T. H. Kim, Y. W. Shin, S. S. Lee, J. Kim, M. Knorr et al., Supramolecular assembly of one-dimensional channels and two-dimensional brick-wall networks from asymmetric dithioether ligands and copper(I) iodide, Inorganic Chemistry Communications, vol.10, issue.1, pp.11-14, 2007.
DOI : 10.1016/j.inoche.2006.09.001

J. 52-hafey and T. Shillea, The Platinium Print Rochester Institute of Technology

H. A. Tayim and J. C. Bailar, Homogeneous catalysis in the reactions of olefinic substances. VIII. Isomerization of 1,5-cyclooctadiene with dichlorobis(triphenylphosphine)platinum(II), Journal of the American Chemical Society, vol.89, issue.14, pp.3420-3424, 1915.
DOI : 10.1021/ja00990a009

R. A. 54-benkeser, M. L. Burrous, L. E. Nelson, J. V. Swisher, T. Tanaka et al., The Stereochemistry of the Addition of Silicochloroform to Acetylenes. A Comparison of Catalyst Systems, Journal of the American Chemical Society, vol.83, issue.21, pp.4385-4389, 1961.
DOI : 10.1021/ja01482a022

Y. Liu, S. Jiang, K. Glusac, D. H. Powell, D. F. Anderson et al., Photophysics of Monodisperse Platinum-Acetylide Oligomers:?? Delocalization in the Singlet and Triplet Excited States, Journal of the American Chemical Society, vol.124, issue.42, pp.12412-12413, 2002.
DOI : 10.1021/ja027639i

R. D. Amato, A. Furlani, M. Colapietro, G. Portalone, and M. Casalboni, Synthesis, characterisation and optical properties of symmetrical and unsymmetrical Pt(II) and Pd(II) bis-acetylides. Crystal structure of trans-[Pt(PPh3)2(C???C???C6H5)(C???C???C6H4NO2)], Journal of Organometallic Chemistry, vol.627, issue.1, pp.13-22, 2001.
DOI : 10.1016/S0022-328X(00)00791-9

V. W. Yam, -. Lo, K. Man-chung-wong, and K. , Luminescent polynuclear metal acetylides, Journal of Organometallic Chemistry, vol.578, issue.1-2, pp.3-30, 1999.
DOI : 10.1016/S0022-328X(98)01106-1

. Chem, S. Int, S. Kitagawa, C. Noro, . Coordg et al., 103-130; (i) Puddephatt, Chem. II. Chem. Rev. Coord. Chem. Rev. J. R. Coord. Chem. Rev. J. Chem. Commun. Dalton Trans. Coord. Chem. Rev, vol.43, issue.240, pp.2334-2375, 2000.

M. O. Awaleh, F. Baril-robert, C. Reber, A. Badia, F. Brisse et al., Gold(I)???Dithioether Supramolecular Polymers: Synthesis, Characterization, and Luminescence, Inorganic Chemistry, vol.47, issue.8, pp.2964-2974, 2005.
DOI : 10.1021/ic701275k

X. Bu, Y. Xie, J. Li, and R. Zhang, (g) Pour la chimie de coordination liée ligand bis(2-pyridylthio)méthane (e) Concernant l'assemblage de polymers de coordination à base de Ag(I) avec le ligand t-BuSCH 2 SBu-t, Inorg. Chem. Inorg. Chem. Growth Des, vol.42, issue.3, pp.27-40, 2003.

. Afin-de-mieux-voir-si, (arylthio)octane et 1,8- bis(cycloalkylthio)octane avec CuI générait des réseaux interpénétrés et pour comprendre l'influence de la longueur de l'espaceur dithioéther sur la structure et les propriétés des composés de coordination formés, nous avons réalisé la synthèse d'une série de composés d'iodure de cuivre(I) avec les ligands de type RS(CH 2 ) 8 )SR. Afin de pouvoir comparer avec les autres séries de composés étudiés, nous avons choisi R= Ph, Cy (au vu des résultats photophysiques intéressants avec ce type de substituant cyclohexyle) et Bz (benzyle), pp.8-12

G. F. Swiegers, T. Malefetse, and H. X. Zhang, New Self-Assembled Structural Motifs in Coordination Chemistry, La synthèse du polymère 1D [Cu 4 I 4 {?-PhS(CH 2 ) 8, pp.3483-3537, 2000.
DOI : 10.1021/cr990110s

A. L. Pickering, D. L. Long, and L. Cronin, Coordination Networks through the Dimensions:?? From Discrete Clusters to 1D, 2D, and 3D Silver(I) Coordination Polymers with Rigid Aliphatic Amino Ligands, Inorganic Chemistry, vol.43, issue.16, pp.4953-4961, 2004.
DOI : 10.1021/ic049786i

P. D. Harvey, A. Bonnot, A. Lapprand, C. Strohmann, and M. Knorr, H-1?LUMO (15%) 314 H-3?L+1 (14%) 301.83 0 HOMO?L+9 (13%) 300.61 0 HOMO?L+10 (10%) 300.18 0.0108 H-8?LUMO (12%), H-1?L+5 (10%) 299, 0003 H-2?L+1 (20%), HOMO?L+2 (52%) 317.85 0.0003 H-1?L+1 (24%), HOMO?L+3 (54%) 317.38 0.0026 H-2?L+3 (13%), H-1?L+2 (33%), HOMO?LUMO (23%), HOMO?L+4 (18%) 315.95 0.0507 H-6?L+1 (23%), H-2?LUMO (21%), H-2?L+4 (11%) 315.42 0.0022 H-4?L+1 (15%), H-1?LUMO (12%) 314.47 0.0012 H-23?L+5 (12%), H-19?L+4 (11%), H-15?L+5 (14%) 314.44 0 H-18?LUMO (12%), H-18?L+4 (20%), H-17?L+5 (25%) 314.42 0.0018 H15%) 309.34 0.0077 H-11?L+4 (10%) 308.42 0.0212 H-5?L+1 (16%) 308.11 0.0052 H-26?L+5 (11%), H-25?L+4 (14%) 307.38 0.0606 H-21?LUMO (16%), H-21?L+6 (26%) 307.00 0 H11%) 306.95 0.0199 H-24?L+5 (10%), H-11?L+5 (10%) 306.88 0.0005 H-26?L+4 (11%), H-25?L+5 (18%) 306.78 0.2383 H12%) 306.73 0.0166 H-5?L+2 (35%), H-4?L+3 (25%) 305.91 0.0016 H-12?LUMO (11%) 305.69 0 H-16?L+5 (18%), H-13?LUMO (14%), H-13?L+4 (20%), H-10?L+5 (11%) 304.62 0.0487 H-14?L+5 (11%) 304.42 0.0175 H-6?LUMO (11%) 303.69 0.0001 H-16?LUMO (14%), H-16?L+4 (12%), H-13?L+5 (10%), H-10?LUMO (11%), H- 10?L+6 (22%) 303.55 0.0025 H-14?LUMO (10%), H-14?L+4 (11%), H-6?LUMO (10%), H-3?L+3 (13%) 302.83 0.0025 H-6?L+1 (11%), H-3?L+2 (22%) 302.63 0 H-8?L+2 (30%), H-6?L+3 (29%), H-3?LUMO (14%) 302.41 0.0036 H-8?L+3 (30%), H-6?L+2 (31%)), H-1?L+4 (26%), H-1?L+6 (18%) 296.28 0 H-7?L+1 (44%), H-3?LUMO (22%) 295.99 0 H-7?LUMO (54%), H-3?L+1 (18%), HOMO?L+6 (11%) 294.48 0.0012 H-9?L+1 (14%)20%) 294.15 0.0009 H-8?L+1 (22%), H-6?LUMO (21%), H-5?LUMO (13%), H-4?L+1 (12%) 293.98 0 H-10?L+1 (11%), H-8?L+2 (11%), H-5?L+3 (18%), H-4?L+2 (15%) 293.77 0.0104 H-8?L+3 (13%), H-6?L+2 (11%), H-5?L+2 (23%), H-4?L+3 (20%) 293.70 0.0182 H-8?L+5 (10%), H-6?L+4 (16%), H-2?L+5 (19%) 292.44 0 H-10?L+1 (58%) 292.34 0.0071 H-11?LUMO (10%), H-9?L+1 (28%) 291.84 0.0345 H-8?L+6 (11%), H-6?L+5 (12%), H-2?L+4 (16%) 291.81 0.0022 H-11?L+1 (17%), H-9?LUMO (20%), H-9?L+4 (10%) 291.24 0.0025 H-7?L+3 (31%), H-3?L+2 (18%) 291.22 0.0006 H-7?L+2 (31%)), H-6?L+2 (10%) 289.30 0.0013 H-10?L+2 (19%), H-1?L+12 (12%), HOMO?L+11 (10%) 288.70 0 H-2?L+11 (14%), H-1?L+14 (26%), HOMO?L+13 (24%) -149- 307.91 0 H-30?LUMO (10%), H-21?LUMO (10%) 307.29 0.0052 H-4?L+3 (13%), H-1?L+5 (10%) 306.61 0.0075 H-3?L+3 (21%), H-1?L+3 (17%) 306.12 0 H-6?L+2 (10%), H-2?L+3 (11%) 305.81 0 H-2?L+3 (33%), H-2?L+5 (10%) 305.11 0.0171 H-3?L+5 (13%), H-1?L+5 (11%) 305.05 0.0001 H-3?L+4 (13%), H-3?L+6 (10%), H-1?L+4 (10%) 303.15 0 H-6?L+5 (13%), H-5?L+4 (14%) (14%), H-8?L+5 (10%) 296.65 0.0027 H-7?LUMO (24%), H-7?L+1 (19%) 296.27 0 H-5?LUMO (35%), H-5?L+1 (13%) 296.02 0 HOMO?L+7 (21%) 295.96 0.0039 H-6?LUMO (23%), H-6?L+1 (10%) 295.68 0.0183 H-6?LUMO (13%), HOMO?L+8 (12%) 295.31 0.0297 H-1?L+7 (22%) 295.14 0 H-1?L+8 (21%) 294.62 0 H-6?L+13 (13%), H-5?L+12 (15%), H-4?L+12 (10%) 294.58 0.0065 H-6?L+12 (15%), H-5?L+13 (17%), H-4?L+13 (12%) 294.32 0 H-10?LUMO (24%) 293 (18%), H-9?L+1 (11%), H-5?LUMO (10%), H-2?L+5 (11%) 293.02 0.0079 H-8?LUMO (13%), H-6?LUMO (10%), H-2?L+4 (13%) 292.90 0 H-11?L+2 (22%), H-8?L+2 (24%) 292.72 0 H-3?L+4 (15%) 292.66 0.0175 H-11?LUMO (11%), H-8?L+1 (18%) 292.34 0.0195 H-10?L+5 (11%), H-4?L+5 (12%), H-3?L+5 (11%)11%), H-1?L+6 (14%), pp.0-5, 2015.

D. C. Lai, J. I. Zink, H. Kitagawa, Y. Ozawa, K. Toriumi et al., Vibronic structure in the emission spectrum of the tetranuclear copper cluster [Cu4]4(dmpp)4], Inorganic Chemistry, vol.32, issue.11, pp.2594-2596, 1993.
DOI : 10.1021/ic00063a064

E. B. Kaloun, R. Merdés, J. P. Genêt, J. Uziel, and S. Jugé, Asymmetric synthesis of (S,S)-(+)-1,1???-bis-(methyl-phenyl-phosphino) ferrocene, Journal of Organometallic Chemistry, vol.529, issue.1-2, pp.455-463, 1997.
DOI : 10.1016/S0022-328X(96)06690-9

A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez et al., 10 (a) Knochel, P.; Yang, X.; Commermann, N. Polyfunctional 1,1-Organodimetallic for Organic Synthesis in Handbook of Functionalized Organometallics, Chem. Rev. Chem. Rev. Angew. Chem. Int. Ed. Chem. Rev, vol.108, issue.103, pp.2796-2823, 2004.

M. R. Churchill and F. J. Rotella, Molecules with an M4X4 core. 9. Crystal structure and molecular geometry of tetrameric (methyldiphenylphosphine)copper(I) iodide, [(PMePh2)CuI]4, Inorganic Chemistry, vol.16, issue.12, pp.3267-3273, 1977.
DOI : 10.1021/ic50178a056

H. 16-kitagawa, Y. Ozawa, and K. Toriumi, Flexibility of cubane-like Cu4I4 framework: temperature dependence of molecular structure and luminescence thermochromism of [Cu4I4(PPh3)4] in two polymorphic crystalline states, Chemical Communications, vol.44, issue.34, pp.6302-6304, 2010.
DOI : 10.1039/c0cc01434f

L. J. 20-farrugia, -III with a Graphical User Interface (GUI), Journal of Applied Crystallography, vol.30, issue.5, pp.565-565, 1997.
DOI : 10.1107/S0021889897003117

. Pour-les, Le fait que ? P augmente lors du refroidissement de la température est cohérent avec l'augmentation de la rigidité du milieu. Lorsque l'on compare les valeurs de ? P à l'état solide et en solution, ces dernières augmentent ce qui suggère que la proximité intermoléculaire induit plus de processus de désactivation de l'état excité non-radiatif, Cela pourrait aussi expliquer la très faible intensité ou l'absence de la bande à haute énergie

. Qui-rapportait, H. D. En-hardt, and H. Gechnizdjani, (mptrz) (soit un atome S-donneur et deux atomes N-donneurs par ligand) et de CuI Le polymère [Cu 12 (? 4 -mptrz) 4 (? 4 -I) 3 (? 3 -I) 4 (? 2 -I)] n est construit à partir d'un SBU Cu 6 I 5 de type rugby-shaped, d'un SBU plan Cu 4 I 3, pp.4-7, 1974.

S. Filippo, J. Zyontz, L. E. Potenza, and J. , Synthesis and characterization of some halocopper(I)-alkyl sulfide complexes including the crystal structure of .mu.-(diethyl sulfide)-bis(diethyl sulfide)tetra-.mu.-iodo-tetracopper(I), [(C2H5)2S]3[CuI]4, Inorganic Chemistry, vol.14, issue.7, pp.1667-1671, 1975.
DOI : 10.1021/ic50149a047

S. M. Aly, A. S. Abd-el-aziz, D. Fortin, P. D. Harvey, M. Dalton-trans-knorr et al., Luminescent Oligomeric and Polymeric Copper Coordination Compounds Assembled by Thioether Ligands, in Macromolecules Containing Metal and Metal-Like Elements: Photophysics and Photochemistry of Metal-Containing Polymers, New J. Chem. Eur. J. Inorg. Chem, vol.35, issue.10, pp.948-955, 2007.

S. Cho, Y. Jeon, S. Lee, J. Kim, and T. H. Tae-ho-kim, Clusters Using Heat or Solvent Vapor, Chemistry - A European Journal, vol.16, issue.4, pp.1439-1443, 2015.
DOI : 10.1039/c3ce42195c

Y. L. Wang, N. Zhang, Q. Y. Liu, Z. M. Shan, R. Cao et al., Diversity of Architecture of Copper(I) Coordination Polymers Constructed of Copper(I) Halides and 4-Methyl-1,2,4-Triazole-3-Thiol (Hmptrz) Ligand: Syntheses, Structures, and Luminescent Properties, Crystal Growth & Design, vol.11, issue.1, pp.130-138, 2011.
DOI : 10.1021/cg101018b

I. Figure, Spectres d'émission (rouge) et d'excitation (bleu) MSP2 (Haut)

K. Onitsuka, Y. Harada, and S. Takahashi, (b) Nasser N.; Puddephatt, R, Synth. Met. J. Chem. Commun. Tetrahedron, vol.159, issue.64, pp.982-985, 2008.

H. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon et al., Synthesis and Photovoltaic Properties of New Metalloporphyrin-Containing Polyplatinyne Polymers, Macromolecules, vol.44, issue.13, pp.5155-5167, 2011.
DOI : 10.1021/ma2006206

P. Richard, M. Ondel-eymin, J. C. Henry, J. Bayardon, C. Darcel et al., Phosphorus Ligands in Asymmetric Catalysis Synthesis and Applications, C.; Moulin, D.; Kaloun, E. B J. Org. Chem. J. P, vol.12, issue.11, pp.1213-1226, 2003.

V. Schéma, Synthèse du précurseur chiral de platine(II)

. Dans-la-procédure-classique, la réaction doit être réalisée en l'absence d'oxygène et d'eau sous atmosphère inerte afin d'empêcher l'homocouplage de Glaser 21 En effet, ce dernier peut conduire à de faibles rendements. CuI est introduit en quantité catalytique car il est régénéré. On utilise le THF comme solvant à la température ambiante (25 °C)

. C?car, L = phosphine) a déjà été établi par le passé à la fois expérimentalement et par calculs DFT comme étant principalement ??? * mixte avec un transfert de charge métal-ligand (MLCT) mélangé avec un transfert de charge ligand-métal (LMCT), p.26

K. Glusac, M. E. Köse, H. Jiang, K. S. Schanze, E. R. Batista et al., Triplet Excited State in Platinum???Acetylide Oligomers:?? Triplet Localization and Effects of Conformation, The Journal of Physical Chemistry B, vol.111, issue.5, pp.929-940, 2005.
DOI : 10.1021/jp065892p

S. Clement, T. Goudreault, D. Bellows, D. Fortin, L. Guyard et al., Probing excited state electronic communications across diethynyl-[2.2]paracyclophane-containing conjugated organometallic polymers, nm où les bandes d'absorption sont situées, pp.8640-8642, 2012.
DOI : 10.1007/s10904-007-9183-7

URL : https://hal.archives-ouvertes.fr/hal-00730976

G. B. Kauffman and L. A. Teter, cis- andtrans-Dichlorobis(Tri-n-Butylphosphine)Platinum(II), Inorg. Synth, vol.7, pp.245-249, 1963.
DOI : 10.1002/9780470132388.ch64

J. E. Rogers, T. M. Cooper, P. A. Fleitz, D. J. Glass, and D. G. Mclean, Photophysical Characterization of a Series of Platinum(II)-Containing Phenyl???Ethynyl Oligomers, The Journal of Physical Chemistry A, vol.106, issue.43, pp.10108-10115, 2002.
DOI : 10.1021/jp021263d

6. M. Yield, 4. , 6. , 2. , and C. , Bright yellow solid R f = 0 1 H NMR (CDCl 3 , 300 MHz): ? 7 1.18 (br.s, 62H, CH 3 and C 17 H 35 ), 0.81 (t, 6H, J = 6.0 Hz, CH 3 , C 17 H 35 ) 13 C NMR (CDCl 3 , 75 MHz): ? 133 (s, CH arom, 2.15 (m, 4H, CH 2 ), 1.72 (m, 4H, CH 2 ), 1.39 (m, 6H, CH 2 ) 31.9 (s, CH 2 ), 31.4 (t, J = 7.5 Hz MHz): ? 20.0 (s, J Pt-P = 2502 Hz). ESI-MS: m/z (%) = 1068.6 (100) [M + Na] +, pp.213-215

. Mhz, CDCl 3 ): ? 1.85 (m, 12H), 1.57 (m, 12H), 12H), 0.93 (t, J = 7.2 Hz, pp.44-62

X. Zhao, T. Cardolaccia, R. T. Farley, K. A. Abboud, and K. S. Schanze, A Platinum Acetylide Polymer with Sterically Demanding Substituents:?? Effect of Aggregation on the Triplet Excited State, Inorganic Chemistry, vol.44, issue.8, pp.2619-2627, 2005.
DOI : 10.1021/ic048961s

T. M. Cooper, D. M. Krein, A. R. Burke, D. G. Mclean, J. E. Rogers et al., Spectroscopic Characterization of a Series of Platinum Acetylide Complexes Having a Localized Triplet Exciton, The Journal of Physical Chemistry A, vol.110, issue.13, pp.4369-4375, 2006.
DOI : 10.1021/jp056663q

J. =. Dd, CDCl 3 ) ? 7, Yield = 94%. 1 H NMR (400 MHz 6H), 6.79 (dd, J = 8.2, 1.4 Hz, 4H), 3.01-2.92 (m, 2H), pp.95-760, 1996.

6. Hz, 31 P NMR (162 MHz, CDCl 3 ) ? 22.8 (J P-Pt = 2521 Hz) IR: ? (C?C) =, pp.2105-2106

@. Poly, (heptadecyl)(phenyl)(i-propyl))phosphine)platinum(II, p.12

. Hz, 10 (J P-Pt = 2446 Hz) IR: ? (C?C) = 2112 cm -1 . Mass spec, MALDI TOF): > 10 000. GPC (polystyrene standards): M n = 15700

@. Poly, ,3-benzothiadiazole)bis((S)-(heptadecyl)(phenyl)(i-propyl))phosphine )platinum(II), p.13

. Hz, 29 (J P-Pt = 2336 Hz) IR : ? (C?C) = 2090 cm -1 . Anal. Calcd. for PtC