I. Berline, Génération de seconde harmonique sous pointe métallique : vers un nouveau type de microscopie optique à sonde locale, 2010.

I. Berline, C. Fiorini-debuisschert, C. Royal, L. Douillard, and F. Charra, Molecular second harmonic generation induced at a metallic tip, Journal of Applied Physics, vol.104, issue.10, pp.103113-103113, 2008.
DOI : 10.1103/PhysRevLett.90.013903

L. Novotny, The history of near-field optics, Progress in Optics, pp.137-184, 2007.

D. Wilde and P. Lemoine, La nano-imagerie par microscopie optique en champ proche, 2007.

J. M. Vigoureux and D. Courjon, Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion, Applied Optics, vol.31, issue.16, pp.313170-3177, 1992.
DOI : 10.1364/AO.31.003170

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.83, issue.18, pp.3966-3969, 2000.
DOI : 10.1103/PhysRevLett.83.2845

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad et al., A super-oscillatory lens optical microscope for subwavelength imaging, Nature Materials, vol.55, issue.5, pp.432-435, 2012.
DOI : 10.1109/TAP.2007.891552

N. I. Zheludev, What diffraction limit?, Nature Materials, vol.9, issue.6, pp.420-422, 2008.
DOI : 10.1088/1464-4258/9/9/S01

A. J. Meixner, The Nobel Prize in Chemistry 2014 for the development of super-resolved fluorescence microscopy, Analytical and Bioanalytical Chemistry, vol.103, issue.7, pp.1797-1800, 2015.
DOI : 10.1073/pnas.0609643104

S. W. Hell, Far-Field Optical Nanoscopy, Science, issue.5828, pp.3161153-1158, 2007.

M. Dyba and S. W. Hell, Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution, Physical Review Letters, vol.80, issue.16, p.163901, 2002.
DOI : 10.1016/S0006-3495(01)76129-2

R. Heintzmann and G. Ficz, Breaking the resolution limit in light microscopy, Briefings in Functional Genomics and Proteomics, vol.5, issue.4, pp.289-301, 2006.
DOI : 10.1093/bfgp/ell036

A. J. Nelson and S. T. Hess, Localization microscopy: mapping cellular dynamics with single molecules, Journal of Microscopy, vol.177, issue.1, pp.1-8, 2014.
DOI : 10.1016/j.jsb.2011.12.015

M. Orrit, Nobel Prize in Chemistry: Celebrating optical nanoscopy, Nature Photonics, vol.8, issue.12, pp.887-888, 2014.
DOI : 10.1126/science.1086911

S. Kawata and T. Sugiura, Movement of micrometer-sized particles in the evanescent field of a laser beam, Optics Letters, vol.17, issue.11, p.772, 1992.
DOI : 10.1364/OL.17.000772

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, Imaging with total internal reflection fluorescence microscopy for the cell biologist, Journal of Cell Science, vol.123, issue.21, pp.3621-3628, 2010.
DOI : 10.1242/jcs.056218

L. Novotny, Effective Wavelength Scaling for Optical Antennas, Physical Review Letters, vol.101, issue.26, p.266802, 2007.
DOI : 10.1103/PhysRevB.6.4370

A. Lewis, D. Lev, D. Sebag, P. Hamra, H. Levy et al., Abstract, Nanophotonics, vol.3, issue.1-2, pp.3-18, 2014.
DOI : 10.1515/nanoph-2014-0007

URL : https://hal.archives-ouvertes.fr/hal-01336771

A. Merlen and F. Lagugné-labarthet, Imaging the Optical near Field in Plasmonic Nanostructures, Applied Spectroscopy, vol.11, issue.8, pp.1307-1326, 2014.
DOI : 10.1021/nl201780y

D. Pohl, W. Denk, and M. Lanz, Optical Stethoscopy -Image Recording with Resolution Lambda, Applied Physics Letters, vol.20, issue.447, pp.651-653, 1984.

E. A. Ash and G. Nicholls, Super-resolution Aperture Scanning Microscope, Nature, vol.6, issue.5357, pp.510-512, 1972.
DOI : 10.1364/JOSA.57.000932

L. Novotny, B. Hecht, and D. W. , Implications of high resolution to near-field optical microscopy, Ultramicroscopy, vol.71, issue.1-4, pp.1-4341, 1998.
DOI : 10.1016/S0304-3991(97)00066-1

J. Weeber, E. Bourillot, A. Dereux, J. Goudonnet, Y. Chen et al., Observation of Light Confinement Effects with a Near-Field Optical Microscope, Physical Review Letters, vol.50, issue.27, pp.775332-5335, 1996.
DOI : 10.1103/PhysRevB.50.14467

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi et al., Scanning near-field optical microscopy with aperture probes: Fundamentals and applications, The Journal of Chemical Physics, vol.2863, issue.18, pp.1127761-7774, 2000.
DOI : 10.1016/S0304-3991(97)00054-5

L. Novotny, D. Pohl, and B. Hecht, Scanning near-field optical probe with ultrasmall spot size, Optics Letters, vol.20, issue.9, pp.970-972, 1995.
DOI : 10.1364/OL.20.000970

B. Hecht, D. W. Pohl, and L. Novotny, Plasmons and local probes, NATO ASI Serie E, pp.21-23, 1995.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale, Science, vol.251, issue.5000, pp.2511468-1470, 1991.
DOI : 10.1126/science.251.5000.1468

J. Wessel, Surface-enhanced optical microscopy, Journal of the Optical Society of America B, vol.2, issue.9, pp.1538-1541, 1985.
DOI : 10.1364/JOSAB.2.001538

F. Zenhausern, M. P. Oboyle, and H. K. Wickramasinghe, Apertureless near???field optical microscope, Applied Physics Letters, vol.28, issue.13, pp.1623-1625, 1994.
DOI : 10.1364/OL.19.000159

A. Meixner, M. Bopp, and G. Tarrach, Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope, Applied Optics, vol.33, issue.34, pp.7995-8000, 1994.
DOI : 10.1364/AO.33.007995

L. Salomon, F. Defornel, and J. Goudonnet, Sample???tip coupling efficiencies of the photon-scanning tunneling microscope, Journal of the Optical Society of America A, vol.8, issue.12, pp.2009-2015, 1991.
DOI : 10.1364/JOSAA.8.002009

E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near???field scanning optical microscopy, Applied Physics Letters, vol.1139, issue.20, pp.2484-2486, 1992.
DOI : 10.1063/1.1142243

K. Karraï and R. D. Grober, Piezo-electric tuning fork tip???sample distance control for near field optical microscopes, Ultramicroscopy, vol.61, issue.1-4, pp.1-4197, 1995.
DOI : 10.1016/0304-3991(95)00104-2

K. Wang, X. Wang, N. Jin, W. Huang, and J. Xu, The height regulation of a near-field scanning optical microscope probe tip, Journal of Microscopy, vol.194, issue.2-3, pp.317-320, 1999.
DOI : 10.1046/j.1365-2818.1999.00544.x

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, Facts and artifacts in near-field optical microscopy, Journal of Applied Physics, vol.61, issue.6, pp.2492-2498, 1997.
DOI : 10.1016/0040-6090(95)06810-4

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, Optical microscopy using a single-molecule light source, Nature, vol.405, issue.6784, pp.325-328, 2000.

L. Aigouy, Y. De-wilde, and M. Mortier, Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe, Applied Physics Letters, vol.83, issue.1, pp.147-149, 2003.
DOI : 10.1126/science.262.5138.1422

L. Aigouy, M. Mortier, J. Giérak, E. Bourhis, Y. De-wilde et al., Field distribution on metallic and dielectric nanoparticles observed with a fluorescent near-field optical probe, Journal of Applied Physics, vol.47, issue.10, p.97104322, 2005.
DOI : 10.1046/j.1365-2818.2001.00817.x

N. Chevalier, M. J. Nasse, J. C. Woehl, P. Reiss, J. Bleuse et al., CdSe single-nanoparticle based active tips for near-field optical microscopy, Nanotechnology, vol.16, issue.4, p.613, 2005.
DOI : 10.1088/0957-4484/16/4/047

URL : https://hal.archives-ouvertes.fr/tel-00009221

Y. Sonnefraud, N. Chevalier, J. Motte, S. Huant, P. Reiss et al., Near-field optical imaging with a CdSe single nanocrystal-based active tip, Optics Express, vol.14, issue.22, pp.1410596-10602, 2006.
DOI : 10.1364/OE.14.010596

Z. Liu, A. M. Ricks, H. Wang, N. Song, F. Fan et al., High-Resolution Imaging of Electric Field Enhancement and Energy-Transfer Quenching by a Single Silver Nanowire Using QD-Modified AFM Tips, The Journal of Physical Chemistry Letters, vol.4, issue.14, pp.2284-2291, 2013.
DOI : 10.1021/jz401051s

F. Treussart, V. Jacques, E. Wu, T. Gacoin, P. Grangier et al., Photoluminescence of single colour defects in 50 nm diamond nanocrystals, Physica B : Condensed Matter, pp.376-377926, 2006.

A. Cuche, A. Drezet, J. Roch, F. Treussart, and S. Huant, Grafting fluorescent nanodiamonds onto optical tips, Journal of Nanophotonics, vol.4, issue.1, pp.43506-043506, 2010.
DOI : 10.1117/1.3374237

URL : https://hal.archives-ouvertes.fr/hal-01000129

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and Quenching of Single-Molecule Fluorescence, Physical Review Letters, vol.37, issue.11, p.113002, 2006.
DOI : 10.1046/j.1365-2818.2001.00817.x

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-gonzalez, Single-molecule spontaneous emission close to absorbing nanostructures, Applied Physics Letters, vol.85, issue.17, pp.3863-3865000224798700071, 2004.
DOI : 10.1063/1.1479723

URL : https://hal.archives-ouvertes.fr/hal-00323267

R. Carminati, J. Greffet, C. Henkel, and J. M. Vigoureux, Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Optics Communications, vol.261, issue.2, pp.368-375, 2006.
DOI : 10.1016/j.optcom.2005.12.009

URL : https://hal.archives-ouvertes.fr/hal-00133243

K. H. Drexhage, Influence of a dielectric interface on fluorescence decay time, Journal of Luminescence, vol.1, issue.2, pp.693-701, 1970.
DOI : 10.1016/0022-2313(70)90082-7

V. Krachmalnicoff, E. Castanié, Y. De-wilde, and R. Carminati, Fluctuations of the Local Density of States Probe Localized Surface Plasmons on Disordered Metal Films, Physical Review Letters, vol.105, issue.18, p.183901, 2010.
DOI : 10.1103/PhysRevE.67.056611

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat et al., Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe, Optics Express, vol.21, issue.9, pp.11536-11545, 2013.
DOI : 10.1364/OE.21.011536.m001

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou et al., Mapping the Radiative and the Apparent Nonradiative Local Density of States in the Near Field of a Metallic Nanoantenna, ACS Photonics, vol.2, issue.2, 2015.
DOI : 10.1021/ph500431g

P. Franken, G. Weinreich, C. Peters, and A. Hill, Generation of Optical Harmonics, Physical Review Letters, vol.6, issue.4, p.118, 1961.
DOI : 10.1103/PhysRevLett.6.106

P. Campagnola, Second Harmonic Generation Imaging Microscopy: Applications to Diseases Diagnostics, Analytical Chemistry, vol.83, issue.9, pp.3224-3231, 2011.
DOI : 10.1021/ac1032325

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104727/pdf

A. V. Zayats and I. I. Smolyaninov, Near-field second-harmonic generation, Philosophical Transactions of the Royal Society of London. Series A : Mathematical, Physical and Engineering Sciences, vol.362, pp.843-860, 1817.

Y. Shen, Surface properties probed by second-harmonic and sum-frequency generation, Nature, vol.337, issue.6207, pp.519-525, 1989.
DOI : 10.1038/337519a0

L. Marrucci, D. Paparo, G. Cerrone, C. De-lisio, E. Santamato et al., Probing interfacial properties by optical second-harmonic generation, Optics and Lasers in Engineering, vol.37, issue.5, pp.601-610, 2002.
DOI : 10.1016/S0143-8166(01)00113-0

A. Rubano, T. Günter, M. Lilienblum, C. Aruta, F. Miletto-granozio et al., Optical second harmonic imaging as a diagnostic tool for monitoring epitaxial oxide thin-film growth, Applied Surface Science, vol.327, pp.413-417, 2015.
DOI : 10.1016/j.apsusc.2014.11.051

C. C. Neacsu, G. A. Reider, and M. B. Raschke, Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures, Physical Review B, vol.91, issue.20, p.71201402, 2005.
DOI : 10.1007/s00340-005-1748-y

M. Labardi, M. Allegrini, M. Zavelani-rossi, D. Polli, G. Cerullo et al., Highly efficient second-harmonic nanosource for near-field optics and microscopy, Optics Letters, vol.29, issue.1, pp.62-64, 2004.
DOI : 10.1364/OL.29.000062

S. Takahashi and A. V. Zayats, Near-field second-harmonic generation at a metal tip apex, Applied Physics Letters, vol.80, issue.19, pp.3479-3481, 2002.
DOI : 10.1364/AO.31.005380

A. Bouhelier, M. Beversluis, and L. Novotny, Applications of field-enhanced near-field optical microscopy, Ultramicroscopy, vol.100, issue.3-4, pp.3-4413, 2004.
DOI : 10.1016/j.ultramic.2003.10.007

D. Kleinman, Theory of Second Harmonic Generation of Light, Physical Review, vol.121, issue.4, p.1761, 1962.
DOI : 10.1103/PhysRev.121.661

H. Katz, K. Singer, J. Sohn, C. Dirk, L. King et al., Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules, Journal of the American Chemical Society, vol.109, issue.21, pp.6561-6563, 1987.
DOI : 10.1021/ja00255a079

S. K. Yesodha, C. K. Pillai, and N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems, Progress in Polymer Science, vol.29, issue.1, pp.45-74, 2004.
DOI : 10.1016/j.progpolymsci.2003.07.002

K. Singer, M. Kuzyk, and J. Sohn, Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties, Journal of the Optical Society of America B, vol.4, issue.6, pp.968-976, 1987.
DOI : 10.1364/JOSAB.4.000968

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, Intense longitudinal electric fields generated from transverse electromagnetic waves, Applied Physics Letters, vol.8, issue.19, pp.3855-3857, 2004.
DOI : 10.1364/JOSAB.19.002722

L. Novotny, E. J. Sanchez, and X. S. Xie, Near-field optical imaging using metal tips illuminated by higher-order Hermite???Gaussian beams, Ultramicroscopy, vol.71, issue.1-4, pp.1-421, 1998.
DOI : 10.1016/S0304-3991(97)00077-6

N. Anderson, A. Bouhelier, and L. Novotny, Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale, Journal of Optics A: Pure and Applied Optics, vol.8, issue.4, p.227, 2006.
DOI : 10.1088/1464-4258/8/4/S24

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Near-field secondharmonic generation induced by local field enhancement, Physical Review Letters, vol.90, issue.1, 2003.

A. Hartschuh, Tip-Enhanced Near-Field Optical Microscopy, Angewandte Chemie-International Edition, issue.43, pp.478178-8191, 2008.

N. Mauser and A. Hartschuh, Tip-enhanced near-field optical microscopy, Chem. Soc. Rev., vol.7, issue.4, pp.1248-1262, 2014.
DOI : 10.1038/nnano.2012.165

N. Kazemi-zanjani, S. Vedraine, and F. Lagugné-labarthet, Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light, Optics Express, vol.21, issue.21, pp.25271-25276, 2013.
DOI : 10.1364/OE.21.025271

URL : https://hal.archives-ouvertes.fr/hal-00911149

L. Novotny, From near-field optics to optical antennas, Physics Today, vol.17, issue.7, pp.47-52, 2011.
DOI : 10.1103/PhysRevB.78.195111

A. Hartschuh, N. Anderson, and L. Novotny, Near-field Raman spectroscopy using a sharp metal tip, Journal of Microscopy, vol.210, issue.3, pp.234-240, 2003.
DOI : 10.1046/j.1365-2818.2003.01137.x

A. Patsha, S. Dhara, and A. K. Tyagi, Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit, Applied Physics Letters, vol.107, issue.12, p.123108, 2015.
DOI : 10.1088/0022-3727/48/39/395102

G. Picardi, M. Chaigneau, R. Ossikovski, C. Licitra, and G. Delapierre, Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111), Journal of Raman Spectroscopy, vol.90, issue.10, pp.401407-1412, 2009.
DOI : 10.1146/annurev.pc.43.100192.002253

C. Hoppener and L. Novotny, Transmembrane Proteins in Liquids, Nano Letters, vol.8, issue.2, pp.642-646, 2008.
DOI : 10.1021/nl073057t

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Physical Review Letters, vol.265, issue.1, p.17402, 2006.
DOI : 10.1021/jp001288h

P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Advances in Optics and Photonics, vol.1, issue.3, p.438, 2009.
DOI : 10.1364/AOP.1.000438

L. Novotny and N. Van-hulst, Antennas for light, Nature Photonics, vol.4, issue.2, pp.83-90, 2011.
DOI : 10.1038/nphoton.2010.90

J. Greffet, APPLIED PHYSICS: Nanoantennas for Light Emission, Science, vol.308, issue.5728, pp.1561-1563, 2005.
DOI : 10.1126/science.1113355

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.1, issue.12, pp.4370-4379, 1972.
DOI : 10.1103/PhysRevB.1.498

A. Downes, D. Salter, and A. Elfick, Heating effects in tip-enhanced optical microscopy, Optics Express, vol.14, issue.12, pp.5216-5222, 2006.
DOI : 10.1364/OE.14.005216

P. Zijlstra, J. W. Chon, and M. Gu, White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods, Physical Chemistry Chemical Physics, vol.99, issue.28, pp.5915-5921, 2009.
DOI : 10.1039/b905203h

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers et al., Silver Nanowires as Surface Plasmon Resonators, Physical Review Letters, vol.22, issue.25, p.95257403, 2005.
DOI : 10.1063/1.113340

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, Measurement and Reduction of Damping in Plasmonic Nanowires, Nano Letters, vol.12, issue.2, pp.661-665, 2012.
DOI : 10.1021/nl203452d

L. Novotny and B. Hecht, Principles of Nano-Optics, 2012.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff et al., Electromagnetic density of states in complex plasmonic systems, Surface Science Reports, vol.70, issue.1, pp.1-41, 2015.
DOI : 10.1016/j.surfrep.2014.11.001

L. Novotny, R. X. Bian, and X. S. Xie, Theory of Nanometric Optical Tweezers, Physical Review Letters, vol.70, issue.4, pp.645-648, 1997.
DOI : 10.1063/1.118245

P. Chaumet, A. Rahmani, and M. Nieto-vesperinas, Optical Trapping and Manipulation of Nano-objects with an Apertureless Probe, Physical Review Letters, vol.64, issue.12, p.123601, 2002.
DOI : 10.1103/PhysRevB.64.035422

URL : https://hal.archives-ouvertes.fr/hal-00138789

A. Arbouet, F. Houdellier, R. Marty, and C. Girard, Interaction of an ultrashort optical pulse with a metallic nanotip: A Green dyadic approach, Journal of Applied Physics, vol.112, issue.5, pp.53103-053103, 2012.
DOI : 10.1088/0953-4075/45/7/074006

W. Zhang, X. Cui, and O. J. Martin, Local field enhancement of an infinite conical metal tip illuminated by a focused beam, Journal of Raman Spectroscopy, vol.85, issue.10, pp.401338-1342, 2009.
DOI : 10.1080/09500349808230614

R. Rosei, F. Antonangeli, and U. M. Grassano, d bands position and width in gold from very low temperature thermomodulation measurements, Surface Science, vol.37, pp.689-699, 1973.
DOI : 10.1016/0039-6028(73)90359-2

M. Guerrisi, R. Rosei, and P. Winsemius, Splitting of the interband absorption edge in Au, Physical Review B, vol.175, issue.2, pp.557-563, 1975.
DOI : 10.1103/PhysRev.175.1039

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied Optics, vol.37, issue.22, pp.5271-5283, 1998.
DOI : 10.1364/AO.37.005271

A. Alabastri, F. De-angelis, and R. P. Zaccaria, Heating processes in plasmonic resonances : a non-linear temperature dependent permittivity model, pp.91610-91610, 2014.

X. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, Broadband Spectral Signature of the Ultrafast Transient Optical Response of Gold Nanorods, The Journal of Physical Chemistry C, vol.119, issue.13, pp.7416-7427, 2015.
DOI : 10.1021/acs.jpcc.5b00131

URL : https://hal.archives-ouvertes.fr/hal-01263297

P. Winsemius, M. Guerrisi, and R. Rosei, Splitting of the interband absorption edge in Au: Temperature dependence, Physical Review B, vol.2, issue.10, pp.4570-4572, 1975.
DOI : 10.1103/PhysRevB.2.3060

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles:?? The Influence of Size, Shape, and Dielectric Environment, The Journal of Physical Chemistry B, vol.107, issue.3, pp.668-677, 2003.
DOI : 10.1021/jp026731y

G. Mie, Beitr??ge zur Optik tr??ber Medien, speziell kolloidaler Metall??sungen, Annalen der Physik, vol.24, issue.3, pp.377-445, 1908.
DOI : 10.1002/andp.18802470905

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol.88, issue.6950, pp.824-830, 2003.
DOI : 10.1103/PhysRevLett.88.187402

URL : https://hal.archives-ouvertes.fr/hal-00472360

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim et al., High-harmonic generation by resonant plasmon field enhancement, Nature, issue.7196, pp.453757-760, 2008.

M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nature Photonics, vol.108, issue.11, pp.737-748, 2012.
DOI : 10.1103/PhysRevLett.108.217403

S. Palomba and L. Novotny, Near-Field Imaging with a Localized Nonlinear Light Source, Nano Letters, vol.9, issue.11, pp.3801-3804, 2009.
DOI : 10.1021/nl901986g

A. Kinkhabwala, . Yu, . Fan, . Avlasevich, W. E. Müllen et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics, vol.4, issue.11, pp.654-657, 2009.
DOI : 10.1038/nphoton.2009.187

S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nature Photonics, vol.305, issue.7, pp.388-394, 2009.
DOI : 10.1111/j.1365-2818.1994.tb03520.x

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials, vol.14, issue.3, pp.205-213, 2010.
DOI : 10.1557/PROC-1002-N03-05

R. C. Wadams, C. Yen, D. P. Butcher-jr, H. Koerner, M. F. Durstock et al., Gold nanorod enhanced organic photovoltaics: The importance of morphology effects, Organic Electronics, vol.15, issue.7, pp.151448-1457, 2014.
DOI : 10.1016/j.orgel.2014.03.039

M. T. Hill and M. C. Gather, Advances in small lasers, Nature Photonics, vol.468, issue.12, pp.908-918, 2014.
DOI : 10.1038/nature09567

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev et al., Demonstration of a spaser-based nanolaser, Nature, vol.6, issue.7259, pp.4601110-1112, 2009.
DOI : 10.1103/PhysRev.69.37

P. Zijlstra, P. M. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nature Nanotechnology, vol.7, issue.6, pp.379-382, 2012.
DOI : 10.1021/cm020732l

J. Berthelot, S. S. A?imovi?, M. L. Juan, M. P. Kreuzer, J. Renger et al., Three-dimensional manipulation with scanning near-field optical nanotweezers, Nature Nanotechnology, vol.12, issue.4, pp.295-299, 2014.
DOI : 10.1021/nl203719v

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas, Physical Review Letters, vol.94, issue.1, p.17402, 2005.
DOI : 10.1098/rsta.2003.1348

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon Hybridization in Nanoparticle Dimers, Nano Letters, vol.4, issue.5, pp.899-903, 2004.
DOI : 10.1021/nl049681c

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz et al., Systematic Study of Antibonding Modes in Gold Nanorod Dimers and Trimers, Nano Letters, vol.14, issue.12, pp.6949-6954, 2014.
DOI : 10.1021/nl503207j

P. Adam and . Royer, Short Range Plasmon Resonators Probed by Photoemission Electron Microscopy, Nano Letters, vol.8, issue.3, pp.935-940, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00268202

P. Berini, Long-range surface plasmon polaritons Advances in Optics and Photonics, p.484, 2009.

S. Kawata, Plasmonics for Nanoimaging and Nanospectroscopy, Applied Spectroscopy, vol.11, issue.12, pp.117-125, 2013.
DOI : 10.1021/nl202877r

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy, vol.202, issue.1, pp.72-76, 2001.
DOI : 10.1046/j.1365-2818.2001.00817.x

O. Sqalli, M. Bernal, P. Hoffmann, and F. Marquis-weible, Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle, Applied Physics Letters, vol.76, issue.15, pp.762134-2136, 2000.
DOI : 10.1063/1.1148450

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun et al., Au Nanotip as Luminescent Near-Field Probe, Nano Letters, vol.13, issue.8, pp.3566-3570, 2013.
DOI : 10.1021/nl401173g

M. B. Mohamed, V. Volkov, S. Link, and M. A. , El-Sayed. The 'lightning' gold nanorods : fluorescence enhancement of over a million compared to the gold metal, Chemical Physics Letters, issue.6, pp.317517-523, 2000.

R. Kappeler, D. Erni, X. Cui, and L. Novotny, Field Computations of Optical Antennas, Journal of Computational and Theoretical Nanoscience, vol.4, issue.3, pp.686-691
DOI : 10.1166/jctn.2007.033

C. Höppener, Z. J. Lapin, P. Bharadwaj, and L. Novotny, Self-Similar Gold-Nanoparticle Antennas for a Cascaded Enhancement of the Optical Field, Physical Review Letters, vol.4, issue.1, p.17402, 2012.
DOI : 10.1017/CBO9780511813535

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers et al., Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip, Nano Letters, vol.10, issue.2, pp.592-596, 2010.
DOI : 10.1021/nl903574a

J. Mihaljevic, C. Hafner, and A. J. Meixner, Grating enhanced apertureless near-field optical microscopy, Optics Express, vol.23, issue.14, p.18401, 2015.
DOI : 10.1364/OE.23.018401

M. Mivelle, Etude et développement de nano-antennes fibrées pour la microscopie en champ proche optique et la nano-photonique, 2011.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. Van-zanten, H. Rigneault et al., A plasmonic ???antenna-in-box??? platform for enhanced single-molecule analysis at micromolar concentrations, Nature Nanotechnology, vol.95, issue.7, pp.512-516, 2013.
DOI : 10.1103/PhysRevLett.95.117401

URL : https://hal.archives-ouvertes.fr/hal-00840847

Z. Yong, D. Y. Lei, C. H. Lam, and Y. Wang, Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles, Nanoscale Research Letters, vol.9, issue.1, p.187, 2014.
DOI : 10.1088/0957-4484/23/27/275501

J. Xiao and L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale, vol.9, issue.4, p.1383, 2011.
DOI : 10.1038/nmat2810

T. K. Sau and A. L. Rogach, Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control, Advanced Materials, vol.7, issue.258, pp.1781-1804, 2010.
DOI : 10.1021/jp8054747

C. L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodríguez-gonzález, I. Pastoriza-santos et al., Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles, Nature Materials, vol.54, issue.2, pp.120-124, 2008.
DOI : 10.1143/JPSJ.22.1365

Z. , C. Canbek, R. Cortes-huerto, F. Testard, O. Spalla et al., Twinned Gold Nanoparticles under Growth : Bipyramids Shape Controlled by Environment, Crystal Growth & Design, issue.8, pp.153637-3644, 2015.
DOI : 10.1021/acs.cgd.5b00121

URL : https://hal.archives-ouvertes.fr/hal-01187806

S. Nauert, A. Paul, Y. Zhen, D. Solis, L. Vigderman et al., Influence of Cross Sectional Geometry on Surface Plasmon Polariton Propagation in Gold Nanowires, ACS Nano, vol.8, issue.1, pp.572-580000330542900058, 2014.
DOI : 10.1021/nn405183r

R. Gans, Strahlungsdiagramme ultramikroskopischer Teilchen, Annalen der Physik, vol.74, issue.1, pp.29-38, 1925.
DOI : 10.1002/andp.19243791603

S. Link and M. A. Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, International Reviews in Physical Chemistry, vol.19, issue.3, pp.409-453, 2000.
DOI : 10.1080/01442350050034180

X. Huang, S. Neretina, and M. A. Sayed, Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications, Advanced Materials, vol.17, issue.126, pp.4880-4910, 2009.
DOI : 10.1088/0957-4484/17/17/024

S. Link, M. B. Mohamed, and M. A. Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, The Journal of Physical Chemistry B, vol.103, issue.16, pp.3073-3077, 1999.
DOI : 10.1021/jp990183f

C. Sönnichsen, T. Franzl, T. Wilk, G. Von-plessen, J. Feldmann et al., Drastic Reduction of Plasmon Damping in Gold Nanorods, Physical Review Letters, vol.53, issue.7, p.77402, 2002.
DOI : 10.1103/PhysRevB.53.2437

M. Liu, P. Guyot-sionnest, T. Lee, and S. K. Gray, Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations, Physical Review B, vol.14, issue.23, p.235428, 2007.
DOI : 10.1063/1.1512315

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, and G. , Electrical Excitation of Surface Plasmons by an Individual Carbon Nanotube Transistor, Physical Review Letters, vol.111, issue.2, p.26804, 2013.
DOI : 10.1103/PhysRevB.74.165415

T. Wang, E. Boer-duchemin, Y. Zhang, G. Comtet, and G. Dujardin, Excitation of propagating surface plasmons with a scanning tunnelling microscope, Nanotechnology, vol.22, issue.17, p.22175201, 2011.
DOI : 10.1088/0957-4484/22/17/175201

A. Mooradian, Photoluminescence of Metals, Physical Review Letters, vol.87, issue.5, pp.185-187, 1969.
DOI : 10.1088/0370-1328/87/2/316

G. T. Boyd, Z. H. Yu, and Y. R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Physical Review B, vol.24, issue.12, pp.7923-7936, 1986.
DOI : 10.1103/PhysRevB.24.5477

M. R. Beversluis, A. Bouhelier, and L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Physical Review B, vol.58, issue.11, p.115433, 2003.
DOI : 10.1103/PhysRevB.62.1500

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard et al., Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms, Nature Materials, vol.12, issue.5, pp.426-432, 2013.
DOI : 10.1021/nn300989g

A. Horneber, K. Braun, J. Rogalski, P. Leiderer, A. J. Meixner et al., Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution, Physical Chemistry Chemical Physics, vol.117, issue.33, pp.21288-21293, 2015.
DOI : 10.1021/jp407353r

D. Wang, F. Hsu, and C. Lin, Surface plasmon effects on two photon luminescence of gold nanorods, Optics Express, vol.17, issue.14, pp.11350-11359, 2009.
DOI : 10.1364/OE.17.011350

T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, Two-photon luminescence properties of gold nanorods, Biomedical Optics Express, vol.4, issue.4, pp.584-595, 2013.
DOI : 10.1364/BOE.4.000584

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer et al., Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods, Physical Review Letters, vol.255, issue.26, p.95267405, 2005.
DOI : 10.1016/S0009-2614(99)01214-2

J. Olesiak-banska, K. Brach, M. Klekotko, M. Gordel, K. Matczyszyn et al., Surface plasmon influence on two-photon luminescence from single gold nanorods, pp.89550-89550, 2014.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. Eisler, Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation, Nanoscale, vol.113, issue.6, pp.1018-1020, 2010.
DOI : 10.1103/PhysRevB.71.235420

C. K. Chen, A. R. De-castro, and Y. R. Shen, Surface-Enhanced Second-Harmonic Generation, Physical Review Letters, vol.67, issue.2, pp.145-148, 1981.
DOI : 10.1016/0009-2614(79)85152-0

H. Deng, G. Li, Q. Dai, M. Ouyang, S. Lan et al., Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles, Nanotechnology, vol.24, issue.7, p.24075201, 2013.
DOI : 10.1088/0957-4484/24/7/075201

G. Liu, H. Deng, G. Li, L. Chen, . Qi et al., Nonlinear Optical Properties of Large-Sized Gold Nanorods, Plasmonics, vol.25, issue.6, pp.1471-1480, 2014.
DOI : 10.1364/JOSAB.25.000955

K. Imura, T. Nagahara, and H. Okamoto, Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes, The Journal of Physical Chemistry B, vol.109, issue.27, pp.13214-13220, 2005.
DOI : 10.1021/jp051631o

T. V. Shahbazyan and M. I. Stockman, Plasmonics : Theory and Applications, 2014.
DOI : 10.1007/978-94-007-7805-4

V. Knittel, M. P. Fischer, T. De-roo, S. Mecking, A. Leitenstorfer et al., Nonlinear Photoluminescence Spectrum of Single Gold Nanostructures, ACS Nano, vol.9, issue.1, pp.894-900, 2015.
DOI : 10.1021/nn5066233

J. Friedt and É. Carry, Introduction to the quartz tuning fork, American Journal of Physics, vol.75, issue.5, pp.415-422, 2007.
DOI : 10.1119/1.2711826

URL : https://hal.archives-ouvertes.fr/hal-00493935

N. Gmbh, Piezoelectric quartz tuning forks for scanning probe microscopy, 2005.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.6, issue.2, pp.668-673, 1991.
DOI : 10.1063/1.104030

F. Gao, X. Li, J. Wang, and Y. Fu, Dynamic behavior of tuning fork shear-force structures in a SNOM system, Ultramicroscopy, vol.142, pp.10-23, 2014.
DOI : 10.1016/j.ultramic.2014.03.011

A. Castellanos-gomez, N. Agraït, and G. Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, p.215502, 2009.
DOI : 10.1088/0957-4484/20/21/215502

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin et al., Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures, Review of Scientific Instruments, vol.71, issue.4, pp.1695-1697, 2000.
DOI : 10.1063/1.121774

A. G. Ruiter, K. O. Van-der-werf, J. A. Veerman, M. F. Garcia-parajo, W. H. Rensen et al., Tuning fork shear-force feedback, Ultramicroscopy, vol.71, issue.1-4, pp.1-4149, 1998.
DOI : 10.1016/S0304-3991(97)00111-3

URL : http://os.tnw.utwente.nl/publications/pdf/52.pdf

K. Karrai and R. D. Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.60, issue.14, pp.1842-1844, 1995.
DOI : 10.1063/1.113340

A. Naber, The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy, Journal of Microscopy, vol.194, issue.2-3, pp.307-310, 1999.
DOI : 10.1046/j.1365-2818.1999.00548.x

P. Günther, U. C. Fischer, and K. Dransfeld, Scanning near-field acoustic microscopy, Applied Physics B Photophysics and Laser Chemistry, vol.21, issue.1, pp.89-92, 1989.
DOI : 10.1007/BF00694423

B. P. Ng, Y. Zhang, S. W. Kok, and Y. C. Soh, An improved dynamic model of tuning fork probe for scanning probe microscopy, Journal of Microscopy, vol.194, issue.2, pp.191-195, 2009.
DOI : 10.1111/j.1365-2818.2009.03160.x

M. Mrejen, A. Israel, H. Taha, M. Palchan, and A. Lewis, Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays, Optics Express, vol.15, issue.15, p.159129, 2007.
DOI : 10.1364/OE.15.009129

M. Labardi, Dynamics of probes attached to quartz tuning forks for the detection of surface forces, Nanotechnology, vol.18, issue.39, p.395505, 2007.
DOI : 10.1088/0957-4484/18/39/395505

M. Barbic, L. Eliason, and J. Ranshaw, Femto-Newton force sensitivity quartz tuning fork sensor. Sensors and Actuators A : Physical, pp.564-566, 2007.
DOI : 10.1016/j.sna.2007.01.001

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann et al., Fundamental limits to force detection using quartz tuning forks, Review of Scientific Instruments, vol.71, issue.7, pp.712776-2780, 2000.
DOI : 10.1063/1.118318

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor, Journal of Applied Physics, vol.82, issue.3, pp.980-984, 1997.
DOI : 10.1116/1.572370

I. Horcas, R. Fernández, J. M. Gómez-rodríguez, J. Colchero, J. Gómez-herrero et al., : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, p.13705, 2007.
DOI : 10.1038/nmat1297

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. Martin, Enhanced second-harmonic generation from double resonant plasmonic antennae, Optics Express, vol.20, issue.12, p.12860, 2012.
DOI : 10.1364/OE.20.012860

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier et al., Plasmon-Based Free-Radical Photopolymerization: Effect of Diffusion on Nanolithography Processes, Journal of the American Chemical Society, vol.133, issue.27, pp.10535-10542, 2011.
DOI : 10.1021/ja201636y

URL : https://hal.archives-ouvertes.fr/hal-00622894

C. Deeb, R. Bachelot, J. Plain, A. Baudrion, S. Jradi et al., Quantitative Analysis of Localized Surface Plasmons Based on Molecular Probing, ACS Nano, vol.4, issue.8, pp.4579-4586, 2010.
DOI : 10.1021/nn101017b

URL : https://hal.archives-ouvertes.fr/hal-00536498

F. H. 'dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, Near-field optics : Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer, Applied Physics Letters, issue.24, pp.794019-4021, 2001.

B. J. Jung, H. J. Kong, Y. Cho, K. Lee, C. H. Park et al., Fabrication of sharp-needled conical polymer tip on the cross-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy, Optics Communications, vol.286, pp.197-203, 2013.
DOI : 10.1016/j.optcom.2012.09.003

B. Ren, G. Picardi, and B. Pettinger, Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching, Review of Scientific Instruments, vol.71, issue.4, pp.837-841, 2004.
DOI : 10.1002/1438-5171(200211)3:5/6<281::AID-SIMO281>3.0.CO;2-C

X. Wang, Z. Liu, M. Zhuang, H. Zhang, X. Wang et al., Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips, Applied Physics Letters, vol.28, issue.10, pp.91101105-101105, 2007.
DOI : 10.1021/j150667a013

L. Billot, L. Berguiga, M. L. De-la-chapelle, Y. Gilbert, and R. Bachelot, Production of gold tips for tip-enhanced near-field optical microscopy and spectroscopy: analysis of the etching parameters, The European Physical Journal Applied Physics, vol.139, issue.2, pp.31139-145, 2005.
DOI : 10.1016/S0379-6779(03)00276-5

J. Park, T. S. Hong, N. S. Lee, K. B. Kim, and Y. Seo, Viscosity dependence of electrochemical etching for gold tip fabrication, Current Applied Physics, vol.11, issue.6, pp.1332-1336, 2011.
DOI : 10.1016/j.cap.2011.03.075

G. Xu, Z. Liu, K. Xu, Y. Zhang, H. Zhong et al., Constant current etching of gold tips suitable for tip-enhanced Raman spectroscopy, Review of Scientific Instruments, vol.83, issue.10, pp.103708-103708, 2012.
DOI : 10.1021/jp209982h

J. A. Morán-meza, J. Polesel-maris, C. Lubin, F. Thoyer, A. Makky et al., Reverse electrochemical etching method for fabricating ultra-sharp platinum/iridium tips for combined scanning tunneling microscope/atomic force microscope based on a quartz tuning fork, Current Applied Physics, vol.15, issue.9, pp.1015-1021, 2015.
DOI : 10.1016/j.cap.2015.05.015

J. A. Morán and . Meza, Propriétés structurelles et électroniques du graphène sur SiC(0001) étudiées par microscopie combinée STM/AFM, 2013.

L. Libioulle, Y. Houbion, and J. Gilles, Very sharp platinum tips for scanning tunneling microscopy, Review of Scientific Instruments, vol.34, issue.1, pp.97-100, 1995.
DOI : 10.1016/0039-6028(92)90592-T

M. Fotino, Nanotips by reverse electrochemical etching, Applied Physics Letters, vol.49, issue.23, pp.2935-2937, 1992.
DOI : 10.1116/1.585467

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.39, issue.9, pp.930-933, 1986.
DOI : 10.1016/0021-9797(72)90039-2

L. Douillard and F. Charra, High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies, Journal of Physics D: Applied Physics, vol.44, issue.46, p.44464002, 2011.
DOI : 10.1088/0022-3727/44/46/464002

C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jackel, G. Laurent et al., Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars, Nano Letters, vol.11, issue.2, pp.402-407, 2011.
DOI : 10.1021/nl103007m

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz et al., Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields, Physical Review Letters, vol.8, issue.4, p.47601, 2005.
DOI : 10.1021/nl0506655