10.1111/j.1365-2958.2010.07265.x

J. Georg and W. R. Hess, cis-Antisense RNA, Another Level of Gene Regulation in Bacteria, Microbiology and Molecular Biology Reviews, vol.75, issue.2, pp.286-300, 2011.
DOI : 10.1128/MMBR.00032-10

F. Saberi, M. Kamali, A. Najafi, A. Yazdanparast, and M. M. Moghaddam, Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications, Cellular & Molecular Biology Letters, vol.39, issue.1, 2016.
DOI : 10.1093/femsre/fuv004

G. Storz, J. Vogel, and K. M. Wassarman, Regulation by Small RNAs in Bacteria: Expanding Frontiers, Molecular Cell, vol.43, issue.6, pp.880-891, 2011.
DOI : 10.1016/j.molcel.2011.08.022

A. Smirnov, Grad-seq guides the discovery of ProQ as a major small RNAbinding protein, Proc. Natl. Acad. Sci, pp.11591-11596, 2016.

G. M. Gonzalez, ProQ RNA-binding protein, RNA, vol.4, issue.5, pp.696-711, 2017.
DOI : 10.1016/bs.adgen.2015.05.001

M. Olejniczak and G. Storz, ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers?, Molecular Microbiology, vol.22, issue.6, 2017.
DOI : 10.1261/rna.055251.115

D. W. Selinger, R. M. Saxena, K. J. Cheung, G. M. Church, and C. Rosenow, Global RNA Half-Life Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation, Genome Research, vol.13, issue.2, pp.216-223, 2003.
DOI : 10.1101/gr.912603

G. A. Mackie, Ribonuclease E is a 5???-end-dependent endonuclease, Nature, vol.81, issue.6703, pp.720-723, 1998.
DOI : 10.1016/0006-291X(78)91586-3

A. Deana, H. Celesnik, and J. G. Belasco, The bacterial enzyme RppH triggers messenger RNA degradation by 5??? pyrophosphate removal, Nature, vol.97, issue.7176, pp.355-358, 2008.
DOI : 10.1038/nature06475

G. Joanny, Polyadenylation of a functional mRNA controls gene expression in Escherichia coli, Nucleic Acids Research, vol.35, issue.8, pp.2494-2502, 2007.
DOI : 10.1093/nar/gkm120

URL : https://hal.archives-ouvertes.fr/hal-00196100

G. A. Mackie, RNase E: at the interface of bacterial RNA processing and decay, Nature Reviews Microbiology, vol.287, issue.1, pp.45-57, 2012.
DOI : 10.1074/jbc.M112.407403

M. W. Górna, A. J. Carpousis, and B. F. Luisi, From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome, Quarterly Reviews of Biophysics, vol.49, issue.02, pp.105-145, 2012.
DOI : 10.1242/jcs.047399

V. Chandran and B. F. Luisi, Recognition of Enolase in the Escherichia coli RNA Degradosome, Journal of Molecular Biology, vol.358, issue.1, pp.8-15, 2006.
DOI : 10.1016/j.jmb.2006.02.012

S. W. Hardwick and B. F. Luisi, Rarely at rest, RNA Biology, vol.2, issue.1, pp.56-70, 2013.
DOI : 10.1098/rstb.2011.0138

B. Py, C. F. Higgins, H. M. Krisch, and A. J. Carpousis, A DEAD-box RNA helicase in the Escherichia coli RNA degradosome, Nature, vol.381, issue.6578, pp.169-172, 1996.
DOI : 10.1038/381169a0

A. Resch, B. Ve?erek, K. Palavra, and U. Bläsi, mRNA, RNA Biology, vol.2, issue.6, pp.796-802, 2010.
DOI : 10.1038/nprot.2007.459

V. Khemici, I. Toesca, L. Poljak, N. F. Vanzo, and A. J. Carpousis, The RNase E of Escherichia coli has at least two binding sites for DEAD-box RNA helicases: functional replacement of RhlB by RhlE, Molecular Microbiology, vol.29, issue.5, pp.1422-1430, 2004.
DOI : 10.1128/jb.173.11.3291-3302.1991

A. J. Callaghan, Studies of the RNA Degradosome-organizing Domain of the Escherichia coli Ribonuclease RNase E, Journal of Molecular Biology, vol.340, issue.5, pp.965-979, 2004.
DOI : 10.1016/j.jmb.2004.05.046

K. J. Bandyra, M. Bouvier, A. J. Carpousis, and B. F. Luisi, The social fabric of the RNA degradosome, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.6-7, pp.6-7, 2013.
DOI : 10.1016/j.bbagrm.2013.02.011

URL : https://hal.archives-ouvertes.fr/hal-00944960

V. Khemici, L. Poljak, B. F. Luisi, and A. J. Carpousis, The RNase E of Escherichia coli is a membrane-binding protein, Mol. Microbiol, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356021

J. Salje, F. Van-den-ent, P. De-boer, and J. Löwe, Direct Membrane Binding by Bacterial Actin MreB, Molecular Cell, vol.43, issue.3, pp.478-487, 2011.
DOI : 10.1016/j.molcel.2011.07.008

H. Zhou and J. Lutkenhaus, Membrane Binding by MinD Involves Insertion of Hydrophobic Residues within the C-Terminal Amphipathic Helix into the Bilayer, Journal of Bacteriology, vol.185, issue.15, pp.4326-4335, 2003.
DOI : 10.1128/JB.185.15.4326-4335.2003

A. Taghbalout and L. Rothfield, RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton, Proc. Natl. Acad. Sci, pp.1667-1672, 2007.
DOI : 10.1046/j.1365-2958.2000.02007.x

A. Taghbalout and L. Rothfield, RNaseE and RNA Helicase B Play Central Roles in the Cytoskeletal Organization of the RNA Degradosome, Journal of Biological Chemistry, vol.61, issue.20, pp.13850-13855, 2008.
DOI : 10.1016/0378-1119(95)00193-A

A. Taghbalout and Q. Yang, Self-Assembly of the Bacterial Cytoskeleton-Associated RNA Helicase B Protein into Polymeric Filamentous Structures, Journal of Bacteriology, vol.192, issue.12, pp.3222-3226, 2010.
DOI : 10.1128/JB.00105-10

A. Taghbalout, Q. Yang, and V. Arluison, RNA processing and degradation machinery is compartmentalized within an organized cellular network, Biochemical Journal, vol.181, issue.1, pp.11-22, 2014.
DOI : 10.1074/jbc.M709118200

H. Strahl, Membrane Recognition and Dynamics of the RNA Degradosome, PLOS Genetics, vol.9, issue.2, p.1004961, 2015.
DOI : 10.1371/journal.pgen.1004961.s013

J. R. Moffitt, S. Pandey, A. N. Boettiger, S. Wang, and X. Zhuang, Author response, eLife, vol.26, p.13065, 2016.
DOI : 10.7554/eLife.13065.029

M. T. Franze-de-fernandez, L. Eoyang, and J. T. August, Factor Fraction required for the Synthesis of Bacteriophage Q??-RNA, Nature, vol.59, issue.5154, pp.588-590, 1968.
DOI : 10.1038/219588a0

X. Sun, I. Zhulin, and R. M. , Predicted structure and phyletic distribution of the RNA-binding protein Hfq, Nucleic Acids Research, vol.30, issue.17, pp.3662-3671, 2002.
DOI : 10.1093/nar/gkf508

C. L. Will and R. Lührmann, Spliceosomal UsnRNP biogenesis, structure and function, Current Opinion in Cell Biology, vol.13, issue.3, pp.290-301, 2001.
DOI : 10.1016/S0955-0674(00)00211-8

S. Tharun, W. He, A. E. Mayes, and P. , Yeast Sm-like proteins function in mRNA decapping and decay, Nature, vol.151, issue.6777, p.515, 2000.
DOI : 10.1017/S1355838299981396

A. G. Seto, A. J. Zaug, S. G. Sobel, S. L. Wolin, and T. R. Cech, Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle, Nature, vol.15, issue.6749, pp.177-180, 1999.
DOI : 10.1016/0161-5890(78)90070-6

C. Mura, P. S. Randolph, J. Patterson, and A. E. Cozen, Archaeal and eukaryotic homologs of Hfq, RNA Biology, vol.10, issue.4, pp.636-651, 2013.
DOI : 10.1017/CBO9780511790492

J. M. Moll, M. Sobti, and B. C. Mabbutt, The Lsm Proteins: Ring Architectures for RNA Capture, RNA Processing, 2011.

E. Sauer, Structure and RNA-binding properties of the bacterial LSm protein Hfq, RNA Biology, vol.250, issue.4, pp.610-618, 2013.
DOI : 10.1093/nar/gkl217

D. G. Scofield and M. Lynch, Evolutionary Diversification of the Sm Family of RNA-Associated Proteins, Molecular Biology and Evolution, vol.25, issue.11, pp.2255-2267, 2008.
DOI : 10.1093/molbev/msn175

S. Veretnik, C. Wills, P. Youkharibache, R. E. Valas, and P. E. Bourne, Sm/Lsm Genes Provide a Glimpse into the Early Evolution of the Spliceosome, PLoS Computational Biology, vol.52, issue.3, p.1000315, 2009.
DOI : 10.1371/journal.pcbi.1000315.s010

M. A. Schumacher, R. F. Pearson, T. Møller, P. Valentin-hansen, and R. G. Brennan, Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein, The EMBO Journal, vol.21, issue.13, pp.3546-3556, 2002.
DOI : 10.1093/emboj/cdf322

C. Sauter, J. Basquin, and D. Suck, Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Research, vol.31, issue.14, pp.4091-4098, 2003.
DOI : 10.1093/nar/gkg480

A. Nikulin, Hfq protein, Acta Crystallographica Section D Biological Crystallography, vol.61, issue.2, pp.141-146, 2005.
DOI : 10.1107/S0907444904030008

D. Schilling and U. Gerischer, The Acinetobacter baylyi hfq Gene Encodes a Large Protein with an Unusual C Terminus, Journal of Bacteriology, vol.191, issue.17, pp.5553-5562, 2009.
DOI : 10.1128/JB.00490-09

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Research, vol.44, issue.W1, pp.242-245, 2016.
DOI : 10.1093/nar/gkw290

T. D. Schneider and R. M. Stephens, Sequence logos: a new way to display consensus sequences, Nucleic Acids Research, vol.18, issue.20, pp.6097-6100, 1990.
DOI : 10.1093/nar/18.20.6097

S. Panja and S. A. Woodson, Hexamer to Monomer Equilibrium of E. coli Hfq in Solution and Its Impact on RNA Annealing, Journal of Molecular Biology, vol.417, issue.5, pp.406-412, 2012.
DOI : 10.1016/j.jmb.2012.02.009

V. Arluison, The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer, European Journal of Biochemistry, vol.7, issue.7, pp.1258-1265, 2004.
DOI : 10.1099/00221287-148-3-883

M. Beich-frandsen, Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq, Nucleic Acids Research, vol.39, issue.11, pp.4900-4915, 2011.
DOI : 10.1093/nar/gkq1346

Z. R. Yang, R. Thomson, P. Mcneil, and R. M. Esnouf, RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.21, issue.16, pp.3369-3376, 2005.
DOI : 10.1093/bioinformatics/bti534

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

H. C. Tsui, G. Feng, and M. E. Winkler, Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12., Journal of Bacteriology, vol.179, issue.23, pp.7476-7487, 1997.
DOI : 10.1128/jb.179.23.7476-7487.1997

B. Ve?erek, I. Moll, and U. Bläsi, Translational autocontrol of the Escherichia coli hfq RNA chaperone gene, RNA, vol.11, issue.6, pp.976-984, 2005.
DOI : 10.1261/rna.2360205

C. S. Baker, L. A. Eöry, H. Yakhnin, J. Mercante, T. Romeo et al., CsrA Inhibits Translation Initiation of Escherichia coli hfq by Binding to a Single Site Overlapping the Shine-Dalgarno Sequence, Journal of Bacteriology, vol.189, issue.15, pp.5472-5481, 2007.
DOI : 10.1128/JB.00529-07

M. Kajitani, A. Kato, A. Wada, Y. Inokuchi, and A. Ishihama, Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta., Journal of Bacteriology, vol.176, issue.2, pp.531-534, 1994.
DOI : 10.1128/jb.176.2.531-534.1994

G. M. Cech, B. Paku?a, D. Kamrowska, G. W?grzyn, V. Arluison et al., Hfq protein deficiency in Escherichia coli affects ColE1-like but not ?? plasmid DNA replication, Plasmid, vol.73, pp.10-15, 2014.
DOI : 10.1016/j.plasmid.2014.04.005

H. T. Tsui, H. E. Leung, and M. E. Winkler, Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12, Molecular Microbiology, vol.161, issue.1, pp.35-49, 1994.
DOI : 10.1007/BF00277109

A. Sittka, Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq, PLoS Genetics, vol.13, issue.8, p.1000163, 2008.
DOI : 10.1371/journal.pgen.1000163.s013

J. R. Feliciano, A. M. Grilo, S. I. Guerreiro, S. A. Sousa, and J. H. Leitão, Hfq: a multifaceted RNA chaperone involved in virulence, Future Microbiology, vol.1, issue.1, pp.137-151, 2016.
DOI : 10.1093/nar/gkn050

A. Muffler, D. Fischer, and R. Hengge-aronis, The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli., Genes & Development, vol.10, issue.9, pp.1143-1151, 1996.
DOI : 10.1101/gad.10.9.1143

S. Gottesman, : Roles and Mechanisms, Annual Review of Microbiology, vol.58, issue.1, pp.303-328, 2004.
DOI : 10.1146/annurev.micro.58.030603.123841

K. I. Udekwu, F. Darfeuille, J. Vogel, J. Reimegård, E. Holmqvist et al., Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA, Genes & Development, vol.19, issue.19, pp.2355-2366, 2005.
DOI : 10.1101/gad.354405

C. K. Vanderpool and S. Gottesman, Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system, Molecular Microbiology, vol.50, issue.4, pp.1076-1089, 2004.
DOI : 10.1099/00221287-138-10-2007

F. Mika, Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli, Molecular Microbiology, vol.31, issue.1, pp.51-65, 2012.
DOI : 10.1093/nar/gkg595

E. Massé, C. K. Vanderpool, and S. Gottesman, Effect of RyhB Small RNA on Global Iron Use in Escherichia coli, Journal of Bacteriology, vol.187, issue.20, pp.6962-6971, 2005.
DOI : 10.1128/JB.187.20.6962-6971.2005

N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman, DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription, Proceedings of the National Academy of Sciences, vol.95, issue.21, pp.12462-12467, 1998.
DOI : 10.1073/pnas.95.21.12456

N. Majdalani, D. Hernandez, and S. Gottesman, Regulation and mode of action of the second small RNA activator of RpoS translation, RprA, Molecular Microbiology, vol.9, issue.3, pp.813-826, 2002.
DOI : 10.1128/jb.169.3.981-989.1987

I. Moll, T. Afonyushkin, O. Vytvytska, V. R. Kaberdin, and U. Bläsi, Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs, RNA, vol.9, issue.11, pp.1308-1314, 2003.
DOI : 10.1261/rna.5850703

T. Afonyushkin, B. Vecerek, I. Moll, U. Bläsi, and V. R. Kaberdin, Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB, Nucleic Acids Research, vol.33, issue.5, pp.1678-1689, 2005.
DOI : 10.1093/nar/gki313

B. K. Mohanty, V. F. Maples, and S. R. Kushner, The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli, Molecular Microbiology, vol.50, issue.4, pp.905-920, 2004.
DOI : 10.1128/jb.179.23.7476-7487.1997

N. Sedlyarova, sRNA-Mediated Control of Transcription Termination in E.??coli, Cell, vol.167, issue.1, pp.111-121, 2016.
DOI : 10.1016/j.cell.2016.09.004

E. Holmqvist, Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo', EMBO J, 2016.

S. Melamed, Global Mapping of Small RNA-Target Interactions in Bacteria, Molecular Cell, vol.63, issue.5, pp.884-897, 2016.
DOI : 10.1016/j.molcel.2016.07.026

L. Argaman, M. Elgrably-weiss, T. Hershko, J. Vogel, and S. Altuvia, RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq, Proc. Natl. Acad. Sci, pp.4621-4626, 2012.
DOI : 10.1006/abio.1995.1138

A. Fender, J. Elf, K. Hampel, B. Zimmermann, and E. G. Wagner, RNAs actively cycle on the Sm-like protein Hfq, Genes & Development, vol.24, issue.23, pp.2621-2626, 2010.
DOI : 10.1101/gad.591310

E. G. Wagner, Cycling of RNAs on Hfq, RNA Biology, vol.181, issue.4, pp.619-626, 2013.
DOI : 10.1016/j.molcel.2012.07.015

J. Vogel and B. F. Luisi, Hfq and its constellation of RNA, Nature Reviews Microbiology, vol.385, issue.8, pp.578-589, 2011.
DOI : 10.1038/385176a0

T. M. Link, P. Valentin-hansen, and R. G. Brennan, Structure of Escherichia coli Hfq bound to polyriboadenylate RNA, Proceedings of the National Academy of Sciences, vol.10, issue.6, pp.19292-19297, 2009.
DOI : 10.1210/me.10.6.607

E. A. Lesnik, R. Sampath, H. B. Levene, T. J. Henderson, J. A. Mcneil et al., Prediction of rho-independent transcriptional terminators in Escherichia coli, Nucleic Acids Research, vol.29, issue.17, pp.3583-3594, 2001.
DOI : 10.1093/nar/29.17.3583

T. A. Geissmann and D. Touati, Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator, The EMBO Journal, vol.23, issue.2, pp.396-405, 2004.
DOI : 10.1038/sj.emboj.7600058

C. C. Brescia, P. J. Mikulecky, A. L. Feig, and D. D. Sledjeski, Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure, RNA, vol.9, issue.1, pp.33-43, 2003.
DOI : 10.1261/rna.2570803

S. Panja, D. J. Schu, and S. A. Woodson, Conserved arginines on the rim of Hfq catalyze base pair formation and exchange, Nucleic Acids Research, vol.41, issue.15, pp.7536-7546, 2013.
DOI : 10.1093/nar/gkt521

D. J. Schu, A. Zhang, S. Gottesman, and G. Storz, Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition, The EMBO Journal, vol.34, issue.20, pp.2557-2573, 2015.
DOI : 10.15252/embj.201591569

B. Guillemardet, Rôle de la protéine chaperonne Hfq dans la réponse des ARN messagers à la régulation par les petits ARN

A. S. Olsen, J. Møller-jensen, R. G. Brennan, and P. Valentin-hansen, C-Terminally Truncated Derivatives of Escherichia coli Hfq Are Proficient in Riboregulation, Journal of Molecular Biology, vol.404, issue.2, pp.173-182, 2010.
DOI : 10.1016/j.jmb.2010.09.038

J. Caillet, C. Gracia, F. Fontaine, and E. Hajnsdorf, Hfq for most of its function, RNA, vol.20, issue.10, pp.1567-1578, 2014.
DOI : 10.1261/rna.043372.113

E. Sonnleitner, I. Moll, and U. Bläsi, Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa', Microbiology, pp.883-891, 2002.

J. S. Nielsen, An Hfq-like protein in archaea: Crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii, RNA, vol.13, issue.12, pp.2213-2223, 2007.
DOI : 10.1261/rna.689007

A. Santiago-frangos, K. Kavita, D. J. Schu, S. Gottesman, and S. A. Woodson, Cterminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA, Proc. Natl. Acad. Sci, p.201613053, 2016.

G. Butland, Interaction network containing conserved and essential protein complexes in Escherichia coli, Nature, vol.8, issue.7025, pp.531-537, 2005.
DOI : 10.1093/nar/25.17.3389

A. Jain, R. Liu, Y. K. Xiang, and T. Ha, Single-molecule pull-down for studying protein interactions, Nature Protocols, vol.587, issue.3, pp.445-452, 2012.
DOI : 10.1007/978-1-60327-355-8_3

T. Morita, K. Maki, and H. Aiba, RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs, Genes & Development, vol.19, issue.18, pp.2176-2186, 2005.
DOI : 10.1101/gad.1330405

K. Yonekura, M. Watanabe, Y. Kageyama, K. Hirata, M. Yamamoto et al., Post-Transcriptional Regulator Hfq Binds Catalase HPII: Crystal Structure of the Complex, PLoS ONE, vol.67, issue.11, p.78216, 2013.
DOI : 10.1371/journal.pone.0078216.s001

T. A. Azam, S. Hiraga, and A. Ishihama, Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid, Genes to Cells, vol.20, issue.8, pp.613-626, 2000.
DOI : 10.1093/nar/20.24.6734

T. A. Azam, A. Iwata, A. Nishimura, S. Ueda, and A. Ishihama, Growth phasedependent variation in protein composition of the Escherichia coli nucleoid, J. Bacteriol, vol.181, issue.20, pp.6361-6370, 1999.

E. Diestra, B. Cayrol, V. Arluison, and C. Risco, Cellular Electron Microscopy Imaging Reveals the Localization of the Hfq Protein Close to the Bacterial Membrane, PLoS ONE, vol.4, issue.12, p.8301, 2009.
DOI : 10.1371/journal.pone.0008301.g005

V. Arluison, Three-dimensional Structures of Fibrillar Sm Proteins: Hfq and Other Sm-like Proteins, Journal of Molecular Biology, vol.356, issue.1, pp.86-96, 2006.
DOI : 10.1016/j.jmb.2005.11.010

URL : https://hal.archives-ouvertes.fr/hal-00090155

E. Fortas, New insight into the structure and function of Hfq C-terminus, Bioscience Reports, vol.112, issue.2, 2015.
DOI : 10.1002/anie.201000068

URL : https://hal.archives-ouvertes.fr/hal-01534472

V. N. Uversky, Intrinsically disordered proteins from A to Z, The International Journal of Biochemistry & Cell Biology, vol.43, issue.8, pp.1090-1103, 2011.
DOI : 10.1016/j.biocel.2011.04.001

H. J. Dyson and P. E. Wright, Intrinsically unstructured proteins and their functions, Nature Reviews Molecular Cell Biology, vol.278, issue.3, pp.197-208, 2005.
DOI : 10.1126/science.7754375

J. J. Ward, J. S. Sodhi, L. J. Mcguffin, B. F. Buxton, and D. T. Jones, Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life, Journal of Molecular Biology, vol.337, issue.3, pp.635-645, 2004.
DOI : 10.1016/j.jmb.2004.02.002

S. Fukuchi, K. Hosoda, K. Homma, T. Gojobori, and K. Nishikawa, Binary classification of protein molecules into intrinsically disordered and ordered segments, BMC Structural Biology, vol.11, issue.1, p.29, 2011.
DOI : 10.1038/36786

Y. Lin, W. Hsu, J. Hwang, and W. Li, Proportion of Solvent-Exposed Amino Acids in a Protein and Rate of Protein Evolution, Molecular Biology and Evolution, vol.24, issue.4, pp.1005-1011, 2007.
DOI : 10.1093/molbev/msm019

C. J. Brown, Evolutionary Rate Heterogeneity in Proteins with Long Disordered Regions, Journal of Molecular Evolution, vol.55, issue.1, pp.104-110, 2002.
DOI : 10.1007/s00239-001-2309-6

K. Namba, Roles of partly unfolded conformations in macromolecular selfassembly', Genes Cells Devoted Mol. Cell. Mech, vol.6, issue.1, pp.1-12, 2001.

C. Haynes, Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes, PLoS Computational Biology, vol.19, issue.8, p.100, 2006.
DOI : 10.1371/journal.pcbi.0020100.st003

D. J. Selkoe, Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases, Nature Cell Biology, vol.100, issue.11, pp.1054-1061, 2004.
DOI : 10.1073/pnas.0530312100

F. Chiti and C. M. Dobson, Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade, Annual Review of Biochemistry, vol.86, issue.1, 2017.
DOI : 10.1146/annurev-biochem-061516-045115

P. Westermark, A. Andersson, and G. T. Westermark, Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus, Physiological Reviews, vol.91, issue.3, pp.795-826, 2011.
DOI : 10.1152/physrev.00042.2009

C. M. Dobson, Protein folding and misfolding, Nature, vol.418, issue.6968, pp.884-890, 2003.
DOI : 10.1038/418729a

P. Arosio, T. P. Knowles, and S. Linse, On the lag phase in amyloid fibril formation, Physical Chemistry Chemical Physics, vol.107, issue.12, pp.7606-7618, 2015.
DOI : 10.1073/pnas.0913046107

G. Plakoutsi, F. Bemporad, M. Calamai, N. Taddei, C. M. Dobson et al., Evidence for a Mechanism of Amyloid Formation Involving Molecular Reorganisation within Native-like Precursor Aggregates, Journal of Molecular Biology, vol.351, issue.4, pp.910-922, 2005.
DOI : 10.1016/j.jmb.2005.06.043

N. Carulla, Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation, Proc. Natl
DOI : 10.1021/ar0500719

J. Lee, E. K. Culyba, E. T. Powers, and J. W. Kelly, Amyloid-?? forms fibrils by nucleated conformational conversion of oligomers, Nature Chemical Biology, vol.50, issue.9, pp.602-609, 2011.
DOI : 10.1016/S0065-3233(08)60320-4

T. K. Karamanos, A. P. Kalverda, G. S. Thompson, and S. E. Radford, Mechanisms of amyloid formation revealed by solution NMR, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.88, issue.89, pp.86-104, 2015.
DOI : 10.1016/j.pnmrs.2015.05.002

R. Friedman, R. Pellarin, and A. Caflisch, Amyloid Aggregation on Lipid Bilayers and Its Impact on Membrane Permeability, Journal of Molecular Biology, vol.387, issue.2, pp.407-415, 2009.
DOI : 10.1016/j.jmb.2008.12.036

L. Milanesi, Direct three-dimensional visualization of membrane disruption by amyloid fibrils, Proc. Natl. Acad. Sci, pp.20455-20460, 2012.
DOI : 10.1006/jsbi.2001.4406

A. Abedini and D. P. Raleigh, A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides, Protein Engineering Design and Selection, vol.22, issue.8, pp.453-459, 2009.
DOI : 10.1093/protein/gzp036

M. Sunde and C. Blake, The Structure of Amyloid Fibrils by Electron Microscopy and X-Ray Diffraction, Adv. Protein Chem, vol.50, pp.123-159, 1997.
DOI : 10.1016/S0065-3233(08)60320-4

G. Zandomeneghi, M. R. Krebs, M. G. Mccammon, and M. Fändrich, FTIR reveals structural differences between native ??-sheet proteins and amyloid fibrils, Protein Science, vol.123, issue.12, pp.3314-3321, 2004.
DOI : 10.1016/S1570-9639(03)00263-2

M. Nilsson, Techniques to study amyloid fibril formation in vitro, Methods, vol.34, issue.1, pp.151-160, 2004.
DOI : 10.1016/j.ymeth.2004.03.012

T. P. Knowles, Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils, Science, vol.368, issue.6468, pp.1900-1903, 2007.
DOI : 10.1038/368226a0

M. Fändrich and C. M. Dobson, The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation, The EMBO Journal, vol.21, issue.21, pp.5682-5690, 2002.
DOI : 10.1093/emboj/cdf573

C. P. Maury, The emerging concept of functional amyloid, Journal of Internal Medicine, vol.479, issue.3, pp.329-334, 2009.
DOI : 10.1111/j.1365-2796.2008.02068.x

J. D. Taylor and S. J. Matthews, New insight into the molecular control of bacterial functional amyloids', Front, Cell. Infect. Microbiol, vol.5, 2015.

W. Hawthorne, S. Rouse, L. Sewell, and S. J. Matthews, Structural insights into functional amyloid inhibition in Gram -ve bacteria, Biochemical Society Transactions, vol.44, issue.6, pp.1643-1649, 2016.
DOI : 10.1042/BST20160245

M. S. Dueholm, Functional amyloid in Pseudomonas, Molecular Microbiology, vol.71, issue.4, pp.1009-1020, 2010.
DOI : 10.1016/S0304-4157(00)00002-2

R. N. Besingi, Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c, Microbiology, vol.163, issue.4, pp.488-501, 2017.
DOI : 10.1099/mic.0.000443

P. Goyal, Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG, Nature, vol.23, issue.7530, pp.250-253, 2014.
DOI : 10.1093/bioinformatics/btm270

I. Pallarès and S. Ventura, The Transcription Terminator Rho: A First Bacterial Prion, Trends in Microbiology, vol.25, issue.6, 2017.
DOI : 10.1016/j.tim.2017.03.008

J. Shorter and S. Lindquist, Prions as adaptive conduits of memory and inheritance, Nature Reviews Genetics, vol.5, issue.6, pp.435-450, 2005.
DOI : 10.1016/j.cell.2005.04.002

D. C. Masison and R. B. Wickner, Prion-Inducing Domain of Yeast Ure2p and Protease Resistance of Ure2p in Prion-Containing Cells, Science, vol.270, issue.5233, pp.93-95, 1995.
DOI : 10.1126/science.270.5233.93

V. Iglesias, N. S. De-groot, and S. Ventura, Computational analysis of candidate prion-like proteins in bacteria and their role, Frontiers in Microbiology, vol.287, issue.33, 2015.
DOI : 10.1074/jbc.M112.383737

A. H. Yuan and A. Hochschild, A bacterial global regulator forms a prion, Science, vol.355, issue.6321, pp.198-201, 2017.
DOI : 10.1006/jmbi.1996.0210

T. C. Jackson and M. V. Sukhodolets, Functional analyses of putative PalS ( Pal indromic S elf-recognition) motifs in bacterial Hfq, Biochemical and Biophysical Research Communications, vol.486, issue.4, pp.1048-1054, 2017.
DOI : 10.1016/j.bbrc.2017.03.160

L. Postow, C. D. Hardy, J. Arsuaga, and N. R. Cozzarelli, Topological domain structure of the Escherichia coli chromosome, Genes & Development, vol.18, issue.14, pp.1766-1779, 2004.
DOI : 10.1101/gad.1207504

C. J. Dorman, DNA supercoiling and bacterial gene expression, Science Progress, vol.89, issue.3, pp.151-166, 2006.
DOI : 10.3184/003685006783238317

C. D. Hardy and N. R. Cozzarelli, reveals proteins implicated in chromosome structure, Molecular Microbiology, vol.9, issue.6, pp.1636-1652, 2005.
DOI : 10.1073/pnas.100127597

D. Song and J. J. Loparo, Building bridges within the bacterial chromosome, Trends in Genetics, vol.31, issue.3, pp.164-173, 2015.
DOI : 10.1016/j.tig.2015.01.003

P. Sobetzko, A. Travers, and G. Muskhelishvili, Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle, Proc. Natl. Acad. Sci, pp.42-50, 2012.
DOI : 10.1038/sj.emboj.7600434

J. Kim, S. H. Yoshimura, K. Hizume, R. L. Ohniwa, A. Ishihama et al., Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy, Nucleic Acids Research, vol.32, issue.6, pp.1982-1992, 2004.
DOI : 10.1093/nar/gkh512

C. Cibot, Etude du surenroulement diffusible de l'ADN chromosomique chez la bactérie Escherichia Coli', phdthesis, 2015.

J. S. Graham, R. C. Johnson, and J. F. Marko, Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA, Nucleic Acids Research, vol.39, issue.6, pp.2249-2259, 2011.
DOI : 10.1093/nar/gkq1140

N. Hadizadeh, R. C. Johnson, and J. F. Marko, ABSTRACT, Journal of Bacteriology, vol.198, issue.12, pp.1735-1742, 2016.
DOI : 10.1128/JB.00225-16

K. Dahlke and C. E. Sing, Facilitated Dissociation Kinetics of Dimeric Nucleoid-Associated Proteins Follow a Universal Curve, Biophysical Journal, vol.112, issue.3, pp.543-551, 2017.
DOI : 10.1016/j.bpj.2016.11.3198

R. D. Giuntoli, DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response, Journal of Molecular Biology, vol.427, issue.19, pp.3123-3136, 2015.
DOI : 10.1016/j.jmb.2015.07.015

N. L. Craig and H. A. Nash, E. coli integration host factor binds to specific sites in DNA, Cell, vol.39, issue.3, pp.707-716, 1984.
DOI : 10.1016/0092-8674(84)90478-1

URL : https://hal.archives-ouvertes.fr/hal-01347935

S. Khrapunov, M. Brenowitz, P. A. Rice, and C. E. Catalano, Binding then bending: A mechanism for wrapping DNA, Proceedings of the National Academy of Sciences, vol.87, issue.7, pp.19217-19218, 2006.
DOI : 10.1016/S0092-8674(00)81824-3

M. Engelhorn, F. Boccard, C. Murtin, P. Prentki, and J. Geiselmann, integration host factor with its specific binding sites, Nucleic Acids Research, vol.23, issue.15, pp.2959-2965, 1995.
DOI : 10.1093/nar/23.15.2959

C. Murtin, M. Engelhorn, J. Geiselmann, and F. Boccard, A quantitative UV laser footprinting analysis of the interaction of IHF with specific binding sites: re-evaluation of the effective concentration of IHF in the cell, Journal of Molecular Biology, vol.284, issue.4, pp.949-961, 1998.
DOI : 10.1006/jmbi.1998.2256

B. Kundukad, P. Cong, J. R. Van-der-maarel, and P. S. Doyle, Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein, Nucleic Acids Research, vol.41, issue.17, pp.8280-8288, 2013.
DOI : 10.1093/nar/gkt593

M. Hammel, HU multimerization shift controls nucleoid compaction, Science Advances, vol.2, issue.7, pp.1600650-1600650, 2016.
DOI : 10.1126/sciadv.1600650

S. Kar, R. Edgar, and S. Adhya, Nucleoid remodeling by an altered HU protein: Reorganization of the transcription program, Proceedings of the National Academy of Sciences, vol.273, issue.32, pp.16397-16402, 2005.
DOI : 10.1074/jbc.273.32.19982

C. J. Dorman, Chapter 2 Nucleoid-Associated Proteins and Bacterial Physiology, Adv. Appl. Microbiol, vol.67, pp.47-64, 2009.
DOI : 10.1016/S0065-2164(08)01002-2

S. Stella, D. Cascio, and R. C. Johnson, The shape of the DNA minor groove directs binding by the DNA-bending protein Fis, Genes & Development, vol.24, issue.8, pp.814-826, 2010.
DOI : 10.1101/gad.1900610

R. Schneider, A. Travers, T. Kutateladze, and G. Muskhelishvili, A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli, Molecular Microbiology, vol.177, issue.5, pp.953-964, 1999.
DOI : 10.1016/0378-1119(86)90217-9

N. N. Vtyurina, D. Dulin, M. W. Docter, A. S. Meyer, N. H. Dekker et al., Hysteresis in DNA compaction by Dps is described by an Ising model, Proceedings of the National Academy of Sciences, vol.31, issue.75, pp.4982-4987, 2016.
DOI : 10.1016/j.celrep.2015.01.031

S. G. Wolf, D. Frenkiel, T. Arad, S. E. Finkel, R. Kolter et al., DNA protection by stress-induced biocrystallization, Nature, vol.400, issue.6739, pp.83-85, 1999.

P. Ceci, DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus, Nucleic Acids Research, vol.32, issue.19, pp.5935-5944, 2004.
DOI : 10.1093/nar/gkh915

M. V. Kotlajich, D. R. Hron, B. A. Boudreau, Z. Sun, Y. L. Lyubchenko et al., Author response, eLife, vol.151, p.4970, 2015.
DOI : 10.7554/eLife.04970.027

A. Kaidow, M. Wachi, J. Nakamura, J. Magae, and K. Nagai, Anucleate cell production by Escherichia coli delta hns mutant lacking a histone-like protein, H-NS., Journal of Bacteriology, vol.177, issue.12, pp.3589-3592, 1995.
DOI : 10.1128/jb.177.12.3589-3592.1995

E. Helgesen, S. Fossum-raunehaug, and K. Skarstad, ABSTRACT, Journal of Bacteriology, vol.198, issue.8, pp.1305-1316, 2016.
DOI : 10.1128/JB.00919-15

M. Shin, DNA looping-mediated repression by histone-like protein H-NS: specific requirement of E??70 as a cofactor for looping, Genes & Development, vol.19, issue.19, pp.2388-2398, 2005.
DOI : 10.1101/gad.1316305

N. Blot, R. Mavathur, M. Geertz, A. Travers, and G. Muskhelishvili, Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome, EMBO reports, vol.11, issue.7, pp.710-715, 2006.
DOI : 10.1186/gb-2004-5-12-252

URL : https://hal.archives-ouvertes.fr/hal-00529439

W. Wang, G. Li, C. Chen, X. S. Xie, and X. Zhuang, Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria, Science, vol.83, issue.2, pp.1445-1449, 2011.
DOI : 10.1016/S0300-9084(01)01232-9

S. Nolivos and D. Sherratt, The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes, FEMS Microbiology Reviews, vol.38, issue.3, pp.380-392, 2014.
DOI : 10.1111/1574-6976.12045

T. Weitao, K. Nordström, and S. Dasgupta, Escherichia coli cell cycle control genes affect chromosome superhelicity, EMBO reports, vol.1, issue.6, pp.494-499, 2000.
DOI : 10.1093/embo-reports/kvd106

O. Danilova, R. Reyes-lamothe, M. Pinskaya, D. Sherratt, and C. Possoz, MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves, Molecular Microbiology, vol.179, issue.6, pp.1485-1492, 2007.
DOI : 10.1046/j.1365-2958.2000.02138.x

J. M. Moore, Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli, Genetics, vol.201, issue.4, pp.1349-1362, 2015.
DOI : 10.1534/genetics.115.178970

S. Li and R. Waters, Escherichia coli strains lacking protein HU are UV sensitive due to a role for HU in homologous recombination, J. Bacteriol, vol.180, issue.15, pp.3750-3756, 1998.

J. A. Van-kan, C. Zhang, P. Malar, and J. R. Van, High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies, Biomicrofluidics, vol.11, issue.3, 2012.
DOI : 10.1021/ma00242a015

K. E. Mcginness, T. A. Baker, and R. T. Sauer, Engineering Controllable Protein Degradation, Molecular Cell, vol.22, issue.5, pp.701-707, 2006.
DOI : 10.1016/j.molcel.2006.04.027

J. Dahl, Gram negative cell wall, 2008.

K. Jann and B. Jann, , expression and biological significance, Canadian Journal of Microbiology, vol.38, issue.7, pp.705-710, 1992.
DOI : 10.1139/m92-116

T. J. Silhavy, D. Kahne, and S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor Perspectives in Biology, vol.2, issue.5, pp.414-000414, 2010.
DOI : 10.1101/cshperspect.a000414

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

W. Vollmer, D. Blanot, and M. A. De-pedro, Peptidoglycan structure and architecture, FEMS Microbiology Reviews, vol.32, issue.2, pp.149-167, 2008.
DOI : 10.1111/j.1574-6976.2007.00094.x

C. W. Mullineaux, A. Nenninger, N. Ray, and C. Robinson, Diffusion of Green Fluorescent Protein in Three Cell Environments in Escherichia Coli, Journal of Bacteriology, vol.188, issue.10, pp.3442-3448, 2006.
DOI : 10.1128/JB.188.10.3442-3448.2006

A. Shokri and G. Larsson, Characterisation of the Escherichia coli membrane structure and function during fedbatch cultivation', Microb, Microbial Cell Factories, vol.3, issue.1, p.9, 2004.
DOI : 10.1186/1475-2859-3-9

W. Van-klompenburg and B. De-kruijff, The Role of Anionic Lipids in Protein Insertion and Translocation in Bacterial Membranes, Journal of Membrane Biology, vol.162, issue.1, pp.1-7, 1998.
DOI : 10.1007/s002329900336

C. R. Raetz and W. Dowhan, Biosynthesis and function of phospholipids in Escherichia coli, J. Biol. Chem, vol.265, issue.3, pp.1235-1238, 1990.

J. M. Boggs, Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.906, issue.3, pp.353-404, 1987.
DOI : 10.1016/0304-4157(87)90017-7

Z. Zerrouk, S. Alexandre, C. Lafontaine, V. Norris, and J. Valleton, Inner membrane lipids of Escherichia coli form domains, Colloids and Surfaces B: Biointerfaces, vol.63, issue.2, pp.306-310, 2008.
DOI : 10.1016/j.colsurfb.2007.12.016

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972.
DOI : 10.1126/science.175.4023.720

G. L. Nicolson, The Fluid???Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.6, pp.1451-1466, 2014.
DOI : 10.1016/j.bbamem.2013.10.019

K. Nevo-dinur, A. Nussbaum-shochat, S. Ben-yehuda, and O. Amster-choder, Translation-Independent Localization of mRNA in E. coli, Science, vol.100, issue.12, pp.1081-1084, 2011.
DOI : 10.1073/pnas.1037608100

H. Sheng, W. T. Stauffer, R. Hussein, C. Lin, and H. N. Lim, Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli, Nucleic Acids Res, p.23, 2017.