M. Raviglione and G. Sulis, Tuberculosis 2015: burden, challenges and strategy for control and elimination, Infectious Disease Reports, vol.8, issue.2, 2016.
DOI : 10.4081/idr.2016.6570

URL : http://www.pagepress.org/journals/index.php/idr/article/download/6570/5995

P. R. Matthew and . Berry, An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis, Nature, vol.466, issue.7309, pp.973-7710, 2010.

M. B. Rosane and . Teles, Type I Interferon Suppresses Type II Interferon?Triggered Human Anti-Mycobacterial Responses, Science, vol.339, issue.6126, pp.1448-53, 2013.

M. Swiecki and M. Colonna, The multifaceted biology of plasmacytoid dendritic cells, Nature Reviews Immunology, vol.9, issue.8, pp.471-8510, 2015.
DOI : 10.1038/ni.1669

M. Cella, Plasmacytoid Monocytes Migrate to Inflamed Lymph Nodes and Produce Large Amounts of Type I Interferon, Nature Medicine, vol.5, issue.8, pp.919-2310, 1038.

P. Michea, Epithelial control of the human pDC response to extracellular bacteria, European Journal of Immunology, vol.78, issue.5, pp.1264-73, 2013.
DOI : 10.1128/JVI.78.22.12613-12624.2004

L. Lozza, Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation, Frontiers in Immunology, vol.9, issue.324, 2014.
DOI : 10.1371/journal.ppat.1003130

I. Bekeredjian-ding, Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus, Frontiers in Immunology, vol.1051, issue.4, 2014.
DOI : 10.1196/annals.1361.042

N. Kadowaki, Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens, The Journal of Experimental Medicine, vol.161, issue.6, pp.863-70, 2001.
DOI : 10.4049/jimmunol.166.1.249

T. Kim, Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells, Proceedings of the National Academy of Sciences, vol.9, issue.12, pp.15181-86, 2010.
DOI : 10.1038/ni.1664

A. Szabo, TLR ligands upregulate RIG-I expression in human plasmacytoid dendritic cells in a type I IFN-independent manner, Immunology and Cell Biology, vol.95, issue.8, pp.671-78, 2014.
DOI : 10.1189/jlb.0711360

M. T. Nguyen and F. Götz, SUMMARY, Microbiology and Molecular Biology Reviews, vol.80, issue.3, pp.891-9031000028, 1128.
DOI : 10.1128/MMBR.00028-16

URL : https://hal.archives-ouvertes.fr/jpa-00229903

M. Sun and J. , Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide, Cell, vol.130, issue.6, pp.1071-82, 2007.

X. Yu, J. Zeng, and J. Xie, Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control, Biochimie, vol.102, pp.1-8, 2014.
DOI : 10.1016/j.biochi.2014.02.012

L. D. Jasenosky, in humans, Immunological Reviews, vol.9, issue.Suppl 1, pp.74-87, 2015.
DOI : 10.1371/journal.ppat.1003119

J. K. Sia, M. Georgieva, and J. Rengarajan, Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium Tuberculosis and Innate Immune Cells, Journal of Immunology Research, vol.2015747543, pp.1-1210, 2015.

N. Kadowaki, Natural Interferon ??/?????Producing Cells Link Innate and Adaptive Immunity, The Journal of Experimental Medicine, vol.157, issue.2, pp.219-245, 2000.
DOI : 10.1146/annurev.iy.12.040194.005015

URL : http://jem.rupress.org/content/jem/192/2/219.full.pdf

E. Volpe, A critical function for transforming growth factor-??, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses, Nature Immunology, vol.174, issue.6, pp.650-57, 2008.
DOI : 10.1084/jem.20012076

M. Rissoan, Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation, Science, vol.283, issue.5405, pp.1183-86, 1999.
DOI : 10.1126/science.283.5405.1183

C. Ghirelli, R. Zollinger, and V. Soumelis, Systematic cytokine receptor profiling reveals GM-CSF as a novel TLR-independent activator of human plasmacytoid predendritic cells, Blood, vol.115, issue.24, pp.5037-5077, 2010.
DOI : 10.1182/blood-2010-01-266932

R. Barbalat, Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands, Nature Immunology, vol.456, issue.11, pp.1200-1207, 2009.
DOI : 10.4049/jimmunol.180.7.5101

B. Jahrsdörfer, Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion, Blood, vol.115, issue.6, pp.1156-6510, 2010.
DOI : 10.1182/blood-2009-07-235382

. Jeroen-van-bergenhenegouwen, TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors, Journal of Leukocyte Biology, vol.94, issue.5, pp.885-902, 2013.
DOI : 10.1189/jlb.0113003

L. Lozza, T-cell stimulation in response to bacille Calmette-Gu??rin, European Journal of Immunology, vol.17, issue.1, pp.80-92, 2014.
DOI : 10.1111/j.1365-2958.1995.mmi_17050913.x

K. Cheng, Discovery of Small-Molecule Inhibitors of the TLR1/TLR2 Complex, Angewandte Chemie International Edition, vol.31, issue.49, pp.12246-12295, 2012.
DOI : 10.1016/j.immuni.2009.09.018

. Kadowaki, Natural Interferon ??/?????Producing Cells Link Innate and Adaptive Immunity, The Journal of Experimental Medicine, vol.157, issue.2, pp.219-245, 2000.
DOI : 10.1146/annurev.iy.12.040194.005015

URL : http://jem.rupress.org/content/jem/192/2/219.full.pdf

M. Cella, Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization, Nature Immunology, vol.182, issue.4, pp.305-1010, 2000.
DOI : 10.1084/jem.182.2.389

F. Bagnoli, S. Bertholet, and G. Grandi, Inferring Reasons for the Failure of Staphylococcus aureus Vaccines in Clinical Trials, Frontiers in Cellular and Infection Microbiology, vol.2, 2012.
DOI : 10.3389/fcimb.2012.00016

F. Bagnoli, Vaccine Composition Formulated with a Novel TLR7-Dependent Adjuvant Induces High and Broad Protection against Staphylococcus Aureus, Proceedings of the National Academy of Sciences, vol.112, issue.12, pp.3680-85, 2015.

G. Ruocco, T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17??in multiple sclerosis, Clinical Science, vol.7, issue.4, pp.291-30310, 2015.
DOI : 10.1371/journal.pone.0061835

D. Yu, The Transcriptional Repressor Bcl-6 Directs T Follicular Helper Cell Lineage Commitment, Immunity, vol.31, issue.3, pp.457-68, 2009.
DOI : 10.1016/j.immuni.2009.07.002

S. L. Rowland, Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model, The Journal of Experimental Medicine, vol.152, issue.10, pp.1977-91, 2014.
DOI : 10.1084/jem.20051696

L. Rönnblom and G. V. Alm, A Pivotal Role for the Natural Interferon ?????producing Cells (Plasmacytoid Dendritic Cells) in the Pathogenesis of Lupus: Figure 1., The Journal of Experimental Medicine, vol.10, issue.12, pp.59-64, 2001.
DOI : 10.1016/1074-7613(94)90089-2

C. Guiducci, PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation, The Journal of Experimental Medicine, vol.11, issue.2, pp.315-337, 2008.
DOI : 10.4049/jimmunol.174.9.5193

R. Lande and M. Gilliet, Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses, Annals of the New York Academy of Sciences, vol.204, issue.1, pp.89-103, 2010.
DOI : 10.4049/jimmunol.173.5.3051

J. M. Pitt, Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors, Immunity, vol.44, issue.6, pp.1255-69, 2016.
DOI : 10.1016/j.immuni.2016.06.001

J. M. Pitt, Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome, Cancer Research, vol.76, issue.16, pp.4602-4609, 2016.
DOI : 10.1158/0008-5472.CAN-16-0448

W. Van-voorhis, Human dendritic cells. Enrichment and characterization from peripheral blood, Journal of Experimental Medicine, vol.155, issue.4, pp.1172-87, 1982.
DOI : 10.1084/jem.155.4.1172

L. Ziegler-heitbrock, Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

M. Kondo, Implications for Clinical Application, BIOLOGY OF HEMATOPOIETIC STEM CELLS AND PROGENITORS Annual Review of Immunology, vol.21, issue.1, pp.759-806, 2003.

M. G. Manz, Dendritic cell potentials of early lymphoid and myeloid progenitors, Blood, vol.97, issue.11, pp.3333-3374, 2001.
DOI : 10.1182/blood.V97.11.3333

L. Franz-poulin, dendritic cells, The Journal of Experimental Medicine, vol.44, issue.6, pp.1261-71, 2010.
DOI : 10.4049/jimmunol.181.10.6923

URL : https://hal.archives-ouvertes.fr/hal-00294202

P. Olivier and . Joffre, Cross-Presentation by Dendritic Cells, Nature Reviews Immunology, vol.12, issue.8, pp.557-6910, 2012.

J. Banchereau, Immunobiology of Dendritic Cells, Annual Review of Immunology, vol.18, issue.1, pp.767-811, 2000.
DOI : 10.1146/annurev.immunol.18.1.767

N. Malanovic and K. Lohner, Antimicrobial Peptides Targeting Gram-Positive Bacteria, Pharmaceuticals, vol.52, issue.4, p.59, 2016.
DOI : 10.1128/mBio.00281-13

URL : https://doi.org/10.3390/ph9030059

C. Asselin, Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology, Nature Immunology, vol.95, issue.12, pp.1144-5010, 2001.
DOI : 10.1006/clim.2000.4858

M. Gilliet, The Development of Murine Plasmacytoid Dendritic Cell Precursors Is Differentially Regulated by FLT3-ligand and Granulocyte/Macrophage Colony-Stimulating Factor, The Journal of Experimental Medicine, vol.194, issue.7, pp.953-58, 2002.
DOI : 10.1084/jem.194.12.f59

W. Chen, Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors, Blood, vol.103, issue.7, pp.2547-53, 2004.
DOI : 10.1182/blood-2003-09-3058

. Proietto, The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34+ stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin, Cellular and Molecular Immunology, vol.95, issue.6, pp.446-54, 2012.
DOI : 10.1182/blood-2011-08-373944

B. Fancke, M-CSF: a novel plasmacytoid and conventional dendritic cell poietin, Blood, vol.111, issue.1, pp.150-59, 2008.
DOI : 10.1182/blood-2007-05-089292

K. Tobias and . Vogt, Novel Function for Interleukin-7 in Dendritic Cell Development, pp.3961-6810, 2009.

H. Tsujimura, T. Tamura, and K. Ozato, Cutting Edge: IFN Consensus Sequence Binding Protein/IFN Regulatory Factor 8 Drives the Development of Type I IFN-Producing Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.170, issue.3, pp.1131-1166, 2003.
DOI : 10.4049/jimmunol.170.3.1131

M. Nagasawa, Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B, European Journal of Immunology, vol.174, issue.9, pp.2389-2400, 2008.
DOI : 10.4049/jimmunol.174.5.2573

S. Hiyaa and . Ghosh, Continuous Expression of the Transcription Factor E2-2 Maintains the Cell Fate of Mature Plasmacytoid Dendritic Cells, Immunity, vol.33, issue.6, pp.905-921, 2010.

Y. Laouar, STAT3 Is Required for Flt3L-Dependent Dendritic Cell Differentiation, Immunity, vol.19, issue.6, pp.903-1210, 2003.
DOI : 10.1016/S1074-7613(03)00332-7

B. Cisse, Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development, Cell, vol.135, issue.1, pp.37-48, 2008.
DOI : 10.1016/j.cell.2008.09.016

L. Corcoran, The Lymphoid Past of Mouse Plasmacytoid Cells and Thymic Dendritic Cells, The Journal of Immunology, vol.170, issue.10, pp.4926-4958, 2003.
DOI : 10.4049/jimmunol.170.10.4926

H. Shalin and . Naik, Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo, Nature Immunology, vol.8, issue.11, pp.1217-2610, 1038.

N. Onai, A Clonogenic Progenitor with Prominent Plasmacytoid Dendritic Cell Developmental Potential, Immunity, vol.38, issue.5, pp.943-57, 2013.
DOI : 10.1016/j.immuni.2013.04.006

URL : https://doi.org/10.1016/j.immuni.2013.04.006

B. Reizis, Plasmacytoid Dendritic Cells: Recent Progress and Open Questions, Annual Review of Immunology, vol.29, issue.1, pp.163-83, 2011.
DOI : 10.1146/annurev-immunol-031210-101345

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160806/pdf

G. Penna, Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells, Human Immunology, vol.63, issue.12, pp.1164-7110, 2002.
DOI : 10.1016/S0198-8859(02)00755-3

M. Cella, Plasmacytoid Monocytes Migrate to Inflamed Lymph Nodes and Produce Large Amounts of Type I Interferon, Nature Medicine, vol.5, issue.8, pp.919-2310, 1038.

H. Yoneyama, Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules, International Immunology, vol.16, issue.7, pp.915-943, 2004.
DOI : 10.1093/intimm/dxh093

G. Penna, Cutting Edge: Selective Usage of Chemokine Receptors by Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.167, issue.4, pp.1862-66, 2001.
DOI : 10.4049/jimmunol.167.4.1862

J. Mai, An evolving new paradigm: endothelial cells ??? conditional innate immune cells, Journal of Hematology & Oncology, vol.6, issue.1, pp.611756-8722, 2013.
DOI : 10.1186/1756-8722-6-61

URL : https://jhoonline.biomedcentral.com/track/pdf/10.1186/1756-8722-6-61?site=jhoonline.biomedcentral.com

W. Vermi, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin, The Journal of Experimental Medicine, vol.7, issue.4, pp.509-524, 2005.
DOI : 10.1006/mvre.1996.0060

J. Tel, Human Plasmacytoid Dendritic Cells Phagocytose, Process, and Present Exogenous Particulate Antigen, The Journal of Immunology, vol.184, issue.8, pp.4276-83, 2010.
DOI : 10.4049/jimmunol.0903286

J. Guillerme, Measles Virus Vaccine-Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells, Clinical Cancer Research, vol.19, issue.5, pp.1147-58, 2013.
DOI : 10.1158/1078-0432.CCR-12-2733

N. Kadowaki, Natural Interferon ??/?????Producing Cells Link Innate and Adaptive Immunity, The Journal of Experimental Medicine, vol.157, issue.2, pp.219-245, 2000.
DOI : 10.1146/annurev.iy.12.040194.005015

M. Rissoan, Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation, Science, vol.283, issue.5405, pp.1183-86, 1999.
DOI : 10.1126/science.283.5405.1183

T. Ito, Plasmacytoid Dendritic Cells Regulate Th Cell Responses through OX40 Ligand and Type I IFNs, The Journal of Immunology, vol.172, issue.7, pp.4253-59, 2004.
DOI : 10.4049/jimmunol.172.7.4253

M. Cella, Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization, Nature Immunology, vol.182, issue.4, pp.305-1010, 2000.
DOI : 10.1084/jem.182.2.389

T. Ito, Plasmacytoid dendritic cells prime IL-10???producing T regulatory cells by inducible costimulator ligand, The Journal of Experimental Medicine, vol.157, issue.1, pp.105-120, 2007.
DOI : 10.1084/jem.20052359

M. Ogata, Plasmacytoid dendritic cells have a cytokine-producing capacity to enhance ICOS ligand-mediated IL-10 production during T-cell priming, International Immunology, vol.25, issue.3, pp.171-82, 2013.
DOI : 10.1093/intimm/dxs103

L. Chaperot, Virus or TLR Agonists Induce TRAIL-Mediated Cytotoxic Activity of Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.176, issue.1, pp.248-55, 2006.
DOI : 10.4049/jimmunol.176.1.248

URL : https://hal.archives-ouvertes.fr/inserm-00286442

C. Germain, Induction of Lectin-like Transcript 1 (LLT1) Protein Cell Surface Expression by Pathogens and Interferon-?? Contributes to Modulate Immune Responses, Journal of Biological Chemistry, vol.162, issue.44, pp.37964-75, 2011.
DOI : 10.4049/jimmunol.0804281

URL : https://hal.archives-ouvertes.fr/hal-00724230

I. Béatrice-bekeredjian-ding, Plasmacytoid Dendritic Cells Control TLR7 Sensitivity of Naive B Cells via Type I IFN, The Journal of Immunology, vol.174, issue.7, pp.4043-50, 2005.
DOI : 10.4049/jimmunol.174.7.4043

J. Shaw, Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70, Blood, vol.115, issue.15, pp.3051-5710, 2010.
DOI : 10.1182/blood-2009-08-239145

J. Julien and . Karrich, IL-21?stimulated Human Plasmacytoid Dendritic Cells Secrete Granzyme B, Which Impairs Their Capacity to Induce T-Cell Proliferation, Blood, vol.121, issue.16, pp.3103-1110, 2013.

B. Pérez-cabezas, TLR-activated conventional DCs promote ??-secretase-mediated conditioning of plasmacytoid DCs, Journal of Leukocyte Biology, vol.92, issue.1, pp.133-176, 2012.
DOI : 10.1189/jlb.0911452

S. Hanabuchi, Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL), Blood, vol.107, issue.9, pp.3617-2310, 2006.
DOI : 10.1182/blood-2005-08-3419

URL : http://www.bloodjournal.org/content/bloodjournal/107/9/3617.full.pdf

R. Wehner, The Bidirectional Crosstalk between Human Dendritic Cells and Natural Killer Cells, Journal of Innate Immunity, vol.108, issue.3, pp.258-6310, 2011.
DOI : 10.1182/blood-2006-02-004028

C. J. Montoya, Activation of Plasmacytoid Dendritic Cells with TLR9 Agonists Initiates Invariant NKT Cell-Mediated Cross-Talk with Myeloid Dendritic Cells, The Journal of Immunology, vol.177, issue.2, pp.1028-1067, 2006.
DOI : 10.4049/jimmunol.177.2.1028

I. Bekeredjian-ding, and transforming growth factor-?? synergize to inhibit plasmacytoid dendritic cell-derived interferon-??, Immunology, vol.279, issue.Suppl 1, pp.439-50, 2009.
DOI : 10.4049/jimmunol.179.5.2690

A. Li, IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis, The Journal of Immunology, vol.170, issue.6, pp.3369-76, 2003.
DOI : 10.4049/jimmunol.170.6.3369

URL : http://www.jimmunol.org/content/jimmunol/170/6/3369.full.pdf

M. L. Kalb, TRAIL+ Human Plasmacytoid Dendritic Cells Kill Tumor Cells In Vitro: Mechanisms of Imiquimod- and IFN-??-Mediated Antitumor Reactivity, The Journal of Immunology, vol.188, issue.4, pp.1583-91, 2012.
DOI : 10.4049/jimmunol.1102437

C. Ghirelli, R. Zollinger, and V. Soumelis, Systematic cytokine receptor profiling reveals GM-CSF as a novel TLR-independent activator of human plasmacytoid predendritic cells, Blood, vol.115, issue.24, pp.5037-5077, 2010.
DOI : 10.1182/blood-2010-01-266932

C. Ghirelli, Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes, Cancer Research, vol.75, issue.14, pp.2775-870008, 2015.
DOI : 10.1158/0008-5472.CAN-14-2386

V. Sisirak, Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus, The Journal of Experimental Medicine, vol.16, issue.10, pp.1969-76, 2014.
DOI : 10.1007/s12026-008-8055-8

S. L. Rowland, Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model, The Journal of Experimental Medicine, vol.152, issue.10, pp.1977-91, 2014.
DOI : 10.1084/jem.20051696

M. Laura, T. N. Davison, and . Jørgensen, Sialic Acid?Binding Immunoglobulin-Type Lectin H?Positive Plasmacytoid Dendritic Cells Drive Spontaneous Lupus-like Disease Development in B6.Nba2 Mice, Arthritis & Rheumatology, vol.67, issue.4, pp.1012-1034, 2015.

M. Swiecki, Plasmacytoid Dendritic Cell Ablation Impacts Early Interferon Responses and Antiviral NK and CD8+ T Cell Accrual, Immunity, vol.33, issue.6, pp.955-66, 2010.
DOI : 10.1016/j.immuni.2010.11.020

R. Baccala, Anti-IFN-??/?? Receptor Antibody Treatment Ameliorates Disease in Lupus-Predisposed Mice, The Journal of Immunology, vol.189, issue.12, pp.5976-84, 2012.
DOI : 10.4049/jimmunol.1201477

T. Lövgren, Induction of interferon-?? production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG, Arthritis & Rheumatism, vol.9, issue.8 Suppl, pp.1861-72, 2004.
DOI : 10.1016/S0966-842X(01)02097-2

L. Bennett, Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood, The Journal of Experimental Medicine, vol.149, issue.6, pp.711-734, 2003.
DOI : 10.1136/ard.58.5.309

J. Tian, Toll-like receptor 9???dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE, Nature Immunology, vol.198, issue.5, pp.487-9610, 1038.
DOI : 10.4049/jimmunol.177.12.8701

M. Paul and . Gallo, Amyloid-DNA Composites of Bacterial Biofilms Stimulate Autoimmunity, Immunity, vol.42, issue.6, pp.1171-84, 2015.

J. Di and D. , Nucleic Acid-Containing Amyloid Fibrils Potently Induce Type I Interferon and Stimulate Systemic Autoimmunity, Proceedings of the National Academy of Sciences, vol.109, issue.36, pp.14550-55, 2012.

M. Pashenkov, Two subsets of dendritic cells are present in human cerebrospinal fluid, Brain, vol.124, issue.3, pp.480-92, 2001.
DOI : 10.1093/brain/124.3.480

M. Pashenkov, Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections, Journal of Neuroimmunology, vol.122, issue.1-2, pp.106-1610, 2002.
DOI : 10.1016/S0165-5728(01)00451-9

N. Schwab, An Imbalance of Two Functionally and Phenotypically Different Subsets of Plasmacytoid Dendritic Cells Characterizes the Dysfunctional Immune Regulation in Multiple Sclerosis, The Journal of Immunology, vol.184, issue.9, pp.5368-74, 2010.
DOI : 10.4049/jimmunol.0903662

O. Frank and . Nestle, Plasmacytoid Predendritic Cells Initiate Psoriasis through Interferon-? Production, The Journal of Experimental Medicine, vol.202, issue.1, pp.135-178, 2005.

C. Albanesi, Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment, The Journal of Experimental Medicine, vol.21, issue.1, pp.249-58, 2009.
DOI : 10.1084/jem.20071601

URL : http://jem.rupress.org/content/jem/206/1/249.full.pdf

D. Saadeh, M. Kurban, and O. Abbas, Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases, Experimental Dermatology, vol.71, issue.49, pp.415-436, 2016.
DOI : 10.1016/j.jaad.2014.06.020

J. Diana, Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes, Nature Medicine, vol.169, issue.1, pp.65-73, 2013.
DOI : 10.1093/intimm/7.5.877

Q. Li, Interferon-?? initiates type 1 diabetes in nonobese diabetic mice, Proceedings of the National Academy of Sciences, vol.168, issue.10, pp.12439-12483, 2008.
DOI : 10.4049/jimmunol.168.10.4907

URL : http://www.pnas.org/content/105/34/12439.full.pdf

G. Adam, J. Peres, and . Madrenas, The Broad Landscape of Immune Interactions with Staphylococcus Aureus: From Commensalism to Lethal Infections, pp.380-88, 2013.

J. C. Lawrence, Burn bacteriology during the last 50 years, Burns, vol.18, issue.92, pp.23-2910, 1992.
DOI : 10.1016/0305-4179(92)90066-4

R. Henry, N. L. Shinefield, and . Ruff, Staphylococcal Infections: A Historical Perspective Infectious Disease Clinics of North America, Staphylococcal Infections, vol.23, issue.1, pp.1-15, 2009.

F. Heiman and . Wertheim, Risk and Outcome of Nosocomial Staphylococcus Aureus Bacteraemia in Nasal Carriers versus Non-Carriers, The Lancet, vol.364, issue.943504, pp.703-510, 2004.

M. Johannessen, J. E. Sollid, and A. Hanssen, Host- and microbe determinants that may influence the success of S. aureus colonization, Frontiers in Cellular and Infection Microbiology, vol.2, 2012.
DOI : 10.3389/fcimb.2012.00056

C. Bueno, T Cell Signalling Induced by Bacterial Superantigens, Chemical Immunology and Allergy, pp.161-80, 2007.
DOI : 10.1159/000100894

T. A. Chau, Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome, Nature Medicine, vol.34, issue.6, pp.641-689, 1965.
DOI : 10.4049/jimmunol.175.10.6870

P. Cossart, J. Pizarro-cerdá, and M. Lecuit, Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions, Trends in Cell Biology, vol.13, issue.1, pp.23-3110, 2003.
DOI : 10.1016/S0962-8924(02)00006-5

A. Lauren, H. Zenewicz, and . Shen, Innate and Adaptive Immune Responses to Listeria Monocytogenes: A Short Overview Microbes and Infection, Forum on ListeriaFrom genomics to pathogenesis, pp.1208-1223, 2007.

K. Rohde, Mycobacterium tuberculosis and the environment within the phagosome, Immunological Reviews, vol.84, issue.1, pp.37-54, 2007.
DOI : 10.1128/JB.184.14.4025-4032.2002

G. Maximiliano and . Gutierrez, Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium Tuberculosis Survival in Infected Macrophages, Cell, vol.119, issue.6, pp.753-66, 2004.

V. Clifford, L. Harding, M. Ramachandra, and . Wick, Interaction of Bacteria with Antigen Presenting Cells: Influences on Antigen Presentation and Antibacterial Immunity, Current Opinion in Immunology, vol.15, issue.102, pp.112-131, 2003.

Y. Jung, Evidence Inconsistent with a Negative Influence of T Helper 2 Cells on Protection Afforded by a Dominant T Helper 1 Response against Mycobacterium 175

N. Malanovic, Antimicrobial Peptides Targeting Gram-Positive Bacteria, Pharmaceuticals, vol.52, issue.4, 2016.
DOI : 10.1128/mBio.00281-13

URL : https://doi.org/10.3390/ph9030059

N. Khan, Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection, Frontiers in Microbiology, vol.44, issue.e1003407, 2016.
DOI : 10.3858/emm.2012.44.2.032

P. Gros, F. J. Milder, and B. J. Janssen, Complement driven by conformational changes, Nature Reviews Immunology, vol.152, issue.1, pp.48-5810, 1038.
DOI : 10.1016/S0171-2985(11)80110-5

K. Hwan-keun, Recurrent Infections and Immune Evasion Strategies of Staphylococcus Aureus Host?microbe interactions: bacteria, Current Opinion in Microbiology, vol.15, issue.1, pp.92-99, 2012.

A. Laarman, Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications, Journal of Molecular Medicine, vol.281, issue.2, pp.115-135, 2010.
DOI : 10.4049/jimmunol.173.9.5704

URL : https://link.springer.com/content/pdf/10.1007%2Fs00109-009-0572-y.pdf

W. K. Ip, Phagocytosis and Phagosome Acidification Are Required for Pathogen Processing and MyD88-Dependent Responses to Staphylococcus aureus, The Journal of Immunology, vol.184, issue.12, pp.7071-81, 2010.
DOI : 10.4049/jimmunol.1000110

URL : http://www.jimmunol.org/content/jimmunol/184/12/7071.full.pdf

J. Bylund, Intracellular generation of superoxide by the phagocyte NADPH oxidase: How, where, and what for?, Free Radical Biology and Medicine, vol.49, issue.12, pp.1834-1879, 2010.
DOI : 10.1016/j.freeradbiomed.2010.09.016

L. Sian and . Stafford, Metal Ions in Macrophage Antimicrobial Pathways: Emerging Roles for Zinc and Copper, Bioscience Reports, vol.33, issue.4, pp.49-59, 2013.

S. Searle, Localisation of Nramp1 in Macrophages: Modulation with Activation and Infection, Journal of Cell Science, vol.111, issue.19, pp.2855-66, 1998.

M. Faurschou and N. Borregaard, Neutrophil Granules and Secretory Vesicles in Inflammation Microbes and Infection, Forum in Immunology on neutrophils, pp.1317-1344, 2003.

M. Houghton, Macrophage elastase kills bacteria within murine macrophages, Nature, vol.166, issue.7255, pp.637-4110, 2009.
DOI : 10.1016/S0002-9440(10)62371-1

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885871/pdf

M. H. Karavolos, Role and regulation of the superoxide dismutases of Staphylococcus aureus, Microbiology, vol.149, issue.10, pp.2749-58, 2003.
DOI : 10.1099/mic.0.26353-0

J. K. Sia, M. Georgieva, and J. Rengarajan, Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium Tuberculosis and Innate Immune Cells, Journal of Immunology Research, vol.2015747543, pp.1-1210, 2015.

T. R. Lerner, S. Borel, M. G. Gutierrez, S. H. Riedel, and . Kaufmann, The Innate Immune Response in Human Tuberculosis doi:10.1111/cmi.12480. 100 Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients With Active Pulmonary TB Chemokine Secretion by Human Polymorphonuclear Granulocytes after Stimulation with Mycobacterium Tuberculosis and Lipoarabinomannan, Cellular Microbiology Infection and Immunity, vol.17, issue.65 11, pp.1277-85, 1997.

W. Finlay and . Mcnab, Programmed Death Ligand 1 Is over-Expressed by Neutrophils in the Blood of Patients with Active Tuberculosis Role of NK Cell-Activating Receptors and Their Ligands in the Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium, Diversity of Pathogen Sensors in Dendritic Cells Advances in Immunology Kenneth M. Murphy and Miriam Merad, pp.1941-1988, 2005.

A. Cambi, M. Koopman, and C. G. , How C-Type Lectins Detect Pathogens Cross-Linking of the Mannose Receptor on Monocyte- Derived Dendritic Cells Activates an Anti-Inflammatory Immunosuppressive Program DC-SIGN Is the Major Mycobacterium Tuberculosis Receptor on Human Dendritic Cells, Cellular Microbiology The Journal of Immunology The Journal of Experimental Medicine, vol.7, issue.197 1, pp.481-88, 2003.

L. B. Barreiro, Promoter Variation in the DC-SIGN???Encoding Gene CD209 Is Associated with Tuberculosis, PLoS Medicine, vol.2, issue.2, 2006.
DOI : 10.1371/journal.pmed.0030020.t004

URL : https://hal.archives-ouvertes.fr/hal-00090737

M. Ben-ali, Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients, Human Immunology, vol.68, issue.11, pp.908-920, 2007.
DOI : 10.1016/j.humimm.2007.09.003

URL : https://hal.archives-ouvertes.fr/pasteur-00871238

H. Lee, Dectin-1 is Inducible and Plays an Essential Role for Mycobacteria-Induced Innate Immune Responses in Airway Epithelial Cells, Journal of Clinical Immunology, vol.284, issue.6, pp.795-805, 2009.
DOI : 10.4049/jimmunol.181.7.5098

G. Kraal, The macrophage receptor MARCO, Microbes and Infection, pp.313-1610, 2000.
DOI : 10.1016/S1286-4579(00)00296-3

J. Canton, D. Neculai, and S. Grinstein, Scavenger receptors in homeostasis and immunity, Nature Reviews Immunology, vol.197, issue.9, pp.621-655, 2013.
DOI : 10.1084/jem.20021546

V. G. Martinez, The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression, Cellular and Molecular Immunology, vol.517, issue.4, pp.343-54, 2014.
DOI : 10.1111/j.1462-5822.2012.01766.x

J. Pugin, Intracellular NOD-like Receptors in Host Defense and Disease The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-?, CD14 Is a Pattern Recognition Receptor Thirumala-Devi Kanneganti, Mohamed Lamkanfi, and Gabriel Núñez, pp.509-1610, 1994.

S. Akira, S. Uematsu, and O. , The Innate Immune Response to Bacterial Flagellin Is Mediated by Toll-like Receptor 5 Recognition of Double-Stranded RNA and Activation of NF-[kappa]B by Toll-like Receptor 3 : Article : Nature, Pathogen Recognition and Innate Immunity Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran, pp.783-801, 2001.

S. S. Diebold, Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA, Science, vol.303, issue.5663, pp.1529-1560, 2004.
DOI : 10.1126/science.1093616

H. Hemmi, Small anti-viral compounds activate immune cells via the TLR7 MyD88???dependent signaling pathway, Nature Immunology, vol.274, issue.2, pp.196-20010, 2002.
DOI : 10.1074/jbc.274.16.10689

H. Hemmi, A Toll-like Receptor Recognizes Bacterial DNA Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which Activates Gene Transcription through MyD88, Nature The Journal of Immunology, vol.408, issue.174 5, pp.740-785, 2000.

G. M. Barton, J. C. Kagan, and R. Kim, Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA, Helical Assembly in the MyD88?IRAK4? IRAK2 Complex in TLR/IL-1R Signalling, pp.49-56, 2006.
DOI : 10.1073/pnas.242594499

M. Sun and J. , Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide, Cell, vol.130, issue.6, pp.1071-82, 2007.

G. Soong, TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells, Journal of Clinical Investigation, vol.113, issue.10, pp.1482-89, 2004.
DOI : 10.1172/JCI200420773

T. Nakata, CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex, Toll-like Receptor 2?integrin ?3 Complex Senses Bacterial Lipopeptides via Vitronectin, pp.1899-1909, 1618.
DOI : 10.1146/annurev.immunol.21.120601.141126

H. Stoll, Staphylococcus aureus Deficient in Lipidation of Prelipoproteins Is Attenuated in Growth and Immune Activation, Infection and Immunity, vol.73, issue.4, pp.2411-2434, 2005.
DOI : 10.1128/IAI.73.4.2411-2423.2005

J. W. Johnston, Lipoprotein PsaA in Virulence of Streptococcus pneumoniae: Surface Accessibility and Role in Protection from Superoxide, Infection and Immunity, vol.72, issue.10, pp.5858-67, 2004.
DOI : 10.1128/IAI.72.10.5858-5867.2004

M. Thomas and . Charlton, Quantitative Lipoproteomics in Clostridium Difficile Reveals a Role for Lipoproteins in Sporulation, Chemistry & Biology, vol.22, issue.11, pp.1562-73, 2015.

M. Schmollinger, ParSeq: Searching Motifs with Structural and Biochemical Properties Role of Neutrophils in Experimental Septicemia and Septic Arthritis Induced by Staphylococcus Aureus, Bioinformatics Infection and Immunity, vol.20, issue.65 7, pp.1459-61, 1997.

B. Fournier-min and . Shin, The Function of TLR2 during Staphylococcal Diseases Mycobacterium Tuberculosis Lipoprotein-Induced Association of TLR2 with Protein Kinase C ? in Lipid Rafts Contributes to Reactive Oxygen Species-Dependent Inflammatory Signalling in Macrophages, Mycobacterial Lipoprotein Activates Autophagy via TLR2/1/CD14 and a Functional Vitamin D Receptor Signalling, pp.1893-1905, 2008.

T. Philip and . Liu, Convergence of IL-1? and VDR Activation Pathways in Human TLR2/1-Induced Antimicrobial Responses, PLOS ONE, vol.4, issue.6, 2009.

D. Gupta, Suppression of TLR2-Induced IL-12, Reactive Oxygen Species, and Inducible Nitric Oxide Synthase Expression by Mycobacterium tuberculosis Antigens Expressed inside Macrophages during the Course of Infection, The Journal of Immunology, vol.184, issue.10, pp.5444-55, 2009.
DOI : 10.4049/jimmunol.0903283

. Rosales, Mycobacteria Release Active Membrane Vesicles That Modulate Immune Responses in a TLR2-Dependent Manner in Mice, Cellular Microbiology Journal of Clinical Investigation, vol.10, issue.121 4, pp.1711-1733, 2008.

C. Hémont, Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness, Journal of Leukocyte Biology, vol.93, issue.4, pp.599-609, 2013.
DOI : 10.1189/jlb.0912452

Y. Yang, Heat Shock Protein gp96 Is a Master Chaperone for Toll-like Receptors and Is Important in the Innate Function of Macrophages, Immunity, vol.26, issue.2, pp.215-241, 2007.
DOI : 10.1016/j.immuni.2006.12.005

J. M. Lund, Recognition of single-stranded RNA viruses by Toll-like receptor 7, Proceedings of the National Academy of Sciences, vol.48, issue.3, pp.5598-5603, 2004.
DOI : 10.1002/cyto.10118

K. Yang, Human TLR-7-, -8-, and -9-Mediated Induction of IFN-??/?? and -?? Is IRAK-4 Dependent and Redundant for Protective Immunity to Viruses, Immunity, vol.23, issue.5, pp.465-78, 2005.
DOI : 10.1016/j.immuni.2005.09.016

T. Kawai, Interferon-?? induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6, Nature Immunology, vol.427, issue.10, pp.1061-6810, 1038.
DOI : 10.1038/nature02273

C. Guiducci, PI3K Is Critical for the Nuclear Translocation of IRF-7 and Type I IFN Production by Human Plasmacytoid Predendritic Cells in Response to TLR Activation The Feedback Phase of Type I Interferon Induction in Dendritic Cells Requires Interferon Regulatory Factor 8 Spatiotemporal Regulation of MyD88?IRF-7 Signalling for Robust Type-I Interferon Induction, The Journal of Experimental Medicine Immunity Nature, vol.205, issue.434 7036, pp.315-337, 2005.

W. Cao, Plasmacytoid dendritic cell???specific receptor ILT7???Fc??RI?? inhibits Toll-like receptor???induced interferon production, The Journal of Experimental Medicine, vol.203, issue.6, pp.1399-1405, 2006.
DOI : 10.1038/nbt836

URL : http://jem.rupress.org/content/jem/203/6/1399.full.pdf

A. Dzionek, BDCA-2, a Novel Plasmacytoid Dendritic Cell???specific Type II C-type Lectin, Mediates Antigen Capture and Is a Potent Inhibitor of Interferon ??/?? Induction, The Journal of Experimental Medicine, vol.147, issue.12, pp.1823-1857, 2001.
DOI : 10.1016/S0167-5699(00)01745-X

A. L. Blasius, Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12, Blood, vol.107, issue.6, pp.2474-76, 2006.
DOI : 10.1182/blood-2005-09-3746

URL : http://www.bloodjournal.org/content/bloodjournal/107/6/2474.full.pdf

A. Fuchs, Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44, Blood, vol.106, issue.6, pp.2076-8210, 2005.
DOI : 10.1182/blood-2004-12-4802

S. Pestka, C. D. Krause, and M. R. Walter, Interferons, interferon-like cytokines, and their receptors, Immunological Reviews, vol.11, issue.1, pp.8-32, 2004.
DOI : 10.1107/S0907444999014304

J. R. Schoenborn and C. B. Wilson, Regulation of Interferon????? During Innate and Adaptive Immune Responses, BT -Advances in Immunology, pp.41-101, 2007.
DOI : 10.1016/S0065-2776(07)96002-2

A. Takaoka and T. Taniguchi, Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors, The Paradoxical New Member of the Interferon Lambda Family, pp.829-867, 2006.

B. Lionel, L. T. Ivashkiv, and . Donlin, Regulation of Type I Interferon Responses, Nature Reviews Immunology, vol.14, issue.1, pp.36-4910, 2014.

N. Yan, Z. J. Versteeg, A. García, -. Casanova, S. M. Holland et al., Intrinsic Antiviral Immunity Viral Tricks to Grid-Lock the Type I Interferon System Inborn Errors of Human JAKs and STATs Virus-Specific Interferon Action Protection of Newborn Mx Carriers against Lethal Infection with Influenza Virus Functional Role of Type I and Type II Interferons in Antiviral Defense, Type I Interferon Responses in Rhesus Macaques Prevent SIV Infection and Slow Disease Progression, pp.214-236, 1038.

M. Dauer, Interferon-alpha disables dendritic cell precursors: dendritic cells derived from interferon-alpha-treated monocytes are defective in maturation and T-cell stimulation, Immunology, vol.156, issue.1, pp.38-47, 2003.
DOI : 10.1182/blood-2001-12-0360

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2567.2003.01702.x/pdf

B. Hahm, Viruses Evade the Immune System through Type I Interferon-Mediated STAT2-Dependent, but STAT1-Independent, Signaling, Immunity, vol.22, issue.2, pp.247-57, 2005.
DOI : 10.1016/j.immuni.2005.01.005

URL : https://doi.org/10.1016/j.immuni.2005.01.005

T. Ito, Differential Regulation of Human Blood Dendritic Cell Subsets by IFNs, The Journal of Immunology, vol.166, issue.5, pp.2961-69, 2001.
DOI : 10.4049/jimmunol.166.5.2961

M. Montoya, Type I interferons produced by dendritic cells promote their phenotypic and functional activation, Blood, vol.99, issue.9, pp.3263-71, 2002.
DOI : 10.1182/blood.V99.9.3263

URL : http://www.bloodjournal.org/content/bloodjournal/99/9/3263.full.pdf

A. Le-bon, Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon, Endocytic Routing, and Processing, pp.1009-1024, 2003.
DOI : 10.1038/ni978

G. Gautier, A type I interferon autocrine???paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells, Pathogenic Potential of Interferon ?? in Acute Influenza Infection, pp.1435-1481, 2005.
DOI : 10.1182/blood-2003-02-0500

A. W. Hardy, HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-??, Proceedings of the National Academy of Sciences, vol.45, issue.1, pp.17453-58, 2007.
DOI : 10.1002/1097-0320(20010901)45:1<37::AID-CYTO1142>3.0.CO;2-E

URL : https://hal.archives-ouvertes.fr/hal-00177945

J. Herbeuval, CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis, Blood, vol.106, issue.10, pp.3524-3110, 2005.
DOI : 10.1182/blood-2005-03-1243

L. J. Thompson, Stat1 and Stat2 but Not Stat3 Arbitrate Contradictory Growth Signals Elicited by Alpha/Beta Interferon in T Lymphocytes Activation Mechanisms of Natural Killer Cells during Influenza Virus Infection Early Type I Interferon-Mediated Signals on B Cells Specifically Enhance Antiviral Humoral Responses Inhibition of <I>chlamydia trachomatis</I> Growth by Human Interferon-?: Mechanisms and Synergistic Effect with Interferon-? and Tumor Necrosis Factor-?, Innate Inflammatory Signals Induced by Various Pathogens Differentially Dictate the IFN-I Dependence of CD8 T Cells for Clonal Expansion and Memory Formation Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1, pp.1746-54, 2005.

G. Mancuso, Type I IFN Signaling Is Crucial for Host Resistance against Different Species of Pathogenic Bacteria, The Journal of Immunology, vol.178, issue.5, pp.3126-3159, 2007.
DOI : 10.4049/jimmunol.178.5.3126

G. Schiavoni, Type I IFN Protects Permissive Macrophages from Legionella Pneumophila Infection through an IFN-?-Independent Pathway Role of Interferon in Streptococcal Infection in the Mouse, The Journal of Immunology Microbial Pathogenesis, vol.173, issue.1 486, pp.1266-75, 1986.

M. O. Ryan and . Connell, Lymphocytes Are Detrimental during the Early Innate Immune Response against Listeria Monocytogenes Production of Type I IFN Sensitizes Macrophages to Cell Death Induced by Listeria Monocytogenes IFN-? Increases Listeriolysin O-Induced Membrane Permeabilization and Death of Macrophages, Type I Interferon Production Enhances Susceptibility to Listeria Monocytogenes Infection Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria Monocytogenes Infection, pp.437-482, 1128.

M. Rayamajhi, to suppress macrophage activation by IFN-??, The Journal of Experimental Medicine, vol.260, issue.2, pp.327-364, 2010.
DOI : 10.1016/j.micinf.2007.05.008

URL : http://jem.rupress.org/content/jem/207/2/327.full.pdf

P. R. Matthew and . Berry, An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis Intranasal Poly-IC Treatment Exacerbates Tuberculosis in Mice through the Pulmonary Recruitment of a Pathogen-Permissive Monocyte/macrophage Population Hypervirulent M. Tuberculosis W/Beijing Strains Upregulate Type I IFNs and Increase Expression of Negative Regulators of the Jak-Stat Pathway Virulence of a Mycobacterium Tuberculosis Clinical Isolate in Mice Is Determined by Failure to Induce Th1 Type Immunity and Is Associated with Induction of, Proceedings of the National Academy of Sciences, pp.973-77, 2001.

J. M. Cliff, Distinct Phases of Blood Gene Expression Pattern Through Tuberculosis Treatment Reflect Modulation of the Humoral Immune Response, The Journal of Infectious Diseases, vol.207, issue.1, pp.18-29, 2013.
DOI : 10.1093/infdis/jis499

H. M. Tom and . Ottenhoff, Genome-Wide Expression Profiling Identifies Type 1

D. Katrin and . Mayer-barber, Innate and Adaptive Interferons Suppress IL-1? and IL-1? Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium Tuberculosis Infection, Type I IFN Induces IL-10 Production in an IL-27? Independent Manner and Blocks Responsiveness to IFN-? for Production of IL-12 and 189, pp.1023-1057, 2011.

W. Finlay and . Mcnab, TPL-2?ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I IFN Production, The Journal of Immunology, vol.191, issue.4, pp.1732-1775, 2013.

D. Katrin and . Mayer-barber, Host-Directed Therapy of Tuberculosis Based on Interleukin-1 and Type I Interferon Crosstalk, Nature, vol.511, issue.7507, pp.99-10310, 1038.

M. B. Rosane and . Teles, Type I Interferon Suppresses Type II Interferon?Triggered Human Anti-Mycobacterial Responses, Science, vol.339, issue.6126, pp.1448-53, 2013.

Y. Belkaid and T. W. Hand, Role of the Microbiota in Immunity and Inflammation, Cell, vol.157, issue.1, pp.121-162, 2014.
DOI : 10.1016/j.cell.2014.03.011

J. Daniel and . Gough, Constitutive Type I Interferon Modulates Homeostatic Balance through Tonic Signaling, Immunity, vol.36, issue.2, pp.166-74, 2012.

S. C. Ganal, Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota, Immunity, vol.37, issue.1, pp.171-86, 2012.
DOI : 10.1016/j.immuni.2012.05.020

M. Tschurtschenthaler, Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration, Gut, vol.63, issue.12, pp.1921-3110, 2014.
DOI : 10.1136/gutjnl-2013-305863

M. David, J. K. Morens, A. S. Taubenberger, M. Fauci-kimberly, J. N. Davis et al., Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: Implications for Pandemic Influenza Preparedness Synergistic Stimulation of Type I Interferons during Influenza Virus Coinfection Promotes Streptococcus Pneumoniae Colonization in Mice, Journal of Infectious Diseases Journal of Clinical Investigation, vol.198, issue.121, pp.962-70, 2008.

A. A. Navarini, Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses, Proceedings of the National Academy of Sciences, vol.336, issue.5, pp.15535-15574, 2006.
DOI : 10.1056/NEJM199701303360507

A. Haque, Type I interferons suppress CD4+ T-cell-dependent parasite control during blood-stage Plasmodium infection, European Journal of Immunology, vol.171, issue.9, pp.2688-98, 2011.
DOI : 10.2353/ajpath.2007.061033

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.201141539/pdf

A. Vigário, Recombinant Human IFN-? Inhibits Cerebral Malaria and Reduces Parasite Burden in Mice IFN-?/? Signaling Is Required for Polarization of Cytokine Responses toward a Protective Type 1 Pattern during Experimental Cryptococcosis, STAT1 Mutations in Autosomal Dominant Chronic Mucocutaneous Candidiasis, pp.6416-6441, 0191.

P. Michea, Epithelial control of the human pDC response to extracellular bacteria, European Journal of Immunology, vol.78, issue.5, pp.1264-73, 2013.
DOI : 10.1128/JVI.78.22.12613-12624.2004

M. Parcina, Pathogen-Triggered Activation of Plasmacytoid Dendritic Cells Induces IL-10-Producing B Cells in Response to Staphylococcus aureus, The Journal of Immunology, vol.190, issue.4, pp.1591-1602, 2013.
DOI : 10.4049/jimmunol.1201222

A. L. Anderson, Plasmacytoid Dendritic Cells Infiltrate the Skin in Positive Tuberculin Skin Test Indurations Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation The Role of Chaos in Neural Systems, Infection and Immunity Journal of Investigative Dermatology Microbial Immunology Neuroscience, vol.74, issue.87 198, pp.1196-1203, 1998.

A. Joshi and D. Cao, TGF-Beta Signaling, Tumor Microenvironment and Tumor Progression: The Butterfly Effect, Frontiers in Bioscience, pp.15-180, 2010.
DOI : 10.2741/3614

J. P. Richardson and D. L. Moyes, Adaptive Immune Responses to Candida Albicans Infection, pp.327-364, 2015.

G. T. Seah, G. M. Scott, and G. A. Rook, Type 2 Cytokine Gene Activation and Its Relationship to Extent of Disease in Patients with Tuberculosis Reactivation of Tuberculosis Is Associated with a Shift from Type 1 to Type 2 Cytokines, Journal of Infectious Diseases Clinical & Experimental Immunology, vol.181, issue.115 3, pp.385-89, 1999.

J. Harris, Interferon?/IL10 Ratio Defines the Disease Severity in Pulmonary and Extra Pulmonary Tuberculosis, Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium Tuberculosis Immunity Tuberculosis, vol.27, issue.87 4, pp.505-522, 2007.

J. M. Coquet, L. Rausch, and J. B. Choi, The Importance of Co- Stimulation in the Orchestration of T Helper Cell Differentiation Analysis of Nitric Oxide Synthase and Nitrotyrosine Expression in Human Pulmonary Tuberculosis, Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium Tuberculosis Infection, pp.780-88, 2002.

D. Schmid and C. , Innate and Adaptive Immunity through Autophagy, Immunity, vol.27, issue.1, pp.11-21, 0193.
DOI : 10.1016/j.immuni.2007.07.004

URL : https://doi.org/10.1016/j.immuni.2007.07.004

V. Flávio and . Loures, Recognition of Aspergillus Fumigatus Hyphae by Human Plasmacytoid Dendritic Cells Is Mediated by Dectin-2 and Results in Formation of Extracellular Traps, PLOS Pathog, vol.11, issue.2, 2015.

G. Zaida and . Ramirez-ortiz, A Nonredundant Role for Plasmacytoid Dendritic Cells in Host Defense against the Human Fungal Pathogen Aspergillus Fumigatus, Cell Host & Microbe, vol.9, issue.5, pp.415-439, 2011.

. Volker-brinkmann, Neutrophil Extracellular Traps Kill Bacteria, Science, vol.303, issue.5663, pp.1532-1567, 2004.
DOI : 10.1126/science.1092385

C. F. Urban, Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms, Cellular Microbiology, vol.57, issue.4, pp.668-76, 2006.
DOI : 10.1016/j.mib.2004.06.005

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2005.00659.x/pdf

M. Wang, Microbial Hijacking of Complement-Toll-Like Receptor Crosstalk, Science Signaling, vol.3, issue.109, pp.11-21, 2010.
DOI : 10.1126/scisignal.2000697

H. Negishi, Negative regulation of Toll-like-receptor signaling by IRF-4, Proceedings of the National Academy of Sciences, vol.102, issue.44, pp.15989-94, 2005.
DOI : 10.1073/pnas.0504226102

A. Mansell, Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation, Nature Immunology, vol.166, issue.2, pp.148-5510, 2006.
DOI : 10.4049/jimmunol.166.11.6633

H. Shinohara, Dok-1 and Dok-2 Are Negative Regulators of Lipopolysaccharide-Induced Signaling Association of ?-Arrestin and TRAF6 Negatively Regulates Tolllike Receptor?interleukin 1 Receptor Signaling, The Journal of Experimental Medicine Nature Immunology, vol.201, issue.7 2, pp.333-372, 1038.

. Jian-jun and . Gao, Cutting Edge: Bacterial DNA and LPS Act in Synergy in Inducing Nitric Oxide Production in RAW 264.7 Macrophages, The Journal of Immunology, vol.163, issue.8, pp.4095-99, 1999.

S. Sato, Synergy and Cross-Tolerance Between Toll-Like Receptor (TLR)
DOI : 10.4049/jimmunol.165.12.7096

URL : http://www.jimmunol.org/content/jimmunol/165/12/7096.full.pdf

T. Signaling, Cutting Edge: Endotoxin Tolerance in Mouse Peritoneal Macrophages Correlates with Down-Regulation of Surface Toll-Like Receptor 4, The Journal of Immunology, vol.165, issue.12, pp.7096-7101, 2000.

K. Schroder, M. J. Sweet, D. A. Hume, P. Hayes, S. L. Freeman et al., Signal Integration between IFN? and TLR Signalling Pathways in Macrophages IFN-? Priming of Monocytes Enhances LPS-Induced TNF Production by Augmenting Both Transcription and mRNA Stability IL-4 Pretreatment Selectively Enhances Cytokine and Chemokine Production in Lipopolysaccharide- Stimulated Mouse Peritoneal Macrophages, Immunobiology, European Macrophage and Dendritic Cell Society Cytokine The Journal of Immunology, vol.211, issue.168 5, pp.511-535, 1995.

T. Hanamura, E. Asakura, and T. Tanabe, Macrophage colony-stimulating factor (M-CSF) augments cytokine induction by lipopolysaccharide (LPS)-stimulation and by bacterial infections in mice, Immunopharmacology, vol.37, issue.1, pp.15-2310, 1997.
DOI : 10.1016/S0162-3109(96)00166-X

R. I. Scheinman, Role of Transcriptional Activation of IkappaBalpha in Mediation of Immunosuppression by Glucocorticoi ds, Science, vol.270, issue.5234, pp.283-86, 1995.
DOI : 10.1126/science.270.5234.283

A. Cappuccio, Combinatorial code governing cellular responses to complex stimuli, Nature Communications, vol.449, p.6847, 2015.
DOI : 10.1038/nature06116

URL : http://www.nature.com/articles/ncomms7847.pdf

J. Casanova, L. Abel, . Dissection, . Immunity, and . Mycobacteria, : The Human Model, Annual Review of Immunology, vol.20, issue.1, pp.581-620, 2002.
DOI : 10.1146/annurev.immunol.20.081501.125851

S. Graham and A. V. Cooke, Genetics of Susceptibitlity to Human Infectious Disease A Polymorphism in Human TLR2 Is Associated with Increased Susceptibility to Tuberculous Meningitis, Nature Reviews Genetics Genes and Immunity, vol.2, issue.8 5, pp.967-77, 2001.

P. Pimentel-nunes, Functional Polymorphisms of Toll-like Receptors

G. Tannette and . Krediet, Toll-like Receptor 2 Polymorphism Is Associated With Preterm Birth, Cervical Cancer Susceptibility in North Indian Women, pp.474-76, 2007.

T. Tahara, Toll-like Receptor 2 ?196 to 174del Polymorphism Influences the Susceptibility of Japanese People to Gastric Cancer Toll-Like Receptor -1, -2, and -6 Polymorphisms and Pulmonary Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis, Cancer Science PLoS ONE, vol.98, issue.8 5, pp.1790-94, 2007.

C. M. Johnson, Cutting Edge: A Common Polymorphism Impairs Cell Surface Trafficking and Functional Responses of TLR1 but Protects against Leprosy, The Journal of Immunology, vol.178, issue.12, pp.7520-7544, 2007.
DOI : 10.4049/jimmunol.178.12.7520

M. Noreen and M. Arshad, Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility, Immunologic Research, vol.127, issue.9, pp.234-52, 2015.
DOI : 10.1136/ard.2007.083337

M. S. Fabiana and . Leoratti, Variants in the Toll-Like Receptor Signaling Pathway and Clinical Outcomes of Malaria Hyporesponsiveness to Vaccination with Borrelia Burgdorferi OspA in Humans and in TLR1-and TLR2-Deficient Mice, A Common Human TLR1 Polymorphism Regulates the Innate Immune Response to Lipopeptides, pp.772-80, 2002.

K. O. Omueti, The Polymorphism P315L of Human Toll-Like Receptor 1 Impairs Innate Immune Sensing of Microbial Cell Wall Components, Maximiliano Javier Jiménez-Dalmaroni, M. Eric Gerswhin, and Iannis E, pp.6387-94, 2007.
DOI : 10.4049/jimmunol.178.10.6387

. Adamopoulos, The Critical Role of Toll-like Receptors ? From Microbial Recognition to Autoimmunity: A Comprehensive Review, Autoimmunity Reviews, vol.15, issue.1, pp.1-8, 2016.

S. Devaraj, Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes, Diabetologia, vol.292, issue.8
DOI : 10.1007/s00125-009-1394-8

K. S. Lang, Toll-like Receptor Engagement Converts T-Cell Autoreactivity into Overt Autoimmune Disease Healthy First-Degree Relatives of Patients with Type 1 Diabetes Exhibit Significant Differences in Basal Gene Expression Pattern of Immunocompetent Cells Compared to Controls: Expression Pattern as Predeterminant of Autoimmune Diabetes, Nature Medicine Scandinavian Journal of Immunology, vol.11, issue.75 2, pp.138-183, 2005.

K. Hun-sik, Toll-like Receptor 2 Senses ?-Cell Death and Contributes to the Initiation of Autoimmune Diabetes, Immunity, vol.27, issue.2, pp.321-354, 2007.

L. Wen, The Effect of Innate Immunity on Autoimmune Diabetes and the Expression of Toll-Like Receptors on Pancreatic Islets, The Journal of Immunology, vol.172, issue.5
DOI : 10.4049/jimmunol.172.5.3173

J. Franck and . Barrat, Treatment of Lupus-Prone Mice with a Dual Inhibitor of TLR7 and TLR9 Leads to Reduction of Autoantibody Production and Amelioration of Disease Symptoms, European Journal of Immunology, vol.37, issue.12, pp.3582-86, 2007.

S. Bhattacharyya, Toll-Like Receptor 4 Signaling Augments Transforming Growth Factor-?? Responses, The American Journal of Pathology, vol.182, issue.1, pp.192-205, 2012.
DOI : 10.1016/j.ajpath.2012.09.007

URL : https://doi.org/10.1016/j.ajpath.2012.09.007

C. Abad, Association of Toll-like receptor 10 and susceptibility to Crohn's disease independent of NOD2, Genes and Immunity, vol.105, issue.8, pp.635-677, 2011.
DOI : 10.1086/380204

R. Angharad and . Morgan, The Toll-Like Receptor 4 D299G and T399I Polymorphisms Are Associated with Crohn's Disease and Ulcerative Colitis: A Meta-Analysis Toll like Receptor 2 and 4 Expression in Peripheral Blood Mononuclear Cells of Multiple Sclerosis Patients. -PubMed -NCBI Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens Plasmacytoid Dendritic Cells Mediate Anti-Inflammatory Responses to a Gut Commensal Molecule via Both Innate and Adaptive Mechanisms, Genetic Variation within TLR10 Is Associated with Crohn's Disease in a New Zealand Population Histone Deacetylase Inhibitors Impair Innate Immune Responses to Toll-like Receptor Agonists and to Infection, pp.416-436, 1182.

T. Furuta, DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription, BMC Molecular Biology, vol.9, issue.1, pp.39-49, 0199.
DOI : 10.1186/1471-2199-9-39

N. Schwab, An Imbalance of Two Functionally and Phenotypically Different Subsets of Plasmacytoid Dendritic Cells Characterizes the Dysfunctional Immune Regulation in Multiple Sclerosis Functional Expression of Granzyme B in Human Plasmacytoid Dendritic Cells: A Role in Allergic Inflammation, The Journal of Immunology Clinical & Experimental Allergy Granzyme B Produced by Human Plasmacytoid Dendritic Cells Suppresses T-Cell Expansion Blood, vol.184, issue.115 6, pp.5368-74, 1182.

M. Rissoan, Eph-B1, Granzyme B, and 3 Novel Transcripts in Human Plasmacytoid Dendritic Cells, Subtractive Hybridization Reveals the Expression of Immunoglobulinlike Transcript Blood, vol.7, issue.100 9, pp.3295-330310, 2002.
DOI : 10.1182/blood-2002-02-0638

URL : http://www.bloodjournal.org/content/bloodjournal/100/9/3295.full.pdf

J. Julien and . Karrich, IL-21?stimulated Human Plasmacytoid Dendritic Cells Secrete Granzyme B, Which Impairs Their Capacity to Induce T-Cell Proliferation, Blood, vol.121, issue.16, pp.3103-1110, 2013.

K. Cheng, Discovery of Small Molecule Inhibitors of the TLR1-TLR2 Complex Vaccine Composition Formulated with a Novel TLR7- Dependent Adjuvant Induces High and Broad Protection against Staphylococcus Aureus, Angewandte ChemieInternational Ed. in English) Proceedings of the National Academy of Sciences, vol.51, issue.112 12, pp.12246-12295, 2012.

T. S. Plantinga, Toll-like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia, The Journal of Infectious Diseases, vol.205, issue.6, pp.934-977, 2012.
DOI : 10.1093/infdis/jir867

URL : https://academic.oup.com/jid/article-pdf/205/6/934/18067090/jir867.pdf

C. Bourgeois and K. Kuchler, Fungal pathogens???a sweet and sour treat for toll-like receptors, Frontiers in Cellular and Infection Microbiology, vol.2, 2012.
DOI : 10.3389/fcimb.2012.00142

URL : http://journal.frontiersin.org/article/10.3389/fcimb.2012.00142/pdf

S. Kesh, TLR1 and TLR6 Polymorphisms Are Associated with Susceptibility to Invasive Aspergillosis after Allogeneic Stem Cell Transplantation, Annals of the New York Academy of Sciences, vol.1062, issue.1, pp.95-103, 2005.
DOI : 10.1196/annals.1358.012

T. Jouault, Species-Specific Recognition of Aspergillus Fumigatus by Tolllike Receptor 1 and Toll-like Receptor 6 Heterodimerization of TLR2 with TLR1 or TLR6 Expands the Ligand Spectrum but Does Not Lead to Differential Signaling TLR2 Is a Primary Receptor for Alzheimer's Amyloid ? Peptide To Trigger Neuroinflammatory Activation, Specific Recognition of Candida Albicans by Macrophages Requires Galectin-3 to Discriminate Saccharomyces Cerevisiae and Needs Association with TLR2 for Signaling Mal Connects TLR2 to PI3Kinase Activation and Phagocyte Polarization Plasmacytoid Dendritic Cells Mediate Anti-Inflammatory Responses to a Gut Commensal Molecule via Both Innate and Adaptive Mechanisms, pp.4679-87, 2006.

A. Ouabed, Differential Control of T Regulatory Cell Proliferation and Suppressive Activity by Mature Plasmacytoid versus Conventional Spleen Dendritic Cells, The Journal of Immunology, vol.180, issue.9, pp.5862-70, 2008.
DOI : 10.4049/jimmunol.180.9.5862

J. M. Pitt, Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome, Cancer Research, vol.76, issue.16, pp.4602-710, 2016.
DOI : 10.1158/0008-5472.CAN-16-0448

URL : http://cancerres.aacrjournals.org/content/canres/76/16/4602.full.pdf

J. M. Pitt, Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors, Immunity, vol.44, issue.6, pp.1255-69, 2016.
DOI : 10.1016/j.immuni.2016.06.001

URL : https://doi.org/10.1016/j.immuni.2016.06.001

M. Matsumoto, Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation, Immunity, vol.41, issue.6, pp.1040-51, 2014.
DOI : 10.1016/j.immuni.2014.10.016

URL : https://doi.org/10.1016/j.immuni.2014.10.016

H. Li, Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus, Journal of Clinical Investigation, vol.125, issue.7, pp.2877-9010, 2015.
DOI : 10.1172/JCI81059DS1

URL : http://www.jci.org/articles/view/81059/files/pdf

H. Poeck, Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help, Blood, vol.103, issue.8, pp.3058-6410, 2004.
DOI : 10.1182/blood-2003-08-2972

G. Jego, Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6, Immunity, vol.19, issue.2, pp.225-3410, 2003.
DOI : 10.1016/S1074-7613(03)00208-5

URL : https://doi.org/10.1016/s1074-7613(03)00208-5

M. Menon, A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus, Immunity, vol.44, issue.3, pp.683-97, 2016.
DOI : 10.1016/j.immuni.2016.02.012

M. Parcina, Pathogen-Triggered Activation of Plasmacytoid Dendritic Cells Induces IL-10-Producing B Cells in Response to Staphylococcus aureus, Bacterial Infections in Wegener?s Granulomatosis: Mechanisms Potentially Involved in Autoimmune Pathogenesis, pp.1591-1602, 2011.
DOI : 10.4049/jimmunol.1201222

A. V. Chervonsky, Influence of microbial environment on autoimmunity, Nature Immunology, vol.311, issue.1, pp.28-35, 2010.
DOI : 10.4049/jimmunol.170.2.816

G. Ruocco, T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17??in multiple sclerosis, Clinical Science, vol.7, issue.4, pp.291-30310, 2015.
DOI : 10.1371/journal.pone.0061835

URL : http://www.clinsci.org/content/ppclinsci/129/4/291.full.pdf

N. Dietrich, Activation Induces Type I Interferon Responses from Endolysosomal Compartments Vaccine Composition Formulated with a Novel TLR7-Dependent Adjuvant Induces High and Broad Protection against Staphylococcus Aureus IRF7: Activation, Regulation, Modification and Function, PLOS ONE Proceedings of the National Academy of Sciences Genes and Immunity, vol.5, issue.12 6, pp.3680-85, 2010.

S. Temmerman, Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin, Nature Medicine, vol.69, issue.9, pp.935-4110, 1038.
DOI : 10.1128/IAI.69.9.5606-5611.2001

J. Katrina, R. W. Falkenberg, and . Johnstone, Histone Deacetylases and Their Inhibitors in Cancer, Neurological Diseases and Immune Disorders, Nature Reviews Drug Discovery, vol.13, issue.9, pp.673-91, 2014.

J. L. Brogdon, Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function, Blood, vol.109, issue.3, pp.1123-3010, 2007.
DOI : 10.1182/blood-2006-04-019711

A. Hnin-thanda, LPS Regulates Proinflammatory Gene Expression in Macrophages by Altering Histone Deacetylase Expression, FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, vol.20, issue.9, pp.1315-2710, 2006.

J. Neagos, Epigenetic Regulation of Tolerance to Toll-Like Receptor Ligands in Alveolar Epithelial Cells, American Journal of Respiratory Cell and Molecular Biology, vol.48, issue.6, pp.872-81, 2015.
DOI : 10.1016/j.pharmthera.2014.11.006

. La-famille-des-gènes-de, Chez l'homme, la famille d'IFN de type I comprend 13 gènes d'IFN? partiellement homologues, l'IFNß et certains autres gènes qui sont mal caractérisés. L'utilisation d'IFN?/? exogène pour traiter des infections virales chez des souris a suggéré un rôle de ces cytokines dans l'immunité antivirale. Dans les infections mycobactériennes, la majeure partie des études met en évidence le rôle préjudiciable de l'IFN?, le groupe O'Garra a analysé le transcriptome de grandes cohortes de patients du Royaume-Uni et d'Afrique du Sud. Ils ont identifié un profil transcriptomique induit par l'IFN?/? chez les patients présentant une tuberculose active dans le sang; cette signature était corrélée avec les paramètres cliniques, 2010.

T. Les, ils la même fonction dans l'activation des pDC par des lipoprotéines? Ces différences se reflètent-elles sur l'activation des lymphocytes T?