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Introduction

1 Systèmes à des coefficients dépendant du retard
Des systèmes de temporisation, connus également sous le nom de systèmes héréditaires,
ou de systèmes avec des séquelles, ont été rencontrés dans les disciplines scientifiques et
techniques en grande partie en raison du temps nécessaire pour transporter le matériel ou
l’information. Par exemple, dans les communications, la transmission de données est tou-
jours accompagnée d’un certain délai. Dans les systèmes économiques, le retard apparaît
depuis que les décisions et les effets sur le marché, tels que la politique d’investissement,
les fluctuations de prix, les cercles commerciaux sont séparés par un certain intervalle de
temps.

Une caractéristique distincte des systèmes de temporisation est que leur évolution
dépend de l’information de l’histoire passée avec une mémoire sélective. De tels systèmes
peuvent être modélisés en utilisant des équations différentielles sur des espaces abstraits
ou fonctionnels, ou sur des anneaux d’opérateurs. Le moyen le plus populaire consiste à
décrire les systèmes de temporisation comme des équations différentielles fonctionnelles
(FDE).

Des exemples de systèmes de temporisation modélisés comme des FDE peuvent être
trouvés dans un large éventail d’applications, y compris les systèmes de contrôle, la
physique, la biologie, la chimie, l’économie ainsi que les systèmes de transport.

Les systèmes de temporisation fournissent une simplification raisonnable de modèles
plus complexes de systèmes dimensionnels infinis découlant d’équations différentielles
partielles (EDP). Il est souvent possible de simplifier les systèmes décrits avec les EDP
pour les systèmes à retard temporel avec des variables d’état à dimension finie lorsque seul
le comportement des systèmes à certains points spatiaux est intéressant. Dans certains
cas, il est possible de réduire les EDP hyperboliques pour retarder les systèmes de type
neutre représentés par des équations différentielles et différentielles couplées appropriées.
Beaucoup de ces modèles sont liés au phenonmena de propagation sans perte existant dans
l’ingénierie thermique, hydraulique et électronique. Un délai a également été introduit
délibérément dans la conception de contrôle pour améliorer la stabilité ou la performance.

La stabilité est un concept fondamental des systèmes dynamiques et est à la fois
théorique et importance pratique. Il indique le comportement qualitatif d’un modèle et
joue un rôle central dans la théorie du contrôle puisque de nombreuses tâches de con-
trôle peuvent être transformées en problème de stabilisation. Les retards peuvent avoir
des effets complexes sur la stabilité du système: de «faibles» retards peuvent déstabiliser
certains systèmes, tandis que de «longs» retards peuvent en stabiliser d’autres. De plus,
la stabilité du système peut changer plusieurs fois à mesure que le retard augmente.
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La stabilité des systèmes de temporisation LTI dépend exactement de racines de l’équation
caractéristique associée. Le système est asymptotiquement stable si et seulement si toutes
les racines de l’équation caractéristique associée sont situées sur le gauche moitié plan
complexe. Cette observation conduit aux approches basées sur le spectre. En raison du
fait que l’équation caractéristique des systèmes de temporisation n’est pas polynomiale,
le calcul de la racine la plus caractéristique est un problème difficile. Plusieurs approches
pour calculer numériquement les racines les plus caractéristiques existent, mais un cal-
cul intensif est requis. L’approche D-décomposition fournit une méthode efficace pour
déterminer le nombre de racines caractéristiques sur le demi-plan complexe droit pour un
domaine de paramètre donné sans connaître les emplacements exacts des racines carac-
téristiques. L’idée principale de l’approche D-decomposition est de séparer l’espace des
paramètres en sous-régions disjointes. Dans chaque sous-région, le nombre de racines in-
stables est constant. À la limite des sous-régions, des racines caractéristiques imaginaires
apparaissent. En analysant les comportements de ces racines caractéristiques imaginaires
par rapport à une petite variation de paramètres, la stabilité du système peut être déter-
minée pour différentes sous-régions dans le domaine des paramètres.

Les méthodes τ -decomposition peuvent être vues comme un cas particulier des méth-
odes D-decomposition car le paramètre impliqué dans ce cas est le délai τ . le τ-les
méthodes de décomposition se déroulent comme suit: en commençant par une valeur
de retarder τ l que l’on connaisse le nombre de racines caractéristiques sur le demi plan
complexe droit (habituellement τ l = 0), on balaie un intervalle de retard d’intérêt (τ l,τu)
et identifier tous les retards τk, k = 1,2, · · · ,N−1 pour lesquels il existe des racines carac-
téristiques sur l’axe imaginaire. Ces valeurs de retard sont appelées textit delays critiques
et le la fréquence des racines imaginaires correspondantes sont appelées fréquences de
croisement. en identifiant la direction que ces racines traversent l’axe imaginaire, on peut
déterminer le changement du nombre de racines planes complexes de la moitié droite alors
que τ passe par chaque τk. Ainsi, on peut diviser (τ0,τN) en sous-intervalles (τk−1,τk) et
le nombre de demi-plans droits dans chaque sous-intervalle est constant et peut être déter-
miné explicitement. En particulier, les sous-intervalles de retard pour que les systèmes
soient stables peuvent être calculés.

Il y a deux ingrédients clés des méthodes τ -decomposition. Le premier est de iden-
tifier tous les retards critiques et les racines caractéristiques imaginaires correspondantes.
le la seconde consiste à caractériser la direction de croisement de ces racines au fur et à
mesure que le retard augmente.

Fait intéressant, pour certains systèmes, le retard peut également apparaître dans les
coefficients du système. Des systèmes de retard avec cette caractéristique ont été rencon-
trés, par exemple, dans la dynamique des populations avec les structures d’âge, le modèle
de la mouche, les modèles hématopoïétiques, la stella dynamo, ainsi que l’analyse du taux
de convergence des systèmes de contrôle. Il existe différentes raisons pour que les coeffi-
cients du système dépendent du délai. Au fur et à mesure que l’information, la substance
ou l’énergie est transmise, leur quantité ou leur amplitude peut généralement diminuer
avec le temps en raison de la dissipation, ce qui fait que leur influence dépend du délai.

Les coefficients dépendants du retard peuvent aussi résulter de la linéarisation d’un
système de retard non linéaire autour d’un point d’équilibre, la localisation de l’équilibre
pouvant dépendre du retard. Des systèmes de temps de retard avec des coefficients dépen-
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dants du retard peuvent émerger d’équations différentielles partielles.
Il existe un lien entre les systèmes avec des coefficients dépendant du retard et un con-

trôle de retour basé sur le retard temporel. Une façon intuitive d’exploiter le retard dans le
retour est d’approximer les dérivées de la sortie mesurée en utilisant la sortie retardée. Le
retour de sortie est très commun dans la pratique de l’ingénierie, souvent en raison de la
difficulté de mesurer toutes les variables d’état. Lorsqu’un retour statique de la sortie n’est
pas suffisant pour stabiliser le système ou pour assurer des performances satisfaisantes, il
peut être souhaitable d’utiliser les dérivées de la sortie pour la rétroaction. Cette stratégie
est bien incorporée dans le schéma de contrôle PID extrêmement populaire. Différentes
méthodes d’ajustement des gains pour un contrôle PID ont été proposées dans la littéra-
ture, voir par exemple et les références qui y figurent. Le schéma de différences finies
est souvent utilisé pour approcher les dérivés de sortie. Par exemple, l’approximation du
premier ordre peut s’écrire

ẏ(t)≈ y(t)− y(t− τ)

τ
, (1)

où τ représente une valeur de retard positive. Il est facile de voir que (1) conduit
à retarder les coefficients dépendants dans les systèmes en boucle fermée alors que τ

apparaît dans le dénominateur. Cette idée peut être étendue à l’approximation de dérivées
d’ordre supérieur via un polynôme d’interpolation.

Malheureusement, la plupart des méthodes de stabilité proposées pour les systèmes
avec des coefficients sans retard ne se prêtent pas directement aux systèmes avec des co-
efficients dépendant du retard. Malgré la littérature abondante sur les systèmes à retarde-
ment, les publications sur l’analyse systématique de la stabilité des systèmes avec des co-
efficients dépendant du retard sont rares. Suivant l’idée de l’approche τ -decomposition,
Beretta et Kuang ont présenté une méthode efficace pour effectuer une telle analyse de sta-
bilité pour des systèmes avec des coefficients dépendant du retard basés sur le graphique
de certaines fonctions. Leur travail traite des systèmes avec un seul retard soumis à cer-
taines restrictions et ne s’applique pas aux systèmes avec des racines caractéristiques
répétées sur l’axe imaginaire. Cette méthode a été appliquée à plusieurs modèles de dy-
namique hématopoïétique et à la bifurcation de Hopf de la dynamique de production de
cellules sanguines.

Cette thèse est consacrée à l’analyse de stabilité de systèmes avec des coefficients
dépendant du retard. Les objectifs sont:

• développer des méthodes efficaces pour une analyse de stabilité précise des sys-
tèmes avec un seul retard ou des retards proportionnels;

• acquérir une meilleure compréhension du lien entre la stabilité des systèmes avec
des coefficients sans retard et dépendant du retard;

• appliquer les méthodes d’analyse de stabilité proposées aux modèles rencontrés
dans diverses disciplines scientifiques ainsi qu’à la conception de systèmes de con-
trôle.

L’analyse de stabilité dans cette thèse est inspirée par le travail de Beretta et Kuang
dans un article de 2002. Bien que ce document aborde les systèmes avec un seul délai

3



sous certaines restrictions, nos résultats s’appliquent à une classe plus générale de sys-
tèmes selon des hypothèses moins restrictives. Les contributions et la nouveauté peuvent
être résumées comme suit. Nous avons généralisé l’approche τ -decomposition pour les
systèmes dépendant du délai coefficients. Des méthodes d’analyse de la stabilité sont
développées pour les systèmes avec des retards proportionnés. Nous dérivons les critères
de direction de traversée qui s’appliquent à racines caractéristiques imaginaires avec pos-
siblement des multiplicités. Un «principe de séparation» est révélé par les critères de
direction de franchissement proposés: la direction de racines caractéristiques imaginaires
dépend du produit de deux termes. Le premier terme reflète la direction de croisement
des racines imaginaires lorsque les coefficients du système sont fixé. Le deuxième terme
est vraiment unique sur le type spécial de systèmes de retard étudié dans cette thèse: il
dépend de la façon dont les coefficients sont paramétrés par le délai, et devient constant
pour les systèmes avec des coefficients sans retard.

Une perspective à deux paramètres des systèmes avec des coefficients dépendant du
retard est proposée. La nouvelle perspective a les avantages suivants: 1) Il donne un
aperçu géométrique du problème de stabilité et établit un lien entre le système sans retard
et les systèmes avec coefficients dépendants du retard; 2) La vision géométrique nous
a motivés à dériver des résultats plus généraux qui peuvent être facilement interprété.
Le principe de séparation susmentionné devient également assez clair du point de vue
géométrique; 3) Notre analyse suggère que l’approche à deux paramètres peut être con-
sidérée comme un cadre avec lequel certains outils conçus pour analyser des systèmes à
coefficients fixes peuvent être commodément exploités pour résoudre le type particulier
de systèmes de retard considérés dans cette thèse.

En tant qu’application, nous avons démontré que les systèmes avec des coefficients
dépendant du retard peuvent résulter de schémas de contrôle à rétroaction qui utilisent
des signaux de sortie retardés pour approximer les dérivées de sortie. Nous recherchons
des intervalles de temps qui atteignent une vitesse de convergence prédéfinie du système
en boucle fermée. Par la suite, les méthodes d’analyse de stabilité développées dans cette
thèse sont adaptées pour faire face à ce problème particulier.

2 Systèmes avec un seul délai
Dans ce chapitre, nous étudions les systèmes avec coefficients dépendants du retard et un
seul retard. L’équation caractéristique correspondante peut s’écrire

P(λ ,τ)+Q(λ ,τ)e−λτ = 0 (2)

où P(λ ,τ) et Q(λ ,τ) sont polynomiaux dans λ et continus par rapport à λ . Les
systèmes avec cette fonctionnalité sont rencontrés dans divers modèles dans la pratique.
Étant donné un intervalle d’intérêt de retard, noté I , notre objectif est de trouver tous les
sous-intervalles de sorte que le système soit asymptotiquement stable si et seulement si le
retard est contenu dans ces sous-intervalles. Nous donnons d’abord une définition précise
de la classe de systèmes considérée dans ce chapitre, suivie d’un ensemble d’hypothèses
sur lesquelles repose notre analyse. Nous montrons comment décomposer I en sous-
ensembles disjoints de telle sorte qu’un nombre fixe de textit fonctions de fréquence et de
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fonctions d’angle de phase peut être défini dans chaque sous-intervalle. Nous identifions
toutes les paires critiques ( jω,τ) en fonction des conditions exprimées avec les fonctions
de fréquence et d’angle de phase.

Les critères de direction de croisement sont dérivés, ce qui détermine si les racines car-
actéristiques sur l’axe imaginaire deviennent stables ou instables lorsque τ balaie certains
délais critiques. Notre analyse a assoupli certaines des hypothèses d’un travail antérieur
de Beretta et Kuang. Alors que le critère de direction de croisement de Beretta et de
Kuang n’utilise que la dérivée de premier ordre de certaines fonctions, nous montrons
qu’un critère plus général basé sur l’analyse d’ordre supérieur peut être dérivé. L’analyse
d’ordre supérieur suggère une corrélation géométrique possible entre les fonctions d’angle
de phase et le nombre de racines caractéristiques instables. Dans certaines conditions
supplémentaires, une telle corrélation permet de déterminer le nombre de racines carac-
téristiques instables sur la base des valeurs des fonctions d’angle de phase sans calculer
les paires critiques ainsi que la direction de croisement racine correspondante. Cette ob-
servation motive le développement d’un cadre géométrique pour l’analyse de stabilité
présentée au chapitre 5.

La méthode proposée partitionne le domaine de délai d’intérêt pour le retard dans les
sous-intervalles de sorte que l’ampleur condition donne un nombre fixe de solutions de
fréquences ω as fonctions du délai τ dans chaque sous-intervalle. La partition est faite en
résolvant des équations polynomiales. Avec chaque fonction de fréquence, une fonction
d’angle de phase est associée. Les paires critiques peuvent être identifiées en fonction de
la valeur des fonctions d’angle de phase. Les critères de croisement racine sont dérivés,
qui utilise l’information des dérivées d’ordre supérieur des racines caractéristiques par
rapport au retard lorsque les dérivées d’ordre inférieur disparaissent. Pour être précis, le
critère de direction de franchissement peut être exprimé comme suit:

sgn
(
( d

dτ
)l

ℜ(λ )(τ∗))
)
= sgn

(
∂ωF(ω

(i)
k (τ∗),τ∗)

)
×sgn

(( d
dτ

)l
θ
(i)
k (τ∗)

)
. (3)

pour l = 1,2, · · · ,nd , où θ
(i)
k , ω

(i)
k sont la fonction de phase et la fonction de fréquence,

respectivement, associées à une paire critique, et nd est l’ordre le plus bas de la dérivée
non nulle de la fonction de phase.

Les conditions de traversée sont composées de deux facteurs. Le premier facteur est
déjà connu pour les systèmes à coefficients fixes et le deuxième facteur dépendant de la
fonction d’angle de phase résulte du fait que les coefficients du système sont paramétrés
par le retard. L’analyse suggère une corrélation intéressante entre la valeur des fonctions
d’angle de phase et la variation du nombre de racines caractéristiques instables. Cette ob-
servation motive le développement d’une perspective géométrique différente de l’analyse
de stabilité dans les chapitres suivants.

3 Systèmes avec des délais commensurables
Dans ce chapitre, la stabilité des systèmes avec des délais proportionnels et des coeffi-
cients dépendant du retard est étudiée selon la méthode de décomposition τ . L’objectif
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principal est d’étendre les résultats du chapitre 3 aux systèmes avec des retards correspon-
dants. Nous considérons les systèmes avec des équations caractéristiques de la forme:

M

∑
i=0

Pi(λ ,τ)e−iλτ = 1, (4)

et chaque Pi(λ ,τ) est un polynôme de λ et continu par rapport à τ .
Pour les systèmes avec un seul retard, la condition d’amplitude de l’existence de

racines caractéristiques imaginaires a motivé l’introduction de la fonction F(ω,τ), une
fonction polynomiale dans ω . Les racines de cette fonction polynomiale dans ω cap-
turent les fréquences de croisement potentielles des racines caractéristiques. Ensuite, les
directions de croisement correspondant à une paire critique ( jω,τ) peuvent être déter-
minées par la dérivée partielle de cette fonction polynomiale et la dérivée de la fonction
d’angle de phase à cette paire critique. En utilisant le lemme de Schur-Cohn généralisé,
nous sommes capables de donner une définition généralisée de F(ω,τ), qui est toujours
un polynôme dans ω et qui s’applique maintenant aux systèmes avec des délais propor-
tionnels. Pour les équations caractéristiques avec un seul retard, cette nouvelle définition
est réduite à celle du chapitre 3. Nous montrons aussi que l’idée géométrique qui a con-
duit à la définition de F(ω,τ) dans le chapitre 3 peut être généralisée pour le cas de retard
proportionnel.

Avec la fonction polynomiale F(ω,τ) ainsi définie, nous suivons une procédure sim-
ilaire à celle du chapitre 3. Nous énonçons tout d’abord un ensemble d’hypothèses
et discutons de leurs implications. Le domaine de retard I est alors décomposé en
plusieurs sous-intervalles disjoints I (i). Dans chaque I (i), un nombre fixe de fonc-
tions de fréquence sont définies. Nous montrons que dans certaines conditions qui sont
réalistes en pratique, une fonction d’angle de phase unique peut être associée à chaque
fonction de fréquence. Puis, comme dans le cas du retard unique, les paires critiques
de systèmes ayant des retards proportionnels peuvent être identifiées en suivant chaque
fonction d’angle de phase. Avec les notions et les fonctions du Chapitre 3 généralisées et
adaptées au cas de retard commensurable, nous démontrons que les critères de direction
de croisement racine du Chapitre 3 peuvent être étendus au type plus général de sys-
tèmes considéré ici. Le chapitre se termine par deux exemples numériques illustratifs. Le
premier se rapporte à l’analyse de la stabilité α et le deuxième démontre le calcul de la
vitesse critique d’un véhicule automobile avec un retard dans la génération de la force du
pneu.

La méthode d’analyse de stabilité proposée dans ce chapitre traite des systèmes avec
des retards et des coefficients proportionnels en fonction du délai. Cette méthode suit
l’approche généralisée de τ -decomposition. La méthode partitionne l’intervalle de délai
d’intérêt dans les sous-intervalles disjoints de sorte qu’une magnitude généralisée con-
dition donne un nombre fixe de solutions de fréquences ω as fonctions du délai τ dans
chaque sous-intervalle. Nous avons fourni des conditions pour que les racines imaginaires
apparaissent à certaines valeurs de retard critiques, suivies d’un critère pour identifier les
fréquences de croisement. Notre analyse montre que les résultats développés dans le
dernier chapitre pour les systèmes avec un seul retard peuvent être largement étendus aux
systèmes avec des retards proportionnés. Tout comme le cas du retard unique, le critère de
la racine croisée reflète le «principe de séparation»: la direction de croisement des racines
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caractéristiques sur l’axe imaginaire dépend de deux facteurs, l’un étant «classique» dans
le sens où il existe pour des systèmes fixes. l’autre est nouveau, ce qui reflète la mono-
tonie des fonctions d’angle de phase aux paires critiques. Dans le chapitre suivant, cette
observation intéressante sera expliquée d’un point de vue géométrique.

4 Une perspective à deux paramètres
Nous passons en revue l’analyse de stabilité des systèmes avec des coefficients dépendant
du retard d’un point de vue à deux paramètres. Le paramètre dans les coefficients du
système et celui dans l’état sont considérés comme deux variables différentes, notées r
et q respectivement. Le fait que les coefficients du système dépendent du délai signifie
simplement r = q. Pour comprendre la stabilité du système original, il suffit d’analyser la
stabilité du système à deux paramètres dans l’espace des paramètres r - q, puis d’imposer
la restriction r = q = τ . L’idée de base est illustrée avec des systèmes avec un seul retard.
L’extension au cas de retard commensurable est discutée ultérieurement. Les critères
de direction de croisement racine sont d’abord dérivés sous la forme la plus générale
en exploitant l’idée géométrique sous-jacente à la perspective à deux paramètres. Ces
critères nous permettent de tirer profit de quelques méthodes d’analyse de stabilité per-
formantes développées à l’origine pour des systèmes à coefficients fixes. Par exemple,
la série Puiseux peut être facilement appliquée pour développer une méthode d’analyse
complète. Pour des racines caractéristiques simples sur l’axe imaginaire, nous simplifions
ces critères et récupérons les résultats développés dans les chapitres précédents sous des
hypothèses moins restrictives. Au fur et à mesure que nous développons notre théorie, la
dynamique de la population avec une structure de stade est prise comme exemple pour
illustrer l’idée principale.

Pour les systèmes avec coefficients dépendants du retard, nous considérons le paramètre
de délai dans le coefficient du système et le paramètre de délai dans l’état comme deux
variables notées r et q, respectivement, sous réserve de la restriction r = q = τ Nous
avons défini les courbes de retard critique, qui séparent le domaine r - q en régions de
stabilité disjointes, dans chaque région le nombre de racines instables est constant et le
changement de stabilité ne peut se produire que sur les courbes limites de ces régions
de stabilité. Le point de vue géométrique établit une connexion entre les problèmes plus
classiques où les coefficients du système sont indépendants du retard et l’analyse de la
stabilité des systèmes avec des coefficients dépendant du retard. La perspective à deux
paramètres fournit un aperçu géométrique du problème, ce qui nous permet de dériver des
résultats plus généraux concernant les directions de croisement des racines, applicables
aux racines caractéristiques avec multiplicité. Il établit également une connexion entre
les problèmes plus classiques où les coefficients du système sont indépendants du retard
et l’analyse de stabilité des systèmes avec des coefficients dépendant du retard. Par con-
séquent, nous pouvons facilement appliquer certains outils développés à l’origine pour les
systèmes de retard à coefficients fixes aux systèmes avec des coefficients dépendant du re-
tard. L’analyse confirme notre conjecture dans le chapitre 3 que la direction de croisement
des racines caractéristiques imaginaires dépend partiellement de la monotonie des fonc-
tions d’angle de phase et que la différentiabilité des fonctions d’angle de phase n’est pas
essentielle. La corrélation entre le nombre de racines instables et la position des fonctions
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d’angle de phase peut être facilement interprétée du point de vue à deux paramètres.

5 Systèmes de contrôle basés sur un schéma de différence
de retard

En pratique d’ingénierie, la différence de retard est souvent utilisée pour approcher les
dérivées des signaux de sortie pour le contrôle de retour, conduisant à un système en
boucle fermée avec un retard à la fois dans les états et dans les coefficients du système.
Dans ce contexte, il est important de trouver toutes les valeurs de retard contenues dans un
certain intervalle qui garantissent la stabilité exponentielle du système en boucle fermée
soumis à une loi de contrôle basée sur le retard.

Nous avons d’abord considéré un schéma de retour qui n’utilise que la dérivée de
premier ordre de la sortie approchée par un schéma de différences finies. Après avoir
spécifié la loi de contrôle basée sur une telle approximation par différence finie, nous
avons dérivé l’équation caractéristique du système en boucle fermée linéarisée. Ensuite,
il est montré qu’en décalant la variable dans l’équation caractéristique, la condition pour
la stabilité exponentielle avec le taux de décroissance α est équivalente à une condition
pour la stabilité asymptotique.

Les méthodes d’analyse de stabilité développées dans les chapitres précédents exigent
que les coefficients du système soient continus dans τ . Cependant, du fait que le retard
apparaît comme un dénominateur dans les coefficients du fait du schéma de différences
finies, les coefficients ne sont pas bornés car τ se rapproche de 0. Nous proposons donc
quelques méthodes pratiques pour calculer une valeur inférieure positive. lié τ l pour notre
test τ -sweeping. La limite inférieure τ l est choisie de telle sorte que le nombre de racines
caractéristiques instables du système à boucle fermée décalé est connu pour τ ∈ (0,τ l].

Une fois que la procédure de contrôle et d’analyse de stabilité devient claire pour un
retour basé sur un seul retard, nous avons présenté un schéma d’approximation généralisé
pour les dérivées d’ordre supérieur de la sortie pour stabiliser une chaîne d’intégrateur.
L’idée est d’approximer l’historique de sortie par interpolation polynomiale et de rem-
placer les dérivées réelles de la sortie par les dérivées de la polynôme. Nous dérivons une
borne sur l’erreur d’approximation, ce qui nous permet de calculer la borne inférieure τ l

pour notre test τ -sweep.
Enfin, la procédure de conception et d’analyse proposée a été appliquée à plusieurs

problèmes pratiques. Les résultats montrent qu’un schéma de contrôle basé sur des
dérivées de sortie approchées peut surpasser celui basé sur les dérivées de sortie exactes.
Ceci confirme l’observation que le retard peut présenter un effet stabilisateur dans cer-
taines situations.

Nous avons abordé l’analyse de stabilité pour les schémas de contrôle qui utilisent
la différence finie pour approcher les dérivées des signaux de sortie. Le délai est traité
comme un paramètre de conception. Etant donné un intervalle de retard borné d’intérêt
de la forme (0,τu], nous proposons une méthode pour trouver tous les sous-intervalles
des valeurs de retard contenues dans cet intervalle de sorte que le système soit exponen-
tiellement stable. α-stability, connue sous le nom de stabilité α Il est montré qu’après
avoir déplacé la variable de Laplace, la stabilité α du système de contrôle est équivalente
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à la stabilité asymptotique d’une nouvelle équation caractéristique avec des coefficients
dépendant du retard Pour analyser la stabilité de l’équation caractéristique la plus récente,
nous avons proposé quelques méthodes pour calculer une borne inférieure positive τ l pour
l’intervalle de retard de telle sorte que l’analyse de stabilité doit seulement être effectuée
dans [τ l,τu].

Par conséquent, nous sommes en mesure d’appliquer les résultats dans les chapitres
précédents sur l’analyse de stabilité du système de retard avec des coefficients dépendant
du temps. La procédure d’analyse de stabilité est illustrée par deux exemples qui sont
motivés par le contrôle de suivi de trajectoire d’un robot mobile et le contrôle de tangage
d’un aéronef, respectivement. Les résultats montrent qu’un retard plus important dans
l’approximation par différence finie peut en effet améliorer les performances de contrôle
en termes de vitesse de convergence exponentielle de la trajectoire ainsi que la rapidité de
réponse aux signaux de référence.

6 Points de vue
Des systèmes de temporisation avec des coefficients dépendants du retard apparaissent
dans diverses disciplines scientifiques et techniques. Cette thèse contribue à l’analyse de
stabilité des systèmes avec cette particularité.

La méthode développée dans cette thèse suit une approche généralisée de τ-decomposition.
L’idée de cette approche est de balayer le paramètre de retard à travers un intervalle
d’intérêt, d’identifier tous les retards critiques et les fréquences de croisement corre-
spondantes et de déterminer les directions de croisement des racines caractéristiques sur
l’axe imaginaire. Ensuite, le nombre de racines caractéristiques instables pour différentes
valeurs de retard peut être facilement déterminé.

Nous avons d’abord considéré les systèmes avec un seul retard. L’intervalle de re-
tard est d’abord décomposé en sous-intervalles disjoints, à l’intérieur desquels un nombre
fixe de fréquences peut être défini en fonction du retard et chaque fonction de fréquence
est associée à une fonction d’angle de phase. Les retards critiques et les fréquences de
croisement sont identifiés en fonction des fonctions d’angle de phase et des fonctions de
fréquence. Les critères qui déterminent la direction de croisement des racines caractéris-
tiques sur l’axe imaginaire sont proposés, ce qui permet d’exploiter les dérivées d’ordre
supérieur des racines caractéristiques par rapport au retard lorsque les dérivées d’ordre
inférieur disparaissent. Ces résultats sont ensuite étendus aux systèmes avec des retards
proportionnés.

Notre analyse montre que la direction de croisement d’une racine imaginaire dépend
du produit de deux termes distincts. Le premier terme a déjà été découvert dans la littéra-
ture pour les systèmes à retard à coefficients fixes. Le second terme est lié à la monotonie
de la fonction d’angle de phase aux retards critiques, ce qui est unique pour les systèmes
avec des coefficients dépendant du retard. De plus, la corrélation entre la position des
fonctions d’angle de phase et le nombre de racines instables est également suggérée par
les critères de croisement des racines.

Pour acquérir une meilleure compréhension de ces résultats, une approche à deux
paramètres est proposée pour fournir un aperçu géométrique du problème. Le paramètre
de retard dans les coefficients du système et dans l’état sont considérés comme deux vari-
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ables différentes, disons r et q. La stabilité du système peut alors être déterminée en con-
sidérant d’abord différentes régions de stabilité dans l’espace des paramètres r - q, puis en
imposant la restriction r = q = τ . Lorsque r et q entrent et quittent différentes régions de
stabilité dans l’espace r - q le long de la ligne de 45, la stabilité du système peut changer.
Ce point de vue à deux paramètres conduit à une interprétation plus intuitive des résultats
de stabilité précédemment obtenus par une approche analytique. Avec l’approche à deux
paramètres, des méthodes d’analyse de stabilité plus générales sont développées plus loin
qui s’appliquent aux systèmes avec des racines caractéristiques imaginaires répétées pos-
sibles sous des hypothèses relâchées. Bien que les critères de croisement des racines
puissent être exprimés en utilisant les dérivées de la fonction d’angle de phase, l’analyse
de la perspective à deux paramètres montre clairement que la différentiabilité des fonc-
tions d’angle de phase n’est pas essentielle. La monotonie de ces fonctions aux retards
critiques est suffisante pour déterminer les directions de croisement des racines.

nous avons montré que le système avec des coefficients dépendant du retard peut
provenir d’un schéma de contrôle qui utilise une sortie retardée pour approcher les dérivées
de sortie. Les systèmes en boucle fermée résultants ont le paramètre de retard dans le
dénominateur, et les méthodes d’analyse développées dans cette thèse ne peuvent pas
être appliquées immédiatement en raison de cette singularité à τ = 0. Pour résoudre ce
problème, plusieurs méthodes pratiques d’estimation d’une borne inférieure positive pour
le test de balayage τ sont proposées, qui consistent principalement à résoudre certaines
équations polynomiales. Par la suite, les méthodes d’analyse de stabilité proposées dans
les chapitres précédents sont appliquées pour trouver tous les intervalles de retard qui
garantissent une vitesse de convergence désirée de la trajectoire du système en boucle
fermée.

Il y a plusieurs directions à suivre dans le futur.
Premièrement, nous avons seulement considéré le système nominal sans prendre en

compte les incertitudes dans les paramètres du système. Une analyse de stabilité robuste
pour les systèmes comportant des incertitudes sera importante à la fois en théorie et en
pratique. La méthode traditionnelle τ -decomposition est difficile à appliquer pour la rai-
son suivante. Pour dire la stabilité pour une valeur de retard donnée, disons τ0, il faut
que tous les retards critiques inférieurs à τ0 soient identifiés et que le comportement de
croisement racine soit analysé à chacun de ces retards critiques. C’est une tâche assez
formidable puisque le nombre de retards critiques et les comportements de stabilité du
système à ces retards peuvent dépendre des paramètres incertains d’une manière com-
plexe. De l’avis de l’auteur, la perspective à deux paramètres discutée au chapitre 5
suggère une approche plus réaliste de ce problème. Selon cette perspective, l’espace des
paramètres r−q introduit dans le chapitre 5 est séparé par des courbes de retard critiques
en sous-régions disjointes, à l’intérieur desquelles le nombre de racines caractéristiques
instables est invariant. Par conséquent, on peut déterminer la stabilité du système par
rapport à des paramètres incertains en analysant la taille de ces courbes de retard cri-
tiques qui peuvent varier sous la perturbation de paramètres incertains. Il apparaît que
si les courbes limites de chaque sous-région dans le plan r− q ne passent jamais par le
point (r,q) = (τ0,τ0) sous toutes les variations de paramètres possibles, alors stabilité /
instabilité robuste peut être déduit pour le système avec la valeur de retard τ0. D’autre
part, ces courbes limites, à savoir la courbe des retards critiques, sont déterminées par
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un ensemble d’équations algébriques, ce qui permet d’approcher l’étude de la stabilité
robuste en analysant la variation des racines des équations algébriques sous perturbation
paramétrique.

Deuxièmement, le type de délai considéré dans cette thèse est limité à un seul retard
ou plusieurs retards proportionnels générés par un seul paramètre. Il serait intéressant de
généraliser les résultats pour les systèmes avec plusieurs paramètres de retard indépen-
dants. Dans ce but, on peut analyser la stabilité du système dans un espace de paramètres
dimensionnel supérieur en généralisant l’approche à deux paramètres proposée dans cette
thèse.

Une autre direction consiste à étendre l’analyse de stabilité aux systèmes non linéaires
en exploitant les approches basées sur les valeurs propres. Lorsque le système linéarisé
a des racines caractéristiques sur l’axe imaginaire, le système non linéaire correspondant
peut toujours être asymptotiquement stable. On peut extraire le collecteur central du
système non linéaire sur la base de la valeur propre imaginaire et de l’espace propre de
la dynamique linéarisée. Il suffit alors d’analyser la stabilité du système complet en ne
considérant la dynamique que sur le collecteur central, qui est un objet de dimension
finie. Pour l’introduction et l’application de variétés invariantes générales d’équations
différentielles ordinaires.
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Doctor of Philosophy

Stability Analysis of Systems with Delay-Dependent Coefficients

by Chi JIN

Systems with delay-dependent coefficients have been encountered in various applications
of science and engineering. Despite the rich literature on time-delay systems, there are few
results concerning stability analysis of systems with delay-dependent coefficients. This thesis
is devoted to the stability analysis of this class of systems.

Stability analysis methods are developed based on the corresponding characteristic equa-
tion following a generalized τ-decomposition approach. Given a delay interval of interest,
we are able to identify all the critical delay values contained in this interval for which the
characteristic equation admits roots on the imaginary axis of the complex plane. Various root
crossing direction criteria are proposed to determine whether these characteristic roots move
toward the left or the right half complex plane as the delay parameter goes through these
critical delay values. The number of unstable characteristic roots for any given delay can
thus be determined. Our analysis covers systems with a single delay or commensurate delays
under certain assumptions. The root crossing direction criteria developed in this thesis can be
applied to characteristic roots with multiplicity, or characteristic roots whose locus parame-
terized by the delay is tangent to the imaginary axis. As an application, it is demonstrated that
systems with delay-dependent coefficients can arise from control schemes that use delayed
output to approximate its derivatives for stabilization. The stability analysis methods devel-
oped in this thesis are tailored and applied to find the delay intervals that achieve a demanded
convergence rate of the closed-loop system.
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Chapter 1

Introduction

1.1 Systems with Time-Delay

Time-delay systems, known also as hereditary systems, or systems with after effects, have
been encountered in both scientific and engineering disciplines largely due to the time needed
to transport material or information. For instance, in communications, data transmission
is always accompanied by certain time-delay. In economic systems, delay appears since
decisions and market effects, such as investment policy, price fluctuations, trade circles are
separated by some time interval.

A distinct feature of time-delay systems is that their evolution depends on the information
of the past history with a selective memory. Such systems may be modeled using differential
equations on abstract [1] or functional spaces [8], or over rings of operators [2] . The most
popular way is to describe time-delay systems as functional differential equations (FDE). The
study of FDEs has a long history, which can be traced back to the enlightening era, associated
with such great names as Euler, Bernoulli, Lagrange, Laplace. A number of monographs
covering different aspects of time-delay systems are available in the literature, including
[108], [111] and [8]. The definition and some basic properties of FDEs will be discussed in
Chapter 2.

Examples of time-delay systems modeled as FDEs can be found in a wide range of ap-
plications including control systems [57], Physics [18], Biology [42], Chemistry [43] Eco-
nomics [44] as well as transportation systems [79]. In mechanical engineering for instance,
the metal cutting process on a lathe can be described as

mÿ(t)+ cẏ(t)+ ky(t) =−Ft( f + y(t)− y(t− τ)),

which is related to the regenerative chattering phenomenon. Another example from mechan-
ical engineering is the dynamics of internal combustion engines [57], which is governed by
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the following equation:

Jω̇(t) = Ti(t− τi)−Tf (t)−Tload(t),

where Ti is the output torque of the engine, which is delayed by τi seconds due to engine
cycle delays. The time delay in the two equations above are due to the rotational motion of
mechanical components.

Time-delay systems provides reasonable simplification of more complex models of infi-
nite dimensional systems arising from partial differential equations (PDE). It is often possible
to simplify systems described with PDEs to time-delay systems with finite dimensional state
variables when only the behavior of the systems at certain spatial points is of interest. In some
cases, it is possible to reduce hyperbolic PDEs to delay systems of neutral type represented
by appropriate coupled differential and difference equations. A lot of these models are re-
lated with the lossless propagation phenonmena existing in thermal, hydraulic and electronic
engineering. For examples with respect to these models, see ,e.g., [114], [107] and [107].

Time-delay has also been purposely introduced in control design for enhancing stabil-
ity or performance, which is not a new idea as pointed out in [32]. Early contributions in
this direction can be traced to the work of Smith [69], [70]. Later, the proportional minus
delay controller was proposed in [71], which exhibited good noise attenuation capabilities.
Delay-based controllers can use an averaged derivative to replace the actual derivative of the
output. Such kind of controllers have been applied to mechanical systems in [72], [73]. Other
examples include canceling out uncertainties [104], tuning active vibration absorbers [105],
stabilizing unstable periodic trajectories [106]. For further report on the favorable effect of
delay in controllers, see for instance [76], [81], [82]. In a series of recent papers [75], [76],
[77], [78] , systematic methods for determining the parameters of Proportional-Retarded or
proportional-integral-retarded controllers are proposed. By using the elimination technique
developed in [62], the real part of the rightmost root can be rendered as small as possible,
thereby achieving a maximal exponential convergence rate. Dominant pole placement of a
triple real root using delayed PID control has also been studied in [80].

1.2 Stability Analysis of Time-Delay Systems

Stability is a fundamental concept of dynamical systems and is of both theoretical and practi-
cal importance. It tells the qualitative behavior of a model and plays a central role in control
theory since many control tasks can be transformed into a stabilization problem. Time-delay
can have complex influences on system stability: "small" delays may destabilize some sys-
tems, while "large" delays may stabilize others. Moreover, system stability may switch for
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several times as the delay increases [31].
There is a rich literature on stability analysis of time-delay systems, as a result of the

research efforts dedicated to time-delay systems over the past decades. Most of the proposed
methods for stability analysis can be categorized into two classes: the Lyapunov-based meth-
ods and the spectrum-based methods. The Lyapunov-based methods consist in constructing
a Lyapunov function or a Lyapunov functional for proving stability, by revoking the Razu-
mikhin theorem or the Lyapunov-Krazovski theorem, respectively [8] . It may seem easier to
use the Razumikhin theorem, since only a Lyapunov function is required. However such sim-
plicity comes at the cost of very conservative stability conditions because such a Lyapunov
function does not necessarily exist even if the system is asymptotically stable. In general,
a Lyapunov functional needs to be constructed for a more accurate stability analysis. As a
matter of fact, it is proved that for linear time-invariant systems with discrete and distributed
delays, asymptotic stability is equivalent to the existence of a quadratic Lyapunov functional
[88]. Various techniques for constructing Lyapunov functionals using LMIs are summarized
in [58], [31] and [87].

Most results in the literature use matrices for presenting the Lyapunov functional and
formulate the stability condition as LMIs, which can be efficiently solved as a convex pro-
gramming problem. However, the infinite dimensional nature of the Lyapunov functional
means any presentation using a small number of decision variables will in general introduce
conservativeness. By exploiting the idea of the finite-element method, in [54] Gu proposed a
discretized Lyapunov functional approach for stability analysis, which is guaranteed to find a
Lyapunov functional for a large class of asymptotically stable linear systems if the discretiza-
tion resolution is sufficiently high [60]. Recently, some different functional approximation
approaches have been proposed using polynomial bases and SOS techniques [83], [84], [85],
[86]. These methods also apply to the construction of the invertible positive-definite Lya-
punov operators, and thus open the way to full-state feedback for LTI delay systems via con-
vex optimization. Nevertheless, the computational burden grows very rapidly as the number
of decision variables increases. Moreover, the optimization based approach does not always
provide insight into the link between system structures and stability.

On the other hand, the stability of LTI time-delay systems depends exactly on the roots
of the associated characteristic equation. The system is asymptotically stable if and only
if all the roots of the associated characteristic equation are located on the left half complex
plane. This observation leads to the spectrum-based approaches. Due to the fact that the
characteristic equation of time-delay systems are not polynomials, computing the right most
characteristic root is a challenging problem. Several approaches for numerically comput-
ing the rightmost characteristic roots exist [10], but intensive computation is required. The
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D-decomposition approach provides an efficient method of determining the number of char-
acteristic roots on the right complex half plane [7] for a given parameter domain without
knowing the exact locations of characteristic roots. The main idea of D-decomposition ap-
proach is to separate the parameter space into disjoint sub-regions. In each sub-region, the
number of unstable roots is constant. On the boundary of the sub-regions, imaginary charac-
teristic roots appear. By analyzing the behaviors of these imaginary characteristic roots with
respect to small variation of parameters, the system stability can be determined for different
sub-regions in the parameter domain.

The τ-decomposition methods [22] can be viewed as a special case of the D-decomposition
methods as the parameter involved in this case is the delay τ . The τ-decomposition methods
roughly proceed as follows: starting with one value of delay τ l that one knowns the number
of characteristic roots on the right half complex plane (usually τ l = 0), one sweeps through
an delay interval of interest (τ l,τu) and identify all delays τk, k = 1,2, · · · ,N− 1 for which
there are characteristic roots on the imaginary axis. These delay values are referred to as
critical delays and the frequency of the corresponding imaginary roots are called crossing
frequencies.By identifying the direction these roots cross the imaginary axis, one may deter-
mine the change of the number of right half complex plane roots as τ goes through each τk.
Thus, one may divide (τ0,τN) into subintervals (τk−1,τk), and the number of right half plane
roots within each subinterval is constant and can be explicitly determined. Especially, the
subintervals of delay for the systems to be stable can be computed.

There are two key ingredients of the τ-decomposition methods. The first one is to iden-
tify all the critical delays and corresponding imaginary characteristic roots. The second is to
characterize the crossing direction of these roots as the delay increases. Regarding the first
problem, various approaches are available, including the bilinear transformations and related
methods [67], the matrix pencil based methods [13], [33], and elimination technique based
on a generalized Schur-Cohn theorem [21]. These algebraic techniques lead to matrix eigen-
value problems or polynomial equations, which can be solved efficiently. Geometric methods
have appeared in [55], [56], which apply to systems with multiple independent delay parame-
ters. The complexity of the second issue depends on whether the imaginary root of concern is
simple or repeated. For simple imaginary characteristic roots, its local behavior with respect
to the delay can be determined by differentiation of the characteristic equation and revoking
the implicit function theorem. It is also possible to directly working on the matrices that de-
fine the time-delay system and use Jacobi’s formula to compute the root crossing directions
[10]. For imaginary roots with multiplicities, perturbation based methods have been pro-
posed in [39], [40]. The recent work in [39] shows that the asymptotic behavior of imaginary
roots with multiplicities can be completely characterized by the Newton-Puiseux series. A



1.3. Systems with delay dependent coefficients 5

general frequency-sweeping approach has also been proposed to compute the increase of un-
stable roots as τ passes through critical delays. A more detailed introduction and discussion
of these results will be presented in Chapter 2.

There are many other methods of analyzing the stability of time delay systems. For in-
stance, it is possible to determine the number of characteristic roots with a positive real com-
ponent by the integration of some function along a contour in the complex plane. Interested
reader may refer to [109] and the references therein. Another approach is to approximate
time-delay systems with a finite dimensional one by discretizing the time history of the state
variables. Various techniques pertaining to this discretization approach are presented in the
monograph [110].

1.3 Systems with delay dependent coefficients

Interestingly, for some systems the delay may also appear in the system coefficients. Delay
systems with this feature have been encountered in, for instance, the population dynamics
with age structures [16], the blowfly model [36], the hematopoietic models [20], the stella
dynamo [18], as well as convergence rate analysis of control systems [35]. There are various
reasons for the system coefficients to be delay-dependent. As the information, substance or
energy is being transmitted, their quantity or magnitude may in general decrease over time
due to dissipation, causing their influence to be delay-dependent. Here we provide several
examples with more details. The source and dissipative process of a stella dynamos in [18]
can be described by the following equations:{

Ḃφ (t) = c1e−c2T0A(t−T0)− c2Bφ (t),

Ȧ(t) = c3e−c2T1Bφ (t−T1)− c2A(t),

where Bφ is the strength of toroidal field, A is the strength of poloidal field, and c1, c2, c3,
T0, T1 are positive constants. The characteristic equation of the above system can be easily
obtained as

λ
2 +2c2λ + c2

2− c1c3e−c2τe−τλ = 0, (1.1)

where τ = T0 +T1.
Delay-dependent coefficients can also result from linearization of a nonlinear time-delay

system about some equilibrium point, as the location of the equilibrium my depend on the
delay. Consider the model of hematopoietic stem cell dynamics given in [20]. The model is
nonlinear, and possesses two equilibria. The linearized equation in the neighborhood of the
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nonzero equilibrium has the following characteristic equation

λ +A(τ)−B(τ)e−λτ = 0,

where A, B are nonlinear functions of τ .
Time-delay systems with delay-dependent coefficients may emerge from partial differen-

tial equations. For instance, the age-structured Hematopoietic Stem Cells in [116] are given
by: 

∂t r̃(t,a)+∂ar̃(t,a) =−(δ̃ + β̃ (C(t)))r̃(t,a), for a > 0, t > 0,
∂t p̃(t,a)+∂a p̃(t,a) =−γ̃ p̃(t,a), for 0 < a < τ̃, t > 0,
∂tr(t,a)+∂ar(t,a) =−(δ +β (C(t)))r(t,a), for a > 0, t > 0,
∂t p(t,a)+∂a p(t,a) =−γ p(t,a), for 0 < a < τ, t > 0.

where r(t,a) is the density of resting healthy cells at time t and age a, r̃(t,a) denotes the
density of resting unhealthy cells, p(t,a) the density of proliferating healthy cells and p̃(t,a)

the density of proliferating healthy cells. The boundary condition for all t > 0 is given by


r̃(t,0) = 2(1− K̃)p̃(t, r̃),

p̃(t,0) = β̃ (C(t))x̃(t)+2K̃ p̃(t, τ̃),

r(t,0) = 2p(t,τ),

p(t,0) = β (C(t))x(t).

Using the method of characteristics [113] and following similar arguments as those in [117]
as well as [113], the partial differential equation can be reduced to a delay-difference equation
with delay-dependent coefficients [115]:

˙̃x(t) =−[δ̃ + β̃ (x(t)+ x̃(t))]x̃(t)+2(1− K̃)e−γ̃ τ̃ ũ(t− τ),

ũ(t) = β̃ (x(t)+ x̃(t))x̃(t)+2K̃e−γ̃ τ̃ ũ(t− τ̃),

ẋ(t) =−[δ +β (x(t)+ x̃(t))]x(t)+2e−γτβ (x(t− τ)+ x̃(t− τ))x(t− τ).

(1.2)

The model of cell density in a generic compartment in [113] is described by a different
set of PDEs but can also be reduced to a system with delay-dependent coefficients after the
method of characteristics is applied.

There is a link between systems with delay-dependent coefficients and feedback control
based on time delay. An intuitive way of exploiting time delay in feedback is to approxi-
mate the derivatives of the measured output using delayed output. Output feedback is very
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common in engineering practice, often due to the difficulty of measuring all the state vari-
ables. When a static feedback of the output is not sufficient for stabilizing the system or to
ensure satisfactory performance, it may be desirable to use the derivatives of the output for
feedback. This strategy is well embodied in the extremely popular PID control scheme [45].
Various methods for tuning the gains for a PID control have been proposed in the literature,
see for instance [46] and the references therein. The finite-difference scheme is often used to
approximate the output derivatives. For instance, the first-order approximation can be written
as

ẏ(t)≈ y(t)− y(t− τ)

τ
, (1.3)

where τ represents some positive delay value. It is easy to see that (1.3) leads to delay de-
pendent coefficients in the closed-loop systems as τ appears in the denominator. This idea
can be extended to the approximation of higher order derivatives via interpolation polyno-
mial, as shown in [32], where the stabilization of a chain of integrators is addressed. A
rescaling technique is adopted in [32] to prevent system coefficients from depending on the
delay. However, for more general systems the rescaling technique can not be applied and the
approximation scheme will in general lead to systems with delay-dependent coefficients.

Fast convergence to the reference point is critical for a controller to achieve satisfactory
performance. For a delay-based controller, it is useful to find a range of delay values such
that the closed-loop system is α-stable, which means the system trajectory converges to the
reference point with a pre-specified exponential rate α . The analysis of α-stability can lead to
systems with delay-dependent coefficients. For instance, consider the characteristic equation
with a single delay:

P(λ )+Q(λ )e−λτ = 0, (1.4)

where P(τ) and Q(τ) are polynomials that do not depend on τ . It is shown in [8] that α-
stability means that the real part of all characteristic roots of (1.4) must be less than α .
Therefore the α-stability of (1.4) is equivalent to the asymptotic stability of a system associ-
ated with the following ’shifted’ characteristic equation:

P(λ −α)+Q(λ −α)eατe−λτ = 0. (1.5)

We see that the delay now appears in the system coefficients.
Unfortunately, most stability methods proposed for systems with delay-free coefficients

do not lend themselves directly to systems with delay-dependent coefficients. Despite the rich
literature on time-delay systems, the publications on systematic stability analysis of systems
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with delay-dependent coefficients are rare. Following the idea of the τ-decomposition ap-
proach, Beretta and Kuang [14] presented an effective method of performing such a stability
analysis for systems with delay dependent coefficients based on the graph of some functions.
Their work deals with systems with a single delay subject to certain restrictions and does not
apply to systems with repeated characteristic roots on the imaginary axis. This method has
been applied to several hematopoietic dynamics model in [20] and the Hopf bifurcation of
blood cell production dynamics in [19]. Some extension of [14] can be found in [15] for the
analysis of stage structured predator-prey models.

1.4 Research Objectives and Contribution

This thesis is devoted to stability analysis of systems with delay dependent coefficients. The
objectives are:

• develop efficient methods for precise stability analysis of systems with a single delay
or commensurate delays;

• acquire a deeper understanding of the connection between stability of systems with
delay-free and delay-dependent coefficients;

• apply the proposed stability analysis methods to models encountered in various scien-
tific disciplines as well as the design of control systems.

The stability analysis in this thesis is inspired by the work of Beretta and Kuang [14].
While[14] addresses systems with a single delay under some restrictions, our results apply
to more general class of systems under less restrictive assumptions. The contributions and
novelty can be summarized as follows. We generalized the τ-decomposition approach for
systems with delay-dependent coefficients. Stability analysis methods are developed for sys-
tems with commensurate delays. We derive crossing direction criteria that apply to imaginary
characteristic roots with possibly multiplicities. A ’separation principle’ is revealed by the
proposed crossing direction criteria: the crossing direction of imaginary characteristic roots
depends on the product of two terms. The first term reflects the crossing direction of imagi-
nary roots when the system coefficients are fixed. The second term is truly unique about the
special type of delay systems studied in this thesis: it depends on how the coefficients are
parameterized by the delay, and becomes constant for systems with delay-free coefficients.

A two-parameter perspective of systems with delay-dependent coefficients is proposed.
The new perspective has the following advantages: 1) It provides geometric insight into the
stability problem, and establishes a link between system with delay-free and systems with
delay-dependent coefficients; 2)The geometric insight motivated us to derive more general
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results that can be easily interpreted. The aforementioned separation principle also becomes
quite clear from the geometric point of view; 3) Our analysis suggests that the two-parameter
approach can be regarded as a framework with which some tools designed for analyzing
systems with fixed-coefficients can be conveniently exploited for solving the special type of
delay systems considered in this thesis.

As an application, we demonstrated that systems with delay-dependent coefficients can
result from feedback control schemes that use delayed output signals for approximating out-
put derivatives. We seek for time-delay intervals that achieve a pre-specified convergence
speed of the closed loop system. Subsequently, the stability analysis methods developed in
this thesis are tailored to cope with this particular problem.

1.5 Notation

The following notation will be used in this paper. For a function f (x1, · · · ,xn) of multiple
arguments x1, · · · ,xn, ∂ l

xi
f denotes the lth partial derivative of function f with respect to the

argument xi. Suppose F(x1,x2) is a function of two arguments, we may write Fx2(x1) to
emphasize that F is regarded as a function of x1 while x2 is viewed as a parameter. The
characteristic equations of time-delay systems will be denoted as

D(λ ,τ) = 0,

where λ is the Laplace variable and τ is the delay parameter. Suppose (ω,τ) ∈ R∗+×R∗+
satisfies

D( jω,τ) = 0,

then ( jω,τ) is referred to as a critical pair and we say ω is a crossing frequency and τ is a
critical delay. Characteristic roots with a positive real part are called unstable characteristic
roots. We use Nu(τ) to denote the number of unstable characteristic roots for a given delay
value τ .
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Chapter 2

Preliminaries and Literature Review

2.1 Chapter Overview

The objective of this chapter is to introduce some preliminary results and techniques pertain-
ing to the development in later chapters. We are focused on the publications that are most
closely related to this thesis. It is not intended to present a complete overview of the literature.
We first present the basic notion of functional differential equations, including the definition,
the uniqueness, existence and stability of solutions. After introducing the characteristic equa-
tion associated with the linearized time-delay systems, we discuss some important properties
of the characteristic roots. Next, we present a general procedure of the τ-decomposition ap-
proach, which has been widely applied for stability analysis of time-delay systems with fixed
coefficients. There are two key issues of this approach: the first one is to identify the critical
delay values and the corresponding frequencies of imaginary characteristic roots; the second
is to determine whether theses characteristic roots becomes stable or unstable as the delay
parameter goes through these critical delays. Various techniques that address these problems
are presented and discussed. There are few publications devoted to stability analysis of sys-
tems with delay-dependent coefficients. In this regard, we mainly discuss a work by Berreta
and Kuang [14], which motivated the development of the theories in this thesis.

2.2 Functional Differential Equations

Time-delay systems can be described using functional differential equations. Let C ([a,b],Rn)

be the Banach space of continuous functions that map the interval [a,b] to Rn. In this thesis
we will be concerned with systems with bounded delays, therefore the state of a time-delay
system considered in this thesis is a function mapping [−τ,0] to Rn. In this case, we will
simply use C to denote C ([−τ,0],Rn) as the state-space. For any positive number T and
continuous function φ ∈ C ([t0− τ, t0 +T ]) , we use φt to denote a segment of the function φ
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defined as φt(s) = φ(t+s), s∈ [−τ,0]. For any real function φ defined in a bounded interval,
let ||φ || be its supremum norm .

The general form of an autonomous retarded functional differential equation is

ẋ(t) = f (xt), (2.1)

where x(t) ∈ Rn and f : C 7→ Rn. We stipulate that the origin of the state space xt = 0 is an
equilibrium of (2.1). The solution of (2.1) is defined for t ∈ [0,+∞) if the functional f (xt)

is globally lipschiz, i.e., there exists some positive number L such that || f (φ1)− f (φ2)|| <
L||φ1−φ2||, ∀t ∈ [0,+∞) and φ1,φ2 ∈ C .

For system (2.1), the equilibrium xt = 0 is said to be stable if for any t0≥ 0 and any ε > 0,
there exists a positive number δ such that ||xt0 || < δ implies ||x(t)|| < ε for all t ≥ t0. It is
said to be asymptotically stable if it is stable and limt→+∞ x(t) = 0 for all initial conditions.
We say (2.1) is α-stable if for any initial condition x0 and t ≥ 0, the trajectory satisfies

||xt ||< ke−αt ||x0|| (2.2)

for some positive numbers k and some given real number α . We say (2.1) is globally expo-
nentially stable if it is α-stable for some α > 0.

In this thesis we only consider autonomous RFDEs with discrete delays. We linearize
(2.1) about the origin, which leads to a linear time-delay system of the following form

ẋ(t) = A0x(t)+
m

∑
i=1

Aix(t− τi), (2.3)

where Ai ∈ Rn×n, i = 0,1, · · · ,m, are real matrices and 0 < τ1 < τ2, · · · ,< τm represents the
time-delays. It is known that for linear systems of the form (2.3), asymptotic stability is
equivalent to exponential stability. Moreover, the asymptotic stability of the linear system
(2.3) implies the asymptotic stability of (2.1), although the converse is not necessarily true.

Now consider linear neutral type time-delay systems of the following form:

d
dt (x(t)+

m

∑
k=1

Hkx(t− τk)) = A0x(t)+
m

∑
k=1

Akx(t− τk), (2.4)

where x(t) ∈ Rn and 0 < τ1 < τ2, · · · ,< τm represent the time-delays. The forward solution
of (2.4) exists uniquely. The stability notions of the RFDEs apply also to the neutral type
systems. However, for the neutral type system (2.4), asymptotic stability does not imply
exponential stability [59], [10].
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2.3 Characteristic Roots

2.3.1 Characteristic Equations

Denoting −→τ = (τ1,τ2, · · · ,τm), the characteristic matrix of (2.3) is defined as

∆(λ ,−→τ ) = λ I−A0−
m

∑
i=1

Aie−λτi , (2.5)

and the characteristic matrix of (2.4) is defined as

∆(λ ,−→τ ) = λ

(
I +

m

∑
k=1

Hke−λτk

)
−A0−

m

∑
i=1

Aie−λτi (2.6)

The characteristic function D(λ ,−→τ ) of either (2.3) or (2.4) is defined as

D(λ ,−→τ ) = det(∆(λ ,−→τ )), (2.7)

where ∆(λ ,−→τ ) is the characteristic matrix associated with (2.3) or (2.4). In this thesis we are
concerned with system with commensurate delays generated by a single delay parameter. In
this case, the characteristic equation can be written as

D(λ ,τ) =
M

∑
i=0

Pi(λ )e−iλτ = 0. (2.8)

If λ ∈ C satisfies the characteristic equation:

D(λ ,−→τ ) = 0, (2.9)

we say λ is a characteristic root. The characteristic roots are critical for stability analysis
because time-delay systems of the form (2.3) or (2.4) is exponential stable if and only if all
the characteristic roots of the associated characteristic equations are located on C− and no
sequence of characteristic roots approaches the imaginary axis. The spectral abscissa c is
defined as

c = sup{ℜ(λ ) : D(λ ,−→τ ) = 0}. (2.10)

As a matter of fact, asymptotic growth rate of the solution xt satisfies (2.2), where α can
be any number larger than the spectral abscissa c.
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Contrary to finite dimensional systems, time-delay systems in general have infinite num-
ber of characteristic roots since D(λ ,−→τ ) is a transcendental function. Consequently, in com-
parison with finite-dimensional systems, it is significantly more involved to determine the
stability of a time-delay system based on the characteristic roots, which cannot be easily
obtained.

2.3.2 Properties of the Characteristic Roots

We first discuss the retarded type system (2.3). Although the number of characteristic roots
of (2.3) is infinite, given any vertical line in the complex plane, the characteristic roots lying
to the right of such a line are finite. Especially, there are only a finite number of characteristic
roots in any vertical strip of the complex plane given by

{λ ∈ C|a < ℜ(λ )< b}.

Each characteristic root of (2.3) is continuous with respect to τ , therefore since the number
of characteristic roots located to the right of any vertical line in the complex plane is finite, it
is easy to see that the abscissa c depends on τ continuously.

On the other hand, the situation with the neutral type system (2.4) is more subtle. Let

Dd(λ ,τ) = det(I +
m

∑
k=1

Hke−λτk)

be the characteristic equation of the difference equation

x(t)+
m

∑
i=1

Hkx(t− τk) = 0.

Suppose ξ satisfies Dd(ξ ,τ) = 0, then there exists a sequence of characteristic roots of (2.4)
{λn}n≥1 such that

lim
n→∞

ℜ(λn) = ℜ(ξ ), lim
n→∞

ℑ(λn) = ∞.

Therefore, contrary to the retarded time-delay systems, the characteristic roots of a neu-
tral type system contained in a given a vertical strip of the complex plane can be infinite.
Although each individual characteristic root of the neutral type system is continuous with
respect to τ , such a continuous dependence does not carry over to the abscissa c. Therefore
special precaution should be taken when applying some of the stability methods, such as
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τ−sweeping, for stability analysis. Let cd be the abscissa of Dd(λ ,τ) , and define

C(−→τ ) = lim
ε→0+

cε(−→τ ),

where cε = sup{c(−→τ +δ
−→
τ )|δ−→τ ∈ Rm and ||δ−→τ || ≤ ε}. The following result can be found

in [10]:

Proposition 2.1. For every −→τ ∈ (R+)
m, we have

C(−→τ ) = max
(
Cd(
−→
τ ),c(−→τ )

)
.

Moreover, C(−→τ ) is continuous in −→τ .

The above proposition means that if all the characteristic roots of Dd(λ ,
−→
τ ) have a real

component smaller than some real number ξ for all positive delay parameters, then given
any number ξ1 > ξ , the characteristic roots of D(λ ,−→τ ) located to the left of the vertical line
ℜ(λ ) = ξ ′ depend on τ continuously.

2.4 The τ-Decomposition Method

Due to the difficulty in computing the characteristic roots of time-delay systems, it is desir-
able to determine system stability without the exact knowledge of the abscissa of the char-
acteristic equation. When the characteristic roots close to C+ depend on τ continuously, the
D-decomposition approach becomes a convenient and powerful tool for stability analysis [6],
[22].

The idea of this approach is to decompose the parameter space into disjoint sub-regions.
In the interior of each sub-region, the system has no imaginary characteristic roots, therefore
the number of unstable roots, i.e., roots in C+ is constant in each sub-regions. The boundary
of each sub-regions are those parameter points with which the characteristic equation admits
roots on the imaginary axis, referred to also as the imaginary characteristic roots. To deter-
mine the system stability for any given parameter point p1, one starts with some parameter
point p0 , for which the number of unstable roots is known. For instance, the parameter point
p may include the delay parameter, so that when the delay is set to 0, the unstable roots can
be easily determined since the characteristic equation is reduced to a polynomial. Imagine
that the parameter point p moves along a continuous path γ in the parameter space that con-
nects p0 and p1. The point p crosses the boundaries of different sub-regions in the parameter
spaces as it leaves one sub-region and enters another. When p lies on some boundary sur-
face, some characteristic roots appear on the imaginary axis. By determining whether these
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imaginary characteristic roots move to C+ or C−, the change in the number of unstable roots
as p crosses the boundary can be obtained.

When the parameter p in the D-decomposition is the delay parameter, it is also know as
the τ-decomposition method. In this thesis we analyze systems with one delay parameter τ .
Given a delay interval of interest denoted as I , the τ-decomposition method proceeds as
follows. First, a series of delay values are identified, for which the characteristic equation
admits roots on the imaginary axis. These delay values are referred to as the critical delays
and arranged in the ascending order:

τ1 < τ2 < · · ·< τL.

Following the notion in [39], suppose τ∗ is a critical delay and jω∗ is an imaginary char-
acteristic root corresponding to τ∗, we will refer to ( jω∗,τ∗) as a critical pair, and ω∗ as a
crossing frequency. The second key step is to analyze the local behavior of the imaginary
root of each critical pair ( jω∗,τ∗). More precisely, one has to determine how many charac-
teristic roots will move toward C+ through the point jω∗ as τ sweeps through τ∗. This step
is referred to as the root crossing direction analysis. Subsequently, the number of unstable
roots in each interval (τi,τi+1) can be determined. According to the aforementioned proce-
dure, there are two key issues of the τ-decomposition method. The first one is to identify
all the critical pairs. The second one is the root crossing direction analysis at these critical
pairs. Some techniques related to these two issues will be introduced in the ensuing sections.
There are many other methods available in the literature, and it is not our intention to give
an extensive coverage of them. Instead, we focus mainly on those methods that are closely
related to the analysis in this thesis.

2.4.1 Identifying Critical Pairs: the Single-Delay Case

To better illustrate the ideas of different methods, we first consider systems with a single
delay. The characteristic equation can be written as

D(λ ) = P(λ )+Q(λ )e−λτ = 0. (2.11)

When λ lies on the imaginary axis, i.e., λ = jω for some ω ∈ R, e−λτ lies on the unit
circle of the complex plane ∂D. This is an important property exploited in most techniques
that identify imaginary characteristic roots.
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The bilinear transformation based method [74] replaces e−λτ with 1−λT
1+λT and then (2.11)

can be transformed to

(1+λT )P(λ )+(1−λT )Q(λ ) = 0,

which is a polynomial in both λ and T and therefore easier to deal with than a quasi-
polynomial. It is easy to see that λ is an imaginary characteristic roots of (2.11) if and only
if it is a root of the last equation for some positive T . One may replace λ with jω in the last
equation and further eliminate the variable T to derive an polynomial equation of ω . Then
all the real solutions in ω are the frequencies of imaginary characteristic roots corresponding
to certain delay values.

It is possible to directly work on (2.11) to obtain the crossing frequencies of the imagi-
nary characteristic roots. For imaginary λ , since e−λτ is on the unit circle D we must have
|P(λ )|= |Q(λ )|. In [3] , the following polynomial is introduced:

F(ω) = P( jω)P(− jω)−Q( jω)Q(− jω). (2.12)

It is clear that if ω is a real root of F(ω), then λ = jω must be an imaginary characteristic
root of (2.11). Let ω1 < ω2 < · · ·< ωH be the non-negative solution of

F(ω) = 0, (2.13)

then each ωi, 1≤ i≤H is a crossing frequency. Corresponding to each ωi, there is a sequence
of critical delays τkm, m = 1,2, · · · , satisfying:

τkm =
1

ωk
∠

(
−P( jωk)

Q( jωk)

)
+

2πm
ωk

, (2.14)

where ∠(·) is the phase angle of a complex number restricted to the interval [0,2π).
When it comes to systems with commensurate delays, the simple magnitude condition

|P( jω)|= |Q( jω)| at some crossing frequency ω is no longer available. Nevertheless, thanks
to the next result from the matrix theory, one may still define a polynomial F(ω) to identify
all crossing frequencies.
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2.4.2 Identifying Critical Pairs: the Commensurate-Delay Case

First associate (2.8) with the following function:

D̂(λ ,x) =
M

∑
k=0

Pk(λ )xk, (2.15)

where x can be a scalar or a matrix.
Let H be the Schur’s hermitian form associated with (2.8) defined as

H (λ ,X) =
M

∑
k=1
|P0xk +P1xk+1 + ...+PM−kxM|2

−
M

∑
k=1
|PMxk +PM−1xk+1 + ...+PkxM|2

(2.16)

where X = col(x1,x2, ...,xM). The hermitian form H can be expressed as

H (λ ) = XT H(λ )X (2.17)

where

H(λ ,τ) = Q̂(λ ,S)HQ̂(λ ,S)

−D̂(λ ,S)HD̂(λ ,S),
(2.18)

and Q̂(λ ,S) = ∑
M
k=0 PkSM−k ,

S =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · 1
0 0 0 · · · 0


is an M×M shift matrix. Now the function F can be defined for the commensurate-delay
systems as

F(ω) =−det(H( jω)) . (2.19)

The following generalized Schur-Cohn lemma is given in [21].

Lemma 2.1.

F(ω) =−|PM( jω)|2M
M

∏
i,k=1

(1− zizk), (2.20)
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where zi, i = 1,2, . . . ,M are the roots of the polynomial D̂(λ ,x) in x.

A necessary and sufficient condition for jω∗ to be an imaginary characteristic root is that
D̂( jω∗,x) has roots in x on the unit circle D of the complex plane. Therefore, jω∗ being an
imaginary characteristic root implies that F(ω∗) = 0. However, the converse is not true. It is
possible that all zi’s defined in the last lemma do not lie on D when ω = ω∗ but we still have
F(ω∗) = 0 because there may exist some zk, zl such that z1zk = 1. These discussions lead us
to the following result:

Proposition 2.2. If λ = jω is an imaginary characteristic root of (2.8), then the following

must hold:

F(ω) = 0. (2.21)

The polynomial F(ω) defined in (2.19) was first introduced in [13] for identifying cross-
ing frequencies. Once the imaginary characteristic roots are known, the critical delay values
can be easily computed.

2.4.3 A Matrix Pencil Based Approach

Sometimes it is easier to work directly on the state-space representation of the system instead
of the characteristic equation. For this purpose, some matrix pencil based methods have been
proposed. In this subsection we present the method proposed in [33]. Consider the following
matrix pencil:

Λ(x) = xW +U,

where M,N ∈ R(2Mn2)×(2Mn2) are given by:

W =


In2 0 · · · 0 0
0 In2 · · · 0 0

· · ·
0 0 · · · In2 0
0 0 · · · 0 Bm

 ,
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U =


0 −In2 0 · · · 0
0 0 −In2 · · · 0

· · ·
0 0 0 · · · In2

B−m 0 · · · 0 BM

 .

and B−k, k = 1, · · · ,M are defined as:

B−k = In⊗AT
k , Bi = Ai⊗ In, B0 = A⊕AT . (2.22)

The operators ⊗ and ⊕ are the Kronecker product and sum. (see, e.g., [102]).
It is shown in [33] that λ = jω∗ is an imaginary characteristic if and only if there exits

some complex number z∗ ∈ ∂D such that

det(Λ(z∗)) = 0, (2.23)

and

det(A0 +
M

∑
i=1

Ai(z∗)i− jω∗I) = 0

are both satisfied.

2.5 Root crossing direction analysis

2.5.1 Simple Characteristic Roots

Given a critical pair ( jω∗,τ∗), if λ = jω∗ is a simple root, then ∂λ D(λ ,τ)|( jω∗,τ∗) 6= 0. By
the implicit function theorem [9], in a neighborhood of ( jω∗,τ∗), the characteristic root λ is
a function of τ denoted here as λ (τ). We have

dλ (τ∗)

dτ
=− ∂τD(λ ,τ)

∂λ D(λ ,τ)

∣∣∣∣
( jω∗,τ∗)

. (2.24)

If sgn(ℜ( d
dτ

λ (τ∗)))= 1, the characteristic root crosses the imaginary axis and moves towards
C+ as τ increases through τ∗. If this term is−1, the characteristic root moves towards C− and
becomes stable. When the right hand side of the last equation is zero, higher order analysis
is necessary, which is reported in [12] and briefly introduced in [10]. For the characterization
and analysis of crossing roots with multiplicity, several different approaches are available in
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the literature, including those based on the perturbation theory and Newton-Puiseux series
[27][39], as well as the geometrical approach [29][30].

In the monograph [10], the following class of delay systems with parameterized coeffi-
cients and delays are discussed:

ẋ = A0(p)x(t)+
m

∑
i=1

Ai(p)x(t− τi(p)). (2.25)

Suppose λ = jω∗ is a simple characteristic root of D(λ , p∗) and let λ (p) be the trajectory
of the characteristic root that passes through jω∗ as p passes through p∗. Then using the
Jacobi’s formula and some properties of left and right eigenvalues of rank one matrices, the
following equation is derived

∂piλ (p) =
v∗0 ·∂piM ·u0

v∗0 ·∂λ M ·u0
, (2.26)

where v∗0 and u0 are the left or right eigenvectors of M( jω∗,τ∗).
It is worth mentioning that the equation (2.25) can actually represent a large class of sys-

tems with delay-dependent coefficients, although such type of systems are not discussed in
[10]. For instance, if one sets p = τ , τi = ip, then (2.25) represents systems with commen-
surate delays. On the other hand, suppose p = col{p1, · · · , pm} and τi(p) = pi, then (2.25)
represents systems with m independent delays. Therefore the formula (2.26) can actually be
applied to systems with delay-dependent coefficients.

It is possible that the real part of λ ′(τ) is zero at some critical pair. In this situation,
higher order derivatives of the characteristic root with respect to τ needs to be computed in
order to determine the root crossing direction. This type of analysis has been reported in [12].

Although it is quite straightforward to use the formula (2.24) or (2.26) to determine the
crossing direction of simple characteristic roots, these formula do not provide deep insight
into this problem. The right hand side of (2.24) or (2.26) rely on λ and τ in a complicated
way, which does not reveal how the crossing direction may vary for different critical pairs.

In [3], an interesting relationship between the function F(ω) defined in (2.12) and the
crossing direction of characteristic roots are derived. Let ( jω∗,τ∗) be a critical pair of the
characteristic equation (2.11), λ (τ) be the roots of (2.11) in a neighborhood of ( jω∗,τ∗),
then

sgn
(
ℜ(λ ′(τ∗))

)
= sgn(F ′(ω∗)). (2.27)

According to the last equation, as τ sweeps through τ∗ from left, a pair of imaginary roots
± jω∗ crosses the imaginary axis toward the right half complex plane if F ′(ω∗) > 0. This
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pair of roots move toward the left half complex plane if F ′(ω∗)< 0.
Two important invariance properties now follow from (2.14) and (2.27). The former

shows that the crossing frequency ωk is invariant with respect to a shift of 2π/ωk in the
delay. The crossing direction of each characteristic root at λ = jωk is independent of the
corresponding delay, as indicated in (2.27).

This further implies a simple root crossing pattern in the way characteristic roots with
different frequencies cross the imaginary axis. It is easy to see

sgn(F ′(ωk)) =−sgn(F ′(ωk+1)), (2.28)

therefore the crossing direction of each two neighboring imaginary roots jωk and jωk+1 al-
ways have the opposite crossing directions. However, we note that this pattern of alternating
crossing directions does not always hold for systems with commensurate delays. Using this
property, it is easy to see that the roots crossing toward one side of the imaginary axis more
often than toward the other side. If the characteristic equation (2.11) admit at most a finite
number of roots on the right half plane, then it can be deduces that the imaginary roots must
cross toward the right more frequently, otherwise for large delays, the number of character-
istic roots lying to the right of the imaginary axis would fall below zero. It is then claimed
that there exits some positive number T ∗ such that the system (2.11) remains unstable for all
τ > T ∗ and no stability switches will occur if τ further increases from T ∗. However, their
argument is based implicitly on the conditions that 1) the roots of (2.11) on the right half
complex plane is finite; 2)all roots rely on the delay in a continuous way, which are not nec-
essarily true given the assumptions in [3]. This issue is identified in [37] and the following
assumption is introduced in addition to those in [3]:

limsup
{∣∣∣∣Q(λ )

P(λ )

∣∣∣∣ : |z| → ∞,ℜ(z)≥ 0
}
≤ K < 1.

To the author’s best knowledge, the crossing analysis based on the function F(ω) has not
been extended to systems with commensurate delays in the literature.

2.5.2 Repeated Characteristic Roots

The frequency-sweeping framework developed in [39] provides a general method for com-
prehensive stability analysis of multiple roots on the imaginary axis. Recall the characteristic
equation for systems with commensurate delays:

D(λ ,τ) =
N

∑
i=0

pi(λ )e−iλτ = 0, (2.29)
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where each pi(λ ) is a polynomial. Corresponding to the characteristic equation, the follow-
ing function is also defined:

D̂(λ ,z) =
N

∑
i=0

pi(λ )zi = 0.

Sweeping through ω ≥ 0, for each λ = jω suppose the equation above admits N solutions
in z. Denote these solutions as zi( jω), i = 1, · · · ,N. Then the graph of Γi(ω) = |zi( jω)| is
referred to as a frequency-sweeping curve(FSC).

As τ increases through some critical delay ταk, where ταk is given in (2.14), the increase
of characteristic roots on the right half complex plane in a small neighborhood of λα is just
the same as the quantity NFzα

(ταk) defined as

NFzα
(ταk) = Nzα

(τ + ε)−Nzα
(τ− ε), (2.30)

where Nzα
(τ) is the number of the FSCs: Γi(ω), i= 1, · · · ,N that satisfy 1) zi(ω)= exp(−λατα),

2) Γi(ω)> 1, and ε is an arbitrarily small positive number. In other words, the characteristic
roots crossing the imaginary axis is associated with the corresponding frequency-sweeping
curves crossing the horizontal line 1. Using this property, it is shown that the crossing of
characteristic roots on the imaginary axis with multiplicity has similar invariance properties
as the systems with just a single delay and simple imaginary characteristic roots. Further-
more, the system stability can be analyzed completely, in the sense that the eventual number
of unstable characteristic roots as τ →+∞ can be easily determined.

As mentioned in [39], when the critical pair is not regular, which includes the case of
multiple characteristic roots on the imaginary axis, it is necessary to use the Puiseux series
to analyze the asymptotic behaviors of these roots. Here we give a very rough idea about
how Puiseux series can come into play. The characteristic equation (2.29) can be expanded
at each critical pair (λ0,τ0) as

F(∆λ ,∆τ) = 0,

where ∆λ = λ − λ0, ∆τ = τ − τ0 and F(∆λ ,∆τ) is a series obtained through the Taylor
expansion. The critical pair (λ0,τ0) may not be regular, in the sense that ∂λ D(λ0,τ0) = 0
or ∂τD(λ0,τ0) = 0. Let n be the number such that ∂ i

λ
D(λ0,τ0) = 0, for i = 1, ...,n− 1 and

∂ n
λ

D(λ0,τ0) 6= 0. Also let g be such a number that ∂ i
τD(λ0,τ0) = 0, for i = 1, ...,g− 1 and

∂
g
τ D(λ0,τ0) 6= 0. Then there exits a positive number v such that the sequence F(∆λ ,∆τ)
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determines the following v Puiseux series:

∆λ =
∞

∑
i=gi

Cki(∆τ)
i

nk , k = 1, · · · ,v,

and n1 + · · ·nv = n. Conversely, we can also express the increase of τ from τ0 as a series of
∆λ , known as the duel Puiseux series:

∆τ =
∞

∑
i=vi

Dki(∆λ )
i

gk ,k = 1, · · · ,v,

where g1 + · · ·+ gv = g. Then it easy to see that the curves of (λ (τ),τ) in a small neigh-
bourhood of (λ0,τ0) may have several branches. The local behaviors of these branches are
fully characterized by these Puiseux series. The Puiseux series can be obtained based on the
Newton polygon. A constructive algorithm for computing the Puiseux series can be found in
[38].

As mentioned in [40][41], the interest in characterizing the algebraic/geometric multi-
plicities corresponding to characteristic roots on the imaginary axis is emphasized, since
such multiplicities characterize the local behavior of imaginary characteristic roots. An con-
structive approach in investigating the multiplicity of crossing imaginary roots is proposed in
[28] through a class of functional confluent Vandermonde matrices. A sharper bound on the
multiplicity of imaginary characteristic roots is established.

2.6 Systems with Delay-Dependent Coefficients

There are few publications that address specifically systems with delay-dependent coeffi-
cients. A notable exception is the work of Berreta and Kuang reported in [14], where a
systematic stability analysis method is presented for systems with delay-dependent coeffi-
cients and a single delay. Following a generalized τ-decomposition approach, they extended
the results in [3] for characteristic equations of the following form:

D(λ ,τ) = P(λ ,τ)+Q(λ ,τ)e−λτ = 0. (2.31)

The same definition of F in (2.12) is resumed, except that now F(ω,τ) in general depends
explicitly on τ . Consider a delay interval of interest denoted as I . Functions P(λ ,τ) and
Q(λ ,τ) are polynomials in λ and analytic in τ . In the sequel, we may write Dτ(λ ) instead
of D(λ ,τ) to regard it as function of λ with τ as a parameter.
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The authors assume that each positive root of

F(ω,τ) = 0, (2.32)

in ω , denoted as ωk(τ), k = 1, · · · ,L is defined and differentiable in I . If for some ω∗ > 0,
jω∗ is an imaginary root of Dτ(λ ), then there exits some k such that ωk(τ

∗) = ω∗. Moreover,
it must also hold that

∠P( jω,τ)−∠Q( jω,τ) =−ωτ +π +2lπ (2.33)

where l is an integer. The last condition is transformed into the following equation:

Sk,l(τ) := τ− θk(τ)+2lπ
ωk(τ)

= 0, (2.34)

where

θk(τ) = ∠

(
−P( jωk(τ),τ)

Q( jωk(τ),τ)

)
(2.35)

is a differentiable function under some assumptions. Then the root crossing direction criteria
(2.27) can be modified as

ℜ(λ ′(τ))|τ=τ∗ = sgn(∂ωF(ωk(τ
∗),τ∗))sgn(S′k,n(τ

∗)). (2.36)

These results show that the invariance properties indicated in [3] no longer hold when the
system coefficients depend on the delay. At any given critical delay τ∗, the roots of Dτ∗(λ )

crosses the imaginary axis at ± jωk(τ
∗), which is in general different for different τ∗. Since

a critical delay τ∗ must satisfy (2.34), a series of constant shifts from τ∗ in general does not
produce a series of critical delays. The invariance of cross direction of critical delay does not
hold as well. Indeed, comparing (2.36) with (2.27), it is clear that the crossing direction of a
characteristic root on the imaginary axis depends also on an extra term, namely sgn(S′k,n(τ

∗)).
Therefore it is totally possible that the crossing directions of imaginary roots associated with
the frequency function ωk(τ) may switch at various critical delays.

The method developed in [14] has been applied to several hematopoietic dynamics model
in [20] and the hopf bifurcation of blood cell production dynamics in [19].
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Chapter 3

Stability Analysis of Systems with a
Single Delay

3.1 Chapter Overview

In this chapter we study systems with delay-dependent coefficients and a single delay. Sys-
tems with this feature are encountered in various models in practice. Given a delay interval
of interest, denoted as I , our objective is to find all the subintervals such that the system is
asymptotically stable if and only if the delay is contained in these subintervals. We first give
a precise definition of the class of systems considered in this chapter, followed by a set of as-
sumptions which our analysis relies on. We show how to decompose I into disjoint subsets
such that a fixed number of frequency functions and phase angle functions can be defined in
each subinterval. We identify all critical pairs ( jω,τ) based on conditions expressed with the
frequency and phase angle functions.

Crossing direction criteria are derived, which determines whether the characteristic roots
on the imaginary axis will become stable or unstable as τ sweeps through some critical de-
lays. Our analysis relaxed some of the assumptions of an earlier work of Beretta and Kuang
[14]. While the crossing direction criterion of Beretta and Kuang utilizes just the first order
derivative of certain functions, we show that a more general criterion based on higher-order
analysis can be derived. The higher-order analysis suggests a possible geometric correlation
between the phase angle functions and the number of unstable characteristic roots. Under
some additional conditions, such a correlation makes it possible to determine the number of
unstable characteristic roots based on the values of phase angle functions without comput-
ing the critical pairs as well as the corresponding root crossing direction. This observation
motivates the development of a geometric framework for the stability analysis presented in
Chapter 5. A Part of this chapter has been published in [61].
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3.2 Problem Statement

In this chapter, we analyze time-invariant systems with a single delay parameter ranging in a
given interval I = [τ l,τu], with the restriction 0≤ τ l < τu. The lower bound τ l and the upper
bound τu denote the minimal and maximal delay of interest, respectively. After linearization,
the system dynamics is represented by the following characteristic equation:

D(λ ,τ) = P(λ ,τ)+Q(λ ,τ)e−τλ = 0, (3.1)

where P(λ ,τ) and Q(λ ,τ) are continuous in τ and are polynomials of λ with real coefficients
for each given τ ∈ I . In some context, we may write Pτ(λ ) and Qτ(λ ) instead of P(λ ,τ)

and Q(λ ,τ) when they are regarded as functions (polynomial in this case) of λ for a given
τ . The same convention is also used for other functions of two independent variables with
τ as one of them. For example, we may write Dτ(λ ) instead of D(λ ,τ) to emphasize that
we are considering D as a function of λ while τ is viewed as a parameter. We say ( jω∗,τ∗)

is a critical pair and τ∗ is a critical delay, if ω∗ ≥ 0, τ∗ ∈I and (3.1) holds with (λ ,τ) =

( jω∗,τ∗).
We will develop in this chapter a systematic method for determining all the subinterval

contained in the given I such that all the characteristic roots of (3.1) is on C− when τ is
restricted in these subintervals.

Systems (3.1) can arise from a state-space equation with feedback mechanism:

ẋ(t) = A(τ)x(t)+B(τ)u(t)

u(t) = Cx(t− τ)

where x(t) ∈ Rn , u ∈ R, and A(τ), B(τ) are matrices of appropriate dimensions. Then its
characteristic equation involves at most a single delay and can be written as (3.1). This
becomes obvious once the pair (A,B) is transformed into the Kalman controllable canoni-
cal form. We note that (3.1) is more general than the retarded type functional differential
equations, it can also present equations of the neutral type. For the definition of functional
differential equations, reader may refer to [10],

3.2.1 Assumptions

The solutions of (3.1) with λ on the imaginary axis plays a key role in the generalized τ-
decomposition approach. When λ is restricted to the imaginary axis, (3.1) becomes

D( jω,τ) = 0, (3.2)
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where ω is real. For (3.2) to hold with some real ω , it is necessary for the norm of P( jω,τ)

and Q( jω,τ) to be the same, which leads to

F(ω,τ) = 0. (3.3)

where

F(ω,τ) = P( jω,τ)P(− jω,τ)−Q( jω,τ)Q(− jω,τ). (3.4)

The condition (3.3) is necessary but not sufficient for jω to be a characteristic root of D(λ ,τ).
Another condition required is the match between the phase angles of P( jω,τ) and Q( jω,τ),
which will be addressed later.

We will restrict ourselves to systems that satisfy the following four assumptions:

Assumption I. For all τ ∈I , Pτ satisfies

ord(Pτ) = n. (3.5)

Moreover,

lim
ω→∞

∣∣∣∣Qτ( jω)

Pτ( jω)

∣∣∣∣< 1. (3.6)

Assumption II. No (ω,τ) ∈ R+×I satisfies

P( jω,τ) = 0,

Q( jω,τ) = 0,

simultaneously.

Assumption III. Any critical pair ( jω∗,τ∗) must satisfy

∂ωF(ω∗,τ∗) 6= 0. (3.7)

Furthermore, the distance between any two critical delays is bounded from zero.

Assumption IV. There are only a finite number of pairs (ω,τ) ∈ R×I that simultaneously
satisfy (3.3) and
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∂ωF(ω,τ) = 0. (3.8)

These four assumptions are less restrictive than typical in the literature either stated explicitly
or implicitly. Assumption I above requires the leading coefficient of Pτ not to vanish for all
τ ∈I , and

ord(Qτ)≤ n. (3.9)

For time-delay systems of retarded type, (3.9) is satisfied with strict inequality. When (3.9)
is an equality, the time-delay system is of neutral type, and (3.6) requires the absolute value
of its leading coefficient is strictly less than that of Pτ . Systems of neutral type involve some
surprising subtleties. See [4] for an example for systems with single delay, and [59] [10] for
more comprehensive coverage.

Assumption II is less restrictive than the counterpart in [14] which is

P( jω,τ)+Q( jω,τ) 6= 0 for all (ω,τ) ∈ R2. (3.10)

Indeed, the two complex equations in Assumption II are equivalent to four real equations with
two real “unknowns” ω and τ . Obviously, cases that violate this assumption are degenerate
and rare. On the other hand, the set

{P( jω,τ)+Q( jω,τ) | (ω,τ) ∈ R2}

is a region in the complex plane, and (3.10) requires this region not to include the origin,
which is more restrictive.

Regarding assumption III, we will later show that condition (3.7) guarantees that

∂λ D(λ ,τ)
∣∣
( jω∗,τ∗) 6= 0 (3.11)

for any critical pair ( jω∗,τ∗). Then it follows that in a small neighborhood of ( jω∗,τ∗), a
characteristic root is a well-defined function of τ , denoted here as λ (τ). the remaining part
of the assumption means that the graph of λ (τ) is on the imaginary axis only at one point
λ ∗ = λ (τ∗) in this neighborhood. A more restrictive assumption is to assume ℜ(λ ′(τ)) 6= 0,
which is implicitly assumed in most works of this nature, including [14]. Assumption IV is
also quite natural, and is satisfied by almost all practical cases.

In [14], it is implicitly assumed that the number of real roots, ±ωk,k = 1,2, · · · ,m, of
Fτ(ω) remains constant when τ is within the delay interval of interest I , and they are con-
tinuously differentiable functions of τ . With our relaxed assumptions, these are no longer
true. Especially, the real roots may suddenly emerge or disappear as the delay τ increases
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within I . It is therefore essential to understand the structure of this solution set in order to
solve the stability problem. This will be discussed in the next section.

3.3 Stability Analysis

The main idea for stability analysis here is along the line of so-called τ-decomposition
method, with the main idea described in the introduction. The validity of the method is based
on the fact that there exists a constant c > 0 for any closed interval of τ such that all roots
of Dτ(λ ) with ℜ(λ )>−c vary continuously as τ changes. This is true under Assumption I,
see, e.g., [59] and [10].

The critical aspects of the stability analysis are: (i) identifying the values of τ such that
there is at least one root of Dτ(λ ) on the imaginary axis, as well as the corresponding imagi-
nary roots, and (ii) determining whether these imaginary roots move from the left-half plane
to the right-half plane, or vise versa, or return to the original side as τ increases through these
values. In this section, we will consider the first aspect, and describe the process of stability
analysis assuming we know the answer to the second aspect. In the next section, we will
describe some methods of accomplishing the second aspect.

To accomplish the first aspect stated in the last paragraph, it is useful to introduce the
notation

S(λ ,τ) =−P(λ ,τ)
Q(λ ,τ)

eτλ , (3.12)

whenever

Q(λ ,τ) 6= 0. (3.13)

Then

S( jω,τ) =W (ω,τ)e jθ(ω,τ), (3.14)

where

W (ω,τ) =

∣∣∣∣P( jω,τ)

Q( jω,τ)

∣∣∣∣ , (3.15)

θ(ω,τ) = ∠P( jω,τ)−∠Q( jω,τ)+ωτ +π. (3.16)
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When λ = jω is on the imaginary axis, we note that (3.2) is equivalent to the following two
conditions

W (ω,τ) = 1, (3.17)

θ(ω,τ) = 2rπ, for some integer r, (3.18)

provided that (3.13) holds. Let

W = {(τ,ω) | τ ∈I ,ω ∈ R,F(ω,τ) = 0}, (3.19)

then (τ,ω) ∈ W if and only if (τ,ω) satisfies (3.13) and (3.17) in view of Assumption II.
Therefore, an effective approach to determine all (τ,ω) satisfying (3.2) is to first determine
the set W , and then choose from W those (τ,ω) that also satisfy (3.18).

Since F(ω,τ) = 0 is a necessary condition for ω to be a crossing frequency, it is easy to
see the real roots of Fτ(ω) will play a critical role in the analysis of system stability switch.
To keep track of these real roots, we will examine the function F(ω,τ) =Fτ(ω) more closely.
First note that Fτ(ω) is a polynomial of ω2. To see this, one only needs to notice that for any
real ω , Fτ(ω) must be an even function. Consequently the coefficients of all terms with an
odd power of Fτ(ω) must be zero. Denoting α = ω2, we can rewrite the function F as:

F̂(α,τ) = F(ω,τ), (3.20)

α = ω
2. (3.21)

Therefore, a solution of

F̂(α,τ) = 0 (3.22)

will provide n solutions αk, k = 1,2, . . . ,n. Without loss of generality, let αk, k = 1,2, . . . ,np,
np ≤ n, be the only real and positive solutions. Then, all the real solutions of (3.3) are ±ωk,
k = 1,2, . . . ,np, where ωk =

√
αk. In general, the number of positive real roots np depends on

τ . In order to understand this dependence, let τ(i), i = 1,2, . . . ,K−1 be the set of all τ ∈I

such that (ω,τ) simultaneously satisfies (3.3) and (3.8) for some ω ∈ R+ (recall this set is
indeed finite according to Assumption IV). We agree to order τ(i) in ascending order

τ
(1) < τ

(2) < · · ·< τ
(K−1).

We will also write τ(0) = τ l and τ(K) = τu. Then, we may partition I into K subintervals

I (i) = [τ(i−1),τ(i)], i = 1,2, . . . ,K. (3.23)
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We note that the boundary points of I (i) can not be critical delays due to Assumption III.
In Chapter 5 we will investigate the more complicated situation where these boundary points
can be critical delays. The interior of I (i) is denoted as I

(i)
o = (τ(i−1),τ(i)). Then the

structure of the set W may be very clearly described in the following proposition.

Proposition 3.1. For a given i, the number of real roots of Fτ(ω) are the same for all τ ∈
I

(i)
o , and they are all simple. These real simple roots are continuous functions of τ , and may

be expressed as±ω
(i)
k (τ), k = 1,2, . . . ,m(i), where m(i)≤ n, and ω

(i)
k (τ)> 0 for all τ ∈I

(i)
o .

Proof. For a fixed i, by definition, for all τ ∈I
(i)

o , any ω ∈ R that satisfies

Fτ(ω) = 0 (3.24)

must satisfy

F ′τ(ω) = ∂ωF(ω,τ) 6= 0, (3.25)

from which we conclude that all real roots of Fτ(ω) are simple. As Fτ(ω) is an even function
of ω , we can also conclude that the −ω is also a roots if ω is a real root, and ω = 0 is not a
root (otherwise, it cannot be simple). To show the invariance of the number of real solutions
within I

(i)
o , let τ∗ ∈ I

(i)
o , and let ω∗k , k = 1,2, . . . ,m be the only real roots of Fτ∗(ω). By

the continuity of roots with respect to coefficients[9], we may define m continuous functions
ωk(τ), k = 1,2, . . . ,m in I

(i)
o , ωk(τ

∗) = ω∗k , and each ωk(τ) is a root of Fτ(ω). The proof is
complete if we show that all ωk(τ) are real in I

(i)
o as this also implies that ωk(τ) are simple

roots of Fτ(ω).
For a given k, let

τM = sup{τa ∈I
(i)

o | ωk(τ) ∈ R for all τ ∈ [τ∗,τa]}.

By continuity, ωk(τM) is real. We will show τM = τ(i). If not, for arbitrarily small ε > 0,
τM+ε ∈I

(i)
o and ωk(τM + ε) is not real, which can be made arbitrarily close to ωk(τM) with

sufficiently small ε . But this means that its complex conjugate ω̄k(τM +ε) is also a root of the
polynomial with real coefficients FτM+ε

(ω) and arbitrarily close to ωk(τM). The continuity of
roots with respect to the coefficients means that ωk(τM) cannot be a simple root of FτM(ω),
which contradicts the first part of this proposition that we have already proven. Similarly, we
can show that ωk(τ) is real for all τ ∈ (τ(i−1),τ∗), and the proof is complete.

As τ moves rightward from a point in I
(i)

o , some, say m, real roots, and 2l complex roots
of Fτ(ω) may merge to form a multiple root as τ reaches τ(i), and some, say 2k, become
complex while m+2l−2k roots remain real as τ enters I

(i+1)
o . The most common scenarios
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are either two real roots merge and become complex, or two complex roots merge and become
real as τ moves from I

(i)
o to I

(i+1)
o through τ(i).

A real root of Fτ(ω) in I
(i)

o , say ω
(i)
k (τ), k≤m(i), that does not merge with other roots at

τ(i) remains real, and becomes ω
(i+1)
l for some l ≤ m(i+1) as τ moves from I

(i)
o to I

(i+1)
o

through τ(i).
For a given i and k, as ω

(i)
k depends on τ continuously in I

(i)
o , we will require ∠P( jω(i)

k (τ),τ)

and ∠Q( jω(i)
k (τ),τ) to be continuous functions of τ . This means that

θ
(i)
k (τ) = θ(ω

(i)
k (τ),τ), k = 1,2, · · · ,m(i) (3.26)

are continuous functions of τ within I
(i)

o , and will be known as the phase functions. On the
other hand, this continuity requirement means that the values of ∠P( jω(i)

k (τ),τ), ∠Q( jω(i)
k (τ),τ)

and θ
(i)
k (τ) may not be restricted to any 2π range. Furthermore, if ω

(i)
k (τ) and ω

(i)
l (τ) merge

at, say, τ(i), and we extend the definition of θ
(i)
k (τ) and θ

(i)
l (τ) to τ(i) by continuity, then it is

possible that

θ
(i)
k (τ)−θ

(i)
l (τ) = 2πr,

for some integer r 6= 0 even though

ω
(i)
k (τ(i)) = ω

(i)
l (τ(i)). (3.27)

Going through each interval I (i) and each curve ω
(i)
k (τ), we may identify all τ = τl such

that

θ
(i)
k (τl) = 2πr, r integer, (3.28)

for some k if τl ∈I (i). Notice, the ends of the intervals, τ(i), i = 0,1, · · · ,K should also be
included. We will order such τl in an ascending order

τ
l ≤ τ1 < τ2 < · · ·< τL ≤ τ

u.

Each τl is known as a critical delay. For each given τl , it is possible that more than one
k satisfies (3.28), and we denote the corresponding ω

(i)
k (τl) ≥ 0 as ωlh, h = 1,2, · · · ,Hl .

Therefore, we can identify all the pairs (ωlh,τl), h = 1,2, · · · ,H; l = 1,2, · · · ,L, that satisfy
(3.2).

It is worth mentioning that a simple imaginary root jω of Dτ( jω) may be a repeated root
of Fτ(ω). However, the converse is not true, as indicated by the following result.

Lemma 3.1. Any pair (ω∗,τ∗)∈R×I that satisfies Assumption III must also satisfy (3.11).
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Proof. At (ω∗,τ∗)

F = P̄P− Q̄Q = 0,

e−τλ = −P/Q =−Q̄/P̄,

∂λ D = ∂λ P+∂λ Qe−τλ − τQe−τλ = 0.

Therefore,

∂ωF = 2ℜ
(

jP̄∂λ P− jQ̄∂λ Q
)

= −2ℑ
(
P̄∂λ P− Q̄∂λ Q

)
= −2ℑ

(
P̄∂λ P− P̄

Q̄
P̄

∂λ Q+ τP̄P
)

= −2ℑ

(
P̄∂λ P+ P̄e−τλ

∂λ Q− τP̄Q−τλ

)
= −2ℑ(P̄∂λ D) . (3.29)

The above indicates that ∂ωF(ω∗,τ∗) 6= 0 implies (3.11).

To see that the converse of the above lemma may not hold, note that the proof above
shows that ∂ωF(ω∗,τ∗) = 0 only implies that ∂λ D( jω∗,τ∗) is parallel to P( jω∗,τ∗), which
does not necessarily mean ∂λ D( jω∗,τ∗) = 0.

Now we will describe the representation of the second aspect we mentioned at the begin-
ning of this section, i.e., the movement of the imaginary roots. For a given pair (ωlh,τl) that
satisfies (3.2), a sufficiently small ε > 0, and any τ ∈ (τl,τl + ε), there is a unique solution
λ
+
lh of (3.1) in the neighborhood of jωlh. Assumption III and continuity means that ℜ(λ+

lh )

must be nonzero, and have the same sign for any τ ∈ (τl,τl + ε). Similarly, let λ
−
lh be the

unique solution of (3.1) in the neighborhood of jωlh corresponding to a given τ ∈ (τl−ε,τl),
then ℜ(λ−lh ) must have the same sign for all such τ . We define

Inc(ωlh,τl) =
sgn
(
ℜ(λ+

lh )
)
− sgn(ℜ(λ−lh ))

2
. (3.30)

If Inc(ωlh,τl) = 1, a root of Dτ(λ ) moves from the left-half plane to the right-half plane
crossing the imaginary axis at jωlh as τ increases from τl − ε to τl + ε . On the other hand,
if Inc(ωlh,τl) =−1, then the root moves from the right-half plane to the left-half plane as τ

increases from τl−ε to τl +ε . If Inc(ωlh,τl) = 0, the root moves towards the imaginary axis,
touching it at jωlh, then return to the same half plane without crossing the imaginary axis.
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We also define

Inc(τl) = 2
Hl

∑
h=1

Inc(ωlh,τl). (3.31)

Then, as τ increases from τl−ε to τl +ε , there is a net increase of Inc(τl) roots on the right-
half plane. Notice, ωlh > 0, h = 1,2, . . . ,Hl only accounts for the roots on the upper half of
the imaginary axis, and the coefficient 2 in front of the summation sign in (3.31) accounts for
the fact that the roots of Dτ(λ ) are symmetric to the real axis.

Let the number of right-half plane roots of Dτ(λ ) be Nu(τ). Then, for any τ ∈I , τ 6= τl ,
l = 1,2, . . . ,L, we have

Nu(τ) = Nu(τ l)+
Lτ

∑
l=1

Inc(τl), (3.32)

where Lτ = max{l | τl < τ}.
If τ l = 0, as Dτ l (λ ) is a polynomial, Nu(τ l) is easily obtained. If τ l > 0, Nu(τ l) may

be obtained by a method covered in [5] or [3] (but notice the correction [4]). If there are
imaginary roots for Dτ l (λ ), Nu(τ l) should not count these imaginary roots, and Inc(ω1h,τ

l)

should be defined as,

Inc(ω1h,τ
l) =

{
1, if sgn

(
ℜ(λ+

1h)
)
= 1,

0, otherwise
(3.33)

instead. Obviously, Nu(τ) remains the same in the interval (τl,τl+1) for any given l. The
system is stable for all τ ∈ (τl,τl+1) if Nu(τ) = 0 for any τ ∈ (τl,τl+1).

3.4 Crossing Direction Conditions

In the last section, a general procedure of determining the subintervals of τ in I such that
Dτ(λ ) is stable has been developed. In this section we shall address in this section a key step
of that procedure, which is to determine each term Inc(ωlh,τl) and thus the crossing direction
of every imaginary characteristic root.

Given a critical pair ( jωlh,τl) for D(λ ,τ), in theory it is possible to continue the trajec-
tory of this root λ (τ) locally as τ further increases and thereby determine the local behavior
of this root for τ in a neighborhood of τl . For this purpose, some numberical methods need
to be employed, which may be cumbersome to implement in practice. We aim to put forth a
simple analytical method that not only facilitates numerical implementation, but also moti-
vates deeper investigation into this problem in later chapters.
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The simplest case is when

ℜ
(
λ
′
lh(τ)

)
τ=τl
6= 0, (3.34)

where, λlh(τ) is the implicit function defined by (3.1) in the neighborhood of ( jωlh,τl) pro-
vided that λlh(τ) is differentiable at τl . This can be guaranteed by requiring D(λ ,τ) to be
differentiable w.r.t τ at ( jωlh,τl) [9]. Indeed, provided that (3.34) is satisfied, it is easy to see

Inc(ωlh,τl) = sgn
(
ℜ
(
λ
′
lh(τl)

))
, (3.35)

if τl > τ l . On the other hand, if τl = τ l , we have

Inc(ωlh,τl) = max
{

0,sgn
(
ℜ
(
λ
′
lh(τl)

))}
. (3.36)

If (3.34) is violated, and D(λ ,τ) is differentiable to a sufficiently high order at ( jωlh,τl),
we may express Inc(ωlh,τl) using higher order derivatives. Suppose

ℜ

(
dkλ (τ)

dτk

)
τ=τl

= 0, k = 1,2, . . . ,m−1,

ℜ

(
dmλ (τ)

dτm

)
τ=τl

6= 0.

Then, if τl > τ l , then

Inc(ωlh,τl) =

{
sgn
(

ℜ

(
dmλ (τl)

dτm

))
, if m is odd,

0, if m is even.
(3.37)

If τl = τ l , on the other hand, then

Inc(ωlh,τl) = max
{

0,sgn
(

ℜ

(
dmλ (τl)

dτm

))}
. (3.38)

An explicit expression of sgn
(
ℜ
(
λ ′lh(τl)

))
will be given first and the high-order analysis

will be performed later. The expression is similar to that given in [14], but the derivation here
is more succinct.

Theorem 3.1. Let (ω∗,τ∗) ∈ R×I satisfy (3.2) and (3.7). Then (3.1) defines λ as a differ-

entiable function of τ in a sufficiently small neighborhood of ( jω∗,τ∗), and

sgn
(

ℜ

(
dλ

dτ

)
τ=τ∗

)
= sgn(∂ωF(ω,τ)) τ=τ∗

ω=ω∗
· sgn

(
dFθ(ω(τ),τ)

dτ

)
τ=τ∗
ω=ω∗

(3.39)
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where

dFθ

dτ
= ∂ωθ

dFω

dτ
+∂τθ

is the total derivative of θ(ω,τ) with respect to τ when ω is considered as a function of τ

defined implicitly by (3.3) in a sufficiently small neighborhood of (ω∗,τ∗), and dF ω

dτ
is the

derivative of the function ω(τ) so defined.

Proof. Lemma 3.1 and Assumption III indicate that ∂λ D(λ ,τ) is defined and non-zero in a
neighborhood of ( jω∗,τ∗). Therefore, the equation (3.1), or equivalently

S(λ ,τ) = 1, (3.40)

defines λ as a differentiable function of τ in a small neighborhood of τ∗ in view of the
implicit function theorem. By differentiating (3.40), we obtain

∂λ S
dλ

dτ
+∂τS = 0,

from which

dλ

dτ
= − ∂τS

/
∂λ S =− ∂τS(∂λ S)

/
|∂λ S|2 .

But, at λ = jω∗,

∂λ S(λ ,τ) =
1
j
∂ωS( jω,τ)

=
1
j

[
(∂ωW )e jθ + j(∂ωθ)We jθ

]
= − j

1
W

∂ωW +∂ωθ .

In the last step, (3.40) has been used. Similarly, we may obtain:

∂τS =
1

W
∂τW + j∂τθ .
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Therefore,

sgn
(

ℜ

(
dλ

dτ

))
= −sgn

(
ℜ

((
1

W
∂τW + j∂τθ

)
×
(

∂ωθ + j
1

W
∂ωW

)))
= sgn

(
∂ωW∂τθ −∂τW∂ωθ

W

)
. (3.41)

When ω is a function of τ defined implicitly by (3.3), or equivalently by (3.17), we have:

dFω

dτ
=− ∂τW

/
∂ωW =− ∂τF

/
∂ωF. (3.42)

In view of |Q(ω∗,τ∗)|= |P(ω∗,τ∗)| , it is easy to show that

1
W

∂ωW
∣∣∣∣

τ=τ∗
ω=ω∗

=
1

|P|2
∂ωF

∣∣∣∣∣
τ=τ∗
ω=ω∗

. (3.43)

A substitution of (3.41) by (3.42) and (3.43) yields

sgn
(

ℜ

(
dλ

dτ

))
= sgn

(
1

|P|2
∂ωF

(
dFω

dτ
∂ωθ +∂τθ

))
,

from which (3.39) can be easily derived.

We now make a useful observation about the first factor in (3.39).

Proposition 3.2. For any given i and k, the quantity

sgn(∂ωF(ω,τ))
ω=ω

(i)
k (τ)

(3.44)

remains constant for all τ ∈I
(i)

o .

Proof. Due to the continuity of ∂ωF(ω,τ), in order for ∂ωF(ω
(i)
k (τ),τ) to change sign, it

must first vanish, which violates the definition of I
(i)

o .

The above proposition indicates that the first factor in the expression on the right hand
side of (3.39) only needs to be checked once for each curve ω

(i)
k (τ) within the interval I

(i)
o .

Next, we will provide an explicit expression for the second factor.
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Proposition 3.3. If (ω,τ) satisfies (3.2),

dFθ

dτ
=

1

|P|2

(
Pr

dFPi

dτ
−Pi

dFPr

dτ
−Qr

dFQi

dτ
+Qi

dFQr

dτ

)
+τ

dFω

dτ
+ω,

where the subscripts r and i represent the real and imaginary part of the quantities respec-

tively, and the total derivatives may be calculated by

dFφ

dτ
= ∂ωφ

dFω

dτ
+∂τφ ,

where φ may be Pr, Pi, Qr and Qi, and

dFω

dτ
= −∂τF

/
∂ωF.

Proof. From

S =We− jθ =
Pe jωτ

Q
, (3.45)

by taking total derivative with respect to τ , with ω(τ) implicitly defined by (3.3), and noticing

W (ω(τ),τ) = 1 for all τ,

we obtain:

− j
dFθ

dτ
We− jθ =

d
dτ

(
P
Q

)
e jωτ + j

(
τ

dFω

dτ
+ω

)
Pe jωτ

Q
.

Solving the above and (3.45) for dFθ/dτ , we obtain

dFθ

dτ
=

1
j

(
1
P

dFP
dτ
− 1

Q
dFQ
dτ

)
+ τ

dFω

dτ
+ω. (3.46)

In view of |P|2 = |Q|2, the expression in the parentheses in (3.46) can be written as

1
P

dFP
dτ
− 1

Q
dFQ
dτ

=
P̄

PP̄
dFP
dτ
− Q̄

QQ̄
dFQ
dτ

=
P̄ dF P

dτ
− Q̄ dF Q

dτ

PP̄
.

A substitution of (3.46) by the above leads to the proposition.
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Since the following definition is well defined due to Proposition 3.2:

sgn(i)k = sgn
(
∂ωF( jω(i)

k (τ),τ)
)
, ∀τ ∈ (τ(i−1),τ(i)),

we can rewrite (3.39) as

sgn
(

ℜ

(
dλ

dτ

)
τ=τ∗

)
= sgn(i)k · sgn(θ (i)

k (τ∗)), (3.47)

where i, k satisfy λ (τ∗) = jω(i)
k (τ∗) and τ∗ ∈I (i). The last equation reflects an interesting

’separation principle’: the root crossing direction is determined by the product of two distinct
terms. The first term sgn(i)k alone is sufficient to determine the root crossing direction for
system with fixed coefficients. The second term is what is particular about systems with
delay-dependent coefficients. When the system coefficients are delay-free, the second term
is always 1, thus the root crossing direction is reduced to (2.27). One may wonder if there
exist some essential reasons why the crossing direction criterion can be decomposed into two
terms which are not necessarily related. In Chapter V, we will review the problem from a
geometric point of view and give an intuitive interpretation of this formula.

3.4.1 A Summary of the Stability Analysis Procedure

Here we summarize the procedure of the proposed stability analysis.
Step 1. Solve (3.3) together with (3.8) subject to ω ≥ 0, τ ∈I to obtain τ(i), i = 0, · · · ,K.
I is thus decomposed into each sub-interval: I (i) = [τ(i−1),τ(i)].
Step 2. In each I (i), compute the real roots of Fτ(ω), and thus obtain the frequency functions
ω

(i)
k (τ), k = 1, · · · ,m(i). Solve (3.28) to find all the critical delay value τi, i = 1, · · · ,L and

thus the set of critical delays.
Step 3. Compute Inc(τi) for each critical delay τi using the root crossing direction formula
(3.47) together with (3.31).
Step 4. Now for any interval (τi,τi+1) we can arbitrarily pick a delay value r′ in it and
compute Nu(r′) via (3.32), then it follows that for all τ in (τi,τi+1), the number of unstable
roots is equal to Nu(r′).

3.5 Invariance Properties

3.5.1 General Situations

When P(λ ,τ) and Q(λ ,τ) are independent of τ , F(ω,τ) is independent of τ , the curves
ω

(i)
k (τ) become constants, and dFθ/dτ = ω = constant. As a result, the crossing direction
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given in (3.39) is independent of delay. This fact is well-known in the literature on single
or commensurate delay systems with delay-independent coefficients, and have been stated
either implicitly [5] or explicitly [24] as the invariance property.

More generally, for systems with delay-dependent coefficient polynomials discussed in
this chapter, we may still identify delay intervals where the crossing direction is invariant
provided P(λ ,τ) and Q(λ ,τ) are continuously differentiable with respect to τ . Indeed, for
a given subinterval I

(i)
o = (τ(i−1),τ(i)), and frequency curve ω

(i)
k (τ), we may identify all

the delay values τ
(i)
kl , l = 1,2, . . . ,L− 1, τ(i−1) < τ

(i)
k1 < τ

(i)
k2 < · · · < τ

(i)
k,L−1 < τ(i), such that

(dFθ/dτ)
τ=τ

(i)
kl

= 0. Let τ
(i)
k0 = τ(i−1), τ

(i)
k,L = τ(i). Then, we may conclude, by continuity,

that the crossing direction at the curve ω
(i)
k (τ) remains invariant for all τ ∈ (τ

(i)
k,l−1,τ

(i)
kl ), l =

1,2, . . . ,L. Note that the intervals for invariant crossing direction (τ
(i)
k,l−1,τ

(i)
kl ) are different

for different frequency curves in general.
However, this is a very conservative way of identifying delay intervals that preserves the

invariance properties of root crossing directions because, roughly speaking, it depends just on
the monotonicity of some phase function θ

(i)
k (τ), which is not a necessity for preserving the

crossing directions of imaginary characteristic roots associated with the frequency function
ω

(i)
k (τ).

3.6 Numerical Examples

In this section, we present three examples to illustrate the method developed in this chapter.
These examples may not be solved using the method in [14] due to the need to divide the
interval or due to violation of (3.10). Assumption I-IV can be verified at different steps of
the analysis for these models.

Example 1. We first consider the stellar dynamos model (1.1) mentioned in Chapter 1.
The system characteristic equation is

λ
2 +2c2λ + c2

2− c1c3e−c2τe−τλ = 0. (3.48)

The parameters are set as: c1 =−10, c2 = 2, c3 = 3. We are concerned with the stability of
the system for τ ∈ I = [0,2]. We verify that Assumptions I and II indeed hold. The other
assumptions can be verified as we carry out the analysis. The function F in this case is

F(ω,τ) = ω
4 +2c2

2ω
2 + c4

2− c2
1c2

3e−2c2τ , (3.49)
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Only one pair of parameters (ω,τ) = (0,τ(1)) simultaneously satisfies (3.3) and (3.8), where

τ
(1) =− 1

2c2
ln(

c4
2

c2
1c2

3
)≈ 1.006.

Therefore, Assumption IV is satisfied and the interval I is partitioned into two subintervals
I (1) = [τ(0),τ(1)], I (2) = [τ(1),τ(2)], where τ(0) = 0, τ(2) = 2. There is one positive real root
ω

(1)
1 (τ) of Fτ(ω) for τ ∈ (0,τ(1)). As τ reaches τ(1), this solution merges with the negative

solution −ω
(1)
1 (τ), and they become complex as τ enters I (2), and Fτ(ω) does not have any

real solution for τ in I (2). In this case, we have

ω
(1)
1 (τ) =

√
|c1c3|e−c2τ − c2

2.

Corresponding to ω = ω
(1)
1 (τ), θ

(1)
1 (τ) defined in (3.26) is plotted against τ in Figure 3.1b.

It can be seen that the curve intersects the horizontal line 2π at τ1 ≈ 0.2748 and τ2 ≈ 0.5314.
Therefore, H1 = 1, ω11 = ω

(1)
1 (τ1)≈ 3.6490, and H2 = 1, ω21 = ω

(1)
1 (τ2)≈ 2.5228. Now it

is easy to verify that Assumption III also holds.
It can be verified that ∂ωF(ω

(1)
1 (τ),τ)> 0 for τ = 0.5, and the above inequality holds for

all τ ∈I
(1)

o according to Proposition 3.2. It can be easily calculated that

d
dτ

θ
(1)
1 (τ1)> 0,

d
dτ

θ
(1)
1 (τ2)< 0,

which are also obvious from Figure 3.1b. Therefore, we conclude from (3.39) that a pair of
characteristic roots cross the imaginary axis from the left-half plane to the right-half plane
as τ increases through τ1, and this pair of characteristic roots return to the left-half plane
as τ further increases through τ2. In other words, Inc(ω11,τ1) = 1, and Inc(ω21,τ2) = −1.
Some simple calculation shows that the system is asymptotically stable for τ = 0. A plot
of Nu(τ) is shown in Figure 3.1c, from which we conclude that the system is stable for
τ ∈ [0,τ1)∪ (τ2,τ

u]; it is unstable for τ ∈ (τ1,τ2). Simulation is carried out to verify the
stability of the system for delay values τ = 0.5,1.5,2.5, respectively. Let x(t) satisfy the
differential equation

ẍ(t)+2c2ẋ(t)+ c2
2x(t)− c1c3e−c2τx(t− τ) = 0

corresponding to the characteristic equation (3.48). In Figure 3.1d we observe that the trajec-
tory of x(t) converges to zero when τ = 0.5,2.5, and diverges when τ = 1.5. These results
are consistent with our stability analysis.
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FIGURE 3.1: Stability analysis of the stellar dynamos. (a)The graph of fre-
quency function. (b)The graph of the phase angle function. The graph of
θ
(1)
1 (τ) crosses the horizontal line 2π at τ1 ,τ2, giving two critical delays.

(c)The number of unstable roots. (d)The time-response of the system with
various delay values.
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Example 2. Consider the following characteristic equation representing the population
dynamics in [16]:

λ
2 +aλ + c+(b(τ)λ +d(τ))e−λτ = 0, (3.50)

where functions b(τ) and d(τ) take the following form:

b(τ) = k1e−mτ , d(τ) = k2e−mτ .

The parameters are set as:

a = 2,c = 1,k1 = 4,k2 = 2,m = 3.5.

We analyze the stability of the system for I = [0,2.5]. Our assumptions can be verified to
hold for this example as we carry out the analysis. The details of the verification is omitted
here. The function F in this case is

F(ω,τ) = ω
4 +(a2−b2(τ)−2c)ω2 + c2−d2(τ). (3.51)

Solving (3.3) and (3.8) together for (ω,τ) ∈ R+ ×I , we obtain two pairs of solutions:
(ω,τ) ≈ (0,1.981), (ω,τ) ≈ (0.720,2.391). The interval I is thus partitioned into three
subintervals I (1) = [τ(0),τ(1)], I (2) = [τ(1),τ(2)], I (3) = [τ(2),τ(3)], where τ(0) = 0, τ(1) ≈
1.981, τ(2) ≈ 2.391, τ(3) = 2.5. The polynomial Fτ(ω) has one positive real root, namely
ω

(1)
1 (τ), in the interval (τ(0),τ(1)) and two positive roots, namely ω

(2)
1 (τ) and ω

(2)
2 (τ), in the

interval (τ(1),τ(2)). It has no real root for τ ∈ (τ(2),τ(3)). We have the following expressions:

ω
(1)
1 (τ) = 2−1/2

√
(b2(τ)+2c−a2)+∆1/2(τ), τ ∈I (1),

ω
(2)
1 (τ) = 2−1/2

√
(b2(τ)+2c−a2)+∆1/2(τ), τ ∈I (2),

ω
(2)
2 (τ) = 2−1/2

√
(b2(τ)+2c−a2)−∆1/2(τ), τ ∈I (2),

where ∆(τ) = (b2(τ)+ 2c− a2)2− 4(c2− d2(τ)). We observe that ±ω
(2)
2 (τ) emerge as a

pair of real roots of Fτ(ω) at τ = τ(1) and ω
(2)
2 (τ(1)) = 0. As τ approaches τ(2) from the left,

the solution ω
(2)
1 (τ) merges with ω

(2)
2 (τ). These two roots become complex as τ increases

beyond τ(2). The corresponding phase functions θ
(1)
1 (τ), θ

(2)
1 (τ), θ

(2)
2 (τ) are plotted against

τ in Figure3.2b. These curves intersect the horizontal line 0 at τ1 ≈ 0.7576 and τ2 ≈ 2.1745.
Therefore, H1 = 1, ω11 = ω

(1)
1 (τ1)≈ 2.7556 and H2 = 1, ω21 = ω

(2)
1 (τ2)≈ 1.1837.
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FIGURE 3.2: The stability analysis of the population dynamics (3.50).
(a)The graphs of frequency functions. (b)The graphs of the phase angle func-
tions. The graph of θ

(1)
1 (τ) and θ

(2)
1 (τ) crosses the horizontal line 0 at τ1 and

τ2 respectively, giving two critical delays. (c)The number of unstable roots.
(d)The time-response of the system with various delay values.



3.6. Numerical Examples 47

It can be verified that

∂ωF(ω
(1)
1 (1),1)> 0, ∂ωF(ω

(2)
1 (2),2)> 0,

therefore ∂ωF(ω
(1)
1 (τ),τ)> 0 for τ ∈ (τ(0),τ(1)) and ∂ωF(ω

(2)
1 (τ),τ)> 0 for τ ∈ (τ(1),τ(2)).

Computation shows that

d
dτ

θ
(1)
1 (τ1)> 0,

d
dτ

θ
(2)
1 (τ2)< 0,

which also follows from the graph of phase functions plotted in Figure3.2b. We deduce by
using (3.39) that a pair of characteristic roots cross the imaginary axis from the left-half plane
to the right-half plane as τ increases through τ1. As τ further increases, a of characteristic
roots cross the imaginary axis from the right-half plane to the left-half plane as τ increases
through τ2. Consequently, we have Inc(ω11,τ1) = 1 and Inc(ω21,τ2) = −1. It is easy to
verify that (3.50) is asymptotically stable for τ = 0. Therefore, we conclude that the system
is asymptotically stable for τ ∈ [0,τ1)∪ (τ2,2.5]; it is unstable for τ ∈ (τ1,τ2). The plot
of Nu(τ) is given in Figure3.2c. Simulation results are shown in Figure3.2d based on the
following differential equation corresponding to the characteristic equation (3.50):

ẍ(t)+aẋ(t)+ cx(t)+b(τ)ẋ(t− τ)+d(τ)x(t− τ) = 0.

Example 3. Consider a system with the following characteristic equation for I = [0,1]:

λ
2 +4+((1−2e−2τ)λ +1−4e−2τ)e−λτ = 0. (3.52)

We notice that P( jω,τ)+Q( jω,τ) = 0 when τ = 1
2 ln(2) and ω =

√
3. Therefore Condition

(3.10) in [14] is not satisfied. However we can verify that all of our assumptions are satisfied.
We have

F(ω,τ) = ω
4− (4e−4τ −4e−2τ +9)ω2 +12+16e−4τ +8e−2τ .

We find no (ω,τ) ∈ R+ ×I simultaneously satisfies (3.3) and (3.8), which means
I (1) = I . There are two positive roots of Fτ(ω) for all τ ∈ I (1), therefore ω

(1)
1 (τ),

ω
(1)
2 (τ) are defined in I (1). With the corresponding phase functions plotted in Figure3.3b,

we observe that θ
(1)
1 (τ) intersects the horizontal line 0 at τ1 ≈ 0.1982 and θ

(1)
2 (τ) inter-

sects the horizontal line 2π at τ2 ≈ 0.6933. We also have ω11 = ω
(1)
1 (τ1) ≈ 1.4945 and

ω12 = ω
(1)
2 (τ2)≈ 2.2656. Computation shows that ∂ωF(ω11,τ1)< 0 and ∂ωF(ω12,τ2)> 0.

From Figure3.3b, it is easy to see d
dτ

θ
(1)
1 (τ1) > 0 and d

dτ
θ
(1)
2 (τ2) > 0. Accordingly we can
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FIGURE 3.3: Stability analysis of the system (3.52). (a)The graphs of fre-
quency functions. (b)The graphs of the phase angle functions. The graph of
θ
(1)
1 (τ) crosses the horizontal line 0 at τ1 and the graph of θ

(1)
2 (τ) crosses

2π at τ2. Therefore two critical delays can be identified. (c)The number
of unstable roots. (d)The time-response of the system with various delay

values.
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deduce that the characteristic root jω11 moves toward the left-half plane and the characteris-
tic root jω12 moves towards the right-half plane as τ increases and sweeps through τ1 and τ2

respectively. The system has two unstable characteristic roots for τ = 0, therefore it is asymp-
totically stable for τ ∈ (τ1,τ2) and unstable for τ ∈ [0,τ1)∪ (τ2,1]. This example shows that
the method developed here is useful even if it is not necessary to divide I into subintervals.
Simulation results based on the following differential equation

ẍ(t)+4x(t)+(1−2e−2τ)ẋ(t− τ)+(1−4e−2τ)x(t− τ) = 0

are given in Fig.3.3d, which confirm our theoretical analysis.

3.7 Toward Differentiation-Free Analysis

The formula (3.47) does not provide any information about the root crossing direction at a
critical pair ( jω(i)

k (τ∗),τ∗) if the first order derivative of the phase angle function is zero at
τ∗. Here we give an extended version of Theorem 3.1 , which takes into account of higher
order derivatives of the phase angle function.

Theorem 3.2. In Theorem (3.1), further suppose nd is a positive integer such that the follow-

ing two conditions hold:

1) ∂
nd
τ P(λ ,τ)|τ=τ∗ and ∂

nd
τ Q(λ ,τ)|τ=τ∗ are defined,

2) ( d
dτ
)lθ

(i)
k (τ∗) = 0, for l = 1, · · · ,nd−1. Then for l = 1,2, · · · ,nd , the following holds:

sgn
(
( d

dτ
)l

ℜ(λ )(τ∗))
)
= sgn

(
∂ωF(ω

(i)
k (τ∗),τ∗)

)
×sgn

(( d
dτ

)l
θ
(i)
k (τ∗)

)
. (3.53)

The proof is given in Section 3.8. The above theorem implies that there might exist a
correlation between the crossing direction of imaginary roots and how an associated phase
angle crosses 2lπ horizontal lines. In the last theorem, suppose F( jω∗(τ∗),τ∗) is positive,
then the pair of characteristic roots± jω∗ crosses toward right half complex plane if and only
if the phase angle function θ

(i)
k (τ) crosses the 2lπ horizontal line from the lower side to the

upper side at τ = τ∗. This pair of characteristic roots crosses toward left if and only if the
phase angle function crosses the 2lπ horizontal line from above to below. If F( jω∗(τ∗),τ∗)

is negative, the root crossing direction is reversed. Such a correlation suggests that as τ

sweeps through an interval [τa,τb] ∈ I (i), the increase in the number of unstable roots,
Nu(τa)−Nu(τb) depends on the value of phase angle functions only at τa and τb and how
the phase angle function behave for τ ∈ (τa,τb) is actually irrelevant. This claim is stated
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formally in the next theorem:

Assumption V. For any given i, k and any critical pair ( jω(i)
k (τ∗),τ∗), τ∗ ∈ I (i), the

number nd defined in Theorem (3.2) exists.

Theorem 3.3. Let Assumption I-V hold. Suppose both τa and τb are contained in I (i) for

some given i and are not critical delays. The following holds:

Nu(τb)−Nu(τa) = 2∑
k

sgn(i)k

(⌊
θ
(i)
k (τb)

2π

⌋
−
⌊

θ
(i)
k (τa)

2π

⌋)
. (3.54)

Proof. Let the pair (i, j) be fixed. Let 2lπ < 2(l + 1)π < · · · < 2(l + n′− 1)π be all the
horizontal lines that lie between θ

(i)
k (τa) and θ

(i)
k (τb). Then we must have

n′k =
∣∣∣∣⌊θ

(i)
k (τb)

2π

⌋
−
⌊

θ
(i)
k (τa)

2π

⌋∣∣∣∣. (3.55)

As τ sweeps through [τa,τb], a number of critical pairs ( jω(i)
k (τ∗h ),τ

∗
h ), h = 1, · · · ,n′′ associ-

ated with the phase angle function θ
(i)
k (τ) may appear, when θ

(i)
k (τ) crosses horizontal lines

2(l + v)π for some integer v = v1,v2, · · · ,vn′′ . We classify these critical pairs be classified
according to the corresponding horizontal lines: we say a critical delay τ∗ belong in a set
Tv(i,k) if θ

(i)
k (τ∗) = 2(l + v)π .

As τ sweeps from left to right, suppose the graph of θ
(i)
k (τ) crosses some 2(l + v)π line

from below to above for nv1 times, from above to below for nv2 times and it touches this
horizontal line without crossing it for nv3 times, then we must have:

nv1−nv2 = sgn(θ (i)
k (τb)−θ

(i)
k (τa)). (3.56)

To see this, one only need to notice that we must have nv1− nv2 equals either 1 or −1 if
2(l + v)π lies between θ

(i)
k (τa) and θ

(i)
k (τb), otherwise nv1 = nv2 = 0 (see Figure 3.4 for

illustration).
In view of (3.53), if 0≤ v≤ n′−1 we must have

∑
τ∗∈Tv(i,k)

Inc(ω(i)
k (τ∗),τ∗) = sgn(i)k (nv1−nv2) (3.57)

= sgn(i)k sgn(θ (i)
k (τb)−θ

(i)
k (τa)). (3.58)
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Therefore,

Nu(τb)−Nu(τa) = 2∑
k

v=vn′′

∑
v=v1

∑
τ∗∈Tv(i,k)

Inc(ω(i)
k (τ∗),τ∗)

= 2∑
k

n′k−1

∑
v=0

sgn(i)k sgn
(
θ
(i)
k (τb)−θ

(i)
k (τa)

)
= 2∑

k
sgn(i)k n′ksgn(θ (i)

k (τb)−θ
(i)
k (τa)).

(3.59)

The proof is completed after n′k in the last equation is replaced with the following expression
resulted from (3.55):

n′k · sgn
(

θ
(i)
k (τb)−θ

(i)
k (τa)

)
=

⌊
θ
(i)
k (τb)

2π

⌋
−
⌊

θ
(i)
k (τa)

2π

⌋
. (3.60)

FIGURE 3.4: Correlation between the phase angle functions and number of
unstable roots.

One may further ask whether the equation (3.55) still hold if the number nd in Theorem
(3.2) does not exist, or if the function θ

(i)
k (τ) is not differentiable at τ∗. In Chapter 5, we will

use some different techniques for the stability analysis, which will give affirmative answers
to these questions.

The geometrical correlation between the position of phase angle functions and the num-
ber of unstable roots suggests that we may be able to determine system stability even if there
are significant uncertainties in the system coefficients. Suppose that given the bound of the
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uncertainty in the system coefficients, the number Nu(τa) for some given τa is known. Sup-
pose also we can derive an upper and lower bound of the possible value of each θ

(i)
k (τ). In

Figure 3.4 , the solid line depicts a phase angle function corresponding to the nominal coef-
ficients and its real value is contained in a ’tube’ marked by the solid lines. According to the
equation (3.55), the width of the tube for τ ∈ (τa,τb) is actually irrelevant to system stability
at τ = τb. As long as the tube is sufficiently narrow at τb such that the tube does not intersect
any 2lπ horizontal line at τb for some integer l, then the number of unstable roots is just the
same as that of the nominal system. It is hard to claim such a robust property by directly
applying the τ-sweeping method because it requires the analysis of all imaginary roots that
appear as τ sweeps through [τa,τb] and their crossing directions for all possible values of the
uncertain coefficients, which is apparently a formidable task.

3.8 Proof of Theorem 3.2

Proposition 3.4. Suppose h : R×R→ C is a C∞ function, y : R→ R is a C∞ function. Let( d
dt

)k
y denote the kth derivative of function y. Then we have

( d
dt

)k
h(y(t1), t1) =

(
∂yh · ( d

dt )
ky+Uh,k(Yk)

)
t=t1

, (3.61)

where Yk := (y, d
dt y,
( d

dt

)2
y, ...,

( d
dt

)k−1
y), Uh,k is a polynomial of (the elements of) Yk with

coefficients depending only on the partial derivatives of h.

Example: Let us compute the first and second order derivative of some function h(y(t), t)

w.r.t t, where all the symbols take the same meaning as in the last proposition, we have

d
dt h = ∂yh · d

dt y+∂th,( d
dt

)2
h = ∂yh( d

dt )
2y+∂

2
y h · ( d

dt y)2 +2∂yh∂th · d
dt y+∂

2
t h.

Therefore Uh,1(y) = ∂th and Uh,2(y, d
dt y) = ∂ 2

y h · ( d
dt y)2 +2∂y∂th · d

dt y+∂ 2
t h.

Proposition 3.5. Let n1 be some positive integer, Suppose h : R×R×R→ C is a Cn1 func-

tion. Further suppose x∈Cn1 :R→R, y∈Cn1 :R→R and
( d

dt

)k
x(t1) = 0 for some constant

t1, 1≤ k < n1. Then we have for 1≤ i≤ n1( d
dt

)i
h(x(t),y(t), t) |t=t1

= ∂xh ·
( d

dt

)i
x|t=t1 +

( d
dt

)i
h(x(t1),y(t), t) |t=t1
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The last two propositions can be easily shown using mathematical induction. We omit
the proofs here.

Proposition 3.6. Let h,g : R×R×R→ C be C∞ functions. Suppose there exist C∞ function

x,y,a,b : R→ R such that for all t ∈ R and some constant number t1 the following hold:

h(x(t),y(t), t) = 0,g(a(t),b(t), t) = 0 (3.62)

y(t1) = b(t1) (3.63)

h(x(t1), ·, ·) = g(a(t1), ·, ·) (3.64)

Let n1 ≥ 1 be such a number that ( d
dt )

ka(t1) = 0 for 0 ≤ k < n1 and t1 is some constant.

Suppose in addition ∂xh/∂yh|t=t1 as well as ∂ag/∂bg|t=t1 exist and are not real. Then it

follows that for 1≤ k ≤ n1

( d
dt

)k
x|t=t1 =

ℜ(∂ag(p1) j∂yh(p2))

ℜ(∂xh(p2) j∂yh(p2))

( d
dt

)k
a|t=t1 , (3.65)

where p1 = (a(t1),ω(t1), t1) and p2 = (x(t1),y(t1), t1) Moreover, for 0 < k < n1 it holds

( d
dt

)k
y|t=t1 =

( d
dt

)k
b|t=t1 (3.66)

Proof. We prove by induction. First consider the case k = 1. We have

(∂xh · d
dt x+∂yh · d

dt y+∂th) |t=t1= 0 (3.67)

(∂ag · d
dt a+∂bg · d

dt b+∂tg) |t=t1= 0 (3.68)

it follows that
d
dt x(t1) =−

ℜ( j∂yh∂th)

ℜ( j∂yh∂xh)

∣∣∣∣
t=t1

d
dt y(t1) =−

ℜ( j∂xh∂th)

ℜ( j∂xh∂yh)

∣∣∣∣
t=t1

d
dt a(t1) =−

ℜ( j∂bg∂tg)

ℜ( j∂bg∂ag)

∣∣∣∣
t=t1
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d
dt b(t1) =−

ℜ( j∂ag∂tg)

ℜ( j∂ag∂bg)

∣∣∣∣
t=t1

since ∂yh|t=t1 = ∂bg|t=t1 and ∂th|t=t1 = ∂tg|t=t1 due to (3.63) as well as (3.64), then clearly
(3.65) and (3.66) hold.

If n1 = 1 we have done (for in this case k ≤ 1). If n1 > 1, we prove that given (3.65) and
(3.66) hold for k < i, then (3.65) and (3.66) also hold for k = i, 1 < i≤ n1. Since

( d
dt

)k
a = 0

for k ≤ i−1, it follows from Proposition 3.5 that

( d
dt

)i
g|t=t1 = ∂ag ·

( d
dt

)i
a |t=t1 +

( d
dt

)i
g(a(t1),b(t), t) |t=t1

Let use denote
ĝ(·, ·) = g(a(t1), ·, ·), ĥ(·, ·) = h(x(t1), ·, ·)

Applying Proposition 3.4 to the second term on the R.H.S of the last equation we derive

( d
dt

)i
g|t=t1 =

(
∂ag ·

( d
dt

)i
a+∂bg ·

( d
dt

)i
b+Uĝ,i(Yg,i)

)
|t=t1= 0 (3.69)

where Yg,i = (
( d

dt

)i
b, ...,

( d
dt

)i−1
b). The same argument shows that

( d
dt

)i
h|t=t1 =

(
∂xh ·

( d
dt

)i
x+∂yh ·

( d
dt

)i
y+Uĥ,i(Yh,i)

)
|t=t1= 0 (3.70)

where Yh,i = (
( d

dt

)i
y, ...,

( d
dt

)i−1
y). We derive from (3.69) that

( d
dt

)i
a(t1) =−

ℜ( j∂bgUĝ,i(Yg,i))

ℜ( j∂bg∂ag)

∣∣∣∣
t=t1

(3.71)

( d
dt

)i
b(t1) =−

ℜ( j∂agUĝ,i(Yg,i))

ℜ( j∂ag∂bg)

∣∣∣∣
t=t1

Equality (3.64) implies ĝ≡ ĥ and thus Uĥ,i(·) =Uĝ,i(·). The fact that
( d

dt

)l
y(t1) =

( d
dt

)l
b(t1)

for 1≤ l ≤ i−1 (we remind readers this has already been assumed to be true when we stared
mathematical induction for k = i) implies Yh,i(t1) = Yg,i(t1). We thus have Uĥ,i(Yh,i)|t=t1 =

Uĝ,i(Yg,i)|t=t1 , which combined with (3.70) leads to

( d
dt

)i
x(t1) =−

ℜ( j∂yh ·Uĝ,i(Yg,i))

ℜ( j∂yh∂xh)

∣∣∣∣
t=t1

(3.72)

( d
dt

)i
y(t1) =−

ℜ( j∂xh ·Uĝ,i(Yg,i))

ℜ( j∂xh∂yh)

∣∣∣∣
t=t1
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Noticing ∂yh|t=t1 = ∂bg|t=t1 , it is clear from (3.71) and (3.72) that (3.65) holds. If i < n1,
we have

( d
dt

)i
a(t1) = 0 (recall the setup of the propostion), which implies

( d
dt

)i
x(t1) = 0.

Consequently we have

( d
dt

)i
y(t1) =−Uĥ,i(Yh,i)/∂yh|t=t1 =−Uĝ,i(Yg,i)/∂bg|t=t1 =

( d
dt

)i
b(t1).

Thus by mathematical induction, the proposition is proved.

We are now ready to provide the proof of Theorem 3.2.

Proof. Proof of Theorem (3.2). We first remind the reader that nd is such a number that

( d
dτ
)l

θ
(i)
k (τ∗) = 0,

for 0 < l < nd . For notational simplicity, we denote f (τ) = ω
(i)
k (τ) and ω

(i)
k (τ∗) = ω∗. By

Assumption III, we have
∂ωF( f (τ∗),τ∗) 6= 0,

which together with Proposition 3.1 in the appendix imply that ∂λ D( j f (τ∗),τ∗) 6= 0. Then
by the implicit function theorem, D(λ ,τ) = 0 determines λ as a Cnd function of τ in a neigh-
borhood of τ∗. Let λ (τ) = x(τ)+ jy(τ), then x,y ∈Cnd are real functions defined in a neigh-
borhood of τ = τ∗, λ = λ (τ∗). We define a function h(x,y,τ) as

h(x,y,τ) := D(x+ jy,τ) (3.73)

then clearly we have h(x(τ),y(τ),τ) = D(λ (τ),τ) = 0. On the other hand, by definition we
have

P0( j f (τ),τ)+P1( j f (τ),τ)exp( jθ (i)
k (τ)− j f (τ)τ) = 0 (3.74)

To facilitate notation, we denote
a(τ) = θ

(i)
k (τ) (3.75)

Further define g(a, f ,τ) = P0( j f ,τ)+P1( j f ,τ)e j(a− f τ), we have

g(a(τ), f (τ),τ) = 0 (3.76)

and g(·, ·, ·) is locally Cnd . Noticing e ja(τ∗) = 1 and x(τ∗) = 0, it is easy to verify that

g(a(τ∗), ·, ·) = h(x(τ∗), ·, ·)
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Now it follows from Proposition 3.6 that for k ≤ nd

( d
dt

)k
x(t1) =

ℜ(∂ag(a(τ∗),ω∗,τ∗) j∂yh(0,ω∗,τ∗))

ℜ(∂xh(0,ω∗,τ∗) j∂yh(0,ω∗,τ∗))

( d
dt

)k
a |τ=τ∗ (3.77)

Since at τ = τ∗ it holds that ∂ag(a(τ∗),ω∗,τ∗) = jP1e− jω∗τ∗ ,∂xh(0,ω∗,τ∗) = ∂λ D( jω∗,τ∗),
∂yh(0,ω∗,τ∗) = j∂λ D( jω∗,τ∗), from (3.77) we obtain

( d
dt

)k
ℜ(λ (τ∗)) =

ℜ( jP1( jω∗,τ∗)e− jω∗τ∗∂λ D( jω∗,τ∗))
|∂λ D( jω∗,τ∗)|2

( d
dt

)k
a(τ∗)

=
ℜ(P0( jω∗,τ∗) j∂λ D( jω∗,τ∗))

|∂λ D( jω∗,τ∗)|2
( d

dt

)k
a(τ∗). (3.78)

From the equation (3.29) we know

2ℜ

(
j∂λ D( jω∗,τ∗)P0( jω∗,τ∗)

)
= ∂ωF(ω∗,τ∗).

By definition we also have ( d
dτ
)la(τ∗) =

( d
dt

)l
θ
(i)
k (τ∗), for l ≤ nd . Substitute these into

(3.78), (3.53) is proved.

3.9 Chapter Summary

A method of stability analysis for time-delay systems with coefficients depending on the de-
lay has been developed. The method is an extension of the one given in [14] to more general
cases. The method partitions the delay domain of interest for the delay into subintervals so
that the magnitude condition yields a fixed number of solutions of frequencies ω as func-
tions of the delay τ within each subinterval. With each frequency function a phase angle
function is associated. Critical pairs can be identified based on the value of the phase angle
functions. Root crossing criteria are derived, which utilizes the information of higher order
derivatives of characteristic roots with respect to the delay when the lower order derivatives
vanish. The crossing conditions are comprised of two factors. The first factor is already
known for systems with fixed coefficients and the second factor depending on the phase an-
gle function results from the fact that the system coefficients are parameterized by the delay.
Analysis suggests an interesting correlation between the value of phase angle functions and
the change of the number of unstable characteristic roots. This observation motivates the
development of a different geometric perspective of stability analysis in Chapter 5.
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Chapter 4

Systems with Commensurate Delays

4.1 Chapter Overview

In this chapter, stability of systems with commensurate delays and delay-dependent coeffi-
cients is studied along the line of the τ-decomposition approach. The main objective is to
extend the results in Chapter 3 to systems with commensurate delays.

For systems with a single delay, the magnitude condition for the existence of imaginary
characteristic roots motivated the introduction of function F(ω,τ) , a polynomial function in
ω . The roots of this polynomial function in ω capture potential crossing frequencies of the
characteristic roots. Then the crossing directions corresponding to a critical pair ( jω,τ) can
be determined by the partial derivative of this polynomial function and the derivative of the
phase angle function at this critical pair. By using the generalized Schur-Cohn lemma [21],
we are able to give a generalized definition of F(ω,τ), which is still a polynomial in ω and
but now applies to systems with commensurate delays. For characteristic equations with just
a single delay, this new definition is reduced to the one in Chapter 3. We also show that the
geometric idea that led to the definition of F(ω,τ) in Chapter 3 can be generalized for the
commensurate-delay case.

With the polynomial function F(ω,τ) thus defined, we follow a similar procedure as we
did in Chapter 3. We first state a set of assumptions and discuss their implications. The
delay domain I is then decomposed into several disjoint sub-intervals I (i)’s. Within each
I (i), a fixed number of frequency functions are defined. We show that under some condi-
tions that are realistic in practice, a unique phase angle function can be associated with each
frequency function. Then similar to the single-delay case, the critical pairs of systems with
commensurate delays can be identified by tracking each phase angle functions. With the
notions and functions from Chapter 3 generalized and tailored for the commensurate-delay
case, we prove that the root crossing direction criteria in Chapter 3 can be extended to the
more general type of systems considered here. The chapter is concluded with two illustrative
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numerical examples. The first one pertains to α-stability analysis and the second one demon-
strates the computation of the critical speed of an automobile vehicle with time delay in tire
force generation.

4.2 Systems with Commensurate Delays

Consider time-delay systems with characteristic equations of the following form:

D(λ ,τ) =
M

∑
k=0

Pk(λ ,τ)e−kλτ = 0, (4.1)

where each Pk(λ ,τ) is continuous in τ and is a polynomial of λ with real coefficients for
any given τ ∈I , where I = [τ l,τu] is the delay interval of interest and Nu(τ l) is supposed
to be known. Our objective is to find all the sub-intervals contained in I for which (4.1)
is asymptotically stable. We may write D(λ ,τ) as Dτ(λ ) and Pi(λ ,τ) as Piτ(λ ) when λ is
viewed as the argument and τ is regarded as a parameter of these functions.

For systems represented by a state equation of the form

ẋ(t) = A1(τ)x(t)+A2(τ)x(t− τ),

where A1 and A2 are matrices of appropriate dimensions, commensurate delays may appear
in the corresponding characteristic equation even though there is only a single delay in the
original state-space equation. Characteristic equations with delay-dependent coefficients may
also result from the α−stability analysis of systems with delay-free parameters. For instance,
consider the following characteristic equation [13], [23]:

λ + e−τλ + e−2τλ = 0. (4.2)

The characteristic equation is said to be α−stable if the real part of all its roots is smaller
than −α . Replacing λ with λ −α in (4.2), we obtain

λ −α + eατe−τλ + e2ατe−2τλ = 0, (4.3)

It is easy to see that the α−stability of (4.2) is equivalent to the asymptotic stability of
characteristic equation (4.3), which has delay-dependent coefficients.

Define

D̂(λ ,τ,x) =
M

∑
k=0

Pk(λ ,τ)xk, (4.4)
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where x can be a scalar or a square matrix of any dimension. Notice that D̂(λ ,τ,x) can be a
matrix or scalar depending on x. We denote D̂λ ,τ(x) = D̂(λ ,τ,x) when we view λ , τ as two
parameters and x as the variable. By definition we have

D̂ jω,τ(e− jωτ) = D̂( jω,τ,e− jωτ).

Introduce the following Hermitian matrix:

H(λ ,τ) = Q̂(λ ,τ,S)HQ̂(λ ,τ,S)

−D̂(λ ,τ,S)HD̂(λ ,τ,S),
(4.5)

where Q̂(λ ,τ,S) = ∑
M
k=0 PkSM−k and

S =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · 1
0 0 0 · · · 0


is an M×M shift matrix. Define a function F as

F(ω,τ) =−det(H( jω,τ)) , (4.6)

We may write Fτ(ω) instead of F(ω,τ) when it is regarded as a polynomial in ω . We claim
that

F(ω,τ) = 0 (4.7)

is a necessary condition for ( jω,τ) to be a critical pair, i.e., for (ω,τ) ∈ R∗+×I to satisfy

D( jω,τ) = 0. (4.8)

This readily follows from the following expression of F , which has already been discussed
in Chapter 2:

F(ω,τ) =−|PM( jω,τ)|2M
M

∏
i,k=1

(1− zizk), (4.9)

where zi, i = 1,2, . . . ,M are the roots of the polynomial D̂ jω,τ(x). Equation (4.7) can be
viewed as a generalization of the magnitude condition proposed in [61] for systems with a
single delay. The geometric interpretation is given in the appendix of this chapter.
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We introduce a set of standing assumptions for systems with commensurate delays con-
sidered in this dissertation.

Assumption I. For all τ ∈I , P0τ satisfies ord(P0τ) = n and

ord(Piτ)≤ n, i = 1,2, · · · ,M.

Furthermore, all the roots of following equation

sM + c1τsM−1 + c2τsM−2 + · · ·+ cM−1,τs+ cM = 0

satisfy |s|< 1, where

ciτ = lim
λ→∞

Piτ(λ )

P0τ(λ )
.

Assumption II.No (ω,τ) ∈ R×I satisfies (4.7) and

PM( jω,τ) = 0 (4.10)

simultaneously.

Assumption III. There are only a finite number of (ω,τ) in R+×I that simultaneously
satisfy (4.7) and

∂ωF(ω,τ) = 0. (4.11)

Moreover, ord(Fτ(ω)) is constant for τ ∈I .

Assumption IV. Suppose that ( jω∗,τ∗) is a critical pair, i.e., (ω∗,τ∗) ∈ R+×I satisfies
(4.8), then (4.11) does not hold for ω = ω∗ and τ = τ∗. Furthermore, each Pk(λ ,τ),
k = 0, . . . ,M is differentiable in a neighborhood of ( jω∗,τ∗).

Assumption V Only a finite triplets of the form (ω,τ,x) ∈ R×I ×C satisfy
simultaneously (4.7) as well as {

D̂( jω,τ,x) = 0,
∂xD̂( jω,τ,x) = 0.
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Let Φτ be the set of all the τ values appearing in these triples. It is further assumed that Φτ

does not contain any critical delay.

Assumption I implies that all the roots of (4.1) with real parts larger than −c, where
c is some positive constant, vary continuously as τ changes [59]. We will later prove that
Assumption II together with Assumption IV ensures that if λ = jω∗ is an imaginary root
for some critical delay τ∗, it must be simple. Consequently λ must be locally a continuous
function of τ according to the implicit function theorem. It will also be clarified later that
Assumption V is needed to ensure that the uniqueness of the unit solution of D̂( jω(τ),τ,x) =

0 in x is defined except for some specific τ values, where ω(τ) is a root of the polynomial
Fτ(ω). As a consequence, we are able to associate with each frequency function a unique
phase angle function. Notice that this assumption is automatically satisfied if M = 1. It can
be expected that these assumptions should hold for general systems in practice. For instance,
Assumption II requires two real variables do not satisfy three real equations at the same time.
Assumption V essentially requires five real equations to admit a finite number of solutions in
four real numbers. These conditions can be satisfied in general except for some degenerated
cases.

4.3 Stability analysis

4.3.1 Identifying imaginary roots

We develop a generalized τ-decomposition approach for systems with commensurate delays.
We start with one value of delay τ l for which one knows the the number of roots of the
characteristic equation on the right half pane. Let the delay parameter τ sweep through an
interval of interest I = [τ l,τu], one can identify all critical delay values, for which equation
(4.1) admits at least one root on the imaginary axis. We arrange the critical delay values in
ascending order as:

τ
l ≤ τ1 < τ2 < .. . < τL ≤ τ

u. (4.12)

Due to Assumption I, the characteristic roots close to the imaginary axis is continuous with
respect to τ , therefore the number of unstable roots can not change for τ in each interval
(τk,τk+1), k = 1, ...,L−1. Once the crossing direction of characteristic roots on the imaginary
axis as τ goes through τk is computed, one can determine the change of the number of roots
on the right half plane. We will provide a criterion to determine the crossing directions of the
imaginary roots and show how system stability can be conveniently determined based on the
graphs of the phase angle functions.
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We address the first critical aspect of our analysis, that is to identify all critical delay
values for which the characteristic equation admits imaginary roots. Another key aspect is to
determine how these imaginary roots move as τ increases and sweeps through these critical
values, which will be discussed subsequently.

Recall that if λ = jω is an imaginary root of Dτ(λ ), ω must be a real root of Fτ(ω). We
first show that I can be decomposed into disjoint intervals in which the number of real roots
of Fτ(ω) is invariant. Let

τ
(1) < τ

(2) < .. . < τ
(K−1)

be exactly all the τ value contained in all the pairs (ω,τ) ∈ R+×I that simultaneously
satisfy (4.6) and (4.11). We also write τ(0) = τ l and τ(K) = τu and then decompose I into K

subintervals

I (i) = [τ(i−1),τ i], i = 1, . . . ,K. (4.13)

It has been shown in Proposition 3.1 that for any given index i, Fτ(ω) admits a fixed number
of real roots for all τ in the interior of I (i). These roots are simple and can be regarded
as continuous functions of τ , denoted as ω

(i)
k (τ), k = 1,2, ...,m(i). The definition of these

functions is extended to I (i) by requiring them to be continuous at τ(i−1) and τ(i).

Proposition 4.1. Suppose (ω∗,τ∗) ∈ R×I satisfies (4.7) but does not satisfy (4.11). Fur-

thermore, assume τ∗ 6∈Φτ , then D̂ jω∗,τ∗(x) admits a unique root on ∂D, which is simple.

Proof. Let x = zl , l = 1,2, . . . ,M be the roots of D̂ jω,τ(x) for (ω,τ) in some neighborhood of
(ω∗,τ∗). In this neighborhood, Assumption V together with τ∗ 6∈Φτ ensures that D̂′ωτ(zl) 6= 0
for each l. Therefore by the implicit function theorem, each zl is locally a continuous function
of (ω,τ) denoted as zl(ω,τ) and is differentiable in ω . We first prove the existence of a
solution on the unit disk. Suppose such a solution on ∂D does not exist, then it follows from
F(ω∗,τ∗) = 0 and (4.9) that there exist two roots zi, zk of D̂ jω∗,τ∗(x), with i,k ≤M and i 6= k

such that zi(ω
∗,τ∗)zk(ω

∗,τ∗) = 1. It is implied by (4.9) that F(ω,τ) can be decomposed as

F(ω,τ) = g1(ω,τ)(1− zlzk)(1− zkzl),

where g1 is a differentiable function at (ω∗,τ∗) and the arguments of zl , zk are omitted for
brevity. The last equality further implies that 4.11 holds at (ω∗,τ∗), which leads to a con-
tradiction. Therefore there must exist at least one zl on ∂D. To see the uniqueness, suppose
there exist two solutions zl , zk, l 6= k both on ∂D. Then using (4.9), we can locally express F
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as

F(ω,τ) = g2(ω,τ)(1− zlzl)(1− zkzk),

where g2 is differentiable at (ω∗,τ∗) and the arguments of zl , zk are again suppressed. This
further implies that 4.11 holds at (ω∗,τ∗), which is again a contradiction.

In light of the above proposition, for given i and k, we introduce function z(i)k (τ) as the
unique solution of

D̂( jω(i)
k (τ),τ,x) = 0, (4.14)

for x on ∂D, for any τ ∈ (τ(i−1),τ(i))−Φτ . Since the roots of D̂ jω,τ(x) is continuous with
respect to ω and τ , we can extend the definition of z(i)k (τ) to the entire I (i) by requiring the
function z(i)k (τ) to be continuous on I (i). Further define:

θ
(i)
k (τ) = ∠z(i)k (τ)+ω

(i)
k (τ)τ, (4.15)

where ∠z(i)k (τ) is a continuous function in I (i), which measures the phase angel of the com-
plex number z(i)k (τ). Notice, the value of ∠z(i)k (τ) is not restricted to any 2π interval. The
following proposition is obvious from this definition:

Proposition 4.2. Suppose τ∗ ∈I (i), then ( jω∗,τ∗) is a critical pair if and only if there exist

some integers k such that ω∗ = ω
(i)
k (τ∗) and

θ
(i)
k (τ∗) = 2rπ, r integer. (4.16)

Going through each interval I (i) and each curve ω
(i)
k (τ), we may identify all τ = τl ,

l = 1,2, · · · ,L such that (4.16) holds for some integer k . For each given τl , it is possible
that more than one k satisfies (4.16), and we denote the corresponding ω

(i)
k (τl) ≥ 0 as ωlh,

h= 1,2, · · · ,Hl . In this way we can identify all the critical pairs ( jωlh,τl), h= 1,2, · · · ,Hl; l =

1,2, · · · ,L.
Suppose τ∗ ∈I (i) is a critical delay, then it is easy to see that the derivative of θ

(i)
k (τ),

k = 1,2, ...,m(i) exits. Indeed we have

dω
(i)
k (τ∗)

dτ
= − ∂τF

∂ωF

∣∣∣∣
ω=ω∗
τ=τ∗

, (4.17)

dz(i)k (τ∗)

dτ
= − ∂τD̂

∂xD̂

∣∣∣∣
λ= jω∗
τ=τ∗

.
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Then by differentiating both sides of the relation:

exp
(

jθ (i)
k (τ)− jω(i)

k (τ)τ
)
= z(i)k (τ),

at τ = τ∗, we have

dθ
(i)
k (τ∗)

dτ
=

1
j

dz(i)k (τ∗)

dτ

(
z(i)k (τ∗)

)−1
+

d
(
ω

(i)
k (τ∗)τ∗

)
dτ

. (4.18)

Higher order derivatives can be obtained by differentiating the last equation iteratively.

4.3.2 Counting unstable roots

We will first show that each imaginary root of Dτ(λ ) corresponding to some critical delay is
locally a differentiable function of τ . For this purpose, we introduce the following formula,
which will also be useful for determining the crossing direction of the imaginary roots.

Proposition 4.3. Let ( jω∗,τ∗) be a critical pair. Let x = z∗k , k = 1, . . . ,M be all the roots of

D̂ jω∗,τ∗(x). Without loss of generality, let z∗1 be the unique root of D̂ jω∗,τ∗(x) on ∂D. Then the

following holds:

∂ωF(ω∗,τ∗) = −2c|PM(λ ,τ)|2M
ℜ

(
j∂λ D(λ ,τ) ·

M

∑
i=1

iPi(λ ,τ)e−iλτ

)
λ= jω∗
τ=τ∗

, (4.19)

where

c =
∣∣ M

∑
i=1

iPi( jω∗,τ∗)e−i jω∗τ∗
∣∣−2×

M

∏
i,k=1

(i,k)6=(1,1)

(1− z∗i z∗k). (4.20)

The proof is given in the appendix of this chapter. This proposition together with As-
sumption IV indicates that given a critical pair ( jω∗,τ∗), we must have ∂λ D( jω∗,τ∗) 6= 0.
Therefore by the implicit function theorem, (4.8) determines λ as a differentiable function
of τ , for (λ ,τ) in a neighborhood of ( jω∗,τ∗). We shall write this function as λ (τ). To
count the number of unstable roots for a given delay value, we introduce some quantities as
follows. If τ∗ 6= τ l , define

Inc(ω∗,τ∗) = lim
ε→0+

ℜ(λ (τ∗+ ε))−ℜ(λ (τ∗− ε))

2
. (4.21)
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If τ∗ = τ l , which implies τ∗ = τ1, define instead

Inc(ω∗,τ∗) = max{0, lim
ε→0+

ℜ(λ (τ∗+ ε))}. (4.22)

The limits in the definitions above exist because Assumption IV guarantees that in some
neighborhood of τ∗, ℜ(λ (τ)) is continuous and equals 0 if and only τ = τ∗. Now let the
number of right half plane roots of Dτ(λ ) be Nu(τ). For any τ ∈I , τ 6= τl , l = 1,2, . . . ,L, it
is easy to see the following relation holds:

Nu(τ) = Nu(τ l)+
Lτ

∑
l=1

Inc(τl), (4.23)

where Lτ = max{l | τl < τ} and

Inc(τl) = 2
Hl

∑
h=1

Inc(ωlh,τl) (4.24)

It is clear that the quantity Inc(ω∗,τ∗) indicates the cross direction of the characteristic root
at the critical pair ( jω∗,τ∗), i.e., towards C+ or C− these imaginary roots moves as τ sweeps
through a critical delay τ∗.

In the case ℜ(λ ′(τl)) 6= 0, Inc(ω∗,τ∗) satisfies

Inc(ω∗,τ∗) =

{
sign

(
ℜ(λ ′(τ∗))

)
if τ∗ 6= τ l

max{sign
(
ℜ(λ ′(τ∗))

)
,0} if τ∗ = τ l

(4.25)

We next provide a formula to compute the right hand side of (4.25).

4.3.3 Root Crossing Direction Analysis

Proposition 4.4. Let ( jω∗,τ∗) be a critical pair. Let i, k be such numbers that τ∗ ∈ I (i)

and ω
(i)
k (τ∗) = ω∗. Then (4.1) defines λ as a differentiable function of τ in a sufficiently

small neighborhood of ( jω∗,τ∗). Let nd be such a number that ( d
dτ
)lθ

(i)
k (τ∗) = 0, for l =

1,2, · · · ,nd−1, then the following holds:

sgn
(

ℜ

(
( d

dτ
)l

λ (τ∗)
))

= (−1)Nx( jω∗,τ∗)sgn(∂ωF(ω∗,τ∗))

×sgn
(
( d

dτ
)l

θ
(i)
k (τ∗)

)
, l = 1,2, · · · ,nd . (4.26)

where Nx( jω∗,τ∗) is the number of roots of D̂ jω∗,τ∗(x) that are outside the unit disk D.
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Proof. Let ω(τ) be the differentiable function implicitly defined by (4.7) in some neighbor-
hood of τ∗, which satisfies ω(τ∗) = ω∗. For notational convenience, denote

a(τ) = θ
(i)
k (τ). (4.27)

With Assumption III, Proposition 4.3 implies that ∂λ D( jω∗,τ∗) 6= 0. Then by the implicit
function theorem, D(λ ,τ) = 0 determines λ as a differentiable function of τ in a neigh-
borhood of τ∗. Let λ (τ) = x(τ) + jy(τ), then x, y are real differentiable functions in a
neighborhood of τ = τ∗, λ = λ (τ∗). We define a function h(x,y,τ) as

h(x,y,τ) = D(x+ jy,τ), (4.28)

then clearly in a neighborhood of τ = τ∗ we have

h(x(τ),y(τ),τ) = 0. (4.29)

Define g(a,ω,τ) = D̂( jω,τ,exp( ja− jωτ)) then it is easy to see

g(a(τ),ω(τ),τ) = 0, (4.30)

for τ in some neighborhood of τ∗. Noticing the definition (4.27) and x(τ∗) = 0, the following
is obvious:

g(a(τ∗), ·, ·) = h(x(τ∗), ·, ·) = h(0, ·, ·). (4.31)

Now it follows from Proposition 3.6 in Chapter 3 that for k ≤ nd

( d
dτ
)kx(τ∗) =

ℜ( j∂yh(p1)∂ag(p2))

ℜ( j∂yh(p1)∂xh(p1))
( d

dτ
)ka(τ∗). (4.32)

where P1 = (0,ω∗,τ∗), P2 = (a(τ∗),ω∗,τ∗).
Since at τ = τ∗, λ = jω∗ it holds that ∂ag(p2) = j ∑

M
i=1 iPie−i jω∗τ∗ , ∂yh(p1) = j∂λ D,

∂xh = ∂λ D, we obtain from (4.32)

dℜ(λ (τ∗))

dτ
=

ℜ( j ∑
M
i=1 iPie−i jω∗τ∗ ·∂λ D)

|∂λ D|2
a′
∣∣∣∣

τ=τ∗
λ= jω∗

=
−ℜ(∑M

i=1 iPie−i jω∗τ∗ · j∂λ D)

|∂λ D|2
a′
∣∣∣∣

τ=τ∗
λ= jω∗

. (4.33)
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Proposition 4.3 gives

∂ωF(ω∗,τ∗) =−2c|PM|2M
ℜ(

M

∑
i=1

iPie−i jω∗τ∗ · j∂λ D) τ=τ∗
λ= jω∗

,

where functions are evaluated at τ = τ∗, λ = jω∗, and it is easy to see

sgn(c) = (−1)Nx(ω
∗,τ∗).

By definition we also have ( d
dτ
)ka(τ∗) = ( d

dτ
)kθ

(i)
k (τ∗). Substitute these expressions into

(4.33) and notice that x(τ) is differentiable at τ∗, (4.26) is proved.

The following can be easily shown using a continuity argument:

Proposition 4.5. For fixed index i and k, the quantity ∂ωF( jω(i)
k (τ),τ) does not change sign

for τ ∈ (τ(i−1),τ(i)).

In view of the last proposition, we introduce the following notation:

sgn(i)k = ∂ωF(ω
(i)
k (τ),τ),∀τ ∈ (τ(i−1),τ i). (4.34)

Now Equation (4.26) can be rewritten as

sgn
(

ℜ

(
( d

dτ
)l

λ (τ∗)
))

= (−1)Nx( jω∗,τ∗) · sgn(i)k · sgn
(
( d

dτ
)l

θ
(i)
k (τ∗)

)
,

l = 1,2, · · · ,nd , (4.35)

The last theorem establishes an interesting link between system stability and the phase
angle curves. In any given interval I (i), following the graph of each θ

(i)
k (τ), one can identify

τ∗ as a critical delay if the graph of θ
(i)
k (τ) intersects any horizontal line located at 2rπ for

some integer r and conclude that± jω(i)
k (τ∗) is a pair of imaginary roots corresponding to τ∗.

Whether this pair of roots become stable or unstable as τ increases depends partially on how
the graph of θ

(i)
k (τ) crosses 2rπ , namely from below to above or vise versa. It also depends

on the quantity sgn(i)k as well as Nx( jω(i)
k (τ∗),τ∗) .

Regarding the last two factors, we have the following observation. First, the sign of the
quantity ∂ωF(ω

(i)
k (τ),τ) is invariant in (τ(i−1),τ(i)). Second, for any interval U ∈I (i) such

that U ∩Φτ = φ (recall the set Φτ is defined in Assumption V), the quantity Nx(ω
(i)
k (τ),τ) is

also invariant over U . To see this is indeed true, first notice that for the roots of D̂ jω,τ(x) to
enter or leave the unite disk, it must first lie on ∂D since the roots of D̂ jω,τ(x) is continuous
with respect to the parameters. However, Proposition 4.1 indicates that the root of D̂ jω,τ(x)
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on ∂D exists uniquely and is simple given ω = ω
(i)
k (τ) and τ ∈U . Therefore we conclude

that Nx(ω
(i)
k (τ),τ) must be constant on U . In the case when I (i) is disjoint with Φτ , the

quantity Nx(ω
(i)
k (τ),τ) is constant on I (i). The following is obviously true:

Proposition 4.6. If Φτ is empty, then Nx( jω(i)
k (τ),τ) is constant for τ in the interior of I (i).

The first order derivative dθ
(i)
k (τ∗)
dτ

can be determined simply based on the graphs of the
phase functions. Here we provide a formula to compute it:

dθ
(i)
k (τ∗)

dτ
=−∑

M
l=0

dF Pl
dτ

el jω∗τ∗

∑
M
l=1 lPlel jω∗τ∗

∣∣∣∣
λ= jω∗
τ=τ∗

, (4.36)

where

dFPl

dτ

∣∣∣∣
λ= jω∗
τ=τ∗

= j∂λ Pl
dω

(i)
k

dτ
+∂τPl

∣∣∣∣
λ= jω∗
τ=τ∗

. (4.37)

This formula can be readily derived by differentiating the left hand side of (4.14) and
using (4.18). Higher order derivatives can be obtained by differentiating the last equation
iteratively. In practice however, one can determine the derivatives of the phase angle function
simply based on its graph in the same spirit of [14].

4.3.4 Numerical example for the commensurate-delay case

4.3.5 Example 1

We consider the characteristic equation (4.3) with the delay interval

I = [τ l,τu] = [0,0.8],

and α = 1.5. Here the upper bound of the interval does not have any particular meaning
and can be replaced by any other positive numbers. Of cause, one needs to check that the
assumptions hold for the delay interval of interest, which is true for the one chosen here. By
definition, we have

P0 = λ −α, P1 = eατ , P2 = e2ατ .

The expression of function F can be obtained using (4.5) and (4.7) as

F =−ω
4 +a1ω

2 +a2,
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where

a = eτλ , a1 = 2a4 +a2− 9
2
,

a2 = −a8 +a6 +
15
2

a4 +
9
4

a2− 81
16

.

By solving (4.7) and (4.11) together for (ω,τ)∈R+ ∈I , we find that I can be decomposed
into I (1) = [τ(0),τ(1)], I (2) = [τ(1),τ(2)] and τ(0) = 0, τ(1) ≈ 0.4045, τ(2) = 0.8. Polynomial
Fτ(ω) has one positive solution in I

(1)
o and two positive solutions in I

(2)
o . Consequently

functions ω
(1)
1 (τ), ω

(1)
2 (τ), ω

(2)
2 (τ) are well defined in the corresponding intervals as plotted

Fig.4.1a. The associated phase curves are plotted in Fig.4.1b. The graph of θ
(1)
1 (τ) crosses

the horizontal line 0 at τ1 = 0.2368 and the graphs of θ
(2)
1 (τ), θ

(2)
2 (τ) cross the horizontal line

2π at τ2 = 0.6878, τ3 = 0.6976 respectively. By definition, we have ω11 =ω
(1)
1 (τ1)≈ 2.9010,

ω12 = ω
(2)
2 (τ2)≈ 5.4195, ω22 = ω

(2)
1 (τ3)≈ 5.6381.

We verify that the following holds:

∂ωF(ω
(1)
1 (τ),τ)< 0, Nx(ω

(1)
1 (τ),τ) = 1, ∀τ ∈I

(1)
o ,

∂ωF(ω
(2)
1 (τ),τ)< 0, Nx(ω

(2)
1 (τ),τ) = 1, ∀τ ∈I

(2)
o ,

∂ωF(ω
(2)
2 (τ),τ)> 0, Nx(ω

(2)
2 (τ),τ) = 0, ∀τ ∈I

(2)
o .

Therefore, we conclude from (4.26) that Inc(ω∗,τ∗) = 1 at all the three crossing points. In
other words, the the imaginary roots ± jω11, ± jω12, ± jω22 all move toward the right half
plane as the delay value increases and sweeps through τ1, τ2, τ3, respectively. It can be
verified that Nu(0) = 0, then the number of unstable roots can be easily computed using
(4.23) and is plotted against τ in Fig.4.1c. It is clear that System (4.2) is α−stable with
α = 1.5 for τ ∈ [0,τ1) and not α−stable for τ ∈ [τ1,0.8].

4.3.6 Example 2: Vehicle lateral dynamics

Stability of the lateral dynamics is one of the critical issues in the design and control of auto-
mobile vehicles. The most widely used vehicle lateral model is a second order linear system,
which does not take into account any delay effect [101]. It is known that as the vehicle speed
increases, the pair of eigenvalues of such a model will move toward the imaginary axis. Un-
dersteering vehicles remain stable regardless of the velocity. On the other hand, there exists
a critical speed for an oversteering vehicle, above which the vehicle dynamics becomes un-
stable. Therefore it is important to know the critical speed of a vehicle for the purpose of
vehicle design.
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FIGURE 4.1: Stability analysis of the system 4.3. (a)The graphs of fre-
quency functions. (b)The graphs of phase angle functions. The graph of
θ
(1)
1 (τ) crosses the horizontal line 0 at τ1. The graph of θ

(2)
2 (τ) and θ

(2)
1 (τ)

crosses the 2π horizontal line at τ2 and τ3 respectively. Therefore three crit-
ical delays exist within I . (c)The number of unstable roots.
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FIGURE 4.2: A single track model

From road test, the time delay in the generation of vehicle tire forces becomes significant,
which in some situations can lead to instability. Since the commonly used vehicle model
does not capture such a delay effect, they may not accurately predict vehicle stability at high
speeds. Some researchers attempted to approximate the delay as first order dynamics for the
ease of analysis. With the theoretical results developed in this chapter, we are able to take
into account the time-delay effect of tire forces and describe the vehicle lateral dynamics as
a functional differential equation.

The single track model for vehicle lateral dynamics can be found in, e.g.,[101] and is
illustrated in Fig.4.2. Let ω , β be the yaw rate and lateral slip angle of vehicle, respectively.
Let v be the longitudinal vehicle speed, which is viewed as a fixed parameter in the differential
equation. The angle from the wheel plane to the wheel center velocity is defined as the wheel
slip angle. In the linear model, assuming the front wheel steering angle is zero, the front
wheel slip angle α f can be computed as

α f = β +
ωl f

v
,

and the rear wheel slip angle αr can be computed as

αr = β − ωlr
v

,

where l f , lr are the distance between the front wheel axis to vehicle center of mass and the
rear wheel axis to vehicle center of mass, respectively. Let the static lateral tire force at the
front and rear axles be denoted as Fy f , Fyr, respectively. We have the following expression:

Fyl =−αlCl, l = f ,r,

where Cl is known as the tire lateral stiffness. In the dynamic model, there is a delay in tire
force generation, therefore we use the following equation instead:

Fyl(t) =−αl(t− τ(v))Cl, l = f ,r,
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FIGURE 4.3: Stability analysis of an automobile vehicle. (a)The graphs of
frequency functions. (b)The graphs of the phase angle functions. The graph
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vehicle speed. (c)The number of unstable roots. (d)The time response of the
yaw rate for different vehicle speeds.
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and the delay is a function of the longitudinal velocity v: τ(v) = kdv . Clearly, the higher the
speed, the more significant the tire force delay is. Then using the Newton-Euler formula, the
FDE that governs the lateral vehicle dynamics can be derived as

ω̇(t) =
l2

fC f + l2
r Cr

Izv
ω(t− kdv)+

l fC f − lrCr

Iz
β (t− kdv),

β̇ (t) = −ω(t)+
l fC f − lrCr

mv2 ω(t− kdv)+
C f +Cr

mv
β (t− kdv).

The value of the model parameters are listed as follows: m = 1376, l f = 1.4, lr = 1.2, Jz =

1900, C f =−140000, Cr =−120000, kd = 0.0059.
The longitudinal velocity interval of interest is set as

Iv = [vl,vu] = [2m/s,38m/s].

Notice the differential equation becomes singular as v → 0+, therefore we set the lower
bound of Iv to be slightly larger than 0. From engineering practice we know that the vehicle
dynamics is asymptotically stable for v ≤ 2m/s, although in theory finding the lower bound
τ l such that the vehicle dynamics remains stable for v ∈ (0,τ l) is itself an issue to be solved.
This Problem will be addressed in Chapter 6.

The characteristic equation can now be computed as

λ
2 +

(
424.31λ

v
−27.36

)
e−λτ(v)+

43437
v2 e−2λτ(v) = 0, (4.38)

where τ = kdv. The function F(ω,v) is derived according to (4.6), which is an 8th order
polynomial. Its detailed expression is omitted here. By solving (4.7) and (4.11) together for
(ω,v) ∈ R+ ∈ I , we find that there exists no such solutions. Therefore Iv is just equal
to I

(1)
v = [v(0),v(1)], and v(0) = vl = 2m/s, v(1) = vu = 38m/s. Polynomial Fv(ω) has two

real solutions in I (1) , namely ω
(1)
1 (v) and ω

(1)
2 (v) , the graphs of which are plotted in

Fig.4.3.a. The associated phase curves are plotted in Fig.4.3.b. The graph of θ
(1)
1 (v) crosses

the horizontal line 0 at v1 = 33.2498m/s and it is clear that

d
dv θ

(1)
1 (v1)> 0.

By definition, we have ω11 = ω
(1)
1 (v1)≈ 10.218. We verify that the following holds:

∂ωF(ω
(1)
1 (v),v)< 0, Nx(ω

(1)
1 (v),v) = 1, ∀τ ∈I

(1)
o ,

(4.39)
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Therefore, we conclude from (4.26) that Inc( jω(1)
1 (τ1),τ1) = 1, which means that the pair

of characteristic roots λ = ± jω(1)
1 (τ1) move toward the right half plane as the delay value

increases and sweeps through τ1. Notice that Nu(τ l) = 0. The number of unstable roots can
be computed using (4.23) and is plotted against τ in Fig.4.3.c. It is clear that the characteristic
equation (4.38) is asymptotically stable for τ ∈ [0,v1) and unstable for τ ∈ (v1,vu]. It is easy
to verify that if the time delay is neglected in the model, then the vehicle dynamics remains
stable for v up to 40m/s. Therefore, after the delay effect is taken into account, the predicted
safe speed is reduced.

4.4 Chapter Summary

A method of stability analysis for systems with commensurate delays and coefficients de-
pending on the delay is presented following the generalized τ-decomposition approach. The
method partitions the delay interval of interest into disjoint subintervals so that a general-
ized magnitude condition yields a fixed number of solutions of frequencies ω as functions of
the delay τ within each subinterval. We provided conditions for imaginary roots to appear
at some critical delay values, followed by a criterion to identify crossing frequencies. Our
analysis shows that the results developed in the last chapter for systems with a single delay
can be largely extended to systems with commensurate delays. Just as the single-delay case,
the root crossing direction criterion reflects the ’separation principle’: the crossing direction
of characteristic roots on the imaginary axis depends on two factors, one is ’classical’ in the
sense that it exists for systems with fixed coefficients and the other is new, which reflects
the monotonicity of the phase angle functions at the critical pairs. In the next chapter, this
interesting observation will be explained from a geometric point of view.

4.5 APPENDIX

4.5.1 Proof of Proposition 4.3

Noticing d
dx D̂ jω∗,τ∗(x)|x=zk 6= 0, i = 1, ...,M, by the implicit function theorem the roots of

D̂ jω,τ(x) are differentiable functions in (ω,τ) defined in a neighborhood of (ω∗,τ∗). De-
noting these functions as zk = zk(ω,τ) for each k, we have zk(ω

∗,τ∗) = z∗k . We will first
show

∂ωF(ω∗,τ∗) = 2ac|PM|2M
∣∣∣∣ M

∑
i=1

iPie−i jω∗τ∗
∣∣∣∣2, (4.40)
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where a = ℜ(∂ωz1 · z1)ω=ω∗
τ=τ∗

. This can be derived through the following computation:

∂ωF(ω∗,τ∗)

= −∂ω

(
|PM|2M) M

∏
i,k=1

(1− zizk)ω=ω∗
τ=τ∗

−|PM|2M
∂ω

(
M

∏
i,k=1

(1− zizk)

)
ω=ω∗
τ=τ∗

= −|PM|2M
∂ω(1− z1z1)

M

∏
i,k=1

(i,k)6=(1,1)

(1− zizk)ω=ω∗
τ=τ∗

. (4.41)

On the other hand, it is easy to verify

∂ω(z1z1) = 2ℜ(∂ωz1z1) .

A substitution of the last equality into (4.41) leads to (4.40).
In a neighborhood of (ω∗,τ∗) we have

M

∑
i=0

Pi( jω,τ)zi
1(ω,τ) = 0. (4.42)

Denote b = ℜ
(
∂ωz1 · jz1

)
ω=ω∗
τ=τ∗

, it is easy to verify

∂ωz1(ω
∗,τ∗) = az1(ω

∗,τ∗)+ jbz1(ω
∗,τ∗). (4.43)

Differentiating both sides of (4.42) w.r.t ω , and noticing z1(ω
∗,τ∗) = e− jω∗τ∗ , we have

0 = j
M

∑
i=0

∂λ Pizi
1 +

M

∑
i=0

iPizi
1 · (a+ jb)

= j
M

∑
i=0

(
∂λ Pizi

1− iτ∗Pizi
1
)
+

M

∑
i=0

iPizi
1 · (a+ jb+ jτ∗)

= j∂λ D+
M

∑
i=0

iPizi
1 · (a+ jb+ jτ∗),

where functions are evaluated at at ω = ω∗, λ = jω∗ and τ = τ∗. It is easy to deduce from
the previous equality

a =−
ℜ( j∂λ D ·∑M

i=1 iPizi
1)

|∑M
i=1 iPizi

1|2

∣∣∣∣
λ= jω∗

ω=ω∗,τ=τ∗

. (4.44)
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The right hand side of (4.44) is well-defined because (4.40) implies that the term ∑
M
i=0 iPizi

1

in the last equation is not zero. Equality (4.19) is proved after (4.44) is plugged into (4.40).

4.5.2 Geometric Meaning of the F(ω,τ)Function

FIGURE 4.4: Geometry of Schur’s Hermitian form

For a clear presentation, we omit τ in the system coefficients.
Denote

Ql =
l

∑
k=0

Pk(λ )zk, l = 0, · · · ,M, (4.45)

and
−−−−→
QkQk+1 = Qk+1−Qk, k = 0, · · · ,M. Recall the Hermitian form H (λ ,x) defined as

H (λ ,X) =
M

∑
k=1
|P0xk +P1xk+1 + ...+PM−kxM|2

−
M

∑
k=1
|PMxk +PM−1xk+1 + ...+PkxM|2,
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where x = (z,z2, · · · ,zM) and z ∈ ∂D. It admits a very interesting geometric interpretation as
follows. Noticing

|P0xk +P1xk+1 + ...+PM−kxM|

= |zk||P0 +P1z+ ...+PM−kzM−k|

= |−−−−−→Q0QM−k|

and

|PMxk +PM−1xk+1 + ...+PkxM|

= |zk||PM +PM−1z1 + ...+PkzM−k|

= |−−−→QMQk|

Then it follows that

H (λ ,X) =
M

∑
k=1
|−−−→Q0Qk|2−|

−−−→
QMQk|2. (4.46)

If z0 ∈ ∂D is such that

M

∑
k=0

Pk(λ )zk
0 = 0,

it is obvious that Q0 = QM and hence |Q0Qk|= |QMQk| for each k, therefore (see Fig.4.4 for
illustration)

H (λ ,x0) = xT
0 H(λ )x0 = 0,

which gives det(H(λ )) = 0. For in the single delay case, in Chapter 3 we have defined
F(ω,τ) = |P( jω,τ)|2−|Q( jω,τ)|2, which is the same as (4.46) when M = 1.
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Chapter 5

A Two-Parameter Approach for
Stability Analysis

5.1 Chapter Overview

We review the stability analysis of systems with delay-dependent coefficients from a two-
parameter point of view. The parameter in system coefficients and that in the state are re-
garded as two different variables, denoted as r and q respectively. The fact that system coef-
ficients depend on the delay simply means r = q. To understand the stability of the original
system, it suffices to analyze the stability of the two parameter system in the r-q parame-
ter space, then impose the restriction r = q = τ . The basic idea is illustrated with systems
with a single delay. The extension to commensurate-delay case is discussed subsequently.
Root crossing direction criteria are first derived in the most general form by exploiting the
geometric idea underlying the two-parameter perspective. These criteria allow us to take ad-
vantage of some powerful stability analysis methods developed originally for systems with
fixed coefficients. For instance, the Puiseux series can be readily applied for developing a
complete analysis method. For simple characteristic roots on the imaginary axis, we simplify
these criteria and recover the results developed in previous chapters under less restrictive as-
sumptions. As we develop our theory, the population dynamics with a stage structure is taken
as an example to illustrate the main idea. The materials of this chapter have been partially
published in [34].

5.2 Systems with a Single Delay

We review single-delay systems with the following characteristic equation:

D(λ ,τ) = P(λ ,τ)+Q(λ ,τ)e−λτ = 0, (5.1)
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where P(λ ,τ) and Q(λ ,τ) are polynomials in λ and continuous in τ . Once the insight of the
two-parameter approach becomes clear for systems with a single delay, we will discuss its
extension to systems with commensurate delays. Let the function F(ω,τ) be defined as in
(3.4). We now state a set of standing assumptions for (5.1) that hold throughout this chapter.

Assumption I. For all τ ∈I , there exits n ≥ 0 such that the order of polynomial Pτ equals
n. The following also holds for τ ∈I :

lim
ω→∞

∣∣∣∣Qτ( jω)

Pτ( jω)

∣∣∣∣< 1. (5.2)

Assumption II. No (ω,τ) ∈ R+×I satisfies{
P( jω,τ) = 0,
Q( jω,τ) = 0,

simultaneously.
Assumption III. There are only a finite number of pairs (ω,τ) in R+×I that simultane-
ously satisfy

F(ω,τ) = 0, (5.3)

as well as
∂ωF(ω,τ) = 0. (5.4)

Define TF as the set of the τ ∈I that appear in such pairs.
Assumption IV. For all τ ∈ I , λ = 0 is not a characteristic root of Dτ(λ ). We define Tc

as the set of critical delays. Equivalently, Tc is the set of all τ ∈I for which Dτ(λ ) admits
imaginary roots. Further assume that any bounded delay interval contains at most a finite
number of critical delays.

Assumption I-IV should hold for general systems with characteristic equations of the
form (5.1) except for some degenerated cases.

In Chapter 3, we required P(λ ,τ) and Q(λ ,τ) to be differentiable at all critical delays. It
is also assumed there that if jω∗ is an imaginary root of Dτ∗(λ ) for some critical delay τ∗,
then F ′τ∗(ω

∗) 6= 0. In this chapter we will develop more general results that do not require
these assumptions.

Our objective is to determine the delay intervals contained in I for which system (5.1)
is asymptotically stable. For this purpose, We will investigate how imaginary roots migrate
as τ increases and goes through the critical delay from a two-parameter perspective .
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5.3 Stability Analysis

This section introduces some notation used in this chapter. Most of these terms and functions
have already been defined in previous chapters, which will be reviewed here briefly to make
this chapter self-contained.

We arrange the elements of Tc, namely all the critical delays τ1,τ2, · · · ,τL, in an ascend-
ing order as

τ
l ≤ τ1 < τ2 < · · ·< τL ≤ τ

u.

As discussed in Chapter 3, Assumption I guarantees that there exists c > 0 such that any
characteristic root of Dτ(λ ) with real part greater than −c varies continuously with τ . Con-
sequently, as τ goes through I , the number of characteristic roots on the right half complex
plane remains constant in any interval that contains no critical delay.

Recall the set TF defined in Assumption III. We agree to order the elements of TF ∪
{τ l,τu} in an ascending order

τ
(0) < τ

(1) < · · ·< τ
(K). (5.5)

We note that the two sets TF and {τ l,τu} may have common elements given the relaxed
assumptions in this chapter. Then, we may partition I into K subintervals:

I (i) = [τ(i−1),τ(i)], i = 1,2, . . . ,K. (5.6)

As discussed in Chapter 3, the number of real roots of F(ω,τ) in ω are constant for all τ

in the interior of I (i), and they are all simple. These roots are continuous functions of τ in
I (i) and denoted as ω

(i)
k (τ), k = 1,2, · · · ,m(i), and m(i) is the number of real roots of Fτ(ω)

for τ ∈I (i). The graph of ω
(i)
k (τ) are referred to as the frequency curves.

We further introduce a set ΩF(τ) that collects all different values of the real roots of
Fτ(ω). More precisely, we define:

ΩF(τ) =
⋃

k=1,2,···m(i)

{ω(i)
k (τ)} if τ ∈I (i). (5.7)

Since ∂ωF(ω
(i)
k (τ),τ) 6= 0 for any τ in the interior of I (i), we denote:

sgn(i)k = sgn
(

∂ωF(ω
(i)
k (r),r)

)
,∀r ∈ (τ(i−1),τ(i)). (5.8)
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For a given index pair (i,k), the phase function is defined as:

θ
(i)
k (τ) = ∠P( jω(i)

k (τ),τ)−∠Q( jω(i)
k (τ),τ)

+ω
(i)
k (τ)τ +π. (5.9)

Here the quantity ∠P( jω(i)
k (τ),τ) measures the phase angle of P( jω(i)

k (τ),τ) and is con-
tinuous on I (i). Similar properties also apply to the quantity ∠Q( jω(i)

k (τ),τ). These two
quantities are well defined in view of Assumption II. Consequently, each function θ

(i)
k (τ)

is continuous on I (i) and its range is not limited to any interval of 2π . The graph of each
θ
(i)
k (τ) is referred to as a phase curve.

An imaginary number jω∗ is a characteristic root of Dτ∗(λ ) and τ∗ is some critical delay
if and only if there exist some i, k such that

θ
(i)
k (τ∗) = 2lπ, l integer (5.10)

and ω∗ = ±ω
(i)
k (τ∗). Therefore one can obtain Tc, the set of all critical delays by solving

(5.10) in each interval I (i).
We will borrow the characteristic equation of the population model (3.50) for illustration

here. However, a different set of parameters are chosen. The characteristic equation is

λ
2 +aλ + c+(b(τ)λ +d(τ))e−λτ = 0 (5.11)

where a = 0.8, b = 2.5, c = 0.12e−m jτ , d = 0.2e−m jτ , m j = 0.1192. We set I = [0,14].
We note that these parameters are not taken from some real biological system. They are
set as such to serve our illustration purpose. It will later become clear that with this set of
parameters, Assumption III in Chapter 1 is violated. Therefore, stability analysis based on
the root crossing criterion in Chapter 1 becomes problematic for this set of model parameters.

Simple computation shows:

P(λ ,τ) = λ
2 +aλ + c, Q(λ ,τ) = b(τ)λ +d(τ),

F(ω,τ) = (c−ω
2)2 +(aω)2− (b(τ)ω)2−d(τ)2

= ω
4 +ω

2(a2−b2(τ)−2c)+ c2−d2(τ). (5.12)

Using (5.12), (5.4) can be written as

∂ωF(ω,τ) = 4ω
3−2ω(a2−b2(τ)−2c).
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Solving (5.3) together with (5.4) for (ω,τ) ∈ R×I we obtain two solutions in τ , namely
τ ≈ 6.160 and τ ≈ 9.762. By definition τ(0) = 0, τ(1) ≈ 6.160 and τ(2) ≈ 9.762. Therefore I

can be decomposed into I (1) = [0,τ(1)], I (2) = [τ(1),τ(2)], I (3) = [τ(2),τu]. From (5.12)
we further obtain

ω
(1)
1 (τ) = 2−

1
2

√
b2(τ)+2c−a2 +∆

1
2 (τ),τ ∈I (1),

ω
(2)
1 (τ) = 2−

1
2

√
b2(τ)+2c−a2 +∆

1
2 (τ),τ ∈I (2),

ω
(2)
2 (τ) = 2−

1
2

√
b2(τ)+2c−a2−∆

1
2 (τ),τ ∈I (2),

where ∆(τ) = (b2(τ)+ 2c− a2)2− 4(c2− d2(τ)). The graph of ω
(1)
1 (τ), ω

(2)
1 (τ), ω

(2)
2 (τ)

are plotted in Fig.5.1a. We have function θ
(1)
1 (τ) defined in I (1) and functions θ

(2)
1 (τ),

θ
(2)
2 (τ) defined in I (2). The graphs of these functions are plotted in Fig. 5.1b. We find

the graph of θ
(1)
1 (τ) intersects the horizontal line located at 0 at τ1 ≈ 0.878. The graph of

θ
(2)
2 (τ) intersects the horizontal line located at 2π at τ2 = τ(2) ≈ 9.762. By definition the set

of critical delays is Tc = {τ1,τ2}.

5.3.1 Counting Unstable Roots

Let Bδ (λ ) be an open ball centered at λ in the complex plane with radius δ > 0. Suppose
jω∗ is an imaginary characteristic root of Dτ∗(λ ) with multiplicity µ ≥ 1 for some critical
delay τ∗ ∈ I . The continuous dependence of the characteristic roots on τ means that for
any sufficiently small positive number δ , one can find ε(δ )> 0 such that for any ∆τ with an
absolute value smaller than ε(δ ), Dτ∗+∆τ(λ ) has exactly µ roots within Bδ ( jω∗). We will
investigate how these imaginary roots migrate as τ goes through a small neighborhood of τ∗.
To make this problem precise, we define Nu(τ,Bδ ( jω∗)) as the number of roots of Dτ(λ )

contained in Bδ ( jω∗)∩ C+. Recall that the set Tc collects exactly all critical delays and the
set ΩF(τ) is defined in (5.7). For each critical pair ( jω∗,τ∗), define the one-sided increment
of unstable roots as

Inc+(ω∗,τ∗) = lim
ε→0+

Nu(
τ
∗+ ε,Bδ ( jω∗)

)
−Nu(

τ
∗,Bδ ( jω∗) (5.13)

The the one-sided increment Inc+(ω∗,τ∗) counts the number of characteristic roots that en-
ters the right half complex plane from jω∗ as τ increases from τ∗. We note that in the
definition δ is made sufficiently small such that Inc+(ω∗,τ∗) is independent of δ .
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Now we consider the two-sided increment in the number of unstable roots for each critical
pair ( jω∗,τ∗) denoted as Inc(ω∗,τ∗). If τ∗ 6= τ l , define

Inc(ω∗,τ∗) =
1
2

(
lim

ε→0+
Nu(

τ
∗+ ε,Bδ ( jω∗)

)
−Nu(

τ
∗− ε,Bδ ( jω∗)

))
. (5.14)

As τ is swept from left through a neighborhood of some critical delay value: [τ∗−ε,τ∗+ε],
the quantity Inc(ω∗,τ∗) is just equal to the increment in the number of unstable characteristic
roots that appear in a small vicinity of jω∗. If λ = jω∗ is a simple characteristic root, then
Inc(ω∗,τ∗) = 1 means this root crosses the imaginary axis towards C+. It moves towards C−
if Inc(ω∗,τ∗) =−1. Otherwise this root merely touches the imaginary axis but does not cross
it. Therefore, for simple characteristic roots on the imaginary axis, Inc(ω∗,τ∗) serves as an
indicator of the crossing direction of this imaginary root. On the other hand, a repeated root
jω∗ can be considered as a cluster of different characteristic roots which merge at τ = τ∗. As
τ increases from τ∗, these roots will move along different branches of curves in the complex
plane. Consequently the quantity Inc(ω∗,τ∗) does not reflect the crossing direction of any
specific characteristic roots. Nevertheless, we will follow the convention of the simple roots
case and continue to refer to the formula that determines the quantity Inc(ω∗,τ∗) as root
crossing direction criteria.

In the case τ∗ = τ l the previous definition of Inc(ω∗,τ∗) becomes problematic because
there is no valid delay value smaller than τ l . Therefore we use the one-sided increment
instead:

Inc(ω∗,τ l) = Inc+(ω∗,τ l), (5.15)

The total increment of unstable roots as τ increases and goes through τ∗ , which satisfies:

Inc(τ∗) = ∑
ω∗∈ΩF (τ∗)

2Inc(ω∗,τ∗) (5.16)

The coefficient 2 in (5.16) is due to the symmetry of imaginary roots about the real axis.
We shall determine the number of unstable roots for any given τ ∈I denoted as Nu(τ).

It is easy to see the following relation holds for any τ that is not a critical delay:

Nu(τ) = Nu(τ l)+
L(τ)

∑
k=1

Inc(τk), (5.17)

where L(τ) is the index of the largest critical delay that satisfies τL(τ) < τ .
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5.4 A Two-Parameter Perspective

In this section we will provide a formulation to compute the quantity Inc(ω∗,τ∗) for each
critical pair ( jω∗,τ∗). For this purpose, we will first present a novel two-parameter perspec-
tive of systems with delay-dependent coefficients to gain some geometric insight.

5.4.1 Critical Delay Curves

Consider the characteristic equation

D̃(λ ,r,q) = P(λ ,r)+Q(λ ,r)e−λq = 0, (5.18)

where q,r ∈I are two independent parameters. Then equation (5.1) becomes equivalent to
(5.18) if we impose the restriction q = r = τ . We denote

D̃rq(λ ) = D̃(λ ,r,q)

For any r ∈I (i) that satisfies ω
(i)
k (r) 6= 0, define the the critical delay curves as:

τ
(i)
k (r) =−

θ
(i)
k (r)

ω
(i)
k (r)

+ r. (5.19)

5.4.2 Stability Regions in the Two-Parameter Plane

In (5.18) let the parameter r ∈ I be fixed. It is easy to see that a necessary and sufficient
condition for jω∗, ω∗ > 0 to be a characteristic root of D̃rq(λ ) is that the following equations

ω
∗ = ω

(i)
k (r), (5.20)

q = τ
(i)
k (r)+2lπ/ω

(i)
k (r), l integer, (5.21)

hold together for some i,k.
Consider the square region I ×I on the r-q parameter plane. Our analysis so far has

shown that as the parameter point (r,q) moves in this region, (5.18) admits some imaginary
roots if and only if (r,q) lies on one of the critical delay curves. Therefore the critical delay
curves split the parameter domain on the r-q plane into sub-regions; within the interior of
each sub-region the number of unstable roots is invariant.

In Fig.5.2 the blue and red curves are the critical delay curves of the population model
(5.11). The blue ones correspond to the graphs of a family of functions τ

(i)
k (τ)+2lπ/ω

(i)
k (τ)

parameterized by integer l and i = 1,2, k = 1. The red curves corresponds to the graphs of a
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FIGURE 5.2: The critical delay curves of the population model (5.11). The
characteristic equation admits imaginary roots if and only if the parameter
point (r,q) is on these curves. Within each region enclosed by these curves,

the number of unstable characteristic roots is a constant.

family of functions τ
(2)
2 (τ)+2lπ/ω

(2)
2 (τ) parameterized by the integer l. Now consider two

points A and B, which forms a vertical line segment. A, B are in two different but adjacent
parameter regions denoted by R3, R4 respectively. Let the parameter (r,q) start moving from
A vertically towards B, or in other words we fix r and increase q continuously. When the point
reaches a boundary curve at Point C some imaginary roots appear. By monitoring whether
this imaginary root move towards C+ or C− as q further increases one can determine how
the the number of unstable roots changes as the parameter crosses the boundary curve and
enters R4 from R3. As discussed in Chapter 2, the moving direction of the imaginary roots are
captured by the differential information of Function F with the parameter (r,q) fixed at the
crossing point. To be more precise, let r in (5.18) be fixed and suppose λ = jω∗ is a simple
root of (5.18) for q = q∗. Then for (λ ,q) in a neighbourhood of ( jω∗,q∗), (5.18) defines λ

as a differentiable function of q denoted by λ (q). According to (2.27), we have

sgn
(

ℜ

(
dλ (q∗)

dq

))
= sgn

(
∂ωF(ω∗,r)

)
. (5.22)

The original system (5.1) is equivalent to (5.18) with restriction r = q = τ . Therefore, as
the delay value in (5.1) sweeps through I , on the r-q plane, the parameter point (r,q) moves
along the 45 degree dashed green line in Fig.5.2 and thus enters or leaves different stability
regions of the r-q plane. The dashed green line intersects the critical delay curves at Point
D and E, therefore that at these points imaginary roots appear. This conclusion is consistent
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with our previous analysis based on (5.10). Then the crossing direction of these imaginary
roots may be determined by applying (5.22) and taking into account whether the 45 degree
line crosses the critical delay curves from below or from above.

Suppose ( jω(i)
k (τ∗),τ∗) is a critical pair. It is easy to see from (5.19) and (5.21) that if

derivative of the phase function d
dτ

θ
(i)
k (τ∗)> 0, the critical delay curve satisfies d

dτ
τ̂
(i)
k (τ∗)<

1, therefore the parameter (r,q) enters some stability region in the r-q space from below
as (r,q) moves along the 45 degree line. Furthermore, the crossing direction of this char-
acteristic root as (r,q) enters a stability region from below may be determined based on
the term sgn((∂ωF( jω(i)

k (τ∗),τ∗)). On the other hand, if derivative of the phase function
d

dτ
θ
(i)
k (τ∗)< 0, the parameter (r,q) enters some stability region in the r-q space from above

as (r,q) moves along the 45 deg line, consequently the crossing direction of the character-
istic root is reversed. This observation gives an interpretation of the ’separation principle’
we obtained in previous chapters, which is, the crossing direction of an imaginary root is
determined by the product of sgn(∂ωF( jω(i)

k (τ∗),τ∗)) and sgn( d
dτ

θ
(i)
k (τ∗)).

In the next section, we will exploit this geometric idea to carry out more complicated
stability analysis.

5.5 Crossing Direction Criteria

In this section we derive formulas to compute the increment of unstable roots Inc(ω∗,τ∗)
defined for each critical pairs ( jω∗,τ∗) of (5.1) by considering (5.18) with the restriction
r = q = τ . We need some notation for the formulation of the main theorem.

5.5.1 Some Additional Notation

To every τ ∈ (τ(i−1),τ(i)] we assign a number τ− ∈ (τ(i−1),τ) such that the interval [τ−,τ)
does not contain any critical delays of Dτ(λ ). Similarly, we also assign a numbers τ+ ∈
(τ,τ(i)) to every τ ∈ [τ(i−1),τ(i)) such that the interval (τ,τ+] does not contain any critical
delay of Dτ(λ ).

Suppose τ∗ ∈ [τ(i−1),τ(i)) is a critical delay, we assign to the index i a number i′ such that

i′ =

{
i−1, if τ∗ = τ(i−1),

i, otherwise.
(5.23)

Then we can introduce a set K+(τ
∗) which collects each k that satisfies the following

two conditions:
θ
(i)
k (τ∗) = 2lπ, l integer, (5.24)
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lim
τ→τ∗+

sgn
(
θ
(i)
k (τ)−θ

(i)
k (τ∗)

)
= 1. (5.25)

Similarly, if τ∗ 6= τ l define K−(τ∗) as the set of each k′ that satisfies the following two
conditions:

θ
(i′)
k′ (τ∗) = 2lπ, l integer, (5.26)

lim
τ→τ∗−

sgn
(
θ
(i′)
k′ (τ)−θ

(i′)
k′ (τ∗)

)
= 1. (5.27)

We note that there is a one-to-one correspondence between the function τ
(i)
k (·) and θ

(i)
k (·).

The event that point (τ,τ) crosses some curve τ
(i)
k (·) in the r-q parameter plane is associated

with the event that the phase curve θ
(i)
k (τ) crosses some horizontal 2lπ line for some integer

l. Moreover, the two crossing directions are also related. As τ increase, the point (r,q) =
(τ,τ) crosses some stability region boundary curve of the form τ

(i)
k (τ)−2l/ω

(i)
k (τ) in the r-q

parameter plane at the point (τ∗,τ∗) from above to below (from below to above) if and only
if the curve θ

(i)
k (τ) crosses some 2lπ horizontal line at τ = τ∗ from above to below (from

below to above), for some integer l. More precisely, in view of (5.19) we have the following
equivalence:

Proposition 5.1. Equation (5.25) is equivalent to

lim
r→τ∗+

sgn
(
r− τ

(i)
k (r)−θ

(i)
k (τ∗)/ω

(i)
k (r)

)
= 1,

and (5.27) is equivalent to

lim
r→τ∗−

sgn
(
r− τ

(i′)
k′ (r)−θ

(i′)
k′ (τ∗)/ω

(i′)
k′ (r)

)
= 1.

Therefore K+(τ
∗) is just the set that collects all index k such that on the r− q plane

some branches of the critical delay curves τ
(i)
k (r)+θ

(i)
k (τ∗)/ω

(i)
k (r) approach the 45 degree

line r = q from below as r→ τ∗+. On the other hand, K−(τ∗) is just the set that collects
all index k such that on the r− q plane some branches of the critical delay curves τ

(i′)
k (r)+

θ
(i′)
k (τ∗)/ω

(i′)
k (r) approach the 45 degree line r = q from below as r→ τ∗−.

We further decompose each set K+(τ
∗) or K−(τ∗) into subsets by the frequency of

different imaginary eigenvalues. Define

K+(ω
∗,τ∗) = {k ∈K+(τ

∗)|ω(i)
k (τ∗) = ω

∗},

K−(ω
∗,τ∗) = {k ∈K−(τ

∗)|ω(i′)
k (τ∗) = ω

∗}.

Returning to the population model (5.11), consider Point D = (τ1,τ1) in Fig.5.2. Since
at this point ΩF contains only one element, namely ω

(1)
1 (τ1) and at Point D the curve of
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θ
(1)
1 (τ) has a tangent with positive slope (refer to Fig. 5.1), we deduce that K−(τ1) =

K−(ω
(1)
1 (τ1),τ1) = φ and K+(τ1) = K+(ω

(1)
1 (τ1),τ1) = {1}. On the other hand, since as

τ → τ
+
2 , θ

(2)
1 (τ)→ 0+ and θ

(2)
2 (τ)→ 2π−, we deduce K−(τ2) = {1}. There are no phase

curve defined for τ > τ(2), which means K+(τ2) is empty.

5.5.2 General Results

Consider the following characteristic equation with the delay parameter in the system coeffi-
cients fixed at τ∗ ≥ 0:

D̃(λ ,r ≡ τ
∗,τ) = 0 (5.28)

Obviously, any critical pair ( jω∗,τ∗) of (5.1) is also a critical pair of (5.28). For charac-
teristic equation (5.28 ), we will use Incr=τ∗(ω,τ) or Inc+r=τ∗(ω,τ) to denote the two-sided
or one-sided increment of number of unstable roots defined for some critical pair ( jω,τ).
In other words, Inc+r=τ∗(ω,τ) and Incr=τ∗(ω,τ) are defined according to (5.13) and (5.14),
respectively, based on the characteristic equation with fixed coefficients (5.28) rather than
(5.1).

Lemma 5.1. Suppose τ∗ ∈ [τ(i−1),r(i))−{τ l} and λ = jω∗, ω∗ > 0 is a characteristic root

of Dτ∗(λ ) defined in (5.1). Let i′ = i− 1 if τ∗ = τ(i−1), otherwise let i′ = i. The following

holds

Inc(ω∗,τ∗) = ∑
k∈K+(ω∗,τ∗)

Incr=τ∗+(ω
(i)
k (τ∗+),τ

∗
+)

− ∑
k∈K−(ω∗,τ∗)

Incr=τ∗−(ω
(i′)
k (τ∗−),τ

∗
−).

(5.29)

Proof. To prepare for the proof, let us first make some geometric constructions illustrated in
Fig.5.3. Let Bδ ( jω∗) be a ball on the complex plane which contain no other roots of the
characteristic function Dτ(λ ) in (5.1) except λ = jω∗ when τ = τ∗. Suppose the multiplicity
of this root is m∗. Let O = (τ∗,τ∗) be a point on the r−q plane. Construct a square Cε(O)

centered at O with side length ε . Le δ be sufficiently small such that, for any two different
elements ω∗a , ω∗b in Ω∗(τ∗), Bδ ( jω∗a )∩Bδ ( jω∗b ) = {φ}. Then choose ε(δ ) > 0, such that
for all (r,q)∈Cε(O), the characteristic function D̃rq(λ ) defined in (5.18) has exactly m∗ roots
in Bδ ( jω∗), where m∗ is the multiplicity of jω∗ for τ = τ∗. Since τ

(i)
k (τ)+2lk/ω

(i)
k (τ) are

continuous functions for all k, we also make ε sufficiently small such that the square Cε(O)

intersects neither the graphs of functionτ
(i′)
k (τ)+2lkπ/ω

(i′)
k (τ), for each k not in K−(τ∗) nor

the graphs of function τ
(i)
k (τ)+2lkπ/ω

(i)
k (τ) for each k not in K+(τ

∗).
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Pick a number 0 < ε1 < 1
2 ε and on the r− q plane define A = (τ∗− ε1,τ

∗− ε1), B =

(τ∗− ε1,τ
∗− ε/2), C = (τ∗+ ε1,τ

∗− ε/2), D = (τ∗+ ε1,τ
∗+ ε1). Let ε1 be sufficiently

small such that τ∗− ε/2 < mink∈K−(ω∗,τ∗) τ
(i)
k (τ∗− ε1)+ 2lkπ/ω

(i)
k (τ∗− ε1) if K−(ω∗,τ∗)

is not empty and τ∗−ε/2 < mink∈K+(ω∗,τ∗) τ
(i)
k (τ∗+ε1)+2lkπ/ω

(i)
k (τ∗+ε1) if K+(ω

∗,τ∗)

is not empty.
Now on the r−q plane let the parameter point P = (r,q) move along the path ABCD from

A to D. Due to the continuity of τ
(i)
k (·) and ω

(i)
k (·) for all k, P crosses the graphs of function

τ
(i)
k (τ)+2lkπ/ω

(i)
k (τ) for each k ∈K−(ω∗,τ∗) as it moves from A to B, and lk is the integer

satisfying

τ
∗ = τ

(i)
k (τ∗)+2lkπ/ω

(i)
k (τ∗).

Let these intersections be P1,P2, · · ·PK− , K− is just the number of elements in K−(ω∗,τ∗).
As P moves from C to D it crosses the graphs of τ

(i)
k (τ)+2lkπ/ω

(i)
k (τ), for each k∈K+(ω

∗,τ∗)

at points say Q1,Q2, · · ·QK+ , where K+ is just the cardinality of K+(ω
∗,τ∗). It is easy to see

that δ and ε(δ ) is selected in such a way that as P is confined in Cε(O), D̃rq(λ ) admits imag-
inary roots in Bδ ( jω∗) if and only if P = Pl , 1≤ l ≤ K− or P = Ql , 1≤ l ≤ K+. Revoke the
definition of Inc f ix at each of these crossing points, the theorem follows.

FIGURE 5.3: Illustration for the proof of Theorem 5.1.The blue curves repre-
sent the critical delay curves, namely the graphs of τ

(i)
k (r)+θ

(i)
k (τ∗)/ω

(i)
k (r)

for some appropriate index i, k. As the parameter point (r,q) moves along the
path A−B−C−D, characteristic roots appear on the imaginary axis when

(r,q) meets these critical delay curves.
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Theorem 5.1. Suppose τ∗ ∈ [τ(i−1),r(i))−{τ l} and λ = jω∗, ω∗ > 0 is a characteristic root

of Dτ∗(λ ) defined in (5.1). Let i′ = i− 1 if τ∗ = τ(i−1), otherwise let i′ = i. The following

holds

Inc(ω∗,τ∗) = ∑
k∈K+(ω∗,τ∗)

sgn(i)k − ∑
k∈K−(ω∗,τ∗)

sgn(i
′)

k , (5.30)

where the quantity sgn(i)k is defined in (5.8).

Proof. It follows from (5.22) that

Incr=τ∗+(ω
(i)
k (τ∗+),τ

∗
+) = sgn

(
∂ωF( jω(i)

k (τ∗+),τ
∗
+)
)
= sgn(i)k , (5.31)

and

Incr=τ∗−(ω
(i)
k (τ∗−),τ

∗
−) = sgn

(
∂ωF( jω(i)

k (τ∗−),τ
∗
−)
)
= sgn(i

′)
k . (5.32)

Corollary 5.1. Suppose τ∗ ∈ [τ(i−1),r(i))−{τ l} is a critical delay. Let i′= i−1 if τ∗= τ(i−1),

otherwise let i′ = i. The following holds

Inc(τ∗) = ∑
k∈K+(τ∗)

2 sgn(i)k − ∑
k∈K−(τ∗)

2 sgn(i
′)

k (5.33)

This corollary is a direct consequence of Theorem 5.1 and (5.16). The following results
can be derived from Corollary 5.1. We omit the proof.

So far we have proposed a formula that determines Inc(ω∗,τ∗) for each critical pair
( jω∗,τ∗) as long as τ∗ 6= τ l . However, if τ l is a critical delay and jω∗ is a corresponding
imaginary characteristic root with multiplicity, then these criteria can not be applied because
the number τ∗− can no longer be defined as there is no valid delay value smaller than τ l .
Although it might be possible to artificially extend the domain of τ to contain τ l in its inte-
rior, a more satisfactory solution is to derive some formula also for the one-sided increment
Inc+(ω∗,τ∗), since by definition we have Inc(ω∗,τ l) = Inc+(ω∗,τ l) if ( jω∗,τ l) is a critical
pair.

Proposition 5.2. For a critical pair ( jω∗,τ∗), we have

Nu(τ∗+)−Nu(τ∗) = ∑
ω∗∈Ω(τ∗)

Inc+( jω∗,τ∗),
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and

Inc+( jω∗,τ∗) =−Incr=τ∗( jω∗,τ∗)+ ∑
k∈K +(ω∗,τ∗)

sgn(i)k . (5.34)

As pointed out in Theorem 1 of [39], to obtain each term Incr=τ∗( jω∗,τ∗), one can first
compute the corresponding Puisuex series at the critical pair ( jω∗,τ∗) for the characteris-
tic equation (5.28), and Incr=τ∗( jω∗,τ∗) is identical to the number of values in C+ of the
Puiseux series. This technique has been briefly introduced in Chapter 2.

The proof of Proposition 5.2 follows an idea very similar to the one behind the proof of
Lemma 5.1. One can draw a path O-B-C-D in the (r,q) parameter space, where O = [τ∗,τ∗],
B = [τ∗,τ∗− ε], C = [τ∗+ ε,τ∗− ε], D = [τ∗+ ε,τ∗+ ε], and ε is a sufficiently positive
number. As the parameter (r,q) leaves from Point O and moves along the path OB, the
increment of unstable roots is just −Incr=τ∗( jω∗,τ∗) by definition. No characteristic roots
crosses the imaginary axis as (r,q) moves along BC. Finally, as the parameter moves along
CD, the number of unstable roots generated is equal to the second term of the the right hand
side of (5.34).

5.5.3 Simplification for Simple Characteristic Roots

Proposition 5.3. Suppose τ∗ ∈ [τ(i−1),τ(i))−{τ l}, and λ = jω(i)
k (τ∗) is a simple charac-

teristic root of Dτ∗(λ ). Denote ω∗ = ω
(i)
k (τ∗). For τ in a neighborhood of τ∗ this root is a

function of τ written as λ (τ). If τ∗ = τ(i−1), set i′ = i−1, otherwise let i′ = i. Let k′ be the

index that satisfies (5.26). We have the following criterion concerning the crossing direction

of the imaginary root λ (τ∗):

lim
ε→0+

sgn
(
ℜ(λ (τ))

)∣∣τ=τ∗+ε

τ=τ∗−ε
= 2Inc(ω∗,τ∗), (5.35)

Inc(ω∗,τ∗) =
1
2

sgn(i)k ×
(

sgn
(
θ
(i)
k (τ∗+)−θ

(i)
k (τ∗)

)
−sgn

(
θ
(i′)
k′ (τ∗−)−θ

(i′)
k′ (τ∗)

))
. (5.36)

In the above proposition, if τ∗ 6= τ(i−1), we must have i = i′ and k = k′, then (5.36) clearly
shows that the crossing direction of the imaginary root jω∗ associated with the frequency
function ω

(i)
k (τ) is determined by the monotonicity of the phase function θ

(i)
k (τ) at τ∗ as well

as the quantity sgn(i)k . On the other hand, if in the last proposition τ∗ = τ(i−1), it is easy to
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see θ
(i)
k (τ∗) = θ

(i′)
k′ (τ∗)+ 2lπ , for some integer l. Therefore one can piece θ

(i)
k (τ) together

with θ
(i′)
k′ (τ)+2lπ at τ∗ to form one continuous phase function, say θ(τ). Then from (5.36)

we can again deduce that the crossing direction is determined by the quantity sgn(i)k as well
as the monotonicity of θ

(i)
k (τ) at τ∗.

Proof. τ∗ ∈I
(i)

o implies that λ = jω∗ is not a repeated root as indicated by (5.22) since we
have ∂λ D( jω∗,τ∗) 6= 0. Therefore for sufficiently small positive number δ there exists only
one root in Bδ ( jω∗) for τ in a sufficiently small neighbor hood of τ∗. Therefore λ (τ) can
be locally defined. Equation (5.35) is then obvious, we only prove (5.36). For ∆τ ∈ [0,ε],
where ε is sufficiently small, there are only four possible situations. The first two are i)
θ
(i)
k (τ∗−∆τ) < 2lkπ , θ

(i)
k (τ∗+∆τ) > 2lkπ; ii)θ (i)

k (τ∗−∆τ) > 2lkπ , θ
(i)
k (τ∗+∆τ) > 2lkπ .

The rest two can be obtained by taking the inverse sign of inequality in case i) and case ii).
The condition of case i) implies that K−(ω∗,τ∗) = {φ}, K+(ω

∗,τ∗) = {k}. It follows from
Proposition 5.3 that Inc(ω∗,τ∗) = sgn(i,k) and this is consistent with (5.36). The condition
of case ii) implies that K−(ω∗,τ∗) = {φ}, K+(ω

∗,τ∗) = {φ}. Once again from Proposition
5.3 we have Inc(ω∗,τ∗) = 0. It is straightforward to check that (5.36) produces the same
result. The proof for the rest two situations follows the same line of argument and is therefore
omitted.

Proposition 5.4. Suppose τ∗ ∈ [τ(i−1),τ(i)) and jω(i)
k (τ∗) = jω∗ is a simple imaginary char-

acteristic root of Dτ∗(λ ). In a neighborhood of ( jω∗,τ∗), the characteristic equation (5.1)

implicitly determines λ as a function of τ denoted as λ (τ). It follows that

lim
τ→τ∗+

sgn(ℜ(λ (τ))) = sgn
(
θ
(i)
k (τ∗+)−θ

(i)
k (τ∗)

)
sgn(i)k . (5.37)

Assume that there exists a positive integer nd such that ( d
dτ
)nd P( jω,τ) and ( d

dτ
)nd Q( jω,τ)

exist at ( jω∗,τ∗). Furthermore, assume that nd satisfies ( d
dτ
)lθ

(i)
k (τ∗) = 0, for 1 ≤ l < nd

and ( d
dτ
)nd θ

(i)
k (τ∗) 6= 0. Then the following holds:

sgn
(( d

dτ

)l
ℜ(λ (τ∗))

)
= sgn

(( d
dτ

)l
θ
(i)
k (τ∗)

)
× sgn(i)k , (5.38)

for 1≤ l ≤ nd .

It is worth mentioning that Proposition 5.4 is reduced to the first-order root-crossing
criteria given in Chapter 3 when l = 1 in Formula (5.38).
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Proof. It is easy to see that for 1 ≤ k ≤ m(i), ω
(i)
k (τ) is locally Cnd by the inverse function

theorem. Then it is easy to see that τ
(i)
k (·)’s and θ

(i)
k (·)’s are also locally Cnd .

Since λ = jω∗ is an unrepeated root of (5.18) when q = r = τ∗, for (r,q) in a neighborhood
of (τ∗,τ∗), λ can be viewed as a continuous function in (r,q) denoted by λ̂ (r,q). Since
∂λ Dr(λ ,r,q) 6= 0 at λ = jω∗, r = q = τ∗ as implied by (5.22) and also because Dr(λ ,r,q) is
locally Cnd in both q and r, it follows from the implicit function theorem that λ̂ (r,q) is Cnd

in q. On the other hand λ as a root of (5.1) is locally a function of τ only, therefore we also
denote λ (τ) = λ̂ (τ,τ).
The number τ∗ being a critical delay implies that there exists an integer l such that

θ
(i)
k (τ∗) = 2lπ

Denote
E(i)

k (q) = q− τ
(i)
k (r)− 2lπ

ω
(i)
k (r)

(5.39)

and thus E(i)
k (τ∗) = 0. Denote the graph of function τ

(i)
k (r)+ 2lπ/ω

(i)
k (r) as γ , which is a

curve on the r− q plane and intersects the line q = r at point C = (τ∗,τ∗). Refer to Fig.5.4
for illustration. Let ε be a sufficiently small variable and let the vertical line r = τ∗+ ε :=
r1(ε) intersect γ and the line q = r at Point A, Point B respectively. Set Ar = Br = r1,
Aq = τ

(i)
k (r1) + 2lπ/ω

(i)
k (r1) and Bq = r1, then it follows that A = (Ar,Aq), B = (Br,Bq).

Further denote AB = Bq−Aq. Apply (5.22) at Point A, we deduce that there is a positive
number c1(ε) such that

∂qℜ
(
λ̂ (r,q)

)
(r,q)=A = c1∂ωF(ω

(i)
k (r),r)|(r,q)=A (5.40)

Using Taylor expansion and noticing λ̂ (r1,Aq) has zero real part, we have

ℜ
(
λ̂ (r,q)

)
(r,q)=B = c1∂ωF(ω

(i)
k (r),r)|(r,q)=A ·AB+o(AB) (5.41)

Combine the last equality with sgn(AB) = sgn(θ (i)
k (τ∗+)− 2lkπ), (5.37) follows. Further

noticing E(i)
k (τ∗+ ε) = AB as well as E(i)

k (τ∗) = 0 and using Taylor expansion we also have

AB = c2

(
d
dq

)nd

E(i)
k (τ∗)εnd +o(εnd )
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where c2 > 0. Substitute the last equality into (5.41) and further noticing sgn
(
∂ωF(ω

(i)
k (r),r)

)
=

sgn(i)k is constant for r in a neighborhood of r∗, it follows that

ℜ(λ (τ∗+ ε)) = c3F(ω
(i)
k (r∗),r∗)

(
d

dq

)nd

E(i)
k (τ∗)εnd +o(εnd ) (5.42)

where c3 > 0. Since E(i)
k (τ)ω

(i)
k (τ)+2lπ = θ

(i)
k (τ), it is straight forward to verify that there

exists a positive number c4 such that

( d
dq

)nd E(i)
k (τ∗) = c4

( d
dτ

)nd
θ
(i)
k (τ∗) (5.43)

Substitute (5.43) into (5.42), (5.38) is thus proved.

FIGURE 5.4: Illustration for the proof of Proposition 5.4

5.5.4 A Summary of the Stability Analysis Procedure

The results on the imaginary root crossing problem in the last section allows us to find all
the delay intervals for which system (5.1) is asymptotically stable in a systematic way. The
proposed analysis steps are listed as follows.
Step 1. Solve (5.3) together with (5.4) subject to ω > 0, τ ∈ I to obtain τ(i), i = 0, · · · ,K
and thus the set TF defined in Assumption III. I is thus decomposed into each I (i) =

[τ(i−1),τ(i)]. In each sub-interval I (i), solve for the real roots of Fτ(ω), and thus obtain
the frequency functions ω

(i)
k (τ), k = 1, · · · ,m(i). Then the crossing frequency set ΩF(τ) is

known for each τ .
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Step 2. In each I (i), solve (5.10) to find all the critical delay values τi, i = 1, · · · ,L and thus
the critical delay set Tc.
Step 3, If τ l is not a critical delay, jump to Step 4. Otherwise compute Inc(τ l). There are two
possible situations. Case 1, τ l does not belong in TF , which implies that all the corresponding
imaginary roots are simple. Therefore Inc(τ l) can be obtained using (5.37) and (5.16). Case
2, τ l belongs in TF . Then Inc(τ l) can be computed using (5.34).
Step 4. Compute Inc(τi) for each τi > τ l . One can in general use (5.33) together with (5.16).
However in the case where τi is not in TF , (5.36) is simpler to apply for computing Inc(τi).
Step 5. Now for any interval (τi,τi+1) we can arbitrarily pick a delay value τ ′ in it and
compute Nu(τ ′) via (5.17), then it follows that for all τ in (τi,τi+1), the number of unstable
roots is equal to Nu(τ ′).

5.6 Extension to Systems with Commensurate Delays

In this section we discuss the extension of the previous results to commensurate delay systems
studied in Chapter 4. The characteristic equation of such type of systems can be written as

D(λ ,τ) =
M

∑
k=0

Pi(λ ,τ)e−kλτ = 0. (5.44)

Also recall the following definition:

D̂(λ ,τ,x) =
M

∑
k=0

Pi(λ ,τ)x

Here we retain Assumption I-III as well as Assumption V in Chapter IV, while Assump-
tion IV in Chapter ?? is not required. With Assumption IV discarded, we are able to deal
with multiple imaginary characteristic roots.

Let the function F(ω,τ), the frequency functions as well as the phase functions be de-
fined as in Chapter IV. The rest of notations introduced in this chapter takes the same defini-
tion as for systems with a single delay except that now the frequency functions and the phase
functions are now defined for the commensurate-delay systems.

The two-parameter perspective also applies to systems with commensurate delays. The
equation (5.44) is just equivalent to

D(λ ,r,q) =
M

∑
k=0

Pi(λ ,r)e−kλq = 0, (5.45)
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with the restriction

q = r = τ. (5.46)

Therefore, we can analysis the stability of system (5.45) in the r-q plane, and then impose
the restriction q = r = τ , just as what we did for the single-delay situation. The critical delay
curve τ

(i)
k (r) associated with the frequency curve ω

(i)
k (r) can be defined in the same way as

in (5.19), namely

τ
(i)
k (r) =−

θ
(i)
k (r)

ω
(i)
k (r)

+ r.

For some given index i, k, it is easy to see that ( jω(i)
k (r),r,q) satisfies (5.44) if and only if

the condition (5.21) is satisfied. Then the geometric idea described for single delay systems
readily apply to commensurate delay systems. Therefore Lemma 5.1 can be shown to hold for
the commensurate delay case using the same argument. For commensurate-delay systems,
the formula 5.30 needs to be corrected as

Inc(ω∗,τ∗) = ∑
k∈K+(τ∗)

(−1)Nx( jω(i)
k (τ∗+),τ∗+) · sgn(i)k

− ∑
k∈K−(τ∗)

(−1)Nx( jω(i′)
k (τ∗−),τ∗−) · sgn(i

′)
k ,

(5.47)

where Nx( jω(i)
k (τ∗+),τ∗+), denotes the number of roots of

D̂(ω
(i)
k (τ),τ,x) = 0

in x located outside D as τ → τ∗−. and Nx( jω(i)
k (τ∗−),τ∗−), denotes the number of roots of

D̂( jω(i′)
k (τ),τ,x) = 0

in x located outside D as τ → τ∗−.
The number Nx( jω(i)

k (τ∗+),τ∗+) can be computed in the following way. Let U ∈I (i) be
an interval that contains τ∗ and satisfies 1)U ∪Tc = {τ∗}, 2)U ∪Φτ = φ , where Φτ is defined
in Assumption V of Chapter 4. Then one can pick any number τ ′ ∈U and τ ′ > τ∗, then it is
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easy to see that

Nx( jω(i)
k (τ∗+),τ∗+) = Nx( jω(i)

k (τ ′),τ ′).

To compute the number Nx( jω(i′)
k (τ∗−),τ∗−), let V ∈I (i′) be an interval that contains τ∗ and

satisfied 1)V ∪Tc = {τ∗}, 2)V ∪Φτ = φ . We pick any number τ ′ ∈ V and τ ′ < τ∗, then it
follows that

Nx( jω(i′)
k (τ∗−),τ∗−) = Nx( jω(i′)

k (τ ′),τ ′).

As statede in Proposition 4.6, for any fixed i, k, the number Nx( jω(i)
k (τ),τ) is a constant for

τ in the interior of I (i) if the set Φτ is empty.
The equation (5.47) can be simplified for simple imaginary characteristic roots, with

which one can easily recover the root crossing direction criterion given in Chapter 4. The
argument is very close to the one we have made for the single delay case and therefore omitted
here. In particular, the equation (5.48) can be modified for systems with commensurate delays
as

Inc(ω∗,τ∗) =
1
2
(−1)Nx( jω∗,τ∗)sgn(i)k ×

(
sgn
(
θ
(i)
k (τ∗+)−θ

(i)
k (τ∗)

)
−sgn

(
θ
(i′)
k′ (τ∗−)−θ

(i′)
k′ (τ∗)

))
. (5.48)

5.7 Numerical Examples

5.7.1 Stability of the Population Model

In the previous analysis of the population model (5.11) we have already decomposed I into
I (i), i = 1,2,3 and we know τ(0) = 0, τ(1) ≈ 6.160, τ(2) ≈ 9.762, and τ(3) = τu = 14. We
also have Tc = {τ1,τ2} and τ1 ≈ 0.878, τ2 = τ(2). It is easy to check Nu(0) = 0. We pick
arbitrarily a number in (τ(1),τ1) as τ1−. and a number in (τ1,τ

(2)) as τ1+. From the lower
diagram of Fig. 5.1 it is easy to see

sgn(θ (1)
1 (τ1−)−θ

(1)
1 (τ1)) =−1, sgn(θ (1)

1 (τ1+)−θ
(1)
1 (τ1)) = 1.

Simple computation shows sgn(1)1 = 1. It thus follows from (5.36) that

Inc(τ1) = 2Inc( jω(1)
1 (τ∗1 ),τ1) = 2.
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In other words, the pair of characteristic roots ± jω(1)
1 (τ1) crosses the imaginary axis

towards C+ as τ increases beyond τ1. We can make the same conclusion about the crossing
direction of this pair of imaginary root by invoking Proposition 5.4 and noticing d

dτ
θ
(1)
1 (τ1)>

0.
We now consider the critical delay τ2. We have already shown that K−( jω(2)

2 (τ2),τ2) =

{1}. It can be verified that sgn(2)1 = 1. Applying (5.33) we have

Inc(τ∗) = ∑
k∈K+(τ∗)

2 sgn(i)k − ∑
k∈K−(τ∗)

2 sgn(i
′)

k

= −2sgn(2)1

= −2. (5.49)

We deduce Inc(τ2) = 2Inc( jω(2)
2 (τ2),τ2) =−2. Therefore the pair of roots± jω(2)

2 (τ2) cross
the imaginary axis towards C− as τ increases and sweeps through τ2. Consequently, we
conclude that the system is asymptotically stable for τ ∈ [0,τ1)∪(τ2,14] and has two unstable
characteristic roots for τ ∈ (τ1,τ2).

5.8 Chapter Summary

A two-parameter approach is taken in this chapter. For systems with delay-dependent coeffi-
cients, we view the delay parameter in the system coefficient and the delay parameter in the
state as two variables denoted as r and q, respectively, subject to the restriction r = q = τ .
We defined the critical delay curves, which separate the r-q parameter domain into disjoint
stability regions, in each region the number of unstable roots are constant and stability switch
can only occur on the boundary curves of these stability regions. The geometric point of view
establishes a connection between the more classical problems where system coefficients are
delay-independent and stability analysis of systems with delay-dependent coefficients. The
two-parameter perspective provides geometric insight into the problem, which allows us to
derive more general results concerning the root crossing directions, applicable to charac-
teristic roots with multiplicity. It also establishes a connection between the more classical
problems where system coefficients are delay-independent and stability analysis of systems
with delay-dependent coefficients. Consequently, we can readily apply some tools origi-
nally developed for delay systems with fixed-coefficients to systems with delay-dependent
coefficients. The analysis confirms our conjecture in Chapter 3 that the crossing direction
of imaginary characteristic roots depends partially on the monotonicity of the phase angle
functions, and differentiability of phase angle functions are not essential. The correlation
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between the number of unstable roots and the position of phase angle functions can be easily
interpreted from the two-parameter point of view.





103

Chapter 6

Stability Analysis of Control Systems
Subject to Delay-Based Feedback

6.1 Chapter Overview

In engineering practice, delay-difference is often used to approximate the derivatives of out-
put signals for feedback control, leading to a closed-loop system with delay both in the states
and in the system’s coefficients. In this context, it is important find all the delay values
contained in some interval that guarantee the exponential stability of the closed-loop system
subject to a delay-based control law.

We first consider a feedback scheme that uses only the first order derivative of the out-
put approximated by a finite-difference scheme. After specifying the control law based on
such a finite-difference approximation, we derive the characteristic equation of the linearized
closed-loop system. Then it is shown that by shifting the variable in the characteristic equa-
tion, the condition for exponential stability with decay rate α is equivalent to a condition for
just asymptotic stability.

The stability analysis methods developed in previous chapters require the system coeffi-
cients to be continuous in τ . However, due to the fact that the delay appears as a denominator
in the coefficients as a result of the finite-difference scheme, the coefficients are not bounded
as τ approaches 0. Therefore we propose some convenient methods to compute a positive
lower bound τ l for our τ-sweeping test. The lower bound τ l is selected in such a way that
the number of unstable characteristic roots of the shifted closed loop system is known for
τ ∈ (0,τ l].

Once the control design and stability analysis procedure becomes clear for feedback
based on a single delay, we present a generalized approximation scheme for higher order
derivatives of the output, which has been used in [32] for stabilizing a chain of integrator. The
idea is to approximate the output history through polynomial interpolation and replace the
actual derivatives of the output with the derivatives of the polynomial. We derive a bound on
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the approximation error, which allows us to compute the lower bound τ l for our τ-sweeping
test.

Finally the proposed design and analysis procedure is applied to several practical prob-
lems. The results shows that a control scheme based on approximated output derivatives may
outperform that based on the exact output derivatives. This confirms the observation that
delay can exhibit stabilizing effect in certain situations.

The materials of this chapter have been partially published in [35].

6.2 Control Scheme Based on a Finite Difference Scheme

There are several distinct control design philosophies. The constructive control design philos-
ophy consists in transforming systems into certain forms that facilitate the design of control
law or the construction of control Lyapunov functions. For various design techniques fol-
lowing this idea, readers may refer to [93]-[100] . Very often these design techniques require
full-state feedback and extension to output feedback may require the design of observers.
Another control design philosophy is first choose a control law with fixed structure but sev-
eral control parameters to be tuned. For instance, in the series work [75]-[78] , the authors
considered feedback laws with a proportional-integral-retarded output feedback structure.
The corresponding control parameters are the feedback gains and the time delay. In this
chapter, we will be concerned with the second design philosophy. A controller based on the
derivatives of the output is assumed to exist in the first place. Such a controllers may be
designed using the aforementioned methods based on state-feedback, since the derivatives of
the output can be considered as state variables, as suggested by the Byrnes-Isidori canonical
form [94]. Then we approximate the derivatives of the output using the delayed signal of the
output and thus derive a controller with the time delay as a control parameter to be tunned
for system stability.

6.2.1 Motivating Example

We consider a standard robot path following problem [52] with some simplification. As
illustrated in Fig.6.1, a unicycle traveling at a constant speed V is required to follow a straight
path. The robot is assumed to be non-holonomic, so the direction of its translational velocity
is always along its heading direction. The control input u is the derivative of its yaw rate,
which reflects the yaw moment applied to the robot. It is easy to see the linearized dynamics
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of the system is described by 
ė =V θ

θ̇ = ω

ω̇ = u

y = (ω e)T ,

(6.1)

where e stands for the lateral tracking error, θ is the heading angle of the robot and ω is the
yaw rate. Signal y is the output vector measured by the on-board sensors.

FIGURE 6.1: Illustration of the robot path-following problem

One can choose positive coefficients k0, k1, k2 and a linear feedback

u =−k0ω− k1e− k2V θ ,

which stabilizes the system. In practice θ may not be convenient to measure, therefore we
suppose it is not a component of the output. Noticing θ =V−1ė and ė≈ e(t)−e(t−τ)

τ
for small

τ , we choose instead the following control law utilizing the delayed output:

u =−(k0 k1)y− (0 k2)
y(t)− y(t− τ)

τ
. (6.2)

It can be shown that if system (6.1) can be stabilized by the following control law for some
fixed number k0, k1, k2:

u =−(k0 k1)y− (0 k2)ẏ, (6.3)

then it can also be stabilized by (6.2) for sufficiently small delay. However, since the delay
appears as a denominator, it can not be too small. Otherwise, the noise contained in the
measurement of y will be greatly amplified by the feedback and thus severely deteriorates
the performance of the closed-loop system. On the other hand, an excessively large value
of τ may cause slow convergence, strong oscillation, or even instability. Therefore it is
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practically important to find a set of delay values for (6.2) such that the closed loop system is
exponentially stable with some pre-specified decay rate. Then one has the freedom to choose
the delay value within this set that also optimizes other performance indexes.

6.2.2 A Finite Difference Scheme

We consider linear time-invariant systems of the form{
ẋ = Ax+Bu,

y = Cx.
(6.4)

where x ∈ Rn is the system state vector and u ∈ R is the control input, y ∈ Rm is the output
vector of the system that is available for control feedback. Matrices A, B, C are of appropriate
dimensions.

Suppose a control law of the following form is first designed for stabilization:

u(t) = K0y(t)+K1ẏ(t), (6.5)

where K0, K1 are the gain matrices. We assume the signal ẏ(t) is not fully available to the
controller and hence approximated using the finite difference scheme:

ẏ(t) =
y(t)− y(t− τ)

τ
. (6.6)

As a result, (6.5) becomes:

u(t) = K0y(t)+K1
y(t)− y(t− τ)

τ
. (6.7)

For any time instant t ≥ 0, we denote the trajectory of the closed-loop system consisted
of (6.4)-(6.7) as xt , which is a function defined as:

xt(s) = x(t + s), s ∈ [−τ,0]. (6.8)

We will be concerned with the convergence rate of xt . For any positive number α , We say
system (6.4)-(6.7) is α−stable, if there exists some positive number c such that

||xt ||< ce−αt ,

where ||xt || denotes the supreme norm of the function xt . Let τu be the maximal delay value
under consideration, we will propose a method that can be used to find all the sub-intervals
in (0,τu] such that the closed-loop system is α-stable if τ takes value in these sub-intervals.
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We introduce two standing assumptions:
Assumption 1. In (6.5) K1 satisfies K1CB = 0.

Assumption 1 ensures that control signal u(t) does not explicitly appear on the right hand
side of (6.5), which will result in an algebraic loop. Consequently, the system (6.4)-(6.5) is
guaranteed to be well-posed.

Assumption 2. None of the eigenvalues of the system (6.4)-(6.5) has a real component
equal to −α .

The state vector x in (6.4) does not necessarily contain only the states of the open-loop
plant, it can also include the states of an augmented system introduced for achieving dynamic
output-feedback. Accordingly, the output y may be a function of the states of both the original
plant and the augmented part. Therefore, although the feedback in (6.5) takes the form of a
PD control, a variety of feedback scheme can be converted into this form. For instance, for
an SISO plant with the output y ∈ R , the classical PID controller can be constructed by first
introducing an extra state σ satisfying

σ̇(t) = y(t),

where y(t) is the measured output of the plant. First define u = KIσ + v and then v becomes
the new control input, which is defined according to the PD scheme as: v = KPy+KDẏ. We
have thus constructed a PID control law.

As noted in [32], when the open-loop system possesses more than a pair of imaginary
roots, then it is necessary to introduce multiple delays in order to stabilize. The control
feedback based on commensurate delays will be addressed in Section 6.5.

6.3 Stability Analysis of the Delay-difference Scheme

6.3.1 Characteristic Equation and Stability

Let G(s) = 0 be the characteristic equation of the open-loop system (6.4) with u ≡ 0, then
G(s) is a polynomial in s of degree n. There exist polynomials Gu1, Gu2 such that the char-
acteristic equation of the control system consisting of (6.4)-(6.5) takes the form

Gc(s) = G(s)+Gu1(s)+Gu2(s)s = 0, (6.9)
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where Gu1(s) and Gu2(s)s are generated by the term K0y and K1ẏ in the control feedback (6.5),
respectively. An implication of Assumption 1 is that the degree of Gu2 must be smaller than
n−1. After the delayed feedback (6.7) is applied, the corresponding characteristic equation
of the closed loop system becomes

G(s)+Gu1(s)+Gu2(s)
1− e−sτ

τ
= 0. (6.10)

It is proved in [8] that the closed loop system (6.4)-(6.7) is α-stable if and only if each root
of (6.10) in s has a real part smaller than −α . We perform a shift of variable s 7→ λ −α in
(6.10) and obtain

Pα(λ ,τ)+Qα(λ ,τ)e−λτ = 0, (6.11)

where

Pα(λ ,τ) = G(λ −α)+Gu1(λ −α)+Gu2(λ −α)τ−1,

Qα(λ ,τ) = −τ
−1eατGu2(λ −α).

It is easy to see that α-stability of the closed loop system with control law (6.7) is equivalent
to the asymptotic stability of the characteristic equation (6.11).

Our objective is equivalent to computing all the subintervals contained in (0,τu] that guar-
antee that all the the roots of (6.11) in λ are located on C− if τ belongs in these subintervals.
We use the quantity Nu(τ) to denote the number of characteristic roots of (6.11) on the right
half complex plane if τ > 0. If τ = 0, it is understood as the number of characteristic roots
of (6.9) with real parts larger than −α .

6.3.2 The Generalized τ-decomposition Approach

Here we briefly review the generalized τ-decomposition approach we have taken in the previ-
ous chapters. One first starting with one value of delay τ l for which one knowns the number
of characteristic roots on C+, and sweeps τ through the delay interval of interest I = [τ l,τu]

of delays, and identify all critical delays τl , l = 1,2, . . . ,L. Thus, one may divide I into
subintervals (τl−1,τl), and the number of right-half plane roots within each subinterval is
constant. Next, for each critical delay τl , the characteristic roots on the imaginary axis are
located and their crossing directions are determined using the root crossing criteria we devel-
oped in previous chapters. Subsequently, the number of unstable characteristic roots can be
determined for each subinterval (τl−1,τl).
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The generalized τ−decomposition approach requires the system coefficients to be con-
tinuous on the delay interval I . However, for the system considered in this paper, the co-
efficients are not bounded on I as τ appears in the denominator. For this reason we can
not simply set τ l = 0. It is pointed out in [32] that there exists some positive numbers τ ′

such that the characteristic equation has no imaginary characteristic root for τ ∈ (0,τ ′) and
Nu(τ ′) = Nu(0). Then τ ′ can be viewed as an lower bounded of the delay interval for the
τ-sweeping test. Therefore we can simply set τ l = τ ′. The computation of such a number
will be addressed next.

6.4 A Lower Bound for the Delay Interval

We can rewrite (6.11) as

Dα(λ ,τ) = Gcα(λ )+Q(λ )R(λ ,τ) = 0, (6.12)

where

Gcα(λ ) = Gc(λ −α), Q(λ ) = Gu2(λ −α),

R(λ ,τ) =
1− e(−λ+α)τ

τ
−λ +α. (6.13)

and the definition of the function Gc is given in (6.9).
In the ensuing analysis, we will view Gcα(s) as the ‘nominal’ part of the characteristic

equation and the term Q(s)R(s,τ) as the perturbation. It is known in [32] that for any real
c, all the roots of (6.10) with real part larger than c converge to the roots of (6.5) with real
parts also larger that c. As consequence, we are able to show that for sufficiently small τ ,
Nu(τ) = Nu(0).

Lemma 6.1. For any ω ∈ R, the term R( jω,τ) defined in (6.13) can be bounded as

|R( jω,τ)| ≤ R̃(ω,τ), ∀τ ≥ 0, i = 1,2, (6.14)

where

R̃(ω,τ) =
1
2
(ω2 +α

2)τeατ (6.15)

Proof. Denote

R0(λ ,τ) = 1− e(−λ+α)τ − (λ −α)τ,
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then we have R(λ ,τ) = τ−1R0(λ ,τ) as well as

∂τR0(λ ,τ) = (λ −α)(e−(λ−α)τ −1), (6.16)

∂
2
τ R0(λ ,τ) = −(λ −α)2e−(λ−α)τ , (6.17)

and thus

R0(λ ,τ) =
∫

τ

0
∂τR0(λ ,µ)dµ

=
∫

τ

0

(
∂τR0(λ ,0)+

∫
µ0

0
∂

2
τ R0(λ ,µ1)dµ1

)
dµ0

= τ∂τR0(λ ,0)+
∫

τ

0

∫
µ0

0
∂

2
τ R0(λ ,µ1)dµ1dµ0

=
∫

τ

0
(τ−µ)∂ 2

τ R0(λ ,µ)dµ. (6.18)

In deriving (6.18) we used ∂τR(λ ,0) = 0 which follows from (6.16). The expression (6.18)
combined with (6.17) yields

|R( jω,τ)| < max
µ∈[0,τ]

|∂ 2
τ R0( jω,µ)|12 τ

= max
µ∈[0,τ]

|( jω−α)2e−( jω−α)µ |12 τ

= 1
2(ω

2 +α2)eαττ = R̃(ω,τ), (6.19)

for τ > 0. The lemma is thus proved.

Proposition 6.1. Let τ̂ be the positive number that satisfies

τ̂eατ̂ = ẑ, (6.20)

where

ẑ = inf
ω≥0

Q( jω)(ω2+α2)6=0

2J(ω), (6.21)

J(ω) =
|Gcα( jω)|

|Q( jω)|(ω2 +α2)
. (6.22)

Given Assumption 2 and 0 < τ l < τ̂ , the characteristic equation (6.11) admits no imaginary

characteristic root for τ ∈ (0,τ l].
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Proof. We first notice that the function τ exp(ατ) is monotonic. Then the equations (6.15),
(6.20) as well as (6.21) together indicate that for all (ω,τ) ∈ R× [0, τ̂) we must have

|Gcα( jω)| ≥ 1
2
|Q( jω)|(ω2 +α

2)ẑ

= |Q( jω)R̃(ω, τ̂)|

> |Q( jω)R( jω,τ)|.

Therefore

Gcα( jω)+Q( jω)R( jω,τ) = 0

can not hold for any (ω,τ) ∈ R× (0, τ̂), then the proposition follows.

We now show that τ̂ can be computed by solving a pair of polynomial equations. To this
end, define E0 : R×R∗+ 7→ R and E : R∗+×R∗+ 7→ R as:

E0(ω,z) = |Gcα( jω)|2− z|Q( jω)(ω2 +α
2)|2, (6.23)

E(w,z) = E0(
√

w,z). (6.24)

It is easy to see that for any fixed z, E0(ω,z) must be a polynomial in ω2. Therefore the
function E(w,z) is a polynomial in w.

Proposition 6.2. Let Sz be the set of z values appearing in the pairs (w,z) ∈ R×R+ that

satisfy the following polynomial equations:{
E(w,z) = 0,
∂wE(w,z) = 0.

(6.25)

If Sz is empty, then τ̂ defined in (6.20) equals +∞. Otherwise the following holds:

τ̂eατ̂ = 2
√

minSz. (6.26)

Proof. If Sz is not empty, define z∗ = minSz, otherwise z∗ = +∞. We must have z∗ > 0
because the equation E0(ω,0) = 0 does not admit any real solution due to Assumption 2. It
then follows from Proposition 3.1 that the number of real solution of equation E0(ω,z) = 0
in ω remains 0 for z ∈ [0,z∗). We can thus deduce that E0(ω,z)> 0, ∀(ω,z)∈R× [0,z∗) and
E0(ω

∗,z∗) = 0 for some real ω∗, which implies 4z∗ = ẑ2, where ẑ is defined in (6.21). The
proof is completed after comparing (6.20) with (6.26).
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The last proposition indicates that we can obtain τ̂ by solving first (6.25) and then (6.26).
Since the former one is a set of polynomial equations in w and z, there exist algorithms to find
the numerical values of its roots efficiently. One can use standard Mathematical software,
such as Matlab and Mathematica to solve this equation. The left hand side of (6.26) is a
monotonic function, therefore once minSz is known, τ̂ can be easily computed.

We now propose a second method for finding a valid value of τ l , which does not require
the knowledge of τ̂ . One can pick a small positive number z1 that satisfies

z1 < lim
ω→+∞

|Gcα( jω)|2

|Q( jω)|2ω4 ,

The right hand side of the last inequality cannot be 0 since the degree of Q( jω)ω must be
smaller than the degree of Gcα due to our assumption on the relative degree. Consider the
following polynomial equation in w:

E(w,z1) = 0. (6.27)

If (6.27) admits no positive solution in w, it is clear that

|Gcα( jω)|2 > z1|Q( jω)|(ω2 +α
2)2, ∀ω ∈ R.

Therefore we must have 4z1 < ẑ2 and can conclude that it suffices for τ l to satisfy

τ
l exp(ατ

l)≤ 2
√

z1. (6.28)

Equation (6.27) has only one variable and therefore is simpler to solve than (6.25). However,
to use the second method we need a sufficiently small initial guess of z1. If (6.27) admits any
non-negative real solution in w for some given z1, we have to repeatedly reduce the value of
z1 until this equation admits no solution in w≥ 0.

6.5 Commensurate-Delay Feedback

In general, it may become necessary to use high order derivatives of the output to construct
the feedback. Therefore, it is reasonable to consider high order derivatives approximated
using multiple delays. Multiple delays can also be useful for approximating just the first
order derivative using linear regression for its capability of ameliorating the noise in the
measurement.
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For notational simplicity, we assume y ∈R. The control law using high order derivatives
of the output can be written as

u(t) =
m

∑
l=0

kl(
d
dt )

ly(t), (6.29)

where m is smaller than the relative degree of the output y with respect to the input u. This
condition ensures that each ( d

dt )
ly(t) can be regarded as a state variable [94], as a result the

last control law does not induce an algebraic loop.
To generalize the approximation scheme 6.6 for higher order time derivatives of the out-

put, we follow the idea proposed in [32]. For any given initial time t0, we use a polynomial
function yp(·) to approximate the time history of the output y(t), t ∈ [t0 −mτ, t0], which
interpolates the function y(·) at m past instants: t, t− τ, t−2τ, · · · , t−mτ , i.e.,

yp

(
t0− l

τ

N

)
= y
(

t0− l
τ

N

)
, l = 1,2, · · · ,m. (6.30)

The polynomial yp(t) can be expressed as

yp(t) = c0 + c1(t− t0)+ c2(t− t0)2 + · · ·+ cm(t− t0)m

where the coefficients satisfy
c0

c1
...

cm

=


1

(−τ)−1

. . .

(−τ)−m

T−1
m


y(t0)

y(t0− τ)
...

y(t0−mτ).

 (6.31)

and

Tm =


1 0 0 . . . 0
1 1 1 . . . 1
...

...
... . . .

...
1 m m2 . . . mm


The derivatives of y(t) at t0 can now be approximated as

( d
dt )

ly(t0)≈ ( d
dt )

lyp(t0) = l!cl, 1≤ l ≤ m. (6.32)
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Since t0 ≥ 0 is arbitrary, a combination of (6.31) and (6.32) shows that (6.29) can be approx-
imated with the following control law using commensurate delays [32]:

uτ(t) =
(

k0 k1
1
−τ

k2
2!

(−τ)2 · · · km
m!

(−τ)m

)
T−1

m


y(t)

y(t− τ)
...

y(t−mτ)

 . (6.33)

Assuming a stable internal dynamics, to analyze the closed loop system subject to the control
law (6.29), one only need to consider a characteristic equation of the following form:

Gc(s) = G(s)+Gu(s)
m

∑
i=0

kism = 0, (6.34)

where G(s), Gu(s) are polynomial equations. Then to analyze the closed-loop system subject
to the delayed feedback control (6.33), we only need to consider the following characteristic
equation:

Gcτ = 0, (6.35)

where

Gcτ(s) = Gc(s)+Gu(s)
(

k0 k1
1
−τ

k2
2!

(−τ)2 · · · km
m!

(−τ)m

)
T−1

m


1

e−sτ

...
e−msτ

 . (6.36)

To α-stability analysis, one may further perform a variable shift: s 7→ λ − α in the last
equation, which will lead to a characteristic equation with commensurate delays:

m

∑
i=0

Pi(λ ,τ)e−iλτ = 0. (6.37)

The detailed expression of each Pi(λ ,τ) can be easily derived and is omitted here. The
interpolation-based approximation method can be view as a generalization of the delay-
difference scheme for approximating the first order derivative. Similarly, we arrive at a closed
loop system with the delay parameter also appearing in the denominators of system coeffi-
cients. It is worth mentioning that when the open loop system is a chain of integrator, it is
possible to use a rescaling technique to transform the closed loop system such that the delay
no longer exists in system coefficients [32]. This technique also played a crucial role in the
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study of the so-called peaking phenomena [31], [93]. However, it may not be applicable to
systems with more general structures.

We next propose a method to compute a lower bound τ l for the τ-sweeping test. It
is required to satisfy Nu(τ) = Nu(0), for τ ∈ (0,τ l], and Nu(0) is the number of α-unstable
roots of the characteristic equation (6.34). When α-stability is concerned, we need to assume
no characteristic root of (6.34) have a real component equal to −α .

Denoting

R̂(s,τ) =
1
τ

(
e−τλ −

m

∑
i=0

(−τs)i

i!

)
,

the characteristic equation (6.36) can be written as

Gcτ(s) = G(s)+Gu(s)
m

∑
l=i

klsl

−Gu(s)T−1
m

(
k1 k2

2!
−τ
· · · km

m!
(−τ)m−1

)
R̂(s,τ)

...
R̂(s,mτ)

 . (6.38)

Since the α-stability is concerned, we perform the variable shift in (6.38): λ = s+α , and
obtain the shifted characteristic equation of the closed-loop system subject to the feedback
using commensurate delays:

Dα(λ ,τ) = Gcα(λ )+Q(λ )


R(λ ,τ)

...
R(λ ,mτ)

 , (6.39)

where Gcα(λ ) = Gc(λ −α), R(λ ,τ) = R̂(λ −α,τ) and

Q(λ ) =−Gu(λ −α)T−1
m

(
k1 k2

2!
−τ
· · · km

m!
(−τ)m−1

)
. (6.40)

We suppress the explicit dependence of Q(λ ) and Rl(λ ,τ) on α to simplify the notation. To
determine an upper bound τ l such that the stability of Dα(λ ,τ) is identical to Gcα(λ ) for
τ ∈ (0,τ l), we first establish a bound for each the R(λ ,τ) resulted from the approximation
error of the approximation scheme.

It follows from the Taylor theorem that

R(λ ,τ) =
1
τ

∫
τ

0
−dm+1e(α−λ )µ1

dµ
m+1
1

(τ−µ1)
mdµ1.

Therefore, for any real ω and τ > 0



116 Chapter 6. Stability Analysis of Control Systems Subject to Delay-Based Feedback

|R( jω,τ)| =

∣∣∣∣∣1τ
∫

τ

0
−dm+1e(α− jω)µ1

dµ
m+1
1

(τ−µ1)
mdµ1

∣∣∣∣∣
<

1
τ

∫
τ

0
| jω−α|m+1eαµ1(τ−µ1)

mdµ1

=
1

(m+1)!
| jω−α|m+1

τ
meτα , (6.41)

Using the inequality (6.41), we obtain∣∣∣∣∣ m

∑
l=1

kl
l!

(τ)l−1 R( jω, lτ)

∣∣∣∣∣
2

≤
m

∑
i,h=1
|R( jω, iτ)||R( jω,hτ)|klkh

l!h!
τ l+h−2

≤ m
m

∑
l=1
|R( jω, lτ)|2k2

l
l!2

τ2l−2

=
m(ω2 +α2)m+1

(m+1)!2

m

∑
l=1

l!2k2
l e2lτ

τ
2(m+1−l).

Now it is clear that we can construct some function Q̃(ω,τ) non-negative for (ω,τ) ∈
R×R+, which is polynomial in ω and satisfies∣∣∣∣∣Gu( jω−α)T−1

m

m

∑
l=1

kl
l!

τ l−1 R( jω, lτ)

∣∣∣∣∣≤ |Q̃(ω,τ)|,

Moreover, |Q̃(ω,τ)| can be made monotonically increasing in τ ∈ [0,+∞] for any given real
ω . In particular, we can simply choose

Q̃(ω,τ) =
∣∣Gu( jω−α)T−1

m

∣∣√m(ω2 +α2)m+1

(m+1)!2

m

∑
l=1

l!2k2
l e2lττ2(m+1−l). (6.42)

Now define
E0(ω,τ) = |Gcα( jω)|2−|Q̃(ω,τ)|2

it is clear that E(ω,τ) is a polynomial of ω2 for fixed τ and is decreasing as τ ≥ 0 increases.
Define

E(w,τ) = E0(
√

w,τ),

the following holds:

Proposition 6.3. Let τ ′ be any fixed positive number such that limw→+∞ E(w,τ ′)→+∞, and

the equation

E(w,τ ′) = 0 (6.43)
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does not admit non-negative real roots in w, then Dα(λ ,τ) does not admit any imaginary

root in λ . Equivalently, all the roots of the characteristic function Gcτ(s) given in (6.36)

corresponding to the closed-loop system are located to the left of the vertical line R(s) =−α .

Proof. Since for any real τ ′, limw→+∞ E(w,τ ′)→+∞, the equation (6.43) must admit some
non-negative root in w if |Gcα( jω)|2 − |Q̃( jω,τ)|2 ≤ 0 for some real ω . Therefore, the
condition in the proposition ensures that

|Gcα( jω)|> |Q̃(ω,τ ′)|,∀ω ∈ R.

Since for any fixed real ω , |Q̃( jω,τ ′)| is increasing with respect to τ , the last inequality
further leads to

|Gcα( jω)|> |Q̃(ω,τ)|, ∀(ω,τ) ∈ R× (0,τ ′).

Consequently, for all (ω,τ) ∈ R× (0,τ ′) the following holds:

|Gcα( jω)|> |Q̃(ω,τ)|

≥

∣∣∣∣∣Gu( jω−α)T−1
m

m

∑
l=1

kl
l!

(−τ)l−1 R( jω, lτ)

∣∣∣∣∣ ,
which implies that the shifted characteristic equation Dα(λ ,τ) = 0 in (6.39) can not have any
imaginary root for τ ∈ (0,τ ′) and thus the proposition.

Once the number τ ′ in the last proposition is found, one can simply set τ l = τ ′. The
number τ ′ can be found via line search: one starts with an initial guess of τ ′ and check if
(6.43) has any non-negative real root in w. If any such root exits, it means the guessed value
of τ ′ is too large, then a smaller value of τ ′ is chosen and whole procedure is repeated until
no root of (6.43) in w can be found in [0,+∞).

6.6 Numerical Examples

Example I. We first apply the proposed stability analysis method to the unicycle model (6.1).
We set the maximal delay value under consideration as τu = 0.5.

We start with designing the control law of the form (6.5). Various tools for controlling
LTI systems can be employed. For instance, one can use LQR or LMI based techniques to
optimally determine the control parameters. Since the specific method for determining con-
trol parameters is irrelevant to our stability analysis procedure, we simply set the eigenvalues
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of the closed loop system as

s1 =−2, s2 =−1.5+4 j, s3 =−1.5−4 j.

Accordingly we obtain the following control parameters:

k0 = 5, k1 = 97/4, k2 = 73/2.

and the characteristic equation of the closed loop system is:

s3 + k0s2 + k1s+ k2 = 0. (6.44)

From the real part of the eigenvalues we deduce that the decay rate of the control system
using the exact output derivative is 1.5. Suppose we require that when the delay-difference
approximation is used for feed-back control, the decay rate is no less than 1, we therefore set
α = 1.

We derive the explicit expression of (6.10) as:

s3 +a0s2 +a1s+a2(τ)+a3(τ)e−sτ = 0, (6.45)

where a0 = k0 − 3, a1 = 3− 2k0, a2 = k0 + k2 + k1τ−1 − 1 and a3 = −eτk1/τ . We first
determine the value of τ l as the lower bound for the τ-sweeping test. We have

Gcα(λ ) = (λ −1)3 + k0(λ −1)2 + k1(λ −1)+ k2, (6.46)

Using the expression above, the function E(w,z) can be derived as

0 = w3 +w2(4k0−2k1 +(k0−3)2− k2
1c2

1−6
)
+

ω
2((6−2k0)(k0− k1 + k2−1)+(k1−2k0 +3)2−

2k2
1c2

1
)
+(k0− k1 + k2−1)2− k2

1z

We solve the equation (6.27) with z1 = 0.016 and find no solution in w ∈ [0,+∞). We check
that (6.28) holds with τ l = 0.07 and z1 = 0.016. Therefore, we set τ l = 0.07 and analyze the
stability of (6.11) with the delay interval I = [0.07,0.5].

We follow the procedure outlined in Section 3.4.1. Computation shows that
F(ω,τ) = ω6 +(a2

0−2a1)ω
4 +(a2

1−2a0a2)ω
2

+a2
2−a2

3,

∂ωF(ω,τ) = 6ω5 +4(a2
0−2a1)ω

3 +2(a2
1−2a0a2)ω.

(6.47)
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FIGURE 6.2: Stability analysis of the mobile robot. (a)The graphs of fre-
quency functions. (b)The graphs of phase angle functions. The graph of
θ
(1)
2 (τ) crosses the horizontal line 0 at τ1, giving one critical delay within

I . (c)The number of α-unstable roots.
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FIGURE 6.3: Simulation results of the mobile robot. (a)The time response
of the lateral tracking error. (b)The lateral tracking error weighted by the
function et . The convergence of the weighted tracking error indicates α-

stability for α = 1.

Solving the previous two equations together using MATLAB for τ with the constraint
ω ∈ R and τ ∈I , we find only one solution τ(1) ≈ 0.1143. The set I is thus decomposed
into two intervals:

I = I (1)∪I (2),

where I (1) = [τ l,τ(1)] and I (2) = [τ(1),τu]. It can be verified that m(1) = 2 and m(2) = 0.
The values of ω

(1)
1 (τ) and ω

(1)
2 (τ) for various τ ∈I (1) are computed numerically based on

(6.47) and the graph of these two functions are depicted in Fig.6.2 a. The corresponding
phase functions θ

(1)
1 (τ) and θ

(1)
2 (τ) are plotted in Fig.6.2 b.

We observe that the only intersection between the phase curves corresponding to θ
(1)
i (τ),

i = 1,2 and the horizontal lines whose value equals 2lπ for some integer l takes place only
at τ1 ≈ 0.0915 when l = 0. Therefore two imaginary roots ± jω11 appear when τ = τ1. By
definition we have:

ω11 = ω
(1)
2 (τ1)≈ 3.1846.

We can verify

∂ωF(ω
(1)
2 (τ1),τ1)> 0,

dθ
(1)
2 (τ1)

dτ
> 0.

and the derivative of θ
(1)
2 (τ1) is positive, which can also be observed from Fig.6.2 b. There-

fore, it can be concluded that the pair of imaginary roots ± jω11 cross the imaginary axis
toward right half complex plane as τ goes through τ1 increasingly. No root of (6.11) crosses
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FIGURE 6.5: Simulation results of the aircraft example corresponding to a
step input.

Simulation results of the aircraft example corresponding to a step input. Left: the time
response of the output y(t) with respect to various delay values. Right: The output signal

tracking error weighted by the function eαt with α = 0.73. The convergence of the weighted
tracking error indicates α-stability.

the imaginary roots in Interval I (2) as m(2) = 0. Clearly we have Nu(τ) = 0 for τ ∈ (0,τ1)

and Nu(τ) = 2 for τ ∈ (τ1,τ
u]. Therefore we claim that for α = 1 the closed-loop system is

α-stable for τ ∈ (0,τ1) and α-unstable for τ ∈ (τ1,0.5].
Simulation is carried out using Simulink. We investigate the evolution of the signal

eαty(t) over time by setting τ as 0s, 0.08s and 0.11s respectively. It is clear that if the system
is α-stable, then eαty(t) must be convergent, otherwise it diverges. It is shown in the right
plot of Fig.6.5 that the weighed output response corresponds to τ = 0.08s converges and that
corresponding to τ = 0.11s divergences. These results are all consistent with our previous
analysis.

Example II. Consider a plant with the following transfer function:

y(s) =
b1s+1

s3 +a2s2 +a3s
u(s), (6.48)

which models the pitch dynamics of an aircraft [49]. The parameters are chosen as

b1 =−0.4, a2 = 3, a3 = 2.75.

To regulate the output y(t) to a given constant set point r, a PD control feedback is first
designed as

u(t) = kDė(t)+ kpe(t), (6.49)
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where e(t) = y(t)− r. Then (6.49) is replaced by

u(t) = kD
e(t)− e(t− τ)

τ
+ kpe(t). (6.50)

The control diagram is depicted in Fig.6.6.

FIGURE 6.6: The control diagram of Example II.

Then characteristic equation (6.9) of the closed-loop system (6.48)(6.49) is derived as

s3 +(a2 +b1kD)s2 +(a3 + kD +b1kp)s+ kp = 0. (6.51)

We set the control parameter as kD = 0.5 and kp = 1.15. The three characteristic roots of
(6.51) are computed as

s1 ≈ −1.3852, s2 ≈−0.7074−0.5743i,

s3 ≈ −0.7074+0.5743i.

We thus deduce that with the exact PD control law (6.49), the exponential decay rate of the
closed-loop trajectory is approximately 0.7074. We will investigate whether it is possible to
use the finite difference approximation to achieve a faster decay rate. To this end, we set
α = 0.73. It is apparent that the system is not α-stable if the delay value is close to zero.

Now we consider the characteristic equation (6.11). Simple computation shows:

Pα( jω,τ) = 0.2164−0.64ω
2 +(0.3007ω−ω

3) j,

Qα( jω,τ) = τ
−1(−0.646e0.73τ +0.2e0.73τ

ω j).

Using these expressions, F(ω,τ) and E(w,z) can be obtained through straight-forward com-
putation. The exact expressions of these functions are omitted here.
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To compute τ l , we apply Proposition 6.2 and solve Equation (6.25). We found the small-
est z appearing in the pairs (w,z)∈R+×R+ that satisfy (6.25) is z≈ 6.3802/4×10−3. Then
solving (6.26), we obtain τ̂ ≈ 0.0719 and therefore set τ l as 0.07. Assuming the maximal
delay of interest is τu = 0.9, we have I = [0.07,0.9].

Solving ∂ωF(ω,τ) = 0 together with F(ω,τ) = 0, we find no solution pair (ω,τ) ∈
R+ ×R+. Therefore I (1) = I . We find that Fτ(ω) admits two positive roots, namely
ω

(1)
1 (τ) and ω

(1)
2 (τ) for τ ∈I (1). The graph of these two functions are presented in Fig.6.4

a. The functions θ
(1)
i (τ), i = 1,2 are determined accordingly, and their graphs are given

in Fig.6.4 b. The graphs of θ
(1)
2 (τ), θ

(1)
1 (τ) intersect horizontal line 0 at τ1 = 0.1077 and

τ2 = 0.7298, respectively. Computation shows

ω11 = ω
(1)
2 (τ1)≈ 0.5957, ω21 = ω

(1)
1 (τ2)≈ 0.8119.

We can further verify:

sgn(1)2 = ∂ωF(ω
(1)
2 (τ1),τ1)< 0, θ

(1)
2 (ω

(1)
2 (τ1),τ1)< 0, (6.52)

as well as

sgn(1)1 = ∂ωF(ω
(1)
1 (τ2),τ2)> 0, θ

(1)
1 (ω

(1)
2 (τ2),τ2)> 0. (6.53)

We can deduce the followings. For small τ , (6.11) is not stable since Nu(0) = 2. As τ sweeps
through I , a pair of imaginary characteristic root of (6.11) first appears at τ = τ1 with the
value ± jω11. According to (6.52) and (3.47), this pair of roots move to the left half plane
as τ increases from τ1, and thus become stable. A second pair of imaginary characteristic
roots of (6.11), namely ± jω21, appear at τ = τ2. According to (6.53) and (3.47), they move
to the right half plane and become unstable as τ further increases from τ2. We can now
conclude that for α = 0.73, the closed-loop system (6.48)(6.50) is α-stable for τ ∈ (τ1,τ2)

and is α-unstable for τ ∈ (0,τ1)∪ (τ2,0.9].
The output of the closed-loop system (6.48)(6.50) corresponding to the unit step input

is given in the left plot of Fig.6.5. We also inspect the weighed tracking error e(t)exp(αt)

and plot its graph in the right plot of Fig.6.5. Obviously the system being α−stable means
the weighed error must converge to 0. The weighed error converges, though slowly, to zero
when τ = 0.6 and diverges when τ = 0.8. This observation is consistence with our analysis.
It is worth mentioning that with the fixed feedback gain, the exponential convergence rate
α = 0.73 can neither be achieve using the exact output derivative or with any delay value
smaller than τ1. Therefore, for this example and the chosen control gain ks, kp, the delay in



6.7. Chapter Summary 125

the feedback can indeed improve the control performance. This can also be concluded from
the step response of y(t). Compared with the control feedback using ẏ(t), the finite difference
approximation with τ = 0.6 or τ = 0.8 significant reduces the raising time of the system, as
shown in Fig.6.5.

6.7 Chapter Summary

We have addressed the stability analysis for control schemes that use finite difference to ap-
proximate the derivatives of output signals. The delay is treated as a design parameter. Given
any bounded delay interval of interest of the form (0,τu], we propose a method to find all
the subintervals of delay values contained in this interval such that the system is exponen-
tially stable with guaranteed convergence rate α , known as the α-stability. It is shown that
after shifting the Laplace variable, the α-stability of the control system is equivalent to the
asymptotic stability of a new characteristic equation with delay-dependent coefficients. To
analyze the stability of the later characteristic equation, we proposed some methods to cal-
culate a positive lower bound τ l for the delay interval such that the stability analysis only
needs to be carried out in [τ l,τu]. Consequently we are able to apply the results in previous
chapters on stability analysis of delay system with delay-dependent coefficients. The stabil-
ity analysis procedure is illustrated with two examples that are motivated by mobile robot
path-following control and aircraft pitch control, respectively. The results show that a larger
delay in the finite-difference approximation may indeed improve the control performance in
terms of the exponential convergence rate of the trajectory as well as response rapidity to
reference signals.
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Chapter 7

Conclusions and Perspectives

Time-delay systems with delay-dependent coefficients appear in various scientific and en-
gineering disciplines. This thesis contributes to the stability analysis of systems with this
special feature.

The method developed in this thesis follow a generalized τ-decomposition approach. The
idea of this approach is to sweep the delay parameter through an interval of interest, identify
all the critical delays and the corresponding crossing frequencies and determine the crossing
directions of the characteristic roots on the imaginary axis. Then the number of unstable
characteristic roots for different delay values can be easily determined.

We first considered systems with a single delay. The delay interval is first decomposed
into disjoint sub-intervals, within which a fixed number of frequencies can be defined as
functions of the delay and each frequency function is associated with a phase angle function.
Critical delays and crossing frequencies are identified based on the phase angle functions
and the frequency functions. Criteria that determine the crossing direction of characteristic
roots on the imaginary axis are proposed, which is able to exploit the higher order derivatives
of the characteristic roots with respect to the delay when the lower order derivatives vanish.
These results are subsequently extended to systems with commensurate delays.

Our analysis shows that the crossing direction of an imaginary root depends on the prod-
uct of two separate terms. The first term has already been discovered in the literature for
time-delay systems with fixed coefficients. The second term is related to the monotonicity of
the phase angle function at critical delays, which is unique for systems with delay-dependent
coefficients. Moreover, the correlation between the position of the phase angle functions and
the number of unstable roots is also suggested by the root crossing criteria.

To acquire a deeper understanding of these results, a two-parameter approach is proposed
to provide geometric insight into the problem. The delay parameter in system coefficients
and in the state are regarded as two different variables, say r and q. Then system stability
can be determined by first considering different stability regions in the r-q parameter space
and then imposing the restriction r = q = τ . As r and q enters and leaves different stability
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regions in the r-q space along the 45 degree line, system stability may switch. This two-
parameter point of view leads to more intuitive interpretation of the stability results formerly
obtained through an analytical approach. With the two-parameter approach, more general
stability analysis methods are further developed that apply to systems with possibly repeated
imaginary characteristic roots under relaxed assumptions. Although the root crossing criteria
can be expressed using the derivatives of the phase angle function, the analysis from the two-
parameter perspective makes it clear that the differentiability of phase angle functions is not
essential. The monotonicity of these functions at critical delays are sufficient for determining
the root crossing directions.

we showed that system with delay dependent coefficients can arise from a control scheme
that uses delayed output to approximate the output derivatives. The resulted closed loop
systems have the delay parameter in the denominator, and the analysis methods developed in
this thesis cannot be applied immediately due to this singularity at τ = 0. To resolve this issue,
several convenient methods for estimating a positive lower bound for the τ-sweeping test are
proposed, which consist mainly in solving some polynomial equations. Subsequently, the
stability analysis methods proposed in previous chapters are applied to find all delay intervals
that guarantee a desired convergence speed of the trajectory of the closed loop system.

There are various directions worth pursuing in the future.
Firstly, we have only considered the nominal system without taking into account uncer-

tainties in system parameters. A robust stability analysis for systems with uncertainties will
be important in both theory and practice. The traditional τ-decomposition method is diffi-
cult to apply for the following reason. To tell the stability for a given delay value, say τ0,
it requires all critical delays less than τ0 to be identified and the root crossing behavior an-
alyzed at each of these critical delay. This is a quite formidable task since the number of
critical delays and the system stability behaviors at these delays can depend on the uncertain
parameters in a complex manner. In the author’s opinion, the two-parameter perspective dis-
cussed in Chapter 5 suggests a more feasible approach to this problem. According to this
perspective, the r−q parameter space introduced in Chapter 5 is separated by critical delay
curves into disjoint sub-regions, within which the number of unstable characteristic roots is
invariant. Consequently, one can determine system stability with respect to uncertain param-
eters by analyzing how large these critical delay curves may vary under the perturbation of
uncertain parameters. It is apparent that if the boundary curves of each sub-region in the r−q

plane never passes through the point (r,q) = (τ0,τ0) under all possible parameter variation,
then robust stability/instability can be deduced for the system with the delay value τ0. On the
other hand, these boundary curves, namely the curve of critical delays, are determined by a
set of algebraic equations, which means the study of robust stability may be approached by
analyzing the variation of roots of algebraic equations under parameter perturbation.
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Second, the type of delay considered in this thesis is restricted to a single delay or multi-
ple commensurate delays generated by a single parameter. It would be interesting to general-
ize the results for systems with multiple independent delay parameters. For this purpose, one
may analyze system stability in a higher dimensional parameter space as a generalization of
the two-parameter approach proposed in this thesis.

Another direction is to extend the stability analysis to nonlinear systems by exploiting
the eigenvalue based approaches. When the linearized system has characteristic roots on the
imaginary axis, the corresponding nonlinear system can still be asymptotically stable. One
may extract the center manifold of the nonlinear system based on the imaginary eigenvalue
and eigenspace of the linearized dynamics. Then it suffices to analyze the stability of the
complete system by considering the dynamics only on the center manifold, which is a finite
dimensional object. For introduction and applications of general invariant manifolds of or-
dinary differential equations, see for instance [89], [90]. For Stability analysis of nonlinear
time-delay systems on center manifolds, interested readers can refer to [91], [92].
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Titre : Analyse de stabilité de systèmes à coefficients dépendant du retard 

Mots clés :  système de retard, analyse de stabilité, analyse de domaine fréquentiel 

Résumé : Des systèmes à coefficients 
dépendant du retard ont été rencontrés dans 
diverses applications de la science et de 
l'ingénierie. Malgré la littérature abondante sur 
les systèmes de temporisation, il y a peu de 
résultats concernant l'analyse de stabilité des 
systèmes avec des coefficients dépendant du 
retard.  
Cette thèse est consacrée à l'analyse de 
stabilité de cette classe de systèmes. Les 
méthodes d'analyse  de la stabilité sont 
développées à partir de l'équation 
caractéristique correspondante suivant une 
approche généralisée tau-décomposition. Étant 
donné un intervalle d'intérêt de retard, nous 
sommes  capables d'identifier toutes les 
valeurs de retard critique contenues dans cet 
intervalle pour lesquelles l'équation 
caractéristique admet des racines sur l'axe 
imaginaire du plan complexe.   
Le critère de direction de croisement des 
racines sont proposées pour déterminer si ces 
racines caractéristique se déplacent vers le 
plan . 

complexe demi-gauche ou demi-droite lorsque 
le paramètre de retard passe par ces valeurs de 
retard critique. Le nombre de racines 
caractéristiques instables pour un retard donné 
peut ainsi être déterminé. Notre analyse 
comprend les systèmes avec un seul retard ou 
des retards proportionnés sous certaines 
hypothèses. Le critère de direction de 
croisement des racines développés dans cette 
thèse peut être appliqués aux multiple racines 
caractéristiques, ou aux racines  
caractéristiques dont la position paramétrée 
par le retard est tangent à l'axe imaginaire. En 
tant qu'application, il est démontré que les 
systèmes avec des coefficients dépendant du 
retard peuvent provenir de schémas de 
contrôle qui utilisent une sortie retardée pour 
approcher ses dérivés pour la stabilisation. Les 
méthodes d'analyse de stabilité développées 
dans cette thèse sont adaptées et appliquées 
pour trouver les intervalles de retard qui 
atteignent un taux de convergence demandé 
du système en boucle fermée. 
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Title : Stability analysis of systems with delay-dependent coefficients 

Keywords : time-delay systems, stability analysis, frequency-domain analysis 

Abstract : Systems with delay-dependent 

coefficients have been encountered in various 

applications of science and engineering. 

Despite the rich literature on time-delay 

systems, there are few results concerning 

stability analysis of systems with delay-

dependent coefficients. This thesis is devoted 

to the stability analysis of this class of systems. 

 

Stability analysis methods are developed based 

on the corresponding characteristic equation 

following a generalized tau-decomposition 

approach. Given a delay interval of interest, we 

are able to identify all the critical delay values 

contained in this interval for which the 

characteristic equation admits roots on the 

imaginary axis of the complex plane. Various 

root crossing direction criteria are proposed to 

determine whether these characteristic roots  

move toward the left or the right half complex 

plane as the delay parameter goes through these 

critical delay values. The number of unstable 

characteristic roots for any given delay can thus 

be determined. Our analysis covers systems 

with a single delay or commensurate delays 

under certain assumptions. The root crossing 

direction criteria developed in this thesis can be 

applied to characteristic roots with multiplicity, 

or characteristic roots whose locus 

parameterized by the delay is tangent to the 

imaginary axis. As an application, it is 

demonstrated that systems with delay-

dependent coefficients can arise from control 

schemes that use delayed output to approximate 

its derivatives for stabilization. The stability 

analysis methods developed in this thesis are 

tailored and applied to find the delay intervals 

that achieve a demanded convergence rate of 

the closed-loop system. 
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