M. Kiso and L. Anderson, Protected glycosides and disaccharides of 2-amino-2-deoxy-d-glucopyranose by ferric chloride-catalyzed coupling, Carbohydrate Research, vol.136, pp.309-323, 1985.
DOI : 10.1016/0008-6215(85)85205-8

A. J. Shapiro, E. S. Acher, and . Rachaman, Ganglioside series. I. Synthesis of 4-O-(2-acetamido-2-deoxy-.beta.-D-glucopyranosyl)-D-galactopyranose, The Journal of Organic Chemistry, vol.32, issue.12, pp.3767-3771, 1967.
DOI : 10.1021/jo01287a008

J. Blatter, J. Beau, and . Jacquinet, The use of 2-deoxy-2-trichloroacetamido-d-glucopyranose derivatives in syntheses of oligosaccharides, Carbohydrate Research, vol.260, issue.2, pp.189-202, 1994.
DOI : 10.1016/0008-6215(94)84038-5

G. Strachan, W. V. Ruyle, T. Y. Shen, and R. Hirschmann, A New Route to 2-Amino-2-deoxy-??-D-glucosides, The Journal of Organic Chemistry, vol.31, issue.2, pp.507-509, 1966.
DOI : 10.1021/jo01340a036

T. Akiya and . Osawa, Nitrogen-containing Sugars. VI. On the N, N-Phthaloyl Derivatives of D-Glucosamine, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.8, issue.7, pp.583-587, 1960.
DOI : 10.1248/cpb.8.583

S. Debenham, R. Madsen, C. Roberts, and B. Fraser-reid, Two New Orthogonal Amine-Protecting Groups that can be Cleaved under Mild or Neutral Conditions, Journal of the American Chemical Society, vol.117, issue.11, pp.3302-3303, 1995.
DOI : 10.1021/ja00116a047

R. Schmidt and W. Kinzy, Anomeric-Oxygen Activation for Glycoside Synthesis: The Trichloroacetimidate Method, Adv. Carbohydr. Chem. Biochem, vol.50, pp.21-123, 1994.
DOI : 10.1016/S0065-2318(08)60150-X

V. Lau, H. Thon, L. Yu, Y. Ding, M. M. Chen et al., Highly efficient chemoenzymatic synthesis of ??1???4-linked galactosides with promiscuous bacterial ??1???4-galactosyltransferases, Chemical Communications, vol.2, issue.33, pp.6066-6068, 2010.
DOI : 10.5483/BMBRep.2002.35.3.330

N. Choudhury, H. Minoura, and . Uzawa, Chemoenzymatic synthesis of the sialyl-??-(2???3???)-lactosamine trisaccharide with a 3-aminopropyl group as a spacer at the reducing end, Carbohydrate Research, vol.338, issue.12, pp.1265-1270, 2003.
DOI : 10.1016/S0008-6215(03)00167-8

G. Sudibya, J. Ma, X. Dong, S. Ng, L. Li et al., Interfacing Glycosylated Carbon-Nanotube-Network Devices with Living Cells to Detect Dynamic Secretion of Biomolecules, Angewandte Chemie, vol.5, issue.15, pp.2761-2764, 2005.
DOI : 10.1002/smll.200800919

H. K. Schell and . Hombrecher, Synthesis, Self-Assembling Properties and Incorporation of Carbohydrate-Substituted Porphyrins into Cell Membrane Models, Chemistry - A European Journal, vol.5, issue.2, pp.587-598, 1999.
DOI : 10.1002/(SICI)1521-3765(19990201)5:2<587::AID-CHEM587>3.0.CO;2-Z

K. Gorityala, Z. Lu, M. L. Leow, J. Ma, and X. Liu, Design of a ???Turn-Off/Turn-On??? Biosensor: Understanding Carbohydrate-Lectin Interactions for Use in Noncovalent Drug Delivery, Journal of the American Chemical Society, vol.134, issue.37, pp.15229-15232, 2012.
DOI : 10.1021/ja306288p

1. Hz, CH 2 Ph), 4.11-4.06 (m, 3H, HB-6, HB-6' and HA-6), pp.4-7

1. Glcnac-h6m and H. -. , GlcNAc-H6', GlcNAc-H6, pp.4-21

C. Ch, CH, CB-5 or CC-3), 73.2, 73.2, 72

1. Hz, 1H, H4), 3.85 (t, J 6',5 = J 6',6' = 10, Hz, 1H, H6'), 2.45 (d, J OH,3 = 7.5 Hz, 1H, OH), p.3630

. Ch and . Chph, CH 2 Ph), 69.5 (CH, chromatography on silica gel (heptane/EtOAc 9:1 to 6:4) to afford pure product 249 (876 mg, 59 %, white amorphous solid) and pure product, CH, C2), 80.1 (CH, C4), p.250

1. Hz and C. , 85-3.82 (m, 2H, H6 and H6'), 3.79 (t, Hz, 1H, H4), 2.43 (d, J OH,2 = 9.0 Hz, 1H, OH), 2.35 (s, 3H, ArCH 3 ), pp.4-19, 2000.

J. Hz, . A3, 1. Hz, and H. -. , 82 (dd, J A6',A6 = 11.0 Hz and J A6',A5 = 3.5 Hz, 1H, HA-6'), 3.82-3.74 (m, 2H, HA-4 and HB-2), 3.58 (ddd, J B5,B4 = 10, Hz, J B5,B6 = 4.5 Hz and J B5,B6' = 2.5 Hz, 1H, HB-5), 2.86 (brs, 1H, OH), 2.37 (s, 3H, ArCH 3 ), 2.02 (s, 3H, OCOCH 3 ), 2.01 (s, 3H, OCOCH 3 ), p.8130

. Eq, TTBP (65 mg, 0.258 mmol, 4 eq Fe(OTf) 3 ·6.2DMSO (10 mg, 0.010 mmol, 15 mol-%)

1. Hz and H. -. , 59-3.54 (m, 2H, HB-5 and HC-5), 2.37 (s, 3H, ArCH 3 ), 2.03 (s, 9H, 3×OCOCH 3 ), 2.01 (s, 3H, OCOCH 3 ), pp.89-92

1. Hz and 1. Ha-brs, 34 (s, 3H, ArCH 3 ), 2.02 (s, 3H, OCOCH 3 ), 2.00 (s, 3H, OCOCH 3 ), 1.95 (s, 3H, pp.52-55

. Hz, HC-6, HD-2 and HD'-2, HE-6 and HE'-6), 4.15-3, pp.4-26

J. Hzddd, . B5, J. Hz, B. B5, J. Hz et al., HD-3 and HD'-3, HD-4 and HD'-4, HD-6' and HD'-6', HD-7'and HD'-7', HD-9, HE-5 and HE'-5, HF-5 and HF (m, 1.4H, HD-5 and HD'-5, HD'-9, HF-2 and HF, ), 2.05 (s, 1.5H, COCH 3 ), 2.04 (s, 1.5H, COCH 3 ), 2.03 (s, 1.5H, COCH 3 ), 2.03 (s, 1.5H, COCH 3 ), pp.8278-8281

C. Ch, CE-2 and CE

1. Hz and . Chd, 0 Hz, 1H, CH 2 Ph), 4.58 (d, J = 12, Hz, 1H, CH 2 Ph), 4.55 (d, J = 12.0 Hz, 1H, CH 2 Ph), 4.54 (d, J = 11.0 Hz, 1H, CH 2 Ph 1H, CH 2 Ph), 4.39 (s, 1H, H1), 4.05 (dt, J 7 Hz, 1H, H7), 3.91 (d, J, pp.4-64

1. Hz, 74 (dd, J 6',6 = 10.5 Hz and J 6, pp.65-68

J. Hz, 8 = 7.5 Hz and J 7',8' = 4.5 Hz, 1H, and H8'), pp.54-57

2. Hzm, 1. Ha-m, and H. -. , 54-3.43 (m, 3H, HA-5, HA-7', HC-5, HD-3, HD-9 and HD-9'), 3.34-3.28 (m, 1H, HA-9 and HA-9, 1H, HD-5 and HF-2), 3.16 (dt, J B2), 2.06 (s, 1.5H, COCH 3 ), 2.05 (s, 1.5H, COCH 3 ), 2.05 (s, 1.5H, COCH 3 ), 2.04 (s, 1.5H, COCH 3 ), 2.04 (s, 1.5H, COCH 3 ), pp.72-75

1. Hz, 80 (t, J 6,5 = J 6,6' = 10, Hz, 1H, H6'), 2.96 (d, J OH,2 = 1.0 Hz, 1H, OH), 2.31 (s, 3H, ArCH 3 ), 1.27 (s, 9H, ArC(CH 3 ) 3 ), 1.09 (s, 9H, Si(Ph) 2 C(CH 3 ) 3 )

1. Hz, 75 (m, 2H, H6 and H6'), 3.74 (dd, 5 Hz, 1H, H2), 2.23 (s, 3H, ArCH 3 ), 1.25 (s, 9H, ArC(CH 3 ) 3 ), 1.13 (s, 9H, Si(Ph) 2 C(CH 3 ) 3 ), pp.98-378

. Eq, TTBP (100 mg, 0.402 mmol

1. Hz, H. , B. =. , J. C3, and C. , HB-4), 4.93 (s, 1H, C4 = 10.0 Hz, 1H, HC-3), 4.74 (d, J = 10.5 Hz, 1H, CH 2 Ph), pp.4-97, 2005.

1. Hz, 4.63 (d, J 7',7 = 12.5 Hz, 1H, pp.4-57

1. Hz, H. , and A. , HC-1), 4.34-4.31 (m, 2H, HA-2 and HD-6), C2 = 8.0 Hz, pp.4-15

C. 2teg, 72 (m, 4H, HD-5, HB-5 and CH 2TEG, pp.8177-369

J. Hz and . C5, 08 (s, 3H, COCH 3 ), 2.08 (s, 3H, COCH 3 ), 2.04 (s, 3H, COCH 3 ), 2.04 (s, 3H, C6' = 2.5 Hz COCH 3 ), 2.02 (s, 3H, COCH 3 ), 2.01 (s, 3H, COCH 3 ), 2.00 (s, 3H, COCH 3 ), 1.99 (s, 3H, COCH 3 ), 1.99 (s, 3H, COCH 3 ), 1.92 (s, 3H, COCH 3 ), pp.14-38958

. Glcnac-h6, 60 (m, 13H, HA-4, HA-5, HD-2, HB-2, GlcNAc-H3, 2×GlcNAc-H6' and 3×CH 2TEG ), 3.57-3.56 (m, 2H, HC-2 and GlcNAc-H3), 3.54-3.49 (m, 4H, HA-6', GlcNAc-H3 and CH 2TEG, -4 and HD-5), 2.04 (s, 3H, COCH 3 ), 2.03 (s, 3H, COCH 3 ), pp.69-337

C. Ch, 3 (CH, CB-5, CC-5 or CD-5), 78.1 (CH, CB-5, CC-5 or CD-5), 78.1 (CH, CB-5, CC-5 or CD-5), CH, CD-3 or CB-3 or CC-3)

C. J. Mcgarvey, B. A. Leclair, . Schmidtmann, . Org, and . Lett, 49 mmol, 3.5 eq.) in dry CH 2 Cl 2 (4.5 mL), at ? 78 °C under argon, was added dropwise along the sides of the flask a solution of 3- chloroperoxybenzoic acid 75 % (197 mg, 0.85 mmol, 1.2 eq.) in CH 2 Cl 2 (5.5 mL) 268 After stirring at ? 78 °C for 1 hour and then at ? 20 °C overnight, the reaction mixture was diluted with CH 2 Cl 2 (20 mL) and successively washed with saturated aqueous Na 2 S 2 O 3 (20 mL), saturated aqueous NaHCO 3 (20 mL) and brine (60 mL). The organic layer was separated and 268 According to the procedure of: G, 71 mmol, 1 eq.) and NaHCO 3 (209 mg, pp.298-4727, 2008.

1. Hz, 52 (s, 3H, ArCH 3 )

G. George, P. Szolcsányi, S. G. Koenig, D. E. Paterson, Y. Isshiki et al., Preparation of an Advanced Intermediate for the Synthesis of Stable Analogues of Guanofosfocin, Helvetica Chimica Acta, vol.87, issue.5, pp.1287-1298, 2004.
DOI : 10.1002/hlca.200490118

J. Beignet, C. H. Tiernan, B. M. Woo, L. R. Kariuki, J. Cox et al., 271 According to the procedure of, [9] R. Enugala, L. C. R. Carvalho, M. J. Dias Pires, M. M. B. Marques, pp.6341-6356, 1971.

M. Kiso and L. Anderson, Protected glycosides and disaccharides of 2-amino-2-deoxy-d-glucopyranose by ferric chloride-catalyzed coupling, Carbohydrate Research, vol.136, pp.309-323, 1985.
DOI : 10.1016/0008-6215(85)85205-8

D. Shapiro, A. J. Acher, and E. S. Rachaman, Ganglioside series. I. Synthesis of 4-O-(2-acetamido-2-deoxy-.beta.-D-glucopyranosyl)-D-galactopyranose, The Journal of Organic Chemistry, vol.32, issue.12, pp.3767-3771, 1967.
DOI : 10.1021/jo01287a008

G. Blatter, J. Beau, and J. Jacquinet, The use of 2-deoxy-2-trichloroacetamido-d-glucopyranose derivatives in syntheses of oligosaccharides, Carbohydrate Research, vol.260, issue.2, pp.189-202, 1994.
DOI : 10.1016/0008-6215(94)84038-5

R. G. Strachan, W. V. Ruyle, T. Y. Shen, and R. Hirschmann, A New Route to 2-Amino-2-deoxy-??-D-glucosides, The Journal of Organic Chemistry, vol.31, issue.2, pp.507-509, 1966.
DOI : 10.1021/jo01340a036

S. Akiya and T. Osawa, Nitrogen-containing Sugars. VI. On the N, N-Phthaloyl Derivatives of D-Glucosamine, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.8, issue.7, pp.583-587, 1960.
DOI : 10.1248/cpb.8.583

J. S. Debenham, R. Madsen, C. Roberts, and B. Fraser-reid, Two New Orthogonal Amine-Protecting Groups that can be Cleaved under Mild or Neutral Conditions, Journal of the American Chemical Society, vol.117, issue.11, pp.3302-3303, 1995.
DOI : 10.1021/ja00116a047

H. Jiao and O. Hindsgaul, The 2-N,N-Dibenzylamino Group as a Participating Group in the Synthesis of??-Glycosides, Angewandte Chemie International Edition, vol.38, issue.3, pp.346-348, 1999.
DOI : 10.1002/(SICI)1521-3773(19990201)38:3<346::AID-ANIE346>3.0.CO;2-L

S. G. Bowers, D. M. Coe, and G. Boons, Application of the 2,5-Dimethylpyrrole Group as a New and Orthogonal Amine-Protecting Group in Oligosaccharide Synthesis, The Journal of Organic Chemistry, vol.63, issue.14, pp.4570-4571, 1998.
DOI : 10.1021/jo9808728

H. Paulsen, ?. Kolá?, and W. Stenzel, Bausteine von Oligosacchariden, XI: Synthese ??-glycosidisch verkn??pfter Disaccharide der 2-Amino-2-desoxy-D-galactopyranose, Chemische Berichte, vol.70, issue.6, pp.2358-2369, 1978.
DOI : 10.1002/cber.19781110630

K. Benakli, C. Zha, and R. J. Kerns, -glucose Derivatives as Versatile Intermediates in Stereoselective Oligosaccharide Synthesis and the Formation of ??-Linked Glycosides, Journal of the American Chemical Society, vol.123, issue.38, pp.9461-9462, 2001.
DOI : 10.1021/ja0162109

S. E. Zurabyan, T. P. Volosyuk, and A. J. Khorlin, Oxazoline synthesis of 1,2-trans-2-acetamido-2-deoxyglycosides, Carbohydrate Research, vol.9, issue.2, pp.215-220, 1969.
DOI : 10.1016/S0008-6215(00)82136-9

S. E. Zurabyan, T. S. Antonenko, and A. Y. Khorlin, Oxazoline synthesis of 1,2-trans-2-acetamido-2-deoxyglycosides. Glycosylation of secondary hydroxyl groups in partially protected saccharides, Carbohydrate Research, vol.15, issue.1, pp.21-27, 1970.
DOI : 10.1016/S0008-6215(00)80289-X

W. Koenigs and E. Knorr, Ueber einige Derivate des Traubenzuckers und der Galactose, Berichte der deutschen chemischen Gesellschaft, vol.34, issue.1, pp.957-981, 1901.
DOI : 10.1002/recl.18920110502

B. Helferich and K. Weis, Zur Synthese von Glucosiden und von nicht-reduzierenden Disacchariden, Chemische Berichte, vol.25, issue.2, pp.314-321, 1956.
DOI : 10.15227/orgsyn.025.0053

K. Miyai and R. W. Jeanloz, Synthesis of a ??-D-linked disaccharide from dimeric tri-O-acetyl-2-deoxy-2-nitroso-??-D-glucopyranosyl chloride, Carbohydrate Research, vol.21, issue.1, pp.45-55, 1972.
DOI : 10.1016/S0008-6215(00)81729-2

H. Hohgardt, W. Dietrich, H. Kühne, D. Müller, D. Grzelak et al., Synthesis of two structural analogues of the smallest antibiotically active degradation product of moenomycin a, Tetrahedron, vol.44, issue.18, pp.5771-5790, 1988.
DOI : 10.1016/S0040-4020(01)81436-8

H. Ohrui, Y. Nishida, H. Hori, H. Meguro, and S. Zushi, H-NMR Studies on Mucin-Type Sugars Chirally Deuterated at the C-6 Position, Journal of Carbohydrate Chemistry, vol.255, issue.4, pp.711-731, 1988.
DOI : 10.1021/ja00268a056

D. Crich and V. Dudkin, -Phthalimido-, and 2-Azido-2-deoxy-glucosamine Derivatives in Glycosylation. 2-Picolinyl Ethers as Reactivity-Enhancing Replacements for Benzyl Ethers, Journal of the American Chemical Society, vol.123, issue.28, pp.6819-6825, 2001.
DOI : 10.1021/ja010086b

A. K. Sarkar, J. R. Brown, and J. D. Esko, Synthesis and glycan priming activity of acetylated disaccharides, Carbohydrate Research, vol.329, issue.2, pp.287-300, 2000.
DOI : 10.1016/S0008-6215(00)00200-7

S. Hosono, W. Kim, H. Sasai, and M. Shibasaki, A New Glycosidation Procedure Utilizing Rare Earth Salts and Glycosyl Fluorides, with or without the Requirement of Lewis Acids, The Journal of Organic Chemistry, vol.60, issue.1, pp.4-5, 1995.
DOI : 10.1021/jo00106a002

R. R. Schmidt and W. Kinzy, Anomeric-Oxygen Activation for Glycoside Synthesis: The Trichloroacetimidate Method, Adv. Carbohydr. Chem. Biochem, vol.50, pp.21-123, 1994.
DOI : 10.1016/S0065-2318(08)60150-X

K. Lau, V. Thon, H. Yu, L. Ding, Y. Chen et al., Highly efficient chemoenzymatic synthesis of ??1???4-linked galactosides with promiscuous bacterial ??1???4-galactosyltransferases, Chemical Communications, vol.2, issue.33, pp.6066-6068, 2010.
DOI : 10.5483/BMBRep.2002.35.3.330

I. Choudhury, N. Minoura, and H. Uzawa, Chemoenzymatic synthesis of the sialyl-??-(2???3???)-lactosamine trisaccharide with a 3-aminopropyl group as a spacer at the reducing end, Carbohydrate Research, vol.338, issue.12, pp.1265-1270, 2003.
DOI : 10.1016/S0008-6215(03)00167-8

H. G. Sudibya, J. Ma, X. Dong, S. Ng, L. Li et al., Interfacing Glycosylated Carbon-Nanotube-Network Devices with Living Cells to Detect Dynamic Secretion of Biomolecules, Angewandte Chemie, vol.5, issue.15, pp.2761-2764, 2009.
DOI : 10.1002/smll.200800919

K. Ko, F. A. Jaipuri, and N. L. , Fluorous-Based Carbohydrate Microarrays, Journal of the American Chemical Society, vol.127, issue.38, pp.13162-13163, 2005.
DOI : 10.1021/ja054811k

C. Schell and H. K. Hombrecher, Synthesis, Self-Assembling Properties and Incorporation of Carbohydrate-Substituted Porphyrins into Cell Membrane Models, Chemistry - A European Journal, vol.5, issue.2, pp.587-598, 1999.
DOI : 10.1002/(SICI)1521-3765(19990201)5:2<587::AID-CHEM587>3.0.CO;2-Z

B. K. Gorityala, Z. Lu, M. L. Leow, J. Ma, and X. Liu, Design of a ???Turn-Off/Turn-On??? Biosensor: Understanding Carbohydrate-Lectin Interactions for Use in Noncovalent Drug Delivery, Journal of the American Chemical Society, vol.134, issue.37, pp.15229-15232, 2012.
DOI : 10.1021/ja306288p

A. Bernardi, D. Arosio, L. Manzoni, D. Monti, H. Posteri et al., Mimics of ganglioside GM1 as cholera toxin ligands: replacement of the GalNAc residueElectronic supplementary information (ESI) available: synthetic details, product characterisations and full NOE contact list. See http://www.rsc.org/suppdata/ob/b2/b210503a/, Organic & Biomolecular Chemistry, vol.1, issue.5, pp.785-792, 2003.
DOI : 10.1039/b210503a

G. Terraneo, D. Potenza, A. Canales, J. Jiménez-barbero, K. K. Baldridge et al., A Simple Model System for the Study of Carbohydrate???Aromatic Interactions, Journal of the American Chemical Society, vol.129, issue.10, pp.2890-2900, 2007.
DOI : 10.1021/ja066633g

J. Kadokawa, T. Nagaoka, J. Ebana, H. Tagaya, and K. Chiba, New ??-selective thermal glycosylation of acetyl-protected 2-acetamido-2-deoxy-??-d-glucopyranosyl diphenylphosphinate, Carbohydrate Research, vol.327, issue.3, pp.341-344, 2000.
DOI : 10.1016/S0008-6215(00)00069-0

R. Arihara, S. Nakamura, and S. Hashimoto, Direct and Stereoselective Synthesis of 2-Acetamido-2-deoxy-?-D-glycopyranosides by Using the Phosphite Method, Angewandte Chemie International Edition, vol.54, issue.15, pp.2245-2249, 2005.
DOI : 10.1002/anie.200461988

R. Arihara, K. Kakita, N. Suzuki, S. Nakamura, and S. Hashimoto, Glycosylation with 2-Acetamido-2-deoxyglycosyl Donors at a Low Temperature: Scope of the Non-Oxazoline Method, The Journal of Organic Chemistry, vol.80, issue.9, pp.4259-4277, 2015.
DOI : 10.1021/acs.joc.5b00138

H. Kondo, Y. Ichikawa, and C. H. Wong, .beta.-Sialyl phosphite and phosphoramidite: synthesis and application to the chemoenzymic synthesis of CMP-sialic acid and sialyl oligosaccharides, Journal of the American Chemical Society, vol.114, issue.22, pp.8748-8750, 1992.
DOI : 10.1021/ja00048a085

D. R. Mootoo, P. Konradsson, U. Udodong, and B. Fraser-reid, Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides, Journal of the American Chemical Society, vol.110, issue.16, pp.5583-5584, 1988.
DOI : 10.1021/ja00224a060

D. Crich and S. Sun, F NMR Spectroscopic Investigation, Journal of the American Chemical Society, vol.119, issue.46, pp.11217-11223, 1997.
DOI : 10.1021/ja971239r

H. B. Mereyala and V. R. Gurijala, Use of 2-pyridyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio-??-d-glucopyranoside as a glycosyl donor and methyl iodide as an activator for the synthesis of 1,2-trans-linked saccharides, Carbohydrate Research, vol.242, pp.277-280, 1993.
DOI : 10.1016/0008-6215(93)80041-C

G. Cravotto and P. Cintas, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications, Chem. Soc. Rev., vol.81, issue.8, pp.180-196, 2006.
DOI : 10.1126/science.1078022

S. Deng, U. Gangadharmath, and C. T. Chang, Sonochemistry:?? A Powerful Way of Enhancing the Efficiency of Carbohydrate Synthesis, The Journal of Organic Chemistry, vol.71, issue.14, pp.5179-5185, 2006.
DOI : 10.1021/jo060374w

A. F. Bongat, M. N. Kamat, and A. V. Demchenko, Chemoselective Synthesis of Oligosaccharides of 2-Deoxy-2-aminosugars, The Journal of Organic Chemistry, vol.72, issue.4, pp.1480-1483, 2007.
DOI : 10.1021/jo062171d

J. Krag, M. S. Christiansen, J. G. Petersen, and H. H. Jensen, Direct chemical glycosylation with pentenyl- and thioglycoside donors of N-acetylglucosamine, Carbohydrate Research, vol.345, issue.7, pp.872-879, 2010.
DOI : 10.1016/j.carres.2010.02.013

W. L. Salo and H. G. Fletcher, Selective cleavage of the glycosidic bond in acetylated 2-acetamido-2-deoxy-.beta.-D-glucopyranosides by a chemical transglycosylation, The Journal of Organic Chemistry, vol.33, issue.9, pp.3585-3588, 1968.
DOI : 10.1021/jo01273a051

N. Pravdic, T. Inch, and J. H. Fletcher, The Formation of Acetylated Oxazolines through the Action of Zinc Chloride and Acetic Anhydride on 2-Acylamino-2-deoxyaldoses, The Journal of Organic Chemistry, vol.32, issue.6, pp.1815-1818, 1967.
DOI : 10.1021/jo01281a600

M. Kiso and L. Anderson, The ferric chloride-catalyzed glycosylation of alcohols by 2-acylamido-2-deoxy-??-D-glucopyranose 1-acetates, Carbohydrate Research, vol.72, pp.12-14, 1979.
DOI : 10.1016/S0008-6215(00)83962-2

K. L. Matta and O. P. Bahl, Synthesis of enzyme substrates, Carbohydrate Research, vol.21, issue.3, pp.460-464, 1972.
DOI : 10.1016/S0008-6215(00)84929-0

M. Kiso and L. Anderson, The snythesis of disaccharides by the ferric chloride-catalyzed coupling of 2-acylamido-2-deoxy-??-D-glucopyranose 1-acetates to protect sugar acceptors, Carbohydrate Research, vol.72, pp.15-17, 1979.
DOI : 10.1016/S0008-6215(00)83963-4

G. Wei, X. Lv, and Y. Du, FeCl3-catalyzed ??-glycosidation of glycosamine pentaacetates, Carbohydrate Research, vol.343, issue.18, pp.3096-3099, 2008.
DOI : 10.1016/j.carres.2008.09.003

B. Aguilera, A. Fernández-mayoralas, and C. Jaramillo, Use of cyclic sulfamidates derived from D-allosamine in nucleophilic displacements: Scope and limitations, Tetrahedron, vol.53, issue.16, pp.5863-5876, 1997.
DOI : 10.1016/S0040-4020(97)00246-9

H. Christensen, M. S. Christiansen, J. Petersen, and H. H. Jensen, Direct formation of ??-glycosides of N-acetyl glycosamines mediated by rare earth metal triflates, Organic & Biomolecular Chemistry, vol.117, issue.18, pp.3276-3283, 2008.
DOI : 10.1248/cpb.8.597

S. Kobayashi, M. Sugiura, H. Kitagawa, and W. W. Lam, Rare-Earth Metal Triflates in Organic Synthesis, Chemical Reviews, vol.102, issue.6, pp.2227-2302, 2002.
DOI : 10.1021/cr010289i

M. Bols, X. Liang, and H. H. Jensen, Equatorial Contra Axial Polar Substituents. The Relation of a Chemical Reaction to Stereochemical Substituent Constants, The Journal of Organic Chemistry, vol.67, issue.25, pp.8970-8974, 2002.
DOI : 10.1021/jo0205356

M. R. Rasmussen, M. H. Marqvorsen, S. K. Kristensen, and H. H. Jensen, A Protocol for Metal Triflate Catalyzed Direct Glycosylations with GalNAc 1-OPiv Donors, The Journal of Organic Chemistry, vol.79, issue.22, pp.11011-11019, 2014.
DOI : 10.1021/jo502036f

J. Feng and C. Ling, An efficient conversion of N-acetyl-d-glucosamine to N-acetyl-d-galactosamine and derivatives, Carbohydrate Research, vol.345, issue.17, pp.2450-2457, 2010.
DOI : 10.1016/j.carres.2010.09.008

H. Myszka, D. Bednarczyk, M. Najder, and W. Kaca, Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-??-d-glucopyranoside hydrochloride and its derivatives, Carbohydrate Research, vol.338, issue.2, pp.133-141, 2003.
DOI : 10.1016/S0008-6215(02)00407-X

C. O. Kappe, D. Dallinger, and S. S. Murphree, Practical Microwave Synthesis for Organic Chemists, 2008.
DOI : 10.1002/9783527623907

S. Ichikawa, I. Tomita, A. Hosaka, and T. Sato, Metal-Catalyzed Organic Photoreactions. Iron(III)-Catalyzed Photoreactions of Aldo- and Ketohexoses, Bulletin of the Chemical Society of Japan, vol.61, issue.2, pp.513-520, 1988.
DOI : 10.1246/bcsj.61.513

P. J. Garegg, T. Iversen, and S. Oscarson, Monobenzylation of diols using phase-tramfer catalysis, Carbohydrate Research, vol.50, issue.2, pp.12-14, 1976.
DOI : 10.1016/S0008-6215(00)83867-7

P. J. Garegg, H. Hultberg, and S. Wallin, A novel, reductive ring-opening of carbohydrate benzylidene acetals, Carbohydrate Research, vol.108, issue.1, pp.97-101, 1982.
DOI : 10.1016/S0008-6215(00)81894-7

S. Norsikian and A. Lubineau, A new route to 2-C- and 4-C-branched sugars by palladium???indium bromide-mediated carbonyl allylation, Organic & Biomolecular Chemistry, vol.687, issue.22, pp.4089-4094, 2005.
DOI : 10.1016/S1631-0748(02)01374-7

H. H. Jensen and M. Bols, Stereoelectronic Substituent Effects, Accounts of Chemical Research, vol.39, issue.4, pp.259-265, 2006.
DOI : 10.1021/ar050189p

P. H. Seeberger and D. B. Werz, Synthesis and medical applications of oligosaccharides, Nature, vol.126, issue.7139, pp.1046-1051, 2007.
DOI : 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S

T. Wirth, Microreactors in Organic Chemistry and Catalysis, 2013.
DOI : 10.1002/9783527659722

S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilocchio, and R. J. Ingham, Machine-Assisted Organic Synthesis, Angewandte Chemie International Edition, vol.79, issue.35, pp.10122-10136, 2015.
DOI : 10.1021/jo500190b

D. Cantillo, M. Damm, D. Dallinger, M. Bauser, M. Berger et al., Sequential Nitration/Hydrogenation Protocol for the Synthesis of Triaminophloroglucinol: Safe Generation and Use of an Explosive Intermediate under Continuous-Flow Conditions, Organic Process Research & Development, vol.18, issue.11, pp.1360-1366, 2014.
DOI : 10.1021/op5001435

G. Caygill, M. Zanfir, and A. Gavriilidis, Scalable Reactor Design for Pharmaceuticals and Fine Chemicals Production. 1:?? Potential Scale-up Obstacles, Organic Process Research & Development, vol.10, issue.3, pp.539-552, 2006.
DOI : 10.1021/op050133a

D. Webb and T. F. Jamison, Continuous flow multi-step organic synthesis, Chemical Science, vol.14, issue.6, pp.675-680, 2010.
DOI : 10.1002/chem.200903284

C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp et al., ReactIR Flow Cell: A New Analytical Tool for Continuous Flow Chemical Processing, Organic Process Research & Development, vol.14, issue.2, pp.393-404, 2010.
DOI : 10.1021/op900305v

J. P. Mcmullen, M. T. Stone, S. L. Buchwald, and K. F. Jensen, An Integrated Microreactor System for Self-Optimization of a Heck Reaction: From Micro- to Mesoscale Flow Systems, Angewandte Chemie International Edition, vol.45, issue.39, pp.7076-7080, 2010.
DOI : 10.1093/comjnl/7.4.308

R. L. Hartman, J. R. Naber, S. L. Buchwald, and K. F. Jensen, Multistep Microchemical Synthesis Enabled by Microfluidic Distillation, Angewandte Chemie International Edition, vol.55, issue.5, pp.899-903, 2010.
DOI : 10.1021/jo00298a050

A. G. O-'brien, Z. Horváth, F. Lévesque, J. W. Lee, A. Seidel-morgenstern et al., Continuous Synthesis and Purification by Direct Coupling of a Flow Reactor with Simulated Moving-Bed Chromatography, Angewandte Chemie International Edition, vol.1126, issue.28, pp.7028-7030, 2012.
DOI : 10.1016/j.chroma.2006.05.012

I. R. Baxendale, S. V. Ley, A. C. Mansfield, and C. D. Smith, Multistep Synthesis Using Modular Flow Reactors: Bestmann-Ohira Reagent for the Formation of Alkynes and Triazoles, Angewandte Chemie International Edition, vol.5, issue.22, pp.4017-4021, 2009.
DOI : 10.2174/1386207024607220

K. D. Nagy, B. Shen, T. F. Jamison, and K. F. Jensen, Mixing and Dispersion in Small-Scale Flow Systems, Organic Process Research & Development, vol.16, issue.5, pp.976-981, 2012.
DOI : 10.1021/op200349f

R. L. Hartman, J. P. Mcmullen, and K. F. Jensen, Deciding Whether To Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis, Angewandte Chemie International Edition, vol.12, issue.33, pp.7502-7519, 2011.
DOI : 10.1021/op800128g

J. Yoshida, A. Nagaki, and T. Yamada, Flash Chemistry: Fast Chemical Synthesis by Using Microreactors, Chemistry - A European Journal, vol.38, issue.25, pp.7450-7459, 2008.
DOI : 10.1021/bk-1998-0685

J. Wegner, S. Ceylan, and A. Kirschning, Ten key issues in modern flow chemistry, Chemical Communications, vol.11, issue.56, pp.4583-4592, 2011.
DOI : 10.1039/b600382f

C. O. Kappe, Microwave dielectric heating in synthetic organic chemistry, Chemical Society Reviews, vol.11, issue.6, pp.1127-1139, 2008.
DOI : 10.1038/nrd1926

C. O. Kappe, B. Pieber, and D. Dallinger, Microwave Effects in Organic Synthesis: Myth or Reality?, Angewandte Chemie International Edition, vol.13, issue.4, pp.1088-1094, 2013.
DOI : 10.1039/c0gc00823k

J. D. Moseley, P. Lenden, M. Lockwood, K. Ruda, J. Sherlock et al., A Comparison of Commercial Microwave Reactors for Scale-Up within Process Chemistry, Organic Process Research & Development, vol.12, issue.1, pp.30-40, 2008.
DOI : 10.1021/op700186z

T. N. Glasnov and C. O. Kappe, The Microwave-to-Flow Paradigm: Translating High-Temperature Batch Microwave Chemistry to Scalable Continuous-Flow Processes, Chemistry - A European Journal, vol.13, issue.2, pp.11956-11968, 2011.
DOI : 10.1039/c0gc00823k

T. Nishiguchi, H. Tochio, A. Nabeya, and Y. Iwakura, Acid-catalyzed isomerization of 1-acyl- and 1-thioacylaziridines. I. Mechanism of nucleophilic substitution, Journal of the American Chemical Society, vol.91, issue.21, pp.5835-5841, 1969.
DOI : 10.1021/ja01049a023

D. Crich, T. Hu, and F. Cai, Does Neighboring Group Participation by Non-Vicinal Esters Play a Role in Glycosylation Reactions? Effective Probes for the Detection of Bridging Intermediates, The Journal of Organic Chemistry, vol.73, issue.22, pp.8942-8953, 2008.
DOI : 10.1021/jo801630m

S. Nakabayashi, C. D. Warren, and R. W. Jeanloz, A new procedure for the preparation of oligosaccharide oxazolines, Carbohydrate Research, vol.150, issue.1, pp.7-10, 1986.
DOI : 10.1016/0008-6215(86)80028-3

G. Fodor and L. Ötvös, Die Raumstruktur der Aminodesoxyzucker, II. Mitteil.: Die Konstellation des D-Glucosamins, Chemische Berichte, vol.103, issue.3, pp.701-708, 1956.
DOI : 10.1039/CT9119900250

A. Xolin, A. Stévenin, M. Pucheault, S. Norsikian, F. Boyer et al., ) triflate: from microwave batch chemistry to a scalable continuous-flow process, Org. Chem. Front., vol.64, issue.8, pp.992-1000, 2014.
DOI : 10.1002/ejoc.201300064

A. Ogawa and D. P. Curran, Benzotrifluoride:?? A Useful Alternative Solvent for Organic Reactions Currently Conducted in Dichloromethane and Related Solvents, The Journal of Organic Chemistry, vol.62, issue.3, pp.450-451, 1997.
DOI : 10.1021/jo9620324

R. Apweiler, H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1473, issue.1, pp.4-8, 1999.
DOI : 10.1016/S0304-4165(99)00165-8

R. A. Laine, to development of single-method saccharide sequencing or synthesis systems, Glycobiology, vol.4, issue.6, pp.759-767, 1994.
DOI : 10.1093/glycob/4.6.759

S. Thobhani, C. Yuen, M. J. Bailey, and C. Jones, Identification and quantification of N-linked oligosaccharides released from glycoproteins: An inter-laboratory study, Glycobiology, vol.19, issue.3, pp.201-211, 2009.
DOI : 10.1093/glycob/cwn099

J. Arnarp, M. Haraldsson, and J. Lönngren, Synthesis of three oligosaccharides that form part of the complex type of carbohydrate moiety of glycoproteins, Carbohydrate Research, vol.97, issue.2, pp.307-313, 1981.
DOI : 10.1016/S0008-6215(00)80676-X

H. Lönn and J. Lönngren, Synthesis of a nona- and an undeca-saccharide that form part of the complex type of carbohydrate moiety of glucoproteins, Carbohydrate Research, vol.120, pp.17-24, 1983.
DOI : 10.1016/0008-6215(83)88003-3

R. N. Shah, D. A. Cumming, A. A. Grey, J. P. Carver, and J. J. Krepinsky, Synthesis of a tetrasaccharide of the extended core-region of the saccharide moiety of N-linked glycoproteins, Carbohydrate Research, vol.153, issue.1, pp.155-161, 1986.
DOI : 10.1016/S0008-6215(00)90207-6

O. Hindsgaul, S. H. Tahir, O. P. Srivastava, and M. Pierce, The trisaccharide ??-d-GlcpNAc-(1???2)-??-d-Manp-(1???6)-??-d-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V, Carbohydrate Research, vol.173, issue.2, pp.263-272, 1988.
DOI : 10.1016/S0008-6215(00)90822-X

T. Mukai, M. Hagimori, K. Arimitsu, T. Katoh, M. Ukon et al., Synthesis and evaluation of a radioiodinated trisaccharide derivative as a synthetic substrate for a sensitive N-acetylglucosaminyltransferase V radioassay, Bioorganic & Medicinal Chemistry, vol.19, issue.14, pp.4312-4321, 2011.
DOI : 10.1016/j.bmc.2011.05.047

H. Paulsen and B. Helpap, Synthese von teilstrukturen der N-Glycoproteine des komplexen typs, Carbohydrate Research, vol.216, pp.289-313, 1992.
DOI : 10.1016/0008-6215(92)84169-S

T. Ogawa and S. Nakabayashi, Synthesis of a hexasaccharide unit of a complex type of glycan chain of a glycoprotein, Carbohydrate Research, vol.93, issue.1, pp.1-5, 1981.
DOI : 10.1016/S0008-6215(00)80764-8

T. Ogawa, S. Nakabayashi, and T. Kitajima, Synthesis of a hexasaccharide unit of a complex type of glycan chain of a glycoprotein, Carbohydrate Research, vol.114, issue.2, pp.225-236, 1983.
DOI : 10.1016/0008-6215(83)88189-0

K. K. Sadozai, T. Nukada, Y. Ito, Y. Nakahara, T. Ogawa et al., Synthesis of a heptasaccharide hapten related to a bi-antennary glycan chain of human chorionic gonadotropin of a choriocarcinoma patient. A convergent approach, Carbohydrate Research, vol.157, pp.101-123, 1986.
DOI : 10.1016/0008-6215(86)85063-7

K. K. Sadozai, Y. Ito, T. Nukada, T. Ogawa, and A. Kobata, Synthesis of a heptasaccharide hapten related to an anomalous biantennary glycan-chain of human chorionic gonadotropin of a patient with chorio-carcinoma. A stepwise approach, Carbohydrate Research, vol.150, issue.1, pp.91-101, 1986.
DOI : 10.1016/0008-6215(86)80007-6

Y. Kajihara, T. Endo, H. Ogasawara, H. Kodama, and H. Hashimoto, Enzymic transfer of 6-modified d-galactosyl residues: synthesis of biantennary penta- and hepta-saccharides having two 6-deoxy-d-galactose residues at the nonreducing end and evaluation of 6-deoxy-d-galactosyl transfer to glycoprotein using bovine ??-(1 ??? 4)-galactosyltransferase and UDP-6-deoxy-d-galactose, Carbohydrate Research, vol.269, issue.2, pp.273-294, 1995.
DOI : 10.1016/0008-6215(94)00369-Q

X. Zhu, D. P. Yu, and M. Cai, Synthesis of tumor-associated saccharides via O-glycosyl trichloroacetic, Tetrahedron: Asymmetry, vol.7, issue.10, pp.2833-2838, 1996.
DOI : 10.1016/0957-4166(96)00373-4

D. Lafont, P. Boullanger, J. Banoub, and G. Descotes, -mannopyranose derivatives, Canadian Journal of Chemistry, vol.68, issue.6, pp.828-835, 1990.
DOI : 10.1139/v90-131

J. D. Olsson, L. Eriksson, M. Lahmann, and S. Oscarson, -oxazolidinone-Protected Glucosamine Donors, The Journal of Organic Chemistry, vol.73, issue.18, pp.7181-7188, 2008.
DOI : 10.1021/jo800971s

C. Unverzagt, G. Gundel, S. Eller, R. Schuberth, J. Seifert et al., -Glycans by Use of Modular Building Blocks, Chemistry - A European Journal, vol.42, issue.45, pp.12292-12302, 2009.
DOI : 10.1016/j.bbagen.2005.12.005

H. Weiss and C. Unverzagt, Highly Branched Oligosaccharides: A General Strategy for the Synthesis of Multiantennary N-Glycans with a Bisected Motif, Angewandte Chemie International Edition, vol.42, issue.35, pp.4261-4263, 2003.
DOI : 10.1002/anie.200351625

S. Eller, R. Schuberth, G. Gundel, J. Seifert, and C. Unverzagt, Synthesis of Pentaantennary N-Glycans with Bisecting GlcNAc and Core Fucose, Angewandte Chemie International Edition, vol.38, issue.22, pp.4173-4175, 2007.
DOI : 10.1002/anie.200604788

S. Serna, J. Etxebarria, N. Ruiz, M. Martin-lomas, and N. Reichardt, -Glycan Microarrays by Using Modular Synthesis and On-Chip Nanoscale Enzymatic Glycosylation, Chemistry - A European Journal, vol.121, issue.44, pp.13163-13175, 2010.
DOI : 10.1016/j.jaci.2007.07.047

S. Serna, S. Yan, M. Martin-lomas, I. B. Wilson, and N. Reichardt, -Glycans, Journal of the American Chemical Society, vol.133, issue.41, pp.16495-16502, 2011.
DOI : 10.1021/ja205392z

S. S. Shivatare, S. Chang, T. Tsai, C. Ren, H. Chuang et al., -Glycans and Their HIV-1 Antigenicity, Journal of the American Chemical Society, vol.135, issue.41, pp.15382-15391, 2013.
DOI : 10.1021/ja409097c

V. Y. Dudkin, J. S. Miller, and S. J. Danishefsky, Chemical Synthesis of Normal and Transformed PSA Glycopeptides, Journal of the American Chemical Society, vol.126, issue.3, pp.736-738, 2004.
DOI : 10.1021/ja037988s

V. Y. Dudkin, J. S. Miller, A. S. Dudkina, C. Antczak, D. A. Scheinberg et al., Toward a Prostate Specific Antigen-Based Prostate Cancer Diagnostic Assay: Preparation of Keyhole Limpet Hemocyanin -Conjugated Normal and Transformed Prostate Specific Antigen Fragments, Journal of the American Chemical Society, vol.130, issue.41, pp.13598-13607, 2008.
DOI : 10.1021/ja8028137

M. A. Walczak, J. Hayashida, and S. J. Danishefsky, -Linked Glycoconjugates, Journal of the American Chemical Society, vol.135, issue.12, pp.4700-4703, 2013.
DOI : 10.1021/ja401385v

A. Fernández-tejada, F. J. Cañada, and J. Jiménez-barbero, Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics, Chemistry - A European Journal, vol.8, issue.30, pp.10616-10628, 2015.
DOI : 10.1016/S1074-5521(01)00008-4

S. Park, J. C. Gildersleeve, O. Blixt, and I. Shin, Carbohydrate microarrays, Chem. Soc. Rev., vol.30, issue.10, pp.4310-4326, 2013.
DOI : 10.1016/j.vaccine.2012.05.006

G. Despras, R. Robert, B. Sendid, E. Machez, D. Poulain et al., Biotin sulfone tagged oligomannosides as immunogens for eliciting antibodies against specific mannan epitopes, Bioorganic & Medicinal Chemistry, vol.20, issue.5, pp.1817-1831, 2012.
DOI : 10.1016/j.bmc.2011.12.048

URL : https://hal.archives-ouvertes.fr/hal-00674949

T. Polat and C. Wong, Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides, Journal of the American Chemical Society, vol.129, issue.42, pp.12795-12800, 2007.
DOI : 10.1021/ja073098r

N. Basu, S. K. Maity, S. Roy, S. Singha, and R. Ghosh, FeCl3 mediated arylidenation of carbohydrates, Carbohydrate Research, vol.346, issue.5, pp.534-539, 2011.
DOI : 10.1016/j.carres.2011.01.003

K. J. Doores and B. G. Davis, Reagent switchable stereoselective ??(1,2) mannoside mannosylation: OH-2 of mannose is a privileged acceptor, Organic & Biomolecular Chemistry, vol.128, issue.15, pp.2692-2696, 2008.
DOI : 10.1039/b803999m

A. A. Karelin, Y. E. Tsvetkov, L. Paulovi?ová, S. Bystrický, E. Paulovi?ová et al., Synthesis of 3,6-branched oligomannoside fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor 4, Carbohydrate Research, vol.345, issue.10, pp.1283-1290, 2010.
DOI : 10.1016/j.carres.2009.11.012

D. A. Argunov, A. A. Karelin, A. A. Grachev, Y. E. Tsvetkov, and N. E. Nifantiev, A new synthesis of the 3,6-branched hexasaccharide fragment of the cell wall mannan in Candida albicans, corresponding to the antigenic factor 4, Russian Chemical Bulletin, vol.117, issue.5, pp.1004-1011, 2011.
DOI : 10.1021/ja00138a020

I. Matsuo, M. Wada, S. Manabe, Y. Yamaguchi, K. Otake et al., Synthesis of Monoglucosylated High-Mannose-Type Dodecasaccharide, a Putative Ligand for Molecular Chaperone, Calnexin, and Calreticurin, Journal of the American Chemical Society, vol.125, issue.12, pp.3402-3403, 2003.
DOI : 10.1021/ja021288q

I. Matsuo, K. Totani, A. Tatami, and Y. Ito, Comprehensive synthesis of ER related high-mannose-type sugar chains by convergent strategy, Tetrahedron, vol.62, issue.35, pp.8262-8277, 2006.
DOI : 10.1016/j.tet.2006.06.045

A. Koizumi, I. Matsuo, M. Takatani, A. Seko, M. Hachisu et al., Top-Down Chemoenzymatic Approach to a High-Mannose-Type Glycan Library: Synthesis of a Common Precursor and Its Enzymatic Trimming, Angewandte Chemie International Edition, vol.263, issue.29, pp.7426-7431, 2013.
DOI : 10.1016/j.tetlet.2004.03.100

J. Nakano, H. Ohta, and Y. Ito, Synthesis of complex-type glycans derived from parasitic helminths, Bioorganic & Medicinal Chemistry Letters, vol.16, issue.4, pp.928-933, 2006.
DOI : 10.1016/j.bmcl.2005.10.100

N. Teumelsan and X. Huang, Synthesis of Branched Man5 Oligosaccharides and an Unusual Stereochemical Observation, The Journal of Organic Chemistry, vol.72, issue.23, pp.8976-8979, 2007.
DOI : 10.1021/jo7013824

Y. Li, B. Roy, and X. Liu, New insight on 2-naphthylmethyl (NAP) ether as a protecting group in carbohydrate synthesis: a divergent approach towards a high-mannose type oligosaccharide library, Chemical Communications, vol.43, issue.31, pp.8952-8954, 2011.
DOI : 10.1002/1099-0690(200203)2002:5<826::AID-EJOC826>3.0.CO;2-2

K. Kawahira, H. Tanaka, A. Ueki, Y. Nakahara, H. Hojo et al., Solid-phase synthesis of O-sulfated glycopeptide by the benzyl-protected glycan strategy, Tetrahedron, vol.65, issue.39, pp.8143-8153, 2009.
DOI : 10.1016/j.tet.2009.07.080

M. Hagiwara, M. Dohi, Y. Nakahara, K. Komatsu, Y. Asahina et al., Synthesis of Biantennary Complex-Type Nonasaccharyl Asn Building Blocks for Solid-Phase Glycopeptide Synthesis, The Journal of Organic Chemistry, vol.76, issue.13, pp.5229-5239, 2011.
DOI : 10.1021/jo200149d

J. Y. Baek, B. Lee, M. G. Jo, and K. S. Kim, -Acetyl Groups of Donors in Mannopyranosylations, Journal of the American Chemical Society, vol.131, issue.48, pp.17705-17713, 2009.
DOI : 10.1021/ja907252u

H. Dong, Z. Pei, S. Byström, and O. Ramström, Reagent-Dependent Regioselective Control in Multiple Carbohydrate Esterifications, The Journal of Organic Chemistry, vol.72, issue.4, pp.1499-1502, 2007.
DOI : 10.1021/jo0620821

K. P. Kartha, F. Dasgupta, P. P. Singh, and H. C. Srivastava, Iv. Acetolysis of Benzyl Ethers of Sugars, Journal of Carbohydrate Chemistry, vol.71, issue.3, pp.437-444, 1986.
DOI : 10.1021/jo01278a035

L. Liang and D. Astruc, The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) ???click??? reaction and its applications. An overview, Coordination Chemistry Reviews, vol.255, issue.23-24, pp.2933-2945, 2011.
DOI : 10.1016/j.ccr.2011.06.028

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective ???Ligation??? of Azides and Terminal Alkynes, Angewandte Chemie International Edition, vol.20, issue.14, pp.2596-2599, 2002.
DOI : 10.1016/0040-4039(95)00987-N

C. W. Tornøe, C. Christensen, and M. , Peptidotriazoles on Solid Phase:?? [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, The Journal of Organic Chemistry, vol.67, issue.9, pp.3057-3064, 2002.
DOI : 10.1021/jo011148j

R. Huisgen, 1,3-Dipolar Cycloadditions. Past and Future, Angewandte Chemie International Edition in English, vol.26, issue.10, pp.565-598, 1963.
DOI : 10.1002/jlac.19535830102

D. Kushwaha, P. Dwivedi, S. K. Kuanar, and V. K. Tiwari, Click Reaction in Carbohydrate Chemistry: Recent Developments and Future Perspective+, Current Organic Synthesis, vol.10, issue.1, pp.90-135, 2013.
DOI : 10.2174/1570179411310010005

X. Ding, G. Yang, and F. Kong, Synthesis and glycosylation of pyrimidin-2-yl 1-thio-??-d-manno- and -??-l-rhamnopyranoside, Carbohydrate Research, vol.310, issue.1-2, pp.135-139, 1998.
DOI : 10.1016/S0008-6215(98)00164-5

M. Nishizawa, Y. Kan, and H. Yamada, Thermal glycosidation with benzylated glycosyl chlorides: A very simple procedure for O-glycosidation., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.37, issue.2, pp.565-567, 1989.
DOI : 10.1248/cpb.37.565

H. Maeta, T. Matsumoto, and K. Suzuki, ???Dibutyltin diperchlorate??? for activation of glycosyl fluoride, Carbohydrate Research, vol.249, issue.1, pp.49-56, 1993.
DOI : 10.1016/0008-6215(93)84059-F

K. Toshima, H. Nagai, K. Kasumi, K. Kawahara, and S. Matsumura, Stereocontrolled glycosidations using a heterogeneous solid acid, sulfated zirconia, for the direct syntheses of ??- and ??-manno- and 2-deoxyglucopyranosides, Tetrahedron, vol.60, issue.25, pp.5331-5339, 2004.
DOI : 10.1016/j.tet.2004.04.071

T. Yamanoi, K. Nakamura, H. Takeyama, K. Yanagihara, and T. Inazu, -Mannopyranoside Formation from Glycosyl Dimethylphosphinothioates with the C-2 Axial Benzyloxyl Group, Bulletin of the Chemical Society of Japan, vol.67, issue.5, pp.1359-1366, 1994.
DOI : 10.1246/bcsj.67.1359

G. Zhang, B. Yu, S. Deng, and Y. Hui, Preparation of Glycosyl Dimethylthiophosphates and Their Application as Glycosyl Donors, Journal of Carbohydrate Chemistry, vol.17, issue.4, pp.547-556, 1998.
DOI : 10.1080/07328309808002336

G. Singh and H. Vankayalapati, A new glycosylation strategy for the synthesis of mannopyranosides, Tetrahedron: Asymmetry, vol.11, issue.1, pp.125-138, 2000.
DOI : 10.1016/S0957-4166(99)00487-5

H. Susaki and K. Higashi, Novel .ALPHA.-Mannoside Synthesis Promoted by the Combination of Trimethylsilyl Chloride and Zinc Triflate., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.41, issue.1, pp.201-204, 1993.
DOI : 10.1248/cpb.41.201

T. Yamanoi, Y. Iwai, and T. Inazu, Synthesis of Alkyl Glycosides Using Trialkyl Borates, HETEROCYCLES, vol.53, issue.6, pp.1263-1267, 2000.
DOI : 10.3987/COM-00-8899

R. Roy, P. Rajasekaran, A. Mallick, and Y. D. Vankar, -Acetyl Sugars as Glycosyl Donors, European Journal of Organic Chemistry, vol.47, issue.25, pp.5564-5573
DOI : 10.1016/j.tetlet.2006.04.114

J. Yang, C. Cooper-vanosdell, E. A. Mensah, and H. M. Nguyen, Cationic Palladium(II)-Catalyzed Stereoselective Glycosylation with Glycosyl Trichloroacetimidates, The Journal of Organic Chemistry, vol.73, issue.3, pp.794-800, 2008.
DOI : 10.1021/jo702436p

Z. Li, H. Huang, and M. Cai, Studies on Glycosides XVI. The Use of Mannosyl Trichloroacetate in the Synthesis of ??-Mannosides and Related Oligosaccharides, Journal of Carbohydrate Chemistry, vol.11, issue.4, pp.501-506, 1996.
DOI : 10.1016/0008-6215(88)84013-8

Y. Wang, X. Zhang, and P. Wang, Facile glycosylation strategy with two-stage activation of allyl glycosyl donors. Application to concise synthesis of Shigella flexneri serotype Y O-antigen, Organic & Biomolecular Chemistry, vol.53, issue.19, pp.4322-4328, 2010.
DOI : 10.1002/anie.198201553

S. Luo, A. Tripathi, M. M. Zulueta, and S. Hung, 2-Allylphenyl glycosides as glycosyl donors for sugar coupling, Carbohydrate Research, vol.352, pp.197-201, 2012.
DOI : 10.1016/j.carres.2012.01.022

S. Hotha and S. Kashyap, Propargyl Glycosides as Stable Glycosyl Donors:?? Anomeric Activation and Glycoside Syntheses, Journal of the American Chemical Society, vol.128, issue.30, pp.9620-9621, 2006.
DOI : 10.1021/ja062425c

K. S. Kim, Y. J. Lee, H. Y. Kim, S. S. Kang, and S. Y. Kwon, Glycosylation with glycosyl benzyl phthalates as a new type of glycosyl donorElectronic supplementary information (ESI) available: Spectroscopic and analytical data for all new compounds. See http://www.rsc.org/suppdata/ob/b4/b405793g/, Organic & Biomolecular Chemistry, vol.2, issue.17, pp.2408-2410, 2004.
DOI : 10.1039/b405793g

Y. Shioiri, K. Suzuki, S. Daikoku, A. Kurimoto, Y. Ito et al., Stereospecific generation and analysis of ??- and ??-hemiacetals of monosaccharides in gas phase, Carbohydrate Research, vol.382, pp.43-51, 2013.
DOI : 10.1016/j.carres.2013.10.001

S. R. Koppolu, R. Niddana, and R. Balamurugan, Gold-catalysed glycosylation reaction using an easily accessible leaving group, Organic & Biomolecular Chemistry, vol.135, issue.ii, pp.5094-5097, 2015.
DOI : 10.1021/ja4064316

K. S. Kim, D. B. Fulse, J. Y. Baek, B. Lee, and H. B. Jeon, Stereoselective Direct Glycosylation with Anomeric Hydroxy Sugars by Activation with Phthalic Anhydride and Trifluoromethanesulfonic Anhydride Involving Glycosyl Phthalate Intermediates, Journal of the American Chemical Society, vol.130, issue.26, pp.8537-8547, 2008.
DOI : 10.1021/ja710935z

T. Yamanoi, R. Inoue, S. Matsuda, K. Iwao, Y. Oda et al., Formation of O-Glycosidic Linkages from 1-Hydroxy Sugars by Bismuth(III) Triflate-Catalyzed Dehydrative Glycosidation, HETEROCYCLES, vol.77, issue.1, pp.445-460, 2009.
DOI : 10.3987/COM-08-S(F)41

S. S. Nigudkar, A. R. Parameswar, P. Pornsuriyasak, K. J. Stine, and A. V. Demchenko, O-Benzoxazolyl imidates as versatile glycosyl donors for chemical glycosylation, Organic & Biomolecular Chemistry, vol.14, issue.24, pp.4068-4076, 2013.
DOI : 10.1002/jlac.198319830717

R. J. Ferrier, R. H. Furneaux, and P. C. Tyler, Observations on the possible application of glycosyl disulphides, sulphenic esters, and sulphones in the synthesis of glycosides, Carbohydrate Research, vol.58, issue.2, pp.397-404, 1977.
DOI : 10.1016/S0008-6215(00)84366-9

D. S. Brown, S. V. Ley, S. Vile, and M. Thompson, Use of 2-phenylsulphonyl cyclic ethers in the preparation of tetrahydropyran and tetrahydrofuran acetals and in some glycosidation reactions., Tetrahedron, vol.47, issue.7, pp.1329-1342, 1991.
DOI : 10.1016/S0040-4020(01)86389-4

G. X. Chang and T. L. Lowary, A Glycosylation Protocol Based on Activation of Glycosyl 2-Pyridyl Sulfones with Samarium Triflate, Organic Letters, vol.2, issue.11, pp.1505-1508, 2000.
DOI : 10.1021/ol005579k

S. Manabe, K. Ishii, D. Hashizume, H. Koshino, and Y. Ito, Evidence for Endocyclic Cleavage of Conformationally Restricted Glycopyranosides, Chemistry - A European Journal, vol.16, issue.28, pp.6894-6901, 2009.
DOI : 10.3998/ark.5550190.0006.629

W. Pilgrim and P. V. Murphy, -Glycosides: Analysis of Factors That Lead to Higher ??:?? Anomer Ratios and Reaction Rates, The Journal of Organic Chemistry, vol.75, issue.20, pp.6747-6755, 2010.
DOI : 10.1021/jo101090f

D. M. Hall, A practical synthesis of methyl 4-6-O-benzylidene-??-and -??-d-glucopyranoside, Carbohydrate Research, vol.86, issue.1, pp.158-160, 1980.
DOI : 10.1016/S0008-6215(00)84593-0

G. Zhang, Z. Guan, L. Zhang, J. Min, and L. Zhang, Synthesis of 2-amino-2-deoxy-??-glycosyl-(1???5)-nucleosides and the interaction with RNA, Bioorganic & Medicinal Chemistry, vol.11, issue.15, pp.3273-3278, 2003.
DOI : 10.1016/S0968-0896(03)00278-5

M. Norkowska, H. Myszka, M. Cyman, D. Grzywacz, D. Trzybi?ski et al., -(D-gluconyl) Derivatives of D-Glucosamine, Journal of Carbohydrate Chemistry, vol.5, issue.1, pp.33-47, 2014.
DOI : 10.1107/S090744490804362X

W. Dullenkopf, J. C. Castro-palomino, L. Manzoni, and R. R. Schmidt, N-Trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors, Carbohydrate Research, vol.296, issue.1-4, pp.135-147, 1996.
DOI : 10.1016/S0008-6215(96)00237-6

A. Lubineau and H. Bienaymé, Synthesis of 2-acetamido-2-deoxy-3-O-??-d-galactopyranosyl-d-galactopyranose from 2-acetamido-2-deoxy-d-glucose through a trifluoromethylsulfonyl group displacement, Carbohydrate Research, vol.212, pp.267-271, 1991.
DOI : 10.1016/0008-6215(91)84064-L

T. Ogawa and T. Kasuragi, Synthesis of a branched d-glucotetraose, the repeating unit of the extracellular polysaccharides of Grifola umbellate, Sclerotinia libertiana, Porodisculus pendulus, and Schizophyllum commune fries, Carbohydrate Research, vol.103, issue.1, pp.53-64, 1982.
DOI : 10.1016/S0008-6215(82)80007-4

A. Français, D. Urban, and J. Beau, Tandem Catalysis for a One-Pot Regioselective Protection of Carbohydrates: The Example of Glucose, Angewandte Chemie International Edition, vol.311, issue.45, pp.8662-8665, 2007.
DOI : 10.1016/S0008-6215(98)00218-3

C. Shie, Z. Tzeng, S. S. Kulkarni, and B. Uang, Cu(OTf)2 as an Efficient and Dual-Purpose Catalyst in the Regioselective Reductive Ring Opening of Benzylidene Acetals, Angewandte Chemie International Edition, vol.152, issue.11, pp.1665-1668, 2005.
DOI : 10.1002/0471220574

V. K. Srivastava, A facile synthesis of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-??-d-glucopyrano)-[2,1-e]-2-oxazoline, Carbohydrate Research, vol.103, issue.2, pp.286-292, 1982.
DOI : 10.1016/S0008-6215(00)80691-6

R. Kasai, M. Okihara, J. Asakawa, K. Mizutani, and O. Tanaka, 13C nmr study of ??- and ??-anomeric pairs of d-mannopyranosides and l-rhamnopyranosides, Tetrahedron, vol.35, issue.11, pp.1427-1432, 1979.
DOI : 10.1016/0040-4020(79)85038-3

W. A. Bubb, Concepts in Magnetic Resonance Part A, pp.1-19, 2003.

A. R. Schneekloth, M. Pucheault, H. S. Tae, and C. M. Crews, Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.22, pp.5904-5908, 2008.
DOI : 10.1016/j.bmcl.2008.07.114

T. G. George, P. Szolcsányi, S. G. Koenig, D. E. Paterson, Y. Isshiki et al., Preparation of an Advanced Intermediate for the Synthesis of Stable Analogues of Guanofosfocin, Helvetica Chimica Acta, vol.87, issue.5, pp.1287-1298, 2004.
DOI : 10.1002/hlca.200490118

J. Beignet, J. Tiernan, C. H. Woo, B. M. Kariuki, and L. R. Cox, -mannosyl Compounds:?? Use of a Temporary Silicon Connection in Intramolecular Allylation Strategies with Allylsilanes, The Journal of Organic Chemistry, vol.69, issue.19, pp.6341-6356, 2004.
DOI : 10.1021/jo049061w

E. Dubois and J. Beau, Synthesis of C-glycopyranosyl compounds by a palladium-catalyzed coupling reaction of 1-tributylstannyl-d-glucals with organic halides, Carbohydrate Research, vol.228, issue.1, pp.103-120, 1992.
DOI : 10.1016/S0008-6215(00)90552-4