]. P. Ball, ]. Ahmadi-kandjani, G. Theraulaz, J. Gautrais, S. Camazine et al., The Self-Made Tapestry: Pattern Formation in Nature, 1st Editio Réseaux de surface auto-organisés dans les films minces d ' azopolymères Université d'Angers The formation of spatial patterns in social insects: from simple behaviours to complex structures, 1999.

. Eng, P. Sci, J. L. Taylor, S. Deneubourg, and . Goss, Collective patterns and decision-making, Ethol, vol.361, issue.1807, pp.1263-1282, 2003.

. Ecol, N. R. Evol, A. B. Franks, . Sendova-franks, T. Zhao et al., Brood sorting by ants: distributing the workload over the work-surface Smart Light-Responsive Materials Thermodynamic Properties of the Structural Analogues Benzo[c]cinnoline, Trans-azobenzene, and Cis-azobenzene Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis, Zeitschrift für Phys. Chemie, pp.295-311, 1975.

P. Haberfield and M. S. Lux, Enthalpies of solvent transfer of the transition states in the cis-trans isomerization of azo compounds. Rotation vs. the nitrogen inversion mechanism, Journal of the American Chemical Society, vol.97, issue.20, pp.5804-5806, 1975.
DOI : 10.1021/ja00853a025

W. J. Priest and M. M. Sifain, Photochemical and thermal isomerization in polymer matrices: Azo compounds in polystyrene, Journal of Polymer Science Part A-1: Polymer Chemistry, vol.9, issue.11, pp.3161-3168, 1971.
DOI : 10.1002/pol.1971.150091106

C. Barrett, P. Natansohn, and . Rochon, Cis-Trans Thermal Isomerization Rates of Bound and Doped Azobenzenes in a Series of Polymers, Chemistry of Materials, vol.7, issue.5, pp.899-903, 1995.
DOI : 10.1021/cm00053a014

C. Barrett, P. Natansohn, and . Rochon, Thermal Cis-Trans Isomerization Rates of Azobenzenes Bound in the Side Chain of Some Copolymers and Blends, Macromolecules, vol.27, issue.17, pp.4781-4786, 1994.
DOI : 10.1021/ma00095a019

N. Sarkar, A. Sarkar, and S. Sivaram, Isomerization behavior of aromatic azo chromophores bound to semicrystalline polymer films, Journal of Applied Polymer Science, vol.49, issue.12, pp.2923-2928, 2001.
DOI : 10.1002/app.1742

J. J. De-lange, J. M. Robertson, and I. Woodward, X-Ray Crystal Analysis of Trans-Azobenzene, Proc. R. Soc. Lond, pp.398-410, 1939.
DOI : 10.1098/rspa.1939.0073

G. C. Hampson and J. M. Robertson, 78. Bond lengths and resonance in the cis-azobenzene molecule, Journal of the Chemical Society (Resumed), pp.409-413, 1941.
DOI : 10.1039/jr9410000409

C. J. Brown, A refinement of the crystal structure of azobenzene, Acta Crystallographica, vol.21, issue.1, pp.146-152, 1966.
DOI : 10.1107/S0365110X66002445

T. Naito, K. Horie, and I. Mita, Photochemistry in polymer solids: 12. Effects of main-chain structures and formation of hydrogen bonds on photoisomerization of azobenzene in various polymer films, Polymer, vol.34, issue.19, pp.4140-4145, 1993.
DOI : 10.1016/0032-3861(93)90680-9

T. Naito, K. Horie, and I. Mita, Photochemistry in polymer solids. 11. The effects of the size of reaction groups and the mode of photoisomerization on photochromic reactions in polycarbonate film, Macromolecules, vol.24, issue.10, pp.2907-2911, 1991.
DOI : 10.1021/ma00010a042

L. Lamarre and C. S. Sung, Studies of physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers, Macromolecules, vol.16, issue.11, pp.1729-1736, 1983.
DOI : 10.1021/ma00245a009

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz et al., Single-Molecule Optomechanical Cycle, Science, vol.296, issue.5570, pp.1103-1106, 2002.
DOI : 10.1126/science.1069856

N. B. Holland, T. Hugel, G. Neuert, A. Cattani-scholz, C. Renner et al., Single Molecule Force Spectroscopy of Azobenzene Polymers:?? Switching Elasticity of Single Photochromic Macromolecules, Macromolecules, vol.36, issue.6, pp.2015-2023, 2003.
DOI : 10.1021/ma021139s

K. G. Yager and C. J. Barrett, Novel photo-switching using azobenzene functional materials, Journal of Photochemistry and Photobiology A: Chemistry, vol.182, issue.3, pp.250-261, 2006.
DOI : 10.1016/j.jphotochem.2006.04.021

A. Natansohn, P. Rochon, M. Pezolet, P. Audet, D. Brown et al., Azo Polymers for Reversible Optical Storage. 4. Cooperative Motion of Rigid Groups in Semicrystalline Polymers, Macromolecules, vol.27, issue.9, pp.2580-2585, 1994.
DOI : 10.1021/ma00087a029

R. Hagen and T. Bieringer, Photoaddressable Polymers for Optical Data Storage, Advanced Materials, vol.13, issue.23, pp.1805-1810, 2001.
DOI : 10.1002/1521-4095(200112)13:23<1805::AID-ADMA1805>3.0.CO;2-V

P. M. Blanchard and G. R. Mitchell, A comparison of photoinduced poling and thermal poling of azo???dye???doped polymer films for second order nonlinear optical applications, Applied Physics Letters, vol.30, issue.15
DOI : 10.1063/1.344115

P. M. and G. R. Mitchell, Localized room temperature photo-induced poling of azo-dyedoped polymer films for second-order nonlinear optical phenomena, J. Phys. D. Appl. Phys, vol.26, issue.3, p.500, 1993.

Z. Sekkat, C. Kang, E. F. Aust, G. Wegner, and W. Knoll, Room-Temperature Photoinduced Poling and Thermal Poling of a Rigid Main-Chain Polymer with Polar Azo Dyes in the Side Chain, Chemistry of Materials, vol.7, issue.1, pp.142-147, 1995.
DOI : 10.1021/cm00049a022

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, Photoassisted poling induced second harmonic generation with in???plane anisotropy in azobenzene containing polymer films, Applied Physics Letters, vol.68, issue.24, pp.3629-3631, 1996.
DOI : 10.1063/1.117005

J. N. , C. F. , A. E. , and F. Kajzar, All-optical poling in polymers: dynamical aspects and perspectives, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, vol.7, issue.2, p.141, 1998.

X. Zhong, X. Yu, Q. Li, S. Luo, Y. Chen et al., Identification of the alignment of azobenzene molecules induced by all-optical poling in polymer film, Optics Communications, vol.190, issue.1-6, pp.333-337, 2001.
DOI : 10.1016/S0030-4018(01)01049-5

V. Shibaev, A. Bobrovsky, and N. Boiko, Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties, Progress in Polymer Science, vol.28, issue.5, pp.729-836, 2003.
DOI : 10.1016/S0079-6700(02)00086-2

Y. Yu and T. Ikeda, Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.5, issue.3, pp.247-265, 2004.
DOI : 10.1016/j.jphotochemrev.2004.10.004

. Tripathy, Surface relief structures on azo polymer films, pp.1941-1955, 1999.

P. Rochon, E. Batalla, and A. Natansohn, Optically induced surface gratings on azoaromatic polymer films, Applied Physics Letters, vol.64, issue.2, pp.136-138, 1995.
DOI : 10.1063/1.113541

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, Laser???induced holographic surface relief gratings on nonlinear optical polymer films, Applied Physics Letters, vol.24, issue.10, pp.1166-1168, 1995.
DOI : 10.1063/1.113845

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, Analyses of the Diffraction Efficiencies, Birefringence, and Surface Relief Gratings on Azobenzene-Containing Polymer Films, The Journal of Physical Chemistry B, vol.102, issue.15, pp.2654-2662, 1998.
DOI : 10.1021/jp980050e

J. A. Delaire and K. Nakatani, Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials, Chemical Reviews, vol.100, issue.5, pp.1817-1846, 2000.
DOI : 10.1021/cr980078m

A. Natansohn and P. Rochon, Photoinduced Motions in Azo-Containing Polymers, Chemical Reviews, vol.102, issue.11, pp.4139-4176, 2002.
DOI : 10.1021/cr970155y

A. Stracke, J. H. Wendorff, D. Goldmann, D. Janietz, and B. Stiller, Gain Effects in Optical Storage: Thermal Induction of a Surface Relief Grating in a Smectic Liquid Crystal, Advanced Materials, vol.12, issue.4
DOI : 10.1002/(SICI)1521-4095(200002)12:4<282::AID-ADMA282>3.0.CO;2-P

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films, Journal of Materials Chemistry, vol.10, issue.2, pp.337-342, 2000.
DOI : 10.1039/a905501k

J. Wang, P. Xu, X. Li, J. Shen, G. Wu et al., Optical Properties of Sol-Gel Coatings on Plastic Foils Embossed with Surface-Relief Gratings, Journal of Sol-Gel Science and Technology, vol.23, issue.1, pp.73-77, 2002.
DOI : 10.1023/A:1013379904892

J. A. Silva, S. C. Giacometti, O. N. Zilio, and . Oliveira, Optically Induced Birefringence and Surface Relief Gratings in Composite Langmuir?Blodgett (LB) Films of Poly[4'-[[2- (methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene] (HPDR13) and Cadmium Stearate, Macromolecules, vol.32, issue.5, pp.1493-1499, 1999.

J. He, S. Bian, L. Li, J. Kumar, S. K. Tripathy et al., Photochemical Behavior and Formation of Surface Relief Grating on Self-Assembled Polyion/Dye Composite Film, The Journal of Physical Chemistry B, vol.104, issue.45, pp.10513-10521, 2000.
DOI : 10.1021/jp001715r

Y. He, H. Wang, X. Tuo, W. Deng, and X. Wang, Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte, Optical Materials, vol.26, issue.1, pp.89-93, 2004.
DOI : 10.1016/j.optmat.2004.01.014

L. M. Goldenberg, O. Kulikovska, and J. Stumpe, Thermally Stable Holographic Surface Relief Gratings and Switchable Optical Anisotropy in Films of an Azobenzene-Containing Polyelectrolyte, Langmuir, vol.21, issue.11, pp.4794-4796, 2005.
DOI : 10.1021/la050457s

H. Nakano, T. Tanino, and Y. Shirota, Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene, Applied Physics Letters, vol.430, issue.6, p.61910, 2005.
DOI : 10.1007/BF01186250

Y. Shirota, Photo- and electroactive amorphous molecular materials???molecular design, syntheses, reactions, properties, and applications, J. Mater. Chem., vol.125, issue.89, pp.75-93, 2005.
DOI : 10.1021/ja038207q

E. Ishow, B. Lebon, Y. He, X. Wang, L. Bouteiller et al., Structural and Photoisomerization Cross Studies of Polar Photochromic Monomeric Glasses Forming Surface Relief Gratings, Chemistry of Materials, vol.18, issue.5, pp.1261-1267, 2006.
DOI : 10.1021/cm052176b

URL : https://hal.archives-ouvertes.fr/hal-00020063

L. Liu, K. Nakatani, R. Pansu, J. Vachon, P. Tauc et al., Fluorescence Patterning through Photoinduced Migration of Squaraine-Functionalized Azo Derivatives, Advanced Materials, vol.84, issue.3, pp.433-436, 2007.
DOI : 10.1002/adma.200601695

URL : https://hal.archives-ouvertes.fr/hal-00169021

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar et al., Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films, Applied Physics Letters, vol.9, issue.19
DOI : 10.1063/1.116200

S. Tripathy, D. Kim, X. L. Jiang, L. Li, T. Lee et al., Photofabrication of Surface Relief Gratings Using Photodynamic Polymers, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol.314, issue.1
DOI : 10.1364/OL.6.000284

C. Hubert, C. Fiorini-debuisschert, L. Rocha, P. Raimond, and J. Nunzi, Spontaneous photoinduced patterning of azo-dye polymer films: the facts, Journal of the Optical Society of America B, vol.24, issue.8, pp.1839-1846, 2007.
DOI : 10.1364/JOSAB.24.001839

URL : https://hal.archives-ouvertes.fr/hal-00376456

S. Bian, L. Li, J. Kumar, D. Y. Kim, J. Williams et al., Single laser beam-induced surface deformation on azobenzene polymer films, Applied Physics Letters, vol.73, issue.13, pp.1817-1819, 1998.
DOI : 10.1063/1.118605

S. Bian, J. M. Williams, D. Y. Kim, L. Li, S. Balasubramanian et al., Photoinduced surface deformations on azobenzene polymer films, Journal of Applied Physics, vol.39, issue.2
DOI : 10.1364/AO.23.004309

C. J. Barrett, A. L. Natansohn, and P. L. Rochon, Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films, The Journal of Physical Chemistry, vol.100, issue.21, pp.8836-8842, 1996.
DOI : 10.1021/jp953300p

C. J. Barrett, P. L. Rochon, and A. L. Natansohn, Model of laser-driven mass transport in thin films of dye-functionalized polymers, The Journal of Chemical Physics, vol.109, issue.4, pp.1505-1516, 1998.
DOI : 10.1103/PhysRevLett.80.89

M. S. Ho, A. Natansohn, and P. Rochon, Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups, Macromolecules, vol.28, issue.18, pp.6124-6127, 1995.
DOI : 10.1021/ma00122a020

K. Sumaru, T. Yamanaka, T. Fukuda, and H. Matsuda, Photoinduced surface relief gratings on azopolymer films: Analysis by a fluid mechanics model, Applied Physics Letters, vol.7, issue.13, pp.1878-1880, 1999.
DOI : 10.1021/ma00130a017

K. Sumaru, T. Fukuda, T. Kimura, H. Matsuda, and T. Yamanaka, Photoinduced surface relief formation on azopolymer films: A driving force and formed relief profile, Journal of Applied Physics, vol.38, issue.5, pp.3421-3430, 2002.
DOI : 10.1063/1.1332789

J. Kumar, L. Li, X. L. Jiang, D. Kim, T. S. Lee et al., Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers, Applied Physics Letters, vol.72, issue.17
DOI : 10.1364/OL.6.000284

K. Tripathy, Photofabrication of Surface Relief Grating on Films of Azobenzene Polymer with Different Dye Functionalization, Macromolecules, vol.33, issue.11, pp.4220-4225, 2000.

N. K. Viswanathan, S. Balasubramanian, L. Li, J. Kumar, and S. K. Tripathy, Surface-Initiated Mechanism for the Formation of Relief Gratings on Azo-Polymer Films, The Journal of Physical Chemistry B, vol.102, issue.31, pp.6064-6070, 1998.
DOI : 10.1021/jp981425z

K. Yang, S. Yang, and J. Kumar, Formation mechanism of surface relief structures on amorphous azopolymer films, Physical Review B, vol.23, issue.16, p.165204, 2006.
DOI : 10.1088/1464-4258/7/1/005

O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains, The Journal of Chemical Physics, vol.114, issue.3, pp.1344-1349, 2001.
DOI : 10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7

K. G. Yager and C. J. Barrett, Temperature modeling of laser-irradiated azo-polymer thin films, The Journal of Chemical Physics, vol.120, issue.2, pp.1089-1096, 2003.
DOI : 10.1063/1.1661159

S. Bauer?gogonea, S. Bauer, W. Wirges, and R. Gerhard?multhaupt, Pyroelectrical investigation of the dipole orientation in nonlinear optical polymers during and after photoinduced poling, Journal of Applied Physics, vol.27, issue.5, pp.2627-2635, 1994.
DOI : 10.1049/el:19900247

O. Baldus and S. J. Zilker, Surface relief gratings in photoaddressable polymers generated by cw holography, Applied Physics B, vol.72, issue.4, pp.425-427, 2001.
DOI : 10.1007/s003400100531

P. L. , C. F. , and J. Nunzi, Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, vol.7, issue.1, p.71, 1998.

P. Lefin, C. Fiorini, and J. Nunzi, Anisotropy of the photoinduced translation diffusion of azo-dyes, Optical Materials, vol.9, issue.1-4, pp.323-328, 1998.
DOI : 10.1016/S0925-3467(97)00100-6

C. Fiorini, N. Prudhomme, G. De-veyrac, I. Maurin, P. Raimond et al., Molecular migration mechanism for laser induced surface relief grating formation, Synthetic Metals, vol.115, issue.1-3, pp.121-125, 2000.
DOI : 10.1016/S0379-6779(00)00332-5

T. G. Pedersen, P. M. Johansen, N. C. Holme, P. S. Ramanujam, and S. Hvilsted, Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-Chain Azobenzene Polymers, Physical Review Letters, vol.28, issue.1
DOI : 10.1021/ma00111a011

I. Naydenova, L. Nikolova, T. Todorov, N. C. Holme, P. S. Ramanujam et al., Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters, Journal of the Optical Society of America B, vol.15, issue.4, p.1257, 1998.
DOI : 10.1364/JOSAB.15.001257

M. Srinivasarao, Nano-Optics in the Biological World:?? Beetles, Butterflies, Birds, and Moths, Chemical Reviews, vol.99, issue.7, pp.1935-1962, 1999.
DOI : 10.1021/cr970080y

L. P. Lee and R. Szema, Inspirations from Biological Optics for Advanced Photonic Systems, Science, vol.310, issue.5751, pp.1148-1150, 2005.
DOI : 10.1126/science.1115248

R. Magnusson and S. S. Wang, New principle for optical filters, Applied Physics Letters, vol.8, issue.9, pp.1022-1024, 1992.
DOI : 10.1109/PROC.1985.13220

Z. V. Vardeny, A. Nahata, and A. Agrawal, Optics of photonic quasicrystals, Nature Photonics, vol.86, issue.3, pp.177-187, 2013.
DOI : 10.1016/j.mee.2008.11.090

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, Large-Area Two-Dimensional Mesoscale Quasi-Crystals, Advanced Materials, vol.15, issue.18, pp.1526-1528, 2003.
DOI : 10.1002/adma.200305263

S. P. Gorkhali, J. Qi, and G. P. Crawford, Electrically switchable mesoscale Penrose quasicrystal structure, Applied Physics Letters, vol.86, issue.1, p.11110, 2004.
DOI : 10.1063/1.1405821

R. C. Gauthier and A. Ivanov, Production of quasi-crystal template patterns using a dual beam multiple exposure technique, Optics Express, vol.12, issue.6, p.990, 2004.
DOI : 10.1364/OPEX.12.000990

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, Transmission resonances through aperiodic arrays of subwavelength apertures, Nature, vol.16, issue.7135, pp.517-521, 2007.
DOI : 10.1038/nature05620

I. Simonsen, Optics of surface disordered systems, The European Physical Journal Special Topics, vol.155, issue.1, pp.1-103, 2010.
DOI : 10.1080/09500349608232756

L. Rayleigh, On the Dynamical Theory of Gratings, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.79, issue.532, pp.399-416, 1907.
DOI : 10.1098/rspa.1907.0051

I. Simonsen, Optics of surface disordered systems, The European Physical Journal Special Topics, vol.155, issue.1, pp.1-103, 2010.
DOI : 10.1080/09500349608232756

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2007.

K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surface scattering, Waves in Random Media, pp.1-30, 2001.
DOI : 10.1109/8.127397

A. Shchegrov, A. A. Maradudin, and E. R. Méndez, Multiple scattering of light from randomly rough surfaces, Prog. Opt, vol.46, pp.117-241, 2004.
DOI : 10.1016/S0079-6638(03)46002-2

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations, Nature Photonics, vol.6701, issue.10, pp.784-790, 2014.
DOI : 10.1103/PhysRevLett.87.134301

D. S. Wiersma, Disordered photonics, Nature Photonics, vol.453, issue.3, pp.188-196, 2013.
DOI : 10.1038/nature07071

D. S. Wiersma, The physics and applications of random??lasers, Nature Physics, vol.21, issue.5, pp.359-367, 2008.
DOI : 10.1103/PhysRevA.7.1788

Y. Yoon, D. Kim, and J. Lee, Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal, Micro and Nano Systems Letters, vol.5, issue.1, p.3, 2014.
DOI : 10.1021/am302357t

E. Akkermans, P. E. Wolf, and R. Maynard, Coherent Backscattering of Light by Disordered Media: Analysis of the Peak Line Shape, Physical Review Letters, vol.32, issue.14, pp.1471-1474, 1986.
DOI : 10.1103/PhysRevB.32.7850

M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson localization of light, Nature Photonics, vol.81, issue.3, pp.197-204, 2013.
DOI : 10.1103/PhysRevA.81.063639

L. Levi, Y. Krivolapov, S. Fishman, and M. Segev, Hyper-transport of light and stochastic acceleration by evolving disorder, Nature Physics, vol.8, issue.12, pp.912-917, 2012.
DOI : 10.1103/PhysRevA.86.040302

J. Park, C. Park, H. Yu, J. Park, S. Han et al., Subwavelength light focusing using random nanoparticles, Nature Photonics, vol.3, issue.6, pp.454-458, 2013.
DOI : 10.1038/ncomms1885

J. Bingi, A. R. Warrier, and C. Vijayan, Raman mode random lasing in ZnS-??-carotene random gain media, Applied Physics Letters, vol.102, issue.22, p.221105, 2013.
DOI : 10.1002/adma.201202525

A. Liuc, . Di-falco, . Molinarid, O. S. Khany, K. F. et al., Enhanced energy storage in chaotic optical resonators, Nat Phot, vol.7, issue.6, pp.473-478, 2013.

R. Dewan, S. Shrestha, V. Jovanov, J. Hüpkes, K. Bittkau et al., Random versus periodic: Determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures, Solar Energy Materials and Solar Cells, vol.143, pp.183-189, 2015.
DOI : 10.1016/j.solmat.2015.06.014

A. Bozzola, M. Liscidini, and L. C. Andreani, Broadband light trapping with disordered photonic structures in thin-film silicon solar cells, Progress in Photovoltaics: Research and Applications, vol.20, issue.1, pp.1237-1245, 2014.
DOI : 10.1002/pip.2163

J. Wang, L. Yang, D. Lin, Y. Luo, D. Li et al., Optical studies of random disorder of colloidal photonic crystals and its evolution in evaporation induced self-assembly, The Journal of Chemical Physics, vol.137, issue.23, p.234111, 2012.
DOI : 10.1063/1.1332109

X. Zhang, Q. Di, F. Zhu, G. Sun, and H. Zhang, Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical properties, Micro & Nano Letters, vol.6, issue.11, pp.947-950, 2011.
DOI : 10.1049/mnl.2011.0487

R. Niesen, J. W. Van-erven, F. J. Schüttauf, C. Haug, and . Ballif, 2-D Periodic and Random-on- Periodic Front Textures for Tandem Thin-Film Silicon Solar Cells, IEEE Journal of Photovoltaics, vol.4, issue.5, pp.1177-1184, 2014.

D. Tan, E. Tuncer, Y. Cao, and P. Irwin, Nanofiller dispersion in polymer dielectrics, p.2012

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, Femtosecond laser fabrication of scattering medium by randomly distributed holes in polymer, Optics and Photonics for Information Processing III, pp.74420-74420, 2009.
DOI : 10.1117/12.826601

P. Hsieh, C. Chung, J. F. Mcmillan, M. Tsai, M. Lu et al., Photon transport enhanced by transverse Anderson localization in disordered superlattices, Nature Physics, vol.85, issue.3, pp.268-274, 2015.
DOI : 10.1103/RevModPhys.85.299

T. Ito and S. Okazaki, Pushing the limits of lithography, Nature, vol.3676, issue.6799, pp.1027-1031, 2000.
DOI : 10.1117/12.351098

R. F. Service, Optical Lithography Goes to Extremes--And Beyond, Science, vol.80, issue.293 5531, pp.785-786, 2001.

B. J. Lin, The future of subhalf-micrometer optical lithography, Microelectronic Engineering, vol.6, issue.1-4, pp.31-51, 1987.
DOI : 10.1016/0167-9317(87)90015-3

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias et al., Electron beam lithography: resolution limits and applications, Applied Surface Science, vol.164, issue.1-4, pp.111-117, 2000.
DOI : 10.1016/S0169-4332(00)00352-4

J. Melngailis, Focused ion beam technology and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.5, issue.2, pp.469-495, 1987.
DOI : 10.1116/1.583937

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, Dip-Pen" Nanolithography, Science, vol.80, issue.283 5402, pp.661-663, 1999.

F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai et al., Beam pen lithography, Nature Nanotechnology, vol.84, issue.9, pp.637-640, 2010.
DOI : 10.1038/nnano.2010.161

X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He et al., Desktop nanofabrication with massively multiplexed beam pen lithography, Nature Communications, vol.4, p.2103, 2013.
DOI : 10.1021/ac50045a024

E. Mcleod and C. B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres, Nature Nanotechnology, vol.23, issue.7, pp.413-417, 2008.
DOI : 10.1557/mrs2007.11

J. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature, vol.303, issue.7059, pp.671-679, 2005.
DOI : 10.1126/science.1091979

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Unconventional Methods for Fabricating and Patterning Nanostructures, Chemical Reviews, vol.99, issue.7, pp.1823-1848, 1999.
DOI : 10.1021/cr980002q

M. Schliwa and G. Woehlke, Molecular motors, Nature, vol.34, issue.6933, pp.759-765, 2003.
DOI : 10.1091/mbc.11.2.523

J. Bath and A. J. Turberfield, DNA nanomachines, Nature Nanotechnology, vol.6, issue.5, pp.275-284, 2007.
DOI : 10.1080/07391102.1990.10507829

R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides, Autonomous Movement and Self-Assembly, Angewandte Chemie International Edition, vol.72, issue.4, pp.652-654, 2002.
DOI : 10.1021/ac9912294

G. A. Ozin, I. Manners, S. Fournier-bidoz, and A. Arsenault, Dream Nanomachines, Advanced Materials, vol.5, issue.24, pp.3011-3018, 2005.
DOI : 10.1088/2058-7058/14/2/29

J. Wang and K. M. Manesh, Motion Control at the Nanoscale, Small, vol.94, issue.3, pp.338-345, 2010.
DOI : 10.1002/smll.200901746

A. Del-campo and E. Arzt, Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces, Chemical Reviews, vol.108, issue.3, pp.911-945, 2008.
DOI : 10.1021/cr050018y

E. Menard, M. A. Meitl, Y. Sun, J. Park, D. J. Shir et al., Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems, Chemical Reviews, vol.107, issue.4, pp.1117-1160, 2007.
DOI : 10.1021/cr050139y

Z. Nie and E. Kumacheva, Patterning surfaces with functional polymers, Nature Materials, vol.403, issue.8, pp.277-290, 2008.
DOI : 10.1557/mrs2005.248

G. Reiterf, Unstable Thin Polymer Films : Rupture and Dewetting Processes, pp.1344-1351, 1993.

A. Vrij, Possible mechanism for the spontaneous rupture of thin, free liquid films Discuss

G. Reiter, Dewetting as a Probe of Polymer Mobility in Thin Films, Macromolecules, vol.27, issue.11, pp.3046-3052, 1994.
DOI : 10.1021/ma00089a023

S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery et al., Spinodal Dewetting in Liquid Crystal and Liquid Metal Films, Science, vol.282, issue.5390, pp.916-919, 1998.
DOI : 10.1126/science.282.5390.916

S. Liu, W. M. Wang, A. L. Briseno, S. C. Mannsfeld, and Z. Bao, Controlled Deposition of Crystalline Organic Semiconductors for Field-Effect-Transistor Applications, Advanced Materials, vol.90, issue.12, pp.1217-1232, 2009.
DOI : 10.1080/15321790500471244

F. B. Wyart and J. Daillant, Drying of solids wetted by thin liquid films, Canadian Journal of Physics, vol.68, issue.9, pp.1084-1088, 1990.
DOI : 10.1139/p90-151

R. Xie, A. Karim, J. F. Douglas, C. C. Han, and R. A. Weiss, Spinodal Dewetting of Thin Polymer Films, Physical Review Letters, vol.78, issue.6, pp.1251-1254, 1998.
DOI : 10.1103/PhysRevLett.78.3693

V. S. Mitlin, Dewetting of Solid Surface: Analogy with Spinodal Decomposition, Journal of Colloid and Interface Science, vol.156, issue.2, pp.491-497, 1993.
DOI : 10.1006/jcis.1993.1142

V. S. Mitlin, On dewetting conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.89, issue.2-3, pp.97-101, 1994.
DOI : 10.1016/0927-7757(94)80109-6

G. Reiter, Dewetting of thin polymer films, Physical Review Letters, vol.17, issue.1, pp.75-78, 1992.
DOI : 10.1112/plms/s1-10.1.4

U. Thiele, M. Velarde, and K. Neuffer, Dewetting: Film Rupture by Nucleation in the Spinodal Regime, Physical Review Letters, vol.354, issue.1, p.16104, 2001.
DOI : 10.1016/S0040-6090(99)00026-7

R. Seemann, S. Herminghaus, and K. Jacobs, Dewetting Patterns and Molecular Forces: A Reconciliation, Physical Review Letters, vol.70, issue.24, pp.5534-5537, 2001.
DOI : 10.1103/PhysRevLett.70.1453

A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films under the influence of antagonistic short- and long-range forces, The Journal of Chemical Physics, vol.110, issue.10, pp.4929-4936, 1999.
DOI : 10.1021/la00036a038

G. Reiter, A. Sharma, R. Khanna, A. Casoli, and M. David, The Strength of Long-Range Forces across Thin Liquid Films, Journal of Colloid and Interface Science, vol.214, issue.1, pp.126-128, 1999.
DOI : 10.1006/jcis.1999.6158

R. S. , S. H. , and K. Jacobs, Gaining control of pattern formation of dewetting liquid films, J. Phys. Condens. Matter, vol.13, issue.21, p.4925, 2001.

K. Jacobs, S. Herminghaus, and K. R. Mecke, Thin Liquid Polymer Films Rupture via Defects, Langmuir, vol.14, issue.4, pp.965-969, 1998.
DOI : 10.1021/la970954b

G. Reiter, Dewetting of thin polymer films, Physical Review Letters, vol.17, issue.1, 1992.
DOI : 10.1112/plms/s1-10.1.4

F. Brochard-wyart and C. Redon, Dynamics of liquid rim instabilities, Langmuir, vol.8, issue.9, pp.2324-2329, 1992.
DOI : 10.1021/la00045a041

L. Rayleigh, On The Instability Of Jets, Proceedings of the London Mathematical Society, vol.1, issue.1, pp.1-10, 1878.
DOI : 10.1112/plms/s1-10.1.4

L. Xue and Y. Han, Autophobic Dewetting of a Poly(methyl methacrylate) Thin Film on a Silicon Wafer Treated in Good Solvent Vapor, Langmuir, vol.25, issue.9, pp.5135-5140, 2009.
DOI : 10.1021/la8041814

C. Redon, F. Brochard-wyart, and F. Rondelez, Dynamics of dewetting, Physical Review Letters, vol.35, issue.6, pp.715-718, 1991.
DOI : 10.1016/0021-9797(71)90188-3

T. Thurn-albrecht and T. P. Russell, Electrically induced structure formation and pattern transfer, 1998.

E. Schäffer, T. Thurn-albrecht, T. P. Russell, and U. Steiner, Electrohydrodynamic instabilities in polymer films, Europhysics Letters (EPL), vol.53, issue.4, pp.518-524, 2001.
DOI : 10.1209/epl/i2001-00183-2

W. Mönch and S. Herminghaus, Elastic instability of rubber films between solid bodies, Europhysics Letters (EPL), vol.53, issue.4, pp.525-531, 2001.
DOI : 10.1209/epl/i2001-00184-7

E. Schäffer and U. Steiner, Acoustic instabilities in thin polymer films, The European Physical Journal E - Soft Matter, vol.8, issue.3, pp.347-351, 2002.
DOI : 10.1140/epje/i2002-10018-0

K. D. Wensink and B. Jérôme, Dewetting Induced by Density Fluctuations, Langmuir, vol.18, issue.2, pp.413-416, 2002.
DOI : 10.1021/la015611z

E. S. , S. H. , R. B. , and U. Steiner, Temperature-gradient?induced instability in polymer films, EPL (Europhysics Lett, vol.60, issue.2, p.255, 2002.

A. Sharma and G. Reiter, Instability of Thin Polymer Films on Coated Substrates: Rupture, Dewetting, and Drop Formation, Journal of Colloid and Interface Science, vol.178, issue.2, pp.383-399, 1996.
DOI : 10.1006/jcis.1996.0133

A. M. Higgins and R. A. Jones, Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces, Nature, vol.66, issue.6777, pp.476-478, 2000.
DOI : 10.1103/PhysRevLett.66.1326

N. Rehse, C. Wang, M. Hund, M. Geoghegan, R. Magerle et al., Stability of thin polymer films on a corrugated substrate, The European Physical Journal E, vol.4, issue.1, pp.69-76, 2001.
DOI : 10.1007/s101890170144

L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon et al., Polymers on Nanoperiodic, Heterogeneous Surfaces, Polymers on Nanoperiodic, Heterogeneous Surfaces, pp.2602-2605, 1999.
DOI : 10.1103/PhysRevLett.79.3018

C. Luo, R. Xing, Z. Zhang, J. Fu, and Y. Han, Ordered droplet formation by thin polymer film dewetting on a stripe-patterned substrate, Journal of Colloid and Interface Science, vol.269, issue.1, pp.158-163, 2004.
DOI : 10.1016/S0021-9797(03)00695-7

B. Yoon, H. Acharya, G. Lee, H. Kim, J. Huh et al., Nanopatterning of thin polymer films by controlled dewetting on a topographic pre-pattern, Soft Matter, vol.515, issue.7, pp.1467-1472, 2008.
DOI : 10.1039/b800121a

S. Luan, Z. Cheng, R. Xing, Z. Wang, X. Yu et al., Patterning organic luminescent materials by solvent-assisted dewetting and polymer-bonding lithography, Journal of Applied Physics, vol.539, issue.8, p.86102, 2005.
DOI : 10.1021/ja036581k

R. Xing, C. Luo, Z. Wang, and Y. Han, Dewetting of polymethyl methacrylate on the patterned elastomer substrate by solvent vapor treatment, Polymer, vol.48, issue.12, pp.3574-3583, 2007.
DOI : 10.1016/j.polymer.2007.04.031

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari et al., Imbibition by polygonal spreading on microdecorated surfaces, Nature Materials, vol.35, issue.9, pp.661-664, 2007.
DOI : 10.1038/nmat1978

Z. Zhang, Z. Wang, R. Xing, and Y. Han, How to form regular polymer microstructures by surface-pattern-directed dewetting, Surface Science, vol.539, issue.1-3, pp.129-136, 2003.
DOI : 10.1016/S0039-6028(03)00785-4

C. Luo, R. Xing, Z. Zhang, J. Fu, and Y. Han, Ordered droplet formation by thin polymer film dewetting on a stripe-patterned substrate, Journal of Colloid and Interface Science, vol.269, issue.1, pp.158-163, 2004.
DOI : 10.1016/S0021-9797(03)00695-7

H. A. Biebuyck and G. M. Whitesides, Self-Organization of Organic Liquids on Patterned Self-Assembled Monolayers of Alkanethiolates on Gold, Langmuir, vol.10, issue.8, pp.2790-2793, 1994.
DOI : 10.1021/la00020a047

G. Krausch, Surface induced self assembly in thin polymer films, Materials Science and Engineering: R: Reports, vol.14, issue.1-2, p.94, 1995.
DOI : 10.1016/0927-796X(94)00173-1

M. Boltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner, Surface-induced structure formation of polymer blends on patterned substrates, Nature, vol.376, issue.6670, pp.877-879, 1998.
DOI : 10.1038/376498a0

C. Bauer and S. Dietrich, Phase diagram for morphological transitions of wetting films on chemically structured substrates, Physical Review E, vol.259, issue.2, pp.1664-1669, 2000.
DOI : 10.1016/S0378-4371(98)00340-9

S. Herminghaus, A. Fery, and D. Reim, Imaging of droplets of aqueous solutions by tapping-mode scanning force microscopy, Ultramicroscopy, vol.69, issue.3, pp.211-217, 1997.
DOI : 10.1016/S0304-3991(97)00049-1

R. Garcí-a, M. Calleja, and F. Pérez-murano, Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation, Applied Physics Letters, vol.72, issue.18, pp.2295-2297, 1998.
DOI : 10.1063/1.118425

K. Kargupta and A. Sharma, Templating of Thin Films Induced by Dewetting on Patterned Surfaces, Physical Review Letters, vol.88, issue.20, pp.4536-4539, 2001.
DOI : 10.1021/cr00088a006

G. Nisato, B. D. Ermi, J. F. Douglas, and A. Karim, Excitation of Surface Deformation Modes of a Phase-Separating Polymer Blend on a Patterned Substrate, Macromolecules, vol.32, issue.7, pp.2356-2364, 1999.
DOI : 10.1021/ma981546x

H. Celio, E. Barton, and K. J. Stevenson, Patterned Assembly of Colloidal Particles by Confined Dewetting Lithography, Langmuir, vol.22, issue.26, pp.11426-11435, 2006.
DOI : 10.1021/la062199k

B. K. Yoon, J. Huh, H. Kim, J. Hong, and C. Park, Ordered Patterns of Microimprinted Bilayer Polymer Films with Controlled Dewetting and Layer Inversion, Macromolecules, vol.39, issue.3, pp.901-903, 2006.
DOI : 10.1021/ma051953q

M. K. Kwak, K. H. Shin, E. Y. Yoon, and K. Y. Suh, Fabrication of conductive metal lines by plate-to-roll pattern transfer utilizing edge dewetting and flexographic printing, Journal of Colloid and Interface Science, vol.343, issue.1, pp.301-305, 2010.
DOI : 10.1016/j.jcis.2009.11.003

I. Karapanagiotis, D. F. Evans, and W. W. Gerberich, Leveling and Dewetting Processes of Nanoindentation-Induced Defects on Thin Polymer Films, Macromolecules, vol.34, issue.11, pp.3741-3747, 2001.
DOI : 10.1021/ma001762h

I. Karapanagiotis, W. W. Gerberich, and D. F. Evans, Early Dewetting Stages of Thin Polymer Films Initiated by Nanoindentation, Langmuir, vol.17, issue.8, pp.2375-2379, 2001.
DOI : 10.1021/la001076b

I. Karapanagiotis, D. F. Evans, and W. W. Gerberich, Dynamics of the leveling process of nanoindentation induced defects on thin polystyrene films, Polymer, vol.43, issue.4, pp.1343-1348, 2002.
DOI : 10.1016/S0032-3861(01)00688-7

C. Luo, R. Xing, and Y. Han, Ordered pattern formation from dewetting of polymer thin film with surface disturbance by capillary force lithography, Surface Science, vol.552, issue.1-3, pp.139-148, 2004.
DOI : 10.1016/j.susc.2004.01.042

Y. S. Kim and H. H. Lee, Selective Dewetting for General Purpose Patterning, Advanced Materials, vol.15, issue.4, pp.332-334, 2003.
DOI : 10.1002/adma.200390082

S. Choi, D. Tahk, and H. Yoon, Spontaneous dewetting-induced residue-free patterning at room temperature, Journal of Colloid and Interface Science, vol.340, issue.1, pp.74-81, 2009.
DOI : 10.1016/j.jcis.2009.08.018

C. Luo, R. Xing, and Y. Han, Ordered pattern formation from dewetting of polymer thin film with surface disturbance by capillary force lithography, Surface Science, vol.552, issue.1-3, pp.1-3, 2004.
DOI : 10.1016/j.susc.2004.01.042

S. Stolnik, L. Illum, and S. S. Davis, Long circulating microparticulate drug carriers, Advanced Drug Delivery Reviews, vol.16, issue.2-3, pp.195-214, 1995.
DOI : 10.1016/0169-409X(95)00025-3

B. G. Subramanian and V. N. Manoharan, Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials, Advanced Materials, vol.11, issue.15, pp.1261-1265, 1999.
DOI : 10.1002/(SICI)1521-4095(199910)11:15<1261::AID-ADMA1261>3.0.CO;2-A

B. Luppi, T. Cerchiara, F. Bigucci, R. Basile, and V. Zecchi, Polymeric nanoparticles composed of fatty acids and polyvinylalcohol for topical application of sunscreens, Journal of Pharmacy and Pharmacology, vol.20, issue.3, pp.407-411, 2004.
DOI : 10.1046/j.1467-2494.1998.181622.x

M. Elsabahy, G. S. Heo, S. Lim, G. Sun, and K. L. Wooley, Polymeric Nanostructures for Imaging and Therapy, Chemical Reviews, vol.115, issue.19, pp.10967-11011, 2015.
DOI : 10.1021/acs.chemrev.5b00135

T. G. Mason, K. Ganesan, J. H. Van-zanten, D. Wirtz, and S. C. Kuo, Particle Tracking Microrheology of Complex Fluids, Physical Review Letters, vol.365, issue.17, pp.3282-3285, 1997.
DOI : 10.1038/365721a0

D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol.49, issue.15, pp.3187-3204, 2008.
DOI : 10.1016/j.polymer.2008.04.017

R. H. Ottewill, An Introduction to Polymer Colloids, 1990.

T. Sugimoto, Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science, vol.28, pp.65-108, 1987.
DOI : 10.1016/0001-8686(87)80009-X

J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Studies on the preparation and characterisation of monodisperse polystyrene laticee, Colloid and Polymer Science, vol.239, issue.8, pp.464-471, 1974.
DOI : 10.1007/BF02085916

Y. Yin and Y. Xia, Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes, and Structures, Advanced Materials, vol.13, issue.4, pp.267-271, 2001.
DOI : 10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9

T. Lopez-leon, V. Koning, K. B. Devaiah, V. Vitelli, and A. Fernandez-nieves, Frustrated nematic order in spherical geometries, Nature Physics, vol.308, issue.5, pp.391-394, 2011.
DOI : 10.1126/science.1109164

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, Stop-flow lithography in a microfluidic device, Lab on a Chip, vol.41, issue.7, pp.818-828, 2007.
DOI : 10.1039/b703457a

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison et al., Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials, Journal of the American Chemical Society, vol.127, issue.28
DOI : 10.1021/ja051977c

G. M. Gitlin and . Whitesides, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew Chem Int Ed Engl, vol.44, issue.5, pp.724-728, 2005.

D. Dendukuri, K. Tsoi, T. A. Hatton, and P. S. Doyle, Controlled Synthesis of Nonspherical Microparticles Using Microfluidics, Langmuir, vol.21, issue.6, pp.2113-2116, 2005.
DOI : 10.1021/la047368k

C. C. Ho, R. H. Ottewill, A. Keller, and J. A. Odell, Monodisperse ellipsoidal polystyrene latex particles: Preparation and characterisation, Polymer International, vol.6, issue.2, pp.207-211, 1993.
DOI : 10.1111/j.1365-2818.1986.tb04288.x

L. Zheng, P. Huang, L. Zhang, D. Guo, and Q. Yan, Facile Fabrication of Anisotropic Colloidal Particles with Controlled Shapes and Shape Dependence of Their Elastic Properties, Particle & Particle Systems Characterization, vol.66, issue.11
DOI : 10.1063/1.1145439

A. Keller, J. A. Odell, and R. H. Ottewill, Preparation of monodisperse ellipsoidal polystyrene particles, Colloid Polym. Sci, vol.479, pp.469-479, 1986.

K. M. Keville, J. M. Caruthers, and E. I. Franses, Characterization of dimensions of ellipsoidal microparticles via electron microscopy, Journal of Microscopy, vol.17, issue.3, pp.327-340, 1986.
DOI : 10.1063/1.1707630

C. C. Ho, M. J. Hill, and J. A. Odell, Morphology of ellipsoidal latex particles, Polymer, vol.34, issue.10, pp.2019-2023, 1993.
DOI : 10.1016/0032-3861(93)90725-P

M. K. Klein, N. Klinkenberg, S. Schuetter, N. Saenger, P. Pfleiderer et al., PMMA/PMMA Core???Shell Particles with Ellipsoidal, Fluorescent Cores: Accessing Rotational Dynamics, Langmuir, vol.31, issue.9, pp.2655-2661, 2015.
DOI : 10.1021/la5045046

Y. Li, Y. Deng, Y. He, X. Tong, and X. Wang, Amphiphilic Azo Polymer Spheres, Colloidal Monolayers, and Photoinduced Chromophore Orientation, Langmuir, vol.21, issue.14, pp.6567-6571, 2005.
DOI : 10.1021/la050082a

Y. Li, Y. He, X. Tong, and X. Wang, Photoinduced Deformation of Amphiphilic Azo Polymer Colloidal Spheres, Journal of the American Chemical Society, vol.127, issue.8, pp.2402-2403, 2005.
DOI : 10.1021/ja0424981

Y. Li, Y. Deng, X. Tong, and X. Wang, Formation of Photoresponsive Uniform Colloidal Spheres from an Amphiphilic Azobenzene-Containing Random Copolymer, Macromolecules, vol.39, issue.3, pp.1108-1115, 2006.
DOI : 10.1021/ma052272y

E. Ortyl, S. Zielinska, R. Barillé, Y. Almohamed, and J. Nunzi, Instantaneous photoinduced patterning of an azopolymer colloidal nanosphere assembly, Optical Materials Express, vol.6, issue.9, p.2925, 2016.
DOI : 10.1364/OME.6.002925

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. Nunzi, Photoinduced deformation of azopolymer nanometric spheres, Applied Physics Letters, vol.50, issue.16, p.163104, 2010.
DOI : 10.1021/la0484725

Y. Xia and G. M. Whitesides, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

J. Bingi and V. M. Murukeshan, Speckle lithography for fabricating structures and black silicon structures, Nat. Publ. Gr, vol.5, issue.18452, pp.1-9, 2015.

. Fig and . Iv, 4-3 : A) Evolution of 4-fold PDMS SRG diffraction patternwith stretching. a) no stretching b-g) stretching 1 mm to 6mm B) Evolution of the 4-folds quasi-crystal SRG on PDMS with a) 0mm, b) 1mm, c) 2mm, d) 3mm, e) 4mm, f) 5mm and g) 6mm of stretching A) B)

. Fig and . Iv, 4-4 : A) Evolution of 6-fold PDMS SRG diffraction patternwith stretching. a) no stretching bg ) stretching 1 mm to 5mm B) Evolution of the 6-folds quasi-crystal SRG on PDMSwith a) 0mm, b) 1mm, c) 2mm, d) 3mm, e) 4mm and f) 5mm ofstretching A) B)

. Fig and . Iv, 4-5 : A) Evolution of 8-fold PDMS SRG diffraction patternwith stretching. a) no stretching b-g) stretching 1 mm to 6mm B) Evolution of the 8-folds quasi-crystal SRG on PDMSwith a) 0mm, b) 1mm, c) 2mm, d) 3mm, e) 4mm, f) 5mm and g)6mm of stretching A) B)